
HAL Id: tel-00918239
https://theses.hal.science/tel-00918239v2

Submitted on 17 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Empirical Study of Program Performance of
OpenMP Applications on Multicore Platforms

Abdelhafid Mazouz

To cite this version:
Abdelhafid Mazouz. An Empirical Study of Program Performance of OpenMP Applications on Mul-
ticore Platforms. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Versailles-Saint
Quentin en Yvelines, 2012. English. �NNT : �. �tel-00918239v2�

https://theses.hal.science/tel-00918239v2
https://hal.archives-ouvertes.fr

UNIVERSITÉ de VERSAILLES SAINT-QUENTIN-EN-YVELINES

Thèse

pour obtenir le grade de

Docteur de l’Université de Versailles Saint-Quentin-en-Yvelines

Discipline:

INFORMATIQUE

Présentée et soutenue publiquement par

Abdelhafid MAZOUZ

Le 11 décembre 2012

Sujet de la thèse:

Une étude empirique des performances des applications
OpenMP sur les plateformes multi-cœurs

An Empirical Study of Program Performance of OpenMP

Applications on Multicore Platforms

Jury:

Pr. Denis Barthou Université de Bordeaux Directeur
Pr. Sid Touati Université de Nice Sophia Antipolis Co-directeur
Pr. Jean-François Méhaut Université de Joseph Fourier de Grenoble Rapporteur
Pr. Arndt Bode Université Technique de Munich Rapporteur
Pr. William Jalby Université de Versailles Saint-Quentin-en-Yvelines Examinateur
Pr. Claude Timsit Université de Versailles Saint-Quentin-en-Yvelines Examinateur

Dr. Raphaël David Commissariat à l’Énergie Atomique Examinateur

Thèse préparée au sein du laboratoire PRiSM

Remerciements

Tout d’abord, je souhaiterais dédier cette thèse à mes parents, sans qui celle-ci n’aurait proba-
blement pas eu lieu. Je tiens vraiment à les remercier pour leur soutien et leurs encouragements.

Je tiens aussi à remercier mes deux encadrants Sid TOUATI et Denis BARTHOU pour
la qualité de leur encadrement, encouragements, gentillesse et disponibilité permanente, une
grande chance et un vrai plaisir de travailler avec eux. Une pensée particulière pour Sid, avec
qui j’ai commencé mon stage de master, ayant découvert à ces cotés le monde passionnant du
HPC.

Je remercie également les membres de mon jury, William JALBY, Claude TIMISIT, Raphael
DAVID, et tout particulièrement Arndt BODE et Jean-Frano̧is Méhaut pour le temps qu’ils
m’ont consacré, leurs critiques constructives et la qualité de leurs remarques qui m’ont été
d’une grande utilité.

Un grand merci aux membres du département d’informatique de l’université de Munich, où
j’ai passé deux mois qui m’ont étè vraiment bénéfiques; Notamment Josef Weindendorfer et
Perta Piochacz pour leur accueil et leur disponibilité.

Sans oublier bien sûr mes collègues au sein du laboratoire PRiSM avec qui j’ai passé
d’agréables moments tout au long du déroulement de ma thèse.

A mes parents.

Résumé

Les architectures des machines multi-cœurs actuelles deviennent de plus en plus complexes à
cause du modèle de conception hiérarchique adopté. En effet, dans ces machines, les coeurs
partagent plusieurs ressources comme des mémoires cache, des bus mémoires, des pré-chargeurs
ou des nœuds mémoires. Par conséquent, atteindre de très bonnes performances sur ces ma-
chines nécessite une compréhension approfondie des interactions qui existent entre les applica-
tions multi-threads et le matériel sous-jacent. Une compréhension précise de ces interactions
aidera pour mieux estimer les vraies performances de ces programmes d’un coté, et de fournir
des techniques d’optimisation de programmes efficaces de l’autre coté. Dans cette thèse, nous
étudions deux aspects importants pour les performances des applications multi-threads. Nous
montrons que la stabilité des performances est un critère important à considérer dans le pro-
cessus d’évaluation des performances, et que le placement des threads est une technique efficace
pour améliorer les performances des programmes d’un coté et pour une meilleure stabilité des
performances de l’autre coté.

À cause des interactions qui existent entre les couches logicielles et le matériel, les temps
d’exécution des programmes peuvent être instables. En réalité, lancer un programme plusieurs
fois peut engendrer plusieurs temps d’exécution, produisant ainsi, ce qui appelé une variabilité
dans les temps d’exécution des programmes ou variabilité des performances. Plus cette vari-
abilité est importante, plus le risque de surestimer ou de sous-estimer le vrai comportement
du programme est élevé. Donc ces variations peuvent conduire à de conclusions erronées sur
les performances d’un programme. Pour étudier ces variations, nous proposons une évaluation
statistique rigoureuse des performances des applications multi-threads. En utilisant des config-
urations expérimentales fixes, notre objectif est de 1) quantifier ces variations, et 2) identifier
les facteurs qui influencent la variabilité des temps d’exécution.

En considérant les architectures multi-cœurs avec des mémoires cache partagées, notre étude
de la variabilité des temps d’exécution nous a permis de constater que ces applications sont sensi-
bles au placement ou affinité des threads. L’affinité des threads est aussi apparu comme l’un des
moyens les plus importants pour accélérer le temps d’exécution des programmes. Cependant,
il est encore difficile de comprendre comment l’affinité des threads peut contribuer à améliorer
ou à détériorer les performances. Pour ce faire, nous avons pris le partage des données entre
threads comme métrique, et en utilisant une méthode de profilage, nous étudions les perfor-
mances de plusieurs stratégies de placement des threads en termes de stabilité et d’amélioration
des performances.

En dernier, les applications OpenMP peuvent avoir plusieurs régions parallèles où chacune
peut avoir un différent modèle de partage des données entre threads. Ceci implique qu’il est
très rare que la même stratégie de placement des threads puisse avoir les meilleurs performances
pour toutes les régions. Pour cette raison, nous proposons une approche qui autorise les mi-
grations de threads. En effet, nous proposons d’instrumenter les programmes OpenMP dans le
but d’identifier les régions parallèles, puis de calculer une affinité différente pour chaque région
parallèle. Nous donnons aussi une analyse qui permet d’identifier les conditions nécessaires pour
le bon fonctionnement de cette approche.

Mots clés: OpenMP, partage de données, localité de données, affinité entre threads, multi-
cœurs, parallélisme, évaluation des performances.

Abstract

Current architectures of multicore machines are becoming increasingly complex due to hierarchi-
cal designs where multiple cores share common resources like caches, memory buses, prefetchers
or memory nodes. Consequently, extracting high performance from these machines requires a
deep understanding of the interactions between multi-threaded applications and the underlying
hardware. An accurate understanding of these interactions helps to better estimate the true
program performance behaviour of multi-threaded applications in one side, and to provide effi-
cient program optimisation techniques on the other side. In this thesis, we study two important
aspects for the performance of multi-threaded applications. We show that performance stabil-
ity is an important criteria to consider in the process of performance evaluation, and thread
placement is an effective technique for improving program performance in one hand, and for a
better performance stability on the hand.

Due to the interactions between the software layers and the hardware, program execution
times may be instable. In fact, running a program multiple times can lead to distinct pro-
gram execution times, thus producing what is called a variability of program execution times
or variability of program performance. The more this variability is important, the more the
risk of overestimating or underestimating the true program performance is high. Consequently,
these variations can lead misleading conclusions about program performance. To study these
variations, we use a rigorous statistical performance evaluation of multi-threaded applications.
Using fixed experimental setups, we aim to 1) quantify these variations, and 2) identify the
factors that influence the variability of program execution times.

Regarding multicore architectures with shared caches, our study of the variability of program
execution times allowed us to identify that these applications are sensitive to thread affinity.
Thread affinity has also appeared to be one of the most important factors to accelerate program
execution times. However, it is still unclear how thread affinity contributes to increase or to
decrease execution times. Taking the inter-thread data sharing as metric, and using a profile
guided method, we investigate the performance of multiple thread affinity strategies in terms
of performance stability and performance improvement.

Last, OpenMP applications may have multiple parallel regions, where each region may have
a distinct inter-thread data sharing pattern. It is unlikely that a single thread affinity produces
the best program performance for all the parallel regions. For this reason, we propose an
approach that allows thread migrations. Indeed, we instrument OpenMP programs in order to
identify OpenMP regions, then we compute a distinct thread affinity for each parallel region.
Furthermore, we provide an analysis about the required conditions to improve the effectiveness
of the approach.

Keywords: OpenMP, thread affinity, data sharing, data locality, multicore processors, paral-
lelism, performance evaluation.

Contents

1 Introduction 11

1.1 Goals and contributions of the thesis . 12

1.1.1 Performance stability of OpenMP applications 12

1.1.2 Enhancing data sharing with efficient thread placements 12

1.2 Dissertation outline . 13

2 The Multicore Era 15

2.1 Hardware evolution: the race for more parallelism 15

2.1.1 Taxonomy of parallel machines . 15

2.1.2 Instruction-level parallelism . 18

2.1.3 SIMD parallelism and vector processors 19

2.1.4 Multiprocessor parallelism . 20

2.1.4.1 Multicore processor architecture 20

2.2 Programming models . 22

2.2.1 Message passing programming . 22

2.2.2 Shared memory programming . 23

2.2.2.1 Libraries for parallel programming in shared memory machines . 23

2.2.2.2 Parallel programming languages for shared memory machines . . 24

2.2.3 Virtual shared memory programming . 25

2.2.4 Hybrid programming model . 26

2.3 Conclusion of the chapter . 27

3 Multicore Performance Evaluation and Tunning 29

3.1 Variability of program execution times . 29

3.1.1 Factors influencing the variability of program execution times 31

3.1.2 Quantifying and qualifying variability of program execution times 32

3.1.3 Statistical performance evaluation . 34

3.1.3.1 JavaSats . 34

3.1.3.2 The Speedup-Test protocol . 35

3.1.4 Discussion on variability of program execution times 37

3.2 Data locality and reuse distance analysis . 38

3.2.1 Measuring data locality . 38

3.2.1.1 Architecture-dependent metrics 39

3.2.1.2 Architecture-independent metrics 39

3.2.2 Single-threaded data reuse distance analysis 40

3.2.3 Multi-threaded data reuse distance analysis 42

3.2.4 Discussion about data locality measurement 44

3.3 Processes co-scheduling and cache performance 45

3.3.1 Predicting inter-thread shared caches contention 46

7

8 CONTENTS

3.3.2 Cache partitioning . 48
3.3.2.1 Software cache partitioning . 48
3.3.2.2 Hardware cache partitioning . 49
3.3.2.3 Combined hardware and OS approach for shared caches man-

agement . 50
3.3.3 Discussion on inter-thread shared cache contention 51

3.4 Data sharing and thread affinity . 51
3.4.1 Explicit software support for thread affinity 54
3.4.2 Application level data sharing detection and thread mapping 55
3.4.3 Compiler and runtime data sharing detection and thread mapping 57
3.4.4 Discussion about inter-thread data sharing and thread placement 59

4 Variability of program execution times 61
4.1 Introduction . 61
4.2 Experimental setup and methodology . 62

4.2.1 Hardware setup . 62
4.2.2 Software environment . 62
4.2.3 Experimental methodology . 63

4.2.3.1 Reporting performance data with violin plots 64
4.2.4 Definition of program performance variability 64

4.3 Program execution times variability of SPEC benchmarks 65
4.3.1 Variability of SPEC CPU2006 execution times 65
4.3.2 Variability of SPEC OMP2001 execution times 66

4.4 Thread affinity impact on performance variability 68
4.5 SPEC OMP performance with co-running processes 75

4.5.1 Experimental setup . 75
4.5.2 SPEC OMP2001 with co-running processes performance results and analysis 76

4.6 Micro-benchmarks performance with co-running processes 77
4.6.1 Memory-bound micro-benchmarks . 77
4.6.2 CPU-bound micro-benchmarks . 81

4.7 Conclusion . 82

5 Thread placement strategies on multicores 85
5.1 Introduction . 85
5.2 Tested thread pinning techniques . 86

5.2.1 Application independent thread pinning techniques 86
5.2.2 Application dependent thread pinning techniques 87

5.2.2.1 Step 1: memory trace profile collection and analysis 88
5.2.2.2 Step 2: affinity graph model . 89
5.2.2.3 Step 3: computing thread affinity using an affinity graph 89

5.2.3 Metrics for data sharing characterisation 99
5.2.3.1 The working set size . 99
5.2.3.2 The data reuse ratio (DRR) . 99

5.3 Experimental setup and methodology . 100
5.3.1 Software environment . 100
5.3.2 Hardware setup . 100
5.3.3 Experimental methodology . 101
5.3.4 Statistical significance analysis . 102

5.4 Performance evaluation . 103
5.4.1 SPEC OMP2001 benchmarks . 103

5.4.1.1 SMP machines results (Core2 and Nehalem) 104
5.4.1.2 ccNUMA machine results . 105

5.4.2 NAS Parallel Benchmarks . 111
5.5 Conclusion . 113

6 Dynamic Thread Pinning for Phase-Based Programs 115
6.1 Introduction . 115
6.2 Motivation and problem description . 116
6.3 Parallel OpenMP phases extraction and thread pinning 117

6.3.1 Automatic detection of OpenMP parallel regions 118
6.3.2 Memory trace profile and analysis for OpenMP regions 119
6.3.3 Building an affinity graph for each parallel region 120
6.3.4 Tested thread pinning techniques . 120
6.3.5 Setting a per-parallel OpenMP thread pinning 121

6.4 Experimental setup and methodology . 122
6.4.1 Software environment . 122
6.4.2 Hardware setup . 123
6.4.3 Evaluation methodology . 125

6.5 Experimental evaluation of phase-based thread pinning 126
6.5.1 Performance analysis using micro-benchmarks 126

6.5.1.1 Synthetic benchmark with two inter-thread data sharing patterns126
6.5.1.2 A matrix multiply benchmark 129

6.5.2 Performance analysis using SPEC OMP01 and NPB benchmarks 137
6.5.2.1 Experimental results . 138
6.5.2.2 Discussion . 140

6.6 Conclusion . 141

7 Conclusion 143
7.1 Contributions . 143
7.2 Perspectives . 145

Chapter 1

Introduction

High performance computing refers to running applications with high needs in terms of compu-
tational power and having large data input sizes. These applications cover areas such image pro-
cessing, weather modeling, financial analyses or computational fluid dynamics simulations. To
satisfy this increasing demand for power processing, computer architecture has made incredible
advancements in processing hardware thanks to techniques like high cpu clock frequency, deeper
processor pipelines, using larger caches, or multiple functional units at the micro-architectural
level on one hand and using multiple processors at the architectural level on the other hand.
Moreover, advances in integrated circuits technology allow to pack more and more independent
processing units in a single die resulting in the emergence of what is called multicore technology.

The increasing number of processing units in today’s multicore processor architectures allows
to run multiple independent applications concurrently. Moreover, each application may run
with multiple threads, hence, improve overall application performance by exploiting thread
level parallelism. Unfortunately, the increasing architectural complexity of these new state of
the art designs makes the task of achieving the peak performance non-trivial. Consequently, a
better understanding of the interactions between the operating system layers, the applications
and the underlying hardware platforms is of high importance. In fact, due to these interac-
tions, program performance may not be stable. Therefore, multiple runs of an application
may produce multiple program performance behaviours, also called performance variations or
performance instability. Depending on execution environments, performance variations can be
small or large. Larger variations make the process of accurately determining the performance
of a program more challenging, because the risk of overestimating or underestimating the true
performance behaviour of a program is high. So, the ability to characterise and to quantify
those interactions can be useful in the process of performance evaluation and analysis, compiler
optimisation techniques and operating system job scheduling allowing to achieve better perfor-
mance stability, reproducibility and predictability.

Multicore processor architectures have multiple shared resources such as common buses, last
level prefetchers, a hierarchy of caches or memory nodes creating complex topologies. Run-
ning multiple parallel or concurrent applications on top of these platforms requires adequate
parallelisation strategies to take benefit from the available resources on one side, and intelli-
gent operating system scheduling policies that carefully allocate shared resources on the other
side. Indeed, naive or inadequate resources sharing by multiple threads or processes can gen-
erate resource contention, therefore leading to severe overall performance degradation. In this
context, to be closer to the theoretical peak performance, it is important to extract the commu-
nication/data sharing patterns exhibited by parallel applications and place them accordingly

11

12 CHAPTER 1. INTRODUCTION

onto the hardware architecture topology. Several techniques have been developed to tackle this
problem. We can mainly consider three cases: 1) manually by the application programmer, 2)
compilers and 3) operating systems or runtime libraries. Our aim in this thesis is to study the
interactions of parallel OpenMP applications and the hardware platforms from the performance
stability perspective on one hand, and to study the impact of thread placement on the overall
program performance on the other hand.

1.1 Goals and contributions of the thesis

The contribution of this thesis is a study of program performance of OpenMP applications on
multicore processors. Applications are studied from both the performance stability on one hand
and the relation between the inter-thread data sharing and thread placement techniques on the
other hand.

1.1.1 Performance stability of OpenMP applications

The first part of this thesis studies the variability of program execution times as a performance
instability metric in native executions of OpenMP programs. Underestimating this variability
can very likely affect the accuracy of any program performance study, and at worst can lead
to misleading conclusions about the true performance behaviour of the application. In this
context, an accurate quantification and qualification of this variability is important. We focus
on the task of isolating the factors that may influence the most this performance variability.

First, we give a definition of variability of program execution times and present a rigorous per-
formance evaluation methodology for better performance reproducibility. Second, we perform
multiple experiments that aim to measure the variability of program execution times. By fixing
the experimental setup, we stress various micro-architectural, application, and operating system
components. Our goal is to understand the influence and the sensitivity of OpenMP programs
to each of these components and their direct relation on program execution times variability.

1.1.2 Enhancing data sharing with efficient thread placements

Our effort to isolate the factors that contribute to increase the variability of program execu-
tion times, has led us to find that OpenMP applications are very sensitive to thread placement.
Indeed, bad threads placement can lead to non-negligible performance variability. Thread place-
ment of OpenMP threads mainly impacts cache performance and may exacerbate non-uniform
memory access effects. Therefore, knowing the influence of thread placement on performance
improvement or variability is necessary. In this context we conduct the studies presented in
the second part of this thesis. By considering the inter-thread data sharing as a metric for
thread placement, our objective is to understand the impact of multiple thread placements
on application performance for a given OpenMP application. In fact, we do not track inter-
thread data sharing, but inter-thread memory cache lines sharing. However, in the remainder of
this thesis, we use the terms cache memory lines, data sharing or data reuse without distinction.

For this study, we proceed in two steps. First, we perform an evaluation and analysis of multi-
ple thread placements strategies on some multicore architectures featuring different hierarchies
of shared caches. The tested strategies are application-wide, this means that we fix the same
thread placement from the beginning of an application until it finishes its execution. Moreover,

1.2. DISSERTATION OUTLINE 13

we decompose the tested strategies into two classes: 1) strategies that do not require informa-
tion about the characteristics of the application, and 2) strategies that do require information
about the characteristics of the application.

Second, we consider that any parallel program may have different phases, each with a distinct
performance behaviour. Each phase is also characterized with a temporal window (duration
of the phase). It is possible to identify program phases using metrics such cache miss ratio,
instructions per cycle, or the amount of data sharing between threads. A program phase may
have different granularities: going from few instructions, to function calls. Thus, it is unlikely
that the same fixed thread placement gives the best performance for all parallel phases. Indeed,
if each parallel phase exhibits a distinct sharing pattern between threads, then an application-
wide thread affinity strategy will not be able to effectively exploit that distinct patterns. This
situation has motivated us to extend our study to account for multiple OpenMP phases. In
this thesis, we consider that program phases in OpenMP programs correspond to OpenMP
parallel regions. Consequently, we investigate other thread placement solutions based on thread
migrations or per-phases thread placement.

1.2 Dissertation outline

The outline of this thesis is organised as follows. Chapter 2 reminds the evolution of parallel ma-
chine architectures used nowadays and the most common parallel programing paradigms used to
exploit the power of these parallel machines. Chapter 3 first introduces the problem of program
execution times variability. After that, it gives a large overview about the problems of measur-
ing data locality and the impact of shared cache access contention. Last, it presents techniques
to exploit data sharing using thread placement in multicore processors. Chapter 4 presents
an experimental study for measuring and analysing the variability of program execution times.
Chapter 5 discusses the relation between the inter-thread data sharing using optimised thread
placement techniques and the performance stability. Chapter 6 extends Chapter 5 and presents
an approach to compute efficient thread placement techniques for multiple OpenMP parallel
phases. Finally, Chapter 7 concludes this thesis and gives some future research proposals.

14 CHAPTER 1. INTRODUCTION

Chapter 2

The Multicore Era

In this chapter, we give a short overview of the evolution of current computer systems from
both the hardware and software perspectives. First, we revisit hardware implemented techniques
that aim to increase parallelism and performance. We distinguish between micro-architectural
optimisations inside a single processing unit (not visible to the programmer/compiler) and
architectural optimisations (visible to the programmer/compiler) which combine multiple pro-
cessing units. Second, we present some parallel programming models, languages and runtimes
for efficient and effective parallel machines utilisation.

