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mon contrat doctoral et l’écriture de cette phrase. Quatre années de recherche qui ont
constituées une expérience incroyablement enrichissante à la fois sur le plan scientifique
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Enfin, mon dernier remerciement s’adresse à ma mère qui a toujours su prendre les
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Résumé de la thèse

Depuis ces dix dernières années, l’évolution des moyens de communication ainsi que la
démocratisation d’Internet ont fait des réseaux sociaux un enjeu crucial à la fois du point
de vue social bien sûr, mais également économique [52]. En particulier, la propagation
(ou diffusion) d’information au sein de telles structures n’a cessé de recevoir un interêt
croissant de la part de la commmunauté scientifique, motivé par des applications telles
que le marketing viral, la diffusion de rumeur ou même la santé publique. Il existe en
effet un lien étroit entre la topologie d’un réseau social et la propagation d’une maladie
au sein d’une population [41]. Le terme “information” est donc à prendre au sens large
puisqu’il peut faire référence à une rumeur, une maladie, un feu, un message publicitaire,
etc. Par “propagation”, nous sous-entendons un mécanisme qui définit la manière dont
l’information se transmet d’un individu à l’autre à travers tout le réseau. Afin de pouvoir
étudier formellement ces phénomènes de diffusion, plusieurs modèles théoriques basés sur
la théorie des graphes ont été proposés [47, 97, 29, 72, 36, 37, 70, 81, 80]. En effet, étant
donné que les réseaux sociaux consistent en un ensemble d’individus inter-connectés selon
une relation pré-déterminée (relation d’amitié, de travail, amoureuse, etc.), il est naturel
de représenter ces derniers à l’aide d’un graphe (voir Figure 1). On dit alors qu’un sommet
du graphe est dans l’état “activé” si l’information lui a été transmise. Selon le contexte,
le terme “activé” peut correspondre à un individu infecté par un virus, ou encore à une
personne ayant connaissance d’une rumeur.

Figure 1: L’aspect “arborescent” d’un graphe représentant des relations amoureuses dans
une école Américaine (image créée par Mark Newman d’après Bearman et al. [16]). Les
sommets en bleus (gris sombre) et roses (gris clair) correspondent, respectivement, aux
garçons et filles. Il y a une arête entre deux individus s’ils ont vécu une relation amoureuse
au cours des 18 mois de l’étude.

Une fois qu’un tel graphe a été établi, la prochaine étape consiste à en extraire des
informations pertinentes. À ce titre, plusieurs études se sont interessées, entre autre, aux
questions suivantes: Comment déterminer les individus les plus influents? Quelle partie
de la population est la plus encline à résister à une épidémie? Quelle est la meilleur
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vi Résumé de la thèse

stratégie de vaccination possible si une maladie vient à se propager? Chacune de ces
interrogations peut être abordée comme un problème algorithmique, et tout l’enjeu est
alors de savoir si “calculer” les réponses correspondantes est faisable en pratique. Cette
thèse se donne donc pour but d’examiner la complexité de résolution de ces problèmes du
point de vue algorithmique. Pour ce faire, nous nous proposons d’étudier la complexité
exacte et paramétrée ainsi que l’approximation de problèmes d’optimisation combinatoire
impliquant un processus de diffusion dans les graphes. Ce travail est structuré autour de
trois problématiques décrites dans les paragraphes suivants. Pour chacune d’entre elles,
nous définissons le ou les problèmes considérés, nous en faisons l’état de l’art et présentons
les résultats obtenus dans ce travail.

Maximiser la diffusion d’information (Chapitre 3).

Maximiser la diffusion d’information dans un réseau social est un problème intervenant
dans des contextes très divers comme, par exemple, le viral marketing. Cette technique
commerciale consiste à promouvoir un produit auprès de personnes influentes à travers
un message persuasif. L’objectif est alors de créer un effet de “bouche à oreille” pour
que ce message se diffuse le plus largement possible. L’originalité de cette approche vient
du fait que ce sont les clients eux-même qui font la publicité du produit. Le problème
d’optimisation qui en découle naturellement consiste en la donnée d’un graphe, une valeur
de seuil thr(v) associée à chaque sommet v de ce graphe, ainsi que la règle de propagation
suivante: un sommet devient actif s’il possède au moins thr(v) voisins activés. Le processus
de propagation se déroule alors en plusieurs étapes et se termine lorsque qu’aucun nouveau
sommet ne peut être activé. Étant donné ce modèle de diffusion, l’objectif est alors de
trouver et activer un ensemble de sommets de taille minimum de telle sorte que tous les
sommets du graphe soient activés à la fin du processus de propagation. Ce problème est
connu dans la littérature sous le nom de target set selection1 et a été introduit par Chen
[35].

Ce problème a été montré NP-hard même dans les graphes bipartis de degré borné
avec des seuils au plus égaux à deux [35]. Il est également difficile à approximer à un

ratio O(2log
1−ε n) pour tout ε > 0 même pour des graphes de degré borné avec des seuils

d’au plus deux [35]. Ce rapport d’inapproximation reste valide pour des seuils majoritaires
(i.e. le seuil de chaque sommet est égal à son degré divisé par deux). Dans le cas des seuils
unanimes (i.e. le seuil de chaque sommet est égal à son degré), le problème correspond
exactement au problème vertex cover. Par conséquent, il est 2-approximable en temps
polynomial et est difficile à approximer à un ratio mieux que 1.36 [46]. Concernant sa
compléxité paramétrée, le problème est W[2]-hard pour le paramètre “taille de la solution”,
même dans les graphes bipartis avec des seuils majoritaires ou au plus égaux à deux [90].
Cependant, Nichterlein et al. [90] ont donnés plusieurs algorithmes paramétrés lorsque les
paramètres sont liés à la structure du graphe. De plus, Ben-Zwi et al. [17] ont montré que
le problème est résoluble en temps polynomial pour des graphes de largeur arborescente
bornée.

À la lumière de ce dernier constat, nous proposons, dans un premier temps, d’explorer
plus en avant la complexité paramétrée de target set selection à l’aide de paramètres
structurels. Nos résultats sont résumés dans la figure 2. Une des conclusions de cette
étude est que supposer des seuils constants permet de rendre le problème traitable en
pratique. A priori, on pourrait penser que c’est une hypothèse assez restrictive, mais
dans de nombreux contextes applicatifs, tel que le viral marketing, supposer de tels seuils

1Nous gardons la dénomination anglaise pour le nom des problèmes.
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est suffisant. En effet, indépendamment du nombre de mes amis, il pourrait suffir que
cinq d’entre eux achètent un certain produit pour que je sois convaincu de son utilité
et l’achète à mon tour. Dans un second temps, nous avons envisagé l’approximation
paramètrée du problème complémentaire max influence: Étant donné un graphe, une
valeur de seuil thr(v) associée à chaque sommet v de ce graphe, et un entier k > 0,
l’objectif est de trouver et activer un ensemble de sommets de taille au plus k de telle sorte
que le nombre de sommets activés à la fin du processus de propagation soit maximum.
Le processus de propagation est le même que celui défini pour target set selection. Ce
problème est en fait la version déterministe du problème introduit par Kempe et al. [72].
Nos résultats sont résumés dans le tableau 1. Notons qu’il existe deux façons de mesurer
la taille de la solution en comptant ou non l’ensemble initialement activé. De ce fait,
nous définissons, respectivement, les deux problèmes max closed influence et max open
influence. On rappelle qu’un problème d’optimisation est α(n)-approximable en temps fpt
par rapport au paramètre k si le problème est α(n)-approximable en temps f(k) ·nO(1) où f
est une fonction qui ne dépend que de k. Il est intéressant de noter que max open influence,
pour le cas unanime, est α(n)-approximable en temps fpt par rapport au paramètre k pour
toute fonction croissante α (Corollary 32) alors qu’il est W[1]-hard par rapport à ce même
paramètre (Theorem 29) et inapproximable en temps polynomial à un ratio n1−ε pour
tout ε > 0 si NP 6= ZPP (Theorem 30).

Vertex Cover
Number

[90] [90] [90]

Feedback Edge
Set Number

[90] [90] [90]

Distance to
Clique

Th.18 Th.18

Cluster Vertex
Deletion Number

Th.24 Th.16

Clique Cover
Number

Th.17

Bandwidth

Th.15Th.15Th.15

Distance to
Cograph

Th.13 [17]

Feedback Vertex
Set Number

[17] Th.13 [17]

Distance to
Interval

Th.13 [17]

Pathwidth

[17] Th.13 [17]

Treewidth

[17] Th.13 [17]

Figure 2: Panorama de nos résultats de complexité paramètrée pour target set selection
avec des paramètres structurels. Les trois cases en-dessous de chaque paramètre indiquent
un résultat pour des seuils (de gauche à droite) bornés par une constante, majoritaire, et
sans restriction. Une arête joignant un paramètre k2 à un autre paramètre k1 en dessous
de k2 implique l’existence d’une constante c > 0 telle que k1 ≤ c · k2. Le paramètre
“Distance to C” où C est une classe de graphe correspond au nombre minimum de sommets
à retirer de sorte que le graphe obtenu appartient à C. Pour le paramètre “clique cover
number”, la case noire indique que le problème est NP-hard pour une valeur constante du
paramètre. La couleur violette (gris sombre) indique un résultat de W[1]-hardness alors
que la couleur verte (gris clair) signifie que le problème admet un algorithme paramétré.
Lorsque la case est blanche, la question est ouverte.

Les résultats présentés dans cette section sont basés sur les papiers suivants:
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max open influence max closed influence

Seuils Bornes temps poly. temps fpt temps poly. temps fpt

Cons.
Sup. n n n n
Inf. n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0

(Th.27)

Maj.
Sup. n n n n
Inf. n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0

(Th.26)

Una.
Sup. 2k (Th.31) α(n),∀α (Th.32) 2k α(n),∀r
Inf. n1−ε,∀ε > 0 (Th.30) ? 1 + ε (Th.36) ?

Table 1: Tableau regroupant nos résultats d’approximation pour max open influence
et max closed influence avec des seuils constants (Cons.), majoritaires (Maj.) et
unanimes (Una.). Les résulats d’approximation paramétrés sont établis par rapport au
paramètre k pour les deux problèmes. La valeur n correspond à la taille du graphe.

◮M. Chopin, A. Nichterlein, R. Niedermeier, and M. Weller, Constant Thresholds Can
Make Target Set Selection Tractable, Proceedings of the 1st Mediterranean Conference on
Algorithms (MedALG 2012), LNCS 7659, pp. 120–133, 2012.

◮ C. Bazgan, M. Chopin, A. Nichterlein and F. Sikora, Parameterized Approximabil-
ity of Maximizing the Spread of Influence in Networks, Proceedings of the 19th Annual
International Computing and Combinatorics Conference (COCOON 2013), LNCS 7936,
pp. 543–554, 2013.

Déterminer un ensemble inoffensif (Chapitre 4).

Dans l’étude précédente, nous avons souligné la difficulté de traitabilité du problème target
set selection et avons donc proposé d’autres approches afin d’obtenir des résultats posi-
tifs. Au regard de la nature intraitable de ce problème, il est intéressant de se poser la
question de la complexité du problème inverse que l’on nomme harmless set : Étant donné
un graphe, une valeur de seuil thr(v) associée à chaque sommet v, et un entier k > 0,
l’objectif est de trouver un ensemble de sommets de taille au moins k de sorte qu’activer
des sommets quelconque dans cet ensemble ne permet d’activer aucun sommet par propa-
gation. Autrement, on souhaite trouver un ensemble S de sommets tel que tout sommet v
du graphe a un nombre de voisins dans S inférieur à thr(v). On appelle alors l’ensemble
S un ensemble inoffensif. Ce problème pourrait intervenir, par exemple, dans un contexte
épidémique. L’objectif serait alors de déterminer la résistance naturelle d’une population
face à la propagation d’un virus. Il est intéressant de noter que ce problème peut être
mis en relation avec le problème (σ, ρ)-dominating set introduit par Telle [100]: Étant
donné un graphe G = (V,E), deux ensembles d’entiers non-négatifs σ et ρ, et un en-
tier k ≥ 1, l’objectif consiste à trouver un ensemble S ⊆ V de taille au plus k tel que
pour tout sommet v ∈ V , le nombre de voisins de v dans S appartient à σ et le nombre
de voisins de v n’appartenant pas à S appartient à ρ. On dit alors que S est un ensem-
ble (σ, ρ)-dominant. Il se trouve que si tous les seuils sont égaux alors harmless set est
équivalent à (σ, ρ)-dominating set of size k [61] (qui demande un ensemble (σ, ρ)-dominant
de taille exactement k) avec σ = ρ = {0, . . . , thrmax} où thrmax est la valeur du seuil max-
imum. Puisque ce dernier problème est dans W[1] [61], cela implique que harmless set
est également dans W[1] si tous les seuils sont égaux. Á notre connaissance, c’est le seul
résultat qui peut être transféré à harmless set.
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Dans cette thèse, nous avons étudié la complexité paramétrée (voir le tableau 2) ainsi
que l’approximation du problème de maximisation associé max harmless set. Nous avons
établi que max harmless set est inapproximable à un ratio n1−ε pour tout ε > 0 avec
des seuils d’au plus deux. Si les seuils sont unanimes, le problème est APX-hard et est
3-approximable en temps linéaire. Nous donnons également un schéma d’approximation
polynomiale pour les graphes planaires.

Seuils harmless set dual harmless set

General W[2]-complete (Th.42) W[2]-hard
Constants W[1]-complete (Th.44) FPT (Th.48)
Majoritaires W[1]-hard (Th.44) FPT (Th.48)
Unanimes FPT (Th.46) W[2]-hard∗

Table 2: Nos résultats de complexité paramétrée pour harmless set et son dual dual
harmless set où l’objectif est de trouver un ensemble inoffensif de taille au moins n− k où
n est la taille du graphe. Le paramètre est k pour les deux problèmes. Le résultat marqué
par ∗ est dû à l’équivalence entre dual harmless set et le problème total dominating set
qui a été montré W[2]-hard [61]

Les résultats présentés dans cette section sont basés sur le papier suivant:

◮ C. Bazgan and M. Chopin, The robust set problem: parameterized complexity and
approximation, Proceedings of the 37th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2012), LNCS 7464, pp. 136–147, 2012.

Contenir la propagation d’information (Chapitre 5).

Dans cette partie finale, nous avons étudié le problème firefighter. De manière informel,
l’objectif est ici de stopper la propagation d’information au sein d’un réseau en ayant
la possibilité de “protéger” certains sommets. Un sommet protégé ne pouvant plus être
activé. Ce problème a été initialement introduit par Hartnell en 1995 [64], et a depuis
été très largement étudié [7, 27, 31, 55, 89, 54]. Il est défini de la manière suivante:
initialement un sommet particulier d’un graphe est activé. À chaque pas de temps, on
applique successivement les deux étapes suivantes: 1) Protéger un sommet non-activé du
graphe; 2) Tous les sommets non-protégés et adjacents à un sommet activé sont activés. Le
processus se termine lorsque plus aucun nouveau sommet ne peut être activé. Un sommet
est alors considéré comme sauvé s’il n’est pas activé. Étant donné un entier k > 0,
l’objectif est de trouver une stratégie de protection des sommets permettant de sauver au
moins k sommets.

Ce problème a été montré NP-difficile dans les graphes bipartis [82], graphes cu-
biques [75], et graphes de disque-unité [58]. Finbow et al. [55] ont montré que le problème
est NP-hard même dans les arbres de degré au plus trois et résoluble en temps poly-
nomial dans les graphes de degré au plus trois si le sommet initialement activé est de
dégré au plus deux. De plus, le problème firefighter est résoluble en temps polynomial
dans les caterpillars et les P-arbres [82].2 Du point de vue de l’approximation, la version

2Un P-arbre [82] est un arbre qui ne contient pas la configuration suivante:

niveau i

niveau i+ 1

niveau i+ 2
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maximisation du problème, qui consiste à maximiser le nombre de sommets sauvés, est
e

e−1-approximable dans les arbres [27] et non n1−ε-approximable dans les graphes généraux
pour tout ε > 0, si P 6= NP [7]. Pour les arbres où chaque sommet a au plus trois fils, le
problème est 1.3997-approximable [69]. Peu de résultats sont connus concernant la com-
plexité paramétrée du problème. Cai et al. [27] fournissent des algorithmes paramétrés
dans le cas des arbres pour chacun des paramètres suivants: le nombre de sommets sauvés,
le nombre de sommets brûlés, et le nombre total de sommets protégés. Pour le paramètre
“nombre de sommets sauvés”, les auteurs donnent un noyau polynomial.

Dans cette thèse, nous considérons la version plus générale du problème où b ≥ 1
(appelé budget) sommets peuvent être protégés à chaque pas de temps. Nous étudions
également le dual noté dual firefighter dont l’objectif est de sauver au moins n− kb som-
mets où n est la taille du graphe et kb est un entier positif. Pour terminer, nous con-
sidérons le problème bounded firefighter qui est défini de manière similaire au problème
firefighter excepté que l’on est autorisé à protéger un total d’au plus kp ≥ 1 sommets,
où kp est un entier donné en entrée du problème. Nous montrons que le problème fire-
fighter est NP-complet dans les arbres de degré au plus b + 3 ainsi que dans les arbres
de pathwidth au plus trois. Cependant, nous montrons que le problème est résoluble en
temps polynomial pour la classe des graphes dont le degré maximum et le pathwidth sont
bornés. Nous fournissons également un algorithme polynomial pour résoudre le problème
(et la version pondérée correspondante) pour une sous classe d’arbres de pathwidth deux,
les k-caterpillars. Nous établissons des bornes de compléxité paramétrée inférieures et
supérieures pour les problèmes firefighter, dual firefighter, et bounded firefighter dans les
graphes généraux par rapport aux paramètres standards (see Figure 3). Nous donnons
également des algorithmes paramétrés dans les arbres qui améliorent les résultats obtenus
par Cai et al. [27]. Nous répondons également à plusieurs questions ouvertes de [27]. De
plus, nous établissons plusieurs algorithmes paramétrés par rapport à des paramètres liés à
la structure du graphe (see Figure 4). Pour terminer, nous observons que la version mini-
misation du problème firefighter est inapproximable à un ratio n1−ε même dans les arbres
pour tout ε > 0 et tout budget b ≥ 1 si P 6=NP. Nous répondons de manière négative à
une question ouverte de Finbow and MacGillivray [54].

firefighter bounded firefighter dual firefighter

k kp kb
W[1]-hard W[1]-hard W[1]-hard

Noyau poly. ? no no no

Budget W[1]-hard W[1]-hard FPT

Noyau poly. ? no no no

Treewidth FPT FPT ?

Noyau poly. ? ? no no

Figure 3: Résumé de nos résultats de compléxité paramétrée incluant la paramétrisation
standard. À chaque colonne est associé un problème et son paramètre standard. À chaque
ligne, excepté la première, correspond également un paramètre. L’intersection d’une ligne
et d’une colonne donne un résultat de complexité paramétrée par rapport au paramètre
combiné de la ligne et de la colonne.

Les résultats présentés dans cette section sont basés sur les papiers suivants:

◮ C. Bazgan, M. Chopin and M. R. Fellows, Parameterized complexity of the fire-
fighter problem, Proceedings of the 22nd International Symposium on Algorithms and
Computation (ISAAC 2011), LNCS 7074, pp. 643–652, 2011.
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Figure 4: Nos résultats de complexité paramétrée pour le problème firefighter par rapport
à des paramètres structurels. Un rectangle en pointillé indique que le problème admet un
algorithme paramétré pour ce paramètre, un rectangle gris montre un résultat de W[1]-
hardness, et un rectangle avec des bords noirs indique le problème est NP-hard pour une
valeur constante de ce paramètre. Un rectangle avec un “?” indique une question ouverte.
Pour le paramètre “diameter”, Fomin et al. [58] ont montré que firefighter est dans XP.

◮ C. Bazgan, M. Chopin and B. Ries, The firefighter problem with more than one
firefighter on trees, Discrete Applied Mathematics 161(7-8), 899-908, 2013.

◮ C. Bazgan, M. Chopin, M. R. Fellows, F. V. Fomin, E. J. van Leeuwen and M.
Cygan, Parameterized Complexity of Firefighting, submitted.

◮ J. Chleb́ıková and M. Chopin, The Firefighter Problem: A Structural Analysis,
ongoing paper.





Chapter

1
Introduction

O
ver the last past decade, the evolution of communication technology together with
the democratization of Internet have made social networks a major economic and

social stake [52]. In particular, the propagation (or diffusion) of information through
these networks has gained a lot of interest driven by applications such as viral marketing,
rumor spreading or even public health (for instance, there is a close connection between the
topology of social networks and the propagation of a disease through a population [41]).
The term “propagation of information” should be considered in a broad sense here as
it may appear in various contexts. In order to better understand its meaning, let us
consider the following real-world examples. In 1996, the email service Hotmail added the
following simple message to the footer of every mail sent out by users “Get your free

email at Hotmail”. As a result, the number of subscribers grew by 12 million in 18
months. In this case, the propagated information was a textual advertisement message
that goes (propagates) from one user to many others. As a matter of fact, this marketing
technique is called “viral advertisement” due to its analogy with the spread of viruses or
computer viruses. Another example is from a study of Christakis and Fowler [40]. In
their work, the authors analyzed the obesity propagation during 32 years through a social
network having more than 12000 persons. They found that having obese friends increase
by 57% the chance of developing obesity. Moreover, they also observed that obesity may
influence up to three degrees of separation i.e. if the friend of a friend of my friend is obese
then my obesity risk is increased. Here the propagation is clearly of psychological nature.
To formally capture these diffusion phenomenons, several theoretical models have emerged
recently [47, 97, 29, 72, 36, 37, 70, 81, 80]. As social networks consist of individuals who
are linked together by a pre-determined relationship, they are often represented as graphs.
A graph is a mathematical object that comes up with a collection of vertices together with
a collection of edges that connect pairs of vertices (see Figure 1.1).

Given a graph that represents a social network, a natural next step is to determine
what kind of knowledge one can learn from it. For instance, several studies investigate
the following questions among others: who are the most influencer individuals? what
part of a population is the most resistant to an epidemic outbreak? in the case of a
spread of a disease, what is the best vaccination strategy? Each of these interrogations
can be regarded as a particular problem to solve, and the question that naturally follows is
whether it is an easy task or not. This leads us to the main objective of this thesis which
is to address the complexity of these problems from the computer science point of view.
More specifically, the goal is to design efficient algorithms that compute the answer of the
previous questions. By “efficient” we mean that the running time of these algorithms on
a computer is required to be reasonable i.e. they should not run more than a few days.
If such an algorithm exists, we say that the problem is practically solvable. As a matter
of fact, all problems in this work are combinatorial problems. At its most general form, a
combinatorial problem is a problem for which the goal is to find an optimal solution among
a large finite set of solutions. Consider for example a well known combinatorial problem
“Traveling Salesman Problem (TSP)” [8]: Given a list of cities and distances between
each pair of cities, TSP consists of finding a shortest possible route that visits each city
exactly once and returns to the origin city. One might think that it suffices to exhaustively

1



2 Chapter 1. Introduction

Figure 1.1: The “tree-like” aspect of a graph representing romantic relationships in an
American high school (image drawn by Mark Newman from Bearman et al. [16]). Blue
(dark gray) and pink (light gray) vertices correspond to male and female, respectively.
An edge joins two individuals if they were romantically involved during the 18 months in
which the study was conducted.

check every route to eventually find the optimal one. However, a typical combinatorial
problem has a number of possible solutions which is so large that the best solution could
not be obtain within a reasonable amount of time using this naive technique. This is what
we call the combinatorial explosion. Considering the traveling salesman problem with
only 20 cities, such exhaustive algorithm may take centuries before we get the optimal
solution, even with the world-fastest computer. To be convinced, let us consider a really
fast computer able to compare two possible routes and say which one is the shortest in less
than 0.000000001 second or, equivalently, one nanosecond i.e. faster than the time taken
for light to travel one meter. It turns out that for 20 cities, the number of possible routes
is about 2.4×1018. Since the computer needs to compare every route with each other, this
would take 2.4 × 1018 nanoseconds to find the shortest route which corresponds roughly
to 770 years! This is definitely not a reasonable running time to solve the problem. The
central question is then to determine whether there exists a better approach i.e. for a given
problem, is there an algorithm that could possibly solve it in reasonable time? This leads
us to the concept of computational “hardness” of a problem. This notion is rigorously
defined in computational complexity theory but, for the sake of clarity, we only say here
that a problem is hard if its solution requires significant resources (essentially time and
memory) to be computed. Computer scientists have grouped problems into classes based
on how long they take to be solved. The class NP gathers problems for which an answer
can be verified in a reasonable amount of time. Some problems of NP can in fact be
solved quickly. Those problems are said to be in P, which stands for polynomial time.
However, there are other problems in NP which have never been solved in polynomial
time and widely believed of not being so. Those latter problems are said NP-hard (like the
traveling salesman problem). In fact, problems in NP and P are required to be decision
problems, i.e. a problem with only two possible solutions “yes” or “no”. However, this
is not restrictive since every combinatorial optimization problem has a computationally
equivalent decision problem. For example, computing an optimal solution for the traveling
salesman problem is at least as hard as to solve its decision version: given an integer k,
is there a route of length at most k that visits each city exactly once and returns to the
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origin city?

In this thesis, we consider combinatorial optimization problems related to the diffusion
of information in social networks. We then classify them either by proving that they are
polynomial-time solvable or by proving that they are in fact NP-hard. In the last case, we
try to rely on other type of methods such as approximation or parameterized algorithms to
solve them. For an approximation algorithm, the basic idea is to release the constraint of
optimality while the running time is required to be reasonable, and the computed solution
must be guaranteed to be “close” to the optimum. A parameterized algorithm tries to
get rid of the easy-to-solve parts of a problem so that it only remains what makes the
problem difficult. The idea is to cope with a smaller equivalent version of the problem,
thus making algorithms running faster on it. We can even combine the two approaches to
get a parameterized approximation algorithm.

Let us consider a viral marketing problem as an illustration of the problems studied
in this thesis. The aim of viral marketing is to advertise a product to the most influential
customers who are most likely to produce a “word-of-mouth” effect through their social
network. The advantage of this technique is that the customers perform themselves the
advertisement of a product, saving thus a lot of money for the company. The Figure 1.2
depicts the partial social network of a customer called “Bob” by the use of an undirected
graph. Each vertex corresponds to a customer and an edge between two vertices indicates
that these two individuals know each other. The number inside each vertex is called
“threshold”. A customer with threshold t is convinced of a product’s usefulness and buys
it if at least t of its friends have one. In this thesis, we speak in a more general sense and
thus say that a vertex of a graph is “active” instead of “convinced”. Depending of the
application context, the term “active” could also mean “infected” or “burned” as well. In
this example, Bob would buy an xphone if three of his friends have it. Suppose now that
the company can offer a very limited number of xphone, say two in this example. The
question is now to find who are the two customers to give the product. Of course, the stake
here is to choose the two most influencer ones. In fact, one optimal solution would be to
choose Edward and Carol. In this little example, the optimal solution is very easy to find
and an exhaustive search approach would have solved the problem quickly. However, real-
world social networks might involve over millions of individuals with complex relationship,
thus making exhaustive algorithms useless.

≥ 2

Alice

≥ 2

Frank

≥ 2

Gordon

≥ 2Dave

Edward

≥ 3

BobCarol

≥ 2

Alice

≥ 2

Frank

≥ 2

Gordon

≥ 2Dave

Edward

≥ 3

BobCarol

Figure 1.2: Initially, Edward and Carol are offered an xphone. Then, by a “word-of-
mouth” process, Alice and Dave are convinced (or “activated”) and buy an xphone. Since
Carol, Edward and now Dave have the mobile phone, Bob decides to get one.

This thesis is structured around three different problematics described hereafter and
further developed in the subsequent chapters. Firstly, we recall basic theoretical back-
ground in Chapter 2. In Chapter 3, we consider two problems with the objective of max-
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imizing the spread of influence in social networks. The first one is the target set selection
problem. Given a social network represented as a graph and a threshold value thr(v)
associated to each vertex v, the task is to find and activate a vertex subset of minimum
size such that all the vertices become active at the end of the propagation process defined
as follows. A vertex v becomes active if at least thr(v) of its neighbors are active. The
propagation process proceeds in several steps and stops when no further vertex becomes
active. The next investigated problem is maximum influence which is defined similarly
except that the input has an extra integer k (it corresponds to some “budget”) and we ask
to activate at most k vertices such that the total number of activated vertices at the end
of the propagation process is maximized (this is exactly the problem in the above viral
marketing example). In Chapter 4, we turn our attention to a converse objective: Find the
largest set of vertices such that if any vertices get activated in it then no new vertex can
be activated by the application of the propagation rule. One motivation for this problem
arises from the context of preventing the spread of dangerous ideas or epidemics. It also
corresponds to the objective of finding a population resistant to an epidemic outbreak. In
Chapter 5, we now consider the problem of containing a malicious agent (fire, virus, . . . )
which has already started to propagate through a network. Initially, the outbreak starts
at a single vertex of a graph. At each time step, we have to choose one vertex which will
be protected. Then the outbreak spreads to all unprotected neighbors of the “infected”
vertices. The process ends when the outbreak can no longer spread, and then all vertices
that are not infected are considered as saved. The objective consists of choosing, at each
time step, a vertex which will be protected such that a maximum number of vertices in
the graph is saved at the end of the process. Finally, the Chapter 6 provides conclusions
and future research directions.
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T
the purpose of this chapter is to give the basic backgrounds on classical and param-
eterized complexity, approximation as well as some basic graph theory concepts and

notations used throughout this thesis. For more details about parameterized complex-
ity theory, the reader is referred to the books of Downey and Fellows [49], Niedermeier
[91], and Flum and Grohe [57]. Concerning the approximation theory, we recommend
the following books of Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, and
Protasi [12], Hochbaum [67], Vazirani [101], and Williamson and Shmoys [103].

2.1 Graph theory: terminology and notations

We denote a graph by an ordered pair G = (V,E) where V is the set of vertices and
E ⊆ V × V the set of edges. We now define basic graph terminology.

A vertex v ∈ V is adjacent to another vertex u ∈ V if there is an edge uv ∈ E
connecting them. The neighbors (or neighborhood) of a vertex v is the set of vertices
adjacent to v. The degree of a vertex is the number of its neighbors.

Two vertices are said twins if they have the same neighborhood. They are called true
twins if they are moreover neighbors, false twins otherwise.

A path is either a single vertex or a graph where every vertex has degree one or two,
and exactly two vertices have degree one (called endpoints). The length of a path is the
number of edges.

The diameter of a graph is the longest shortest path between any two vertices.

A graph is connected if there is a path joining every pair of vertices.

A cycle is a connected graph where every vertex has degree two.

A subgraph H = (V ′, E′) of G is a graph where V ′ ⊆ V and E′ ⊆ E.

A subgraph H = (V ′, E′) of G is said to be induced by V ′ if, for any pair of vertices
u, v ∈ V ′, we have uv ∈ E′ if and only if uv ∈ E.

A linear layout of G is a bijection π : V → {1, . . . , n}. For convenience, we express π
by the list L = (v1, . . . , vn) where π(vi) = i. Given a linear layout L, we denote the
distance between two vertices in L by dL(vi, vj) = |i− j|.

The cutwidth cw(G) of G is the minimum integer k such that the vertices of G can be
arranged in a linear layout L = (v1, . . . , vn) in such a way that, for every i = 1, . . . , n− 1,

5



6 Chapter 2. Preliminaries

there are at most k edges with one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn}
The bandwidth bw(G) of G is the minimum integer k such that the vertices of G can

be arranged in a linear layout L = (v1, . . . , vn) in such a way that, for every edge vivj of
G we have dL(vi, vj) ≤ k.

If the graph G is a directed graph (or digraph for short), then we need to adjust some
previously established terminologies. In a directed graph every edge uv is called an arc
and is directed either from u to v, denoted (u, v), or from v to u, denoted (v, u). We
will denote by A rather than by E the set of arcs in G. The in-neighbors (resp. out-
neighbors) of a vertex v is the set of vertices N+(v) = {u ∈ V : (u, v) ∈ A} (resp.
N−(v) = {u ∈ V : (v, u) ∈ A}).

Unless otherwise specified, all graphs in this thesis are undirected, finite (bounded
number of vertices) and simple (at most one edge connects two vertices).

Notations. Let G = (V,E) be a graph, we will use the following standard notations.

• NG(v) : open neighborhood of a vertex v i.e. NGv) = {u ∈ V : uv ∈ E}.

• NG[v] : close neighborhood of a vertex v i.e. NG[v] = NG(v) ∪ {v}.

• NG(S) : open neighborhood of a set S ⊆ V i.e. NG(S) =
⋃

u∈S NG(u).

• NG[S] : close neighborhood of a set S ⊆ V i.e. NG[S] = NG(S) ∪ S.

• distG(u, v) : distance between vertices u and v i.e. minimum length of a path with
endpoints u, v ∈ V .

• N i
G(v) : set of vertices which are at distance at most i from vertex v (called ith neigh-

borhood of v) i.e. N i
G(v) = {u ∈ V : distG(v, u) ≤ i}. Thus N1

G(v) = NG(v).

• G[S] : the subgraph induced by a set S ⊆ V .

• degG(v) : degree of vertex v i.e. degG(v) = |NG(v)|.

• ∆(G) : maximum degree of G.

• tw(G) : treewidth of G (see Definition 2).

• ltwr(G) : local treewidth of G with respect to r ∈ N (see Definition 4).

• pw(G) : pathwidth of G (see Definition 6).

• cw(G) : cutwidth of G.

• bw(G) : bandwidth of G.

• V (H) : the set of vertices of a graph H.

• E(H) : the set of edges of a graph H.

We may skip the subscript or the argument if the graph G is clear from the context.
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Graph classes. We briefly review the graph classes encountered throughout this work.

A tree is a connected graph without cycles. Let T be a tree and let r be a vertex of T
designated as root. We say that T is a rooted tree. We define the level i of T to be the
set of vertices that are at distance exactly i from r. A leaf is a vertex of degree one. An
ancestor (resp. descendant) of a vertex v in T is any vertex on the path from r to v (resp.
from v to a leaf which does not contain any ancestors of v). The height of T is the length
of a longest path from r to a leaf. A child of a vertex v in T is an adjacent descendant of v.
The tree T is said to be complete if every non-leaf vertex has exactly the same number
of children. The tree T is said to be full if it is complete and all leaves are at the same
distance from the root.

A t-ary tree is a rooted tree in which every vertex other than the leaves has t children.

A graph is bipartite if the vertices can be partitioned into two sets such that any two
vertices in the same set are not adjacent.

A graph is regular if all the vertices have the same degree.

A ∆-regular graph is a regular graph where vertices have degree ∆.

A graph is complete (or is a clique) when every vertex is adjacent to every other vertex.

A graph is planar if it can be drawn in the plane without any edges crossing.

A caterpillar is a tree such that the vertices with degree at least two induce a path.
In other words, a caterpillar consists of a path P such that all edges have at least one
endpoint in P .

A k-caterpillar , for some integer k ≥ 1, is a caterpillar in which every pending edge,
i.e. every edge uv with exactly one endpoint, say u, in P , may be replaced by a path of
length at most k. This path is then called a leg of the k-caterpillar at vertex u.

A star is a tree consisting of one vertex, called the center of the star, adjacent to all
the other vertices.

A k-star , for some integer k ≥ 1, is a tree obtained from a star in which every edge
may be replaced by a path of length at most k. Notice that a k-star is a special case of a
k-caterpillar.

A cograph is a graph that does not contain an induced P4, that is, a path on four
vertices.

An interval graph is a graph G = (V,E) for which there exists a set of real inter-
vals {Iv : v ∈ V } such that Iv ∩ Iu 6= ∅ if and only if uv ∈ E.

(Local) Treewidth. Informally speaking, the treewidth of a graph is a number that
reflects how “close” the graph is to being a tree. This notion was first introduced by Halin
[62] and further developed by Robertson and Seymour [98]. As a matter of fact, treewidth
can be defined in several equivalent ways. Here we use the notion of tree decomposition
of a graph to define it.

Definition 1: Tree decomposition

A tree decomposition of a graph G = (V,E) is a pair T = (T,H) where T is a tree
with vertex set X and H = {Hx : x ∈ X} is a family of subsets of V, such that the
following conditions are met

1.
⋃

x∈X Hx = V.

2. For each uv ∈ E there is an x ∈ X with u, v ∈ Hx.

3. For each v ∈ V , the set of nodes {x ∈ X : v ∈ Hx} induces a subtree of T .
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In the above definition, the third condition is equivalent to assuming that if v ∈ Hx′

and v ∈ Hx′′ then v ∈ Hx for all nodes x of the unique path from x′ to x′′ in T . The width
of a tree decomposition T is maxx∈X |Hx| − 1. We are now ready to give the definition of
treewidth.

Definition 2: Treewidth

The treewidth tw(G) of a graph G is the minimum width over all possible tree de-
compositions of G.

The “−1” in the definition is included for the convenience that trees have treewidth 1
(rather than 2). It is worth noting that finding the treewidth of a graph is NP-hard [9]
but can be found in linear time for graphs of bounded treewidth [22]. Concerning the
appearance of substructures, one can see that the subtree Tx of T rooted at node x
represents the subgraph Gx induced by precisely those vertices of G which occur in at
least one Hy where y runs over the nodes of Tx.

In an algorithmic perspective, we rather use a more refined decomposition called nice
tree decomposition.

Definition 3: Nice tree decomposition

A nice tree decomposition T = (T,H) of a graph G is a tree decomposition satisfying
the following conditions

1. Each node of T has at most two children.

2. For each node x with two children y, z, we have Hy = Hz = Hx (x is called join
node).

3. If a node x has just one child y, then Hx ⊂ Hy (x is called forget node) or
Hy ⊂ Hx (x is called insert node) and ||Hx| − |Hy|| = 1.

It is not hard to show that any tree decomposition T = (T,H) of a graph can be
transformed in linear time into a nice tree decomposition T ′ = (T ′,H′) of same width,
with |T ′| ≤ c · |T | for some constant c > 0 and with Hx 6= ∅ for all Hx ∈ H.

Eppstein [53] generalized the notion of treewidth by introducing the notion of bounded
local treewidth. Informally speaking, a graph has bounded local treewidth if, for any
vertex v, the treewidth of the induced subgraph by the rth neighborhood of v is bounded
by a function that solely depends on r > 0.

Definition 4: Local treewidth

Given an integer r > 0, the local treewidth of a graph G = (V,E) is the num-
ber ltwr(G) defined as follows

ltwr(G) = max
v∈V
{tw(G[N r(v)])}

We then say that a graph G has bounded local treewidth if there exists a func-
tion f : N→ N such that ltwr(G) ≤ f(r) for all integer r > 0. Here are some class of
graphs of bounded local treewidth.

Every graph G of bounded treewidth has bounded local treewidth
since ltwr(G) ≤ tw(G) for all r > 0.