2.1 Hardware evolution: the race for more parallelism

Computer technology has made an incredible progress since early days of general purpose com-
puting. Advances in integrated circuits technology and architecture design have allowed to
build machines going from single to multiple processing units per chip. To improve perfor-
mance, computer designs have focused on increasing parallelism by executing multiple streams
of instructions. In this quest for more parallelism, it is possible to say that hardware performance
optimisation is achieved by means of two complementary approaches. With the first approach,
the hardware optimisations logic is implemented inside a single processing unit. Mainly, they
are intended to enhance the single thread performance. From the programming perspective,
these optimisations are hidden or not visible to the programmer or to the compiler. We can call
them as micro-architectural optimisation. The main goal of micro-architectural optimisations is
to lower the execution latency of a single instruction, while increasing the number of instructions
that can be executed in a single clock tick. Many optimisations such as deeper pipelines, better
branch predictors, larger cache sizes, etc. are an example. Regarding the second approach, we
can talk about architectural optimisations. From the programming perspective, an architectural
optimisation is exposed and is visible by the programmer and/or by the compiler. The goal
of this approach is to increase the throughput by executing multiple independent instructions
streams on multiple processors in parallel. Thus, increasing parallelism. This section presents
some concepts regarding the design of parallel machines.

2.1.1 Taxonomy of parallel machines

According to several criteria, there are different ways to classify parallel machines. The most
widespread classification is called the Flynn’s Taxonomy [Fly72]. Table 2.1 summarises this
classification.

• SISD (Single Instruction, Single Data). This organisation represents traditional sequen-
tial machines. A processing unit executes instructions from one single stream sequentially,

15

16 CHAPTER 2. THE MULTICORE ERA

Data Stream

Instruction Stream

Single Instruction, Single Data Single Instruction, Multiple Data

Multiple Instruction, Single Data Multiple Instruction, Multiple Data

Table 2.1: Flynn’s Taxonomy

Communication/Synchronisation

Memory organisation

Global Memory, Shared Variables Global Memory, Message Passing

Distributed Memory, Shared Variables Distributed Memory, Message Passing

Table 2.2: Johnson’s MIMD classification

the execution of instructions may be overlapped within the pipeline’s stages. An instruc-
tion operates only on one data stream during any clock cycle. Some embedded machines
belong to this architecture organisation.

• SIMD (Single Instruction, Multiple Data). In this class of architectures, all the processing
units execute the same instruction at the same time and synchronise. However, the
different processing units operate on different data. Vector processors belong to the SIMD
architectures class.

• MISD (Multiple Instruction, Single Data). This class represents architectures where a
single data stream is fed into multiple processing units. Each processing unit operates on
the data independently by acting with different instructions streams. However, even if all
the units operate on the same data stream, each unit operates on a distinct data. This
category includes specialised machines like systolic machines where processing units are
arranged given some fixed topology, are highly synchronised and which are supported by
a generalised processor.

• MIMD (Multiple Instruction, Multiple Data). This class represents multiprocessor ma-
chines where, each processor executes its own code independently and asynchronously
from others. Each processor operates on its own input data stream. Processors commu-
nicate data among them. Most current supercomputers, networked parallel machines and
multiprocessors follow this architecture organisation.

Flynn’s classification suffers from some limitations. The MIMD class for instance includes
a wide variety of computers. For this reason Johenson [Joh88] proposed further classification
of such machines, it is based on their memory organisation (global/distributed) and the mech-
anism used for communications/synchronisation (shared variables/message passing). Table 2.2
summarises this classification.

2.1. HARDWARE EVOLUTION: THE RACE FOR MORE PARALLELISM 17

Global memory

Memory bus

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Figure 2.1: A GMSV machine

Memory
module

Processor-to-Memory network

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Memory
module

Memory
module

Memory
module

Figure 2.2: A DMSV machine

Interconnexion network

Memory
module

CPU

Cache

Memory
module

CPU

Cache

Memory
module

CPU

Cache

Memory
module

CPU

Cache

Figure 2.3: A DMMP machine

• GMSV (Global Memory, Shared Variables). This class represents traditional shared-
memory multiprocessors also known as symmetrical multiprocessing (SMP) (see Fig-
ure 2.1). A set of identical processors are connected by a bus or a cross bar switch and
access a single global memory with an equal time latency. We can talk about Uniform

Memory Access (UMA). If processors feature memory caches which is the case nowadays,
we talk about Cache-Coherent UMA. The coherency is ensured by protocols implemented
within each memory cache controller [CSG98].

• GMMP (Global Memory, Message Passing). This class represents machines implement-
ing a global addressing space and where communications are achieved by means of message

18 CHAPTER 2. THE MULTICORE ERA

passing instead of using shared variables. This class of architectures is not widely used.

• DMSV (Distributed Memory, Shared Variables). This class represents machines where
the memory is physically distributed, but all the processors have the same shared ad-
dress space allowing remote access of data. Regarding the performance of memory oper-
ations, the latency depends on the data location (see Figure 2.2). In general, accessing
local data is faster than accessing remote data. In this case we talk about Non-Uniform

Memory Access (NUMA) machines. Again, if processors feature memory caches with an
implemented coherency protocol among them, we can talk about Cache-Coherent NUMA

machines.

• DMMP (Distributed Memory, Message Passing). Also known as distributed-memory

multi-computers (see Figure 2.3). This class of architectures implements a model where
the memory is physically distributed without any possibility to access remote data trans-
parently. Data communication is achieved explicitly by message passing through a com-
munication network.

2.1.2 Instruction-level parallelism

Since the mid-80s, almost all processor architectures rely on the pipelining principle to overlap
the execution of multiple instructions and improve performance. Practically, executing an
instruction requires to go through some intermediate stages or basic operations before a result
is produced. For example, we can say that a pipeline has four stages:

1. Instruction fetch (IF): bring the instruction from memory;

2. Instruction decode (ID): decide which operation to execute;

3. Instruction execute (EX): use the arithmetic and logic unit to evaluate and produce a
result. If required bring the operands from memory;

4. Write result (WR): store data back to memory.

IF ID WREX

A

B A

C B A

D C B A

EDCBClock cycle 1

EDCClock cycle 2

EDCock cycle 3

EClock cycle 4

E D C BClock cycle 5

E D CClock cycle 6

E D

EClock cycle 8

Clock ycle 7

T
im

e

Figure 2.4: The instruction flow for five instructions (A,B,C,D,E) in a pipeline with four stages

If we consider all the steps above as an atomic operation or a black box, the execution of each
instruction has to wait until all these operations are finished for a previously issued instruction.
This execution model can generate a non negligible overhead. In addition of splitting-up the
execution of an instruction using intermediate stages, in the pipelining principle, each stage

2.1. HARDWARE EVOLUTION: THE RACE FOR MORE PARALLELISM 19

involves a separate and an independent hardware component. This design allows theoretically,
to issue an instruction to execute as soon as the first stage in the pipeline becomes free. It is
then possible to execute multiple instructions in parallel from one instructions stream leading
to better program performance. The principle of overlapping instructions in the pipeline to in-
crease performance is called the Instruction-Level Parallelism (ILP). Figure 2.4 reports the case
where up to four instructions are executed in parallel with a pipeline of four stages. The time
that each instruction spends in each stage of the pipeline is controlled by the clock frequency
or the frequency of operation; that means, a given stage requires one or many cycles to perform
the operation. The higher the clock frequency, the lower the time spent on the pipeline stages.

To achieve a higher clock frequency, architecture designers have to increase the depth of the
pipelines. With this design, pipeline stages operate on simpler operations with a low overhead.
However, even with that design, there are some limitations to keep all the pipeline stages busy.
Keeping pipeline stages busy all the time is quite difficult. There are multiple reasons for that:
a non-fixed execution time for some complex instructions1, cache and/or memory effects, etc.
When such instructions are issued, they are taking long periods of time inside the different
stages of the pipeline. Therefore, if new instructions have to pass through the same stages,
the pipeline needs to suspend their execution until the required resources become free. And
of course, it contradicts the principle of issuing one instruction in the pipeline each cycle. To
overcome this limitation, computer architects made the choice of duplicating some functional
units and hardware components involved in the different stages of the pipeline. This duplication
aims to reduce the impact of such bottlenecks by allowing the execution of multiple instruction
in parallel per cycle. With the advent of this design, we can talk about superscalar processors
(Alpha 21264, HP PA 8500 or Pentium III/4 [Joh02]). Data dependency between consecutive
instructions can also be a reason for suspending the execution of an instruction in the pipeline.
It happens when an instruction depends on the result produced by another instruction. In this
situation, the second instruction has to wait until the first one finishes its execution and produce
the required result. Many other hardware optimisation techniques are implemented inside the
pipeline logic as: out of order execution, branch prediction, rename registers, etc. All these
techniques contribute to increase the instruction-level parallelism [Joh02].

2.1.3 SIMD parallelism and vector processors

There are multiple applications where a single operation has to be applied on large sets of data
elements. For instance, it is possible to consider matrix-oriented computations and media/sound
processing. In programming languages, loops represent an abstraction of repetitive operations.
If the different iterations of the loop do not carry any or little dependencies, and if they operate
on large data items, it is then possible to increase the amount of parallelism among the iterations
of the loop. This parallelism is inherent to the large data set.

Listing 2.1: A simple loop sample

for (i =0; i<N; i++)
X[i] = Y[i] + Z [i]

Listing 2.1 shows an example of a loop where the iterations do not carry any data depen-
dency. It means that each iteration can be executed independently and in parallel, and each
executing for a distinct data item. This execution model allows to expose what is called Data-
Level Parallelism. One way to exploit this parallelism is to use vector or SIMD instructions.

1This is actually the case in CISC architectures compared to RISC architectures

20 CHAPTER 2. THE MULTICORE ERA

Basically, one vector instruction operates on a collection of data items in parallel. If we look to
Listing 2.1 again, using vector instructions may translate to the use of up to four instructions:
two instructions to load vectors Y and Z, one instruction to perform the addition and finally
one instruction to store back the vector X. A vector operation has the property that all the
functional units are pipelined. Although, the instruction operates on a whole vector, the oper-
ations are performed sequentially on the consecutive elements of a vector inside these pipelined
units.

There are two main types of architectures of vector processors [Joh02]:

1. Vector-register processor. All the vector operations (except load and store) are per-
formed between the different registers of the machine.

2. Memory-memory processor. In this class of vector architectures, all the vector oper-
ations are memory to memory operations.

Besides vector processors, we can find multimedia extensions to standard instructions sets (in
micro-processors) which belongs also to the SIMD execution model. For X86 architectures, Intel
introduced in 1996 the MMX (Multi Media eXtensions) instruction set which operates on 64-bits
floating-point registers. The later was extended later by the SSE (Streaming SIMD Extensions)
in order to operate on 128-bits wide registers. In 2010, Intel added the AVX (Advanced Vector
Extensions) that doubles again the registers width to 256 bits. For non-X86 architectures, we
can think to the AltiVec (128-bits wide registers) technology from IBM, Motorola and Apple
for PowerPC processors. Unlike vector processors (a register can hold up to 128 64-bit elements:
Cray T-90), the relative small register size of multimedia SIMD extensions can be considered
as short-vector SIMD processors.

2.1.4 Multiprocessor parallelism

In the previous section, we discussed some hardware techniques to exploit parallelism within
a single stream of instructions. Although this approach is effective for programs with a high
amount of fine-grain parallelism, programs may implement high-level parallelism that is limited
or hard to exploit automatically by the hardware logic. This is true for instance for programs
which implement medium-grain or coarse-grain parallelism. As an example of this high-level
parallelism, we can consider the case of Thread-Level Parallelism. It is structured as separate
and independent streams of instructions also called threads of execution. Moreover, thread-level
parallelism can be exposed explicitly by creating multiple threads of execution at the high-level
programming language. This is still true, because there are many applications which are inher-
ently parallel. For example, an online file server receives file requests, each request to the server
can be processed independently and in parallel.

For the purpose of exploiting thread-level parallelism, advances in computer design technol-
ogy allowed computer architects to start building parallel machines at the architectural level.
Unlike instruction-level parallelism which exploit parallelism at the micro-architectural level
(within a processor), taking benefit from thread-level parallelism requires to aggregate multiple
processing units, processors or microprocessors within a single machine and ensures that they
operate in parallel in a coherent way.

2.1.4.1 Multicore processor architecture

Thanks to advances in integrated circuits manufacturing, processor performance has signifi-
cantly increased since their first introduction to market in early 70s. In 1975, Gordon Moore

2.1. HARDWARE EVOLUTION: THE RACE FOR MORE PARALLELISM 21

described what is called nowadays as the Moore’s law. The law states that the number of tran-
sistors that can be placed on an integrated circuit would double every couple of years [Moo75]
with the same surface, for the same price. This law is actually a revising of his earlier prediction
in 1965. While this technology trend led to smaller, faster and higher number of transistors, it
has contributed to get higher processor clock frequency and allowed multiple micro-architectural
optimisations which aim to increase the ILP.

Due to various physical limitations such as power dissipation and signal propagation delays,
building high performance processors with the increase of clock frequency only, is not anymore
a viable solution. While clock frequency does not increase, the build process of processors con-
tinues to make advances by shrinking the die size. Moore’s law has nothing to do with the
expected performance, it predicts only the number of transistors to put on a single die. So, a
question can rise: how to use the new die space? Due to the hard task of exploiting the ILP, it
is useless to add more transistors within a single processor. On the other hand, there are many
applications which expose thread-level parallelism. These observations led computer architects
to propose designs where a set of identical processors (cores) are put together within a single
die or a chip. This design is called now multicore processors. A multicore processor consists of
multiple and identical cores on a single chip, all the cores share the same micro-architectural
optimisations. Most often, multicore processors share one or several levels of memory caches.
Multicore processors are also known as Chip multiprocessors (CMPs) for SMP on a chip, be-
cause they are sharing many architectural features design with SMPs.

Core 0 Core 1 Core 2 Core 3

Shared cache

Memory module

Core 0 Core 1 Core 2 Core 3

Shared cache

Memory module

Core 0 Core 1 Core 2 Core 3

Shared cache

Memory module

Core 0 Core 1 Core 2 Core 3

Shared cache

Memory module

CPU 0 CPU 1

CPU 2 CPU 3

Figure 2.5: A NUMA machine with 4 multicore processors

The growing gap between processor performance and memory performance has led man-
ufacturers to propose highly hierarchical machines to alleviate this problem. The common
architectural design consists of two or more cores sharing some levels of memory caches. When
building parallel machines with multiple multicore processors, a simple design would be to con-
nect all the processors to a single shared memory through a bus topology (as the traditional
SMP design). Bus snooping technique has the drawback of achieving poor scalability (weak
scalability of bus snooping coherency protocols). So, to achieve good performance, scalability
increase of new multicore-based shared memory machines is of paramount importance. To over-
come this limitation, new trends propose distributed shared memory architectures where, each
multicore processor is attached to its own main memory and where all the processors are con-
nected with proprietary interconnect networks (Quickpath from Intel and Hyper-Transport

22 CHAPTER 2. THE MULTICORE ERA

from AMD for instance). When a core in one processor requires data located on a remote proces-
sor, it has to send a request through the network. It is clear from this design that the cost of
accessing the local or the remote data is not the same, we can talk again about NUMA machines
(see Figure 2.5). Consequently, an effective use of such machines whether by programmers,
compilers or runtime systems is more challenging.

2.2 Parallel programming models, languages and runtimes for
parallel machines

In this section, we review most popular parallel programing paradigms and some specific imple-
mentations. Among the variety of parallel programming models, we mainly discuss four parallel
programming models that are widely used in the area of parallel programming:

• Shared memory programming model.

• Message passing programming model.

• Virtual shared memory programming model.

• Hybrid programming model.

The programming models that we mention earlier represent abstractions of the machine
structure. Independently of the machine implementation, it is also possible to define two high-
level programming models:

• SPMD (Single Program, Multiple Data). All the tasks of the parallel program execute
their copy of the same program simultaneously. The set of tasks operate on different
input data. It is not necessary that all the tasks execute the same stream of instructions,
logic can be added inside the program to allow tasks to execute only a sub-set from the
program. This model is very common in the community of high performance computing.

• MPMD (Multiple Program, Multiple Data). All the tasks of the parallel program execute
different programs or instructions streams simultaneously. The programs can be threads,
message passing, data parallel or hybrid. Each task operates on a distinct input stream.
An example of applications implementing this model is the Client/Server applications.

Before addressing the most used programming paradigms, it is important to know the differ-
ent possibilities to leverage the power of parallel machines. We mainly have two implementation
possibilities of parallelism: 1) languages or language extensions/pragmas and 2) using libraries.

2.2.1 Message passing programming

In this programming model, a program creates a set of parallel tasks, each is restricted to its
own memory location. This gives the possibility to collocate multiple tasks on the same physical
machine or across multiple machines. Data communication between tasks is explicit by sending
and receiving messages through a message passing protocol. Data transfer requires cooperative
operations to be performed by each task (a send must have a receive operation). Although
this programming model highly involves the responsibility of the programmer (all the parallel
operations have to be specified explicitly), it offers better control on a parallel program. There
are mainly two important implementations of this programming model: PVM and MPI. We
limit our discussion to MPI which is presented in the following paragraph.

2.2. PROGRAMMING MODELS 23

Message Passing Interface (MPI)
MPI [MPI] is a high-level API for parallel programming which implements the message passing
paradigm. Before the MPI standard, every parallel system vendor provided its own version of
message passing model. Due to the variety of implementations, it was a hard task to port an
application from one parallel system to another. To tackle this issue, a group of parallel com-
puter vendors, university researchers and software developers proposed a standard and portable
interface. Although, the high-level interface is common, each hardware vendor may implement
an optimised MPI version for their own machines and allows to take benefit from specific net-
work topologies. The MPI library is defined for both Fortran and C/C++ languages. Besides
the message passing model, MPI uses the SPMD model, where an MPI application creates a set
of processes, each executing a copy of the program and using its own data input. MPI is used
to program a variety of MIMD machines going from massively-parallel machines to clusters
of workstations.

2.2.2 Shared memory programming

In this programming model, multiple tasks share a global address space in which they read and
write to asynchronously. From the programmer’s point of view, there is no notion of explicit
data communication or data exchange between tasks. Thanks to this principle, the programming
effort can be greatly simplified, it is all about accessing and modifying memory locations in the
shared address space. For parallel machines with memory caches, cache coherency protocols
play an important role on keeping all the copies of data in different locations in sync. However,
cache coherency protocols in stand-alone are not able to prevent concurrent access to shared
data. Therefore, to ensure the coherency of shared objects, explicit synchronisation mechanisms
such as locks and semaphores are required to control concurrent accesses.

2.2.2.1 Libraries for parallel programming in shared memory machines

We discuss in this section thread libraries and TBB.

Lightweight processes (Threads)
A thread-model is an approach to achieve parallelism in shared-memory parallel systems. A
single process can have multiple flows of control, called threads of execution. These threads
share the same global memory (code and data segments, heap) but, each thread has its own
stack and program counter. Thread libraries provide functions for thread management such as
creation, control, termination and synchronisation. Writing parallel or concurrent programs us-
ing thread programming requires more care, it is often associated to low-level OS programming
where specific skills are needed. However, thread programming is a powerful way to achieve high
performance in shared memory systems. Thanks to the rich API and resources offered to the
programmer, programming with threads allows better control on the application behaviour. As
usual, due to portability issues of different multi-threading libraries, the POSIX Threads2 (also
referred as Pthreads) standard [Thea] was proposed for a standardised programming interface.
Nowadays, implementations of the Pthreads API are available on many POSIX-conformant op-
erating systems.

Depending on the software component responsible for thread management, we can classify
threading packages into three traditional models:

2POSIX refers to Portable Operating System Interface. It defines a standard operating system interface and
environment.

24 CHAPTER 2. THE MULTICORE ERA

1. User-level: Threads created within a process are invisible to the kernel scheduler. This
means that user-level threads have to be scheduled by a runtime system which is part
of the process or part of the threading package. Therefore, the operating system is not
involved at all regarding context switch of threads, except the main process. While user-
level threads offer better performance and flexibility due to the low overhead incurred
by context switches (less implication of the OS), user-threads have a problem: a thread
making a system call will block the whole process with all its threads until the system
call returns. Moreover, since user-level threads are invisible to the OS, one thread only
within the process has the possibility to take the CPU resource, limiting the ability of the
application to use multiple processors (cores) offered by the platform. An example of this
threading model is the POSIX/ANSI-C based GNU Pth (Portable Threads) library [GNU]
for UNIX-like platforms.

2. Kernel-level: Unlike user-level threads, kernel-level threads created within a process are
visible by the operating system. Hence, context switch and scheduling of threads is fully
performed at the kernel level. Kernel-level threads do not have the problem of blocking
when making system calls: a system call blocks only the calling thread. Another benefit,
kernel threads take better advantage of multiple processors, hence increasing the amount
of parallelism that can be achieved. However, switching among threads can be more
time-consuming due to the OS implication. The current implementation of threads in the
Linux kernel is the NPTL (Native POSIX Threads Library) [DM03].

3. Hybrid-level: As seen above, user-level threads offer better flexibility and performance
than kernel threads. On the other hand, kernel threads do not have any problems with
I/O blocking problems and take better benefit from multiple CPUs. So the idea behind
a hybrid model is to combine the advantages of both models, while avoiding their dis-
advantages. A hybrid library creates a number of kernel threads, capable to execute a
number of user-level threads. We talk about an N:M model, where N user-level threads
map onto M kernel threads. This is a compromise between kernel-level 1:1 and user-level
N:1. Solaris offers this kind of model [PKB+91].