Every graph of maximum degree ∆ has local treewidth bounded by ∆(∆ − 1)r−1 for
all r > 0.



2.2. Decision problems & complexity 9

Finally, a planar graph has local treewidth bounded by 3r − 1 for all r > 0 [19].

Pathwidth. As treewidth measure the “tree-likeness” of a graph, the pathwidth reflects
how “close” the graph is to being a path. Because of this analogy, we directly give the
relevant definitions.

Definition 5: Path decomposition

A path decomposition of a graph G = (V,E) is a pair P = (P,H) where P is a path
with vertex set X and H = {Hx : x ∈ X} is a family of subsets of V, such that the
following conditions are met

1.
⋃

x∈X Hx = V.

2. For each uv ∈ E there is an x ∈ X with u, v ∈ Hx.

3. For each v ∈ V , the set of nodes {x ∈ X : v ∈ Hx} induces a path.

Definition 6: Pathwidth

The pathwidth pw(G) of a graph G is the minimum width over all possible path
decompositions of G.

We also have the notion of nice path decomposition but we skip its definition here
since we do not make use of it.

2.2 Decision problems & complexity

Before we give the definition of a decision problem, we first recall some basics from the
theory of formal languages. An alphabet , denoted by Σ, is a set of symbols. A string (or
word) is a finite sequence of symbols from a given alphabet. The length of a string x,
denoted |x|, is the number of symbols in the string. The set of all strings over an alphabet Σ
is denoted by Σ∗. A language L is a subset of Σ∗.

Definition 7: Decision problem

A decision problem is a language L ⊆ Σ∗ over a binary alphabet Σ = {0, 1}.

In fact, when we introduce a new decision problem, we will make use of the following
more informal and standard way to define it.

Problem Name
Input: Some inputs
Question: A yes-no question that solely depends upon the inputs.

We do not discuss here how to encode such definition into a regular decision problem
i.e. into a language L ⊆ Σ∗, and we assume, throughout this thesis, that we use only
reasonable encoding to do so (see Garey and Johnson [60, Chapter 2.1]). More generally,
the specification of any kind of problem (decision problem, parameterized problem (see
Definition 11), and optimization problem (see Definition 20)) as well as integers, graphs,
formulas, etc. is assumed to be encoded in binary in the usual way. Therefore, we will
address these objects directly instead of working with their formal string representations.
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An instance of a decision problem is a concrete utterance of the problem represented
as a string x ∈ Σ∗. The size of an instance is then the size of the corresponding string.
Given an instance x ∈ Σ∗ of a decision problem L ⊆ Σ∗, we say that x is a yes-instance
if x ∈ L and a no-instance otherwise.

P & NP classes. The subsequent definitions make use of the concept of Turing machine,
see for instance Arora and Barak [11] for more details.

Definition 8: NP class

The class NP contains every decision problem L ⊆ Σ∗ for which the question “Does x
belongs to L?” where x ∈ Σ∗ can be decided by a non-deterministic Turing machine
that runs in polynomial time i.e. , the number of steps performed by the machine is
upper bounded by a polynomial expression in |x|.

Let L1, L2 ⊆ Σ∗ be two decision problems. We say that L1 polynomial-time reduces
to L2 if there exists an algorithm that takes as input an instance x1 ∈ Σ∗ and outputs in
polynomial time a new instance x2 ∈ Σ∗ such that x1 ∈ L1 if and only if x2 ∈ L2.

A decision problem L is NP-hard if every problem of NP polynomial-time reduces to L.
If a decision problem is NP-hard and is in NP then it is NP-complete.

Definition 9: P class

The class P contains every decision problem L ⊆ Σ∗ for which the question “Does x
belongs to L?” where x ∈ Σ∗ can be decided by an algorithm that runs in polynomial
time i.e. , the number of steps performed by the algorithm is upper bounded by a
polynomial expression in |x|.

Asymptotic notation. In order to express the running time of an algorithm, we use
the following standard notation.

Definition 10: Big O notation

Let g be a real function. We denote by O(g(n)) the set of all real functions f for which
there exist a constant c > 0 and a value n0 such that f(n) ≤ c · g(n) for all n > n0.

We might use the above notation in a more involved way. For example, we denote
by nO(1) some function f of the form f(n) = nd where d ∈ O(1).

2.3 Parameterized complexity

The parameterized complexity is a framework which provides a new way to express the
computational complexity of decision problems. For example, consider the well known
NP-complete Vertex Cover problem: given an graph G = (V,E) and an integer k,
determine whether there is a subset S ⊆ V , |S| ≤ k, such that every edge is covered by S
i.e., for all uv ∈ E we have u ∈ S or v ∈ S. Since the problem is NP-hard it is unlikely
that there is an algorithm that solves any instance of the problem in polynomial time.
However, one can solve an instance using the following exponential-time algorithm: for
each subset S ⊆ V of vertices, pick the one that is a vertex cover with size at most k.
This trivial procedure has running time O(nk) = O(2k logn) where n = |V |. Of course this
algorithm is not satisfying i.e. we would like to have an algorithm that does something
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smarter than just trying all possibilities. One way to achieve this goal is to design a so-
called parameterized algorithm. The general idea of this approach is to shift the exponential
blowup from the input size n to a parameter of the input, i.e. we would like to get an
algorithm with running time f(k) · nO(1) where f is a typically exponential function that
solely depends on the parameter k (see Figure 2.1). As an illustration, let us consider the
Vertex Cover problem with the solution size k as the parameter. Observe that since
each edge uv has to be covered, either u or v (or both) must be in the solution. Using this
remark, we can solve the problem by the following recursive procedure. Let uv ∈ E be any
edge. The graph G has a vertex cover of size k if either G\v or G\u has a vertex cover of
size k− 1. It is not hard to see that there are at most k recursive calls implying a running
time of O(2k · n). In this case, for “small” enough value of k, we can decide an instance
efficiently, no matter how large the input graph is. Indeed the running time grows linearly
with the graph size. We say that Vertex Cover parameterized by k is fixed-parameter
tractable. As a matter of fact, the best known algorithm for solving Vertex Cover takes
time 1.2738k · nO(1) [34].

k
n =⇒ n

k

Figure 2.1: Shifting the combinatorial explosion into the parameter.

Let us define more formally the notion of parameterized problem.

Definition 11: Parameterized problem

A parameterized problem is a subset Q ⊆ Σ∗ × N where the first component is a
decision problem and the second component is called the parameter of the problem.

A parameterized problem is then a decision problem L ⊆ Σ∗ where each instance is
associated with some integer value k ∈ N. We also say that L is parameterized by k.
For example, a lot of decision problems are obtained from an optimization version, thus
a natural and well studied parameter candidate is the solution size k also called standard
parameterization. However, we would like to emphasize that the parameter can be some-
thing totally different and less explicit e.g. structural parameterization for graph problems
(see Figure 2.2). Finally, it is worth noting that there exists a general definition of a pa-
rameterized problem that allows for more complicated parameters. For example, in the
following problem the parameter could be the graph H.

Graph Minor Testing
Input: Two graphs H and G
Question: Does G contains H as a minor?

However, the Definition 11 is sufficient for our purpose since all parameters considered
in this work are integers.
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Definition 12: FPT class

The class FPT contains every parameterized problem Q ⊆ Σ∗ × N for which the
question “Does (x, k) belongs to Q?” can be decided by an algorithm that runs
in f(k) · |x|O(1) time (or fpt-time) where (x, k) ∈ Σ∗×N and f is a function depending
solely on k.

A problem in FPT is called fixed-parameter tractable. We also define the class XP as
follows.

Definition 13: XP

The class XP contains every parameterized problem Q ⊆ Σ∗×N for which the question
“Does (x, k) belongs to Q?” can be decided by an algorithm that runs in |x|g(k) time
where (x, k) ∈ Σ∗ × N and g is a function depending solely on k.

2.3.1 Fixed-parameter algorithm techniques

In this section, we will review some basic tools used in this thesis for proving fixed-
parameter tractability.

Kernelization. One of the main tool to devise parameterized algorithms is the kernel-
ization technique. This can be regarded as a pre-processing over the instance of a param-
eterized problem. It consists of getting rid of the “easy-to-solve” part of the instance so
that it only remains the kernel of the problem i.e. the “hard” part to solve. It turns out
that a parameterized problem is in FPT if and only if there exists such pre-processing. Let
us now define more formally this notion.

Definition 14: Kernelization

Let Q ⊆ Σ∗ × N be a parameterized problem. A kernelization is an algorithm that
takes as input a pair (x, k) ∈ Σ∗ × N and outputs in (|x| + k)O(1) time, a new pair
(x′, k′) ∈ Σ∗ × N with k′ ≤ k such that

1. (x, k) ∈ Q⇔ (x′, k′) ∈ Q

2. |x′| ≤ g(k) and k′ ≤ g(k) for some computable function g

The instance (x′, k′) is called a kernel of size g(k). If g is a polynomial then we have
a polynomial kernel.

The following well-known theorem shows the equivalence between a problem being
fixed-parameter tractable and admitting a kernel.

Theorem 1 A parameterized problem Q is fixed parameter tractable if and only if Q
admits a kernelization.

Proof. Let (x, k) ∈ Σ∗ × N. Assume that Q admits a kernelization. We first apply
the kernelization on (x, k) to get, in (|x| + k)O(1) time, a new equivalent instance
(x′, k′) ∈ Σ∗ ×N such that k′ ≤ g(k) and |x′| ≤ g(k) for some computable function g.
Next, it suffices to apply any algorithm on the kernel to solve the former instance. The
overall running time is then h(g(k)) + (|x|+ k)O(1) for some computable function h.

Conversely, suppose that Q is fixed parameter tractable and can be solved in
time f(k) · |x|c for some constant c > 0. We have to distinguish between the following
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two cases
• if |x| ≤ f(k) then the instance itself is a kernel.

• if |x| > f(k) then simply run the parameterized algorithm to solve (x, k). This
is done in polynomial time since f(k) · |x|c ≤ |x|c+1. Depending of the answer,
we return a trivial no-instance or yes-instance.

This completes the proof. �

In practice, we use so-called “reduction rules” to iteratively reduce the size of an
instance and finally obtain the desired kernel. A reduction rule is simply an algorithm
that computes in polynomial time a new equivalent instance with reduced size. As an
illustrative example, consider the following reduction rule for Vertex Cover.

Reduction rule 2 Let (G, k) be an instance of Vertex Cover. If there exists a vertex v
with deg(v) > k then remove v from G and decrease k by one.

After applying iteratively the above reduction rule, one gets a new equivalent in-
stance (G′, k′) where G′ has size n′. Indeed, observe that if a vertex v has degree larger
than k then it must be in the solution, otherwise we would have taken all its neighbors
to cover all edges. Thus, we can safely remove v from G and decrease k by one to reflect
the fact that v is part of any vertex cover. Now, suppose that there is a vertex cover S of
size k′ for G′. Thus, we must have n′ ≤ k2 since S covers every edge and the maximum
degree of G′ in k. The kernelization is then defined as follows. If n′ > k2 then return any
trivial no-instance, otherwise we have n′ ≤ k2 giving us a polynomial kernel.

Monadic Second Order Logic (MSOL). The monadic second order logic is another
powerful tool to prove fixed parameter tractability with respect to parameter treewidth
(see Definition 2). This logic is an extension of the first order logic which is, in turns, an
extension of the propositional logic. The key point here is that whenever a graph problem
can be expressed as a MSO-formula, we can derive the result that it is in FPT with
respect to parameter treewidth. The language of MSOL for graphs includes the logical
connectives ∨, ∧, ¬,↔, →, variables for vertices, edges, sets of vertices, and sets of edges,
the quantifiers ∀, ∃ that can be applied to these variables, and the following four binary
relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable.

2. d ∈ D, where d is an edge variable and D is an edge set variable.

3. adj(u, v), where u, v are vertex variables, and the interpretation is that u and v are
adjacent.

4. Equality, =, of variables representing vertices, edges, sets of vertices, and sets of
edges.

Given a formula φ, we denote by G |= φ the fact that the graph G satisfies the property
φ — we also say that G is a model of φ. For example the following statement,

G |= ∀x(x ∈ V → (∃y(y ∈ V ∧ y ∈ P ∧ adj(x, y))) ∨ x ∈ P )

holds if and only if the set P is a dominating set in the graph G.
For our purpose, the central result of this theory is as follows.
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Theorem 3 (Courcelle [44]) Let G be a graph and φ a MSO formula of length ℓ.
The problem of deciding whether G |= φ is fixed parameter tractable with respect to
the combined parameter tw(G) and ℓ.

2.3.2 Kernelization lower bounds

As previously hinted, any fixed parameter problem admits a kernel of size depending of
the running time of the parameterized algorithm. This arises the natural question whether
there always exists a “small” kernel i.e. a kernel of polynomial size. We observed that it
is the case for the Vertex Cover problem. Unfortunately, it is not always possible to
obtain such kernel for all problems in FPT. Bodlaender et al. [20] introduced a technique
for proving that a parameterized problem does not admit a polynomial kernel unless a
well-established complexity theory assumption unexpectedly collapses. This technique is
based on the previous results of Bodlaender et al. [20] and Fortnow and Santhanam [59].
We first recall here the crucial definitions.

Definition 15: Polynomial equivalence relation [21]

An equivalence relation R on Σ∗ is called a polynomial equivalence relation if the
following conditions are met

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether R(x, y)
in (|x|+ |y|)O(1) time.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S
into at most (maxx∈S |x|)O(1) classes.

Definition 16: Cross-composition [21]

Let L ⊆ Σ∗ be a decision problem and Q ⊆ Σ∗ × N be a parameterized problem. We
say that L cross-composes into Q if there is a polynomial equivalence relation R and
an algorithm which, given t strings x1, x2, . . . xt belonging to the same equivalence
class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi|

such that
1. (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t.

2. k∗ is bounded polynomially in maxti=1 |xi|+ log t.

The central result for proving kernel size lower bound is the following.

Theorem 4 ([21], Theorem 9) Let L ⊆ Σ∗ be a decision problem, and
let Q ⊆ Σ∗ × N be a parameterized problem. If L is NP-hard and cross-composes
into Q then Q that has no polynomial kernel unless NP ⊆ coNP/poly.

2.3.3 Fixed-parameter intractability

Parameterized complexity theory also provides methods for proving the inherent intractabil-
ity of a parameterized problem. To this end, we need to introduce the notion of parame-
terized reduction (or fpt-reduction) defined as follows.
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Definition 17: Parameterized reduction

Let Q1, Q2 ⊆ Σ∗ × N be two parameterized problems. We say that Q1 fpt-reduces
to Q2 if there exists an algorithm that takes as input an instance (x1, k1) ∈ Σ∗ × N

and outputs in f(k1) · |x1|O(1) time a new instance (x2, k2) ∈ Σ∗ × N such that
1. (x1, k1) ∈ Q1 ⇔ (x2, k2) ∈ Q2

2. k2 ≤ g(k1)
for some computable functions f and g.

Before introducing the different classes of complexity, we need to define the concept of
boolean circuit .

Definition 18: Boolean circuit

A boolean circuit C = (V,A) is a directed acyclic graph whose vertices V are called
gates. The gates of in-degree 0 are called inputs. There is exactly one gate of out-
degree 0 called output . Every gate that is neither an input nor an output is labeled
by an element of {OR,AND,NOT}. A gate with label NOT has in-degree exactly
one.

We need to define some additional terminology. Let C = (V,A) be a boolean circuit.
A gate with in-degree bounded by some fixed constant is said small and large otherwise.
The weft of C is the maximum number of large gates on a path from an input to the
output. The depth is the maximum number of all gates on a path from an input to the
output. A truth assignment for C is a function τ : V → {true, false} that associates the
value true or false to each input gates. The (Hamming) weight of a truth assignment is
the number of input gates set to true. Given an assignment τ for C, the value ν(g) of a
gate g is recursively defined as follows

ν(g) =







τ(g) if g is an input
∨

h∈N−(g)

ν(h) if g is labeled by OR

∧

h∈N−(g)

ν(h) if g is labeled by AND

¬ν(h) if g is labeled by NOT with N−(g) = {h}

A truth assignment satisfies C if the value of the output gate is true. We can now intro-
duce the following central problem that is used to define the hierarchies of parameterized
complexity classes.

Weft-t Circuit Satisfiability
Input: A boolean circuit C with constant depth and weft at most t and an integer k.
Question: Is there a truth assignment of weight k that satisfies C?

Definition 19: W[t] class

A parameterized problem Q ⊆ Σ∗×N belongs to W[t] , for fixed t > 0, if Q fpt-reduces
to Weft-t Circuit Satisfiability parameterized by k.

The inclusion relationship of the above classes are as follows.

FPT ⊆W[1] ⊆W[2] . . . ⊆ XP
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Informally speaking, a problem inW[t] is considered “harder” than those lying inW[t-1]
where t > 1. We say that a parameterized problem is W[t]-hard if every problem of W[t]
fpt-reduces to it. If the problem moreover belongs to W[t] then it is W[t]-complete. There
is a good reason to believe that W[t]-hard problems are unlikely to be in FPT. It is worth
pointing out that, in practice, we only consider W[1] and W[2] as the basic classes of
parameterized intractability.

Cesati [30] introduced a more “classical” way to prove that a given parameterized
problem belongs to the class W[1] (or W[2]) by the use of Turing machine. For that
purpose, we need to introduce the following two problems.

Short Nondeterministic Turing Machine
Input: A nondeterministic Turing machine M , a string x on the input alphabet of M ,
and an integer k.
Question: Is there a computation of M on input x that reaches a final accepting state
in at most k steps?

Short Multi-tape Nondeterministic Turing Machine
Input: A multi-tape nondeterministic Turing machine M , a string x on the input
alphabet of M , and an integer k.
Question: Is there a computation of M on input x that reaches a final accepting state
in at most k steps?

We have now the following result due to Cesati [30].

Theorem 5 A parameterized problem is in W[1] (resp. W[2]) if it can be fpt-reduced
to the Short Nondeterministic Turing Machine (resp. Short Multi-tape
Nondeterministic Turing Machine) problem parameterized by k.

Observe that the previous theorem plays the same role as the non-deterministic Turing
machine does for the class NP.

2.3.4 Parameters hierarchies

We conclude this section on parameterized complexity with the following useful property.

Theorem 6 Let Q1, Q2 ⊆ Σ∗×N be two parameterized problems. If the parameters k1
of Q1 and k2 of Q2 always satisfy the inequality k1 ≤ c · k2 for some constant c > 0
then the following assertions are true.

1. If Q2 is W[t]-hard (resp. NP-hard for constant values of k2) for some integer
t > 0 then Q1 is W[t]-hard (resp. NP-hard for constant values of k1).

2. If Q1 is in FPT (resp. XP) then Q2 is in FPT (resp. XP).

As an application of the above theorem, consider the Figure 2.2. If a parameterized
problem is in FPT (resp. W[t]-hard, NP-hard for constant value of k) with respect to
some structural parameter k then, using Theorem 6, it is in FPT (resp. W[t]-hard, NP-
hard for constant value of k) with respect to each parameter which is an ancestor (resp.
descendant) of k. A parameter k1 is an ancestor (resp. descendant) of a parameter k2 if
there exists a directed path from k1 to k2 (resp. from k2 to k1).
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Figure 2.2: Overview of the relations between some structural graph parameters, see the
paper of Komusiewicz and Niedermeier [77] for more details. An arc from a parameter k2
to a parameter k1 means that there exists a constant c > 0 such that k1 ≤ c · k2. Given
a graph G, the “Distance to C” parameter where C is a class of graphs, corresponds to
the minimum number of vertices to remove from G in order to obtain a new graph that
belongs to C.

2.4 Approximation

Another approach for coping with NP-hard problems is to use the approximation frame-
work. Indeed, computing an optimal solution might not be mandatory and could be a
really hard task even with time efficient algorithm. That is where the algorithms with
performance guarantee come in. In such algorithms, the basic idea is to “release” the
constraint of optimality while the running time is required to be reasonable. Moreover,
the computed solution must be not “too far” from the optimum. In what follows we define
more formally these notions.

2.4.1 Optimization problem

So far, we have dealt with decision problems. In the context of approximation algorithms,
we rather consider optimization problems. While in a decision problem the solution is
either “yes” or “no”, an optimization problem asks to find a solution that maximizes (or
minimizes) an objective function.

Definition 20: Optimization problem & NPO class

An optimization problem O is a 4-tuple (D, sol, cost, goal) where
1. D ⊆ Σ∗ is the set of instances recognizable in polynomial time.

2. For each instance x ∈ D, sol(x) ∈ P(Σ∗) is the set of feasible solutions of x,
where P(X) is the set of all subsets of a set X.
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3. The size of each solution y ∈ sol(x) is polynomially bounded in |x|
i.e. |y| ≤ |x|O(1).

4. It can be decided in polynomial time whether y ∈ sol(x) holds for given x and y.

5. Given an instance x and a feasible solution y, cost(x, y) is a polynomial-time
computable positive integer.

The class that contains all optimization problems is denoted by NPO .
A minimization (resp. maximization) problem is an optimization problem
with goal = min (resp. goal = max).

As a matter of fact, the above definition stands for an NP optimization problem which
is a particular optimization problem. However, this thesis only deals with optimization
problems that are NP optimization problems, allowing us the use of this shortcut.

Given an instance x of some optimization problem, the goal is to find an optimal
solution, that is, a feasible solution y ∈ sol(x) such that

cost(x, y) = goal
y′∈sol(x)

{cost(x, y′)}

The cost of an optimum solution for an instance x is denoted by opt(x).

As an illustration, the Max Clique problem is to find a complete subgraph of a given
graph of maximum size (see Appendix A). Formally, this problem is defined as follows.1

• D = {G = (V,E) : G is a graph}.

• Let G be any graph, sol(G) = {H = (V ′, E′) : H is a complete subgraph of G}

• Let G be any graph and H a complete subgraph of G of size n, cost(G,H) = n.

• goal = max

In this thesis, when a new optimization problem will be introduced, we will make use
of the following more convenient definition.

Problem Name
Input: Some inputs
Output: Objective to achieve.

An optimization problem is polynomial time solvable if there exists an algorithm that
computes, for every instance, an optimal solution within a running time polynomial in the
instance size.

Definition 21: PO class

The class PO contains all problems of NPO that are polynomial-time solvable.

The link between optimization problems and decision problems is the following. If
O = (D, sol, cost, goal) is a maximization problem then we can define its decision version
as follows (for minimization problems the definition is analogous).

1As hinted in Section 2.2, we do not discuss how to actually encode objects into strings of Σ∗.
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Ok

Input: An instance x ∈ D and an integer k.
Question: Is opt(x) ≥ k?

In fact the decision version of a optimization problem is in NP. In general, we are inter-
ested in optimization problems for which the decision version is NP-hard. By definition,
an optimization problem is NP-hard if its decision version is NP-hard.

2.4.2 Approximation algorithms

Before defining what an approximation algorithm is, we need to determine how to measure
the quality of a solution. For that purpose, we introduce the performance ratio.

Definition 22: Performance ratio & error

Given an instance x of an optimization problem O = (D, sol, cost, goal), the perfor-
mance ratio r(x, y) of a solution y ∈ sol(x) is

r(x, y) = max

{
cost(x, y)

opt(x)
,

opt(x)

cost(x, y)

}

The error of y, denoted ε(x, y), is defined by ε(x, y) = r(x, y)− 1.

Notice that the performance ratio is always > 1 and it gets closer to 1 as the solution
gets closer to the optimum.

Definition 23: α-approximation algorithm

Let O = (D, sol, cost, goal) be an optimization problem and α : N →]1,+∞[ be a
function. An α-approximation algorithm is an algorithm that takes as input any in-
stance x ∈ D of size n = |x| and returns a solution y ∈ sol(x) such that r(x, y) ≤ α(n).

A problem admitting an α-approximation algorithm is said to be α-approximable.
Notice that we did not impose any specific running time in the above definition. A
polynomial-time α-approximation algorithm is an α-approximation algorithm with run-
ning time polynomial in the instance size. Let F be a set of functions, we denote by F -APX
the class of optimization problems for which there exists such algorithm with α ∈ F . We
now review the different types of approximation classes encountered throughout this thesis.

Definition 24: APX, log-APX and poly-APX classes

The class APX (resp. log-APX, poly-APX) corresponds to the class F -APX where
F = O(1) (resp. O(log(n)), O(nc) for some fixed constant c > 0).

Definition 25: PTAS class

An optimization problem admits a polynomial-time approximation scheme (ptas for
short) if for any fixed constant ε > 0, there exists a polynomial-time (1 + ε)-
approximation algorithm for that problem.
The class PTAS contains all optimization problems that admit a ptas.

Generally, the running time of a ptas is exponential in 1/ε, like nO(1/ε) if the size of
the instance is n. We have the following inclusions
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PO ⊆ PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ NPO

We conclude this section by introducing the concept of parameterized approximation.
We first extend the definition of an optimization problem as follows.

Definition 26: Parameterized optimization problem

A parameterized optimization problem is an optimization problem where each instance
is associated with a nonnegative integer called parameter. We denote such optimiza-
tion problem by Op = (Dp, sol, cost, goal) where Dp ⊆ Σ∗ × N.

We are now ready to give the following definition.

Definition 27: fpt-time α-approximation algorithm

Let Op = (Dp, sol, cost, goal) be a parameterized optimization problem
and α : N→]1,+∞[ a function. An fpt-time α-approximation algorithm is an al-
gorithm that takes as input any instance (x, k) ∈ Dp of size n = |x| and returns a
solution y ∈ sol(x) such that r(x, y) ≤ α(n) in f(k) · nO(1) time for some computable
function f that solely depends on k.

We establish in [15] the following simple but useful lemma.

Lemma 7 Let Op be a parameterized optimization problem. If there is an fpt-time α1-
approximation algorithm for Op and some strictly increasing function α1 depending
solely on the parameter then there is also an fpt-time α2-approximation algorithm
for Op and any strictly increasing function α2 depending solely on the instance size.

Proof. Let α−1
1 and α−1

2 be the inverse functions of α1 and α2, respectively.
Let (x, k) ∈ Dp be an instance of a parameterized maximization problem Op =
(Dp, sol, cost, goal) (the proof is analogous for minimization problems). We distin-
guish the following two cases.

Case 1: k ≤ α−1
1 (α2(|x|)). In this case, we apply the α1-approximation algorithm

and directly get a solution y ∈ sol(x) such that r(x, y) ≤ α1(k) ≤ α1(α
−1
1 (α2(|x|))) =

α2(|x|) in time f(k) · |x|O(1) for some computable function f .
Case 2: k > α−1

1 (α2(|x|)). We then have |x| < α−1
2 (α1(k)) and thus we can solve x

by exhaustively checking every solution y in sol(x) and return the one with the largest
cost(x, y) value. Since |y| ≤ |x|O(1) by the definition of an optimization problem, we

know that there are at most |Σ||x|O(1) ≤ |Σ|α−1
2 (α1(k))O(1)

different solutions in the

set sol(x). It follows that the running time in this case is O(|Σ|α−1
2 (α1(k))O(1)

) = f(k)
for some computable function f . This completes the proof. �

As an illustration of this lemma, if a problem admits a polynomial-time k-approximation
then we can approximate this problem within any arbitrarily small ratio depending on the
instance size in fpt-time e.g. log(log(. . . log(|x|)).

2.4.3 Hardness of approximation

The main tool used in this thesis for showing directly the inapproximability of an opti-
mization problem is the gap-introducing reduction.
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Definition 28: Gap-introducing reduction

Let L ⊆ Σ∗ be a decision problem and O = (D, sol, cost, goal) be a maximization
(resp. minimization) problem. We say that there is a gap-introducing reduction from
L to O if there exist two functions α : N →]1,+∞[ and f : D → Q together with an
algorithm that takes as input an instance x ∈ Σ∗ and outputs in polynomial time a
new instance x′ ∈ D such that the following conditions are met

1. if x is a yes-instance then opt(x′) ≥ f(x′) (resp. opt(x′) ≤ f(x′)).

2. if x is a no-instance then opt(x′) < f(x′)
α(|x′|) (resp. opt(x′) > α(|x′|) · f(x′)).

The function α is called the gap or hardness factor. We have the following result.

Theorem 8 If there is a gap-introducing reduction from a NP-hard decision prob-
lem to an optimization problem with gap α, then there is no polynomial-time α-
approximation algorithm for that optimization problem unless P = NP.

For proving that a given parameterized optimization problem is unlikely to have a fpt-
time approximation algorithm, we need a slightly different version of the above reduction.

Definition 29: Parameterized gap-introducing reduction

Let Q ⊆ Σ∗ × N be a parameterized problem and Op = (Dp, sol, cost, goal) be a
parameterized maximization (resp. minimization) problem. We say that there is a
parameterized gap-introducing reduction from Q to Op if there exist two functions
α : N →]1,+∞[ and f : Σ∗ → Q together with an algorithm that takes as input
an instance (x, k) ∈ Σ∗ × N and outputs, in g(k) · |x|O(1) time for some computable
function g, a new instance (x′, k′) ∈ Dp such that the following conditions are met

1. k′ ≤ h(k) for some computable function h that depends solely on k.

2. if (x, k) ∈ Q then opt(x′) ≥ f(x′) (resp. opt(x′) ≤ f(x′)).

3. if (x, k) 6∈ Q then opt(x′) < f(x′)
α(|x′|) (resp. opt(x′) > α(|x′|) · f(x′)).

We then have a similar result as the one above.

Theorem 9 If there is a parameterized gap-introducing reduction from a W[t]-hard
parameterized problem, t > 0, to a parameterized optimization problem with gap α,
then there is no fpt-time α-approximation algorithm for that optimization problem
unless FPT = W[t].

Proof. Let Q ⊆ Σ∗ × N be a W[t]-hard parameterized problem and Op =
(Dp, sol, cost, goal) a parameterized maximization problem (the proof is analogous
for the minimization case). Suppose that there is a parameterized gap-introducing
reduction from Q to Op with gap α and a fpt-time α-approximation algorithm A
for Op. We show that we can solve every instance (x, k) of Q in fpt-time with respect
to k implying FPT = W[t].

Since there is a parameterized gap-reduction from Q to Op, there must exist an
algorithm that maps the instance (x, k) into an instance (x′, k′) ∈ Dp in fpt-time
with respect to k. Now we run the approximation algorithm A onto (x′, k′) to get a

solution y ∈ sol(x′) such that opt(x′)
cost(x′,y) ≤ α(|x′|) in fpt-time with respect to k′ and

thus in fpt-time with respect to k (since k′ ≤ h(k) for some function h).
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By the definition of the reduction, if (x, k) is a yes-instance then opt(x′) ≥ f(x′)

and then f(x′)
α(|x′|) ≤ cost(x′, y). Conversely, if (x, k) is a no-instance then opt(x′) <

f(x′)
α(|x′|) and thus cost(x′, y) < f(x′)

α(|x′|) (since cost(x′, y) ≤ opt(x′)). It follows that by

comparing the values cost(x′, y) and f(x′)
α(|x′|) , we are able to distinguish between yes-

and no-instances of Q in fpt-time with respect to k. This completes the proof. �

2.4.4 Approximation preserving reductions

For proving that a problem is at least as hard to approximate as another, we need to in-
troduce the notion of approximation preserving reduction. This kind of reduction is more
involved than the one to prove NP-hardness for decision problems. This is essentially be-
cause we have to deal with quantitative solutions and not simply a “yes” or “no” solution.
Although the literature references many different approximation reductions [12], we only
present the L-reduction and E-reduction in this thesis. We start with the L-reduction
(“linear reduction”) introduced by Papadimitriou and Yannakakis [92].

Definition 30: L-reduction

Let O1 = (D1, sol1, cost1, goal1) and O2 = (D2, sol2, cost2, goal2) be two optimization
problems. We say that O1 is L-reducible to O2 if there are two constants α, β > 0
and two polynomial time computable functions f , g such that

1. f maps each instance x1 ∈ D1 into an instance x2 ∈ D2 such
that opt2(x2) ≤ α · opt1(x1).

2. g maps each solution y2 ∈ sol2(x2) into a solution y1 ∈ sol1(x1) such
that | cost1(x1, y1)− opt1(x1)| ≤ β · | cost2(x2, y2)− opt2(x2)|.

An optimization problem is APX-hard if every problem of APX L-reduces to that
problem. An APX-hard optimization problem is unlikely to be in PTAS, just as NP-hard
decision problems are unlikely to be in P. Furthermore, if a problem O1 is L-reducible
to a problem O2 then the following holds: If O1 is APX-hard then O2 is also APX-hard
and if O2 ∈ PTAS then O1 ∈ PTAS. Unfortunately, this property is no longer true for
a class beyond APX. For instance, let ε ∈ (0, 1) be any fixed constant, if a problem
O1 is n1−ε-APX-hard and L-reduces to another problem O2 then we cannot deduce that
O2 is also n1−ε-APX-hard. To get rid of this problem, we need to use the E-reduction
(“error-preserving reduction”) introduced by Khanna et al. [73].

Definition 31: E-reduction

Let O1 = (D1, sol1, cost1, goal1) and O2 = (D2, sol2, cost2, goal2) be two optimiza-
tion problems. We say that O1 is E-reducible to O2 if there exist polynomial time
computable functions f , g and a constant β such that

1. f maps each instance x1 ∈ D1 into an instance x2 ∈ D2 such that opt1(x1)
and opt2(x2) are related by a polynomial factor, i.e. there exists a polynomial p
such that opt2(x2) ≤ p(|x1|) · opt1(x1).

2. g maps each solution y2 ∈ sol2(x2) into a solution y1 ∈ sol1(x1) such
that ε(x1, y1) ≤ βε(x2, y2).

An important property of an E-reduction is that it can be applied uniformly to all
levels of approximability. In other words, if a problem O1 is E-reducible to a problem
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O2 and O2 ∈ C then O1 ∈ C, where C is either PTAS or F -APX. Moreover, if O1 is
F -APX-hard then O2 is also F -APX-hard.
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T
his chapter essentially addresses the computational complexity of the problem of find-
ing the most influential individuals in a network. Formally, given a graph and a

threshold value thr(v) associated to each vertex v, the task is to find and activate a
vertex subset of minimum size such that all of the vertices become active at the end
of the propagtion propagation process defined as follows. A vertex becomes active if at
least thr(v) neighbors of v are active. The propagation process proceeds in several steps
and stops when no further vertex becomes active.

In the graph below, one could select the gray vertices into a target set to activate the
entire graph within three steps. The numbers inside the vertices denote the thresholds.

2

2 2

2

4 3

2

In this chapter, we investigate the parameterized complexity and parameterized ap-
proximability of this problem and its complementary version i.e. given an integer k, find
and activate a vertex subset of size at most k that maximizes the total number of activated
vertices at the end of the propagation process.

The content of this chapter is based on the following papers.

◮M. Chopin, A. Nichterlein, R. Niedermeier, and M. Weller, Constant Thresholds Can
Make Target Set Selection Tractable, Proceedings of the 1st Mediterranean Conference on
Algorithms (MedALG 2012), LNCS 7659, pp. 120–133, 2012.

◮ C. Bazgan, M. Chopin, A. Nichterlein and F. Sikora, Parameterized Approximabil-
ity of Maximizing the Spread of Influence in Networks, Proceedings of the 19th Annual

25
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International Computing and Combinatorics Conference (COCOON 2013), LNCS 7936,
pp. 543–554, 2013.

3.1 Introduction

Optimization problems that involve a diffusion process in a graph are widely studied
[93, 72, 35, 1, 51, 32, 17, 95]. Such problems share the common property that, accord-
ing to a specified propagation rule, a chosen subset of vertices activates all or a fixed
fraction of the vertices, where initially all but the chosen vertices are inactive. Such op-
timization problems model the spread of influence or information in social networks via
word-of-mouth recommendations, of diseases in populations, or of faults in distributed
computing [93, 72, 51]. One representative problem that appears in this context is the
influence maximization problem introduced by Kempe et al. [72]. Given a directed graph,
the task is to choose a vertex subset of size at most a fixed number such that the number
of activated vertices at the end of the propagation process is maximized. The authors
show that the problem is polynomial-time ( e

e−1 + ε)-approximable for any ε > 0 under

some stochastic propagation models, but NP-hard to approximate within a ratio of n1−ε

for any ε > 0 for general propagation rules. In this thesis, we rather use the following
deterministic propagation model. We are given a graph, a threshold value thr(v) associ-
ated to each vertex v, and the following propagation rule: a vertex becomes active if at
least thr(v) neighbors of v are active. The propagation process proceeds in several steps
and stops when no further vertex becomes active. A subset S of vertices is called a target
set if all the vertices of the graph get active when the vertices of S are initially activated.
Given this model and an integer k > 0, determining the existence of a target set of size
at most k is known as the Target Set Selection problem [35]. The minimization
version is denoted by Min Target Set Selection and consists of finding a target set
of minimum size.

Chen [35] showed hardness of approximating this last problem within a ratioO(2log
1−ε n)

for any ε > 0, even for constant degree graphs with thresholds at most two and for gen-
eral graphs when the threshold of each vertex is half its degree (later called majority
thresholds). When the threshold of each vertex equals its degree (later called unanimity
thresholds), the problem turns out to be polynomial-time equivalent to the vertex cover
problem [35] and, thus, admits a 2-approximation, is hard to approximate within a ratio
better than 1.36 [46], and the decision version is fixed-parameter tractable with respect
to the parameter k. Ben-Zwi et al. [17] obtained a W[1]-hardness result with respect to
the parameter “treewidth” of the input graph. However, Target Set Selection is
polynomial-time solvable on graphs of bounded treewidth with the degree of the poly-
nomial depending on the treewidth. They also proved fixed-parameter tractability for
the same parameter once the threshold values are bounded by any constant. Recently,
further parameterized complexity studies for the structural graph parameters “diameter”,
“cluster editing number”, “vertex cover number”, and “feedback edge set number” have
been undertaken [90]. Moreover, polynomial-time algorithms for Target Set Selection
restricted to special graph classes including chordal graphs and block-cactus graphs have
been developed [28, 39, 95]. Finally, there are numerous combinatorial studies concerning
the sizes of optimal target sets (upper and lower bounds) mostly with respect to special
graph classes [2, 3, 4, 32, 39, 51, 96]. The role of the threshold values and threshold
functions has been studied in the past. For instance, Dreyer and Roberts [51] showed NP-
hardness for Target Set Selection when all vertices have the same threshold t, t ≥ 3.
Later, Chen [35] extended the previous result to t = 2. Centeno et al. [28] and Chiang et al.
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[39] exploited threshold values being upper-bounded by two to develop polynomial-time
algorithms for Target Set Selection on chordal graphs.

From the previous works, it can be seen that Target Set Selection is computation-
ally hard from both a parameterized and an approximation point of view. In light of this
fact, we tackle the complexity of this problem using two different approaches. First, we
investigate the parameterized complexity of the problem using parameters related to the
structure of the graph. Indeed, the structural parameters of some social networks might
be small and/or have useful properties that help in solving the problem. For instance
networks modeling romantic relationship (see [52, Chap. 2, Fig. 2.7] and Figure 1.1) are
sparse and thus parameters related to the sparseness of the input graph are of particular
interest. Moreover, we consider for each parameter three types of thresholds: unanim-
ity, majority and thresholds bounded by a constant. One might think that assuming
thresholds to be constant bounded is quite a restrictive hypothesis. However in several
applications, such as viral marketing, it is conceivable that constant thresholds suffice to
model the underlying application scenarios. For instance, independent of my total number
of friends it may suffice that at least five of my friends in a social network buy a certain
product to convince me about the product’s usefulness. Overall, our results are pictorially
summarized in Figure 3.1. Second, we combine approximation with parameterized com-
plexity theory toward the goal of getting positive approximation results. More specifically,
we turn our attention to the complementary version of Target Set Selection called
Influence. This problem is defined similarly except that the input is extended with an
integer ℓ > 0 and we ask the existence of a subset of vertices of size k to activate such that
at least ℓ vertices are activated at the end of the propagation process. We then consider
the parameterized approximability of the maximization version where the objective is to
find a subset of vertices of size k to activate that maximizes the total number of activated
vertices at the end of the propagation process. This is actually the deterministic version of
the problem by Kempe et al. [72]. In that problem, there are two possibilities of measuring
the value of a solution: counting the vertices activated by the propagation process includ-
ing or excluding the initially chosen vertices. This leads to two versions of the problem
denoted by Max Closed Influence and Max Open Influence, respectively. Observe
that whether or not counting the chosen vertices might change the approximation factor.
In this chapter, we consider both cases and our approximability results are summarized
in Table 3.1.

Max Open Influence Max Closed Influence

thr Bounds poly-time fpt-time poly-time fpt-time

Cons.
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0

(Th.27)

Maj.
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0

(Th.26)

Una.
Upper 2k (Th.31) α(n),∀α (Th.32) 2k α(n),∀r
Lower n1−ε,∀ε > 0 (Th.30) ? 1 + ε (Th.36) ?

Table 3.1: Table of our approximation results for Max Open Influence and Max
Closed Influence for constant (Cons.), majority (Maj.) and unanimity (Una.) thresh-
olds. The fpt-time is with respect to the parameter k for both problems. In this table,
the value n corresponds to the size of the input graph.
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Figure 3.1: Overview of our results for Target Set Selection when parameterized
by structural parameters (see Section 2.3.4). The three rectangles below each parame-
ter indicate a result with (from left to right:) constant, majority, and general threshold
function. The white text on black background at the parameter “clique cover number”
means NP-hard for constant values of this parameter, violet (dark gray) background in
the other parameters means W[1]-hard, green (light gray) background means FPT, and
white background indicates an open question.

This chapter is organized as follows. The Section 3.2 is dedicated to the problem
definitions as well as some preliminaries. In the Sections 3.3 and 3.4, we study the pa-
rameterized complexity of Target Set Selection with respect to parameters related
to sparse and dense structures, respectively. In Section 3.5, we turn our attention to the
parameterized approximability of Max Open Influence and Max Closed Influence.
We also consider the complexity of the decision version Influence. Conclusion and open
problems are given in Section 3.6.

As the present work was done in close collaboration with another PhD student, I will
specify my main contributions to this chapter. First, I extended the W[1]-reduction proof
for Target Set Selection and general thresholds to the majority case (Theorem 13).
Secondly, I proved the parameterized inapproximability of Max Open Influence and
Max Closed Influence (Theorem 26 and Theorem 27), as well as the polynomial-time
inapproximability result for the unanimity case (Theorem 30). Furthermore, I also stated
the general result of Lemma 7.

3.2 Problem definitions and preliminaries

Before we define formally the investigated problems, we need to define some notions.
Let G = (V,E) be a graph and a threshold function thr : V → N. In this work, we

consider majority thresholds i.e. thr(v) = ⌈deg(v)2 ⌉ for each v ∈ V , unanimity thresholds
i.e. thr(v) = deg(v) for each v ∈ V , and constant thresholds i.e. thr(v) ≤ c for each v ∈ V
and some constant c > 1.

We now define the propagation process involved in the studied problems. Initially, all
vertices of G are not activated and we select a subset S ⊆ V . The propagation unfolds in
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discrete steps. At time step 0, only the vertices in S are activated. At time step t + 1,
a vertex v is activated if and only if the number of its activated neighbors at time t is at
least thr(v). We apply the rule iteratively until no more activations are possible. Formally,
we define the set of vertices that are activated by S at step i as Ai

G,thr(S) with

A0
G,thr(S) = S and

Ai+1
G,thr(S) = Ai

G,thr(S) ∪ {v ∈ V : |N(v) ∩ Ai
G,thr(S)| ≥ thr(v)}

We denote by r(S) = max{i : Ai−1
G,thr 6= Ai

G,thr} the number of activation steps before the
propagation stops. Notice that r(S) ≤ |V | since at least one vertex is activated at each
step until the propagation process stops.

Definition 32: Closed activated vertices

Let G = (V,E) be a graph, a threshold function thr : V → N, and a set S ⊆ V .
The closed activated vertices, denoted by σG,thr[S], is the set of all activated vertices
at the end of the propagation process provided that S is the set of initially activated

vertices i.e. σG,thr[S] = Ar(S)
G,thr(S).

Definition 33: Open activated vertices

Let G = (V,E) be a graph, a threshold function thr : V → N, and a set S ⊆ V .
The open activated vertices, denoted by σG,thr(S), is the set of newly activated
vertices at the end of the propagation process provided that S is the set of initially

activated vertices i.e. σG,thr(S) = Ar(S)
G,thr(S) \ S.

Definition 34: Target set

Let G = (V,E) be a graph and a threshold function thr : V → N, and a set S ⊆ V .
We say that S is a target set for (G, thr) if σG,thr[S] = V .

We omit the subscript (G, thr) if the graph and the threshold function are clear from
the context. We denote the maximum threshold of an instance (G, thr) by thrmax(G, thr) =
max{thr(v) : v ∈ V (G)}. We can now formally define the studied problems.

Target Set Selection
Input: A graph G = (V,E), a threshold function thr : V → N and an integer k.
Question: Is there a target set S ⊆ V for (G, thr) such that |S| ≤ k?

We also consider the complementary problem of Target Set Selection defined as
follows.

Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and two integers k
and ℓ.
Question: Is there a subset S ⊆ V , |S| ≤ k, such that |σ(S)| ≥ ℓ?

In this chapter, we investigate the approximability of the corresponding optimization
problem. As previously hinting, the fact that we count or not the initially activated
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vertices in the solution might change the approximation factor. Thus we need to define
two maximization versions of Influence.

Max Open Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and an integer k.
Output: A subset S ⊆ V , |S| ≤ k, such that |σ(S)| is maximum.

Max Closed Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and an integer k.
Output: A subset S ⊆ V , |S| ≤ k, such that |σ[S]| is maximum.

We will sometimes make use of the following relation between Max Open Influence
and Max Closed Influence.

Lemma 10 If there is an α-approximation algorithm for Max Open Influence
then there is an α-approximation algorithm for Max Closed Influence.

Proof. Let A be an α-approximation algorithm for Max Open Influence. Let I =
(G, thr, k) be an instance of Max Closed Influence with |V | = n and optimum
value opt(I). When we apply A on I, we obtain a solution S such that |σ(S)| ≥
opt(I)−k

α(n) and thus |σ[S]| = k + |σ(S)| ≥ opt(I)
α(n) . �

We use the following two data reduction rules throughout this work. If the threshold
of a vertex exceeds its degree, it cannot be activated by its neighbors and, hence, the
vertex is part of any target set. Moreover, we consider vertices with threshold 0 as already
active.

Reduction rule 11 ([90, Reduction Rule 1]) Let G = (V,E) and v ∈ V . If thr(v) >
deg(v), then delete v, decrease the threshold of all its neighbors by one and decrease k by
one. If thr(v) = 0, then delete v and decrease the thresholds of all its neighbors by one.

In an instance that is reduced with respect to Reduction rule 11, every degree-one vertex
has threshold one. Thus, considering an arbitrary degree-one vertex, we do not select it
into the target set as choosing its neighbor is at least as good. This is formalized in the
next data reduction rule.

Reduction rule 12 ([90, Reduction Rule 5]) Let (G, thr, k) be an instance of Tar-
get Set Selection reduced with respect to Reduction rule 11 and let v ∈ V (G) with thr(v) =
deg(v) = 1. Then, delete v from G.

Parameter Identification. In this paragraph, we further justify the choice of the struc-
tural parameters in this study. Fixed-parameter algorithms are efficient in practice if the
considered parameter is small. As previously hinted, target set selection having many
applications on social networks [52], it is natural to extract small parameters from typical
properties of social networks. A widely accepted property of social networks is the so-
called “small-world phenomenom”, roughly stating that the diameter of social networks
is usually small. Unfortunately, the diameter of the input graph turns out not to be a
suitable parameter as the problem is NP-hard for constant diameter values [90]. When
the network models friendships, we expect the network to be made up of multiple cliques
(or dense substructures) that overlap. This motivates considering the number of cliques
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needed to cover all vertices [71] (the “clique cover number”) or the number of vertices to
remove to obtain a clique (the “distance to clique”). As the latter parameter is some-
what restrictive, we also considered the number of vertices to delete in order to obtain a
collection of disjoint cliques (the “cluster vertex deletion number”). Recently, the cluster
vertex deletion number was also used to parameterize problems related to coloring and
hamiltonicity [48]. In some applications, we deal with very sparse social networks, for
instance networks modeling romantic relationship [52, Chap. 2, Fig. 2.7]. In these cases,
parameters related to the sparseness of the input graph are interesting. Among them,
we consider the number of vertices to remove to obtain an edgeless graph (“vertex cover
number”), the number of edges or vertices to remove to obtain a forest (“feedback edge
set number” and “feedback vertex set number”) as well as some graph width parameters
(treewidth, pathwidth, and bandwidth).

3.2.1 Basic reductions I & II

In the following, we present several “basic reductions” that are used as starting point for
several reductions in this chapter.

Basic reduction I. This fpt-reduction, which we will refer to as basic reduction I, was
introduced by Ben-Zwi et al. [17] and is from the W[1]-hard problem Multicolored
Clique (see Appendix A). Let (G, col, k) be an instance of Multicolored Clique.
An equivalent instance (G′, thr, k′) of Target Set Selection is constructed as follows.
For each color c ∈ {1, . . . , k}, create a vertex-selection gadget Xc consisting of a star
whose leaves one-to-one correspond to vertices with color c in G. For each pair of distinct
colors c1, c2 ∈ {1, . . . , k}, let E{c1,c2} ⊆ E be the set of all edges that connect vertices of
color c1 with vertices of color c2 and create the following edge-selection gadget X{c1,c2}.
The edge-selection gadget X{c1,c2} consists of a star whose leaves one-to-one correspond
to edges in E{c1,c2}. The center vertex of any star is called guard.

The second type of gadgets is a validation gadget. They use the arbitrary bijection low :
V → {1, . . . , n} and the bijection high : V → {n, . . . , 2n − 1} defined as high(v) =
2n − low(v) for each v ∈ V . For each {c1, c2} with c1, c2 ∈ {1, . . . , k}, add two validation
gadgets Vc1,c2 and Vc2,c1 each consisting of two vertices. Now, for each uv ∈ E{c1,c2} such
that col(v) = c1, connect the first validation gadget Vc1,c2 as follows: Let v′ be the vertex
in Xc1 corresponding to v. First, add low(v) vertices and connect them to v′ and to the
first vertex of Vc1,c2 . Next, add high(v) vertices and connect them to v′ and to the second
vertex of Vc1,c2 . Analogously, with euv denoting the vertex in X{c1,c2} corresponding to
the edge uv, add high(v) vertices and connect them to euv and to the first vertex of Vc1,c2 .
Then, add low(v) vertices and connect them to euv and to the second vertex of Vc1,c2 .
The second validation gadget Vc2,c1 is analogously connected to the vertex of Xc2 that
corresponds to u and to euv in X{c1,c2}.

We call all the vertices adjacent to vertices of a validation gadget connection vertices.
The thresholds are set as follows: Guard vertices and connection vertices have threshold
one, the two vertices in each validation gadget have threshold 2n, and the remaining
vertices in the selection gadgets have a threshold equal to their degree. Finally, k′ = k+

(k
2

)
.

This completes the reduction.
As to the correctness: If the instance (G, col, k) is a yes-instance of Multicolored

Clique then the vertices chosen to be in the target set of G′ refer to the multicolored
clique in G: For each vertex in the clique, the corresponding vertex in the vertex-selection
gadget is in the target set. Furthermore, for each edge in the clique the corresponding
vertex in the edge-selection gadget is in the target set. This target set activates the whole
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graph. In the reverse direction the validation gadgets play a central role: Each validation
gadget connects a vertex-selection gadget with and edge-selection gadget. The vertices
in the validation gadget only become activated if a vertex in the vertex-selection gadget
and a vertex in the edge-selection gadget are in the target set such that the corresponding
vertex and edge in G are incident. Basically this ensures that one has to choose vertices
in G′ into the target set that refer to a multicolored clique in G. We refer the reader to
Ben-Zwi et al. [17] for more details.

Basic reduction II. In the following, we introduce a fpt-reduction from the W[2]-hard
problem Dominating Set (see Appendix A), denoted as basic reduction II. Given an in-
stance (G = (V,E), k) of Dominating Setwe construct the instance (G′ = (V ′, E′), thr, k)
of Target Set Selection as follows. For each vertex v ∈ V , we add two vertices vt

and vb (t and b respectively standing for top and bottom) to V ′ as well as the edge vtvb to E′.
For each edge uv ∈ E, add the edges utvb and ubvt in G′. Finally, set thr(vt) = degG′(vt)
and thr(vb) = 1 for every top vertex vt and every bottom vertex vb, respectively. This
completes the reduction (see Figure 3.2).

As to the correctness: For the forward direction, suppose there exists a dominating
set S ⊆ V in G of size k. Consider the solution S′ ⊆ V ′ containing the corresponding top
vertices. After the first step, all bottom vertices are activated since they have thresholds
one and S is a dominating set. Finally, after the second step, all top vertices are activated
too. For the reverse direction, suppose there is a subset S′ ⊆ V ′ of size k in G′ such
that σ[S′] = V ′. We can assume without loss of generality that S′ contains no bottom
vertex. Since all bottom vertices are activated we have that {vi : vti ∈ S′} is a dominating
set in G.

v5 v4

v3v2

v1 vt1

vb1

vt2

vb2

vt3

vb3

vt4

vb4

vt5

vb5

Figure 3.2: Sample construction of the bipartite graph G′ (right) from a graph G (left) of
Dominating Set. All vertices vti , 1 ≤ i ≤ 5 have thresholds degG′(vti) while all vertices
vbi , 1 ≤ i ≤ 5 have thresholds 1.

3.3 Parameters related to sparse structures

In this section, we consider parameters that measure the sparseness of the input graph.
Since trees are the most sparse connected graphs and Target Set Selection is poly-
nomial-time solvable on trees [35], parameters measuring the distance to trees are most
interesting. Canonical candidates for this are the treewidth, the pathwidth, and the feed-
back vertex set number of the input graph. Notably, if the maximum threshold thrmax is
bounded by a constant, then a fixed-parameter algorithm of Ben-Zwi et al. [17] for the

parameter treewidth tw can solve Target Set Selection in thr
O(tw)
max ·nO(1) time, imply-

ing fixed-parameter tractability for the three parameters mentioned above. Furthermore,
Ben-Zwi et al. [17] proved W[1]-hardness for Target Set Selection with respect to the
parameter treewidth when the thresholds are unbounded. We extend this result by show-
ing W[1]-hardness for treewidth when the thresholds respect the majority condition. The
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proof even shows hardness for the combined parameter feedback vertex set, pathwidth,
distance to cographs, and distance to interval graphs. Finally, we show that Target
Set Selection is fixed-parameter tractable when parameterized by the bandwidth. This
result even holds for general thresholds.

3.3.1 Extending the basic reduction

In the following, we show that the basic reduction I (see Section 3.2.1) can be extended
to prove hardness for the combination of various sparseness-related parameters.

Theorem 13 Target Set Selection with majority threshold is W[1]-hard with
respect to the combination of the following parameters: feedback vertex set, distance
to cograph, distance to interval graph, and pathwidth.

Proof. We modify the basic reduction I to get the new, equivalent instance
(G′′, thr′, k′′) as follows. For each vertex v in a validation gadget, add degG′(v)−4n ver-
tices adjacent to v. Moreover, for each guard vertex v add degG′(v) − 2 neighbors.
Let X be the set of vertices added so far. Insert a new vertex u adjacent to all vertices
inX and add |X|+2(k′+2) vertices to the neighborhood of u. To complete the modifi-
cation of the graph, for every vertex v in a selection gadget, attach degG′(v) neighbors.
Finally, set thr′(v) = ⌈degG′′(v)/2⌉ for all v ∈ V (G′′) and k′′ = k′ + 1.

We claim that (G′′, thr′, k′′) is a yes-instance if and only if (G′, thr, k′) is a yes-
instance.

“⇒”: Suppose that there is a solution S′ for (G′′, thr′, k′′). First, observe
that u ∈ S′ since, otherwise, u would not become active. Indeed, even if all the
vertices in G′′ plus k′′ degree-one neighbors of u are activated, the vertex u will not
be activated since its threshold is |X| + k′′ + 1. Since u is in all solutions, we may
consider the equivalent instance where u is removed together with all its neighbors
(they all have threshold one and thus get activated by u). Moreover, for each re-
moved vertex v, we have to decrease the threshold of the vertices in N(v) by one.
This operation leaves a graph with many degree-one vertices of threshold one. Ap-
plying Reduction rule 12, we arrive at the instance (G′, thr, k′). By the correctness of
Reduction rule 12, it follows that S′ is also a solution for (G′, thr, k′).

“⇐”: Conversely, let S be a solution for (G′, thr, k′). Since activating u and
exhaustively applying Reduction rule 12 on (G′′, thr′, k′′) results in (G′, thr, k′), it is
clear that S ∪ {u} is a target set for (G′′, thr′) of size k′ + 1.

To complete the proof of the theorem, it is enough to observe that if we remove the
vertex u, all guard vertices, and the validation gadgets (that is,

(k
2

)
+ k + 1 vertices),

then we get stars and isolated vertices. �

3.3.2 Bandwidth

Another possible measure for sparseness is the bandwidth of the input graph. Here, our
result is of more positive nature: we show that Target Set Selection is fixed-parameter
tractable with respect to the bandwidth, even for general threshold functions, by using an
algorithm of Ben-Zwi et al. [17].

Theorem 14 Target Set Selection is fixed-parameter tractable with respect to
the combined parameter “treewidth” and “maximum degree” of the input graph.
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Proof. Let (G = (V,E), thr, k) be an instance of Target Set Selection.
First, exhaustively apply Reduction rule 11 to get a new equivalent instance (G′ =
(V ′, E′), thr′, k′). Observe that thr′(v) ≤ degG′(v) for all v ∈ V ′. Moreover, Ben-Zwi
et al. [17] gave a (thrmax)

O(tw) ·n-time algorithm for solving Target Set Selection,
where tw is the treewidth of the input graph and thrmax is the maximum threshold
value. It follows that this algorithm applied to G′ runs in time ∆(G′)O(bw(G′)) ·n since
tw(G′) ≤ 2 bw(G′). �

By the definition of bandwidth we can deduce that ∆(G) ≤ 2 bw(G) for any graph G
which implies the following corollary.

Corollary 15 Target Set Selection is fixed-parameter tractable with respect to
the parameter “bandwidth” of the input graph.

3.4 Parameters related to dense structures

In contrast to the previous section, we now consider Target Set Selection with respect
to parameters related to the denseness of the input graph. Since cliques are the most
dense graphs and Target Set Selection is polynomial-time solvable on cliques [90],
parameters measuring the distance to cliques are most interesting. In particular, we
consider the vertex deletion distance to clique and to a collection of disjoint cliques (also
called cluster vertex deletion number or “cvd number” for short), and the clique cover
number.

Starting with the case of unrestricted thresholds in Section 3.4.1, we show that Tar-
get Set Selection parameterized by the size of a minimum cluster vertex deletion (cvd)
set is W[1]-hard. Furthermore, we show NP-hardness when restricting to instances with
clique cover number two. Then, in Section 3.4.2, we study restricted threshold functions.
For constant or majority thresholds, Target Set Selection parameterized by the dis-
tance to a clique is fixed-parameter tractable. Furthermore, we show an exponential-size
kernel with respect to the combined parameter maximum threshold value and cvd num-
ber, implying fixed-parameter tractability with respect to the cvd number on inputs with
thresholds bounded by a constant.

3.4.1 Unrestricted thresholds

Here, we research the general Target Set Selection setting without constraints on
the thresholds of the input. As hinted in the introduction, the next two theorems state
that these variants are parameterized intractable with respect to the employed denseness
measures.

Theorem 16 Target Set Selection is W[1]-hard with respect to the parameter
“cvd number”.

Proof. We modify the basic reduction I (see Section 3.2.1) as follows. Make all
connection vertices that have a common vertex in a (vertex- or edge-) selection gadget
to a clique. The thresholds of the connection vertices are modified as follows: In each
maximal clique of the connection vertices, an arbitrary ordering of the vertices is
fixed. Then the first vertex has threshold one, the second has threshold two, and
the ith vertex has threshold i. See Figure 3.3 for a scheme of the reduction.

Note that each connection vertex is contained in exactly one maximal clique.
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Notice also that the following holds. Let C be such a maximal clique, V 1 (resp. V 1

and V 2) denote the validation gadget adjacent to C, and v the vertex adjacent to C
in the vertex-selection gadget (resp. the edge-selection gadget). Then all connection
vertices in C are activated if and only if either v is activated or all the vertices in V 1

(resp. V 1 and V 2) are activated.
We now prove that (G, col, k) is a yes-instance of Multicolored Clique if and

only if (G′, thr,
(
k
2

)
+ k) is a yes-instance of Target Set Selection.

“⇒”: Suppose that (G, col, k) has a multicolored clique C ⊆ V of size k. Then
the set S = {v ∈ C} ∪ {euv : u, v ∈ C} is a target set for (G′, thr, k′). Indeed, in the
first step of the propagation process every guard vertex is activated since they are all
adjacent to a vertex in S. After 4n steps, all the connection vertices adjacent to a
vertex in S get activated. During the next step, all 4

(k
2

)
vertices in validation pairs

will be activated since C is a multicolored clique of size k. From now on, it is not
hard to see that the entire graph will be activated.

“⇐”: Conversely, assume that (G′, thr, k′) has a target set S ⊆ V ′ of size k.
First, we may assume that S does not contain any guard vertex since they all have
threshold one. Moreover, one has to pick up in the target set at least one vertex in
each selection gadget to activate the guard vertex of the latter. Indeed, recall that
every neighbor of a guard vertex has a threshold equal to its degree and the guard
vertex is not in the target set. Thus, every target set contains at least one vertex in
each selection gadget. Furthermore, since k′ =

(k
2

)
+k we conclude that there is exactly

one vertex from each selection gadget in a minimal target set. Suppose now that we
select two vertices u ∈ Xc1 and v ∈ Xc2 together with an edge-vertex eu′v′ ∈ X{c1,c2}
for some c1, c2 ∈ {1, . . . , k} such that eu′v′ is not incident to both u and v. Without
loss of generality, we may assume that u 6= u′. Then at least one vertex in the
validation gadgets Vc1,c2 and Vc2,c1 will not be activated. To see this, recall that
for all w ∈ V ′ it holds that high(w) + low(w) = 2n and, since u 6= u′, we have
either low(u) + high(u′) < 2n or high(u) + low(u′) < 2n. This implies, as previously
discussed, that some connection vertices will not be activated, a contradiction. �

Theorem 17 Target Set Selection is NP-hard and W[2]-hard with respect to the
parameter k even on graphs with clique cover number two.

Proof. We present a parameterized reduction from the W[2]-hard problem Hitting
Set (see Appendix A). Given an instance (F , U, k) of Hitting Set consisting of a
set family F = {F1, . . . , Fm} over a universe U = {u1, . . . , un} and an integer k ≥ 0,
we construct an instance (G, thr, k) of Target Set Selection as follows.

We start with the construction of the graph G. A set of vertices VU contains a
vertex for every element u ∈ U , that is, VU = {vu : u ∈ U}. Analogously, a second
set WF contains a vertex for every subset, that is, WF = {wF : F ∈ F}. The vertices
in VU are called element vertices and the vertices in WF are called subset vertices.
There is an edge between an element vertex vu and a subset vertex wF if and only
if u ∈ F . Next, add a new vertex x 6∈ (VU ∪WF ) to G and connect x to all vertices
in WF . Then, make V1 = VU ∪{x} a clique. Add |F|−1 sets of vertices V B

1 , . . . , V B
|F|−1

to the graph, each set containing α = |U |+2 vertices and let V B =
⋃|F|−1

i=1 V B
i . Finally,

make V2 = WF ∪ V B
1 ∪ . . . ∪ V B

|F|−1 a clique.
The thresholds are set as follows. For every subset vertex wFi ∈ WF , set the
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Figure 3.3: Graph obtained after carrying out the modifications in the proof of Theorem 16
(with n = 4). The vertices inside an ellipse form a clique. The numbers in the vertices
denote the thresholds. If no number is inside a vertex, the threshold is equal to the degree.

threshold thr(wFi) = (i−1)α+i, for every element vertex vu ∈ VU , set thr(vu) = |{F ∈
F : u ∈ F}|+k+1, and for each vertex v ∈ V B

i , 1 ≤ i ≤ |F|−1, set thr(v) = (i−1)α+i.
Finally, complete the construction by setting thr(x) = |WF |+ k

Since V1 and V2 are cliques, the constructed graph G is a diameter-two graph
whose vertices can be covered by two cliques, see Figure 3.4.

For the correctness it remains to show that (F , U, k) is a yes-instance of Hitting
Set if and only if (G, thr, k) is a yes-instance of Target Set Selection.

“⇒”: If (F , U, k) is a yes-instance, then there exists a hitting set U ′ of size k for F .
We show that S = {vu : u ∈ U ′} is a target set for G of size k . Since U ′ is a hitting
set, every vertex in WF has at least one neighbor in S. Thus, all vertices in V1 become
active in 2|WF | − 1 steps: In the first step wF1 is activated since thr(wF1) = 1. Then
in the second step, all vertices in V B

1 are activated since all these vertices also have
threshold one and wF1 is active. For 2 ≤ i ≤ |WF |, in the (2i−1)th step the vertex wFi

is activated and in the next step all vertices in V B
i : The neighbors of wFi that are

active in step 2i − 2 are: All vertices in V B
1 ∪ . . . ∪ V B

i−1, the vertices wF1 , . . . , wFi−1

and at least one vertex in S. Since the threshold is thr(wFi) = (i − 1)α + i, the
vertex wFi is activated. Then, there are (i− 1)α+ i active vertices in V2 and, hence,
all vertices in V B

i are activated in the 2ith step. After all vertices in V2 are active, x
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is activated. Finally, in the last step all vertices in VU \S are activated since for every
vertex in VU \ S all neighbors in WF and x have been activated.

“⇐”: If (G, thr, k) is a yes-instance of Target Set Selection, then there is a
target set S of size at most k. We first show that S ⊆ VU .

Assume towards a contradiction that there is a vertex in S \VU . Then, |S ∩VU | ≤
k − 1. Let ℓ denote the first step in which a vertex in VU \ S is activated, that is,
ℓ = min{j : Aj

G,thr(S) ∩ (VU \ S) 6= ∅}. Moreover, let vu ∈ Aℓ
G,thr(S) ∩ (VU \ S). Note

that, by definition of ℓ, it holds that |Aℓ−1
G,thr(S) ∩ V1| ≤ k. Hence

|NG(vu) ∩ Aℓ−1
G,thr(S)| =|NG(vu) ∩ Aℓ−1

G,thr(S) ∩WF |
+ |NG(vu) ∩ Aℓ−1

G,thr(S) ∩ V1|
≤|{F ∈ F : u ∈ F}|+ k

<|{F ∈ F : u ∈ F}|+ k + 1 = thr(vu)

a contradiction. Therefore, S ⊆ VU .
Finally, we show that U ′ = {u : vu ∈ S} is a hitting set for F . To this end, we show

that every subset vertex wFi has a neighbor in S and, hence, is hit by U ′. Assume
towards a contradiction that there exists a vertex wFi ∈ WF with NG(wFi) ∩ S = ∅.
Let Xi = (

⋃

i≤j≤|F|−1 V
B
j ) ∪ (

⋃

i≤j≤|F|{wFi}). Let ℓ denote the first step in which a

vertex in Xi is activated, that is, ℓ = min{j : Aj
G,thr(S)∩Xi 6= ∅}. Hence |Aℓ−1

G,thr(S)∩
WF | = |Aℓ−1

G,thr(S)∩(WF \Xi)| ≤ i−1 and |Aℓ−1
G,thr(S)∩V B| = |Aℓ−1

G,thr(S)∩(V B\Xi)| ≤
|⋃1≤j<i V

B
j | = (i− 1)α. Let v ∈ Xi ∩ V B , then we have

|Aℓ−1
G,thr(S) ∩NG(v)| = |Aℓ−1

G,thr(S) ∩ V B |+ |Aℓ−1
G,thr(S) ∩WF |

≤ (i− 1)α+ i− 1

< (i− 1)α+ i ≤ thr(v)

and, thus, Aℓ
G,thr(S) ∩Xi ∩ V B = ∅. Now consider v ∈ Xi ∩ (WF \ {wFi}). Observe

that |Aℓ−1
G,thr ∩ V1| = |S| = k. Thus, we have

|Aℓ−1
G,thr(S) ∩NG(v)| ≤ |Aℓ−1

G,thr(S) ∩ V B |+ |Aℓ−1
G,thr(S) ∩WF |+ |Aℓ−1

G,thr(S) ∩ V1|
≤ (i− 1)α + i− 1 + k

< iα+ i+ 1 ≤ thr(v)

and, thus, Aℓ
G,thr(S) ∩Xi ∩ (WF \ {wFi}) = ∅. Finally, consider v = wFi

|Aℓ−1
G,thr(S) ∩NG(v)| ≤ |Aℓ−1

G,thr(S) ∩ V B |+ |Aℓ−1
G,thr(S) ∩WF |

≤ (i− 1)α+ i− 1

< (i− 1)α+ i = thr(v)

and, thus, wFi /∈ Aℓ
G,thr(S). Altogether we have Aℓ

G,thr(S)∩Xi∩V B = ∅, Aℓ
G,thr(S)∩

Xi ∩ (WF \ {wFi}) = ∅, and wFi /∈ Aℓ
G,thr(S) and, hence, Aℓ

G,thr(S) ∩ Xi = ∅, a
contradiction. �
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Figure 3.4: A schematic picture of the constructed graph. Each of the two vertex sets V1

(upper box) and V2 (lower box) form a clique. The number below a vertex denotes its
threshold. The only way to activate all vertices with a target set of size k is to choose
k vertices in VU such that these k vertices activate all vertices in WF .

3.4.2 Restricted thresholds

In the spirit of researching the influence of bounded thresholds on Target Set Selec-
tion, we consider the parameters distance to clique and cluster vertex deletion number
(cvd number). Recall that we showed W[1]-hardness for the parameter cvd number (for
unbounded thresholds) in the previous paragraph. By presenting an exponential-size ker-
nel, we show that the problem becomes tractable with respect to this parameter if the
maximum threshold is a constant.

First, we show that Target Set Selection with majority thresholds or constant
thresholds is fixed-parameter tractable with respect to the parameter distance to clique.
We can even show fixed-parameter tractability for less restrictive threshold functions. To
this end, let P(V ) be the set of all subsets of V .

Theorem 18 Target Set Selection on graphs with vertex set V is fixed-
parameter tractable with respect to the parameter “distance to clique”, denoted by ℓ,
when the threshold function thr fulfills the restriction

thr(v) > g(ℓ)⇒ thr(v) = f(N(v))

for all vertices v ∈ V and arbitrary functions f : P(V )→ N and g : N→ N.

Proof. We prove the theorem by giving a fixed-parameter algorithm computing a
target set of minimum size for (G, thr). To this end, we introduce some notations.
Let X ⊂ V , |X| = ℓ, denote a set of vertices such that G[V \X] is a clique. We define
a non-standard “twins” equivalence relation ≡ by

u ≡ v ⇐⇒ (N [u] = N [v]) ∧ (thr(u) = thr(v)) ∧ (u ∈ X ⇐⇒ v ∈ X)
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Since the thresholds and neighborhoods of all vertices in an equivalence class Z are
equal, we can denote this threshold and this neighborhood by thr(Z) and N [Z], re-
spectively. Let Z1, Z2, . . . , Zs be a list of all nonempty equivalence classes of ≡.
Since G[V \X] is a clique, we know that for all u, v ∈ V \X : N [u] = N [v] if and only
if NG[X][u] = NG[X][v]. Due to the condition thr(v) > g(ℓ) ⇒ thr(v) = f(N(v)), for
each subset X ′ ⊆ X, there are at most g(ℓ) + 1 equivalence classes disjoint from X
whose neighborhood in X is exactly X ′. Hence, s ≤ 2ℓ(g(ℓ) + 1) + ℓ.

Let S be a minimum-size target set for (G, thr). With S, we can define ri as the
number of the first activation step in which all vertices of Zi are active. More formally,
ri = min{j : Zi ⊆ Aj

G,thr(S)}. Let r = max{ri : 1 ≤ i ≤ s}.
In the following, we upper-bound r by s. We do this by showing that for each 1 ≤

j ≤ r, there is an 1 ≤ i ≤ s such that ri = j. Assume this was false, that is, there
is some activation step j such that none of the equivalence classes gets activated in
step j. Since j ≤ r, there is some vertex v that gets activated in step j. Let Zi

denote the equivalence class of v. Since j ≥ 1, we know that |N(v) ∩ Aj−1
G,thr(S)| ≥

thr(v). Since for each vertex u ∈ Zi, thr(u) = thr(v) and N(u) = N(v), we conclude
that Zi ⊆ Aj

G,thr(S), contradicting the assumption that ri 6= j.
Now we describe our algorithm. In the first phase, we guess the correct values

of ri for all 1 ≤ i ≤ s. There are at most rs ≤ ss possibilities to do so.
In the second phase of the algorithm, we use an ILP formulation to solve the

problem. Each variable xi in the ILP represents the number of vertices in the equiv-
alence class i that are in the target set S. We use constraints to model the activation
process: For each equivalence class Zi, the number of active neighbors in step ri
exceeds thr(Zi). Two types of active neighbors are considered. First, the vertices
in N [Zi]∩S. Second, the vertices in all equivalence classes Zj ⊆ N [Zi] that are active
in step i, that is, rj < ri. More formally,

Minimize:

s∑

i=1

xi

subject to: ∀1 ≤ i ≤ s, thr(Zi) ≤
∑

Zj⊆N[Zi]

rj≥ri

xj +
∑

Zj⊆N[Zi]

rj<ri

|Zj |

∀1 ≤ i ≤ s, xi ∈ {0, 1}

By the discussion above, a solution to this ILP corresponds to a minimum-size target
set for (G, thr). Since the ILP formulation has s variables, a result by Lenstra [79]
implies that solving it is fixed-parameter tractable with respect to s. Since at most ss

such ILPs have to be solved and s ≤ 2ℓ(g(ℓ)+1)+ ℓ, fixed-parameter tractability with
respect to ℓ follows. �

Clearly, Theorem 18 is a pure complexity classification result. Since the majority thresh-
olds and constant thresholds both satisfy the restrictions required in Theorem 18, the next
corollary immediately follows.

Corollary 19 Target Set Selection with majority thresholds or constant thresh-
olds is fixed-parameter tractable with respect to the parameter distance to clique.

Next, we show fixed-parameter tractability for Target Set Selection with respect
to the parameter “cvd number” and constant thresholds. In the following, we assume
that an optimal cvd set X of the input graph is given. If this is not the case, then one
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might instead use a simple polynomial-time 3-approximation algorithm.1 Either way, we
abbreviate ℓ = |X|.

In this section we use the notion of “critical cliques”. Here, a clique K in a graph
is critical if all its vertices have the same closed neighborhood and K is maximal with
respect to this property.

First, we present a data reduction rule allowing us to bound the number of vertices
with the same open or closed neighborhood by the maximum threshold thrmax.

Reduction rule 20 Let I = (G = (V,E), thr, k) be an instance of Target Set Selec-
tion that is reduced with respect to Reduction rule 11 and let v1, v2, . . . , vthrmax +1 ∈ V be
vertices such that either

N(v1) = N(v2) = . . . = N(vthrmax +1) or N [v1] = N [v2] = . . . = N [vthrmax +1]

Furthermore, let v1 be the vertex with the highest threshold, that is, for all 1 ≤ i ≤
thrmax +1 it holds that thr(v1) ≥ thr(vi). Then delete v1.

Lemma 21 Reduction rule 20 is correct and can be applied exhaustively in O(n+m)
time.

Proof. For the running time, note that computing the critical cliques of a graph
can be done in linear time [87]. Thus, we first compute the critical cliques of the
graph in linear time. Then we iterate over the critical cliques and if one of them has
size thrmax +r, r > 0, then we delete the r vertices of this critical clique having the
largest thresholds. This can clearly be done in linear time. Notice that a maximal set
of vertices with the same open neighborhood form a critical clique in the complement
graph. Hence, in a second step, we repeat the procedure with the complement graph.
Then the graph is reduced with respect to Reduction rule 20. Furthermore observe
that Reduction rule 11 is not applicable after Reduction rule 20 was applied.

To show the correctness, we prove that the instance (G′ = (V ′, E′), thr, k) that is
produced by Reduction rule 20 is a yes-instance if and only if the input instance I is
a yes-instance.

“⇒:” Since (G′, thr, k) is a yes-instance, there exists a target set S ⊆ V ′, |S| ≤ k,
that activates all vertices in G′. Hence, S activates all vertices of V \ {v1} in G.
Since (G, thr, k) is reduced with respect to Reduction rule 11, the vertex v1 is activated
by its neighbors. Thus, S is also a target set for (G, thr, k).

“⇐:” Since (G, thr, k) is a yes-instance, there exists a target set S ⊆ V , |S| ≤ k,
activating all vertices in G. Let W = {v1, v2, . . . , vthrmax +1} be the vertices considered
in the reduction rule. First observe that we can assume W \ S 6= ∅, (that is, not all
vertices of W are in the target set) since otherwise, S′ = S \ {v1} is also a target set:
In the first activation step all vertices in N(v1) become active and, since (G, thr, k) is
reduced with respect to Reduction rule 11, it follows that v1 is active after the second
step. Thus, S′ is also a target set.

Now consider the case that v1 /∈ S. Since for all vi ∈ W it holds that thr(v1) ≥
thr(vi) and v1 is activated by its neighbors, it is clear that all vertices in W \ {v1} are
active once v1 is active. Since |W | > thrmax this implies that all vertices in NG(v1)
become active in G′ and, thus, S is a target set for G′.