TBB (Intel Threading Building Blocks)
TBB [Int] is a generic library that extends the ISO C++ language for an efficient use of mul-
ticore architectures. Like OpenMP (to be presented in Section 2.2.2.2), TBB is designed to
promote scalable data parallel programming. To use the TBB library, the programmer has
to specify TBB tasks instead of threads. Tasks represent portions of code that might run in-
dependently and concurrently. The library itself maps these tasks onto physical threads and
processors for an efficient cache utilisation and load balancing. A specified concurrent task is
split into independent tasks by the library, each task processes a subset of the data. This ap-
proach allows to leverage the power of multicore processors, while ignoring issues of parallelism
such as low-level threading constructs or the scheduling and distribution of computations. TBB
employs generic programming or template-based programming in C++; many of the library
interfaces are defined by requirements on data types and not on specific types, thus, allowing
to write flexible and efficient code.

2.2.2.2 Parallel programming languages for shared memory machines

This section discusses Cilk and OpenMP.

2.2. PROGRAMMING MODELS 25

Cilk
Cilk [FLR98] is an extension to the C language and a runtime for efficient multi-threaded pro-
gramming on shared memory multiprocessors developed at MIT. The Cilk language consists
of C with the addition of some keywords to indicate parallelism and synchronisations. Con-
sequently, it is the responsibility of the programmer to structure his code in order to expose
parallelism. By doing so, the programmer lets the Cilk runtime deal with the low-level thread
management and computation scheduling in order to run efficiently on a given platform. Se-
lected sections of code that can run in parallel are translated to Cilk threads which are mapped
onto physical threads by a Cilk runtime. The execution model of Cilk is the following: a set
of physical threads executing Cilk threads are created at the beginning of the application, the
number of physical threads corresponds to the number of available processors. The Cilk runtime
implements a Work-Stealing Scheduler ; each physical thread maintains a work queue of ready
Cilk threads and manipulates the bottom of the queue like a stack. When a physical thread’s
queue becomes empty, it steals a Cilk thread from a randomly selected queue of an another
thread.

Open Multi-Processing (OpenMP)
OpenMP [Theb] is a specification for a portable Application Program Interface (API), it aims to
facilitate parallel programming of a range of shared-memory parallel machines. It defines a col-
lection of compiler directives, library routines and environment variables to parallelise sequential
programs written in both Fortran and C/C++ languages. Like MPI, OpenMP is a joint collab-
oration between major hardware and software vendors. The goal is to provide a portable model
for developing parallel applications across a variety of computer architectures, operating sys-
tems and compilers. The compiler directives allow to extend the C/C++ and Fortran languages
with loop-based parallelisation, tasking, work-sharing and synchronisations constructs. What
makes the OpenMP model more attractive from the programming perspective, is the reasonable
effort required to achieve the parallelisation of sequential programs. Indeed, by using compiler
directives, the programmer has only to specify which sections of code to execute in parallel or
to specify potential parallel loops associated to some policies for iterations distribution. After
compilation, the compiler generates code for automatically creating a set of threads (equal to
the number of available CPUs/cores seen by the OS by default), distributes iterations among
threads by applying the user-specified policy or a static default one, synchronise threads at the
end of the parallel region and finally terminates the execution of threads. It is also possible to
use constructs providing support for sharing and privatising data.

Using TBB or OpenMP depends on the code structure and the developer objective. OpenMP
is much more easier and offers an incremental way to parallelise code, it keeps the code clean and
easier to maintenance unlike TBB that needs major changes to the code. Moreover, OpenMP
is a standard for programing shared memory machines. On the other hand, TBB’s advantage
is that the programmer does not need to understand how threads work, he has just to specify
sections of code that could run concurrently and let the library map the tasks onto threads.
Another advantage of using TBB is that it matches well with code that is highly object oriented
since it makes heavy use of C++ templates and provides thread-safe and concurrent containers
and some generic parallel algorithms.

2.2.3 Virtual shared memory programming

Virtual shared memory model is also known as distributed shared memory or partitioned global
address space model. It is a high-level abstraction of a distributed memory machine (or a set

26 CHAPTER 2. THE MULTICORE ERA

of interconnected machines as well) that allows the programmer to see the machine as a global
shared addressing space. This abstraction can be provided by either an operating system, a
library or a compiler. The goal is to hide to the programmer the details of low-level communica-
tions primitives. The processes of an application can access local (private) data or distributed
shared data. The runtime ensures synchronisation and coherence. The advantage of virtual
shared memory programming is to free the programmer from explicit communications, and
consequently to use shared memory programming model. However, this comes at the expense
of performance loss due to the high overhead incurred by the employed memory coherency
mechanisms. There exists multiple language extensions to support the virtual shared mem-
ory programming model. We can think to Co-array Fortran [NR98] which consists of Fortran
95 extensions, the Titanium language [YSP+98] which consists of Java language extensions to
support parallel computing, the Chapel parallel programming language [CCZ07] or the object-
oriented X10 programming language [CGS+05]. The later two languages are designed as new
languages rather than language extensions.

We present in the next paragraph UPC which is another language belonging to the virtual
shared memory programming model.

UPC (Unified Parallel C)
UPC [CDC+99] is an extension to ANSI-C programming language for parallel processing. UPC
follows the SPMD parallel programming model and supports a partitioned global address space.
In other words, it supports a distributed/virtual shared memory model. In UPC, the program-
mer has explicit control over data distribution across threads. UPC offers constructs that allow
the programmer to declare data as shared or private to each thread. It aims to exploit memory
locality by placing data as close as possible to the threads that use that data. On one hand,
private data of a given thread can not be accessed by other threads. On the other hand, shared
data are logically partitioned into fragments, where each thread owns a private fragment. That
is, each thread has a logical association or affinity to the portion of data that is assigned to it.
However, independently of fragment association, all threads can access the whole shared mem-
ory space. Besides data distribution constructs, the UPC memory model offers also memory
consistency constructs to ensure coherency of the declared shared data. With the UPC memory
model, shared accesses are either strict or relaxed. Strict memory accesses issued by a given
thread always appear to all threads as being executed in a sequential program order. Relaxed
shared memory accesses issued by a given thread may be reordered by the implementation. In
this case, other threads may not see these accesses as in a sequential program order.

Applications written using UPC may have poor program performance if data locality is not
ensured regarding the computations performed by the intervening threads. In fact, if all threads
make heavy use of large portions of shared data, the risk of false sharing is high. Moreover,
ensuring memory consistency may require a heavy use of data synchronisation constructs. Con-
sequently, it may degrade performance in a large extent.

2.2.4 Hybrid programming model

Hybrid models combine multiple parallel programming models in the same program. The
strength of such models is to take benefit from each composing parallel programing model,
while limiting their disadvantages, thus adapting for particular situations. For example, using

2.3. CONCLUSION OF THE CHAPTER 27

MPI with OpenMP can be considered as a hybrid programming model. It is then possible to
use shared memory programming with OpenMP inside a NUMA node and message passing
with MPI for inter-node communications. As an implementation example of this programming
model, we present in the next section a framework called MPC.

MPC
MPC is unified parallel framework for HPC clusters of NUMA machines [PJN08]. Its main goal
is to unify multiple parallel programming models inside a single framework in order to efficiently
exploit parallel machines. Mainly, MPC is a thread library. It proposes three programming
models:

1. Shared memory programming:

(a) POSIX thread;

(b) Intel TBB;

(c) OpenMP

2. Message passing programming:

(a) MPI;

3. Hyerid MPI/OpenMP

MPC implements a non-preemptive user-level threads package which is compatible with
POSIX-threads. In this case, threads created in MPC are not visible by the operating system
kernel. That is, an MPC thread manager does all the scheduling management. In addition, by
recompiling the open source version of TBB, MPC is able to run TBB applications. Moreover,
MPC proposes OpenMP and thread-based MPI implementations which are highly integrated
(using MPI/OpenMP). Regarding the MPI implementation, instead of using processes, MPC
uses a user-level thread for each MPI task.

2.3 Conclusion of the chapter

With the rise of parallel machines that support the simultaneous execution of multiple threads
in parallel, has come the need of languages, compilers, runtimes and operating systems that
support and exploit these resources. Several software studies were made in this direction in
order to take benefit from these machines and many programming models and implementations
were proposed. However, the rising complexity of the hardware makes it difficult to generalise
one solution among all kind of machines. Moreover, the intervention of the programmer is in-
creasingly required to achieve decent program performance. Indeed, improving the performance
requires the knowledge of internal characteristics of the hardware, both micro-architectural and
architectural. Applications have to be written with an explicit parallelism to be able to exploit
all the available resources. Of course, there is a trade off between the programming effort and
the expected performance improvement.

Nowadays, multicore platforms are everywhere, from the cheapest embedded system to the
very expensive supercomputer. Getting the best performance from these machines is even more
complicated and crucial. There are hundred of parallel languages, runtimes and operating sys-
tems that worked very well for past multiprocessors and distributed machines but, most often,
they are not anymore adapted for current hardware designs. So applications written on top

28 CHAPTER 2. THE MULTICORE ERA

of these software technologies have to be re-written or adapted to tackle these new designs
and constraints. For instance, taking into account the hierarchy of shared caches present in
multicore processors is mandatory if the programmer wants to get good performance from a
given architecture. Indeed, let us consider the cases of OpenMP and MPI for instance. The
former proposes a flat memory model where all threads are supposed to access memory with
a similar behaviour (uniform latency of access to memory). The later proposes a flat com-
munication model where the communication latency is considered to be uniform between all
processes. From the programming perspective, these abstract models of the machine simplify
programming. However, from the performance perspective, these flat models are not adequate
since they do not account for memory hierarchy (multiple cache levels) or for NUMA effects
that make the threads/processes do not access memory or communicate in an homogeneous
manner.

Multiple efforts have been done to enhance the expressiveness of programming models in
order to efficiently exploiting heterogeneous machines. The OpenMP standard (version 3.0)
was extended by the concept of tasks and by nested parallelism. OpenMP tasks are generated
inside a parallel region, then each task can be executed by the threads of that parallel region.
Nested parallelism allows to nest parallel regions inside others allowing a hierarchy of paral-
lelism. Similarly, the OpenMP execution runtime developed in [oBFG+10] exploits the concept
of a hierarchical parallelism. A topology-aware OpenMP thread scheduler is implemented allow-
ing to distribute threads into groups and to map each group of threads in a certain NUMA node
or socket for instance. Heterogeneous machine designs can also consist of the combination of
CPUs and accelerators like GPUs (Graphical Processing Unit). In this context, we can consider
the case of OpenCL (Open Computing Language). OpenCL is an open standard for parallel
programming of heterogeneous systems, it aims to exploit the power of state of art multicore
processors and GPUs using user specified tasks or kernels.

In this thesis we study the performance of applications following the shared memory pro-
gramming model (OpenMP and Pthreads) and running on shared memory multicore machines.
As we noticed earlier, these programming models offer a flat memory model. This means that
while from the application programming perspective, memory accesses latency is considered as
uniform (same access latency whatever the location of the data), it is actually not true from the
performance tuning perspective since we are dealing with hierarchical designs. The next chapter
gives an overview on some performance optimisation issues when it comes to run multi-threaded
applications on multicore architectures.

Chapter 3

Related Work on Multicore
Performance Evaluation and
Tunning

This chapter presents an overview on performance evaluation methodologies. Besides, it presents
software and hardware techniques to improve shared cache performance in multicore architec-
tures. It is organised as follows. In our study, depending on the experimental setup, we observed
non-negligible performance variability of some high performance codes. It is clear that if this
instability is not rigorously considered, the conclusions of the performance evaluation and mea-
surement may be misleading. In this context, Section 3.1 discusses the problem of program
execution times variability and introduces a statistically rigorous performance evaluation pro-
tocol. In our effort to quantify and qualify the various factors that can influence the variability
of program execution times, we found that thread affinity plays an important role. However, it
is not clear how thread affinity contributes to increase or decrease the performance variability.
In order to understand these interactions, we studied two aspects: 1) data sharing/reuse and
2) shared cache contention. These concepts are introduced in Sections 3.2 and 3.3. The for-
mer (Section 3.2) presents software techniques to measure data locality of single-threaded and
multi-threaded applications. The later (Section 3.3) discusses the impact of cache sharing on
the overall performance of co-running workloads. Finally, in multicore architectures with a hier-
archy of shared caches, running a multi-threaded application can yield multiple thread affinity
placements, where each can have a distinct performance impact regarding cache performance.
In order to compute effective strategies as far as data reuse is concerned, Section 3.4 describes
techniques to exploit data sharing by thread affinity in multicore processors.

3.1 Variability of program execution times

Performance analysts often consider the program execution time as the first metric to inves-
tigate in the process of performance evaluation, for instance comparing the execution times
of two versions of the same program compiled with two different compiler optimisation flags.
Unfortunately, performance data can be polluted by errors or noise that can affect experimental
results. These errors or noise can come either from the experimental environment of the experi-
ment: hardware and/or software or from the measurement itself (the act of measuring perturbs
the program being measured). For example, there is a time required to read a timer before the
code to measure and store the timer after this code. Thus, if we execute a program N times, we
may obtain N execution times. The phenomena of observing these N distinct execution times

29

30 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

is called variability of program execution times. Program performance optimisations, feedback-
directed iterative compilation and auto-tuning systems [KSP09] all assume a fixed estimation
of execution time given a fixed input data for the program. However, in practice we observe
non-negligible program performance variations on hardware platforms. These variations appear
differently, depending on the applications and platforms.

●

●

P P'

10
.9

0
11

.0
0

11
.1

0
11

.2
0

Confidence interval of the mean
Confidence level 95%

Two alternatives comparaison

T
im

e(
se

co
nd

s)

Figure 3.1: Comparing between two confidence intervals of the mean

When a program exhibits a large variability of program execution times, the conclusions
about the true performance behaviour of the program are hard to derive. Indeed, the main
problem is what is the real performance of the program? In this context, if we do not consider
a fixed estimation of program execution times, then we have two answer two questions: 1) what
kind of metric should be used to summarise the performance of the program? And 2) how to
compare the performance of multiple configurations of the same program? To illustrate this
situation, suppose that we have two samples of program execution times X and Y 1. While X
represents execution times of a program P , Y represents execution times of a program P ′ after
applying an optimisation technique to P . In order to compare between P and P ′, we report
in Figure 3.1 the average execution times and the confidence interval (CI) of the average with
confidence level of 95%. If we consider only the average execution time, we may conclude that
P ′ is better than P (the optimisation works). However, due to variations of execution times, the
CIs of the average execution time of the two configurations overlap and the average value of Y is
in the CI of X. This means that this time, we can not conclude that P ′ is better than P [Raj91].

Even if CIs do not overlap, it does not mean that really the two alternatives are different.
Consider again the same example presented above with the exception that X and Y have dif-
ferent data. Figure 3.2 reports the execution times using the average and the CI of the average
execution time. Since the CIs do not overlap, we can conclude that X is higher than Y . (P ′

is better than P). However, if we consider the median execution time (diamond point for P
and triangle point for P ′), it is possible to conclude that there is no difference between the two

1X and Y are real performance data measured in real experiments

3.1. VARIABILITY OF PROGRAM EXECUTION TIMES 31

●

●

P P'

1.
75

1.
80

1.
85

Confidence interval of the mean
Confidence level 95%

Two alternatives comparaison

T
im

e(
se

co
nd

s)

median execution time

Figure 3.2: Comparing between two confidence intervals of the mean

configurations.

To deal with performance variations, we need two use three complementary approaches:

1. Given an evaluation environment, identify the factors that influence the most on perfor-
mance variations. This aspect is one of the goals of this thesis, it is presented in Chapter 4.
Some of these factors are presented in Section 3.1.1.

2. Better control on the experimental setup and use of a rigorous performance evalua-
tion methodology. When a performance evaluation is performed, the experimental setup
(whether hardware or software) has to be fixed in order to reduce as much as possible the
variations and reproduce results (this thesis presents an example of such methodologies).

3. Use statistical analysis protocols for comparing the program performance of multiple ver-
sions. Section 3.1.3 discusses some examples of such protocols.

The next section presents some factors that may influence on program execution times
variability.

3.1.1 Factors influencing the variability of program execution times

There are multiple factors that can make program execution times to vary. We classify these
factors into four distinct classes:

1. Inherent to measuring errors.
2. Inherent to the program:

(a) synchronisation and lock contention;

(b) OS calls;

3. Inherent to the execution environment:

(a) Machine workload;

32 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

(b) Starting stack address [MDHS09];

(c) Thread and process placement;

(d) Variable CPU frequency;

4. Inherent to the micro-architecture:

(a) Memory hierarchy;

(b) Out of order and speculative execution;

(c) Data prefetching;

(d) Branch prediction;

The next section gives some related work on quantification and qualification of variability
of program execution times.

3.1.2 Quantifying and qualifying variability of program execution times

We can classify performance variability studies mainly in two classes: 1) variability of pro-
gram execution times or 2) variability of hardware performance counters. In the former class,
we can consider the variability of program execution times in native executions whether for
the whole program [MDHS09, Gri09], for program fractions [HKA+01, Hug09] or for simulated
programs [AW03]. Regarding hardware counters, it possible to consider the variability of the
number of executed instructions [WM08] or comparative studies between multiple hardware
performance counters access infrastructures [ZJH09].

Hughes et al. [HKA+01] studied the variability of program execution times of multimedia
applications running on top of general purpose processors. They focused on the analysis of the
frame-level execution time variability. The analysed multimedia applications periodically pro-
cess a set of data, the processing of each piece of data is commonly called a frame; each frame
has a constraint that it must be completed in a certain deadline. Using simulations and some
real machine measurements, they observed that most of the analysed multimedia applications
exhibit frame-level execution time variability. They observed that the frame-level execution
time variability is in the range of 37% and 195%. They concluded that the variability is mostly
caused by the application algorithm and the media input rather than the architecture. They
considered that if there are variations in the instruction counts, then this variability is inherent
to the application (standard deviation is up to 27% in some cases). On the other hand, vari-
ations in the IPC (instruction per cycle) means that the variability is due to the architecture
(standard deviation less than 5%). They also concluded that aggressive architectural features
induce little additional variability and unpredictability.

Collective optimisation [Gri09] is a valuable effort in the community of program optimisa-
tion aiming to log performance numbers in a central database. One of the main motivations
behind this effort is the disparity of performance scores reported in the literature, and the dif-
ficulty in comparing, checking and reproducing them. A fraction of the non reproducibility of
experimental code optimisation results comes from the variability of program execution times;
if not correctly reported or evaluated, the overall reported speedups would have a low chance
of being reproduced.

Another effort dealing with variability is the work of Leather et al. [Hug09]. They proposed
a performance optimisation system based on observing the execution time of code fractions
(functions and so on). The average execution time of such code fraction is analysed thanks to

3.1. VARIABILITY OF PROGRAM EXECUTION TIMES 33

the Student’s t-test, aiming to compute a confidence interval for the average execution time.

Alameldeen et al. [AW03] studied time and space variability in architectural simulation
studies of multi-threaded workloads (transactional workloads). Time variability occurs when a
workload exhibits different characteristics during different phases of a single run, it means that
the execution time for each processed transaction may not be similar. Space variability occurs
when two runs exhibit different execution times. For instance, in our work we focus on the
later definition of performance variability. Regarding time variability, they observed variations
up to 31%. In the case of space variability, they found that for the tested benchmarks, the
variability exceeds 3% in almost all the tested benchmarks. Interestingly, they also observed
that variability decreases when the applications run for longer periods of time. They conclude
that ignoring these variations can lead to incorrect results when comparing architectural designs
using simulations.

Variability of program execution times has been shown to lead to wrong conclusions if some
execution environment parameters are not kept under control [MDHS09].

For instance, the experiments on sequential applications reported in [MDHS09] show that
the size of Unix shell variables may influence the execution times. In fact, the size of Unix shell
variables affects the starting address of the stack which in turn affects memory alignment (up to
5% variations in execution times). They also showed that the linking order of object codes may
influence the execution times. Regarding these two parameters, a performance analysis may
overestimate/underestimate the performance of an application or lead to incorrect conclusions.

Contrary to the variability of execution times, Weaver et al. [WM08] studied the variability
of instruction counts across multiple runs (7 runs) and multiple processor platforms (processors
from Intel and AMD, benchmarks from SPEC CPU2006 and SPEC2000). The number of
executed instructions is measured in two ways: 1) using hardware performance counters (the
retired instructions counter measured with the perfmon [Era04] tool) and 2) using dynamic
binary instrumentation (using the Pin [LCM+05] and Valgrind [NS07] frameworks).

They considered multiple sources of variations:

• The accuracy of the counter. Each platform provides a specific counter for retired instruc-
tions. However, what the counter really does, differs from one platform to another. For
instance, the instruction fldcw is counted as two retired instructions in some processors
whereas it is counted only once on others.

• The virtual memory layout. Some applications are sensitive to virtual memory layout, for
instance the size of environment variables [MDHS09] can lead to significant performance
variability.

• System effects: page faults, I/O and number of timer interrupts.

• Variability incurred by dynamic binary instrumentation tools.

The measurement study compares two configurations: 1) a naive execution of CPU2000 and
CPU2006 (the experimental setup is not fixed), and 2) a more careful run by following a fixed
measurement methodology (we discuss a similar methodology in Chapter 4).