1A graph is a cluster graph if and only if it contains no induced P3, that is, an induced path of three
vertices. Using this characterization, the factor 3-approximation simply deletes all vertices occurring in an
induced P3.
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Finally, consider the case that v1 ∈ S. Let w ∈ W \ S be the vertex with the
highest threshold, that is, for all vi ∈ W \ S it holds that thr(w) ≥ thr(vi). Observe
that S′ = (S \{v1})∪{w} is a target set for G′: Since S activates all vertices in W it is
clear that S′ activates all vertices in W \ {v1}. This implies that all vertices in N(v1)
are activated by S′ in G′ since |W \ {v1}| = thrmax and all vertices in W have the
same neighborhood. Thus, S′ activates all vertices in G′. �

In the following we assume that the input graphG is reduced with respect to Reduction rule 20.
Thus, G[V \X] consists of disjoint cliques, each of size at most 2ℓ thrmax. Hence, in order
to get the desired kernel it remains to bound the number of cliques in G[V \X]. To this
end, we introduce the following notation:

Definition 35: Clusters equivalence

Let I = (G = (V,E), thr, k) be an instance of Target Set Selection, let X ⊆ V
be a cvd set, and let S ⊆ V . Let C1, C2 ⊆ V be two clusters in G[V \X].
We call C1 and C2 equivalent with respect to X, denoted by C1 ≡X C2, if there exists
a bijection f : C1 → C2 such that for every v ∈ C1 it holds that thr(v) = thr(f(v))
and N(v)∩X = N(f(v))∩X. Furthermore, we call C1 and C2 equivalent with respect
to X and S, denoted by C1 ≡S

X C2, if the bijection f additionally fulfills v ∈ S ⇐⇒
f(v) ∈ S for all v ∈ C1.

Note that ≡X is an equivalence relation on the clusters in G[V \ X] with at

most (thrmax +1)2
ℓ thrmax equivalence classes. To see this, observe that each equivalence

class is uniquely determined by 2ℓ (possibly empty) sequences of thresholds. One for each
subset of X. Since G is reduced with respect to Reduction rule 20, each such sequence
contains between 0 and thrmax thresholds. Since each threshold is at most thrmax, the
number of equivalence classes is at most

(
thrmax∑

i=0

thrimax

)2ℓ

≤
(

(thrmax +1)thrmax

)2ℓ

= (thrmax +1)2
ℓ thrmax

In the following, our goal is to bound the number of cliques in one equivalence class in a
function depending only on thrmax and ℓ. Note that once we achieve this goal, we have
a kernel with respect to the parameter “cvd number”. The next lemma is a first step
towards this goal.

Lemma 22 Let I = (G = (V,E), thr, k) be an instance of Target Set Selection,
let X ⊆ V be a cvd set for G, and let S ⊆ V , |S| ≤ k, be a target set for G.
Furthermore let C1, C2, . . . , Cthrmax +1 ⊆ V be clusters in G[V \X] that are pairwise
equivalent with respect to X and S. Then, S \ C1 is a target set for G[V \ C1].

Proof. Let S′ = S \ C1 and G′ = G[V \ C1]. We prove the lemma by contradiction:
Assume that S′ is not a target set for G′. Let Y ⊆ V \ C1 be the set of vertices that
are activated in G in some step i but are not activated in G′ in the step i. Formally,
Y = {v ∈ V \ C1 : ∃i ≥ 1 s.t. v ∈ Ai

G,thr(S) and v /∈ Ai
G′,thr(S

′)}. Since S′ is not a
target set for G′, the set Y is not empty. In particular, Y contains all vertices in G′

that are not activated by S′. Let v ∈ Y be the vertex that is activated first in G
i.e. for all u ∈ Y it holds that u ∈ Ai

G,thr(S)⇒ v ∈ Ai
G,thr(S), 1 ≤ i.

Since v ∈ Y and Y ⊆ V \C1, it holds that v /∈ S. Let i ≥ 1 be the step in which v
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becomes active in G, that is, v ∈ Ai
G,thr(S) \ Ai−1

G,thr(S). Thus, |NG(v) ∩ Ai−1
G,thr(S)| ≥

thr(v). Since v is in G′ not activated by S′, it follows that |NG′(v) ∩ Ai−1
G′,thr(S

′)| <
thr(v). From the selection of v it follows that Y ∩ Ai−1

G,thr(S) = ∅. Thus, Ai−1
G,thr(S) \

Ai−1
G′,thr(S

′) ⊆ C1. SinceNG(v)\NG′(v) ⊆ C1, it follows thatNG(v)∩Ai−1
G,thr(S)∩C1 6= ∅

and v ∈ X. Let u ∈ NG(v) ∩ Ai−1
G,thr(S) ∩ C1. Note that C1 and Cj, 1 < j ≤

thrmax +1, are equivalent with respect to X and S and, hence, there is a bijection fj
as described in Definition 35. Thus, it is easy to see that u ∈ Ai−1

G,thr(S) ⇒ fj(u) ∈
Ai−1

G,thr(S). Moreover, since u ∈ NG(v) it follows that fj(u) ∈ NG(v) and, thus,

fj(u) ∈ NG′(v). Hence, fj(u) ∈ NG′(v) ∩ Ai−1
G′,thr(S

′) for all 2 ≤ j ≤ thrmax +1 and

thus |NG′(v)∩Ai−1
G′,thr(S

′)| ≥ thrmax. Hence, thr(v) > |NG′(v)∩Ai−1
G′,thr(S

′)| ≥ thrmax,
a contradiction. �

Since we do not know the target set S for G, two problems have to be solved in order to
convert this lemma into a data reduction rule: The first problem is to find out by how much
we have to decrease k, or, equivalently, how to compute |S ∩C1| in polynomial time? The
second problem is that we do not know the target set S. As we show in the following, the
key in overcoming these two problems is to increase the number of equivalent clusters Cj

in the assumption of the lemma.

To this end, we first compute a lower and upper bound on the size of the target set
for G. Let GX be the graph that results from activating all vertices in X and applying
Reduction rule 11 exhaustively. Let CX

1 , CX
2 , . . . , CX

ζ denote the maximal cliques of GX .

Clearly, for each clique CX of GX there is a cluster C in G[V \ X] such that CX ⊆ C.
Let SX ⊆ V be an optimal solution for GX . Note that SX can be computed in linear
time [90]. By construction of GX it is clear that |SX | is a lower bound for the size of
any target set for G. Furthermore, SX ∪X is a target set for G. Hence, if k < |SX | we
can immediately answer no and if k ≥ |SX | + |X| = |SX | + ℓ we can answer yes. Thus,
we assume in the following that |SX | ≤ k < |SX | + ℓ. Besides these general bounds on
the target set size we can also derive bounds for the number of vertices in a target set
for each cluster C in G[V \ X]: If there is a (uniquely determined) clique CX in GX

such that CX ⊆ C, then set min(C) = |SX ∩ CX |. In case there is no such clique
in GX , set min(C) = 0. Finally, set max(C) = min{thrmax,min(C) + ℓ}. Clearly, min(C)
and max(C) are lower resp. upper bounds on the number of vertices of C that are in an
optimal target set for G. Note that if two clusters C1 and C2 in G[V \X] are equivalent with
respect to X, then min(C1) = min(C2). Furthermore, having ℓ+ 1 clusters C1, . . . , Cℓ+1

in G[V \X] that are equivalent with respect to X, we can conclude that for any optimal
target set S there is a cluster Ci, 1 ≤ i ≤ ℓ+1, having exactly min(C1) vertices in the target
set, since otherwise, the solution SX ∪X for G contains fewer vertices than S. Likewise,
if there are ℓ + r clusters C1, . . . , Cℓ+r that are equivalent with respect to X, then it is
clear that for any optimal target set S at least r of these clusters contain exactly min(C1)
vertices of S. Hence, increasing the number of equivalent clusters to at least ℓ+thrmax +1
solves the first problem.

We overcome the second problem by relaxing the condition “equivalent with respect
to X and S” for the clusters C1, . . . , Cthrmax ⊆ V to “equivalent with respect to X” and
increase the number of equivalent clusters: We can assume that, out of each cluster C,
at most max(C) ≤ thrmax vertices are in a target set. Thus, there are at most thr2

ℓ

max

possibilities for choosing thrmax vertices from a cluster to be in a target set: Choose at
most thrmax vertices with the highest threshold from each of the at most 2ℓ critical cliques
of the cluster. Having a set of vertices with the same closed neighborhood and the task
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is to choose s of them to be in a target set, it is best to choose the s vertices with the
highest thresholds [90, Observation 7]. Thus, when increasing the number of clusters that

have to be equivalent with respect to X to ℓ + thr2
ℓ

max(thrmax+1) we can conclude with
the pigeonhole principle that there are clusters Ci1 , . . . , Cithrmax +1

that are equivalent with
respect to X and S for any target set S and each cluster Cij contains min(Cij ) vertices
of S. Hence, applying Lemma 22 to this set we arrive at the following reduction rule.

Reduction rule 23 Let I = (G = (V,E), thr, k) be an instance of Target Set Selec-
tion that is reduced with respect to Reduction rule 11 and let X ⊆ V be a cvd set of size ℓ.
Let C1, C2, . . . , Cα ⊂ V be disjoint clusters in G[V \X] such that α = ℓ+thr2

ℓ

max(thrmax+1)
and for each pair Ci, Cj , 1 ≤ i, j ≤ α, it holds that Ci ≡X Cj. Then delete C1 and reduce k
by min(C1).

The correctness of the data reduction rule follows from Lemma 22 and the above discus-
sion. As to the running time, note that Reduction rule 23 can be exhaustively applied
in O(n2) time. Since we require that the cvd set X is given, we can compute the clusters
in G[V \X] in linear time. Then, we sort the vertices in these clusters by neighborhood and
threshold. This can be done in O(n log(n)) time. After this sorting the check whether two
clusters are equivalent with respect to X can be done in linear time: Simply iterate over
the sorted vertices and check whether the current vertices in both clusters have the same
neighborhood and threshold. Overall, iterating over all clusters in G[V \X], determining
the equivalent clusters, and deleting the respective clusters can be done in O(n2) time.

With these data reduction rules we now arrive at the following theorem.

Theorem 24 Target Set Selection admits a kernel with thr
O(2ℓ thrmax)
max ℓ vertices,

where ℓ is the cluster vertex deletion number and thrmax is the maximum threshold.

Proof. Let I = (G = (V,E), thr, k) be an instance of Target Set Selection that
is reduced with respect to Reduction rules 11, 20, and 23. Furthermore let X ⊆ V be
a cvd set and let ℓ = |X|.

Since I is reduced with respect to Reduction rule 20, the clusters in G[V \X] have

size at most 2ℓ thrmax. Hence, there are at most (thrmax+1)2
ℓ thrmax clusters in G[V \

X] that are all pairwise not equivalent with respect to X. Furthermore, since I
is reduced with respect to Reduction rule 23, each equivalence class of ≡X contains
at most ℓ+ thr2

ℓ

max(thrmax +1) clusters. Thus, the number of clusters in G[V \X] is

bounded by (ℓ+thr2
ℓ

max(thrmax +1))(thrmax+1)2
ℓ thrmax , each of these clusters contains

at most 2ℓ thrmax vertices. Overall this gives thr
O(2ℓ thrmax)
max ℓ vertices in G[V \X] and,

thus, G contains at most thr
O(2ℓ thrmax)
max ℓ vertices. The Reduction rules 11 and 20 can

both be applied exhaustively in O(n+m) time and Reduction rule 23 can be applied
exhaustively in O(n2). Overall, the kernelization runs in O(n2) time. �

Clearly this kernel implies that Target Set Selection is fixed-parameter tractable
with respect to the combined parameter thrmax and ℓ. This yields the following result for
Target Set Selection with constant thresholds.

Corollary 25 Target Set Selection with constant thresholds is fixed-parameter
tractable with respect to the parameter “cvd number”.
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3.5 Complementary problem

In this section, we turn our attention to the complementary problem named Influence.
First, we consider the parameterized approximability of the optimization version. As
explained in the preliminaries, there are two versions of it denoted by Max Closed In-
fluence and Max Open Influence. Notably, we prove that both versions are strongly
parameterized inapproximable with respect to k even for constant and majority thresh-
olds. However, in the unanimity case, we observe that they admit a fpt-time approxi-
mation algorithm with respect to k whereas their decision version is W[1]-hard and Max
Open Influence cannot be approximated within n1−ε in polynomial time for all ε > 0
unless NP = ZPP. Second, we prove that Influence is fixed-parameter tractable with
respect to the combined parameter k and maximum degree of the input graph.

3.5.1 Inapproximability results

Here, we consider the parameterized approximability of both Max Closed Influence
andMax Open Influencewith respect to the parameter k. We show that these problems
are W[2]-hard to approximate within n1−ε for any ε > 0 for majority thresholds and
thresholds at most two, respectively.

Theorem 26 For any ε > 0, Max Closed Influence and Max Open Influence
with majority thresholds cannot be approximated within n1−ε in fpt-time with respect
to the parameter k even on bipartite graphs, unless FPT = W[2].

Proof. By Lemma 10, it suffices to show the result for Max Closed Influence.
We construct a parameterized gap-introducing reduction from the W[2]-hard problem
Dominating Set (see Appendix A) to Max Closed Influence with majority. In
this reduction, we will make use of the ℓ-edge gadget, for some integer ℓ. An ℓ-edge
between two vertices u and v consists of ℓ vertices of threshold one adjacent to both
u and v.

Given an instance I = (G = (V,E), k) of Dominating Set with n = |V |, m = |E|,
we define an instance I ′ = (G′, k + 1) of Max Closed Influence with majority
thresholds as follows. We start with the graph obtained from I as described in the
basic reduction II (see Section 3.2.1), then we modify it to get G′ as follows. Replace
every edge vtvb by an (k+2)-edge between vt and vb. Moreover, for a given constant
β = 8

ε − 5, let L = ⌈nβ⌉ and we add nL more vertices x11, . . . , x
1
n, . . . , x

L
1 , . . . , x

L
n .

For i = 1, . . . , n, vertex x1i is adjacent to all the bottom vertices. Moreover, for any

j = 2, . . . , L, each xji is adjacent to xj−1
k , for any i, k ∈ {1, . . . , n}. We also add a

vertex w and an n+(k+2)(degG(v)−1)-edge between w and vb, for any bottom vertex
vb. For i = 1, . . . , n, vertex x1i is adjacent to w. For i = 1, . . . , n add n pending-vertices
(i.e. degree one vertices) adjacent to xLi . For any vertex vt add (degG(v) + 1)(k + 2)
pending-vertices adjacent to vt. Add also n+ n2 + (k + 2)(2m − n) pending-vertices
adjacent to w. All vertices of the graph G′ have the majority thresholds (see also
Figure 3.5). Let n′ be the order of G′, notice that we have n′ ≤ n4 + nL ≤ nβ+5.

We claim that if I is a yes-instance then opt(I ′) ≥ nβ+1; otherwise opt(I ′) <
nβ+1

(n′)1−ε .

Suppose that there exists a dominating set S ⊆ V in G of size at most k. Consider
the solution S′ for I ′ containing the corresponding top vertices and vertex w. After
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Figure 3.5: The graph G′ (right) obtained fromG (left) after carrying out the modifications
of Theorem 26. A thick edge represents an ℓ-edge for some ℓ > 0. A “star” vertex v

represents a vertex adjacent to
degG′ (v)

2 pending-vertices.

the first step, all vertices belonging to the edge gadgets which top vertex is in S′ are
activated. Since S is a dominating set in G, after the second step, all the bottom
vertices are activated. Indeed degG′(vb) = 2(n + (k + 2) degG(v)) and after the first
step vb has at least k+2 neighbors activated belonging to an (k+2)-edge between vb

and some ut ∈ V and n + (k + 2)(degG(v) − 1) neighbors activated belonging to an
n + (k + 2)(degG(v) − 1)-edge between vb and w. Thus, every vertex x1i gets active
after the third step, and generally after the jth step, j = 4, . . . , L + 2 the vertices
xj−2
i are activated, and at the (L + 3)th step all pending-vertices adjacent to xLi are

activated. Therefore, the size of an optimal solution is at least nL ≥ nβ+1.
Suppose that there is no dominating set in G of size k. Without loss of generality,

we may assume that no pending-vertices are in a solution of I ′ since they all have
threshold one. If w does not take part of a solution in I ′, then no vertex x1i could be
activated and in this case opt(I ′) is less than n′−nL ≤ n4. Consider now the solutions
of I ′ of size k + 1 that contain w. Observe that if a top-vertex vt gets active through
bottom-vertices then vt can not activate any other bottom-vertices. Indeed, as a
contradiction, suppose that vt is adjacent to a non-activated bottom-vertex. It follows
that vt could not have been activated because of its threshold and that no pending-
vertices are part of the solution, a contradiction. Notice also that it is not possible
to activate a bottom vertex by selecting some x1i vertices since of their threshold.
Moreover, since there is no dominating set of size k, any subset of k top vertices
cannot activate all bottom vertices, therefore no vertex xki , i = 1, . . . , n, k = 1, . . . , L
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can be activated. Hence, less than n′ − nL vertices can be activated in G′ and the
size of an optimal solution is at most n4 ≤ nβ+1

(n′)1−ε .

We then have a gap of (n′)1−ε, and the result follows from Theorem 9. �

Theorem 27 For any ε > 0, Max Closed Influence and Max Open Influ-
ence with thresholds at most two cannot be approximated within n1−ε in fpt-time
with respect to the parameter k even on bipartite graphs, unless FPT = W[2].

Proof. By Lemma 10, it suffices to prove the result for Max Closed Influence.
We construct a parameterized gap-introducing reduction from the W[2]-hard problem
Dominating Set (see Appendix A) to Max Closed Influence with thresholds at
most two. In this reduction, we will make use of the directed edge gadget. A directed
edge from a vertex u to another vertex v consists of a 4-cycle {a, b, c, d} such that a
and u as well as c and v are adjacent. Moreover thr(a) = thr(b) = thr(d) = 1 and
thr(c) = 2. The idea is that the vertices in the directed edge gadget become active if u
is activated but not if v is activated. Hence, the activation process may go from u to v
via the gadget but not in the reverse direction. In the rest of the proof, we may assume
that no vertices from {a, b, c, d} are part of a solution of Max Closed Influence.
Indeed, it is always as good to take the vertex u instead. We will also make use of
a directed tree with leaves x1, . . . , xn and root r defined as follows: introduce n − 1
new vertices y2, . . . , yn and insert directed edges from x1 to y2, from x2 to y2, from yi
to yi+1, for i = 2, . . . , n − 1, from xi to yi, for i = 3, . . . , n, from yn to r. Moreover
thr(yi) = 2, i = 2, . . . , n and thr(r) = 1. The idea is that the vertices in the directed
tree become active if all vertices x1, . . . , xn are activated but not if r is activated. So,
we may assume that no vertex from y2, . . . , yn is part of a solution of Max Closed
Influence.

Given an instance I = (G = (V,E), k) of Dominating Set with n = |V |, we
define an instance I ′ = (G′, thr, k) of Max Closed Influence as follows. We start
with the graph and thresholds obtained from I as described in the basic reduction II
(see Section 3.2.1), then we modify them to get G′ and the function thr as follows.
Set the thresholds of top-vertices to two. Replace every edge between a top vertex
vt and a bottom vertex vb by a directed edge from vt to vb. Let L = ⌈nβ⌉ where
β = 4

ε − 3. For j = 1, . . . , L, add vertices pj1, . . . , p
j
n and a directed tree between

leaves vbi , i = 1, . . . , n and root p1ℓ , for ℓ = 1, . . . , n. Moreover for j = 1, . . . , L − 1

add directed trees between leaves pj1, . . . , p
j
n and root pj+1

ℓ , for ℓ = 1, . . . , n. This
completes the construction (see Figure 3.6). Let n′ be the order of G′, notice that we
have n′ = 2n+ n2nβ + 4(2n − 1)nβ+1 < nβ+3.

We claim that if I is a yes-instance then opt(I ′) > nβ+2; otherwise opt(I ′) <
nβ+2

(n′)1−ε .

Suppose that there exists a dominating set S ⊆ V in G of size at most k. Con-
sider the solution S′ for I ′ containing the corresponding top vertices. Since S is a
dominating set in G, after the fourth step, all the bottom vertices are activated. It
follows that at the end of the activation process all the vertices of the graph G′ are
activated except the top vertices outside S′ and the vertices of some directed edges of
the basic gadget. The optimum solution is opt(I ′) > n′ − 5n2 > nβ+2.
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Figure 3.6: The graph G′ (right) obtained fromG (left) after carrying out the modifications
of Theorem 27. A black arrow from u to v represents a directed edge gadget from u to v.
A gray arrow from u to v indicates a directed tree where u is one of the leafs and v is the
root.

Suppose that there is no dominating set in G of size k. Consider a solution S′

for I ′ of size k. Without loss of generality, we may assume that no pji vertices or
bottom vertices are contained in S′ since they all have threshold one. For the reason
previously mentioned, we know that no vertices from the directed edge gadgets and no
vertices from the directed trees are in S′. It follows that S′ only contains top-vertices.
Since there is no dominating set of size k in G then at least one bottom-vertex is
not activated. Moreover, because of the directed edges the activated bottom-vertices
cannot activate new top-vertices. Thus at least vertex of each directed tree with roots
p1i , i = 1, . . . , n cannot be activated implying that no pji vertices can be activated.

This leads to a solution of size at most 5n2 < n3 ≤ nβ+2

(n′)1−ε .

We then have a gap of (n′)1−ε, and the result follows from Theorem 9. �

Using Lemma 7, Theorem 26, and Theorem 27 we can deduce the following corollary.

Corollary 28 For any strictly increasing function α, Max Closed Influence and
Max Open Influence with thresholds at most two or majority thresholds can-
not be approximated within α(k) in fpt-time with respect to the parameter k un-
less FPT = W[2].
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3.5.2 The unanimity case

For the unanimity thresholds case, we will give some results on general graphs before
focusing on bounded degree graphs and regular graphs.

General graphs. We first show that, in the unanimity case, Influence parameterized
by the combined parameter solution size k and number of newly activated vertices ℓ is
W[1]-hard, and Max Open Influence is not approximable within n1−ε for any ε > 0 in
polynomial time, unless NP = ZPP. However, if we are allowed to use fpt-time then Max
Open Influence with unanimity is α(n)-approximable in fpt-time with respect to the
parameter k for any strictly increasing function α.

Theorem 29 Influence with unanimity thresholds is W[1]-hard with respect to the
combined parameter solution size k and number of newly activated vertices ℓ even for
bipartite graphs.

Proof. We construct a fpt-reduction from the W[1]-hard problem Clique
(see Appendix A) to Influence. Given an instance (G = (V,E), k) of Clique,
we construct an instance (G′ = (V ′, E′), thr, k, ℓ) of Influence as follows. For each
vertex v ∈ V add a copy v′ to V ′. For each edge uv ∈ E, add k + 1 edge-vertices
e1uv, . . . , e

k+1
uv adjacent to both u′ and v′. Set ℓ = (k+1)

(k
2

)
and thr(u) = degG′(u) for

all u ∈ V ′.
We claim that there is a clique of size k in G if and only if there exists a subset

S ⊆ V ′ of size k such that |σ(S)| ≥ ℓ.
“⇒”: Assume that there is a clique C ⊆ V of size k in G. One can easily verify

that the set S = {v′ ∈ V ′ : v ∈ C} activates |σ(S)| ≥ (k + 1)
(
k
2

)
= ℓ edge-vertices in

G′ since C is clique.
“⇐”: Suppose that there exists a subset S ⊆ V ′ of size k such that |σ(S)| ≥ ℓ. We

may assume without loss of generality that no edge-vertices belong to S. Indeed, each
edge-vertex is adjacent to only vertices with threshold at least k + 1. Thus choosing
some edge-vertices to S cannot activate any new vertices in G′. Since the solution S
activates at least (k + 1)

(k
2

)
edge-vertices, this implies that S is a clique in G. �

Theorem 30 For any ε > 0, Max Open Influence with unanimity thresholds
cannot be approximated within n1−ε in polynomial time, unless NP = ZPP.

Proof. We will show how to transform any approximation algorithm for Max
Open Influence into another one with the same ratio for Max Independent Set
(see Appendix A). Consider an instance I = (G, k) of Max Open Influence with
unanimity thresholds. One can note and easily check that the following holds. Given
a solution S ⊆ V of I, σ(S) is obtained in only one step of the diffusion process
and is an independent set. Therefore there exists an integer k∗ ∈ {1, . . . , n} such
that σ(OPT (Ik∗)) is the maximum independent set in G, where OPT (Ik∗) is the
optimal solution of the instance Ik∗ = (G, k∗) of Max Open Influence (and thus
|σ(OPT (Ik∗))| = opt(Ik∗)).

Suppose that Max Open Influence has a polynomial-time α(n)-approximation

algorithm A, we then have |σ(SA)| ≥ opt(Ik∗)
α(n) , where SA is the solution given byA when

applied on the instance Ik∗. Furthermore, it follows from the previous observation
that σ(SA) is an independent set in G and then an α(n)-approximate solution of
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Max Independent Set on the instance Ik∗ .
Now, it suffices to apply the approximation algorithm A for each k = 1, . . . , n and

return the approximate solution Smax that has the largest value. Given this solution,
we have |σ(Smax)| ≥ |σ(SA)|. Hence, we get a polynomial-time α(n)-approximation
algorithm for Max Independent Set problem. Since Max Independent Set
cannot be approximated within n1−ε for any ε > 0 unless NP = ZPP [66], the result
follows. �

In the following, we provide the fpt-time approximation algorithm for Max Open
Influence and Max Closed Influence. As a first step toward this goal, we first give
the following polynomial-time approximation algorithm.

Theorem 31 Max Open Influence and Max Closed Influence with unanim-
ity thresholds are 2k-approximable in polynomial time.

Proof. By Lemma 10, it suffices to show the result for Max Open Influence.
Let I = (G = (V,E), k) be an instance of Max Open Influence with unanim-
ity thresholds. The polynomial-time algorithm consists in the following two steps:
(i) Find F ⊆ V , the largest set of false twins (see Section 2.1) such that deg(v) ≤ k,
∀v ∈ F , and (ii) Return N(F ). The first step can be done for example by searching
for the largest set of identical lines with at most k ones in the adjacency matrix of
the graph. Since F is a false-twins set with vertices of degree at most k, the size of
the neighborhood of F is also bounded by k. Consider the activation of the set N(F ).
After one step, this will activate |σ(N(F ))| ≥ |F | vertices, since all the neighborhood
of the vertices in F are activated.

To complete the proof, observe that for any solution of size at most k, there are
at most 2k different “false-twins sets”. Therefore, any optimal solution could activate
at most 2k · |F | vertices, providing the claimed approximation ratio. �

Using Lemma 7 and Theorem 31 we directly get the following.

Corollary 32 For any strictly increasing function α, Max Open Influence and
Max Closed Influence with unanimity thresholds are α(n)-approximable in fpt-
time with respect to the parameter k.

For example, Max Open Influence is log(n)-approximable in fpt-time with respect to
the parameter k.

Finding dense subgraphs. In the following we show that Max Open Influence with
unanimity thresholds is at least as difficult to approximate as the Densest k-Subgraph
problem (see Appendix A). In particular, any positive approximation result for Max
Open Influence with unanimity would directly transfers to Densest k-Subgraph.

Theorem 33 For any strictly increasing function r, if Max Open Influence with
unanimity thresholds is α(n)-approximable in fpt-time with respect to the parame-
ter k then Densest k-Subgraph is α(n)-approximable in fpt-time with respect to
the parameter k.

Proof. We give an E-reduction from Densest k-Subgraph to Max Open In-
fluence. Consider an instance I of Densest k-Subgraph formed by a graph
G = (V,E). We construct an instance I ′ of Max Open Influence with unanimity
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thresholds consisting of graph G′ = (V ′, E′) as follows. For each vertex v ∈ V add
a copy v′ to V ′; for each edge uv ∈ E add a vertex euv to V ′, moreover add k + 1
vertices x1, . . . , xk+1. For any edge uv ∈ E add edges u′euv, euvv′ to E′, and add an
edge between xi and v′ for any 1 ≤ i ≤ k + 1.

Let S ⊆ V , |S| = k be an optimum solution for I that is opt(I) is the number of
edges induced by S. The set S′ = {v′ : v ∈ S} is such that |σ(S′)| = opt(I) since no
x vertex will be activated. Thus opt(I ′) ≥ opt(I).

Given any solution S′ ⊆ V ′ of size k, we can consider that S′ contains only
vertices of type v′ such that v ∈ V . Thus the set S = {v : v′ ∈ S′} has value
cost(I, S) = cost(I ′, S′). Moreover if S′ is optimal, then opt(I) ≥ opt(I ′) and thus
opt(I) = opt(I ′). Therefore, we have ε(I, S) = ε(I ′, S′). �

Using Theorem 33 and Corollary 32, we have the following corollary, independently
established in [23].

Corollary 34 For any strictly increasing function α, Densest k-Subgraph is
α(n)-approximable in fpt-time with respect to the parameter k.

Bounded degree graphs. We show in the following that Max Open Influence and
thus Max Closed Influence are constant approximable in polynomial time on bounded
degree graphs with unanimity thresholds. Moreover, Max Closed Influence and then
Max Open Influence have no polynomial-time approximation scheme even on 3-regular
graphs if P 6= NP. Moreover, we show that Influence parameterized by k is in FPT.

Lemma 35 Max Open Influence and Max Closed Influence with unanimity
thresholds on bounded degree graphs are constant approximable in linear time.

Proof. By Lemma 10, it suffices to show the result for Max Open Influence.
Indeed on graphs of degree bounded by ∆, the optimum is bounded by k ·∆ and we
can construct in polynomial time a solution S of value at least ⌊ k∆⌋ by considering
iteratively vertices with disjoint neighborhoods and putting their neighbors in S. �

Theorem 36 Max Open Influence and Max Closed Influence with unanim-
ity thresholds have no polynomial-time approximation scheme even on 3-regular graphs
for k = θ(n), unless P = NP.

Proof. By Lemma 10, it suffices to show the result for Max Closed Influence. We
show that if Max Closed Influence with unanimity thresholds has a polynomial-
time approximation scheme Aε′ , ε

′ ∈ (0, 1), on 3-regular graphs when k = θ(n), then
Min Vertex Cover has also a polynomial-time approximation scheme on 3-regular
graphs. Consider an instance I of Min Vertex Cover consisting of a 3-regular graph
G = (V,E) of order n. Clearly, a minimum vertex cover has a value opt(I) satisfying
n
2 ≤ opt(I) < n. For any ε ∈ (0, 1), we apply the polynomial-time approximation
scheme Aε′ that establishes an (1 + ε′)-approximation for Max Closed Influence
on graph G for each k between n

2 and n and ε′ = ε
2−ε . By applying Aε′ on G for k

between n
2 and n, we obtain a solution Sk ⊂ V of size k such that Sk ∪ σ(Sk) is an

(1 + ε′)-approximation. The set V \ σ(Sk) is a vertex cover in G of size denoted by
valk. We show in the following that the best solution obtained in this way is an (1+ε)-
approximation for Min Vertex Cover on G. Indeed the best solution obtained in
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this way has a value val∗ ≤ valℓ, where valℓ is the value of the solution obtained for
ℓ = opt(I). Thus valℓ = |V \ σ(Sℓ)|. Since |Sℓ ∪ σ(Sℓ)| is an (1 + ε′)-approximation
and the optimum solution activates all vertices, we have |Sℓ ∪ σ(Sℓ)| ≥ n

1+ε′ and

|V \ (Sℓ ∪ σ(Sℓ))| ≤ n ε′

1+ε′ . Thus val∗ ≤ valℓ ≤ ℓ + n ε′

1+ε′ ≤ ℓ(1 + 2ε′

1+ ε′ ) = ℓ(1 + ε).
The theorem follows from the fact that Min Vertex Cover has no polynomial-time
approximation scheme on 3-regular graphs, unless P = NP [6]. �

In Theorem 29 we showed that Influence with unanimity thresholds parameterized
by the combined parameter k and ℓ is W[1]-hard. In the following we give several fixed-
parameter tractability results for Influence parameterized by k on regular graphs and
bounded degree graphs with unanimity thresholds. First we show that using results of Cai
et al. [26] we can obtain fixed-parameter tractable algorithms. Then we establish an
explicit and more efficient combinatorial algorithm.

Theorem 37 Influence with unanimity thresholds can be solved in 2O(k∆3)n2 log n
time where ∆ denotes the maximum degree and in 2O(k2 log k)n log n time for regular
graphs.

Proof. For graphs of maximum degree ∆, we simply apply the result from [26,
Theorem 4] with i = 3.

Let G be a ∆-regular graph. When ∆ > k, any k vertices of the graph form a
solution since no vertex outside the set becomes active. Hence, we assume in the
following that ∆ ≤ k. Since G is regular, it follows that any subset S, |S| = k
can activate at most k vertices. Hence, the graph G[S ∪ σ(S)] contains at most 2k
vertices and, thus, ℓ ≤ k. Furthermore, since we consider unanimity thresholds,
every vertex v ∈ σ(S) has exactly ∆ neighbors in S and, thus, |NG[S∪σ(S)](v)| = ∆
and NG[S∪σ(S)](v) ⊆ S. Our fpt-algorithm solving Influence runs in two phases:
Phase 1: Guess a graph H being isomorphic to G[S ∪ σ(S)].

Phase 2: Check whether H is a subgraph of G.
Phase 1 is realized by simply iterating over all possible graphs H with k + ℓ

vertices. A simple upper bound on the number of different graphs with k+ ℓ vertices

is 2(
k+ℓ
2 ) ≤ 24k

2
. Hence, in Phase 1 the algorithm tries at most O(24k

2
) possibilities.

Note that Phase 2 can be done in 2O(∆k log k)n log n using a result from [26, Theorem
1]. Altogether this gives a running time of O(24k

2
2O(∆k log k)n log n). Since ∆ ≤ k, this

gives 2O(k2 log k)n log n. The correctness of the algorithm follows from the exhaustive
search. �

While the previous results use general frameworks to solve the problem, we now give
a direct combinatorial algorithm for Influence with unanimity thresholds on bounded
degree graphs. For this algorithm we need the following definition and lemma.

Definition 36: Realizing vertex

Let (α, β) be a pair of positive integers, G = (V,E) a graph with unanimity thresholds.
We call a vertex v a realizing vertex for the pair (α, β) if there exists a vertex sub-
set V ′ ⊆ N2α−1[v] of size |V ′| ≤ α such that |σ(V ′)| ≥ β and σ[V ′] is connected.
Furthermore, we call σ[V ′] a realization of the pair (α, β).

We show first that in bounded degree graphs the problem of deciding whether a vertex
is a realizing vertex for a pair of positive integers (α, β) is fixed-parameter tractable with
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respect to the parameter α.

Lemma 38 Checking whether a vertex v is a realizing vertex for a pair of positive
integers (α, β) can be done in ∆O(α2) time, where ∆ is the maximum degree.

Proof. The algorithm solving the problem checks for all vertex subsets V ′ of size α
in N2α−1[v] whether V ′ activates at least β vertices and whether σ[V ′] is connected.
Since we consider unanimity thresholds it follows that σ[V ′] ⊆ N2α[v].

The correctness of this algorithm results from the exhaustive search. We study in
the following the running time: The (2α − 1)th neighborhood of any vertex contains
at most ∆(∆2α)/(∆− 1) + 1 ≤ 2∆2α vertices. Hence, there are 2α∆(2α)α possibilities
to choose the α vertices forming V ′. For each choice of V ′ the algorithm has to check
how many vertices are activated by V ′. Since this can be done in linear time and
there are O(∆∆2α) edges, this gives another O(∆2α+1) term. Altogether, we obtain
a running time of O(2α∆2α2+2α+1) = ∆O(α2). �

Consider in the following the Connected Influence problem that is Influence with
the additional requirement that G[σ[S]] has to be connected. Note that with Lemma 38 we
can show that Connected Influence parameterized by k is fixed parameter tractable
on bounded degree graphs. Indeed, observe that two vertices in σ(S) cannot be adjacent
since we consider unanimity thresholds. From this and the requirement that G[σ[S]] is
connected, it follows that G[σ[S]] has a diameter of at most 2k. Hence, the algorithm for
Connected Influence checks for each vertex v ∈ V whether v is a realizing vertex for
the pair (k, ℓ). By Lemma 38 this gives an overall running time of ∆O(k2) · n.

We can extend the algorithm for the connected case to deal with the case where G[σ[S]]
is not connected. The general idea is as follows. For each connected component Ci

of G[σ[S]] the algorithm guesses the number of vertices in S ∩ Ci and in σ(S) ∩ Ci. This
gives an integer pair (ki, ℓi) for each connected component in G[σ[S]]. Similar to the
connected case, the algorithm will determine realizations for these pairs and the union of
these realizations give S and σ(S). Unlike the connected case, it is not enough to look
for just one realization of a pair (ki, ℓi) since the realizations of different pairs may be
not disjoint and, thus, vertices may be counted twice as being activated. To avoid the
double-counting we show that if there are “enough” different realizations for a pair (ki, ℓi),
then there always exist a realization being disjoint to all realizations of the other pairs.
Now consider only the integer pairs that do not have “enough” different realizations. Since
there are only “few” different realizations possible, the graph induced by all the vertices
contained in all these realizations is “small”. Thus, the algorithm can guess the realizations
of the pairs having only “few” realizations and afterwards add greedily disjoint realizations
of pairs having “enough” realizations. See Algorithm 1 for the pseudocode.

Theorem 39 Algorithm 1 solves Influence with unanimity thresholds
in 2O(k2 log(k∆)) · n time, where ∆ is the maximum degree of the input graph.

Proof. Let S be a solution set, that is, S ⊂ V , |S| ≤ k and σ(S) ≥ ℓ. In the following
we show that Algorithm 1 decides whether such set S exists or not in 2O(k2 log(k∆)) ·n
time. We remark that the algorithm can be adapted to also give such set S if it
exists. First we prove the correctness of the algorithm and then show the running
time bound.

Correctness: We now show that a solution set S exists if and only if the algorithm
returns “yes”.
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Algorithm 1 The pseudocode of the algorithm solving the decision problem Influence.
The guessing part in the algorithm behind Lemma 38 is used in Line 7 as subroutine. The
final check in Line 19 is done by brute force checking all possibilities.