To quantify variability, they used the coefficient of variation (CoV) metric. The CoV is
defined as the standard deviation divided by the average. Using an overall estimation of the
variations of benchmarks across all the machines, they conclude that with a naive execution,
the coefficient of variation of instruction counter is up to 1.07%. They observed that after

34 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

fixing the experimental setup, the variations are less than 0.002% for all the benchmarks. They
found most of the variability of instruction counts is due to the virtual memory layout (some
benchmarks are sensitive to starting address of the heap and the stack), and to some extent the
variations are due to timer interrupts (number of time the timer interrupt is triggered).

In the field of hardware performance counters again, Zaparaunuks et al. [ZJH09] studied the
accuracy of performance counter measurement tools. They performed a comparative study of
three well known measurement infrastructures on three different processors. The tested infras-
tructures are: 1) perfctr [Per], 2) perfmon [Era04] and 3) PAPI [BDG+00]. They concluded
that multiple factors have a non negligible effect on the accuracy of the measurement like: 1)
the number of measured performance counters (the number of hardware registers used simul-
taneously), 2) high level vs low level APIs, 3) kernel mode vs user mode measurement and
4) the duration of the measurement . As an overall estimation for example, they found that
when measuring the number of instructions at user level, the measurement error can lead to
2500 user-mode instructions across the tested tools. When counting at user and system level,
the error between the used measurement tools can lead 10000 instructions. One may say that
10000 instructions error is not important compared to the total number of instructions of an
application (possibly billions of instructions). However, if the measurement is intended for some
regions of the code or for program phase characterisation for instance, the impact of mislead-
ings conclusions may be high. Similarly, Moore [Moo02] discussed accuracy and efficiency issues
when using PAPI with the counting and sampling modes of hardware performance counters.

In the light of the different studies that we presented in this section, we can conclude
that variability is commonplace and can not be considered as negligible whether variability of
program execution times or instruction counts. We presented some related work discussing
possible factors that may produce these variations. Most often, we can notice that non-fixed
parameters in the experimental setup is the key factor that leads the execution times to vary
[MDHS09]. So, to avoid some of these variations, the experimental setup (whether hardware
or software) has to be kept under control. However, this is not sufficient to eliminate all
the variations. Still, it is possible to use statistical analysis to limit the influence of outlier
(the minimal and the maximal) values when comparing different alternatives. Using statistical
analysis allows to be careful regarding the conclusions about the performance behaviour of the
applications under study. The next section presents some statistical performance data analysis
protocols.

3.1.3 Statistical performance evaluation

In this section, we present two statistical performance evaluation protocols: 1) JavaStats and
the 2) Speedup-Test protocols. We present in the next section the JavaStats protocol.

3.1.3.1 JavaSats

Georges et al. [GBE07] studied variability of program execution times for Java programs. They
first showed that Java programs are experiencing non-determinism or variability of execution
times. Second, they presented some prevalent Java performance evaluation methodologies.
These methodologies differ from each other in different ways: 1) measurement methodology
and 2) data analysis. In the measurement methodology, they discussed three approaches: 1)
iterate the benchmarks multiple times within a single virtual machine (VM) invocation; 2)
multiple VM invocations and iterate a single benchmark execution; and 3) multiple VM invoca-
tions and iterate the benchmark multiple times. Regarding data analysis, the authors discussed

3.1. VARIABILITY OF PROGRAM EXECUTION TIMES 35

methodologies that differ in the way they report performance numbers from a given sample of
execution times: average or median vs best vs the worst execution time. To overcome the weak-
ness of the previous methodologies to account for performance variability, they advocated the
use of a rigorous statistical methodology to compare Java performance. For a single Java pro-
gram with a fixed input data running on a single virtual machine, they considered performance
evaluation methods for two cases:

• Measure startup performance (the performance of the virtual machine):

1. Take multiple measurements, each comprises one VM invocation and a single bench-
mark iteration;

2. Compute confidence intervals for the average execution time across these measure-
ments.

• Measure steady performance (the performance of the program itself)

1. Consider p VM invocations and q benchmark iterations i.e. we have p× q measure-
ments;

2. For each 1 ≤ i ≤ p invocation, retain only k measurements from the q iterations. The
kth iteration is reached once the coefficient of variation (CoV) of these k iterations
falls below a fixed threshold;

3. For each VM invocation compute the sample mean of the retained k measurements;

4. Compute the confidence interval across the computed means from multiple VM in-
vocations

After computing confidence intervals for the average execution time, the authors consider
two cases: 1) comparing two alternatives and 2) comparing more than two alternatives. The
former computes a confidence interval for the difference in the two samples average. If the
confidence interval includes zero, there is no statistically significant difference between the al-
ternatives for the chosen confidence level. If the confidence interval does not include zero, the
sign of the average difference indicates which alternative is better [Raj91]. The later considers
an analysis of variance (ANOVA). An ANOVA analysis tests if there is a statistically significant
difference between all the alternatives. To know between which alternatives, there is or there is
not a statistically significant difference, the authors use the Tukey HSD (Honestly Significantly
Different) test. The Tukey HSD test allows to compare all the possible pairwise averages of the
tested alternatives with a risk level α and find which average value is significantly different from
another.

3.1.3.2 The Speedup-Test protocol

The statistical protocol for performance analysis proposed by [GBE07] focused on average ex-
ecution times only. It is well known that the average is sensitive to outliers (minimal and
maximal values); so relying heavily on it may not be appropriate. For that reason, the median
is usually advised for reporting performance numbers. Touati et al. [TWB12] proposed a rigor-
ous statistical methodology (The Speedup-Test protocol2) based on well-known statistical tests
to study the statistically significance of observed speedups. By fixing a confidence level α, the
protocol is able to compare between two sample averages or two sample medians.

The Speedup-Test uses the following tests:

2The Speedup-Test protocol is implemented and distributed as an open source tool based on the R software.
In the remainder of this document, we rely on this protocol to certify the significance of our computed speedups

36 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

1. Shapiro-wilk test. It checks for the normality of a sample3 of program execution times X.
In other words, it checks if the sample X follows the normal distribution.

2. Fisher F-test. For a risk level α, it checks if two samples of program execution times X
and Y have similar variances σ2

X = σ2
Y .

3. Student’s t-test. For two samples of program execution times X and Y , the student’s
t-test checks with a risk level α for the null hypothesis µX ≤ µY where µX and µY are
the average values for the X and Y samples respectively.

4. Welch’s test. This test is an adaptation of the Student’s t-test. It is used when two
samples of program execution times X and Y have unequal variances.

5. Kolmogorov-Simirnov test. It checks if two samples of program execution times X and Y
follow the same distribution.

6. Wilcoxon-Mann-Whitney’s test. For two samples of program execution times X and Y ,
the Wilcoxon-Mann-Whitney test checks if the median of X is greater than the median
of Y and if P[X > Y] > 1

2 , which means the probability that an individual execution Y is
faster than an individual execution X.

Having two samples X and Y of program execution times, computing a statistically sig-
nificant speedup of the observed average execution time using the Speedup-Test methodology
follows the following protocol:

1. If the two samples are large enough (|X| > 30 and |Y | > 30), use the Student’s t-test with
a fixed risk level α4

2. If one of the samples is small (|X| ≤ 30 or |Y | ≤ 30)

(a) If X or Y does not follow Gaussian distributions (using the Shapiro-Wilk test) with
a risk level α, then it is not possible to conclude about the statistical significance
of the observed speedup of the average execution time. In this case more runs are
required to build a large sample.

(b) If X and Y follow Gaussian distributions (Shapiro-Wilk test) with a risk level α then:

i. If X and Y have the same variance (using the Fisher F-test) with a risk level α
then use the standard Student’s t-test.

ii. If X and Y do not have the same variance (using the Fisher F-test) with a risk
level α then use the Welch’s version of the Student’s t-test.

Similarly, the Speedup-Test computes a statistically significant speedup of the observed
median execution time for two samples X and Y . The computed speedup relies on the Wilcoxon-
Mann-Whitney test to check if the median execution time has been reduced or not between the
two samples. Performing the later test follows the following protocol:

1. Perform the two-sided and unpaired Kolmogorov-Simirnov test with risk level α to check
that the two samples are from the same distribution.

2. If X and Y are not from the same distribution, then check if X and Y are large enough:

3A sample is a finite set of program execution times.
4The Student’s t-test makes the assumption that the distribution function of the two samples follow a normal

distribution. However, if they are not, then it is admitted (but not proved) that the test stays robust for large
samples

3.1. VARIABILITY OF PROGRAM EXECUTION TIMES 37

(a) If |X| and |Y | are large enough (|X| > 30 and |Y | > 30), then it is known that it is
possible to use the Wilcoxon-Mann-Whitney test for large samples with risk level α
but the risk level may not be preserved.

(b) If |X| ≤ 30 or |Y | ≤ 30 then it is not possible to use the Wilcoxon-Mann-Whitney
test, more runs are required.

In addition of computing a statistically significant speedups for the average or median exe-
cution times for a given benchmark and a fixed data input, the Speedup-Test protocol gives the
possibility to compute two metrics 1) an overall speedup S and 2) an overall performance gain
factor G across a set of benchmarks. The idea behind these metrics is when we apply a code
optimisation technique on a set of benchmarks, practically only a fraction of programs will take
benefit from it. In [TWB10], they suggested that it is possible to compute the S and G only for
the fraction of benchmarks that succeed with the Student’s t-test or Wilcoxon-Mann-Whitney.
If we consider that we observe a speedup in p out of n benchmarks, then the fraction p

n repre-
sents the proportion of accelerated benchmarks. To evaluate if the code optimisation technique
is beneficial for a large faction of programs, the Speedup-Test protocol computes a confidence
interval with a fixed confidence level α for this proportion of accelerated benchmarks.

3.1.4 Discussion on variability of program execution times

In native program execution, the instability of program performance makes an accurate quan-
tification of program performance highly challenging. Indeed, this variability may lead to wrong
conclusions about the true performance behaviour of programs. For example, varying the size
of the UNIX shell environment may lead to up to 5% variability in execution times [MDHS09].
Measurement infrastructures like software to access hardware performance counters can also
introduce variations in the reported counters, mainly it is dependent to the way that these
counters are used [ZJH09]. One would think that using simulators will help to reduce this
variability. Unfortunately, not only they are slow, they also present a bias in measurement,
more than 3% variability in execution times [AW03]. The sources of the measurement bias are
numerous. However, one of the important factors is incorrectly fixed parameters in the exper-
imental setup [MDHS09, WM08]. Still, operating system (OS) effects like process scheduling,
page faults management, OS interrupt handlers have also to be considered.

In order to reduce the effects of these variations, and consequently to decrease the probabil-
ity to be wrong about the performance of a given program or a system, two aspects have to be
considered: 1) rigorous performance evaluation methodologies, and 2) use rigorous statistical
methods for performance analysis [TWB10,GBE07]. With the former, we think to a fixed soft-
ware and hardware setups, multiple runs (for a statistical significance analysis), longer runs (to
overcome the overhead of the measurement itself) or by using a large number of benchmarks
(to overcome the variations that come from the application itself). The later aspect is related
to the use of statistics. Indeed, a statistical data analysis does not remove the variations, but
it helps to better interpret performance data with fixed confidence levels.

When it comes to program execution time measurement, it is possible to consider two dimen-
sions: 1) the measurement granularity and 2) the program data input. First, the measurement
granularity consists of whether we are measuring a fraction of the program or the whole program
(i.e. single loop, function or the whole program). For small granularity measurement targets,
the sensitivity to errors or noise can be significant, and consequently leading to important vari-
ations. On the other hand, long running programs may be less sensitive to variations [AW03].
However, in all cases, the size of the sample has to sufficiently large (more than 30 runs [Raj91])

38 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

even if it is time consuming for large programs. In fact, multiple statistical tests require a large
sample of data [TWB10, Raj91]. As a complementary aspect to the measurement granularity,
we can consider how the repetitive runs are performed: 1) a single run where the repetitions
are performed inside the program or 2) multiple invocations of the program. When we perform
multiple invocations of the program, even if is not always true, the successive executions can
be considered as independent. Unfortunately, this situation is not true when we do repeti-
tions inside a single invocation of the program. There are two main reasons for that. The OS
does not behave as if the program is launched multiple times from the shell. For example, the
startup time of the program is not accounted. The second reason is caches may be warmed
by the repetitive executions. Regarding the program data input, the variability of execution
times in this case cannot be analysed with the Student t-test or the Wilcoxon-Mann-Whitney
test. Simply because when data input varies, the execution time varies inherently based on the
algorithmic complexity, and not on the structural hazard. In other words, observing distinct
execution times when varying data input cannot be considered as hazard, but as an inherent
reaction of the program under analysis. However, an analysis of the variance (ANOVA) [Raj91]
may be used for this aspect. In the remainder of this thesis, we focus on the variability of
program execution times with a fixed data input.

The presence of multiple levels of memory cache in mulicore processors increases the need
for a better understanding of the locality of data and its measurement in termes of performance
stability and performance improvement. In this context, the next section discusses metrics and
methods to measure data locality in single-threaded and multi-threaded applications.

3.2 Data locality and reuse distance analysis

The organisation of modern computers relies on the implementation of a hierarchy of memory
systems. This organisation defines multiple levels: the highest level of the memory hierarchy is
the processor’s registers, the lowest level is the main memory and the intermediate levels are
memory caches. While lower levels have bigger storage capacity but slower time accesses, upper
levels (i.e. registers and caches) have less capacity but have lower latency access (depending
of the level in the hierarchy). When a processor issues a memory operation on a data, it first
looks for at the highest level, then at the lower levels (until the data is found).

Since memory caches have lower latency and less capacity, to achieve good performance, it
is better to keep the most frequently data on caches as long as possible, hence improving the
data locality of the program. We can divide data locality in two classes:

• Temporal locality: It refers to the reuse of a given piece of data in a relatively short
time duration in the future.

• Spacial locality: It refers to the use of data elements which are stored in relatively close
memory locations.

The next section discusses techniques to measure data locality.

3.2.1 Measuring data locality

Data locality of a program is not easy to measure, there is no a counter or a ratio that gives
an intuition about its locality. However, since data locality is a consequence of a good or a
poor behaviour of a program as far as memory hierarchy is concerned, it can be approximated

3.2. DATA LOCALITY AND REUSE DISTANCE ANALYSIS 39

by some metrics like number of cache misses or cache hits. These metrics can be computed
differently according to their dependence or not to a certain architectural platform. So, we
consider architecture dependent and architecture independent metrics.

The next sections discusses the case of architecture dependent metrics to measure data
locality.

3.2.1.1 Architecture-dependent metrics

One way to measure data locality of a program on a given hardware platform, is the use of
an expensive cache simulation approach or by using hardware performance counters. It is then
possible to estimate metrics such as cache miss ratio or cache hit ratio for instance. This ap-
proach can derive valuable information about the locality of the program by characterising the
behaviour of a program when running on top of a fixed hardware platform. For example, it
is possible to compare the performance of a program before and after applying a data locality
optimisation technique. On one hand, a good impact of applying a data locality optimisation
technique translates in a reduction in the number of cache misses and consequently in program
execution time. On the other hand, a negative impact translates to an increase in the num-
ber cache misses and consequently, an increase in program execution time. The drawback of
this approach is the following: performance data are collected for a given hardware with fixed
cache parameters (fixed cache size, number of sets, number of ways, etc.), they are not portable
across various platforms. So, if locality information is required for different architectures, the
program has to be run on each of these hardware configurations (whether direct measurement
or simulation). Consequently, the overhead of the profiling may not be negligible.

When it comes to cache simulation, we can consider for example the case of Cachegrind

[Net94]. Cachegrind simulates the machine cache hierarchy when a given program executes.
It simulates independent first level L1 instruction and data caches and a unified L2 cache. If
a machine has also an L3 cache, Cachegrind simulates the first level (instruction and data
cache) and the last level (L3 cache). Cachegrind gathers statistics about hits and misses for
each individual source code line. These statistics are related to each tracked level in the cache
hierarchy. At the end of the execution, it reports a summary of global statistics for the whole
application for each tracked level in the cache hierarchy.

The next section introduces architecture independent metrics to measure data locality.

3.2.1.2 Architecture-independent metrics

One of the most influential metrics to measure data locality is the reuse distance analysis. Mat-
tison et al. studied stack algorithms in cache management and defined the concept of stack
distance [MGST70]. Reuse distance is similar to stack distance using the LRU (Least Recently
Used) replacement policy. It measures the program locality behaviour of an application in a fully
or set-associative cache. It does not depend on any hardware or cache parameters. This allows
this technique to measure the locality of programs independently of any particular machine.
Most often, reuse distance is used as dynamic technique to approximate the cache behaviour of
a program.

It is also possible to estimate data reuse or data locality at compile time using static analysis.
A compiler analyses array references in nest loops of a program, and determines if these refer-
ences access the same memory locations [WL91, MCT96, Fah97]. It is then possible to classify

40 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

Y Y X Z Z X Z

rd = 1

rd = 0

X Y Z

rd = 1 rd = 2

rd = 2

Z

rd = 0

X

rd = 0

rd = 1

Y Y

rd = 0

rd = 1

(a) A memory references stream

0 1 2 ∞

Reuse distance histogram

%
ref

ere
nc

es

0
5

10
15

20
25

30
35

(b) The reuse distance histogram

●

●

●

●

Number of cache lines

%
mi

ss
 ra

te
(m

iss
es

/re
fer

en
ce

s)

0 1 2 3

20
40

60
80

10
0

(c) The miss rate curve

Figure 3.3: An example of reuse distance on a sequence of memory accesses, a reuse distance
histogram, and cache miss rate curve for a cache with sizes going from 0 to 3 cache lines

these accesses in terms of data reuse, and by using cost models to predict the cache performance
of the program. The idea behind analytical methods for predicting cache behaviour is to model
the cache behaviour of a program by means of mathematical formulas. If these formulas can be
solved then output of such models like the number of cache misses or the number cache lines a
loop nest accesses can be exploited by data locality optimisation techniques. These analytical
models include Presburger formulas [CPHL01], probabilistic analytical models [FDZ99] or the
Cache Miss Equations [GMM99, VX02]. The main limitation of such analytical models is that
they do not account for indirect references, they require known lower and upper bounds of
iteration counts, affine expressions or regular accesses patterns.

Due to the limitation of compile-time techniques to accurately model the cache behaviour
of programs, we focus our discussion on runtime techniques. The next section presents some
related work regarding the concept of single-threaded data reuse distance analysis.

3.2.2 Single-threaded data reuse distance analysis

In a sequential execution, reuse distance is defined as the number of distinct data elements
accessed between two consecutive references to the same element [DZ03, DZ01, BD01] or ∞ if

3.2. DATA LOCALITY AND REUSE DISTANCE ANALYSIS 41

the element has not been referenced before. Figure 3.3a shows an example of reuse distance
computation for a memory references stream. We can observe that while the second reference
of X has a reuse distance of 1, the second reference of Y has a reuse distance of 0. The granu-
larity of a data element can be a processor word, cache lines, memory page or/and instructions.
Moreover, this metric measures the distance (in terms of the number of distinct data accesses)
between two accesses to the same data element instead of time.

To measure program locality with reuse distance, a histogram of the reuse of all memory
references is used. Shorter reuse distances means good temporal locality because these ref-
erences are more likely to be cached. On the other hand, longer reuse distances means bad
locality because these references are more likely to not be present in the cache when they are
referenced again. For a fully associative cache with N lines and with a LRU replacement policy,
there are N + 1 counters: C1, C2, ..., CN , C>N . For each cache access, one of these counters is
incremented. The i+ 1th counter is incremented if the data element is found at the ith position
on the LRU stack. For instance, if the reuse distance of a data element is equal to zero, then
the C1 counter is incremented by one, if the reuse distance for an access is 1, then the C2 is
incremented accordingly and so on. For all accesses with reuse distances larger than the cache
size (the data element is not present in the LRU stack), then the C>N counter is incremented
representing the cache miss counter. The C>N counter is also incremented when a memory
reference has never been referenced before (first time access equivalent to compulsory misses).

Regarding the above definition of the reuse distance measurement, if we want to study the
locality of a full associative cache size having lower cache lines number, says N ′ < N then
the hit counter (H(N ′)) and the miss counter (M(N ′)) can be computed with the following
formulas:

H(N ′) =

N ′∑
i=1

Ci and M(N ′) =

N∑
i=N ′+1

Ci + C>N

This formulas is actually a slight adaptation of the formulas presented in [CP03]. The miss rate
for a given cache size is computed as the ratio between the number of misses for reuse distances
greater than the cache size and the total number of references. Figure 3.3b shows the reuse
distance histogram. The histogram reports four bars, each represents reuse distance of 0, 1, 2
and a cold misses counter respectively. A cold miss counter tracks memory locations that are
referenced for the first time. Figure 3.3c shows the miss rate curve for a cache with 0, 1, 2 and
3 cache lines size.

Compared to simulating the whole program locality for various cache parameters, reuse dis-
tance measurement is faster. However, full reuse distance measurement has the limitation to
be slow. The overhead is due to the need to feed the model with all the memory references.
Moreover, this overhead is even more prevalent for large data sets. To overcome this limitation,
researchers have proposed sampled reuse distance measurement [DZ03, BH04, BH05, SKP10].
The idea behind the concept of a sampled reuse distance analysis is the following: instead of
tracking all the memory references, a sampled analysis randomly selects individual references
from the dynamic references stream and tracks the selected addresses until their reuse. With
this approach, only a subset of memory references have to be tracked to compute the model
which can greatly reduce the overhead of the analysis. In this context, statistical models can
be used to estimate the miss rate of shared caches. Though fast, the accuracy of a sampling
approach can be a problem. Indeed, sampling methods implies to select a sample of random
addresses. However, estimating to what extent these selected addresses can be considered as

42 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

representative of the full data stream remains difficult.