1: procedure solveInfluence(G, thr, k, ℓ)
2: Guess x ∈ {1, . . . , k} ⊲ x: number of connected components of G[σ[S]]
3: Guess (k1, ℓ1), . . . , (kx, ℓx) such that

∑
x

i=1
ki = k and

∑
x

i=1
ℓi = ℓ

4: Initialize c1 = c2 = . . . = cx ← 0 ⊲ one counter for each integer pair (ki, ℓi)
5: for each vertex v ∈ V do ⊲ determine realizing vertices
6: for i← 1 to x do
7: if v is a realizing vertex for the pair (ki, ℓi) then ⊲ see Lemma 38
8: ci ← ci + 1
9: T (v, i) = “yes”

10: else
11: T (v, i) = “no”

12: initialize X ← ∅ ⊲ X stores all pairs with “few” realizations
13: for i← 1 to x do
14: if ci ≤ 2 · x ·∆4k then
15: X ← X ∪ {i}
16: for each vertex v ∈ V do ⊲ remove vertices not realizing any pair in X
17: if ∀i ∈ X : T (v, i) = “no” then
18: delete v from G.
19: if all pairs (ki, ℓi), i ∈ X , can be realized in the remaining graph then
20: return ‘yes’
21: else
22: return ‘no’

“⇒:” Assume that S is the solution set. Observe that G[σ[S]] consists of at most k
connected components and, thus, the guesses in Lines 2 and 3 are correct. Clearly, in
the solution set S there is a realization for each pair (ki, ℓi). Furthermore observe that
in Line 13 it holds that X ⊆ {1, . . . , x} and that in the loop starting in Line 16 only
vertices that cannot realize any pair corresponding to X are deleted. Hence, there
exists a realization for the pairs corresponding to X in the remaining graph. Since
the checking in Line 19 is done by trying all possibilities, the algorithm returns “yes”.

“⇐:” Now assume that the algorithm returns “yes”. Observe that this implies that
in Line 19 there exists a realization for the all the pairs corresponding to X. Hence,
it remains to show that for each pair (kj , ℓj) where j ∈ {1, . . . , x} \X there exists a
realization in G. (Clearly, if all pairs are realized then the union of the realizations
form the vertex set σ[S] such that |S| = k.) To see that there exist realizations for
these pairs observe the following: The (4k)th neighborhood of any vertex contains at
most 2∆4k vertices. Thus, if in the case of two pairs (k1, ℓ1), (k2, ℓ2) the value of the
second counter is c2 > 2∆4k, then we can deduce that for every realizing vertex v1
for (k1, ℓ1) there exists a realizing vertex v2 for (k2, ℓ2) such that the distance d
between v1 and v2 is more than 4k. Since d > 4k, it follows that the realizations
for (k1, ℓ1) and (k2, ℓ2) do not overlap. (If two realizations would overlap then some
vertices in σ(S) may be counted twice.) Generalizing this argument to x integer pairs
(k1, ℓ1), . . . , (kx, ℓx) yields the following: If there exists an i ∈ {1, . . . , x} such that
ci > x · 2 · ∆4k, then for any realization of the pairs (kj , ℓj) with i 6= j there exists
a non-overlapping realization of (ki, ℓi). Thus, we can ignore the pair (ki, ℓi) where
ci > x · 2 ·∆4k in the remaining algorithm and can assume that (ki, ℓi) is realized.

Observe that from the Lines 5 to 16 it follows that for all j ∈ {1, . . . , x} \ X
we have cj > x · 2 · ∆4k. Thus, from the argumentation in the previous paragraph
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it follows that there exist non-overlapping realizations for all pairs corresponding to
{1, . . . , x} \X. Thus, there exists a solution set S as required.

Running time: Observe that ℓ ≤ ∆k as described in the proof of Lemma 35. Thus,
the guessing in Lines 2 and 3 can clearly be done in O(k · kk(∆k)k) = O(k2k+1∆k).
By Lemma 38 the checking in Line 7 can be done in ∆O(k2i ) time. Thus, the loop in
Line 5 requires n ·∑x

i=1 ∆
O(k2i ) ≤ ∆O(k2) · x · n time. Clearly, the loop in Line 13

needs O(x) ≤ O(k) time. Furthermore, the loop in Line 16 needs O(k · n) time.
For the checking in Line 19 observe the following. After deleting the vertices in the
loop in Line 16 the remaining graph can have at most

∑

i∈X ci ≤ x · 2 · x · ∆4k

vertices. Furthermore,
∑

i∈X ki ≤ k and, thus, there are at most (2 · x2 · ∆4k)k

candidate subsets for the solution set S. Checking whether
∑

i∈X ki chosen vertices
activate

∑

i∈X ℓi other vertices can be done in (2 ·x2 ·∆4k)2 time. Hence, the checking

in Line 19 can be done in ∆O(k2) time. Putting all together we arrive at a running
time of (k∆)O(k2) · n = 2O(k2 log(k∆)) · n. �

3.6 Conclusion and open problems

In this chapter, we investigate the parameterized complexity of Target Set Selection
with respect to several graph parameters. We also established results concerning the
polynomial-time and fpt-time approximability of two related problems, namelyMax Open
Influence and Max Closed Influence. We conclude this chapter with the following
research directions.

(1) The parameterized tractability of Target Set Selectionwith respect to “cluster
vertex deletion number” for majority thresholds, “distance to clique” for general thresh-
olds, and “clique cover number” for majority and constant thresholds are open.

(2) Determine whether, in terms of computational complexity, Target Set Selec-
tion with majority thresholds is basically as hard as for general thresholds but significantly
easier for constant thresholds. This last fact does not hold from the polynomial-time ap-
proximation and parameterized approximation point of view.

(3) It would be interesting to incorporate further natural parameters as the “graph
diameter” or the “number of activation steps”.

(4) An interesting open question consists of determining whether Max Open Influ-
ence is constant approximable in fpt-time. Such a positive result would improve the
approximation in fpt-time for Densest k-Subgraph.

(5) Another interesting open question is to study the approximation of Min Target
Set Selection (the minimization version of Target Set Selection) in fpt-time with
respect to the optimum value or other structural parameters.

(6) Due to applications in social networks, the identification of tractable special cases
in scale-free graphs, that is, graphs with power law degree distributions, would be of
particular interest.
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I
n the previous chapter, we tried to find a subset of the most “influential” vertices. We
now ask the natural converse question: find the maximum subset of “less influential”

vertices, namely a harmless set. Informally speaking, the problem asks to find the largest
subset of vertices with the property that if any set of vertices gets activated in it then there
will be no propogation at all i.e. no new vertex can be activated by the application of the
same propagation rule as for Target Set Selection (see Chapter 3). In this context,
the threshold of a vertex represents its reliability regarding its neighborhood; that is, how
many neighbors need to be activated before a vertex gets himself actived.

In the graph below, if any vertex gets activated inside the dashed rectangle (harmless
set) then no new vertices are activated. The thresholds are indicated inside the vertices.

2

2 3

4 3

2 2

In this chapter, we study the parameterized complexity and the approximability of the
problem.

The content of this chapter is based on in the following paper.

◮ C. Bazgan and M. Chopin, The robust set problem: parameterized complexity and
approximation, Proceedings of the 37th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2012), LNCS 7464, pp. 136–147, 2012.

4.1 Introduction

Previously, we emphasize the strong intractability nature of maximizing the spread of
information through networks. Therefore, with regards to this hardness, it is an interesting
question to ask the complexity of the converse problem: find the largest subset of vertices
such that if any set of vertices gets activated in it then there will be no consequence
for all the other vertices. In this context, there is no propagation process involved like
previously stated. On the contrary we want to prevent such phenomenon here. More
formally, we introduce the Harmless Set problem defined as follows. Given the same
input and propagation rule as for Target Set Selection (see Chapter 3), the task is to
determine whether there exists a subset of vertices, called harmless set, of size at least k

55
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such that every vertex v of the input graph has less than thr(v) neighbors in this set.
The reason for this definition follows from the fact that if any subset of a harmless set
is activated then there will be no propagation at all since every vertex has a number of
activated neighbors below its threshold. Another motivation for this problem arises from
the context of containing the spread of dangerous ideas or epidemics which is also a fruitful
research area [74, 54, 31] and further justifies the meaning of harmless set. Finally, it is
worth pointing out that our problem can also be related to the generalized domination
problem (σ, ρ)-Dominating Set introduced by Telle [100]: Given a graph G = (V,E),
two sets of non-negative integers σ and ρ, and an integer k ≥ 1, the objective is to find a set
S ⊆ V of size at most k such that |S∩N(v)| ∈ σ for every vertex v ∈ S, and |S∩N(v)| ∈ ρ
for every vertex v 6∈ S. The set S is then called a (σ, ρ)-dominating set of size at most
k. As a matter of fact, if all thresholds are equal then Harmless Set is equivalent to
(σ, ρ)-Dominating Set Of Size k [61] (this version asks to find a (σ, ρ)-dominating set of
size exactly k) where σ = ρ = {0, . . . , thrmax} and thrmax is the maximum threshold value.
Since this last problem is in W[1] [61], this implies that Harmless Set is in W[1] if all
thresholds are equal. In this work, we extend this result to the case where the thresholds
are bounded by a constant. Up to our knowledge, this is the only known result that could
possibly carry over.

We study the parameterized complexity of Harmless Set and the approximation
of the associated maximization problem (denoted Max Harmless Set). The chapter is
organized as follows. In Section 4.2 we give the definitions and terminology. In Section 4.3
we establish parameterized complexity results with respect to various threshold functions
(see Table 4.1). We show that the parametric dual problem (denoted Dual Harmless
Set and asks the existence of a harmless set of size at least n−k where n is the size of the
graph) is fixed-parameter tractable for a large family of threshold functions. In Section 4.4
we give polynomial-time algorithms to solve the problem for graphs of bounded treewidth.
In Section 4.5, we turn our attention to the maximization version. We establish that it
is hard to approximate the problem within n1−ε for any ε > 0 even when all thresholds
are at most two. If each threshold is equal to the degree of the vertex, we show that the
problem is APX-complete. Moreover it has a polynomial-time approximation scheme on
planar graphs. Conclusion and open problems are given in Section 4.6.

Harmless Set Dual Harmless Set

General thresholds W[2]-complete (Th.42) W[2]-hard
Constant thresholds W[1]-complete (Th.44) FPT (Th.48)
Majority thresholds W[1]-hard (Th.44) FPT (Th.48)
Unanimity thresholds FPT (Th.46) W[2]-hard∗

Table 4.1: Our parameterized complexity results for Harmless Set and its parametric
dual Dual Harmless Set where the parameter is k for both problems. The result
marked with ∗ is due to the equivalence between Dual Harmless Set and the Total
Dominating Set problem proved W[2]-hard for parameter k in [61].

4.2 Problem definitions & terminology

Before defining the problems, we have to specify the notion of harmless vertices in a graph.



4.3. Parameterized complexity 57

Definition 37: Harmless vertices

Let G = (V,E) be a graph, and thr : V → N a threshold function.
A subset V ′ ⊆ V is called harmless if for every vertex v ∈ V ,

|N(v) ∩ V ′| < thr(v)

We define in the following the problems we study in this chapter.

Harmless Set
Input: A graph G = (V,E), a threshold function thr : V → N where 1 ≤ thr(v) ≤
deg(v) for every v ∈ V , and an integer k.
Question: Is there a harmless set V ′ ⊆ V of size at least k?

We also consider the parametric dual problem Dual Harmless Set which asks for
the existence of a harmless set of size at least n−k where n denotes the number of vertices
in the input graph.

The optimization version of Harmless Set is defined as follows.

Max Harmless Set
Input: A graph G = (V,E) and a threshold function thr : V → N where 1 ≤ thr(v) ≤
deg(v) for every v ∈ V .
Output: A harmless set V ′ ⊆ V such that |V ′| is maximized.

As in the previous chapter, we consider majority thresholds i.e. thr(v) = ⌈deg(v)2 ⌉ for
each vertex v, unanimity thresholds i.e. thr(v) = deg(v) for each vertex v, and constant
thresholds i.e. thr(v) ≤ c for each vertex v and some constant c > 1.

4.3 Parameterized complexity

In this section, we consider the parameterized complexity of Harmless Set. In some
reductions we make use of the following gadget: a forbidden edge denotes an edge uv
where both vertices have threshold one. Attaching a forbidden edge to a vertex w means
to create a forbidden edge uv and make w adjacent to u. Notice that none of the three
vertices u, v or w can be part of a harmless set. Moreover, we need the following simple
but useful reduction rule.

Reduction rule 40 Let (G, thr, k) be an instance of Harmless Set. If there is a ver-
tex v such that thr(v) > k+1 then set the threshold thr(v) to k+1 to get a new equivalent
instance (G, thr′, k).

To see that the above rule is correct, observe that if S ⊆ V is a harmless set of size at
least k for (G, thr, k), then any subset of size k of S is a harmless set for (G, thr′, k). The
converse is clear.

We now show thatHarmless Set parameterized by k belongs toW[2] using the Turing
way, that is, we reduce Harmless Set to the Short Multi-tape Nondeterministic
Turing Machine problem (see Section 2.3.3).

Theorem 41 Harmless Set is in W[2] with respect to the parameter k.

Proof. We construct an fpt-reduction from Harmless Set to Short Multi-tape
Nondeterministic Turing Machine as follows. Let (G, thr, k) be an instance of
Harmless Set with G = (V,E) and V = {v1, . . . , vn}. First, exhaustively apply
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Reduction rule 40 to obtain the new equivalent instance (G, thr′, k). Then construct
the following Turing machine M from (G, thr′, k) (see Figure 4.1). We create n + 1
tapes denoted by T0, Tv1 . . . , Tvn . The tapes alphabet is V ∪ {×} plus the blank sym-
bol �. Initially, every tape is filled with �. The transition function is defined here-
after. First, M non-deterministically chooses k vertices and write them on tape T0,
that is, if M picks up a vertex v ∈ V then it writes symbol v on T0 and move T0’s
head one step to the right. The previous procedure is done in k + 1 steps. Next,
for each i = 1, . . . , k + 1, the Turing machine writes a symbol × on each tape Tj

and moves Tj ’s head one step to the right if vj has a threshold greater or equal to i.
According to Reduction rule 40, this phase takes at most k + 1 steps. During the
third phase, M checks whether the selected set is a harmless set as follows. First,
the machine moves all heads one step to the left. If T0’s head reads symbol v then
for every ui ∈ N(v), we simply move Ti’s head one step to the left. We repeat the
previous procedure until T0’s head reads a blank symbol. If all the other tapes read
a × symbol then M goes in accepting state; otherwise it goes to a rejecting state.
This checking phase can be done in at most k + 1 steps. Finally, the input word x is
empty and k′ = 3k + 3. It is not hard to see that (G, thr′, k) is a yes-instance if and
only if M accepts in at most k′ steps. �

4

v3

2

v5
1

v6
2

v1

2

v2

2

v4

T0 . . . v1 v2 v4 . . .

T1 . . . × × . . .

T2 . . . × × . . .

T3 . . . × × × × . . .

T4 . . . × × . . .

T5 . . . × × . . .

T6 . . . × . . .

Figure 4.1: A non-deterministic multi-tape Turing machine (right) accepting an instance
of Harmless Set where k = 3 (left). The guessed solution is the set {v1, v2, v4}. We
indicate the thresholds inside the vertices.

Now in order to prove the W[2]-hardness of Harmless Set paramterized by k, we
construct a simple fpt-reduction from the W[2]-hard problem Red/Blue Dominating
Set (see Appendix A).

Theorem 42 Harmless Set is W[2]-complete with respect to the parameter k even
on bipartite graphs.

Proof. Membership follows from Theorem 41. Now, let us show the W[2]-hardness.
Given (G, k) an instance of Red/Blue Dominating Set, we construct an in-
stance (G′ = (V ′, E′), thr, k) of Harmless Set as follows. We consider the graph Ḡ
obtained from G as follows. Two vertices u ∈ R and v ∈ B are adjacent in Ḡ if and
only if they are not adjacent in G. Moreover, the sets R and B remain independent
sets. The graph G′ is obtained from this last graph by attaching max{k−degḠ(v), 1}
forbidden edges to each vertex v ∈ B. Finally, set thr(v) = k for every vertex v ∈ B
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and thr(v) = 1 for every vertex v ∈ R. Adding several forbidden edges to the vertices
of B make sure that the threshold of these vertices is less than or equal to their degree
as required in the problem definition.

We claim that (G, k) is a yes-instance if and only if (G′ = (V ′, E′), thr, k) is a
yes-instance.

“⇒”: Assume that (G, k) has a solution R′ ⊆ R of size k. One can see that R′ is
also a solution for (G′, thr, k) since every vertex in B is not adjacent to at least one
vertex in R′.

“⇐”: Conversely, suppose that there is a harmless set S ⊆ V ′ of size k in G′.
Since S is harmless, S cannot contain any vertex from B because of the forbidden
edges, and thus S is entirely contained in R. Moreover, every vertex v in B is adjacent
in G′ to at most thr(v)− 1 = k− 1 vertices in S. Hence, every vertex in B is adjacent
in G to at least one vertex in S. Therefore, S is a solution of size k for (G, k). �

In the next two theorems, we show that Harmless Set parameterized by k goes one
level down in the W-hierarchy when all thresholds are bounded by a constant.

Theorem 43 Harmless Set with constant thresholds is in W[1] with respect to the
parameter k.

Proof. Let (G, thr, k) be an instance of Harmless Set where thr(v) ≤ c, ∀v ∈ V
for some constant c > 0. We construct in O(nc) time, where n is the number of
vertices of G, a boolean circuit C (see Definition 18) of depth 3 and weft 1 as follows.
We identify the inputs of the circuit with the vertices of G. Connect a gate NOT to
every input. For all v ∈ V and all subsets S′ ⊆ N(v) of size thr(v), add a gate OR
connected to every gate NOT adjacent to an input in S′. Finally, add a large gate
AND connected to every gate OR. It is not hard to see that G admits a harmless set
of size k if and only if there is an assignment of weight k that satisfies C. �

We establish the W[1]-hardness of Harmless Set parameterized by k by an fpt-
reduction from the W[1]-hard problem Clique (see Appendix A).

Theorem 44 Harmless Set is W[1]-complete with respect to the parameter k even

1. For bipartite graphs and constant majority threshold.

2. For split graphs and threshold two for every vertex.

Proof. Membership follows from Theorem 43. We now prove the W[1]-hardness.
(1): Given (G = (V,E), k) an instance of Clique, we construct an instance (G′ =

(V ′, E′), thr, k) of Harmless Set as follows. V ′ is obtained from V by adding for
each edge uv 6∈ E, an edge-vertex euv and edges ueuv and euvv to E′. Remove every
edge in E. Finally, attach a forbidden edge puvquv to each edge-vertex euv. Set
thr(v) = ⌈deg(v)2 ⌉,∀v ∈ V ′.

We claim that (G, k) is a yes-instance if and only if (G′, thr, k) is a yes-instance.
“⇒”: Let C ⊆ V be a clique of size at least k. Then C is clearly a harmless set

in G′ since no edge-vertex has more than one neighbor in C.
“⇐”: Conversely, let C ′ ⊆ V ′ be a harmless set in G′. Because of the forbidden

edges, C ′ cannot contain an edge-vertex euv and puv, quv and thus C ′ ⊆ V . Moreover,
since thr(euv) = 2, C ′ cannot contain u and v such that uv /∈ E and thus C ′ is a
clique of size at least k in G.
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(2): Let (G = (V,E), k) be an instance of Clique, we construct an instance (G′ =
(V ′, E′), thr, k) of Harmless Set as follows. As previously, for each edge uv 6∈ E,
add an edge-vertex euv and the edges ueuv and euvv. Add edges to make the set of
all edge-vertices a clique. Remove every edge in E. Finally, set thr(v) = 2 for all
v ∈ V ′. Without loss of generality we may assume that k ≥ 2 and every vertex in V
has minimum degree two.

We claim that (G, k) is a yes-instance if and only if (G′, thr, k) is a yes-instance.
“⇒”: Let C ⊆ V be a clique of size at least k. One can easily verify that C is a

harmless set in G′.
“⇐”: Conversely, suppose that there is a harmless set C ′ ⊆ V ′ of size k. Notice

that C ′ ⊆ V since otherwise we would not have been able to take more than one
vertex in G′. Indeed, if there are two vertices u, v ∈ C ′ with v ∈ V ′ \ V then there is
always a vertex w ∈ V ′ \ V − {u, v} adjacent to both v and u. Thus, C ′ is entirely
contained in V . From now on, it is not hard to see that C ′ is a clique of size at least
k in G. �

It is interesting to note that the ratio between the number of vertices with unbounded
threshold over the number of vertices with bounded threshold in the proof of Theorem 42
can be made arbitrarily small by adding many forbidden edges. This implies a sharp
dichotomy between the W[2]- and W[1]-completeness of Harmless Set parameterized by
k regarding the thresholds.

Unanimity threshold. We consider now the Harmless Set problem with unanimity
thresholds. First, we start with the following easy observation. In the case of unanimous
threshold, any harmless set is the complement of a total dominating set. Recall that a
total dominating set S is a set of vertices such that every vertex in the input graph has
at least one neighbor in S. Moreover, we have the following theorem.

Theorem 45 (Cockayne et al. [43]) If G is a connected graph of order at least 3
then there is a total dominating set of size at most 2n/3.

This implies that, in the unanimity case, there is always a harmless set of size at least n/3
when n ≥ 3. The consequence of this result is that we directly get a linear kernel of size 3k.

Theorem 46 Harmless Set with unanimity thresholds admits a kernel with 3k ver-
tices.

Indeed, let (G, k) be an instance of Harmless Set with unanimity thresholds, if k ≤
n/3 then the answer is yes. If k > n/3 then the instance (G, k) is a kernel of size at
most 3k. However, the parameter k is “large” in this last case. This suggests to look for
other parameterizations. One possibility is to decide the existence of solutions of size at
least ⌈n3 ⌉ + k. Another one is to decide the existence of solutions of size at least n − k.
We study in the following this last problem.

Parametric dual. We show that Dual Harmless Set parameterized by k is in FPT

for a large family of threshold functions. Toward this goal, we provide a kernelization by
making use of the following reduction rule.

Reduction rule 47 Let (G, thr, k) be an instance of Dual Harmless Set. If there is a
vertex v such that deg(v) ≥ k+thr(v)−1 then remove v and decrease by one the threshold
of every vertex in N(v) to get a new equivalent instance (G′, thr′, k).
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Regarding the correctness of the above rule, let S be a harmless set of size at least n− k.
Notice that if there is a vertex v with deg(v) ≥ k + thr(v) − 1 then v must be in S since
otherwise it will have at most k−1 neighbors outside S and then at least thr(v) neighbors
in S.

We can now state the main result.

Theorem 48 Dual Harmless Set admits a kernel with O(k2) vertices if for every
vertex v in the input graph thr(v) = ⌈αv deg(v)

βv + γv⌉ for any constants αv, βv ∈
[0, 1], αvβv 6= 1, and γv ∈ Q.

Proof. Let (G, thr, k) be an instance of Dual Harmless Set. Exhaustively apply
Reduction rule 47 to get (G′, thr′, k). Assume that there exists a solution S ⊆ V of
size at least n− k. Because of Reduction rule 47, we have

deg(v) < k + thr(v)− 1 = k + ⌈αv deg(v)
βv + γv⌉ − 1 ≤ k + αv deg(v)

βv + γv (4.1)

We claim that deg(v) ≤ θv(k) for all v ∈ V ′ where

θv(k) =







k + αv + γv if βv = 0
k+γv
1−αv

if βv = 1
k+γv
1−βv

+ (1/βv)
1

1−βv otherwise

The first two cases are straightforward. Suppose now that βv ∈ (0, 1). First, it

is not hard to show that the following holds: xε ≤ εx if and only if x ≥ (1/ε)
1

1−ε

for any x ≥ 1 and ε ∈ (0, 1). Hence, if deg(v) ≥ (1/βv)
1

1−βv then, together with
(Eq. 4.1), we obtain deg(v) ≤ k+αvβv deg(v)+γv and thus deg(v) ≤ k+γv

1−αvβv
≤ θv(k).

Otherwise deg(v) < (1/βv)
1

1−βv ≤ θv(k).
Since every vertex from S has at least one neighbor in V ′ − S then |S| has at most
|V ′ − S|degmax ≤ kθmax(k) vertices where θmax(k) = maxv∈V ′θv(k) and degmax is the
maximum degree of vertices in V ′ − S.

The kernelization procedure is then defined as follows. From an instance (G, thr, k)
of Dual Harmless Set, exhaustively apply Reduction rule 47 to get an in-
stance (G′, thr′, k). If |V ′| > kθmax(k)+k then return a trivial no-instance. Otherwise,
return the instance (G′, thr′, k). �

Notice that if αv = βv = 1 and γv = 0, ∀v ∈ V then the Dual Harmless Set problem
is exactly the Total Dominating Set problem which is known to be W[2]-hard [61].

4.4 Algorithms for trees and tree-like graphs

In this section we establish a O(thr3 twmax n)-time algorithm for Max Harmless Set and a
O((k + 1)3 twn)-time algorithm forHarmless Setwhere thrmax is the maximum threshold
and tw the treewidth of the input graph. We decided to describe first a linear-time
algorithm for trees. Besides to be more efficient in this case, it will introduce the underlying
ideas used later for the general algorithm.

Theorem 49 Max Harmless Set is solvable in linear time on trees.

Proof. Let (T = (V,E), thr) be an instance of Max Harmless Set where T is
a tree rooted at r. We describe a dynamic programming algorithm as follows. We



62 Chapter 4. Finding harmless individuals

denote by Tv the subtree of T rooted at v. Moreover, we denote by C(v) the set of
children of a vertex v in T . For each v ∈ V and each b ∈ {0, 1}, we compute Av[b], the
optimal solution for the subtree Tv with the additional constraint that the threshold
of v is set to thr(v)− b. Set Av[0] = {v} and Av[1] = ∅ for every leaf v of T . Then for
all v ∈ V and all b ∈ {0, 1}, we compute Av[b] as follows

Av[b] = argmax
S∈{Iv[b],Ev[b]}

|S| (4.2)

where Iv[b] (resp. Ev[b]) is the optimum solution of Tv when thr(v) is decreased by b
and v is included (resp. excluded). They are computed as follows

Iv[b] =







∅ if ∃c ∈ C(v) : Ac[0] = ∅

{v} ∪
⋃

c∈C(v)\Ac [1]

Ac[1] ∪
thr(v)−b−1
⋃

i=1

Bπv(i)[1] otherwise

(4.3)

Ev[b] =
⋃

c∈C(v)\Ac[0]

Ac[0] ∪
thr(v)−b−1
⋃

i=1

Bπv(i)[0] (4.4)

In the above formulas, for any v ∈ V and b ∈ {0, 1}, we set Bv[b] = Av[b] if v ∈ Av[b],
∅ otherwise. Furthermore, we denote by πv : {1, . . . , |C(v)|} → C(v) the permutation
of the children of v such that |Bπv(1)[b]| ≥ . . . ≥ |Bπv(|C(v)|)[b]| for b ∈ {0, 1}. To get
the optimal solution for the tree T , return Ar[0].

To see that the above algorithm is correct, first observe that when we make a
decision for a vertex v, we know the decision made for all its children but we do
not know about its parent, denoted by pv. We then have to compute two optimal
solutions for the subtree Tv by considering two cases: one where pv is in the solution
and the other one when it is not. The first case can be done by computing an optimal
solution with the threshold of v set to thr(v) − 1 i.e., b = 1. For the second case, we
compute another optimal solution without modifying v’s threshold i.e., b = 0. Notice
that in each case, the optimal solution for Tv takes either v (Eq. 3) or not (Eq. 4).
We then keep the best of these two solutions (Eq. 2). We now explain Eq. 3 (the
other equation works analogously). First, observe that if there is a child c of v such
that Ac[0] = ∅ then this means that Tc has only vertices with thresholds one and thus
there exists no harmless set in T if v is part of the solution. Thus we set Iv[b] = ∅. If
it is not the case then the optimal solution for Tv is the union of the following three
sets: the singleton {v} since v is forced to be in the solution; the optimal solution of
each subtree rooted at a child of v with the condition that this child is not taken; and
the (thr(v) − b− 1)-th largest solutions of the subtrees rooted at a the children of v
that belong to the solution. �

Now, we present the general algorithm for solving Max Harmless Set.

Theorem 50 Max Harmless Set is solvable in O(thr3 twmax ·n) time where thrmax is
the maximum threshold and tw is the treewidth of the input graph.

Proof. Let (G = (V,E), thr) be an instance of Max Harmless Set. Assume that
we are given a nice tree decomposition T = (T = (X,F ),H) of G of width at most tw
that can be found in fpt-time with respect to the treewidth [22]. Let Tx be the subtree
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of T rooted at some node x ∈ X. We denote by Gx = (Vx, Ex) the subgraph induced
by the vertices from

⋃

y∈Tx
Hy. We describe a dynamic programming algorithm to

solve (G, t, k) using T .

Description. The general idea of the algorithm is as follows. For each node
x ∈ X, we store a set of optimal solutions for the subgraph Gx in a table denoted
by Ax. These tables are updated using a bottom-up procedure that starts from
the leaves and ends to the root of T . In order to update the table of a node, we
need to define an “update rule” according to the type of the node, i.e., insert, forget
and join. Moreover, we also have to know what kind of solutions we should store
in each table, or, equivalently, what information do we need in a node to update
the table of its parent. In our algorithm, we use a two-entries table Ax[~t,~c] where
~t : Hx → {1, . . . , thrmax} and ~c : Hx → {0, 1}. An entry Ax[~t,~c] corresponds to a
maximum harmless set in Gx that contains all the vertices in {v ∈ Hx : ~c(v) = 1}
and by imposing the threshold thr(v) = ~t(v), ∀v ∈ Hx. We set Ax[~t,~c] = ∅, if no such
harmless set is possible. To see why this table is sufficient for our purpose, consider
the updating step occuring in a join node. Let x ∈ X be a join node with children
y and z such that Hx = Hy = Hz. The nodes y and z have their respective tables
Ay and Az already computed by dynamic programming and we want to compute the
table Ax. First, we introduce the role of the function ~t. Let B = NG(Hx)\Vx. Notice
that, at the current stage of the algorithm, we do not know what vertices in B will
be in the maximum harmless set. Thus, to compute the table Ax one has to take into
consideration that any subset S ⊆ B might be in the optimal solution. Hence, we
have to compute a maximum harmless set in Gx for each subset S ⊆ B considering
S as part of a harmless set. This can be seen as equivalent to finding a maximum
harmless set in Gx for every possible thresholds ~t ∈ {1, . . . , thrmax}Hx of vertices in
Hx. Indeed, picking a vertex v from G into a harmless set is equivalent of removing
v from G and decreasing the thresholds of the vertices in N(v) by one. Moreover
every set S only affects vertices in Hx since no vertex in B can be adjacent to a
vertex in Vx \ Hx. Hence we can compute Ax solely from tables Ay and Az. To do
this, we have to take care of the following fact. Consider the optimal solutions Sy

and Sz in Gy and Gz respectively and by imposing some thresholds ~t to Hy and Hz.
Notice that we cannot directly make the union of Sy and Sz to compute the optimal
solution Sx of Gx by imposing ~t on Hx. Indeed, consider a vertex u ∈ Hx. It may
happen that u might have less than ~t(u) neighbors in Sy and Sz but more than ~t(u) in
Sy ∪Sz. To avoid this problem, we have to consider each union Sy ∪Sz for every pair
(~t1,~t2) ∈ {1, . . . , thrmax}Hx such that ~t1 + ~t2 = ~t (where ~t1 + ~t2 is the classical vector
component addition) and take the largest one. The final problem we have to deal
with is that, whenever we make the previous union, we do not take into consideration
that the sets Hy and Hz are equal. The consequence is that a vertex v in Gy might
have a number of neighbors in Hy ∩ (Sy ∪ Sz) that sums over its threshold. That’s
where the vector ~c comes into play. According to the definition of Ax[~t,~c], this vector
ensures that the same vertices in both Hy and Hz are in the solution. This completes
the description of the algorithm, we now give the details.

Algorithm. We denote by ~f ⊕ (a, b) the extended function ~f ′ such that ∀x,
~f ′(x) = ~f(x) if x 6= a and ~f ′(a) = b.

Initialization step. We initialize all the tables Ax where x is a leaf of T as follows.
For each leaf x of T , ~t ∈ {1, . . . , thrmax}Hx and ~c ∈ {0, 1}Hx . Let S = {v ∈ Hx :
~c(v) = 1}
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Ax[~t,~c] =

{
S if S is a harmless set for Gx according to ~t and ~c
∅ otherwise

The running time of this step is thr
|Hx|
max 2|Hx|n = O(thr2 twmax n).

Updating step. Starting from the leaves, we apply the following rules to each node
x ∈ X we visit until we reach the root.

Case 1 (insert node). Suppose that x is an insert node with child y such that
Hx = Hy ∪ {u}. Following the above discussion, we update the table Ax as follows.
For all ~t ∈ {1, . . . , thrmax}Hy , ~c ∈ {0, 1}Hy and i = 1, . . . , thrmax

Ax[~t⊕ (u, i),~c ⊕ (u, 0)] =







Ay[~t,~c] if Ay[~t,~c] is a harmless set in Gx

with thr(u) = i
∅ otherwise

Ax[~t⊕ (u, i),~c ⊕ (u, 1)] =







Ay[~t,~c] ∪ {u} if Ay[~t,~c] ∪ {u} is a harmless set
in Gx with thr(u) = i

∅ otherwise

The running time is thr
|Hy|
max 2|Hy | thrmax n = O(thr2 twmax n).

Case 2 (forget node). Suppose that x is a forget node with child y such that
Hx = Hy − {u}. Let ~t ∈ {1, . . . , thrmax}Hy . Notice that vertex u has its neighbors
entirely contained inGx. Hence, the maximum harmless set forGx where thr(v) = ~t(v)
∀v ∈ Hx is exactly the maximum harmless set for Gy where thr(v) = ~t(v) ∀v ∈ Hy

and such that u has threshold thr(u). Formally, we update the table Ax as follows.
For all ~t ∈ {1, . . . , thrmax}Hx and ~c ∈ {0, 1}Hx

Ax[~t,~c] = max
i∈{0,1}

{Ay[~t⊕ (u, thr(u)),~c ⊕ (u, i)]}

The running time is thr
|Hx|
max 2|Hx|n = O(thr2 twmax n).

Case 3 (join node). Suppose that x is a join node with children y and z such that
Hx = Hy = Hz = {u1, . . . , u|Hx|}. According to the above discussion, we update

the table Ax as follows. For all ~t ∈ {1, . . . , thrmax}Hx and ~c ∈ {0, 1}Hx , perform the
following two steps

1. (~t∗1,~t
∗
2) = argmax

~t1,~t2∈{1,...,thrmax}Hx

:~t1+~t2=~t

|Ay[~t1,~c] ∪Az[~t2,~c]|

2. Ax[~t,~c] = Ay[~t
∗
1,~c] ∪Az[~t

∗
2,~c]

The running time of this step is thr
2|Hx|
max 2|Hx|n = O(thr3 twmax n).

Final step. The optimal solution is then argmax~c∈{0,1}Hr |Ar[~tr,~c]| where r is the

root of T and ~tr(v) = thr(v) for all v ∈ Hr. �

Using Reduction rule 40 together with Theorem 50, we immediately get the following.

Corollary 51 Harmless Set is fixed-parameter tractable with respect to the com-
bined parameter k and the treewidth tw of the input graph. The algorithm runs
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in O((k + 1)3 tw · n) time.

4.5 Approximability

In this section, we first show that Max Harmless Set is strongly inapproximable even
for small constant thresholds on bipartite graphs. However, we provide a polynomial-time
approximation scheme when the graph is planar. Furthermore, in the case of unanimity
thresholds we prove that Max Harmless Set is APX-hard and admits a linear-time
3-approximation algorithm.

We start by showing the hardness result on bipartite graphs by an E-reduction from
the Max Clique problem (see Appendix A).

Theorem 52 For any ε > 0, Max Harmless Set with thresholds at most two
cannot be approximated within n1−ε in polynomial time even on bipartite graphs,
unless NP = ZPP.

Proof. We construct an E-reduction (see Definition 31) from Max Clique. Let
G be an instance of Max Clique. Consider the constructed instance I ′ = (G′, thr)
from G as it is defined in Theorem 44. Let C be a harmless set in G′. From the proof
of Theorem 44, we know that C is a clique in G. Thus, it is not hard to see that
opt(I ′) = opt(G) and ε(G,C) = ε(I ′, C). Since Max Clique is not approximable
within n1−ε for any ε > 0 unless NP = ZPP [66], the result follows. �

In the following we propose a polynomial-time approximation scheme on the class
of planar graphs, using the previous polynomial-time algorithm for graphs of bounded
treewidth.

Theorem 53 Max Harmless Set is in PTAS on planar graphs.

Proof. Let I = (G, thr) be an instance of Max Harmless Set. Given a planar
embedding of an input graph, we consider the set of the vertices which are on the
exterior face, they will be called level 1 vertices. By induction we define level k as the
vertices which are on the exterior face when we have removed the vertices of levels
smaller than k [13]. A planar embedding is k-level if it has no nodes of level greater
than k. If a planar graph is k-level, it has a k-outerplanar embedding.

If we want to achieve an approximation within 1+ε, let us consider k = 2(1+
⌈
1
ε

⌉
).

Let Xt be the set of vertices of level t and let Hi, 0 ≤ i ≤ k−1, be the graph obtained
from G by considering the subgraphs formed by the set of vertices

⋃

t+1≤j≤t+k Xj , for
t ≡ i(mod (k−2)). The subgraph containing exactly

⋃

t+1≤j≤t+k Xj is k-outerplanar,
and so is Hi, too.

Since Hi is k-outerplanar, it has treewidth at most 3k−1 [19]. We construct graph
H ′

i from Hi by attaching a forbidden edge to each vertex on the boundary (that means
vertices in Xt+1,Xt+2,Xt+k−1Xt+k with t ≡ i (mod (k−2))). Thus, in each subgraph
of H ′

i the vertices in Xt+1,Xt+2,Xt+k−1Xt+k cannot take part from any harmless set.
On applying Theorem 50, we can efficiently determine an optimal harmless set in

each subgraph of H ′
i. Denote by Si the union of these harmless sets. Clearly Si is a

harmless set on Hi.
Among S0, . . . , Sk−1 we choose the best solution that we denote S and we are

going to prove that S is an (1 + ε)-approximation of the optimal value on G. We
can easily show that there is at least one r, 0 ≤ r ≤ k − 1 such that at most 2

k
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of vertices in an optimal solution Sopt of G are on levels Xt+1,Xt+2,Xt+k−1Xt+k

with t ≡ r (mod (k − 2))). This means that the solution Sr obtained by deleting the
vertices from levels Xt+1,Xt+2,Xt+k−1Xt+k from Sopt will have at least |Sopt|(1− 2

k ) =
k−2
k opt(I) vertices. According to our algorithm, |S| ≥ |Sr| ≥ opt(I)

1+ε .
The overall running time of the algorithm is k times what we need for graphs of

treewidth at most k, that is O(k thr6k−2
max n) = nO(1/ε) where thrmax is the maximum

threshold. �

Unanimity thresholds. As previously observed in the section dedicated the parameter-
ized complexity of Harmless Set, it seems like unanimity thresholds make the problem
more “tractable”. We confirm this fact from an approximation perspective by showing
the APX-completeness of Max Harmless Set with unanimity thresholds.

Lemma 54 Max Harmless Set with unanimity thresholds is 3-approximable in
linear time.