Reuse distance analysis can also be applied for data locality prediction purpose. It allows to
profile few runs of program using different data input. With the help of some statistical models,
it tries to predict how the locality behaviour of the program will be affected when running
with other (larger) data inputs. In this context, Zhong et al. [ZSD09] examined approximate
algorithms for measuring reuse distance and prediction methods for modelling whole-program
locality.

The next section presents some related work about reuse distance analysis for multi-threaded
applications.

3.2.3 Multi-threaded data reuse distance analysis

The previous section presented the single thread data reuse analysis. We showed that it is able
to model the program data locality for a large set of possible cache sizes. Unfortunately, this
is not sufficient when it comes to predict the locality behaviour of multi-threaded applications
running on multicore processors. The problem with the single thread reuse distance analysis
is that it is unable to capture the dynamic behaviour of a parallel execution. This behaviour
can be translated to the need to understand the following: how the different threads interact as
far as the use of a shared cache is concerned? To accurately predict the locality behaviour of
a multi-threaded application, a multicore-aware reuse distance analysis also called a concurrent
reuse distance (CRD) [WY11] has to consider two key parameters:

• Memory interleaving. This parameter considers how memory references of the simulta-
neous execution of different threads interleave. Considering a parallel execution, dynamic
parameters (such as scheduling, synchronisation, I/O, etc.) impact memory references in-
terleaving on the shared cache. Hence, the CRD model has to reflect this thread-interleave
behaviour to precisely model inter-thread interaction.

• Data sharing. Data sharing impacts cache performance into two ways. First, considering
the case of data accessed by all threads in read only mode, the first access to the shared
data by one thread will effectively prefetch that data to the cache making it available to
other threads. The direct consequence of prefetching that data is to avert future cache
misses when the data is accessed by other threads. Second, when a shared data is accessed
by multiple threads, only one copy of the data needs to be brought to the cache and used by
all threads. Moreover, bringing one copy to the cache saves cache space which can be used
to hold other memory blocks with positive impact on the multi-threaded performance.

Figures 3.4 and 3.5 show examples on how a CRD analysis has to consider memory refer-
ences interleaving and data sharing among multiple threads. The first figure shows a concurrent
reuse distance profile for two threads sharing data with distinct memory references. It reports
the effects of data sharing on the reuse distance profile. The first scenario is related to the reuse
distance of the memory reference A. If we consider the case of the first thread, the reference to
A by both threads breaks the reuse interval into “ACBCA” and “AEA”. The new CRD has to
consider the RD of 2 (for “ACBCA”) and RD of 1 (for “AEA”) compared to original RD of 2.
The second scenario is related to the memory reference C. Referencing C by thread 2 has the
effect of prefetching that data to the cache, the direct effect is to avert a cache miss for thread
1. So, instead of having an RD =∞ for the memory reference C by thread 1, the new CRD is
equal to 1. The second figure shows the case of uniform and non-uniform interleaving. When

3.2. DATA LOCALITY AND REUSE DISTANCE ANALYSIS 43

A B C A

C A E F

RD(A) = 2

Thread 1

Thread 2

A C B C A E A F

Data sharing of thread 1 and 2
case 1

Data sharing of thread 1 and 2
case 2

A C B C A E A F

CRD(A) = 2 CRD(A) = 1

CRD(C) = 1

Figure 3.4: A case of a concurrent reuse distance of two threads sharing data

A F B G C H D I E J B H

Uniform interleaving of thread 1 and 2
CRD(B) = 7

A F G B H C D I E J B H

Non-uniform interleaving of thread 1 and 2
CRD(B) = 6

A B C D E B

F G H I j H

RD(B) = 3

Thread 1

Thread 2

Figure 3.5: A case of uniform and non-uniform interleave of memory references of two threads

it comes to model memory references interleaving, some studies distinguish between a uniform
or a non-uniform thread-interleaving (see Figure 3.5). Considering a uniform or a non-uniform
thread-interleaved memory references streams depends on how the concurrent reuse distance is
computed. Mainly, there are two approaches to build a concurrent reuse distance: 1) one single
CRD and 2) merging multiple per-thread reuse distance profiles.

The first approach aims to directly build a global and shared CRD; all memory references
of all threads go through this single CRD. In this approach, thread-interleaved memory ref-
erences is implicit, it is based on the order of arrival of memory references to the shared
CRD [SKP10,SPP10,ZKY11]. This approach has one main drawback, it captures one possible
memory references order among many other possibilities; thread scheduling and synchronisa-
tion for instance, may impact the order in which memory addresses are accessed by threads.
Therefore, the reuse distance analysis may vary across multiple profiles.

The second approach [WY11, DC09, JZTS10] aims to build per-thread reuse distance pro-
files, each per-thread profile captures the classical reuse distance in isolation at the end of the
parallel execution. All the individual RDs are merged into a single shared CRD. It is only at
the time of merge that the model has to consider the nature of memory references interleave.
The merge decision highly depends on the expected behaviour of the multi-threaded application
or by answering the question: do threads execute the same code or not? If threads execute the
same code, then it is more likely that threads access memory in a similar way, so it possible
to consider a uniform model for merging the distinct RDs. On the other hand, when threads
execute distinct instruction streams, they are more likely to access memory in different ways.
So, it is possible to consider a non-uniform merging model for such applications.

44 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

Wu et al. [WY11] studied the locality of multi-threaded applications which exhibit loop-level
parallelism running on top of tiled multicore processors (using simulators). For these loop-
level programs, they made the assumption of uniform memory references interleave and study
how CRD profiles scale for larger core numbers. Ding et al. [DC09] and Jiang et al. [JZTS10]
considered the general case of asymmetric behaviour of threads. They considered a non-uniform
interleave of memory references to build their CRD models. Although the former approach
addresses only one class of multi-threaded applications, it has the advantage of simplifying
the problem, since it considers that all threads exhibit symmetrical memory access behaviour.
Though general, the later approach employs complex statistical models to account for the highly
large number of ways that threads interleave and interfere. For this reason, this approach may
be inapplicable for large data sets.

3.2.4 Discussion about data locality measurement

Data locality is the measure of how programs are taking benefit from caching systems. Since
the introduction of memory caches, locality has increasingly gained importance in computing
systems. Depending on the program locality or the patterns of data reuse and due to the higher
speed of memory caches, a memory hierarchy can substantially increase or decrease the program
performance [Joh02]. While locality can be measured by hardware-dependent measures such
cache miss rates (using hardware performance counters for instance), hardware-independent
metrics such as reuse distance, ensures better portability and predictability. Reuse distance
can be computed by an exact measurement or by a sampled measurement. Although the exact
measurement gives better accuracy, analysing all the memory references is slow. On the other
hand, a sampled measurement leads to a substantial overhead decrease but with some accuracy
loss. It also possible to measure data locality by static code analysis. This method may be
more attractive due to its low overhead (it can be implemented in a source-to-source compiler
or a full compiler). Unfortunately, since it is hard to track all the memory references statically,
the accuracy of the measurement could be affected (pointer references, data input known at
runtime, etc.).

While single thread reuse distance focus mainly on single-threaded programs, it has to be
augmented to account for a multi-threaded execution. A multi-threaded aware reuse distance
analysis has to consider two aspects: data sharing and memory references interleaving. So,
data locality measurement is highly dependent on the two later aspects when it comes to build
a concurrent reuse distance. Our work on the data locality techniques presented above differs
fundamentally in one aspect. While these techniques focus on how to effectively and accurately
measure data locality, this thesis presents runtime techniques aiming to enhance multi-threaded
data reuse.

The next section discusses the problem of inter-thread cache contention in multicore pro-
cessors. This problem happens when multiple independent applications run simultaneously and
access to common caches. Indeed, co-locating on the same cache multipe processes may lead to
significant performance variability and leads to severe performance degradation on the other.

3.3. PROCESSES CO-SCHEDULING AND CACHE PERFORMANCE 45

3.3 Improving shared cache performance for co-running appli-
cations

In multicore processors with shared caches, the concurrent execution of multiple processes can
result on a destructive interaction leading to a severe performance degradation. An example of
such destructive interaction is the case of two programs A and B running on a neighbouring
cores accessing to a shared cache. Let us consider the following scenario: while program A
exhibits a streaming behaviour on a large working set, program B operates on a small working
set, but with good temporal locality. The performance of the program B will be highly affected
by the execution of program A. The later will occupy a large footprint on the cache without
any temporal reuse. This will lead to evict useful cache lines of program B, hence, degrading
its performance.

namd milc mcf lbm

Impact of inter−thread cache contention

S
pe

ed
up

 (
T

im
e

so
lo

/ T
im

e
sh

ar
e)

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

C 1: Worst
C 2: Best

Figure 3.6: The observed performance degradation of four SPEC CPU2006 benchmarks run-
ning under three different co-schedules on an Intel quad-core processor (higher bars means low
performance degradation)

In order to illustrate the performance behaviour when running multiple concurrent appli-
cations on a multicore processor, we followed the idea presented in [ZBF10], and performed an
experiment using four applications from SPEC CPU2006 benchmarks5: namd, milc, mcl and
the lbm benchmark. The four applications were run simultaneously on an Intel quad-core pro-
cessor, where each couple of cores share an L2 cache6. Each application runs with one thread
and is placed in a distinct core. Each execution of the four applications under multiple thread
placement configurations is called a co-schedule.

Figure 3.6 shows the performance degradation of the four applications when running simul-
taneously under different co-schedule configurations. With four cores and two L2 caches, there
are three unique ways to co-schedule the four applications. For each co-schedule, the median
execution time (35 runs) of each application is reported. Besides, we measured the execution
time of each application when it runs alone. For each application i, and for each co-schedule
j, we computed the speedup of running the application i under j relative to a solo run as the

5SPEC CPU2006 are single threaded sequential applications.
6The machine has two sockets, each with four cores. We use only one socket for our experiments

46 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

following:
T imesoloi

T imeji
where Timeyx represents the reported execution time of application x under

co-schedule y. Figure 3.6 reports for each application the best and the worst observed speedups.
It shows that depending on applications, the performance degradation due to sharing the L2
cache may be significant.

The impact of cache sharing on program performance in multicore architectures was stud-
ied in many research papers, mainly focused in architecture design and in operating system
(OS) process scheduling. These studies have different objectives like the increase of system
throughput, overall fairness or quality of service. Achieving these objectives requires a better
understanding of the interaction between threads in order to: 1) propose prediction models or
classification schemes of cache sharing behaviours and 2) propose solutions and techniques that
aim to minimise the inter-thread cache misses and contention by placing the different programs
appropriately. Most of these studies focused on single threaded applications and target multi-
programmed environments.

The next section discusses some related work on inter-thread shared cache contention pre-
diction models and classifications schemes of cache sharing behaviours.

3.3.1 Predicting inter-thread shared caches contention

The first approach to alleviate the problem of cache contention relies on finding a co-scheduling
that minimises capacity misses and cache access contention. The advantage of implementing a
process scheduling policy is flexibility. The scheduling algorithm can be implemented into two
distinct locations:

1. At system level or inside the OS scheduler: this solution is more attractive, since it allows
to monitor all the processes running on top of the system.

2. At user level: this solution allows to monitor only a subset of processes. In a high
performance system for instance, it is possible to consider only high consuming time
applications.

In addition to the implementation location, a software solution for process scheduling can
adapt to a dynamic behaviour of applications.

Tackling cache contention purely by process scheduling requires the knowledge of some
information or characteristics about the running applications. For that reason, most often
these techniques are profile guided. The profile can be collected in two ways:

1. Each application is run once until termination, analyse the profile and apply a scheduling
policy.

2. It is not necessary to run the whole application until termination, just take a profile on
an sample of the execution and apply the scheduling policy.

Program profiling is important because it allows to build models to understand and predict
how applications interact with each other. Despite its advantages, profiling may be highly time
consuming. For this reason trade-offs have to be done between accuracy and speed.

Many performance models were studied to predict the impact of cache sharing on co-
scheduled applications [CGKS05, XL08, KBH+08, ZBF10]. Chandra et al. [CGKS05] studied
the impact of L2 cache sharing on threads that simultaneously share the cache on a chip multi-
processor (CMP). They proposed three performance models to predict the impact of inter-thread

3.3. PROCESSES CO-SCHEDULING AND CACHE PERFORMANCE 47

cache sharing on the performance of each co-scheduled thread that shares the cache. They ob-
served that cache contention can significantly increase the number of cache misses of a thread
in a co-schedule, and showed that the degree of such contention is highly dependent on the
thread-mix in the workload. The input of the proposed models is the isolated L2 cache reuse
distance of each thread. A reuse distance profile captures the temporal reuse behaviour of an
application in a fully or set-associative cache. The output of the models is an estimated number
of extra L2 cache misses for each thread due to cache sharing.

In the spirit of predicting the performance degradation experienced by co-running appli-
cations when sharing common caches, Zhuravlev et al. [ZBF10] investigated contention-aware
scheduling techniques to mitigate the contention on shared caches in multicore processors. In
order to prototype efficient scheduling techniques, they studied some well-known classification
schemes (prediction models) in the research community. The studied models aim to predict
the impact of cache sharing on the overall program performance of co-scheduled applications.
In other words, the prediction models estimate how likely each thread can affect another when
competing for shared caches. After studying the Stack Distance Competition (SDC) [CGKS05],
Animal Classes [XL08], Solo Miss Rate [KBH+08] and the Pain Metric (proposed by [ZBF10])
models, they selected the best scheme to design a scheduling algorithm.

A Stack Distance Competition model based on reuse distance analysis. It tries to build a
new reuse distance profile that merges individual reuse distance profiles of threads that run
together. The output of the model is an estimation of the number of extra cache misses due to
the cache competition access.

Animal Classes model classifies cache behaviour of benchmarks into four classes based on
simple heuristic metrics. Each class is related to the behaviour of a specific animal with respect
to its use of the shared cache. The model uses metrics such the total number accesses to the
L2 cache, the total number of L2 misses if the program use the whole n ways of the cache,
the relative miss rate if the program has exclusive use of the n ways of the cache (number of
misses per accesses) and finally the smallest number of ways needed to achieve a miss rate that
is greater than or equal to k% of solo miss rate. The combination of these metrics allows to
define four profiles (animals) of applications:

1. Low-rate access to the shared cache.
2. Frequent L2 accesses but the miss rate is reasonable even if the number of used cache

ways is small.
3. Frequent L2 accesses and require an adequate number of ways to achieve good performance

(very-sensitive to co-running applications).
4. Frequent L2 cache misses with a high cache miss rate whatever the allocated cache size

(frequently hurts other applications).

A Solo Miss Rate model uses hardware performance counters to measure the number of
misses or the cache miss rate. This metric can give the scheduler hints about applications with
high-rate cache misses. Therefore, it is possible to spread-out these applications onto multi-
ple shared caches in such a way that no cache will experience more cache misses than an another.

The Pain metric model uses the concept of the cache sensitivity and cache intensity. Sensi-
tivity measures how much an application will suffer when it shares the last level cache. Using
probabilities, the model estimates how likely hits in the reuse distance profile turn into misses
due to cache contention. The Intensity metric measures how much an application will hurt

48 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

other applications. It is measured as the number of last-level cache accesses per one million
instructions.

Besides contention on shared caches, Zhuravlev et al. [ZBF10] studied other factors causing
performance degradation of co-running applications running on chip multiprocessors (CMPs).
They provided an approximation of the performance degradation due to:

1. DRAM controller contention;
2. FSB contention;
3. Shared cache contention;
4. Contention in resources involved in prefetching.

From the classification schemes study, they concluded that the Solo Miss Rate [KBH+08]
gives good results while keeping the profiling overhead low. Indeed, the miss-rate of an applica-
tion is easy to obtain online via hardware performance counters present in commodity hardware.
They presented an algorithm exploiting the miss-rate called Centralised Sort. The algorithm
examines the list of applications, sorted by their miss rates, and distributes them across cores,
such that the total miss rate of all threads sharing a cache is balanced across all caches.

The next section discusses cache partitioning as a technique to reduce the inter-thread cache
sharing contention.

3.3.2 Cache partitioning

As an alternative to process scheduling, several research studies address cache contention via
software-based or hardware-based cache partitioning. Indeed, cache partitioning is a technique
that refers to the partitioning of the shared L2 or the L3 caches among multiple computing
processes running concurrently on distinct cores. In order to reduce capacity misses experienced
on shared caches, the partitioning aims to confine the working set of an application in an portion
of the shared cache. Usually, cache partitioning may follow multiple optimisation objectives:

1. Improving overall program performance: improve the IPC of each intervening co-scheduled
application by minimising the overall cache miss rate.

2. Providing quality of service (QoS): if we consider that each program has its own perfor-
mance requirement, an example of QoS can be defined as follows: the performance of a
program A when co-scheduled with a program B should never be less than X% compared
to the case when running in solo.

3. Ensuring fairness: an example of a fairness metric is to ensure that the slowdown (speedup)
of each co-scheduled program should be identical after cache partitioning. Another fairness
metric may follow the optimisation objective of balancing the number of cache misses
experienced by each co-runner when sharing a cache.

In the following sections, we discuss the principle of software and hardware cache partition-
ing techniques. Besides, in order to reduce the inter-thread cache contention, we also present
an approach that combines both software and hardware techniques.

3.3.2.1 Software cache partitioning

Most often, software cache partitioning techniques rely on the classical OS-page coloring. In
this case, page coloring is implemented inside th OS virtual memory manager or inside virtual

3.3. PROCESSES CO-SCHEDULING AND CACHE PERFORMANCE 49

machines. In physically indexed caches, page colouring aims to control the mapping of physical
memory pages to a processor’s cache blocks. Figure 3.7 illustrates the OS-page colouring tech-
nique. Memory pages in the physical address space are assigned three different colors, pages
with the same color are mapped to the same cache blocks (a group of cache sets). Page colouring
aims to: 1) maximise the total number of physical pages cached by the processor and 2) reduce
conflicts by ensuring that contiguous pages in virtual space do not map to conflicting physical
pages [TDF90,CJ06,ATSS09,LLD+08,ZDS09]. Therefore, when physical pages are required by
an application, the OS will attempt to allocate free pages that are contiguous from the CPU
cache’s view.

Memory pages

Color 1

Color 2

Color 3

Color 1

Color 2

...
Way 1 Way 2 Way n

Cache

Cache sets

Figure 3.7: An illustration of the page colouring
technique [ZDS09]

061218

01218

Cache line
offset

Cache set number

Memory page offsetPhysical page numberPhysical memory
address

Cache address

6 bits for a
page color

Figure 3.8: Page colors codification on an X86
architecture

As stated above, memory pages that map onto the same cache portion (blocks) are assigned
the same colour. The amount of cache size to allocate to each co-running application is controlled
by the colour of pages assigned to each application. By doing so, the operating system can isolate
the shared cache usage of co-running applications. Assigning a page colour to a physical page
works as follows: a physical address contains several common bits between the cache index and
the physical page number (See Figure 3.8). These bits are referred to as page colour. The
maximum number of colours that a platform can support can be computed by the following
formulas:

Colors =
CacheLineSize×NumberofSets

PageSize

Given this total number of colours, an operating system (OS) can partition the shared cache
between the co-running processes by assigning a given number of colours for each of them. The
number of colours to provide for each application is dependent on the optimisation objective:
performance, QoS or fairness. It can be computed statically (once for each application) after an
application profiling phase or dynamically to adapt to program’s time-varying phase behaviour.
The next section discusses the principle of hardware cache partitioning.

3.3.2.2 Hardware cache partitioning

Hardware cache partitioning techniques mainly focus on efficient (cache sharing aware) cache
replacement policies. The goal is to minimise cache misses or maximising fairness. Contrary
to OS or programmer approaches, hardware techniques assume that a co-schedule is already
determined by the OS or by the programmer, and the hardware’s task is to optimise the per-
formance for the given co-schedule by dynamically allocate/partition the shared cache between
the running jobs.

As an example of such hardware technique, we present the work of Qureshi et al. [QP06].
They proposed a hardware mechanism (UCP for Utility-based Cache Partitioning) to partition

50 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

a shared cache between multiple applications. The partitioning depends on the reduction of
cache misses that each application is likely to obtain for a given amount of cache resources. The
proposed mechanism monitors each application at runtime, it uses a hardware circuit (UMON:
utility monitoring) to obtain information about benefit (utility) of cache resource. Mainly, for
each application, the mechanism estimates the number of hits and misses for all possible number
of ways allocated to the applications. The approach is based on reuse distance profiles. The
idea behind the approach is as follows. The utility of a cache resource can be directly correlated
to the change in the number of cache misses or improvement in performance of the application
when the cache size is varied. Using the utility information, the cache is then partitioned (decide
the number of cache ways to allocate for each application) in order to minimise the number of
cache misses of the co-running applications.

We presented in the previous sections the principle of software and hardware cache partition-
ing. The next section discusses an approach that combines hardware and software techniques
for shared caches partitioning to reduce the impact of inter-thread cache contention.