Proof. Let I be an instance of Max Harmless Set consisting of a graph G and
unanimity thresholds. The algorithm consists of the following two steps:

1. Compute a spanning tree T of G.

2. Compute an optimal solution S of T using Theorem 49 with unanimity thresh-
old.

Observe that any feasible solution S for T is also a solution for G. Indeed, if a
vertex v in T is such that NT (v) 6⊆ S then we have NG(v) 6⊆ S. Moreover, using
Theorem 45, we get |S| ≥ n/3 ≥ opt(I)/3. �

Theorem 55 Max Harmless Set with unanimity thresholds is APX-complete.

Proof. Membership follows from Lemma 54. In order to prove the APX-hardness we
provide an L-reduction (see Definition 30) from the APX-hard problemMax E2Sat-3
(see Appendix A).

Given a formula φ of Max E2Sat-3 with n variables and m clauses (notice that
m = 3n/2), we construct an instance I of Max Harmless Set consisting of a graph
G = (V,E) and unanimity thresholds as follows (see Figure 4.2). For every variable
xi, we construct the complete bipartite graph K3,3(xi) = (V −(xi), V +(xi)) in which
every edge uv is replaced by an edge-vertex euv and two edges ueuv and euvv. We
denote by E(xi) this set of edge-vertices. The vertices in V +(xi) (resp. V −(xi))
represents the positive (resp. negative) literals of xi. We denote by A the set of all
vertices added so far. For every clause cj in φ add two adjacent clause-vertices c̄j
and c̄′j . For every variable xi, if xi appears positively (resp. negatively) in a clause cj
then add an edge between c̄′j and a vertex of V −(xi) (resp. V +(xi)). Thus, vertex c̄j
represents the complement of the clause cj in φ. Finally, add two adjacent vertices c
and c′. For every vertex v ∈ V −(xi) ∪ V +(xi), if v is not adjacent to a clause-vertex
then add the edge vc′. This completes the construction.

The optimal value in I is bounded by the number of vertices of G and thus,
opt(I) ≤ 15n + 2m + 2 ≤ 16 opt(φ) + 2 ≤ 18 opt(φ) since opt(φ) ≥ 3/4m
and opt(φ) ≥ 1.
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Moreover, let x∗ be an optimal assignment for φ and let

S =
⋃

i:x∗
i=1

V +(xi) ∪
⋃

i:x∗
i=0

V −(xi) ∪
n⋃

i=1

E(xi) ∪ {c̄j : cj is satisfied by x∗} ∪ {c}.

We can easily verify that S is a harmless set and |S∩(V −(xi)∪V +(xi)∪E(xi)| = 12
and thus |S ∩A| = 8m and then opt(I) ≥ |S| = 8m+ opt(φ) + 1.

Let S be a harmless set for I. We show in the following how to construct an
assignment aS for φ from the solution S such that cost(φ, aS) = |S|−8m−1. For each
variable xi, S cannot contain vertices from both V −(xi) and V +(xi) since otherwise
an edge-vertex has both neighbors inside S. Notice also that S cannot contain any
vertex c̄′j , since c̄′j is adjacent to the degree one vertex c̄j . Similarly c′ /∈ S.

If S contains for every i = 1, . . . , n the set E(xi) and one of the sets V −(xi) or
V +(xi) then |S ∩A| = 8m and we can defined the following assignment aS : xi = 1⇔
|S ∩ V +(xi)| 6= 0. In this case, a clause-vertex is in S if and only if the corresponding
clause is satisfied by aS . Thus, the number of clauses satisfied by aS is exactly
cost(φ, aS) = |S| − 8m− 1.

Assume now that |S ∩ A| < 8m. We show that there exists an other solution S′

with |S′| ≥ |S| such that |S′∩A| = 8m. If a vertex v ∈ E(xi)\S for some i ∈ {1, . . . , n},
we can add v in S since v cannot have both neighbors in S. Similarly, if c is not in
S, then we add c in S. Furthermore, we may assume that for each i = 1, . . . , n, we
have either |V −(xi) ∩ S| ≥ 1 or |V +(xi) ∩ S| ≥ 1. Indeed, there is always a vertex
v ∈ V −(xi)∪ V +(xi)∩N(c′) that can be added to S since c′ 6∈ S. Moreover, we have
|V −(xi) ∩ S| < 3 and |V +(xi) ∩ S| < 3 for some i ∈ {1, . . . , n} since |S ∩ A| < 8m.
Let i ∈ {1, . . . , n} be such that 1 ≤ |V −(xi) ∩ S| ≤ 3 (the case 1 ≤ |V +(xi) ∩ S| ≤ 3
is symmetric). There must exist a vertex v ∈ V −(xi) \ S which is either adjacent to
c′ or to a clause-vertex c̄′j . In the first case we add v in S. In the second case, we
denote N(c̄′j) = {v, v′, c̄j}. If v′ ∈ S and c̄j ∈ S then remove c̄j from S and add v
instead, otherwise add v in S. Thus, we obtain a new solution S′ such that |S′| ≥ |S|
and |S′ ∩ A| = 8m. Similarly to the above case, we can obtain an assignment aS′

such that |S′| − cost(φ, aS′) = 8m+1. In particular, if S′ is an optimal solution, then
opt(φ) ≥ cost(φ, aS′) = opt(I)− 8m− 1 and thus, we have opt(I)− opt(φ) = 8m+ 1
and then opt(φ)− cost(φ, aS′) = opt(I)− |S′|. �

. . .

. . .
c̄′1

c̄1

c̄′m

c̄m

c′

c

x1 xn A

Figure 4.2: The construction of G. The subgraph in a dashed box corresponds to a gadget
K3,3(xi) of a variable xi. A grey box represents either V +(xi) or V

−(xi).
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4.6 Conclusion and open problems

In this chapter, we introduced the harmless set problem. We established positive and
negative results concerning its parameterized tractability and polynomial-time approx-
imability. However, several questions remain open.

(1) Is Harmless Set fixed-parameter tractable for the parameter treewidth?
(2) We showed that there exists a ptas for Max Harmless Set on planar graphs.

However, the parameterized complexity of Harmless Set parameterized by k in this
class of graphs is open.

(3) There is room enough for improving the approximability of Max Harmless Set
with unanimity thresholds.

(4) Another interesting open question is whether Harmless Set with unanimity
thresholds is fixed-parameter tractable with respect to the parameter k when we ask to
determine the existence of a harmless set of size at least ⌈n3 ⌉+ k.

(5) The parameterized approximability of the problem has not been studied and thus,
left as an open question.
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F
ollowing the idea of preventing an undesirable thing to propagate through a network,
we investigate the complexity of the firefighter problem. This problem has been in-

troduced by Hartnell in 1995 [64] and concerns a deterministic model of “fire” spreading
through a graph via its edges. Of course, the term fire can be replaced by any other rele-
vant term depending of the application context (e.g. rumor, virus, ideas, etc.). Formally, it
consists of a graph with an initially burned vertex. At each time step, we are first allowed
to protect one vertex and then the fire spreads to every unprotected vertex adjacent to
the fire. When no new vertex can burn, the process stops. The goal is to minimize the
number of burned vertices. This can be seen as a “dynamic” cut problem since protecting
a vertex has the same effect as removing it from the graph. In the figure below, we depict
an example of such process. In the figure, the burned vertices are represented by black
vertices. A protected vertex is represented by a circle with a cross inside.

Step 1 Step 2 Step 3

In this chapter, we study the classical complexity, parameterized complexity and ap-
proximability of a generalized version of this problem where b > 1 vertices can be protected
at each step as well as some variants.

The content of this chapter is based on the following papers.

69
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◮ C. Bazgan, M. Chopin and M. R. Fellows, Parameterized complexity of the fire-
fighter problem, Proceedings of the 22nd International Symposium on Algorithms and
Computation (ISAAC 2011), LNCS 7074, pp. 643–652, 2011.
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firefighter on trees, Discrete Applied Mathematics 161(7-8), 899-908, 2013.
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5.1 Introduction

In the Chapter 3, we analyzed the computational complexity of maximizing the spread of
information through a network. Motivated by applications such as the containment of a
disease, we may modify the propagation process defined in that chapter by allowing the
possibility of “vaccinate” some vertices. Once a vertex has been vaccinated, it can no
longer be activated. Different objectives may then be of interest, for instance minimizing
the total number of activated vertices by vaccinating some particular vertices, or making
sure that some specific subset of vertices does not get activated at all, etc. In the literature,
these questions have been referred to as the firefighter problem. In the context of this
problem and, consequently, throughout this chapter, an activated vertex will be called a
burned vertex and a vaccinated vertex is said to be protected. The firefighter problem was
introduced by Hartnell [64] and further received considerable attention [7, 27, 45, 55, 64,
65, 69, 75, 82, 89]. Originally, the problem was defined as follows. Initially, a fire breaks
out at some vertex s of a graph. At each time step, we have to choose one vertex which
will be protected by a firefighter. Then the fire spreads to all unprotected neighbors of the
vertices on fire. The process ends when the fire can no longer spread, and then all vertices
that are not on fire are considered as saved. The objective consists of choosing, at each
time step, a vertex which will be protected by a firefighter such that a maximum number
of vertices in the graph is saved at the end of the process.

The firefighter problem was proved to be NP-hard for bipartite graphs [82], cubic
graphs [75] and unit disk graphs [58]. Finbow et al. [55] showed that the problem is NP-
hard even on trees. More precisely, they proved the following dichotomy theorem: the
firefighter problem is NP-hard even for trees of maximum degree three and it is solvable in
polynomial-time for graphs with maximum degree three, provided that the fire breaks out
at a vertex of degree at most two. Furthermore, the firefighter problem is polynomial-time
solvable for caterpillars and P-trees [82].1 From the approximation point of view, the
problem is e

e−1 -approximable on trees ( e
e−1 ≈ 1.5819) [27] and it is not n1−ε-approximable

on general graphs for any ε > 0, if P 6= NP [7]. Moreover for trees where vertices have at
most three children, the firefighter problem is 1.3997-approximable [69]. Finally, Cai et al.
[27] gave fixed-parameter tractable algorithms and polynomial-size kernels for trees for
each of the following parameters: “number of saved leaves”, “number of burned vertices”,
and “number of protected vertices”. The problem on grid graphs of dimension two and

1A P-tree [82] is a tree which does not contain the following configuration.

level i

level i+ 1

level i+ 2
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higher has been particularly investigated [45, 89, 82, 102]. There are also several variants
of the firefighter problem. For instance, Anshelevich et al. [7] considered the “spreading
vaccination model” where both the fire and the firefighters propagate through the network.
In this case, the problem admits a polynomial-time 2-approximation algorithm and a
randomized e

e−1-approximation algorithm. The politician’s firefighter, introduced by Scott
et al. [99], is a more “localized” version: At each time step, we are allowed to put as
many firefighters as the number of burned vertices — we invest more ressources as the
situation gets more threatening. Moreover, these firefighters can only be placed next
to burned vertices — one would prefer to fight the threat closely than miles away. On
the contrary to the classical problem, this variant is polynomial-time solvable on trees
and fixed-parameter tractable for general graphs when parameterized by the “number of
burned vertices” [99]. However, it has been shown that the problem remains NP-hard even
for planar graphs [99]. Another problem related to the firefighter problem was introduced
by King and MacGillivray [75]. It consists of deciding whether there is a strategy of
choosing a vertex to be protected at each time step such that all vertices of a given set
S are saved. Similarly to the classical problem, it has been proved NP-complete even for
trees of maximum degree three in which every leaf is at the same distance from the vertex
where the fire starts and S is the set of leaves. However, it is polynomial-time solvable for
trees of maximum degree three if the initially burned vertex has degree at most two. For
a more complete overview and open questions about the firefighter problem, the reader is
referred to the recent survey of Finbow and MacGillivray [54]. In this thesis, we consider
the version of the firefighter problem which allows us to protect b ≥ 1 vertices at each step
(the value b is called budget). We then denote by Firefighter the decision problem that
asks for the existence of a protection strategy with respect to a budget b > 0 such that at
least k vertices are saved. We also consider its parametric dual Dual Firefighter that
asks to save at least n− kb vertices for some integer kb, and the Bounded Firefighter
problem as well. This last problem is defined similarly to Firefighter except that we
are allowed to protect a total of at most kp ≥ 1 vertices where kp is an integer given in the
input. We are also interested in the generalized version of the Save problem introduced
by King and MacGillivray [75] that asks for the existence of a protection strategy with
respect to a budget b > 0 such that no vertex of a given vertex subset is burned.

This chapter is organized as follows. First, we provide the formal definitions of the pre-
vious problems in Section 5.2 as well as some preliminaries. In Section 5.3, we show that
the Firefighter problem is NP-complete for trees of bounded degree b+3 and for trees of
bounded pathwidth three for any fixed budget b ≥ 1. However, we prove that the problem
is polynomial-time solvable for the class of graphs of both bounded degree and bounded
pathwidth, and thus for graphs of bounded bandwidth. We also design a polynomial-
time algorithm for solving the problem (and the corresponding weighted version) on a
subclass of trees of pathwidth two, namely k-caterpillars. In Section 5.4, we establish the
parameterized complexity lower and upper bounds of the problems Firefighter, Dual
Firefighter, and Bounded Firefighter on general graphs with respect to their re-
spective standard parameterization (see Figure 5.2). In Section 5.5, we give parameterized
algorithms that answer several open questions from Cai et al. [27] and refine some of their
results as well. In Section 5.6, we provide other positive parameterized complexity results
with respect to the parameter vertex cover (see Figure 5.1). In Section 5.7, we observe
that the minimum version of the Firefighter problem where the goal is to minimize the
number of burned vertices is not n1−ε-approximable on trees for any ε > 0 and any b ≥ 1
if P 6=NP. We also answer negatively an open question of Finbow and MacGillivray [54].
Conclusion and open problems are given in Section 5.8.
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Figure 5.1: The parameterized complexity of the Firefighter problem with respect to
some structural graph parameters (see Section 2.3.4). A dotted rectangle means FPT for
this parameter, a gray rectangle indicates a W[1]-hardness result for any fixed budget,
and a thick rectangle means that the problem is NP-hard for constant values of this
parameter and any fixed budget. A parameter written in italic followed by a question
mark indicates an open question. For the parameter “diameter”, Fomin et al. [58] showed
that Firefighter is in XP.

Firefighter Bounded Firefighter Dual Firefighter
k kp kb

W[1]-hard W[1]-hard W[1]-hard

Poly Kernel? no no no

Budget W[1]-hard W[1]-hard FPT

Poly Kernel? no no no

Treewidth FPT FPT ?

Poly Kernel? ? no no

Figure 5.2: Summary of our parameterized complexity results including standard param-
eterizations. Each column is associated to a problem with its standard parameter and
each line corresponds to a parameter as well (see the next section for the problems defini-
tion). The intersection of a line with a column corresponds to a parameterized complexity
result with combination of the line’s parameter and column’s parameter. The first line
corresponds to parameterized complexity results solely based on the standard parameters.

5.2 Problem definitions and preliminaries

Before defining the problems, we need to explain the spreading process at stake. Let G =
(V,E) be a graph of order n with a vertex s ∈ V and b > 0 be an integer called budget .
At step t = 0, a fire breaks out at vertex s and s starts burning. At any subsequent
step t > 0, the following two phases are performed in sequence:

1. Protection phase : Protect (or defend) at most b vertices not yet on fire.

2. Spreading phase : Every unprotected vertex which is adjacent to a burned vertex
starts burning.
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Burned and protected vertices remain burned and protected until the process stops, re-
spectively. The process stops when in a step no new vertex can be burned. We call a
vertex saved if it is either protected or if all paths from any burned vertex to it contains
at least one protected vertex. Notice that, until the propagation process stops, there is at
least one new burned vertex at each step. This leads to this obvious lemma.

Lemma 56 The number of steps before the propagation process stops is less or equal
to the total number of burned vertices.

A protection strategy (or simply strategy) indicates which vertices to protect at each
step until the propagation process stops. Since there can be at most n burned vertices, it
follows from Lemma 56 that the propagation unfolds in at most n steps. We thus denote
a strategy as a sequence Φ = (D1,D2, . . . ,Dn) where Di ⊆ V and |Di| ≤ b for every
i = 1, . . . , n. Each set Di contains the vertices of G defended at step i.

In an algorithmic perspective, it is more convenient to use the following equivalent
protection phase definition:

Constrained protection phase : Protect (or defend) vertices not yet on fire under the
following restrictions:

1. Each protected vertex must have a neighbor which is on fire.

2. After i steps of propagation at most ib vertices are protected.

The following lemma shows the equivalence between the original protection phase and
the constrained protection phase.

Lemma 57 For a given strategy complying with the original protection phase, there
exists a strategy that respects the constrained protection phase and saves exactly the
same set of vertices. The converse is true.

Proof. Let D be the set of protected vertices of a strategy Φ complying with the
original protection phase. We construct a new strategy Φ′ that protects, during
the ith step, exactly those vertices of D which have a neighbor on fire. Clearly after
i steps at most ib vertices will be protected, since each vertex of D is protected by
the strategy Φ′ not earlier than by the strategy Φ. Thus Φ′ respects the rules of
the constrained protection phase. Moreover, it saves exactly the same set of vertices.
Conversely, let D be the set of protected vertices of a strategy Φ′ complying with the
constrained protection phase. We construct a strategy Φ as follows. Let (v1, . . . , v|D|)
be a sequence of vertices of D sorted by the step in which a vertex is protected by
Φ′ (breaking ties arbitrarily). In the i-th step of strategy Φ, we protect the vertices
v(i−1)b+1, . . . , vib. The vertex vj , j ∈ {(i−1)b+1, . . . , ib}, is not on fire in the ith step,
because in the strategy Φ′ it is protected not earlier than in the i-th step. Thus Φ
respects the rules of the original protection phase and saves exactly the same set of
vertices. �

Unless otherwise stated, we assume to use the original protection phase. We are now
in position to give the formal definitions of the investigated problems.
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Firefighter
Input: A graph G = (V,E), a vertex s ∈ V , and two integers b and k.
Question: Is there a strategy with respect to budget b such that at least k vertices
are saved when a fire breaks out at s?

In the above problem, we may assume without loss of generality that b < k since
otherwise the problem is trivial: At time step one, if it is possible to protect b ≥ k vertices
then the answer is “yes”, otherwise the answer is “no”. The parametric dual, denoted
by Dual Firefighter, asks for the existence of a strategy such that at least n − kb
vertices are saved or, equivalently, at most kb vertices are burned. We denote by Max
Firefighter the maximization version where the goal is to save the maximum number
of vertices. The minimization version will be denoted by Min Firefighter and consists
in finding a strategy that minimizes the number of burned vertices.

We also studied the following variant where the total number of protected vertices is
bounded.

Bounded Firefighter
Input: A graph G = (V,E), a vertex s ∈ V , and three integers k, b and kp.
Question: Is there a strategy with respect to the budget b that saves at least k vertices
by protecting a total of at most kp vertices when a fire breaks out at s?

The corresponding maximization version, denoted by Max Bounded Firefighter,
asks for finding a strategy that saves the maximum number of vertices by protecting a
total of at most kp vertices. We may assume without loss of generality that b ≤ kp in any
instance of Bounded Firefighter and Max Bounded Firefighter. Indeed, having
a budget b ≥ kp is useless since we can protect a total of at most kp vertices. In other
words, the answer of any instance with a budget b ≥ kp does not change if we set b = kp.

We investigate moreover the following generalized version of the problem introduced
by King and MacGillivray [75].

Save
Input: A graph G = (V,E), a “critical” set C ⊆ V , a vertex s ∈ V , and an integer b.
Question: Is there a strategy with respect to budget b saving all the vertices that
belong to C when a fire breaks out at s?

It is worth noting that the above problem was originally entitled “Fire” [75]. However,
we find the name “Save” more relevant regarding the objective of the problem.

Finally, suppose that we are given a weight w(v) for each vertex v of a graph G. These
weights may for instance reflect the importance of the vertices: if w(v1) > w(v2), vertex
v1 is considered as more important than vertex v2. Then we may define the following
weighted version of the Max Firefighter problem.

Max Weighted Firefighter
Input: A graph G = (V,E), a vertex s ∈ V , a weight function w : V → N, and an
integer b.
Output: A strategy with respect to budget b that maximizes the total weight of the
saved vertices in G when a fire breaks out at s.
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When the weights are either 0 or 1, we denote the Max Weighted Firefighter
problem as the Max 0-1 Firefighter problem.

When dealing with trees, we use the following observation which is a straightforward
adaptation of the one by MacGillivray and Wang for the case b > 1 [82, Section 4.1].

Lemma 58 Among the strategies that maximizes the number (resp. the total weight)
of saved vertices for a tree, there exists one that protects vertices adjacent to a burned
vertex at each time step.

In other words, the Lemma 58 implies that we can only consider strategies that protect
vertices adjacent to a burned vertex at each time step on a tree.

It is worth pointing out that the previous lemma does not hold for general graphs.
Indeed, an optimal solution might protect some vertex away from the fire at some step
(see for instance Figure 5.3).
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Figure 5.3: In the figure (a) the applied strategy consists of protecting a vertex adjacent
to the fire at each step. The strategy of figure (b) protects vertex v3 at time step one and
v4 at time step two. The later strategy save one more vertex than the former one. The
burned vertices are represented by black vertices. A protected vertex is represented by a
circle with a cross inside.

5.3 The importance of bounded degree and “path-likeness”

In this section, we emphasize the importance of the parameters pathwidth and maximum
degree in the computational complexity of the Firefighter problem. More precisely, we
prove that if both are bounded then the problem is polynomial-time solvable, but it is
NP-complete if only one of these two parameters is bounded.

5.3.1 Graphs of bounded degree

It has been shown in [55] that Save is NP-complete for trees of maximum degree three
when one firefighter is available at each step (i.e. b = 1). Furthermore, it is polynomial-
time solvable for trees of maximum degree three if the fire breaks out at a vertex of
maximum degree two. In the following, we extend these results for any fixed budget b ≥ 1.
We then rely on these last results to show the NP-completeness of Firefighter on trees
of bounded degree.

Maximum degree b+ 3. We first show the NP-completeness of Save on trees for any
fixed budget b ≥ 1. Before doing that, we need the following lemma.
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Lemma 59 Let T be a tree with a burning root s together with a strategy that saves
all the leaves of T . Suppose that there exist levels i and j > i containing bi ≤ b− 1,
for some budget b ≥ 1, and bj ≥ 1 firefighters, respectively. Then there exists a new
strategy saving all the leaves of T and such that levels i and j contain bi+1 and bj−1
firefighters, respectively.

Proof. Let vj be a protected vertex by the strategy at a level j > i, and let vi be
the ancestor of vj at level i. It follows from Lemma 58 that we may assume that vi is
not protected. We transform this strategy into a new one as follows (see Figure 5.4):
protect vi at time step i and do not protect vj at time step j. Since vi is an ancestor
of vj, it follows that using the new strategy, we save a subset of vertices that contains
the vertices saved by using the former strategy. Since level i contains at most b − 1
firefighters it follows that the new strategy is valid, saves all the leaves of T and levels
i and j contain respectively bi + 1 and bj − 1 firefighters. �

s

level i

s

level i

level j level j

Saved Saved

vi

vj

Figure 5.4: Moving up a firefighter leads to a strategy that saves at least the same set of
leaves.

Theorem 60 For any fixed budget b ≥ 1 and any critical set, Save is NP-complete
for trees of maximum degree b+ 2.

Proof. Clearly, Save belongs to NP. In order to prove its NP-hardness for any fixed
budget b ≥ 1, we reduce in polynomial time every instance of Save with budget b to
a new instance of the same problem with budget b + 1. Since Save is NP-hard for
b = 1 [75], it follows that Save is NP-complete for any fixed b ≥ 1.

Let I = (T,C, s, b) be an instance of Save where T is a tree rooted at s of
maximum degree b+ 2, height h, and size n. We may assume without loss of generality
that C is the set of leaves of T . Otherwise for each non-leaf vertex v ∈ C, since we
have to save v, we can remove the subtree rooted at v such that v becomes a leaf.
We construct a new instance I ′ = (T ′ = (V ′, E′), C ′, s′, b + 1) of the same problem
consisting of a tree T ′ of maximum degree b+ 3 rooted at vertex s′, and the critical
set C ′ which corresponds to the leaves of T ′ as follows (see Figure 5.5).
• Add a vertex s′.

• Add two paths {y1y2, . . . , yh−2yh−1}, {x1x2, . . . , xh−1xh}, make y1, x1 adjacent
to s′ and make yh−1 adjacent to s.

• Add vertices v1, . . . , vb+1 and make them adjacent to s′.



5.3. The importance of bounded degree and “path-likeness” 77

• For every vertex yi, i = 1 . . . , h− 1, add vertices vi,1, . . . , vi,b+1 and make them
adjacent to yi.

• For i = 1, . . . , h add a path {wi,1wi,2, . . . , wi,h−1wi,h} and make wi,1 adjacent
to xi.

This clearly gives us a tree T ′ of maximum degree b+3 rooted at vertex s′ and the
set of leaves C ′ ⊂ V ′ is given by C ′ = C ∪⋃h−1

i=1 {vi,1, . . . , vi,b+1} ∪ {w1,h, . . . , wh,h} ∪
{v1, . . . , vb+1}.

We claim that there exists a strategy for I that saves all the vertices in C if and
only if there exists a strategy for I ′ that saves all the vertices in C ′.

“⇒”: Suppose there exists a strategy Φ = (D1,D2, . . . ,Dn) for I that saves all
the vertices in C. In order to save all vertices in C ′, we will apply the strategy defined
as follows: at time step t = 1, we have to protect the vertices v1, . . . , vb+1; at each
time step 2 ≤ t ≤ h, we have to protect the vertices vt−1,1, . . . , vt−1,b+1; thus after
time step h, vertex s is burning as well as vertices w1,h−1, w2,h−2, . . . , wh−1,1, xh; at
each time step h+1 ≤ t ≤ 2h, we protect the vertices in T belonging to Dt−h and we
use the additional firefighter to protect the leaf wt−h,h. This clearly gives us a valid
strategy saving all the vertices in C ′.

“⇐”: Suppose now that there exists a strategy Φ′ for I ′ that saves all the vertices
in C ′. At time step t = 1, this strategy necessarily consists in protecting vertices
v1, . . . , vb+1. Furthermore, at each time step 2 ≤ t ≤ h, we have to protect the
vertices vt−1,1, . . . , vt−1,b+1. It follows from Lemma 58 that we may assume that Φ′

is a strategy which, at each time step, protects vertices adjacent to burning vertices.
Thus Φ′ protects, at each time step i, at most b + 1 vertices at level i in T ′ for
i = h + 1, . . . , 2h. Let bT (i) be the number of firefighters in the subtree T of T ′ at
level i used by Φ′ and let BT = {i : bT (i) = b+1}. If BT = ∅, then for any i, bT (i) ≤ b
and thus the strategy Φ′, restricted to the tree T , is a valid strategy for I that saves
all the leaves of T . So we may assume now that BT 6= ∅.

Let iℓ be the ℓth smallest value in BT . Consider the case ℓ = 1. Suppose that
for any i < i1, bT (i) ≥ b. From the definition of iℓ, it follows that we cannot have
bT (i) = b + 1, thus bT (i) = b for every i < i1. By construction, this means that, at
each time step i < i1, the additional firefighter protects the vertex wi−h,h, i ≥ h+ 1.
At time step i1, since bT (i

1) = b + 1, the vertex wi1−h,h is not protected and burns
which is a contradiction. Thus there exists a level i < i1 such that bT (i) < b. It follows
from Lemma 59 that there exists a strategy saving the leaves of T ′ such that bT (i) ≤ b
and bT (i

1) = b. Applying this argument iteratively for i2, . . . , i|BT |, we obtain a new
strategy Φ′′ that saves all the vertices in C ′ and such that for any level i, bT (i) ≤ b.
Thus, the strategy Φ′′ restricted to the tree T is a valid strategy that saves all the
leaves of T . This completes the proof. �

In what follows, we use the previous the result to show the NP-completeness of Fire-
fighter on trees of bounded degree.

Theorem 61 For any fixed budget b ≥ 1, Firefighter is NP-complete for trees of
maximum degree b+ 3.

Proof. We construct a polynomial-time reduction from Save to Firefighter. In
this reduction, we will make use of the following gadget. We denote by T (r, h, d) a
complete tree of height h and root r such that every non-leaf vertex has exactly d
children and every leaf is at the same distance from the root. For such a tree we obtain



78 Chapter 5. Containing an undesirable spread
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Figure 5.5: The construction of T ′. The vertices from C are represented by a square.

the following property. Consider a complete tree T (r, h, b + 1). If the fire breaks out
at r, then at least one leaf will not be saved. Indeed, since each non-leaf vertex has
exactly b+ 1 children, it follows that at each time step there will be at least one new
burning vertex. Thus at the end of the process, at least one leaf will be burned.

Let I be an instance of Save consisting of a tree T = (V,E) of maximum degree
b + 2 with |V | = n, a burned vertex s ∈ V , and a subset C ⊆ V which corresponds
to the set of leaves. We construct an instance I ′ of Firefighter consisting of a
tree T ′ = (V ′, E′), and a positive integer k as follows (see Figure 5.6). For every leaf
ℓ of T , add b + 2 copies T1,ℓ, . . . , Tb+2,ℓ of the tree T (r, ⌈logb+1n + 1⌉, b + 1) such
that the root ri,ℓ of Ti,ℓ is adjacent to ℓ, for i ∈ {1, . . . , b + 2}. Let |T | denote the
cardinality of each of those trees. Notice that each tree Ti,ℓ has |T | ≥ n vertices. Set
k = (b+ 2)|C||T |.

We will prove that there exists a strategy for I that saves all the vertices in C if
and only if there exists a strategy for I ′ that saves at least k vertices in C ′.

“⇒”: Suppose there exists a strategy for I that saves all the vertices in C. Since
C is the set of all leaves in T , it follows that this strategy applied to T ′ saves all the
vertices of the trees Ti,ℓ. Notice that we have (b+2)|C| such trees. Thus the number
of saved vertices in T ′ is at least k = (b+ 2)|C||T |.

“⇐”: Conversely, suppose that no strategy for I can save all the vertices in C.
Thus, at least one leaf of T is burned at the end. This necessarily implies that for any
strategy Φ′ for I ′ there is at least one vertex, say ℓ, of C which is burned. It follows
from the construction of T ′ and the property of each tree Ti,ℓ, that in this case there
are at least |T | vertices which will be burned for strategy Φ′. Thus Φ′ saves at most
n− 1 + (b+ 2)|C||T | − |T | ≤ (b+ 2)|C||T | − 1 < k vertices. �

Maximum degree b + 2 and deg(s) ≤ b + 1. The following theorem shows that the
sharp separation between the NP-hardness and polynomiality of Save on trees pointed
out in [75] is preserved for any fixed b ≥ 1.
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T2,ℓT3,ℓT1,ℓ

s

T

Figure 5.6: Construction of T ′ from the tree T for the case b = 1.

Lemma 62 Let b ≥ 1 be any fixed integer and T a tree of maximum degree b+ 2. If
the fire breaks out at a vertex of degree at most b+ 1 then all the leaves of T can be
saved by a strategy with respect to budget b if and only if T is not complete.

Proof. Notice that for trees of maximum degree b + 2, we can protect the vertices
in such a way that there is at most one new burning vertex v at each time step.
Moreover, the fire stops when the vertex v has degree at most b+ 1.

Suppose that T is not complete. Then there exists a non-leaf vertex v of degree
at most b+ 1. From the previous remark we can direct the fire from s to v and stop
it. Hence all the leaves of T are saved.

Suppose that T is complete. Then at each time step, there is at least one new
burning vertex. Thus there will be a leave which will burn at the end of the process. �

Since verifying whether a tree is complete can be done in polynomial-time, we deduce
the following theorem.

Theorem 63 For any fixed budget b ≥ 1, Save is polynomial-time solvable for trees
of maximum degree b+ 2 if the fire breaks out at a vertex of degree at most b+ 1.

It is worth noting that Theorem 63 also holds for Firefighter. It suffices to direct
the fire to a vertex of degree at most b + 1 such that the number of burned vertices is
minimum.

Theorem 64 For any fixed budget b ≥ 1, Firefighter is polynomial-time solvable
for trees of maximum degree b+2 if the fire breaks out at a vertex of degree at most b+1.

5.3.2 Graphs of bounded pathwidth

In this section, we show that the Firefighter problem is NP-complete even on trees
of pathwidth three. Then, we provide a polynomial-time algorithm for solving Max
Weighted Firefighter on a subclass of trees of pathwidth two, namely k-caterpillars.

Pathwidth ≥ 3. We start with the NP-completeness result. For that purpose we reduce
from the NP-hard [88] problem Cubic Monotone 1-In-3-Sat (see Appendix A).
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Theorem 65 Firefighter is NP-complete even on trees of pathwidth three and bud-
get one.

Proof. Clearly, Firefighter belongs to NP. For convenience, we provide a
polynomial-time reduction from Cubic Monotone 1-In-3-Sat to Dual Fire-
fighter. This will obviously imply the NP-hardness for Firefighter.

Let φ be a formula of Cubic Monotone 1-In-3-Sat with n variables {x1, . . . , xn}
and m initial clauses {c1, . . . , cm}. Notice that a simple calculation shows that n = m.
First, we extend φ into a new formula φ′ by adding m new clauses as follows. For each
clause cj we add the clause c̄j by taking negation of each variable of cj . A satisfying
assignment for φ′ is then a truth assignment such that each clause cj has exactly one
true literal and each clause c̄j has exactly two true literals. It is not hard to see that φ
has a satisfying assignment if and only if φ′ has one.

Now we construct an instance I ′ = (T, s, 1, kb) of Dual Firefighter from φ′ as
follows (see Figure 5.7). In this construction, adding a guard-vertex g to a vertex v
means making a copy of a star with center g and kb leaves such that g is made adjacent
to v. Thus, if we want to burn at most kb vertices then a guard-vertex needs to be
saved or protected. We start with the construction of the tree T .
• Start with a path {su2 = u1u2, u2u3, . . . , up−1up} where p = 2n−1 and add two
degree-one vertices vxi and vx̄i adjacent to u2i−1 for every i ∈ {1, . . . , n}.

In the following two steps for each i ∈ {1, . . . , n}:

• Add a guard-vertex gi (resp. ḡi) to vxi (resp. vx̄i).

• At each vertex vxi (resp. vx̄i) root a path of length 2 · (n − i) at vxi (resp. vx̄i)
in which the endpoint is adjacent to three degree-one vertices (called literal-
vertices) denoted by ℓxi

1 , ℓxi
2 , and ℓxi

3 (resp. ℓx̄i
1 , ℓx̄i

2 , and ℓx̄i
3 ). Each literal-

vertex corresponds to an occurence of the variable xi in an initial clause of φ′.
Analogously, the literal-vertices ℓx̄i

1 , ℓx̄i
2 , and ℓx̄i

3 represent the negative literal x̄i
that appears in the new clauses.

Notice that each leaf of the constructed tree so far is at distance exactly p+1 from s.

• For each variable xi, i ∈ {1, . . . , n}, choose a clause cj , j ∈ {1, . . . ,m} containing
xi (resp. x̄i). Then root a path Qxi

j (resp. Q̄xi
j ) of length j− 1 at ℓxi

1 (resp. ℓx̄i
1 ),

and add a guard-vertex gxi
j to the endpoint of Qxi

j (resp. add two degree-

one vertices, named dummy-vertices, adjacent to the endpoint of Q̄xi
j ). Repeat

the same for two other clauses with xi (resp. x̄i) and root a path at ℓxi
2 , ℓxi

3

(resp. ℓx̄i
2 , ℓx̄i

3 ).

To finish the construction, set kb = p+
∑n

i=1(3 + 2(n − i) + 1) + 3
∑m−1

i=1 i+ 4m.
In what follows, we use Lemma 58 and thus we only consider strategies that protect

a vertex adjacent to a burned vertex at each time step. Recall that the budget is set
to one in the instance I ′. Now we show that there is a satisfying assignment for φ′ if
and only if there exists a strategy for I ′ such that at most kb vertices in T are burned.

“⇒” : Suppose that there is a satisfying assignment τ for φ′. We define the follow-
ing strategy Φτ from τ . At each step t from 1 to p+ 1, if t is odd then protect vx̄⌈t/2⌉

if x⌈t/2⌉ is true otherwise protect vx⌈t/2⌉
. If t is even then protect the guard-vertex g⌈t/2⌉

if vx̄⌈t/2⌉
has been protected, otherwise protect ḡ⌈t/2⌉. At time step p+1, the number
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of burned vertices is exactly p+
∑n

i=1(3+ 2(n− i)+ 1). Moreover, the literal-vertices
that are burned in T corresponds to the true literals in φ′. Thus, by construction
and since τ statisfies φ′, the vertices adjacent to a burning vertex are exactly one
guard-vertex, four dummy vertices and 3(n−1) other vertices. Since we must protect
the guard vertex, we know that 3(n − 1) + 4 vertices are going to burn at the next
time step. More generally, at any subsequent time step t from p + 1 to p + m the
stategy Φτ must protect a guard-vertex gxi

t−p for some xi, and four dummy-vertices
together with 3(n− (t− p)) vertices get burned. It follows that the number of burned
vertices is

∑p+m
t=p+1[3(n − (t− p)) + 4] =

∑m
t=1[3(n − t) + 4] = 3

∑m−1
t=1 t+ 4m leading

to a total of kb burned vertices.
“⇐”: Conversely, assume that there exists a strategy Φ for I ′ such that at most kb

vertices in T are burned. Observe first that this strategy protects either vxi or vx̄i for
each i ∈ {1, . . . , n}. As a contradiction, suppose that there exists an i ∈ {1, . . . , n}
such that Φ does not protect vxi and vx̄i . Then in some time step both vxi and vx̄i

get burned. Hence, it is not possible to protect both gi and ḡi and at least one
will burn implying that more than kb vertices would burn, a contradiction. Now
consider the situation at step p+ 1. As previously, the number of burned vertices so
far is exactly p +

∑n
i=1(3 + 2(n − i) + 1). Let ng and nd be the number of guard-

vertices and dummy-vertices adjacent to a burned vertex, respectively. Following the
discussion, we know that ng = 3 − nd/2 with 1 ≤ ng ≤ 3 and 1 ≤ nd ≤ 6. In what
follows, we will show that exactly one guard-vertex is adjacent to a burned vertex
that is ng = 1. First, we must have ng ≤ 1 since otherwise more than kb vertices
would burn. Suppose now that ng = 0. Hence we have exactly nd = 6 − 2ng = 6
dummy vertices adjacent to burned vertices. Therefore the number of burned vertices
would be at least 3

∑m−1
t=1 t+ 4(m− 1) + 6 = 3

∑m−1
t=1 t+ 4m+ 2 giving us a total of

at least kb + 2 burned vertices, a contradiction. Hence, we have ng = 1 and nd = 4.