3.3.2.3 Combined hardware and OS approach for shared caches management

To illustrate the principle of a combined approach, we present the work of Rafique et al. [RLT06].
They proposed an architectural support for an OS to manage shared caches with multiple
policies. The idea behind the scheme follows these observations:

1. Shared cache resources are purely managed in hardware with simple replacement policies
such as LRU.

2. Managing shared caches in hardware does not offer flexibility to handle all the sharing
scenarios.

3. The OS can offer the required flexibility to adapt to different cache sharing scenarios.
4. Managing shared caches purely in software (OS) is impractical due to a high overhead.
5. A combined software/hardware approach may meet the double objectives: performance

and flexibility

From the observations presented above, the authors propose a scheme which consists of a
hardware cache quota management mechanism, an OS interface and a set of OS level quota
orchestration policies. When the OS assigns some portion of the cache (i.e. quota) to a given
application, the hardware mechanism guarantees that these OS-specified quotas are enforced in
shared caches. The quotas are defined by the OS for each co-running application and multiple
applications can be assigned to the same portion of the cache. All the assigned quotas are
not fixed for the whole application execution life. Indeed, the OS can adapt the quotas to the
demand of applications during regularly scheduled OS interventions.

The quota assigned to an application by the OS is specified in terms of number of ways or
a set granularity in the cache. The hardware checks that the quota assigned to a process is
not violated at the time of cache block replacement. To do so, the hardware needs to know
the identity of the running process. The identity of the process is stored in a special register
called SID (i.e. sharer identifier) to identify the identity of the process running on the current
processor. Whenever a processor makes a memory request, its SID register is used to access a
special hardware table SQT (i.e., sharer quota table) to relieve the quota value of the process
currently running on that processor.

The idea of dynamic partitioning of shared caches was first investigated by Suh et al.
[SDR02,SRD04]. They proposed an on-line memory monitoring scheme utilising a set of hard-

3.4. DATA SHARING AND THREAD AFFINITY 51

ware counters. The counters indicate the marginal gain in cache hits as the cache size is increased
giving the cache miss-rates for each process as a function of cache size under the standard LRU
replacement policy. Using these monitoring information, a partitioning module implemented
in software partitions the cache among the active processes so as to minimise the overall cache
miss-rate.

3.3.3 Discussion on inter-thread shared cache contention

Cache contention has motivated several studies, going from performance prediction models and
process scheduling policies in one hand, and software and hardware cache partitioning techniques
on the other hand. Prediction models intend to qualify and quantify the impact of cache sharing
on the performance of multi-programmed workloads. In other words, these models study the ex-
tent to which cache sharing hurts the performance of co-scheduled applications. In general, the
output of such models is the number of extra cache misses when the cache is shared compared
to a solo run. In reality, the prediction accuracy is dependent on the complexity or simplicity
of the model. If the model is too simple, the accuracy goes down. A complex model will be
impractical to implement in real systems. Almost all the studies related to inter-thread cache
contention focus on the optimisation of some hand built workloads. Once the prediction models
are applied to a workload, the output of such models can be used to propose scheduling policies.

Cache partitioning techniques delivers promising results by confining the working set of each
application in some portion of the cache. However, they have some limitations. First, software
techniques require non trivial change to virtual memory manager in the OS. Besides, the size
of the portion of cache to assign is manipulated in the memory page granularity; the question
which may rise: how many page colors to assign for each process? While simple metrics could
lead to unpredictable performance behaviour, more sophisticated metrics will be hard to com-
pute on-line. Second, hardware techniques offer better flexibility in terms of the size of cache to
assign for each process. This is true because a lot of partitioning policies can be implemented at
the cache block replacement. However, these techniques are based on new micro-architectures
with no guarantee to be implemented in future processors. Moreover, the impact of such designs
is unclear from the needed-hardware to build such machines.

The next section discusses techniques to characterise the amount of inter-thread data shar-
ing for multi-threaded applications and techniques to exploit that sharing by means of thread
placement. In the context of multi-threaded applications, adequate thread placement may lead
to better performance statbility and to siginificant performance improvement.

3.4 Exploiting data sharing with thread affinity on multicore
architectures

Modern shared chip multiprocessors (CMPs) consist of several multicore processors, where each
processor has a hierarchy of memory caches. This implementation design allows to exploit data
sharing between threads running on such platforms. Of course, to exploit that, a multi-threaded
application has to meet two conditions. First, the application’s threads have actually to access
or to share common data. Second, the reuse distance has to be sufficiently short to effectively
exploit these shared data across multiple threads (see Section 3.2 for more information about
data locality measurement and prediction). In this context, thread affinity in multicore proces-

52 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

sors (see Figure 3.9) can be defined as the process of assigning each thread (process) to one or
a subset of cores. The idea behind this definition is to impose to the OS to run a given thread
on core #N or to run that thread on all the cores except cores #0 and #1 for example. The
operating system takes into account this notification, and the thread runs only on the allowed
cores.

Threads of a parallel application

Multicores

Figure 3.9: Thread affinity in multicore processors

There are many advantages for thread affinity. The first one is enhancing the inter-thread
data locality. For instance, if two threads make extensive accesses to common data in memory,
it is better to place them on adjacent cores sharing the same L2/L3 cache, or the same NUMA
node. Doing so, we would decrease the number of cache misses. Indeed, if one thread brings the
required data to some cache level, the second thread accessing the same data element will avert
a cache miss. Thus, the latency of memory access is reduced. Furthermore, binding threads
to cores by considering the machine architecture may help hardware prefetching of frequently
accessed shared regions. Enhancing data locality is another benefit from thread affinity. If we
consider a machine with two multicore processors and a memory bound application creating
two threads, it would be preferable to bind each thread to a distinct processor socket. First,
such thread placement will enhance the single thread data locality of both threads. Second, it
reduces the cache access contention. Consequently, it leads to better cache performance. On
the other hand, wrong thread placement can lead to a severe performance degradation. Indeed,
the overhead of accessing common data between two threads running on distinct cores depends
on their physical location. Therefore, thread affinity to cores called also thread pinning is of
high importance.

In the absence of an explicit management of thread placement by the application program-
mer, the decision about thread placement is achieved by the operating system (OS) scheduler
or by the runtime library. Unfortunately, current OS consider every core as a distinct processor.
If we have a processor with, say 8 cores, the OS sees 8 homogeneous processors that are capable
of executing concurrent threads, processes or jobs. However, in terms of performance tuning,
we cannot consider the cores as homogeneous because they share common micro-architectural

3.4. DATA SHARING AND THREAD AFFINITY 53

resources: L2 or L3 shared caches, shared memory buses, etc.

Machine (24GB)

NUMANode P#0 (12GB)

Socket P#1

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0 PU P#8

L2 (256KB)

L1 (32KB)

Core P#1

PU P#1 PU P#9

L2 (256KB)

L1 (32KB)

Core P#2

PU P#2 PU P#10

L2 (256KB)

L1 (32KB)

Core P#3

PU P#3 PU P#11

NUMANode P#1 (12GB)

Socket P#0

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#4 PU P#12

L2 (256KB)

L1 (32KB)

Core P#1

PU P#5 PU P#13

L2 (256KB)

L1 (32KB)

Core P#2

PU P#6 PU P#14

L2 (256KB)

L1 (32KB)

Core P#3

PU P#7 PU P#15

Figure 3.10: Nehalem NUMA machine architecture

In order to illustrate the program performance of a parallel application running with mul-
tiple threads that access common data in function of different thread placements (different
cache sharing situations), we use a synthetic benchmark. Figure 3.11 reports the performance
of a synthetic micro-benchmark (Listing 3.1) depending on multiple cache sharing situations.
The micro-benchmark creates two OpenMP threads, each increments a shared global counter
concurrently. The test machine is a NUMA machine with two Bloomfield sockets (Nehalem
micro-architecture). Each processor has 4 cores with a shared L3 cache. The platform has
two L3 caches of 8 MB, one on each chip, for both instructions and data. The main mem-
ory size is 12GB. Each chip in the platform features an integrated memory controller. The
hyper-threading and the Turbo Boost technologies were enabled (the diagram of the ma-
chine is given in Figure 3.10). We have to notice the following: first, since Hyper-Threading is
enabled, hardware threads (HWTs) 4 and 12 share an L2 cache. Second, HWTs 4, 5, 6 and 7
share an L3 cache. Finally, The HWT 4 in one side and HWTs 0, 1, 2 and 3 on the other side
are on distinct NUMA nodes. Figure 3.11 reports the speedup of the median execution time
(35 runs for each software execution) for various cache sharing configuration relative to the C1
configuration. It is clear from the figure that, more the distance (in termes of thread place-
ment) between threads is important, more the latency of access to shared data is important.
Consequently, program performance is highly sensitive to thread placement.

Listing 3.1: OpenMP micro-benchmark code

#pragma omp p a r a l l e l default (none) p r i v a t e (i) shared (N, counter)
{

#pragma omp for
for (i =0; i<N; i++) {

#pragma omp c r i t i c a l
sum += i ;

}
}
return counter ;

The next section discusses some system calls and libraries to manage thread affinity explic-
itly in applications code.

54 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

Multiple cache sharing configurations

A global counter benchmark running with 2 threads

S
pe

ed
up

 o
f t

he
 m

ed
ia

n
ex

ec
ut

io
n

tim
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C 1: HWT 4, HWT 12
C 2: HWT 4, HWT 5
C 3: HWT 4, HWT 6
C 4: HWT 4, HWT 7
C 5: HWT 4, HWT 0
C 6: HWT 4, HWT 1
C 7: HWT 4, HWT 2
C 8: HWT 4, HWT 3

Figure 3.11: Micro-benchmark program performance depending on thread thread

3.4.1 Explicit software support for thread affinity

Almost all major operating systems (except MAC OSX) propose programming interfaces to set
thread affinity. The programmer can decide on which core a given thread should run. Unfortu-
nately, it is challenging for a programmer to determine which are the shared data regions and
the intensity of sharing between threads at development time. There is an another problem with
this approach, the required effort to rewrite each application to benefit from this service can
be important. Other problems can rise as well: multiple source code files, shared libraries, etc.
Regarding the Linux kernel, one can use the cpuset interface. The cpuset7 interface provides
a mechanism for assigning a set of CPUs and memory nodes to a set of processes (threads).
Cpusets constrain the CPU and memory placement of processes/threads to only the resources
within a task’s current cpuset. The OS scheduler will not schedule a task on a CPU that is
not allowed in its cpus allowed vector, and the kernel page allocator will not allocate a page
on a node that is not allowed in the requesting tasks mems allowed vector.

As explained earlier, by using cpusets, the programmer can mainly control the list of CPUs
and the memory allocation policy (will be detailed later) of a particular task. The different
system calls provided by the Linux kernel to manipulate this interface are as the following:

1. CPU affinity. The CPU affinity interface allows the programmer to manage the process’s
(thread) CPU affinity mask. The mask determines the set of CPUs on which it is allowed
to run. Setting and getting the process’s CPU affinity mask can be achieved by the
sched setaffinity and sched getaffinity system calls. The Native POSIX Thread

Library (NPTL) implements also a similar interface. It allows to confine a given thread to
a set of CPUs. Similarly, this can be achieved by the functions pthread setaffinity np

and pthread getaffinity np.

2. Memory affinity. The memory affinity interface allows the programmer to set the
memory policy of its application. The programmer can use the mbind, set mempolicy and

7A cpuset interface is exposed by the OS as a file system which can be accessed by special system calls

3.4. DATA SHARING AND THREAD AFFINITY 55

get mempolicy system calls. The libNUMA library [Kle05] offers a simple programming
interface to the NUMA (Non Uniform Memory Access) policy supported by the Linux
kernel. Basically, this library is a wrapper layer over the system calls. Available policies
are page interleaving (i.e. allocate in a round-robin fashion from all or a subset of the nodes
on the system), preferred node allocation (i.e. preferably allocate on a particular node),
local allocation (i.e. allocate on the node on which the thread is currently executing), or
allocation only on specific nodes (i.e. allocate on some subset of the available nodes).

The next section presents some related work on inter-thread data sharing detection and its
exploitation by thread placement at the application level.

3.4.2 Application level data sharing detection and thread mapping

In the field of quantifying the importance of exploiting data locality between threads, Bellosa
et al. [BS96] examined the performance implications of locality information usage in thread
scheduling algorithms for shared-memory multiprocessors. They proposed a non preemptive
user-level thread package with an application interface to inform the runtime system about
memory regions repeatedly used. These hints are used to trigger prefetch operations at each
process scheduling decision to hide memory latency. In addition, they proposed scheduling
policies based on locality information of individual threads derived from hardware performance
counters. The data locality information needed by the proposed algorithms consist of cache
miss rate, the processor stall time, and the processor that was assigned to the process during its
last execution. They focused on enhancing cache reuse of individual threads not multi-threaded
applications. In order to enhance the chance of cache reuse, Bellosa [Bel97] proposed to schedule
sequentially (i.e. one after each other) kernel threads that share large parts of memory. He
proposed the use of TLB information to detect memory pages sharing between threads.

Similarly, Weissman [Wei98] proposed an approach for improving data locality. It uses hard-
ware performance counters and program-centric code annotations to guide thread scheduling on
symmetrical multiprocessors (SMPs). The idea behind this approach is the use of an analytical
model which takes the number of cache misses and source code annotations as input; the later
are used to express the sharing patterns inherent in the applications. The output of the model
is a prediction of threads footprints. Using this model, he proposed some practical scheduling
policies to enhance the locality of applications.

Zhang et al. [ZJS10] conducted a measurement analysis to study the influence of chip mul-
tiprocessors (CMP) cache sharing on multi-threaded performance applications using the PAR-
SEC [BKSL08] benchmark suite. Through measurement, they tested various factors of interac-
tions between cache sharing and the performance of multi-threaded applications such as types
of parallelism (data-level or pipelined), input datasets, numbers of threads and the assignment
of threads to cores. They suggested that cache sharing has very limited influence on the perfor-
mance of the PARSEC applications due to the large working sets and to the limited inter-thread
data sharing of the tested multi-threaded programs. However, they do not conclude that cache
sharing has no potential to be explored for multi-threaded programs. Regarding the PARSEC
benchmark suite, the authors concluded that current multi-threaded applications are not well
optimised to leverage the power of existing chip multiprocessor (CMP) architectures.

Tang et al. [TMV+11] studied the impact of sharing memory resources on data-centre appli-
cations. Across these applications, they investigated the importance of thread to core pinnings
to share or to not share caches and bus bandwidth. Through measurements, they also in-

56 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

vestigated the impact of co-running threads from multiple applications with diverse memory
behaviours to discover the best pinning suitable to the co-running applications. By studying
some key performance characteristics of the applications when running alone and by using hard-
ware performance counters, they proposed a heuristic approach to compute the best pinning of
threads when co-running multiple independent applications.

Kazempour et al. [KFA08] examined the performance effect of exploiting cache affinity on
multicore multiprocessors8 and uniprocessors9. They demonstrated that, while exploiting cache
affinity on multicore uniprocessors has no measurable impact on performance, performance im-
provement from exploiting cache affinity on multicore multiprocessors is significant.

Terboven et al. [TaMS+08] examined the programming possibilities to improve memory
pages and thread affinity in OpenMP applications running on ccNUMA architectures. They
provided a performance analysis of some HPC codes which may suffer from ccNUMA architec-
tures effects.

Binding threads in nested OpenMP parallel regions is a challenge. Indeed, there is no guar-
antee that two active parallel regions with identical ancestry will be executed by the same set
of system threads. Schmidl et al. [STaMB10] discussed the performance problems of nested
OpenMP programs on ccNUMA machines. They provided a library to retrieve the hardware
information (cache topology) of the target machine and to set a static thread binding strategy
for each parallelisation level in the OpenMP program. They used the OPARI OpenMP instru-
mentation tool to add a function call to their library at the beginning of every parallel region
to find out which threads are used. The library does not detect any sharing behaviour between
threads, it just applies some predefined thread binding strategies to the encountered nested
OpenMP parallel regions.

Klug et al. [KOWT11] proposed a framework to automatically determine the thread pinning
best suited for a multi-threaded application based on hardware performance counters informa-
tion. The idea behind the framework is to evaluate the performance (measured by the CPI) of
a set of different thread pinning strategies for a fixed quantum of time and select the strategy
with the best CPI. The framework requires that the time measurement interval and a set of
multiple pinning be provided as input.

Marathe et al. [MTM10] proposed a hardware-assisted page placement approach based on
automated tracing of the memory references made by application threads for ccNUMA ma-
chines. The objective is to allocate pages near processors that most frequently access that
memory pages. During trace generation, hardware performance counters are used to extract
an approximate trace of memory accesses. The target program is run for one stable execution
phase of the program and data trace is collected (cache misses and TLB information). The sta-
ble execution phase must be manually identified by the user. The idea is to collect a snapshot
of the program’s memory access patterns during a snippet of its stable execution phase, which
becomes the basis for guiding page placement decisions. The collected trace data is used to
compute the page affinity, i.e. the node to which the page is bound and the entire program is
re-run using this data trace. The approach is based on the first-touch page placement policy.

Song et al. [SMD07,SMD09] uses a feedback guided method to compute thread affinity. The

8Multiple processors, each with multiple cores.
9Single processor with multiple cores

3.4. DATA SHARING AND THREAD AFFINITY 57

method relies upon binary instrumentation to acquire the memory sharing relationship between
user-level threads by analysing the memory trace. After, they build an affinity graph to model
the relationship. Then, they used hierarchical graph partitioning to compute optimised thread
schedules. They also introduce an analytical model to estimate the cost of running an affinity-
based thread schedule. Their model considers the number of addresses accessed in common,
not the number of access to common memory line addresses. In fact, considering only num-
ber of addresses accessed in common does not reflect the real cache access intensity. Actually,
the approach that we follow in Chapter 5 to compute thread pinnings is quite close to that
of [SMD07]. However, our work differs from theirs in four main points: 1) we take into account
the performance variability (running each application 35 times) when we run a given benchmark
with different thread affinity schedules, 2) we focus on real complex applications and not on
synthetic benchmarks or small kernels, 3) we use linear programming and graph partitioning
to compute optimised thread pinnings (produce optimal results as far as cache performance is
concerned) and finally 4) our work is not limited to find the best schedule against the default
one of the application; instead, we investigate how the overall performance of a given multi-
threaded applications behave under a set of predominant thread affinity schedules. The last
point is important because we show that simple strategies (do not need any memory tracing
phase) perform very well in many OpenMP applications .

Jeannot et al. [JM10] proposed an algorithm that maps MPI processes to cores in order
to reduce communication cost of the whole application. The described algorithm requires the
target’s application communication pattern. This pattern consists of the global amount of
data exchanged between each pair of precesses in the MPI application. The later is stored
in a communication matrix. To retrieve the communication pattern, they instrumented low-
level communication channels in the MPICH210 MPI implementation to track point-to-point
and collective communications. The approach needs two runs, the first run for data collection
and computing the processes mapping and re-run of the target application with the computed
processes mapping. They concluded that although the proposed algorithm outperforms some
placement strategies that do not require profiling (heuristics), there is a slight performance dif-
ference between them. As an explanation for this performance behaviour, the authors suggested
that may be it is due to modelling issues; as the communication matrix is an aggregated view of
the whole execution and does not account for different phases of the application with different
communication patterns.

The next section presents some related work on compiler and runtime level management of
inter-thread data sharing and thread placement.

3.4.3 Compiler and runtime data sharing detection and thread mapping

Some studies have addressed the data cache sharing at the compiler or runtime/OS level. These
studies have focused on improving data locality in multicores by being aware of the architecture
topology.

Sridharan et al. [SKM+06] proposed to exploit the locality of the critical section data. The
principle of this approach is simply to enforce an affinity between locks and the processor that
has cached the execution state of the critical section protected by that lock. They also investi-
gated the idea of migrating threads to the processor that has cached the highly-contended lock.
The proposed technique heavily relies on the kernel thread scheduler. Furthermore, it requires

10MPICH2 is an open source implementation of MPI.

58 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

that the scheduler must be able to identify the thread that currently holds a contended lock.
The identification is achieved by annotating user-level synchronisation libraries and a kernel
scheduler modification.

Tam et al. [TAS07] proposed thread clustering to schedule threads based on data sharing
patterns detected online using hardware performance monitoring counters. The mechanism
was implemented inside a Linux operating system running on IBM Power5 multiprocessor. For
testing purpose, they concentrated on commercial multi-threaded server programs. Iteratively,
they attempted to group threads exhibiting high degree of data sharing in the same processor.
Using hardware performance counters, CPU cycles are broken down and assigned to different
microprocessor components to determine the performance impact of cross-chip communication.
They monitored the addresses of cache lines that are invalidated due to remote cache-coherence
activities and build a data structure for each thread. Each data structure shows which data
items each thread is fetching from caches on remote chips. After that, they compared these
data structures to detect the sharing behaviour between threads and cluster them accordingly.

Broquedis et al. [oBFG+10] proposed an OpenMP runtime for NUMA architectures. The
runtime is based on a multi-level thread scheduler and on a NUMA-aware memory manager.
The user can specify to the runtime information about thread and memory pages placements.
These information are converted by the runtime into scheduling hints related to thread-memory
affinity issues. These hints enable dynamic load distribution of threads and data over NUMA
architectures.

Lee et al. [LWRC10] proposed a framework to automatically adjusts the number of threads
in an application to optimise system efficiency. The framework uses an off-line analysis to esti-
mate what type of threads will exist at runtime and the communication patterns between them.
Using this information and using graph partitioning algorithms, the framework dynamically
combines threads. The tested applications were compiled statically to spawn 128 threads at
runtime. The framework was prototyped using the Low-Level Virtual machine (LLVM) tool-
sets for compiling and running the applications. The work assumes a uniform distribution of
the data between threads.