This implies that exactly the three literal-vertices ℓ
xi1
1 , ℓ

x̄i2
1 , ℓ

x̄i3
1 (resp. ℓ

x̄i1
1 , ℓ

xi2
1 ,ℓ

xi3
1 )

are burned (resp. saved) where xi1 , xi2 , xi3 belong to the clause c1. Thus if we set xi1
to true, xi2 to false and xi3 to false in φ′, we have exactly one true literal in c1 and
exactly two true literals in c̄1. Applying this argument iteratively from step p + 2
to p +m, we arrive at the following satisfying assignment for φ′: if the vertex vxi is
protected then set xi to false, otherwise set it to true.

It remains to prove that the pathwidth of T is at most three. To see this, observe
that any subtree rooted at xi or x̄i has pathwidth two. Let Pxi and Px̄i be the paths
of the path-decompositions of these subtrees, respectively. We construct the path-
decomposition for T as follows. For every i ∈ {1, . . . , n − 1}, define the node Bi =
{u2i−1, u2i, u2i+1}. Extend all nodes of the paths Pxi and Px̄i to P ′

xi
and P ′

x̄i
by adding

the vertex u2i−1 inside it. Finally, connect the paths P
′
x1
, P ′

x̄1
and the node B1 to form

a path and continue in this way with P ′
x2
, P ′

x̄2
, B2, P

′
x3
, P ′

x̄3
, B3, . . . , Bn−1, P

′
xn
, P ′

x̄n
.

This completes the proof. �

The above proof can also be regarded as a simpler proof of the NP-completeness of
the Firefighter problem on trees. We can generalize the previous result to any fixed
budget b ≥ 1 as follows.

Corollary 66 For any fixed budget b ≥ 1, Firefighter is NP-complete even on
trees of pathwidth three.
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u10

u11

vx̄6vx6

ḡ6g6

u2vx1

ḡ1

s = u1

g1

vx̄1

Figure 5.7: An example of part of a tree constructed from the formula φ = (x3∨x4∨x5)∧
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x6) ∧ (x1 ∨ x4 ∨ x6) ∧ (x2 ∨ x6 ∨ x5). Guard
vertices are represented by a dot within a circle.

Proof. We start from the reduction of Theorem 65 and alter the tree T as follows.
Add a path {sw2 = w1w2, w2w3, . . . , w2n−1w2n} to T together with b−1 guard-vertices
added to each wi. First, one can easily check that the pathwidth remains unchanged
since the added component has pathwidth two and is only connected to the root s.
Second, it can be seen that at each time step, only one firefighter can be placed
“freely” as the other b − 1 firefighters must protect b − 1 guard-vertices. It follows
that we end up to a similar proof as for Theorem 65. This completes the proof. �

k-caterpillars. We now present a subclass of trees of pathwidth two for which Max
Weighted Firefighter is polynomial-time solvable. We first prove the result for Max
0-1 Firefighter and further extend it to the general weighted version.

MacGillivray and Wang [82] showed that the degree greedy algorithm (at each time
step, protect the vertex adjacent to a burned vertex with the highest degree) gives an
optimal solution forMax Firefighter on caterpillars when the budget is b = 1. However,
this result does not hold anymore for k-caterpillars as can be seen in Figure 5.8.

In order to prove our main result of this section we first need to state the following
result.

Theorem 67 For any k ≥ 1 and any budget b ≥ 1, Max 0-1 Firefighter is
polynomial-time solvable for k-stars.

Proof. We construct a polynomial-time reduction fromMax 0-1 Firefighter to the
Min Cost Flow problem (see Appendix A) which is known to be polynomial-time
solvable [5]. Let I = (G = (V,E), s, w, b) be an instance of Max 0-1 Firefighter
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ss

Figure 5.8: A k-caterpillar for which the degree greedy algorithm (left) saves less vertices
than the optimal solution (right).

where G is a k-star. First assume that s ∈ V is the center of G. Let d = degG(s)
and S be the set of vertices with weight equal to one. Let P1 = {sv11, v11v21, . . . ,
v(p1−1)1vp11}, . . . , Pd = {sv1d, v1dv2d, . . . , v(pd−1)dvpdd} be the maximal paths of G
starting at vertex s, with p1, . . . , pd ≤ k and v0j = s, for j = 1, . . . , d, if it
exists. Let p = max{p1, . . . , pd}. For each vertex vij in these paths, we de-
fine Sij = {vij , v(i+1)j , . . . vpjj} ∩ S. Notice that we may assume that every path Pj

contains at least one vertex of S (otherwise we may delete V (Pj)\{s}). We construct
the instance I ′ = (G′ = (V ′, A), α, β, γ) of Min Cost Flow as follows.
• Construct the digraph G′ = (V ′, A) (see Figure 5.9), where V ′ = {L1, . . . , Lp}∪
{C1, . . . , Cd} ∪{ℓ, r} and A = {(Li, Cj) : vij ∈ Pj} ∪ {(ℓ, Li) : i = 1, . . . , p} ∪
{(Cj , r) : j = 1, . . . , d}.

• Associate with each arc (Li, Cj) of G
′, a cost β(Li, Cj) = −|Sij|. All other arcs

have cost zero.

• Associate with each arc (ℓ, Li) a capacity α(ℓ, Li) = b, with each arc (Li, Cj) a
capacity α(Li, Cj) = 1 and with each arc (Cj , r) a capacity α(Cj , r) = 1.

• Associate a supply of value d with vertex ℓ and a demand of value −d with
vertex r (all other vertices have a supply and a demand equal to zero).

This completes the construction and clearly I ′ can be obtained from I in polynomial
time. Now we claim that solving the instance I of Max 0-1 Firefighter is equivalent
to solving the instance I ′ of Min Cost Flow.

“⇒”: Consider a feasible solution of Max 0-1 Firefighter in I of value ν. We
may assume without loss of generality (see Lemma 58) that at most one vertex is
protected in each path Pj, j ∈ {1, . . . , d}, and (see Lemma 58) that at most b vertices
are protected in each set Vi = {vi1, vi,2, . . . , vid}, i ∈ {1, . . . , p} (notice that some of
these vertices vij , j = 1, . . . , d, may not exist inG). LetD = {vij : vij is protected, i ∈
{1, . . . , p}, j ∈ {1, . . . , d}}. Thus ν =

∑

vij∈D |Sij |. Consider now some vertex vij ∈ D.
Then in G′, we will use one flow unit on the path ℓ-Li-Cj-r. Repeating this procedure
for every vertex in D, we obtain a flow inG′ of value |D| and of cost

∑

vij∈D β(Li, Cj) =
∑

vij∈D −|Sij| = −ν. Since at most b vertices are protected in each set Vi, it follows

that at most b units of flow use the arc (ℓ, Li), for i ∈ {1, . . . , p}. Furthermore, since
exactly one vertex is protected in each path Pj , it follows that exactly one flow unit
uses the arc (Cj , r) for j ∈ {1, . . . , d}. Hence, we obtain a feasible solution of Min
Cost Flow in I ′ of value −ν.

“⇐”: Conversely, consider now a feasible solution of Min Cost Flow in I ′ of
value −µ. Let A be the set of arcs (Li, Cj) used by a flow unit, i ∈ {1, . . . , p},
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j ∈ {1, . . . , d}. Thus −µ =
∑

(Li,Cj)∈A−|Sij|. For each flow unit on a path ℓ-Li-Cj-r,

we choose vertex vij in G to be protected, for i ∈ {1, . . . , p}, j ∈ {1, . . . , d}. Since the
capacity of an arc (ℓ, Li) is b, at most b vertices in Vi will be chosen to be protected,
i ∈ {1, . . . , p}. Let us denote by V ∗

i the set of vertices in Vi chosen to be protected.
Furthermore, since the capacity of an arc (Cj , r) is one, exactly one vertex in each
path Pj will be chosen to be protected, j ∈ {1, . . . , d}. Thus, if we protect at each
time step i the vertices in V ∗

i , we obtain a feasible solution of Max 0-1 Firefighter
in I of value

∑

i

∑

vij∈V ∗
i
|Sij | = µ.

Finally, we have to consider the case when s is not the center of G. The case when s
has degree one is trivial. Thus we may assume now that degG(s) = 2. If b ≥ 2, we are
done. Thus we may assume now that b = 1. If both neighbors of s are in S, then the
optimal solution value is clearly |S| − 1. If both neighbors of s are not in S, then the
optimal solution value is clearly |S|. Hence the only case remaining is when exactly
one neighbor of s is in S. Let u1, u2 be the neighbors of s such that u1 ∈ S, u2 6∈ S.
If u2 is not the center of G, the optimal solution value is clearly |S|. Thus we may
assume now that u2 is the center of G. Let Q denote the set of vertices of the unique
maximal path starting at vertex u2 and containg u1. In that case we have to compare
the value of two solutions: (i) |S| − 1 which is the value of the solution obtained by
protecting first u2 and then, during the second time step, we protect the neighbor of
u1 which is not s (if it exists); (ii) the value of the solution obtained by protecting
first u1 and then applying our algorithm described above to the graph G− (Q \ {u2})
(i.e., by reducing our problem to a Min Cost Flow problem). �
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Figure 5.9: The digraph G′ (right) obtained from G (left). For the graph G′, the capacities
are indicated within brackets while the other numbers correspond to the costs. In the
graph G, the squares correspond to vertices with weight one. Furthermore, the value
associated to each vertex is equal to the number of saved vertices if this vertex is protected.

Notice that the polynomial reduction from Max 0-1 Firefighter to Min Cost
Flow described in the proof of Theorem 67 is still valid if the number of vertices that can
be protected at each time step is not constant (for instance if we are allowed to protect at
most b1 vertices during the first time step, b2 vertices during the second time step, etc.).
In that case we just need to adapt the capacity of the arcs (ℓ, Li) accordingly.

Furthermore the polynomial reduction remains valid in the case where some of the
vertices in a set Vi are not allowed to be protected during time step i. In this case we
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simply do not put an arc from Li to the corresponding vertices Cj in G′.
Consider now a k-caterpillar G = (V,E). Let P be the path in the caterpillar from

which G has been obtained, which is induced by vertices of degree at least two. We will
call P the spine of the k-caterpillar.

We are now ready to prove the main result of this section.

Theorem 68 For any k ≥ 1 and any budget b ≥ 1, Max 0-1 Firefighter is
polynomial-time solvable for k-caterpillars.

Proof. Let G = (V,E) be a k-caterpillar and let P = {v1v2, v2v3, . . . , vp−1vp} be the
spine of G. First assume that s is a vertex of P , say s = vi, i ∈ {1, . . . , p}. Let P1 =
{v1v2, . . . , vi−2vi−1} and P2 = {vi+1vi+2, . . . , vp−1vp}. It follows from Lemma 58 that
we may assume that at most one vertex is protected in P1 and at most one vertex is
protected in P2. Consider a strategy in which we decide to protect exactly two vertices
of P , say vertex vj , for j ∈ {1, . . . , i−1} and vertex vq, for q ∈ {i+1, . . . , p}. We may
assume that vj is protected during time step i − j and vertex vq is protected during
time step q− i (see Lemma 58). Notice that the vertices vj+1, . . . , vi−1, vi+1, . . . , vq−1

will not be protected in this strategy. Construct a (k + p)-star G′ as follows (see
Figure 5.10):
• Delete all vertices v1, . . . , vj as well as the legs at these vertices (all these vertices
are saved in our strategy).

• Delete all vertices vq, . . . , vp as well as the legs at these vertices (all these vertices
are saved in our strategy).

• Delete all edges of P .

• For every r ∈ {j+1, . . . , i−1, i+1, . . . , q−1}, let ur1, . . . , urdegG(vr)−2 be the neigh-

bors of vr not belonging to P ; delete vr and replace it by degG(vr)− 2 vertices
vr1, . . . , v

r
degG(vr)−2 such that vrl is adjacent to url for l ∈ {1, . . . ,degG(vr)− 2}.

• Join every vertex vrℓ , for r ∈ {j +1, . . . , i− 1} and ℓ ∈ {1, . . . ,degG(vr)− 2}, to
vi by a path P rℓ of length i− r.

• Join every vertex vrℓ , for r ∈ {i+1, . . . , q− 1} and ℓ ∈ {1, . . . ,degG(vr)− 2}, to
vi by a path P rℓ of length r − i.

From the above construction it follows that G′ is a (k + p)-star with center vi.
Now in order to solve our initial problem, we need to solve Max 0-1 Firefighter
in G′ with the following additional constraints: for every r ∈ {j + 1, . . . , i − 1, i +
1, . . . , q − 1} and every ℓ ∈ {1, . . . ,degG(vr) − 2} we are not allowed to protect
the vertices of V (P rℓ). Indeed, since we decided to protect vj and vq, the vertices
vj+1, . . . , vi−1, vi+1, . . . , vq−1 will not be saved. Notice that these vertices are repre-
sented by the vertices of paths P rℓ in G′. Moreover, if i− j 6= q− j then at time steps
i− j and q− j only b− 1 firefighters are available (since we protect vj and vq at these
time steps); if i− j = q− j then only b− 2 firefighters are available at time step i− j.
It follows from Theorem 67 and previous discussion that this problem can be solved
in polynomial time.

Since the number of choices of a pair of vertices (vj , vq) to be protected on P is
(i − 1) × (p − i), we can determine in polynomial time the best strategy to adopt
if we want to protect exactly two vertices on P . Notice that a similar procedure to
the one described above can be used if we decide to protect exactly one vertex on
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P respectively if we decide not to protect any vertex of P . Clearly the number of
choices of exactly one vertex vj, j ∈ {1, . . . , i − 1, i + 1, . . . , p}, to be protected on P
is p− 1. Thus we conclude that if s ∈ V (P ) we can determine an optimal strategy in
polynomial time.

It remains the case when s 6∈ V (P ). Similar to the proof of Theorem 67, we will
distinguish several cases. The case when s has degree one is trivial. Thus we may
assume now that degG(s) = 2. If b ≥ 2, we are done. Thus we may assume now
that b = 1. Let S be the set of vertices with weight equal to one. If both neighbors
of s are in S, then the optimal solution value is clearly |S| − 1. If both neighbors
of s are not in S, then the optimal solution value is clearly |S|. Hence the only case
remaining is when exactly one neighbor of s is in S. Let u1, u2 be the neighbors of
s such that u1 ∈ S, u2 6∈ S. If u2 6∈ V (P ), the optimal solution value is clearly |S|.
Thus we may assume now that u2 ∈ V (P ). In this case we have to compare the value
of two solutions: (i) |S| − 1 which is the value of the solution obtained by protecting
first u2 and then, during the second time step, we protect the neighbor of u1 which
is not s (if it exists); (ii) the value of the solution obtained by protecting first u1 and
then applying our algorithm described above to the graph G− (Q \ {u2}), where Q is
the set of vertices of the unique maximal path starting at u2 and containing u1. �
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Figure 5.10: The construction of G′ with i = 5, j = 2, and q = 7. The squares correspond
to vertices with weight one.

Extension to general weights. We would like to mention that some of our positive
results (Theorem 64, Theorem 67, and Theorem 68) may be generalized to a weighted
version.

Using the strategy in the proof of Theorem 64, if we direct the fire to a vertex of degree
at most b + 1 such that the total weight of the burned vertices is minimum then we get
the following result.

Theorem 69 For any budget b ≥ 1, Max Weighted Firefighter is polynomial-
time solvable for trees of maximum degree b + 2 if the fire breaks out at a vertex of
degree at most b+ 1.

Now by replacing the costs β(Li, Cj) in the proof of Theorem 67 by β(Li, Cj) =
−|∑v∈Sij

w(v)| and adapting the case when s is not the center of G according to the
weights, it is not difficult to see that we obtain the following.

Theorem 70 For any k ≥ 1 and any budget b ≥ 1, Max Weighted Firefighter
is polynomial-time solvable for k-stars.
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Using this result and adapting the case when s /∈ V (P ) according to the weights, it is
straightforward that we obtain the following result.

Theorem 71 For any k ≥ 1 and any budget b ≥ 1, Max Weighted Firefighter
is polynomial-time solvable for k-caterpillars.

5.3.3 Path-like graphs of bounded degree

As previously shown, for any fixed budget b ≥ 1, Firefighter is NP-complete on trees of
bounded degree b+3 (Theorem 61) and on trees of bounded pathwidth three (Theorem 65).
It is thus natural to ask the complexity of the problem when both the degree and the
pathwidth of the input graph are bounded. In what follows, we answer this question
positively.

Theorem 72 Consider a graph of pathwidth pw and maximum degree ∆.
If the number of initially burned vertices is bounded by g1(pw,∆) for some function g1
then there exists a protection strategy where at most g2(pw,∆) vertices get burned for
some function g2.

Proof. We first prove the following claim: Consider a graph of cutwidth cw. If the
number of initially burned vertices is bounded by g1(cw) for some function g1 then
there exists a protection strategy where at most g2(cw) vertices get burned for some
function g2. We will prove this by induction on cw.

The claim is obviously true when cw = 0 since the graph cannot contain any edge.
Suppose now that the property is true for any graph of cutwidth at most k, k > 0.
We show that it also holds for a graph of cutwidth k + 1. Let H = (V,E) be such
a graph, and F ⊆ V be the set of initially burned vertices with |F | ≤ g1(cw(H))
for some function g1. Consider a linear layout L = (v1, . . . , vn) of H such that for
every i = 1, . . . , n− 1, there are at most k+1 edges with one endpoint in {v1, . . . , vi}
and the other in {vi+1, . . . , vn}. For every s ∈ F , we define the following sets.

Ri(s) =

{ {s = vk, vk+1, . . . , vk′} if ∃vk′ ∈ N i[s] : vk′ = argmax
v∈N i[s]

dL(s, v)

Ri−1(s) otherwise
(5.1)

Li(s) =

{ {s = vk, vk−1, . . . , vk′} if ∃vk′ ∈ N i[s] : vk′ = argmin
v∈N i[s]

dL(s, v)

Li−1(s) otherwise
(5.2)

We are now in position to define the set Bi(s), called a bubble, by Bi(s) = Li(s)∪Ri(s).
Informally speaking, a bubble Bi(s) corresponds to the effect zone of s after i steps
of propagation i.e. every burned vertex inside the bubble is due to the vertex s. The
idea of the proof is then to show that every bubble can be “isolated” from the rest
of the graph in a bounded number of steps by surrounding it with firefighters (see
Figure 5.11). We then show that the inductive hypothesis can be applied on each
bubble which will prove the theorem.

Let s1, s2 ∈ F . We say that two bubbles Bi(s1) and Bj(s2) for some i, j ≥ 0
overlap if there exists an edge uv ∈ E with u ∈ Bi(s1) and v ∈ Bj(s2). In this case,
we can merge the two bubbles into one i.e. we create a new bubble which is the union
of Bi(s1) and Bj(s2).
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Let us consider an initially burned vertex s ∈ F and its bubble B2·cw(H)(s). First,
mergeB2·cw(H)(s) with every other bubbleB2·cwH

(s′) with s′ ∈ F that possibly overlap

into a new one B′
2·cw(H)(s). By definition, we know that the number of edges with an

endpoint in B′
2·cw(H)(s) and the other one in V \B′

2·cw(H)(s) is less or equal to 2·cw(H).

Thus, we define the strategy that consists in protecting one vertex v ∈ V \B′
2·cw(H)(s)

adjacent to a vertex in B′
2·cw(H)(s) at each step t = 1, . . . , 2 · cw(H). Let F ′ be the set

of vertices burned at step 2 · cw(H). Since ∆(H) ≤ 2 · cw(H), we deduce that |F ′| is
less or equal to |F | ·∆2·cw(H)

H ≤ g1(cw(H)) · (2 · cw(H))2·cw(H) = h(cw(H)) for some
function h. Let us consider the subgraph H ′ = H[B′

2·cw(H)(s)]. Observe that we can

safely remove every edge uv from H ′ for which u, v ∈ F ′. Indeed, such edge cannot
have any influence during the subsequent steps of propagation. By the definition of
a bubble, this implies that the cutwidth of H ′ is decreased by one and thus is now at
most k. Therefore, we can apply our inductive hypothesis to H ′ which tells us that
there is a strategy for H ′ such that at most g′2(cwH′) vertices are burned for some
function g′2. By Lemma 56, this strategy uses at most g′2(cwH′) steps to be applied.
It follows that the number of burned vertices in H after applying this strategy is
at most the number of burned vertices from step 1 to 2 · cw(H) + g′2(cw(H

′)) which
is |F |·∆(H)2·cw(H)+g′2(cwH′ ) ≤ g1(cw(H))·(2·cw(H))2·cw(H)+g′2(cw(H′)) = h(cw(H)) for
some function h. From now on, one can see that the previous argument can be applied
iteratively to each bubble. Since the number of bubbles is bounded by g1(cw(H))
(there is at most one bubble for each vertex initially on fire), we deduce that the total
number of burned vertices is bounded by some function of cw(H). This concludes the
proof of the claim.

We are now in position to show the theorem. Let G be a graph. Suppose that
the number of initially burned vertices in G is at most g1(pw(G),∆(G)) for some
function g1. We know that pw(G) ≤ cw(G) and ∆(G) ≤ 2 · cw(G) [78]. Thus the
number of burned vertices is at most g′1(cw(G)) for some function g′1. From the above
claim, we deduce that there exists a strategy such that at most g′2(cw(G)) vertices
get burned. Since cw(G) ≤ pw(G) ·∆(G) [42], it follows that the number of burned
vertices is bounded by g2(pw(G),∆(G)) for some function g2. This completes the
proof. �

s
B2(s)B3(s) B1(s)

Figure 5.11: A linear layout of a graph of cutwidth two. Dashed ellipses represent the
bubbles associated to an initially burned vertex s.

We choosed to present the following parameterized complexity results here rather than
in the later dedicated section. The reason is that these results complete quite well the
complexity analysis conducted so far. In the next section (Section 5.4), we show that
Dual Firefighter is fixed-parameter tractable with respect to the combined param-
eter kb and “maximum degree” of the input graph. Thus, using Theorem 72 together
with Corollary 85, we deduce the following.
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Theorem 73 Firefighter is fixed-parameter tractable with respect to the combined
parameter “pathwidth” and “maximum degree” of the input graph.

From the claim in Theorem 73, we easily deduce the following.

Corollary 74 Firefighter is fixed-parameter tractable with respect to the parame-
ter “cutwidth” of the input graph.

Finally, since for any graph G it holds that cw(G) ≤ bw(G)(bw(G)+1)
2 [18], we have the

following result.

Corollary 75 Firefighter is fixed-parameter tractable with respect to the parame-
ter “bandwidth” of the input graph.

5.4 Parameterized complexity in the general case

In this section, we give upper and lower bounds on parameterized complexity of the fol-
lowing three problems: Firefighter parameterized by k, Bounded Firefighter pa-
rameterized by kp, and Dual Firefighter parameterized by kb.

5.4.1 Firefighter

In the following, we will give the parameterized complexity upper and lower bounds of
Firefighter with respect to its standard parameterization.

Theorem 76 Firefighter is solvable in nO(k) time.

Proof. Let (G, s, b, k) be an instance of Firefighter. We run the nO(kp)-time
algorithm of Theorem 79 for all kp = 1, . . . , k. Observe that it is possible to save k
vertices of the graph if and only if the algorithm saves at least k vertices for some
value of kp. This implies a running time of nO(k). �

Next, we prove in the following that the above algorithm is nearly optimal. Recall that
ETH (Exponential-Time Hypothesis) is an assumption stating that the 3-Sat problem
cannot be solved in subexponential time in the worst case [68].

Theorem 77 For any fixed budget b ≥ 1, Firefighter is W[1]-hard with respect to

the parameter k and cannot be solved in no(
√
k) time even on bipartite graphs unless

ETH fails.

Proof. We construct an fpt-reduction from Clique to Firefighter as follows. Let
(G = (V,E), k) be an instance of Clique. We construct the instance (G′, s, b, k′) of
Firefighter as follows. (see Figure 5.12).
• For each edge uv ∈ E, we add a vertex euv; this set of vertices is denoted by F .

• Add b copies V 1, . . . , V b of V , i.e. , for each vertex v ∈ V , we add vertices
v1 ∈ V 1, . . . , vb ∈ V b.

• Add an edge from euv to both uh and vh for each uv ∈ E and each h = 1, . . . , b.

• Add a vertex s, and add vertices ai,j for all 1 ≤ i ≤ k−1 and 1 ≤ j ≤ (k−1)b+1.
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Figure 5.12: An instance of Clique and the corresponding graph G′ constructed in the
proof of Theorem 77 for k = 3 and b = 1.

• Connect ai,j to ai′,j′ (i
′ = i + 1) for all i, j, j′, connect a1,j to s for all j, and

connect ak−1,j to each vertex of V ′ =
⋃

1≤h≤b V
h for all j.

• Add b vertices c1, . . . , cb adjacent to all vertices of V ′.
To finish the construction, set k′ = kb+

(k
2

)
+ b.

We claim that (G, k) is a yes-instance if and only if (G′, s, b, k′) is a yes-instance.
“⇒”: Suppose that G has a clique C ⊆ V of size k. Then the strategy that

protects the vertices v1, . . . , vb for all v ∈ C saves the vertices euv for all u, v ∈ C.
Since C is a clique, these vertices euv are indeed present in G′. Additionally, we can
protect (and thus save) vertices c1, . . . , cb. It follows that this strategy saves at least
k′ vertices.

“⇐”: Conversely, suppose that there exists a strategy Φ = {D1, . . . ,Dn} for
(G′, s, k′, b) that saves at least k′ vertices whereDi = {p1i , . . . , pbi} for each i = 1, . . . , n.
First observe that if pht = ai,j for some i ,j, and h, then this vertex is not helpful,
as there is always a vertex ai,j′ that will be burned at time t and has the same
neighborhood as ai,j . Hence we can assume that no vertex ai,j is protected by the
strategy. This implies that all vertices of V ′ will be burned, except those that are
protected by the strategy. But then protecting vertices of F does not save any further
vertices. Since the fire will reach V ′ in k time steps, and thus F in k + 1 time steps,
the vertices in (D1 ∪ . . . ∪ Dn) ∩ V ′ are responsible for saving

(
k
2

)
vertices, which is

only possible if the vertices of (D1 ∪ . . . ∪Dn) ∩ V ′ induce a clique of size k in G.
Notice that the parameters in this reductions are quadratically related. Since

Clique is W[1]-hard with respect to k and cannot be solved in time no(k) unless ETH
fails [33], we obtain the desired lower bound. �

The above reduction is also a NP-hardness reduction, and simpler than the original
one on bipartite graphs [82].

5.4.2 Bounded Firefighter

We now consider the parameterized complexity of Bounded Firefighter parameterized
by kp. To this end, we introduce the notion of valid protecting set. A valid protecting
set is a subset of vertices D of a graph G such that there exists a strategy that protects
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exactly those vertices in D if the fire starts at some vertex s.

Lemma 78 Let G = (V,E) be a graph with an initially burned vertex s ∈ V . Veri-
fying whether a subset D ⊆ (V \ {s}) is a valid protecting set can be done in linear
time.

Proof. In this proof, we use the constrained protection phase. Let Li = {v ∈ V :
distG\⋃0≤j≤i−1 Lj∩D(s, v) = i} for any i > 0 and L0 = {s}. The graph G\⋃0≤j≤i−1Lj∩
D is obtained from G by removing protected vertices from time step 1 through i− 1.
Let ri = ib−|⋃0≤j<i Lj ∩D| be the number of available firefighters in step i. If there
exists i ∈ {1, . . . , |V |} such that |D∩Li| > ri or ri < 0, then there is no strategy with
respect to budget b that protects D. �

We are now in position to state the following result.

Theorem 79 Bounded Firefighter is solvable in nO(kp) time.

Proof. Let (G = (V,E), s, k, b, kp) be an instance of Bounded Firefighter.
Among all valid protecting set D ⊆ (V \ {s}) such that |D| ≤ kp, the algorithm
simply chooses the first one that saves at least k vertices. From Lemma 78, the
running time is nO(kp). �

By carrying out some modifications in the proof of Theorem 77, we can show that the
above algorithm has nearly the best running time.

Theorem 80 For any fixed budget b ≥ 1, Bounded Firefighter is W[1]-hard with

respect to the parameter kp and cannot be solved in no(
√

kp) time even on bipartite
graphs unless ETH fails.

Proof. Given an instance I = (G, k) of Clique we construct the in-
stance I ′ = (G, s, k′, b, kp) where G is the same bipartite graph as in the proof of

Theorem 77. We set kp = kb + b and k′ = kb +
(k
2

)
+ b. Correctness now follows

straightforwardly from the arguments in the proof of Theorem 77. �

5.4.3 Dual Firefighter

In the following subsection, we consider the Dual Firefighter problem. We first show
that Dual Firefighter can be solved in nO(kb) time. Analogously to the previous result,
we introduce the notion of valid burning set. A valid burning set is a subset B of vertices
of a graph G such that there exists a strategy for which, at the end of the process, the
burned vertices are exactly those in B if the fire starts at some vertex s.

Lemma 81 Let G = (V,E) be a graph with an initially burned vertex s ∈ V . Verify-
ing whether a subset B ⊆ V is a valid burning set can be done in linear time.

Proof. In this proof, we use the constrained protection phase. First of all, if s 6∈ B
or G[B] is not connected then return “no”. We now suppose that s ∈ B and G[B]
is connected. Observe that the set of protected vertices must be exactly N(B). For
any v ∈ N(B), let ds(v) be the length of a shortest path with endpoints s and v
in G whose internal vertices are all in B. Then v has to be protected before or at
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time step ds(v). It follows that B is a valid burning set if and only if the number
of vertices v for which ds(v) ≤ t is at most bt for every t = 1, . . . , k. Finally, we
note that ds(v) can be easily computed using a breadth-first search. Hence we can
determine whether B is a valid burning set in linear time. �

Theorem 82 Dual Firefighter is solvable in nO(kb) time.

Proof. Let (G = (V,E), s, b, kb) be an instance of Dual Firefighter. Observe that
if a vertex of G is burning and is at distance kb from s then we can deduce that at
least kb + 1 are burned. Therefore, we can restrict valid burning sets to those which
are subset of the kthb neighborhood of s. Having said that, exhaustively consider all
subsets B ⊆ Nkb [s] with |B| ≤ kb. If B is a valid burning set, then the answer is “yes”.
If no valid burning set is found, then the answer is “no”. It follows from Lemma 81
that the running time is nO(kb). It is worth noting that this time can be rewritten
as ∆(G)k

2
b · n since |Nkb [s]| ≤ ∆(G)kb . �

We now show that the above algorithm is likely to have the optimal running time.

Theorem 83 Dual Firefighter is W[1]-hard with respect to the parameter kb and
cannot be solved in no(kb) time even on bipartite graphs unless ETH fails.

Proof. We construct an fpt-reduction from the Clique problem (see Appendix A)
on regular graphs to Dual Firefighter. Let (G, k) be an instance of Clique where
G is a ∆-regular graph. We construct the instance (G′, s, b, kb) of Dual Firefighter
from (G, k) as follows. Add a new vertex s adjacent to all vertices of G. Set kb = k+1
and b = b1 + b2 where b1 = k(n− k) and b2 = k∆−

(
k
2

)
. In what follows, attaching a

guard vertex g to a vertex v means making a copy of a star with center g and b+ kb
leaves such that g is made adjacent to v. Thus, if we want to burn at most kb vertices
then a guard vertex needs to be saved or protected. Now, attach b − (n − k) guard
vertices to s and n−k guard vertices to every vertex in V as well. Remove every edge
uv ∈ E and add an edge-vertex euv adjacent to u and v (see Figure 5.13). Notice
that, at time step 1, there are only n−k firefighters that can be placed freely because
of the guard vertices.

We claim that (G, k) is a yes-instance if and only if (G′, s, kb, b) is a yes-instance.
“⇒”: Suppose that we have a clique C ⊆ V of size k and consider the following

strategy. At time step one, the strategy uses the n−k remaining firefighters to protect
all the original vertices V in G′ except those in the clique C. At time step two, all
the k vertices of C are burned. Since there are n− k guard vertices attached to each
vertex in C, we need to protect b1 = k(n− k) vertices. Moreover, there are k∆−

(k
2

)

edge-vertices adjacent to the vertices in the clique C. Since there remain b2 = b− b1
firefighters, we can protect all of them. Hence, no more than k + 1 = kb vertices are
burned at the end of the process.

“⇐”: Conversely, suppose that there is no clique of size k in G. At time step one,
any valid strategy has to place the n−k remaining firefighters on vertices that are not
edge-vertices; otherwise at least k+2 > kb vertices will burn. At time step two, since
there is no clique of size k, there will be at least k∆−

(k
2

)
+ 1 edge-vertices adjacent

to the k burned vertices. For the same reason as before, there remains b2 = b − b1
firefighters which is not enough to protect these edge-vertices. Therefore, given any
valid strategy there will be at least k + 2 > kb burned vertices.
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We note that the parameters used in this reduction in are linearly related. Since
Clique on regular graphs is W[1]-hard with respect to k and cannot be solved in time
no(k) unless ETH fails [86], we obtain the desired lower bound no(kb). �

s

n− k = 1

b− (n− k) = 8

Figure 5.13: Construction of G′ (right) from a regular graph of degree three (left). In this
example, we have k = 3, n = 4, ∆ = 3, b1 = 3, b2 = 6 and b = 9. Guard vertices are
represented by a dot within a circle.

5.5 Parameterized algorithms

In this section, we start by showing the fixed-parameter tractability of Dual Firefighter
with respect to the combined parameter kb and b. Then, we resolve several open questions
of Cai et al. [27] on trees. We also refine and extend some of their results. Finally,
we extend these results to the graphs of bounded treewidth. We further derive that
Firefighter is in FPT with respect to the parameter k on graphs of bounded local
treewidth, including planar graphs, graphs of bounded genus, apex-minor-free graphs,
and graphs of bounded maximum vertex degree.

5.5.1 Dual Firefighter parameterized by kb and b

In contrast to what we have previously shown, we prove that Dual Firefighter becomes
fixed-parameter tractable if we combine the parameter kb with the budget b.

Theorem 84 Dual Firefighter is fixed-parameter tractable with respect to the
combined parameter kb and b. It can be solved in O((2b+1 − 1)kb+b−1n) time.

Proof. In this proof, we consider the constrained protection phase. We present a
simple branching algorithm. Assume that we are in the i-th time step and let B be
the set of vertices which are currently on fire. Moreover, let P be the set of already
protected vertices (in the first step we have B = {s} and P = ∅). Let a = ib − |P |
and r = |N(B) \ P |. The algorithm does the following:

1. If |B| > kb, then we immediately answer “no”.

2. Observe that in the i-th step we are allowed to protect at most min(a, r) vertices.
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If a ≥ r, then we can greedily protect the whole set N(B) \ P . Hence in this
case we answer “yes”.

3. In the last case, when a < r, we branch on all subsets of N(B) \ P of size at
most a. Observe that the number of branches is equal to

∑a
j=0

(r
j

)
≤ 2r − 1,

since we have a < r.
The running time of the algorithm is as follows. We introduce a measure α =

(kb − |B|) + (ib− |P |) which we use in our time bound. At the beginning of the first
step of the burning process, we have α = (kb − 1) + (b − 0) = kb + b − 1. By T (α)
we denote the upper bound on the number of steps that our algorithm requires for
a graph with measure value α. Observe that for α ≤ 0, we have T (α) = O(n). Let
us assume that the algorithm did not stop in step 1 nor 2, and it branches into at
most 2r − 1 choices of protected vertices. Observe that no matter how many vertices
the algorithm decides to protect, the value of the measure decreases by exactly r− b.
Consequently, we have the inequality T (α) ≤ (2r − 1)T (α − r + b) +O(n). Since the
algorithm did not stop in steps 1 or 2, we infer that r ≥ b+1. The time bound follows
from the fact that the worst case for the inequality occurs when r = b+ 1. �

Using an easy observation, we can deduce the following corollary.

Corollary 85 Dual Firefighter is fixed-parameter tractable with respect to the
combined parameter kb and “maximum degree” ∆ of the input graph. It can be solved
in O((2∆+1 − 1)kb+∆−1n) time.

Proof. Let (G, s, b, kb) be an instance of Dual Firefighter where G has max-
imum degree ∆. If b ≥ ∆ then protect all the vertices in N(s) at time step one.
Otherwise, apply the algorithm from Theorem 84 that runs in O((2∆+1− 1)kb+∆−1n)
since b < ∆. �

5.5.2 Firefighting on trees

In this section, we study the Firefighter, Bounded Firefighter and Dual Fire-
fighter problems on trees. Previously known results on that class of graphs are from Cai
et al. [27]. More specifically, they obtained the following parameterized algorithms on
trees and budget b = 1.

• A randomized algorithm solving Firefighter in time O(4k + n), which can be
derandomized to a O(n+2O(k))-time algorithm. They also gave a polynomial kernel
with respect to the parameter k.

• A randomized algorithm for Dual Firefighter of running time O(4kbn), which
can be derandomized to a O(2O(kb)n log n)-time algorithm. They left as an open
problem whether Dual Firefighter has a polynomial kernel with respect to the
parameter kb.

• For Bounded Firefighter, they gave a randomized algorithm of running

time O(k
O(kp)
p n), which can be derandomized to a O(k

O(kp)
p n log n)-time algorithm.

They left open whether the problem has a polynomial kernel with respect to the
parameter kp, and asked whether there is an algorithm solving the problem in
time 2o(kp log kp)nO(1).
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In what follows, we give a deterministic O((b+1)kbn)-time algorithm for Dual Fire-
fighter on trees which improves the O(4kn) running time of the randomized algorithm
from [27] for b = 1. We also answer the open question of Cai et al. by showing that Dual
Firefighter parameterized by kb has no polynomial kernel on trees of maximum vertex
degree four for b = 1, and no polynomial kernel on trees of maximum vertex degree b+ 4
for any b ≥ 2.

We provide a deterministic algorithm solving Bounded Firefighter on trees in
O((b + 1)kp/b+1kpn) time. This answers an open question of Cai et al. since it gives us
a O(2kpkpn)-time algorithm when b = 1. Furthermore, we show that the problem has
no polynomial kernel with respect to the parameter kp on trees. This last result was
independently obtained by Yang [104]. Based on the parameterized algorithm, we also
give an exact subexponential-time algorithm, for the classical firefighter problem (i.e. the

Firefighter problem with budget b = 1) on a tree in O((b + 1)
√

2n/bn3/2) time, thus
improving on the 2O(

√
n logn) running time from [27, 56] for b = 1.

Finally, we show a deterministic algorithm solving Firefighter on trees in O((b +
1)k/b+3kn) time, improving the running time O(4k + n) of the randomized algorithm
from [27] for b = 1.

Dual Firefighter. Using a simple branching algorithm we get the following result.

Theorem 86 Dual Firefighter is solvable in O((b+ 1)kbn) time on trees.