Kandamir et al. [KMN+09, KYM+10, ZKY11] discussed a compiler directed code restruc-
turing scheme for enhancing locality of shared data in multicores. Using a source-to-source
compiler, the scheme operates as follows. First, the arrays accessed by the application are di-
vided into equal size data blocks. Second, for each core, the set of loop iterations assigned to
it are divided into equal size computation blocks. Finally, the compiler captures data depen-
dences and data sharing between computation blocks which are assigned to cores. The goal is
to increase data reuse regarding the access to data blocks by the computations blocks.

Our work differs from the last efforts in two main points. First, we dot not focus on providing
a new thread scheduling strategy. Unlike other studies, we perform statistical performance
evaluation (running multiple times, we fix the experimental setup, etc.). We aim to study
the impact of different thread affinity strategies on performance stability as long as as data
sharing is concerned. Moreover, we consider also NUMA effects, this is not actually the case
for most of the previous studies. Second, when it comes to compute a scheduling affinity,
we rely on a profile-guided method. Using dynamic binary instrumentation, we fully analyse
optimised binaries regardless of the compiler. Furthermore, we believe that extracting all data
dependencies and data sharing at compile time may not be sufficient, because these information

3.4. DATA SHARING AND THREAD AFFINITY 59

depend on the working set which is known only at runtime.

3.4.4 Discussion about inter-thread data sharing and thread placement

Data sharing characterisation is inherently dependent on an accurate inter-thread data locality
or data reuse study. Indeed, in terms of performance improvement, converting memory accesses
to shared memory lines in shared caches requires to qualify and quantify the amount of sharing
implemented in the multi-threaded application, and implement a thread placement strategy
to exploit that propriety. Knowing that, an application that has short reuse distances means
that it worth the effort to implement a data sharing strategy exploitation. On the other hand,
long reuse distances may necessitate to rewrite the application in order to shorten these reuse
distances, thus, effectively exploit that sharing behaviour. There is another category, it con-
sists of multi-threaded applications in which the access to shared data between threads is rare.
Therefore restructuring the application may be useless.

In the case of existing shared data, thread affinity offers a simple approach to transform data
sharing into performance improvement. However, from the performance perspective, cache shar-
ing is tricky. With a wrong pinning, instead to be beneficial, it can degrade performance (see
Section 3.3), or it can lead to performance instability (see Section 3.1). In addition, an affinity
strategy that focuses on data reuse only in order to improve cache performance may not be suf-
ficient. Indeed, an efficient affinity strategy has to consider other factors (i.e. data prefetching,
memory pages placement, the workload of the machine, etc.).

The quantification of data sharing and its corresponding affinity strategy can be achieved
mainly in three ways. First, data sharing is quantified by the programmer (application level)
and an adequate affinity is applied to the application for its lifetime. This approach has a main
drawback, it is not clear or easy for the application programmer to quantify the amount of
sharing implemented in the application. Second, a compiler may perform some static analysis
to deduce the amount of sharing implemented in the application. A compile time approach has
the advantage to be automatic and it does not require the programmer intervention. However,
data sharing quantification at compile time may not be accurate. Many reasons contribute
to this inaccuracy. Most importantly, it is not obvious to capture all memory references at
compile time for programs with irregular access patterns or for programs that make heavy use
for pointers. It is also possible to consider the number of threads and the data input which are
usually known at runtime. However, the impact of the two later factors can be limited by a
parametric analysis for instance. Finally, we can consider a runtime approach. The advantage
of this approach is its ability to adapt to the runtime environment (i.e. the workload of the
machine, number of available cores). Despite this, the profiling/characterisation overhead of
the application may not be negligible.

We discussed in this chapter multiple aspects related to enhancing program performance
in multicore architectures. The next chapter presents an experimental study to quantify and
qualify the variability of program execution times in multi-threaded programs.

60 CHAPTER 3. MULTICORE PERFORMANCE EVALUATION AND TUNNING

Chapter 4

Measuring and Analysing the
Variations of Program Execution
Times on Multicore Platforms

In this chapter, we present a study of variations of program execution times. We show that
while these variations are statistically insignificant for large sequential applications, we observe
that parallel native OpenMP programs have less performance stability. We investigate multiple
factors such as thread affinity and memory pages size in the goal to quantify the influence of
that factors on the variability of execution times.

4.1 Introduction

Multicore architectures are nowadays the state of the art in the industry of processor design for
desktop and high performance computing. With this architectural design, multiple threads can
run simultaneously exploiting a thread level parallelism. Unfortunately, achieving better pro-
gram performance is a little bit hard work. Indeed, programmers have to deal with some issues in
both software and hardware levels (thread and process scheduling, memory management, shared
resources managements, energy consumption and heat dissipation of cores, etc.). Furthermore,
the lack in understanding the interactions between the operating system layers, applications
and the underlying hardware makes this task even more difficult. A good understanding of
these interactions may be exploited in performance evaluation, compiler optimisations and in
process/thread scheduling to achieve a better performance stability, reproducibility and pre-
dictability.

In this context, applications designers and performance analysts have to iteratively inves-
tigate how to achieve the best performance and checking the behaviour of their applications
on that architectures. Most often, program execution time is considered as the first metric to
investigate in the process of performance evaluation. The execution time is usually observed
by measurements, or can be simulated or predicted with a performance model. In our thesis
we consider direct measurements (either by hardware performance counters, or by OS timing
functions calls). Contrary to emulated or virtualised programs (such as Javabyte-codes), native
program binaries are executed directly on the hardware with possibly some basic OS requests
(OS function calls). Our current study focuses on this family of programs: we consider the sam-
ple of SPEC 2006 and SPEC OMP2001 [Sta06] benchmark applications. We do not consider
binary virtualisation or byte-code emulation because they add software layers influencing the

61

62 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

program performance in a more complex way: garbage collector strategies, threads organisation,
caching and dynamic compilation techniques all may dramatically influence the measurements
of program execution times. Direct measurements of native applications have one software layer
(namely the OS) between the user code and the hardware. Unfortunately, the measurement
process may also introduce errors or noise (the act of measuring perturbs the program being
measured) that can affect our experimental results. For example, there is a time required to
read a timer before the code to measure and store the timer after this code. Experimental
setups may also introduce other factors (see Section 3.1.1) lead to variations of program exe-
cution times. Thus, if we execute a program N times, we may obtain N distinct execution times.

For our study, we introduce some experiments aimed to measure, quantify and analyse the
variations of program execution times on an Intel multicore machine. We report measurement
results for single-threaded applications (SPEC CPU2006), as well for parallel multi-threaded ap-
plications (SPEC OMP2001) with a fixed data input. The parallel applications use the OpenMP
paradigm, one of the most used in parallel programming model on shared memory computers.
We show that large SPEC CPU2006 applications have minor variations with the train data
input. This of course does not guarantee that the variations of sequential applications would
always be negligible especially for small codes (kernels). Unlike single-threaded applications, we
show that the variations of execution times of OpenMP applications are really sensitive from a
human user point of view.

This chapter is organised as follows. Section 4.2 introduces the experimental setup and
methodology that we follow. Section 4.3 studies the performance variability of sequential appli-
cations (SPEC CPU2006), and parallel OpenMP applications (SPEC OMP2001). Section 4.4
studies the impact of thread placement SPEC OMP01 program execution times. The influ-
ence of background co-running processes on the performance of SPEC OMP2001 is studied
in Section 4.5. Finally, the influence of co-running processes on the performance of OpenMP
micro-benchmarks is studied in Section 4.6 before concluding.

4.2 Experimental setup and methodology

4.2.1 Hardware setup

As an example of hardware machine, we use an Intel (Dell) server with two Clovertown pro-
cessors. Each processor has 4 cores, while each couple of cores have a shared level 2 cache. Our
system has two L2 caches on each chip with 4 MB, for both instructions and data. The core
frequency is 2.33 GHz. The maim memory size is 4 GB RAM. The frontside bus has a clock
rate of 1.33 GHz. The main features of the test machine are summarised in Figure 4.1.

4.2.2 Software environment

The version of the Linux kernel is X86 64 2.6.26, patched with perfmon kernel 2.81. We used
multiple compilers: gcc 4.1.3, gcc 4-3.2, icc 11.0 and ifort 11.1, all applied with optimisa-
tion level -O3 -fopenmp. The experimented benchmarks are SPEC CPU2006 and OMP2001
applications run with the train input and various configurations of thread numbers. We also
designed our own micro-benchmarks to analyse the interaction between the software, the micro-
architecture and the OS layer.

4.2. EXPERIMENTAL SETUP AND METHODOLOGY 63

4-MB L2 cache

Core 0 Core 4
L1 cache

32KB D+32KB I

4-GB
System
Memory

1.33 GHz SYSTEM BUS
64 bits wide

L1 cache
32KB D+32KB I

4-MB L2 cache

Core 2 Core 6
L1 cache

32KB D+32KB I
L1 cache

32KB D+32KB I

4-MB L2 cache

Core 1 Core 5
L1 cache

32KB D+32KB I
L1 cache

32KB D+32KB I

4-MB L2 cache

Core 3 Core 7
L1 cache

32KB D+32KB I
L1 cache

32KB D+32KB I

Intel 2.33 GHz Multicore Processor
Core2 Micro-architecture

Figure 4.1: Dual processor architecture

4.2.3 Experimental methodology

In order to improve the reproducibility of the results, the experiments were done following some
practices:

• The data input is fixed.

• The test machine was entirely dedicated during the experiments to a single user.

• Running each benchmark 31 times [Raj91,TWB10] for each software configuration. This
high number of runs allows us to report statistics with a high confidence level;

• Unset all the shell environment variables that were inessential;

• The experiments were done on a minimally-loaded machine (disable all inessential OS
services except sshd);

• Starting address of the stack randomisation deactivated (this is an option in the Linux
kernel versions since 2.6.12);

• Dynamic voltage scaling (DVS) disabled;

• Using the build system and scripts of SPEC CPU2006 and OMP2001 to compile and
optimise applications, launch them, measure execution times, check validity of the results
and report the performance numbers;

• The SPEC system measurement of execution times relies on the gettimeofday function;

• The successive executions are performed sequentially in back-to-back way;

• No more than one application was executed at a time, except when we study co-running
effects.

• We use violin plots to report the program execution times of the 31 execution of each
software configuration (see Section 4.2.3.1 for more details).

• All observed execution times are reported, we do not remove any outliers (except if the
run crashes or produces a wrong output result)

64 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

−
5

0
5

10

1

●

Figure 4.2: A violin plot example

4.2.3.1 Reporting performance data with violin plots

Violin plot gives a good and simple graphical way to check whether an application exhibits
or not variability of program execution times. The Violin plot is similar to box plots, except
that they also show the probability density of the data at different values. Figure 4.2 shows an
example of violin plot. The white dot in each violin gives the median and the thick line through
the white dot gives the inter-quartile range.

4.2.4 Definition of program performance variability

When we observe a sample of execution times of an application P , say {t1, · · · , tn} where ti is
the execution time of the ith run, then we may define the variability according to many metrics.
Any used metric must define the feeling of the end user about the instability of the execution
time of the application. We can use the usual sample variance, or |maxi ti−mini ti|

t̄ where t̄ is

the sample mean, or |maxi ti−mini ti|
med(t) where med(t) is the sample median. In our study, we use

metrics that measure the disparity between extrema observations (outliers):

1. An absolute variability, which is the difference between the maximal and the minimal
observed execution times AV (P) = |maxi ti −mini ti|;

2. A relative variability, which is the absolute variability divided by the maximal observed
execution time RV (P) = AV (P)

maxi ti
= |maxi ti−mini ti|

maxi ti
.

Now the question is how to decide about a definition of a program with non negligible per-
formance variability. Since any experimental measure brings a sample variation (it is impossible
in practice to observe exactly equal execution times), when can we speak about non negligible
variability? In our study, we say that a program P has non negligible performance variability if
its relative variability exceeds 1% (RV (P) > 1%). Another definition may exist; In our context

4.3. PROGRAM EXECUTION TIMES VARIABILITY OF SPEC BENCHMARKS 65

we chose the previous definition in order to be close to the feeling of a user executing a program
interactively (i.e. when he launches the program and he waits for its termination).

In the remainder of this thesis, we refer to program execution times variability as the relative
variability (RV) multiplied by 100. This will present the variability as a percentage. The next
section shows that the execution times of long running sequential applications have marginal
variability.

4.3 Study of the variability of SPEC benchmarks execution
times

This section presents experiments which aim to study the variability of program execution times
of SPEC CPU2006 and OMP2001 applications. While the former are sequential applications,
the later are parallel programs written with the OpenMP API. For SPEC CPU2006 benchmarks,
we test the relation between the UNIX shell environment size and the variation of program
execution times. Following the methodology explained in [MDHS09], we varied the size of the
UNIX shell environment. We also experimented two code optimisation level -O2 and -O3. For
SPEC OMP2001 applications, we fixed the UNIX shell environment, and we varied the number
of threads as: sequential (without OpenMP), 1 thread (OMP version with a unique thread),
2, 4, 6 and 8 threads1. The idea behind OpenMP experiments is to study the impact of two
factors. First, are the parallel execution with different number of threads lead to variability of
program execution times? Second, compare the benefit of the parallel execution with different
number of threads against the sequential version.

4.3.1 Variability of SPEC CPU2006 execution times

We used the gcc 4.1.3 compiler with the -O2 and -O3 optimisation flags. We had to add the
--fno-strict-aliasing option for the perlbench benchmark because of a technical error in
that code2.

Figure 4.3 reports the execution times of four applications, and for each Unix shell environ-
ment size using violin plots (see Section 4.2.3.1). The leftmost point of the X-axis is for a Unix
shell environment size of 0 bytes (the null environment); we generated the data using the bash

shell and for each point, we added 63 bytes to the environment. The width of a violin plot at
y-value y is proportional to the number of times we observed y. Figure 4.3 says that for each
UNIX shell environment size in the X-axis, the Y-axis reports the 31 execution times.

From all these figures we can deduce that: 1) the size of the Unix shell environment may
influence the execution times and 2) the variations of execution times are minor (less than 1%).
These observations are valid for all the SPEC CPU2006 benchmarks that we experimented.
Figure 4.4 reports the confidence interval of the mean of these benchmarks. We can see that
these intervals are sufficiently tights. These figures show that the sample mean at each Unix
shell environment size does not vary in a significant way.

1We limited the number of threads to 8, because our experimental machine have a maximum number of cores
equal to 8.

2The benchmark has some known aliasing issues. Hence the compilation with high optimisation level will most
likely produce binaries assuming strict aliasing. The problem was reported in the SPEC CPU2006 documentation.

66 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

From the experiments presented in this section, we deduce in overall that varying the Unix
shell environment size has a negligible impact (less than 1%) on the variability of the execution
times of SPEC CPU2006 benchmarks. This observation is true, whatever the optimisation flag
we used (-O2 or -O3).

The next section shows the performance variability of the multi-threaded SPEC OMP2001
benchmarks given a fixed experimental setup.

4.3.2 Variability of SPEC OMP2001 execution times

For SPEC OMP2001, we used the gcc 4.3.2 and icc 11.0 compilers. For each application,
we generated two compiled binary codes. The first one is sequential or single-threaded (using
the -O3 compilation flag). The second one is a multi-threaded version, it is generated by setting
-O3 -fopenmp and -O3 -openmp compilation flags respectively for the gcc and icc compilers3.

We use violin plots to report in Figure 4.5 the execution times of each application com-
piled with gcc. The UNIX shell environment size was fixed. We choose three applications
that highlight significant performance variability. The X-axis represents the different software
configurations for the application: sequential version (no threads), OMP version with 1 thread,
2 threads, 4 and 8 threads. The Y-axis represents the 31 observed execution times for each
software configuration. We conclude the following observations:

1. The sequential and the single threaded versions do not exhibit significant variability.

2. When we use thread level parallelism (2 or more threads), the execution times decreases in
overall but with a significant disparity. Consider for instance the case of swim in Figure 4.5.
The version with 2 threads runs between 76 and 109 s the version with 4 threads runs
between 71 and 90 s. This variability is also present when swim is compiled with icc,
see Figure 4.6. The example of wupwise in Fig. 4.5 is also interesting. The version with
2 threads runs between 376 and 408 s, the version with 6 threads runs between 187 and
204 s. This disparity between the distinct execution times of the same program with the
same data input cannot be justified by accidents or experimental hazards. Applying the
Shapiro-Wilk normality check on performance data we concluded that the execution times
are not normally distributed, and frequently have a bias.

3. The case of the application galgel is also interesting. In addition to the variability of
the execution times for each software configuration, we observe that the performance of
the program substantially decreases when increasing the number of threads! This example
illustrates that, on a multicore architecture, increasing thread parallelism may bring severe
performance loss. We checked the situation of galgel when we use the Intel icc 11.0

compiler instead of gcc, and the situation was radically different, see Figure 4.6: increasing
the number of threads decreases the execution times. We can observe a huge difference
between the performance of the program compiled with gcc vs. icc, either in terms of
execution times and in terms of variability. We have to notice that using the gcc-4.4.3

version of the GNU compiler has effectively reduced the execution times when we increase
the number of threads (see Figure 4.7). This situation illustrates that the quality of the
code generated by a compiler has a significant impact on performance stability.

3gcc was not able to compile the OpenMP version of mgrid m because of a bug (Bugzilla Bug 33904). The
parallel execution of gafort m failed because of a segmentation fault (this execution error was also reported if
we use the Intel icc compiler).

4.3. PROGRAM EXECUTION TIMES VARIABILITY OF SPEC BENCHMARKS 67

59
.2

59
.6

60
.0

0 441 945 1512 2142 2772 3402 4032

●●

●

●
●
●
●●●

●
●
●
●
●

●
●●●

●
●●●

●

●

●●●●●
●●

●

●●

●
●

●
●

●

●

●
●●

●●
●●●

●●

●

●

●
●

●●●●

●

●

●
●
●
●
●

401.bzip2 gcc −O3

bytes added to empty environment

T
im

e(
se

co
nd

s)

1.
41

1.
43

1.
45

0 441 945 1512 2142 2772 3402 4032

●●
●●

●●●●
●
●
●
●●●

●●●
●●●

●
●
●
●
●
●
●
●●●

●●●●●●●●
●●●●

●

●●●●

●●

●

●

●
●●●

●
●●

●●
●
●
●
●●

403.gcc gcc −O3

bytes added to empty environment

T
im

e(
se

co
nd

s)

10
0.

95
10

1.
10

10
1.

25

0 441 945 1512 2142 2772 3402 4032

●
●
●
●
●●

●
●●

●

●●●
●●

●

●
●●●●

●●●●
●●●●●●

●●
●

●
●
●
●
●

●

●

●
●
●
●
●●

●
●
●

●●●
●
●
●
●
●
●
●
●

●●
●
●

456.hmmer gcc −O3

bytes added to empty environment

T
im

e(
se

co
nd

s)

29
.0

29
.5

30
.0

30
.5

0 441 945 1512 2142 2772 3402 4032

●
●
●

●●

●
●●

●

●

●●
●
●
●●

●

●
●●

●

●
●●

●
●●

●

●
●

●●

●●

●

●

●
●●●

●
●●

●●
●

●

●
●
●
●

●
●

●●

●

●
●●

●
●●●

●●

429.mcf gcc −O3

bytes added to empty environment

T
im

e(
se

co
nd

s)

Figure 4.3: Observed Execution Times of some
SPEC CPU 2006 Applications (compiled with
gcc)

●●

●

●
●

●
●
●

●

●●

●

●

●

●
●●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●
●

●●●
●●

●●

●

●

●●

●●
●
●

●

●

●

●

●
●
●

0 756 1575 2394 3213 4032

59
.3

59
.5

59
.7

401.bzip2 gcc −O3

Confidence level 95%
bytes added to empty environment

T
im

e(
se

co
nd

s)

●
●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●
●
●●

●
●●

●●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

0 756 1575 2394 3213 4032

1.
41

8
1.

42
2

1.
42

6

403.gcc gcc −O3

Confidence level 95%
bytes added to empty environment

T
im

e(
se

co
nd

s)

●
●
●●

●
●
●●●

●

●●●
●●

●

●
●●●

●
●●●●

●●●●●●

●●
●

●
●
●
●
●
●

●

●
●
●
●
●●

●
●
●

●●●
●
●
●
●
●
●
●
●

●●
●
●

0 756 1575 2394 3213 4032

10
0.

95
10

1.
10

10
1.

25

456.hmmer gcc −O3

Confidence level 95%
bytes added to empty environment

T
im

e(
se

co
nd

s)

●

●

●

●●

●
●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●
●
●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●
●
●

0 756 1575 2394 3213 4032

29
.2

29
.6

30
.0

429.mcf gcc −O3

Confidence level 95%
bytes added to empty environment

T
im

e(
se

co
nd

s)

Figure 4.4: Mean 95% Confidence Interval of
some SPEC CPU 2006 Applications (compiled
with gcc)

68 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

4. The galgel application compiled with the gcc compiler, shows that speedup computation
is not fair if we consider the minor execution time. We can see from the Figure 4.5 that
the violin plots of the second (PAR (1TH)) and third (PAR(2TH)) configurations gives an
interesting result on how we have to summarise the performance data of one configuration
to single number. If we use the min function to summarise data of the two configurations,
then, we can say that the third configuration is better than the second one. But if we take
the median function to summarise these data, we may conclude that the two configurations
are similar. We note that the choice of which function to use to define the execution time
is crucial and may lead to misleading conclusions about the real behaviour of the system.