Proof. Let (T, s, b, kb) be an instance of Dual Firefighter where T is a tree with
root s. If s has at most b children, then we immediately answer “yes”. We may
assume that the root has exactly a children where a < b + kb since otherwise we
simply answer “no”. We use Lemma 58 and branch on every subset of b children of
the root s. In each branch, we cut the subtree rooted at the protected vertex, identify
all the vertices that are on fire after the first step, and decrease the parameter by
a− b. In this way, we obtain a new instance of the Dual Firefighter problem with
parameter value equal to kb − (a− b). The time bound follows from the inequality

T (kb) ≤
(
a

b

)

T (kb − (a− b)) +O(n)

which is worst when a = b+ 1. �

The above theorem directly implies that Dual Firefighter admits a kernel of size
(b+1)kb . However, we show in the following that this size cannot be reduced to (b+kb)

O(1)

unless NP ⊆ coNP/poly. As a first step toward this goal, we provide the proof for b = 1
and then extend this result to any fixed b ≥ 1.

Theorem 87 There is no polynomial kernel for Dual Firefighter with respect
to the parameter kb and budget one even for trees of maximum degree four unless
NP ⊆ coNP/poly.

Proof. We apply Theorem 4 (see subsection 2.3.2), where as the language L we
use Dual Firefighter on trees of maximum degree three and budget one, which
is NP-complete [55]. In the following, we show that Dual Firefighter on trees
with maximum degree three and budget one cross-composes to Dual Firefighter
parameterized by kb on trees with maximum degree four.
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Observe that any polynomial equivalence relation is defined on all words over the
alphabet Σ and for this reason we should also define how the relation behaves on
words that do not represent instances of the problem. For the equivalence relation R
we take a relation that puts all malformed instances into one equivalence class and all
well-formed instances are grouped according to the number of vertices we are allowed
to burn.

If we are given malformed instances, we simply output a trivial no-instance. Thus
in the rest of the proof we assume we are given a sequence of instances (Ti, si, 1, kb)

t
i=1

of Dual Firefighter, where each Ti is of maximum degree three. Observe that in all
instances we have the same value of the parameter kb. Without loss of generality, we
assume that t = 2h for some integer h ≥ 1. Otherwise we can duplicate an appropriate
number of instances (Ti, si, 1, kb).

We create an instance (T, s, 1, k′b) of Dual Firefighter parameterized by kb
where T is a tree defined as follows. We start with a full binary tree rooted at a
vertex s with exactly t leaves . Now for each i = 1, . . . , t, we replace the ith leaf of
the tree by the tree Ti rooted at si. Finally, we set k′b = kb + h = kb + log2 t. Observe
that since each tree Ti is of maximum degree three, the tree T is of maximum degree
four. To prove correctness, it is enough to show that any strategy that minimizes the
number of burned vertices protects exactly one vertex at each level 1, . . . , h, which
follows from Lemma 58. Hence in any strategy that minimizes the number of burned
vertices, there will be exactly one vertex si which is on fire after h steps. �

We now generalize the above result using the fact that Dual Firefighter is NP-
complete for trees of maximum degree b+ 3 where b ≥ 2 is fixed (Theorem 61).

Theorem 88 For any fixed budget b ≥ 2, there is no polynomial kernel for the Dual
Firefighter with respect to the parameter kb even for trees of maximum degree b+4
unless NP ⊆ coNP/poly.

Proof. Let b ≥ 2 be any fixed constant. We use Theorem 4, where L is the Dual
Firefighter problem on trees of maximum degree b + 3 and budget b. To give
the cross-composition, we use the same proof from Theorem 87 with the following
differences.
• For the equivalence relation R, we take a relation that puts all malformed in-
stances into one equivalence class, and all well-formed instances are grouped
according to the parameter value kb and the budget b.

• We assume that t = (b+ 1)h for some integer h ≥ 1.

• The tree T is now constructed from a full (b + 1)-ary tree rooted at vertex s
with exactly t leaves. Finally, we set k′b = kb + logb+1 t.

This completes the proof. �

Bounded Firefighter. Before we present the algorithm for this problem, we need to
introduce the following notation. Let T = (V,E) be any rooted tree with n vertices. Use
a pre-order traversal of T to number the vertices of T from 1 to n. We say that u ∈ V is
to the left of v ∈ V if the number assigned to u is not greater than the number of v in the
order. It is then easy to define what the leftmost or rightmost vertex is.

As a matter of fact we provide an algorithm for solving the optimization problem
Max Bounded Firefighter. Obviously, this implies that Bounded Firefighter is
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also solvable with the same running time by applying this algorithm.

Theorem 89 Max Bounded Firefighter is solvable in O((b+1)(kp/b)+1kpn) time
on trees.

Proof. Let (T, s, b, kp) be an instance of Max Bounded Firefighter on a tree T .
Assume that T is rooted at s and let h = ⌈kp/b⌉. By Lemma 58, we can define a
characteristic vector χv of length h for each vertex v of the tree, which has value
pi ∈ {0, . . . , b} at position i if and only if the optimal strategy protects pi vertices
at level i in the part of the tree to the left of v. We use these vectors as the basis
for a dynamic programming procedure. However, the vector cannot ensure that no
ancestors of a protected vertex will be protected. To ensure this, we add another
dimension to our dynamic programming procedure. The pre-order numbering ensures
that no descendant is protected.

The dynamic programming algorithm is then as follows. Let L be the set of
vertices in T that are at level at most h. For each v ∈ L, let Pv denote the path in
T between v and s. For each vector χ ∈ {0, . . . , b}h and each integer 0 ≤ i ≤ h, we
compute Av(χ, i), the maximum number of vertices one can save when protecting at
most χ(j) vertices at level j, where protected vertices must lie to the left of v but
at level greater than i when lying on Pv , and no protected vertex is an ancestor of
another. Observe that s is the leftmost vertex of L. Now set As(χ, i) = 0 for any χ
and i. Then

Av(χ, i) = max
{

Al(v)(χ,min{level(v)− 1, i}),
[χ(level(v)) ≥ 1 ∧ level(v) > i] ·
(r(v) +Al(v)(χ

v, level(v)− 1))
}

Here level(v) is the level where vertex v is lying, l(v) is the rightmost vertex in L
which has strictly smaller value in the pre-order than v, and r(x) is the number of
vertices saved when protecting only x. Moreover, χv is the vector obtained from χ by
reducing the number plevel(v) by 1. In the formula we use Iverson’s bracket notation,
where [φ] is equal to one if φ is true and zero otherwise.

To see that the above formula is correct, observe that we can either protect the
considered vertex v or not. If we do not protect v, then we must ensure that the value
for the second dimension of our dynamic programming procedure does not exceed
the length of Pv, yet still captures the same forbidden part of Pv. Correctness then
follows from the fact that the parent of v is always on Pl(v). If we do protect v, we
can protect v only if we are allowed to do so, i.e. if χ(level(v)) ≥ 1 and level(v) > i.
Furthermore, we need to ensure that no ancestor of v is protected later. Therefore,
we set the value for the second dimension of our dynamic programming procedure to
level(v)− 1.

To get the solution for the whole tree T , return Av∗(χ
∗, 0), where v∗ is the right-

most vertex of L and χ∗ is a vector of length h with the h-th entry set to kp− (h−1)b
and the other entries set to b. To obtain the claimed running time, first find L, and
then l(v) for each vertex v ∈ L. This can be done in linear time by a depth-first
search. We can also compute r(x) for each x ∈ V (T ) in linear time, as r(x) equals
one plus the number of descendants of x. By traversing the vertices of L from left to
right, the total running time is O((b+ 1)hkpn) = O((b+ 1)(kp/b)+1kpn). �

Since we assumed that b ≤ kp (see the discussion in Section 5.2), we have the following
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immediate corollary.

Corollary 90 Bounded Firefighter is fixed-parameter tractable with respect to
the parameter kp on trees.

The following result states that it is unlikely that Bounded Firefighter parame-
terized by kp admits a polynomial kernel on trees. Like we did for Dual Firefighter,
we give the proof for b = 1 first and then extend it for any fixed b ≥ 2.

Theorem 91 There is no polynomial kernel for Bounded Firefighter with re-
spect to the parameter kp and budget one even for trees of maximum degree four
unless NP ⊆ coNP/poly.

Proof. There are only three differences compared to the proof for Theorem 87.
• The language L is now Bounded Firefighter on trees of maximum degree
three and budget one.

• For the equivalence relation R, we take a relation that puts all malformed in-
stances into one equivalence class, and all well-formed instances are grouped
according to the number of vertices of the tree, the parameter value kp, and the
value k.

• The instance (T, s, 1, k′, k′p) of Bounded Firefighter parameterized by kp is
as follows. The tree T is constructed as described in the proof of Theorem 87.
The value k′p is set to kp + h, and the value of k′ is equal to k + (t− 1)n+ (t−
h− 1), where n is the number of vertices in each of the trees Ti. The additional
summands are derived from the fact that any optimal strategy will ensure that
after h steps exactly one vertex si will be on fire and hence we save t−1 subtrees
rooted at si, each containing n vertices, and t− h− 1 vertices of the full binary
tree.

This completes the proof. �

Using the fact that Theorem 61 implies the NP-completeness of Bounded Fire-
fighter for trees of maximum degree b+3 for any fixed budget b ≥ 2, we may generalize
the previous result as follows.

Theorem 92 For any fixed budget b ≥ 2, there is no polynomial kernel for Bounded
Firefighter with respect to the parameter kp even for trees of maximum degree b+4
unless NP ⊆ coNP/poly.

Proof. We start with the proof from Theorem 91 and modify it as follows.
• For the equivalence relation R, we take a relation that puts all malformed in-
stances into one equivalence class, and all well-formed instances are grouped
according to the number of vertices of the tree, the parameter value kp, the
value k and the budget b.

• We assume that t = (b+ 1)h for some integer h ≥ 1.

• The tree T is now constructed from a full (b + 1)-ary tree rooted at vertex s
with exactly t leaves.

This completes the proof. �
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Firefighter. Using the dynamic programming algorithm of Theorem 89, we can easily
prove the following.

Corollary 93 Firefighter is solvable in O((b+ 1)(k/b)+2kn) time on trees.

Proof. Let (T, s, b, k) be an instance of Firefighter on a tree T . Using the same
argument from Theorem 76, we run the dynamic programming algorithm for Max
Bounded Firefighter (see Theorem 89) for all kp = 1, . . . , k. Furthermore, we
note that

k∑

i=1

((b+ 1)(i/b)+1in) ≤ kn(b+ 1)

k∑

i=1

(b+ 1)i/b ≤ (b+ 1)k/b+2kn,

implying that the worst-case running time is O((b+ 1)k/b+2kn). �

As we assumed that b ≤ k (see the discussion in Section 5.2), we get the following
immediate corollary.

Corollary 94 Firefighter is fixed-parameter tractable with respect to the parame-
ter k on trees.

A subexponential algorithm. To obtain a good subexponential algorithm for the
Max Firefighter problem, we use the following lemma. A similar idea for b = 1
appeared independently in [56].

Lemma 95 If a vertex at level ℓ burns in an optimum strategy for an instance of the
Max Firefighter problem on trees, then at least b

2 (ℓ
2 + ℓ) vertices are saved.

Proof. Let (T, s, b) be an instance of the Max Firefighter problem on trees, and
let v be a vertex of level ℓ that burns in an optimum strategy. Then the strategy
protects b vertices at level ℓ, and by Lemma 58 it thus protects b vertices p1i , . . . , p

b
i

at each level i for 1 ≤ i ≤ ℓ. For any i, each of the subtrees rooted at p1i , . . . , p
b
i

should contain at least ℓ− i+ 1 vertices, or it would have been better to protect the
vertex at level i that is on the path from v to s. But then the strategy saves at least
b
∑ℓ

i=1(ℓ− i+ 1) = b
2(ℓ

2 + ℓ) vertices. �

Theorem 96 Max Firefighter is solvable in O((b+ 1)
√

2n/bn3/2) time on trees.

Proof. Let (T, s, b) be an instance of the Max Firefighter problem on trees.
Suppose that a vertex v at level

√

2n/b burns in an optimum strategy. Then, by
Lemma 95, the strategy saves at least n+

√

bn/2 > n vertices, which is not possible.
It follows that all vertices at level

√

2n/b are saved in any optimum strategy. Since
in any optimum strategy every protected vertex has a burned ancestor by Lemma 58,
all protected vertices are at level at most

√

2n/b. Hence there is an optimum strategy
that protects at most b

√

2n/b =
√
2bn vertices, and we can find the optimum strategy

by running the algorithm of Theorem 89 with kp =
√
2bn. �
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This implies an O(2
√
2nn3/2)-time algorithm for the classical firefighter problem (b = 1)

on trees.

5.5.3 Firefighting on tree-like graphs

We generalize the above results by showing that Bounded Firefighter (resp. Fire-
fighter) is fixed-parameter tractable when parameterized by kp (resp. k) and the
treewidth of the underlying graph. To this end, we use Monadic Second Order Logic
(see Section 2.3.1). As a matter of fact, we show that Max Bounded Firefighter can
be solved in f(tw, kp) ·nO(1) time where tw is the treewidth of the input graph. To do that,
we actually need Linear Extended MSOL (LEMSOL) [10], which allows the maximization
over a linear combination of the size of unbound set variables in the MSOL formula. (The
definition of LEMSOL in [10] is slightly more general, but this suffices for our purposes.)

Theorem 97 Max Bounded Firefighter is solvable in f(tw, kp)·nO(1) time where
tw is the treewidth of the input graph and f is a function that solely depends on tw
and kp.

Proof. Let (G, s, b, kp) be an instance of Max Bounded Firefighter such that the
treewidth of G is tw. Recall that we assumed b ≤ kp (see the discussion in Section 5.2).
Use Bodlaender’s Algorithm [22] to find a tree decomposition of G of width at most
tw. Consider the following MSOL formulae.

NextBurn(Bi−1, Bi, p
1
1, . . . , p

b1
1 , . . . , p1i , . . . , p

bi
i ) :=

∀v
((

v ∈ Bi−1 ∨ ∃u
(

u ∈ Bi−1 ∧ adj(u, v) ∧
(
∧

1≤j≤i
1≤h≤bj

v 6= phj

)))

⇔ v ∈ Bi

)

This expresses that if the vertices of Bi−1 are burning by time step i − 1, then the
vertices of Bi burn by time step i, assuming that vertices p11, . . . , p

b1
1 , . . . , p1i , . . . , p

bi
i

have been protected so far, with bj ≤ b for j = 1, . . . , i.

Saved(S,B, p11, . . . , p
b1
1 , . . . , p1m, . . . , pbmm ) :=

∀u
(

u ∈ S ⇒
(

u 6∈ B ∧ ∀v
(

adj(u, v)⇒ v ∈ S ∨
∨

1≤i≤m
1≤h≤bi

phi = u
)))

This expresses that S is a set of saved vertices when B is a set of burned vertices and
vertices p11, . . . , p

b1
1 , . . . , p1m, . . . , pbmm are protected, with bj ≤ b for j = 1, . . . ,m.

Protect(S, b1, . . . , bℓ) := ∃p11, . . . , pb11 , . . . , p1ℓ , . . . , p
bℓ
ℓ ∃B,B0, . . . , Bℓ−1

∀u (u ∈ B0 ⇔ u = s) (5.3)

∧
∧

1≤i≤ℓ−1

NextBurn(Bi−1, Bi, p
1
1, . . . , p

b1
1 , . . . , p1i , . . . , p

bi
i ) (5.4)

∧
∧

1≤i≤ℓ
1≤h≤bi

phi 6∈ Bi−1 (5.5)

∧ ∀u
(( ∨

0≤i≤ℓ−1

u ∈ Bi

)

⇒ u ∈ B
)

(5.6)

∧ Saved(S,B, p11, . . . , p
b1
1 , . . . , p1ℓ , . . . , p

bℓ
ℓ ) (5.7)
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This expresses that S can be saved by protecting bi vertices in step i. The sets Bi

contain all vertices that are burned by time step i, which is ensured by the formulas

in lines 5.3 and 5.4. The set B contains vertices that are not saved (line 5.7) and
all vertices of the sets Bi (line 5.6). The vertices p11, . . . , p

b1
1 , . . . , p1ℓ , . . . , p

bℓ
ℓ are the

vertices that are protected. Line 5.5 ensures that the vertices we want to protect are
not burned by the time we pick them. Then we want to find the largest set S such
that

Protectkp(S) :=
∨

1≤ℓ≤⌈kp/b⌉

∨

1≤d≤b
b(ℓ−1)+d≤kp

Protect(S,

ℓ−1
︷ ︸︸ ︷

b, . . . , b, d)

is true. Following a result of Arnborg, Lagergren, and Seese [10], this can be done in
f(tw, kp) · nO(1) time using the above formula. �

From the above Theorem, we immediately deduce the following.

Corollary 98 Bounded Firefighter is fixed-parameter tractable with respect to
the combined parameter kp and treewidth of the input graph.

In the same way as Corollary 93, we then obtain the following.

Corollary 99 Firefighter is fixed-parameter tractable with respect to the combined
parameter k and treewidth of the input graph.

This algorithm also works on graphs of bounded local treewidth.

Corollary 100 Firefighter is fixed-parameter tractable with respect to the param-
eter k on graphs of bounded local treewidth.

Proof. Let (G, s, b, k) be an instance of Firefighter. Observe that if the graph G
has a vertex at distance more than k from the initially burned vertex s, then a strategy
that protects any vertex at distance i from s in time step i will save at least k vertices,
and we can answer “yes” immediately. From the previous discussion, we may assume
that G = G[Nk(s)]. Because G has bounded local treewidth, there exists a function f
such that ltwk(G) ≤ f(k). Therefore, we have tw(G) ≤ f(k) since G = G[Nk(s)] and
thus tw(G) = ltwk(G). �

The class of graphs having bounded local treewidth coincides with the class of apex-
minor-free graphs [53], which includes the class of planar graphs.

Corollary 101 Firefighter is fixed-parameter tractable with respect to the param-
eter k on planar graphs.

5.6 Parameter “vertex cover number”

In this section, we show that the Firefighter problem is fixed-parameter tractable with
respect to the parameter “vertex cover number”.

Theorem 102 Firefighter admits a kernel with O(2τ τ2) vertices where τ is the
vertex cover number of the input graph.
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Proof. Since Firefighter fpt-reduces with respect to the parameter vertex cover
number to Dual Firefighter by setting kb = n − k, we will prove the result for
Dual Firefighter for convenience.

Let (G = (V,E), s, b, kb) be an instance of Dual Firefighter with |V | = n.
We may assume that |N(s)| < b + kb, because otherwise the answer is clearly “no”.
First, we compute in polynomial-time a 2-approximate vertex cover C ′ ⊆ V where
|C ′| = τ ′ ≤ 2τ .

If b ≥ τ ′ then the answer is “yes”. Indeed, suppose that b ≥ τ ′. If s /∈ C ′, then it
is enough to protect all the vertices in C ′ at the first step to stop the fire. If s ∈ C ′,
then let N1(s) = N(s) ∩C ′ and N2(s) = N(s) \C ′. If |N2(s)| < kb, then the strategy
that protects all the vertices in C ′ at the first step will result in at most kb burned
vertices in G. If |N2(s)| ≥ kb, then consider the following strategy. At the first time
step, protect all the vertices in N1(s), and b− |N1(s)| vertices of N2(s). Notice that
|N1(s)| ≤ b since |N(s)| ≤ b+ kb. At the second time step, protect all the vertices in
C ′ \N1[s]. Hence, the number of burned vertices using this strategy is at most kb.

From now on, we assume b < τ ′. Observe that every two steps at least one
vertex inside C ′ gets burned. It follows that after 2τ ′ steps, all the vertices in G are
necessarily burned. Since the number of steps is at most 2τ ′, there is a total of at
most 2τ ′b < 2τ ′2 protected vertices.

We now provide the kernelization algorithm. We call a set T ⊆ V a twins set if
for every v, u ∈ T , v 6= u, we have N(u) = N(v) and uv /∈ E. Consider the following
reduction rule.

Reduction rule. If there exists a twins set T ⊆ V \ C ′ such that |T | ≥ 2τ ′2 + 1,
then delete |T | − 2τ ′2 − 1 vertices of T .

As to the correctness of the rule, let Φ be a strategy such that at most kb vertices
are burned in G and T ⊆ V \ C ′ be a twins set. Observe that if Φ protects a subset
T1 ⊆ T of vertices then protecting any subset T2 ⊆ T instead of T1 such that |T2| = |T1|
leads to another strategy that saves exactly the same number of vertices. It follows
that if Φ protects a vertex in a twins set that has been deleted by the reduction
rule then we can protect any other non-deleted vertex in the same twins set instead,
without changing the amount of saved vertices. Moreover, we have |T1| ≤ 2τ ′2 since
at most 2τ ′2 vertices are protected. Therefore, it is enough to keep 2τ ′2 + 1 vertices
in each twins set of V \ C ′. Conversely, if there is a strategy for which at most kb
vertices in G′ are burned, then applying this strategy in G will result in at most kb
burned vertices in G.

Let G′ = (V ′, E′) be the graph obtained by iteratively applying the above reduc-
tion rule to every twins set in V \ C ′. Notice that the procedure runs in polynomial
time. The number of distinct twins sets in V \ C ′ is at most 2τ (one for each subset
of C ′). Moreover, each of these twins set has at most 2τ ′2 +1 vertices. Therefore, the
size of the reduced instance is O(2τ τ2). This completes the proof. �

While the above result is useful as a complexity classification result, it might be more
efficient to use the following kernelization instead, depending of the size of τ and k.

Theorem 103 Firefighter admits a kernel with O(2τk) vertices where τ is the
vertex cover number of the input graph.

Proof. We use the same approach as in the proof of Theorem 102 with the following
differences. Let (G, s, b, k) be an instance of Firefighter. We iteratively apply the
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following reduction rule to every twins set in G to obtain a new graph G′ = (V ′, E′).
Reduction rule: If there exists a twins set T such that |T | ≥ k + 1, then delete

|T | − k − 1 vertices of T .
Let C ⊆ V ′ be a minimum vertex cover and let D = V ′ \ C be an independent

set. The number of distinct twins sets in D is at most 2τ (one for each subset of C).
Moreover, each twins set in G′ has at most k + 1 vertices. Therefore, the size of the
reduced instance is at most O(2τk).

The proof of correctness uses similar arguments as for Theorem 102 since we may
assume that no strategy can protect more that k vertices otherwise the problem is
trivial. �

5.7 Approximability

Finbow and MacGillivray [54] asked whether there exists a constant c > 1 such that
the degree greedy algorithm that consists, at each time step, to protect a highest degree
vertex adjacent to a burning vertex, gives a polynomial-time c-approximation for Max
Firefighter for trees. The following proposition answers this question negatively.

Theorem 104 For any budget b ≥ 1, there exists no function α : N → (1, n) such
that the degree greedy algorithm is a polynomial-time α(n)-approximation algorithm
for Max Firefighter for trees.

Proof. Consider a tree T (r, h− 1, b+ 1) where h is a positive integer (see definition
in the proof of Theorem 61). Add a vertex s adjacent to r and a vertex v1 adjacent
to s; for i = 2, . . . , h − 1, add a path of length i − 1 with endpoints ui and vi such
that ui is adjacent to s; finally, for i = 1, . . . , h − 1, add b+ 2 vertices adjacent to vi
(see Figure 5.14).

Notice that the degree greedy algorithm protects vertices in the following order:
v1, . . . , vh−1. Thus it saves gh = (h− 1)(b+ 2) vertices. However, it is not difficult to
see that the optimal solution protects vertices in the following order: r, v2, . . . , vh−1.
Thus, in an optimal solution we save opth = (h − 2)(b + 2) +

∑h−1
i=0 (b + 1)i vertices.

Since opth
gh
→ +∞ when h→ +∞, the result follows. �

In contrast to Max Firefighter which is constant approximable on trees, the fol-
lowing theorem shows a strong inapproximability result for Min Firefighter even when
restricted to trees.

Theorem 105 For any ε > 0 and any budget b ≥ 1, Min Firefighter is not n1−ε-
approximable even for trees, unless P = NP .

Proof. We construct a simple gap-introducing reduction from Save to Min Fire-
fighter. Let I = (T,C, s, b) be an instance of Save consisting of a tree T = (V,E)
with |V | = n1 and a subset C ⊆ V which corresponds to the set of leaves. We construct
an instance I ′ = (T ′, s′, b) of Min Firefighter consisting of a tree T ′ = (V ′, E′) with
|V ′| = n as follows. For every leaf ℓ of T , add ⌊nβ

1 + b⌋ vertices adjacent to ℓ where

β = 4
ε − 3. Notice that n = ⌊nβ

1 + b⌋|S|+ n1 < nβ+3
1 .

If there exists a strategy that saves all the vertices in C then at most n1 vertices
are burned in V ′.

Conversely, if there is no strategy that saves all the vertices in C then at least nβ
1 >
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Figure 5.14: Instance where the degree greedy algorithm gives no approximation guarantee
for the case b = 1. Since here S = V , we did not represent vertices in S by squares.

n1−εn1 vertices are burned in V ′. Using Theorem 8, we deduce that there is no
polynomial-time n1−ε-approximation algorithm forMin Firefighter unless P = NP.

�

5.8 Conclusion and open problems

In this chapter, we studied some generalizations and variants of the firefighter problem
when more than one firefighter is available at each time step. We would like to conclude
this study with the following research directions.

(1) The complexity of Firefighter and Save in the case when the number of firefight-
ers at each time step depends on the number of vertices. The complexity of Firefighter
for trees of maximum degree b+ 2 is not established.

(2) The Max Firefighter problem is 2-approximable for trees. Establishing non
approximability results or better approximability results is an interesting open question.

(3)We showed that the Firefighter problem is NP-complete for graphs of pathwidth
at most three. While it is polynomial-time solvable for k-caterpillars, we do not know
whether this algorithm can be extended to general graphs of pathwidth two.

(4) We have shown that Firefighter parameterized by k is in FPT on graphs of
bounded local treewidth, and thus on planar graphs, by showing that the problem is in FPT

parameterized by k and the treewidth of the input graph. While Bounded Firefighter
parameterized by kp is also in FPT parameterized by kp and the treewidth, we do not
know whether the problem is in FPT on planar graphs, and leave it as an open problem.

(5) We do not know if Dual Firefighter is fixed-parameter tractable when param-
eterized by kb and the treewidth. One could try to adapt the MSOL formula for Max
Bounded Firefighter, but in its current form the size of the formula depends on kb
and b. This is not the case for Theorem 97, as we can assume that b ≤ kp. However, it is
not clear whether a similar assumption can be made for parameter kb.

(6) The Max Firefighter problem is solvable in subexponential time on trees. Is it
solvable in time 2o(n) on planar graphs? Even the case of outerplanar graphs is open.

(7) It is unknown if Firefighter admits a polynomial kernel for parameter “vertex
cover number”. While we have shown that Bounded Firefighter and Dual Fire-
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fighter do not admit a polynomial kernel with respect to the combined parameter kp
and tw, and kb and tw, respectively, we do not know if it is also the case for Firefighter
parameterized by k and tw.

(8) We have proved that Firefighter and Dual Firefighter have no no(
√
k)

and no(
√
kb) algorithms, respectively, unless ETH fails. However, the existence of no(k)-

and no(kb)-time algorithms are open problems.
(9) Finally, we do not know if any of the three problems Firefighter, Dual Fire-

fighter, and Bounded Firefighter are solvable in parameterized subexponential time
on trees with respect to the standard parameters.

(10) An interesting research direction would be to complete the parameterized com-
plexity landscape of the Firefighter problem with respect to structural graph parame-
ters (see Figure 5.1).





Chapter

6
Conclusion

Motivated by the application of information diffusion through social networks, we analyzed
the complexity of optimization problems involving a propagation process in a graph. Be-
sides of being problems of practical relevance (social network analysis, epidemiology, . . . ),
it seems to us that they are also of considerable theoretical interest.

Firstly, Target Set Selection generalizes well-known graph problems such as Dom-
inating Setwith thresholds [63],Vector Dominating Set [94], k-Tuple Dominating
Set [76], (all these variants allow for only one “activation step”), Vertex Cover [35]
(where the threshold value equals the vertex degree), Irreversible k-Conversion
Set [51], r-Neighbor Bootstrap Percolation [14] (where the threshold of each ver-
tex is k or r, respectively), and so-called dynamic monopolies [93] (where the threshold
of a vertex v with degree deg(v) equals ⌈deg(v)/2⌉). Furthermore, during our research
we found out the existence of a close connection between the complementary optimization
problemMax Open Influence and the Densest k-Subgraph problem. More precisely,
we show that Max Open Influence with unanimity thresholds is at least as hard to
approximate as Densest k-Subgraph. Due to this connection, we were able to provide
an fpt-time approximation algorithm within any strictly increasing ratio with respect to
the parameter k (independently established in [23]). Notably any improvement of the
approximation ratio for Max Open Influence would automatically improve the ratio
for Densest k-Subgraph. Recall that improving the approximation ratio of Densest
k-Subgraph to a constant is a long open standing question. This makes Max Open
Influence a problem of particular interest.

Secondly, it turns out that the previous two problems are also known as cardinality
constrained problems [25]. Recall that a problem of this kind asks for finding a solution of
k elements that optimizes an objective function. Several classical optimization problems
admit a constrained version. For instance, Densest k-Subgraph is the constrained
version of the Max Clique problem. From a classical complexity point of view, it is
clear that an optimization problem shares the same complexity nature as its constrained
version. However, from a parameterized and approximation perspective, this statement
does not hold anymore. For example, the cardinality constrained version of Min Vertex
Cover, denoted by Max k-Vertex Cover, asks to find a subset of at most k vertices
that covers the maximum number of edges. The decision version has been proved W[1]-
hard with respect to k [25] while Vertex Cover is well known to be fixed-parameter
tractable. Notably, Marx [83] established an (1 + ε)-approximation algorithm for Max
k-Vertex Cover with running time f(k, ε) · nO(1) for all ε > 0. As a consequence, it
seems natural and interesting to ask the existence of an approximation algorithm for a
cardinality constrained problem with running time f(k) · nO(1) where k is the number
of elements in the solution. However, it comes to us that the study of parameterized
approximation of these kind of problems, in a general perspective, is a largely unexplored
area. We left this as an interesting research direction.

Finally, it is worth noting that combining the parameterized complexity with approx-
imation, in the context of cardinality constrained problems, can be done in a straight-
forward way as the number of elements in the solution is a natural parameter candidate.
However, the story is not as simple for classical optimization problems since it is not clear
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what could be the “standard” parameter. One might be tempted to choose the optimum
value but this does not seem relevant since it is presumably hard to find it. To overcome
this difficulty, the idea is to extend the input with an integer k > 0 (the value that an
optimum should reach) which will play the role of the standard parameter. As a matter
of fact, there exists several definitions of parameterized approximability based on that. In
what follows, we will not review all of them and we refer the reader to the survey of Marx
[83] for that purpose. Though we will discuss some possible extensions of our work toward
that direction. Following the definition of [38], the Min Target Set Selection problem
is parameterized α-approximable if the following holds: There exists a function α and an
algorithm that, given any instance I = (G, thr) of Min Target Set Selection and an
integer k > 0, computes in f(k) · |I|O(1) time a target set S such that |S| ≤ k · α(k) if a
target set of size at most k exists; an arbitrary output otherwise. We left open the question
whether there exists such algorithm. Up to our knowledge there are not many positive or
negative results in the literature for other optimization problems. Marx and Razgon [85]
provided a parameterized 2-approximation algorithm for Edge Multicut. However, this
last problem has been proved fixed-parameter tractable [24]. Nevertheless, Marx and Raz-
gon introduced a first W[1]-hard problem which is parameterized constant-approximable.
As pointed out in [84, 83], the existing negative results in the literature [50, 38] essentially
rely on the “non monotone” nature of the corresponding problems. A minimization (resp.
maximization) problem is said monotone if every superset (resp. subset) of a solution set
is still a feasible solution. It follows that if a problem is non monotone then it may happen
that all feasible solutions have the same size, thus making the search of approximate so-
lutions as hard as the search of optimal ones. However, Min Target Set Selection is
clearly monotone and, as mentioned above, generalizes several classical optimization prob-
lems. This makes its parameterized approximability study an other interesting research
direction.



Appendix

A
Compendium of problems

We give here the list of problems that are used in this document.

Clique
Input: A graph G = (V,E) and a positive integer k.
Question: Is there a clique C ⊆ V of size at least k?

Cubic Monotone 1-In-3-Sat
Input: A CNF formula in which every clause contains exactly and only three positive
literals and every variable appears in exactly three clauses.
Question: Is there a truth assignment to the variables such that each clause has
exactly one true literal (such assignment is called a satisfying assignment)?

Densest k-Subgraph
Input: A graph G = (V,E) and a positive integer k.
Output: A subset S ⊆ V of cardinality k that induces a maximum number of edges.

Dominating Set
Input: A graph G = (V,E) and an integer k.
Question: Is there a subset S ⊆ V , |S| ≤ k, such that for every vertex v ∈ V \ S there
is a vertex u ∈ S with uv ∈ E?

Hitting Set
Input: A collection F of subsets of a finite set U and an integer k ≥ 0.
Question: Is there a subset U ′ ⊆ U with U ′ ≤ k such that U ′ contains at least one
element from each subset in F?

Min Cost Flow
Input: A digraph G = (V,A), a capacity function α : A → N, a cost function
β : A → Q and a supply function γ : V → Q. If γ(v) > 0 then γ(v) is a supply and if
γ(v) < 0 then γ(v) is a demand.
Output: A feasible flow of minimum cost i.e. a function f : A → N that minimizes
∑

uv∈A f(uv) · β(uv) such that
∑

uv∈A f(uv) −∑vu∈A f(vu) ≥ γ(u) for all u ∈ V and
f(uv) ≤ α(uv) for all uv ∈ A.
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Min Vertex Cover
Input: A graph G = (V,E).
Output: Find a subset S ⊆ V of minimum size such that for all uv ∈ E we have u ∈ S
or v ∈ S.

Max Independent Set
Input: A graph G = (V,E).
Output: Find a subset S ⊆ V of maximum size such that for every u, v ∈ S we have
uv ∈ E.

Max Clique
Input: A graph G = (V,E).
Output: Find a clique C ⊆ V of maximum size.

Max E2Sat-3
Input: A CNF formula in which every clause contains exactly two literals and every
variable appears in exactly three clauses.
Output: Find an assignment to the variables satisfying a maximum number of clauses.

Multicolored Clique
Input: A graph G = (V,E), an integer k, and a coloring col : V → {1, . . . , k}.
Question: Does G contain a multicolored clique of size k, that is, a vertex subset V ′ ⊆
V with |V ′| = k such that for all u, v ∈ V ′ it holds that uv ∈ E and col(u) 6= col(v)?

Red/Blue Dominating Set
Input: A bipartite graph G = (R ∪B,E) and a positive integer k.
Question: Is there a set R′ ⊆ R of cardinality k such that every vertex in B has at
least one neighbor in R′?

Vertex Cover
Input: A graph G = (V,E) and an integer k.
Question: Is there a subset S ⊆ V , |S| ≤ k, such that for all uv ∈ E we have u ∈ S
or v ∈ S?
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43rd ACM Symposium on Theory of Computing (STOC ’11), pages 459–468, 2011.

[25] Leizhen Cai. Parameterized complexity of cardinality constrained optimization problems. The Com-
puter Journal, 51(1):102–121, 2008.

[26] Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new method for solving
fixed-cardinality optimization problems. In Proceedings of the 2nd International Workshop on Pa-
rameterized and Exact Computation (IWPEC ’06), LNCS 4169, pages 239–250. 2006.

[27] Leizhen Cai, Elad Verbin, and Lin Yang. Firefighting on trees: (1 - 1/e)-approximation, fixed
parameter tractability and a subexponential algorithm. In Proceedings of the 19th International
Symposium on Algorithms and Computation (ISAAC ’08), LNCS 5369, pages 258–269. 2008.

[28] Carmen C. Centeno, Mitre C. Dourado, Lucia Draque Penso, Dieter Rautenbach, and Jayme L.
Szwarcfiter. Irreversible conversion of graphs. Theoretical Computer Science, 412(29):3693 –3700,
2011.

[29] Damon Centola and Michael Macy. Complex contagions and the weakness of long ties. American
Journal of Sociology, 113(3):702–734, 2007.

[30] Marco Cesati. The Turing way to parameterized complexity. Journal of Computer and System
Sciences, 67(4):654–685, 2003.

[31] Parinya Chalermsook and Julia Chuzhoy. Resource minimization for fire containment. In Proceedings
of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’10), pages 1334–1349,
2010.

[32] Ching-Lueh Chang and Yuh-Dauh Lyuu. Spreading messages. Theoretical Computer Science, 410
(27–29):2714–2724, 2009.

[33] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367, 2006.

[34] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40–42):3736–3756, 2010.

[35] Ning Chen. On the approximability of influence in social networks. SIAM Journal on Discrete
Mathematics, 23(3):1400–1415, 2009.

[36] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD ’09), pages 199–208, 2009.

[37] Wei Chen, Chi Wang, and YajunWang. Scalable influence maximization for prevalent viral marketing
in large-scale social networks. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’10), pages 1029–1038, 2010.



Bibliography 113
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Résumé. Dans cette thèse, nous étudions la complexité algorithmique de problèmes
d’optimisation impliquant un processus de diffusion dans un graphe. Plus précisément,
nous nous intéressons tout d’abord au problème de sélection d’un ensemble cible. Ce
problème consiste à trouver le plus petit ensemble de sommets d’un graphe à “activer”
au départ tel que tous les autres sommets soient activés après un nombre fini d’étapes
de propagation. Si nous modifions ce processus en permettant de “protéger” un sommet
à chaque étape, nous obtenons le problème du pompier dont le but est de minimiser
le nombre total de sommets activés en protégeant certains sommets. Dans ce travail,
nous introduisons et étudions une version généralisée de ce problème dans laquelle plus
d’un sommet peut être protégé à chaque étape. Nous proposons plusieurs résultats de
complexité pour ces problèmes à la fois du point de vue de l’approximation mais également
de la complexité paramétrée selon des paramètres standards ainsi que des paramètres liés
à la structure du graphe.

Mots clefs: Optimisation combinatoire, théorie des graphes, algorithmes
d’approximation, complexité paramétrée, approximation paramétrée, réseaux soci-
aux, problème du pompier, selection d’un ensemble cible.

Abstract. In this thesis, we investigate the computational complexity of optimization
problems involving a “diffusion process” in a graph. More specifically, we are first inter-
ested to the target set selection problem. This problem consists of finding the smallest set
of initially “activated” vertices of a graph such that all the other vertices become activated
after a finite number of propagation steps. If we modify this process by allowing the pos-
sibility of “protecting” a vertex at each step, we end up with the firefighter problem that
asks for minimizing the total number of activated vertices by protecting some particular
vertices. In fact, we introduce and study a generalized version of this problem where more
than one vertex can be protected at each step. We propose several complexity results
for these problems from an approximation point of view and a parameterized complexity
perspective according to standard parameterizations as well as parameters related to the
graph structure.

Keywords: Combinatorial optimization, graph theory, approximation algorithms, pa-
rameterized complexity, parameterized approximation, social networks, firefighter prob-
lem, target set selection.