5. Figure 4.8 shows that the sequential version of ammp is better than its parallel version
when parallelisation is achieved with: 1 thread by about 25%, and 2 threads by about
15%. The case of ammp shows that the OpenMP API does not necessarily produce faster
codes against the sequential version. Although we do not checked the reason for this perfor-
mance behaviour, we can consider aspects like synchronisation primitives overhead, work
imbalance between threads or the compiler makes better optimisations when OpenMP is
not enabled (less system calls, less function calls, etc.).

6. When the number of threads is equal to 8, then the variability is significantly reduced on
the 8 cores machine.

The next section presents a study of the effect of running SPEC OMP applications with an
affinity to the system cores taking into account the impact of sharing the last level cache (L2
cache).

4.4 Study of the impact of thread affinity on SPEC OMP2001
execution times

In Section 4.3, we demonstrated that contrary to sequential applications, parallel OpenMP ap-
plications suffer from a severe instability in performance. In order to analyse the reason of such
performance variability, this section presents experiments aiming to measure and quantify the
impact of thread affinity on the variability of program execution times of OpenMP applications.
When affinity is enabled, we mean that we fix the placement of the threads on the cores of the
processor. In our thesis, we restrict the number of threads to be less or equal to the number of
cores.

We used the gcc 4.4.3 and icc 11.0 compilers. For each SPEC OMP2001 application,
we generated a multi-threaded version of each benchmark by setting -O3 -fopenmp and -O3

-openmp compilation flags respectively for the gcc and icc compilers. We run each application
with respectively 2, 4 and 6 threads under three runtime configurations:

1. Running the benchmarks without scheduling affinity (affinity disabled, threads placement
let to the OS).

2. Running the benchmarks under the icc compiler compact affinity strategy. Specifying
compact as affinity strategy assigns the OpenMP thread n + 1 to a free core as close as
possible to the core where the OpenMP thread n was placed. We experiment this affinity
strategy because it leads to increase the L2 cache sharing between threads, even if not all
the applications can take advantage from it.

4.4. THREAD AFFINITY IMPACT ON PERFORMANCE VARIABILITY 69

70
80

90
10

0
11

0
12

0

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

● ●

●

● ●

●

312.swim_m

gfortran−4.3.2: −O3 vs −O3 −fopenmp

T
im

e(
se

co
nd

s)

20
0

30
0

40
0

50
0

60
0

70
0

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

● ●

●

●

●

●

310.wupwise_m

gfortran−4.3.2: −O3 vs −O3 −fopenmp

T
im

e(
se

co
nd

s)

80
10

0
12

0
14

0

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

●

● ●

●

●

●

318.galgel_m

gfortran−4.3.2: −O3 vs −O3 −fopenmp

T
im

e(
se

co
nd

s)

Figure 4.5: Observed Execution Times of some
SPEC OMP 2001 Applications (compiled with
gcc)

70
80

90
10

0
11

0
12

0

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

● ●

●

●

●
●

312.swim_m

ifort−11.1: −O3 vs −O3 −openmp

T
im

e(
se

co
nd

s)

20
0

30
0

40
0

50
0

60
0

70
0

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

●
●

●

●

●

●

310.wupwise_m

ifort−11.1: −O3 vs −O3 −openmp

T
im

e(
se

co
nd

s)

30
40

50
60

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

●

●

●

●

●

●

318.galgel_m

ifort−11.1: −O3 vs −O3 −openmp

T
im

e(
se

co
nd

s)

Figure 4.6: Observed Execution Times of some
SPEC OMP 2001 Applications (compiled with
icc)

3. Running the benchmarks under the icc compiler scatter strategy. Specifying scatter

as affinity strategy distributes the threads as evenly as possible across all the sockets.
scatter is an opposite affinity strategy compared to compact. Running applications
under this strategy may be beneficial to alleviate the problem of system bus contention
of neighbours cores.

Figure 4.12 and Figure 4.13 show violin plots of program execution times (CPU time) for the
wupwise and swim applications (from SPEC OMP2001 benchmarks) compiled with the gcc and
icc compilers. In each figure, three violin plots report the execution times when the benchmarks
are launched with 2, 4 and 6 threads. The X-axis represents the three affinity configurations
(no affinity, compact, scatter). The Y-axis represents the 31 observed execution times for
each configuration. We make the following observations:

70 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

30
40

50
60

70
80

90

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

●

●

●

●

●

●

318.galgel_m

gfortran−4.4.3: −O3 vs −O3 −fopenmp

T
im

e(
se

co
nd

s)

Figure 4.7: Observed Execution Times of the galgel benchmark compiled with gcc-4.4.3

10
0

12
0

14
0

16
0

18
0

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

●

●

●

●

●

●

332.ammp_m

gcc−4.3.2: −O3 vs −O3 −fopenmp

T
im

e(
se

co
nd

s)

Figure 4.8: Observed Execution Times of
ammp m benchmark (compiled with gcc)

10
0

15
0

20
0

SEQ PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

●

●

●

●

●

●

332.ammp_m

icc−11.0: −O3 vs −O3 −openmp

T
im

e(
se

co
nd

s)

Figure 4.9: Observed Execution Times of
ammp m benchmark (compiled with icc)

1. When the scheduling affinity is disabled, we observe a significant variability of execution
times for SPEC OMP2001 benchmarks. If we consider the case of swim in Figure 4.13
compiled with gcc, the version with 2 threads runs between 79 and 110 s, the version with
4 threads runs between 73 and 90 s and the version with 6 threads runs between 71 and
82 s. Figure 4.13 shows that when the benchmark is compiled with the icc compiler, it
exhibits a variability too.

2. The variability is insignificant in almost all the benchmarks when the scheduling affinity
is enabled (the observed relative variability (RV) is less than 1.5%). The variability
disappears either when the threads shares L2 cache (compact binding) or not (scatter
binding). Figure 4.12 shows for the wupwise application compiled with gcc that the
version with 2 threads runs ≈ 454 s when they share the L2 cache (2 threads runs on 2
cores sharing single L2 cache compact) and runs between 419 and 421 s when they do not
share it (scatter).

3. The art (compiled with both compilers) and the apsi (compiled with gcc) benchmarks
exhibit a less sensitivity to changing scheduling affinity. We observed that even when we
set up the binding feature, variability in execution times still appear (see Figures 4.14
and 4.15 where the variability exceeds 5%). In other words, fixing the affinity between

4.4. THREAD AFFINITY IMPACT ON PERFORMANCE VARIABILITY 71

the threads does not remove the performance variability of all the benchmarks.

4. We observed in 7 out of the 9 tested benchmarks, that they run faster when they are
launched with a scatter strategy). The benchmarks which take benefits from L2 cache
sharing compact are ammp and galgel with both compilers (see Figures 4.16 and 4.17).

In order to check the origin of the performance variability observed when we disable the
affinity, we study the impact of thread placements (fixed by the OS) on the cache effects. For
instance, we run swim and we report its number of last level cache misses (L2 cache misses).
Figure 4.11 shows violin plots summarising the number of L2 cache misses when swim runs with
2 threads. We observe clearly that the variability of the execution times observed in Figure 4.10
is closely related to the number of L2 cache misses. Indeed, when we binded the threads of
swim explicitly to the system cores, we observed insignificant variability in the execution times.
But when letting the system to handle threads placement on the cores, the situation was com-
pletely different and we observed an important variability. The interesting thing is that higher
execution time in the configuration without affinity was accompanied with a higher L2 cache
misses number. This situation shows that swim is sensitive to cache affinity.

When affinity is not fixed, the increase in the number of L2 cache misses does not explain
the cause of the observed performance variability, but just an effect. A further analysis showed
that thread migration operated by OS kernel is another important factor contributing to perfor-
mance variability. Indeed, we traced the mapping of threads to cores each time a new parallel
region is entered. The analysis of the tracing of the mapping event allowed us to see that the
runs with high execution times, the application threads have suffered from a thread migration.
Thus, migration has a negative impact on cache utilisation which leads to a significant perfor-
mance variability. However, it is possible that thread migration improves execution times : this
is the case for instance when data reuse and L2 cache sharing are less important.

80
90

10
0

11
0

No Affinity compact scatter

●

●

●

icc 312.swim_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

Figure 4.10: Observed cycles count in swim run-
ning with 2 threads

4e
+

08
6e

+
08

8e
+

08
1e

+
09

No bind compact scatter

●

●

●

icc 312.swim_m 2 threads

No affinity vs With affinity

L2
_L

IN
E

S
_I

N
:S

E
LF

Figure 4.11: Observed L2 cache lines misses in
swim running with 2 threads

In addition to swim, we observed also that the performance of wupwise, applu, equake,

apsi, fma3d, ammp applications are sensitive to cache affinity too.

In this section, we clearly observe that fixing affinity between threads removes performance
variability in many applications, but not all: there are still other influencing factors that make
executions time to vary (threads synchronisation, cache access contention between threads,

72 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

42
0

43
0

44
0

45
0

No Affinity compact scatter

●

●

●

gcc 310.wupwise_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

25
0

26
0

27
0

28
0

No Affinity compact scatter

●

●

●

gcc 310.wupwise_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

19
5

20
0

20
5

No Affinity compact scatter

●

●

●

gcc 310.wupwise_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

40
0

41
0

42
0

43
0

No Affinity compact scatter

●

●

●

icc 310.wupwise_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

24
0

25
0

26
0

27
0

No Affinity compact scatter

●

●

●

icc 310.wupwise_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

19
0

19
5

20
0

20
5

No Affinity compact scatter

●

●

●

icc 310.wupwise_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)
Figure 4.12: Observed Execution Times of the wupwise Application (compiled with gcc and
icc)

80
90

10
0

11
0

No Affinity compact scatter

●

●

●

gcc 312.swim_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

75
85

95
10

5

No Affinity compact scatter

●

●

●

gcc 312.swim_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

72
76

80

No Affinity compact scatter

●

●

●

gcc 312.swim_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

80
90

10
0

11
0

No Affinity compact scatter

●

●

●

icc 312.swim_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

70
80

90
10

0

No Affinity compact scatter

●

●

●

icc 312.swim_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

72
76

80

No Affinity compact scatter

●

●

●

icc 312.swim_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

Figure 4.13: Observed Execution Times of the swim Application (compiled with gcc and icc)

4.4. THREAD AFFINITY IMPACT ON PERFORMANCE VARIABILITY 73

4.
8

5.
0

5.
2

5.
4

No Affinity compact scatter

●

●

●

gcc 330.art_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

4.
5

4.
7

4.
9

No Affinity compact scatter

●

●

●

gcc 330.art_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

4.
5

4.
7

4.
9

No Affinity compact scatter

●
●

●

gcc 330.art_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

5.
0

5.
2

5.
4

5.
6

5.
8

No Affinity compact scatter

●

●

●

icc 330.art_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

5.
0

5.
1

5.
2

5.
3

5.
4

No Affinity compact scatter

●

●

●

icc 330.art_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

4.
8

5.
0

5.
2

5.
4

No Affinity compact scatter

● ● ●

icc 330.art_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

Figure 4.14: Observed Execution Times of the art Application (compiled with gcc and icc)

93
94

95
96

97

No Affinity compact scatter

●

●

●

gcc 324.apsi_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

56
58

60
62

No Affinity compact scatter

●

●

●

gcc 324.apsi_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

52
53

54
55

56

No Affinity compact scatter

●
●

●

gcc 324.apsi_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

82
83

84
85

86
87

No Affinity compact scatter

●

●

●

icc 324.apsi_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

50
51

52
53

54
55

No Affinity compact scatter

●

●

●

icc 324.apsi_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

44
.0

45
.0

46
.0

No Affinity compact scatter

●

●

●

icc 324.apsi_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

Figure 4.15: Observed Execution Times of the apsi Application (compiled with gcc and icc)

74 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

52
54

56
58

60

No Affinity compact scatter

●

●

●

gcc 318.galgel_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

36
37

38
39

40
41

No Affinity compact scatter

●

●

●

gcc 318.galgel_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

31
.5

32
.5

33
.5

No Affinity compact scatter

●

●

●

gcc 318.galgel_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

36
38

40
42

44

No Affinity compact scatter

●

●

●

icc 318.galgel_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

28
29

30
31

32

No Affinity compact scatter

●

●

●

icc 318.galgel_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

25
.5

26
.5

27
.5

No Affinity compact scatter

●

●

●

icc 318.galgel_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

Figure 4.16: Observed Execution Times of the galgel Application (compiled with gcc and icc)

14
2

14
6

15
0

No Affinity compact scatter

●

●

●

gcc 332.ammp_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

10
7

10
9

11
1

No Affinity compact scatter

●

●

●

gcc 332.ammp_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

87
.0

87
.5

88
.0

88
.5

No Affinity compact scatter

●

●

●

gcc 332.ammp_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

12
5

13
0

13
5

14
0

No Affinity compact scatter

●

●

●

icc 332.ammp_m 2 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

90
94

98

No Affinity compact scatter

●

●

●

icc 332.ammp_m 4 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

77
78

79
80

81

No Affinity compact scatter

●

●

●

icc 332.ammp_m 6 threads

No affinity vs With affinity

T
im

e(
se

co
nd

s)

Figure 4.17: Observed Execution Times of the ammp Application (compiled with gcc and icc)

4.5. SPEC OMP PERFORMANCE WITH CO-RUNNING PROCESSES 75

etc.). By now, while it is clear that thread affinity helps to reduce performance instability,
it is unclear if all thread affinity strategies would be beneficial for the program performance.
Indeed, we observed that 7 out of 9 benchmarks (Figures 4.12, 4.13, 4.14 and 4.15) run faster
with the scatter strategy. This is does not mean that the scatter strategy would be better
for all the benchmarks. Sometimes, it is also better to let some hazard (OS) to decide about
thread binding. If we consider the median execution time of the wupwise benchmark compiled
with icc and running with 4 threads in Figure 4.12, we can see that no affinity produces
better performance than the scatter and compact strategies. For a further analysis of the
impact of thread affinity on program performance, we study in Chapter 5 the performance of
OpenMP programs under various affinity strategies. The next section explores the performance
variability when SPEC OMP01 are executed in parallel with other co-running processes.

4.5 Analysing the variability of SPEC OMP performance with
co-running processes

One of the factors which can influence the variability of program execution times is when more
than one thread is scheduled to run on top of a single core. In our study, we focus on the sharing
between the OpenMP parallel programs and some artificial concurrent applications. For each
OpenMP benchmark, we measure its execution times in user mode (run level 3 : least privileged
mode), system mode (run level 0 : most privileged mode) and real execution time (total elapsed
execution time).

In these experiments we generate a system load by running some artificial co-running pro-
cesses in background. These processes are launched by one process executing the fork system
call a number of times equal to the number of processes that we need to generate at runtime.
This number is supplied as an argument to the command line. The code executed by these
co-running processes is a dummy non terminating loop without memory access (do while(1);).
Note that the threads of an OpenMP benchmark and the co-running processes do not share the
same internal memory, they are independent applications.

4.5.1 Experimental setup

• The SPEC OMP2001 benchmarks are launched with 8 threads at runtime to occupy all
the cores of the system.

• Each SPEC OMP2001 benchmark (8 threads) is run either as a single application on the
machine (minimal system load) or in parallel with 8, 16, 24 or 32 co-running processes
respectively (performance perturbation created in background). This leads to five distinct
runtime configurations.

• We report here the results when SPEC OMP2001 and the co-running processes are
launched without scheduling affinity to the system cores (no explicit binding of threads
on cores). Similar experiences have been conducted when affinity is fixed, the conclusions
remain similar.

• The number of the OpenMP threads (from applications under study) and co-running
processes running on each core are respectively: 1, 2, 3, 4 and 5. For example, a configu-
ration with 5 threads or co-running process per core consists of 1 OpenMP thread plus 4
co-running processes.

76 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

30
40

50
60

0P 8P 16P 24P 32P

●

●

●

●

●

312.swim_m gcc −O3 −fopenmp

Threads without scheduling affinity
Number of perturbers processes

T
im

e
(s

ec
on

ds
)

in
 u

se
r

sp
ac

e

25
30

35
40

45

0P 8P 16P 24P 32P

●

●

●

●

●

324.apsi_m gcc −O3 −fopenmp

Threads without scheduling affinity
Number of perturbers processes

T
im

e
(s

ec
on

ds
)

in
 u

se
r

sp
ac

e

Figure 4.18: Observed User Execution Times of
some SPEC OMP2001 Applications (compiled
with gcc)

80
10

0
12

0
14

0
16

0
18

0
20

0

0P 8P 16P 24P 32P

●

● ●

●

●

312.swim_m gcc −O3 −fopenmp

Threads without scheduling affinity
Number of perturbers processes

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

60
80

10
0

12
0

14
0

0P 8P 16P 24P 32P

●

●

●

●

●

324.apsi_m gcc −O3 −fopenmp

Threads without scheduling affinity
Number of perturbers processes

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Figure 4.19: Observed Real Execution Times of
some SPEC OMP2001 Applications (compiled
with gcc)

4.5.2 SPEC OMP2001 with co-running processes performance results and
analysis

Figure 4.18 and Figure 4.19 show the violin plots of the user and real program execution times
for four applications from SPEC OMP2001 benchmarks compiled using the gcc-4.3.2 compiler.
The X-axis represents the violin plots of program execution times when the SPEC OMP2001
benchmarks run together with the co-running processes. The Y-axis represents the 31 observed
execution times for each software configuration. In each violin plot, we still have non-negligible
performance variability since thread affinity is not fixed.

In addition, a strange phenomenon appears. From Figure 4.18, we can see that when we
increase the number of processes running in background, the program execution times at user
level of the OpenMP applications decreases. Meanwhile, we observe in Figure 4.19 an increase
of real execution times as expected. Running the threads of the SPEC OMP2001 benchmarks
and the co-running processes with a fixed scheduling affinity leads to the same conclusion (not
plotted here): when we increase the number of co-running processes, we observe a decrease
in program execution times at user level of the OpenMP applications. There are multiple
factors that may explain such phenomena. These factors can be classified mainly into micro-
architectural or OS interactions. In order to make an analysis of this phenomena, we design
micro-benchmarks (SPEC OMP2001 are too complex to analyse directly) to isolate some micro-
architectural and OS events for this application behaviour. The next section describes our study
with micro-benchmarks.

4.6. MICRO-BENCHMARKS PERFORMANCE WITH CO-RUNNING PROCESSES 77

4.6 Analysing the variability of micro-benchmarks with co-running
processes

In Section 4.5, we performed experiments where SPEC OMP01 applications run simultaneously
with co-running processes. We showed that increasing the number of co-running processes
may decrease the execution time at the user level. In order to understand these observations,
we used synthetic micro-benchmarks. The idea behind such benchmarks is to isolate micro-
architectural, application and operating system level events that may have an influence on the
observed performance behaviour. To do so, we use two classes of micro-benchmarks: 1) memory-
bound benchmarks (make intensive access to the memory), and 2) CPU-bound benchmarks (do
not make intensive access to memory).

4.6.1 Memory-bound micro-benchmarks

We start our evaluation by memory-bound benchmarks. This class of micro-benchmarks stresses
the memory cache hierarchy in order to understand the relation between increasing the number
of co-running processes and the decreasing of the user execution times.

Micro-benchmarks code

The code of the micro-benchmarks in Listing 4.1 is composed of three loops Loop1 (parallel
loop), Loop2, Loop3 and one statement S1. The L2 loop is added for repetition purpose to
increase the measurement accuracy. The data set accessed by all the micro-benchmarks is equal
to N ∗M ∗ sizeof(int64) = D bytes where N is the number of iterations of the outermost loop
(Loop1 loop) and M is the number of iterations of the inner most loop (Loop3 loop). In addition,
since we want to give the same workload to every thread, this leads to consider values for N
which are multiple of the number of threads. Having all these constraints, the values taken by
N are from 8 to 196608 and the values taken by M are from 196608 to 8. For instance, when we
have 8 threads, the value of N starts at 8. Furthermore, whatever the values of N and M are,
the workload assigned to each thread has a working set of size 1.5MB. This size is chosen to be
less than the half of the size of the L2 cache preventing from frequently accessing the DRAM
in case of L2 cache misses.

Now we define the notion of memory chunk. In the context of our study the chunk represents
the size of the vector fraction from tab accessed by the innermost M-loop (loops): in the particu-
lar code of Listing 4.1, we clearly see that each iteration of the M-loop (loops) accesses to a single
element from tab, consequently chunk size = M×sizeof(int64). Table 4.1 gives the couples of
values of N and M that we have experimented. To every couple of values (N,M) we associate the
micro-benchmark mb N-value M-value. Following this denomination, the first micro-benchmark
is mb 8 196608, the second mb 16 98304 and so on. With this micro-benchmark structure, we
access the array tab in an indexed way represented by the S1 statement. Thus, the size of the
chunk accessed in the M-loop depends on the number of iterations of the Loop1. So, larger
values of N lead to smaller sizes of chunks. In contrary, smaller values of N lead to larger sizes
of chunks.

78 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

N M Benchmark
Chunk size =
M*sizeof(int64)

N M Benchmark
Chunk size =
M*sizeof(int64)

8 196608 mb 8 196608 1536 KB 1536 1024 mb 1536 1024 8 KB
16 98304 mb 16 98304 768 KB 3072 512 mb 3072 512 4 KB
32 49152 mb 32 49152 384 KB 6144 256 mb 6144 256 2 KB
64 24576 mb 64 24576 192 KB 12288 128 mb 12288 128 1 KB
128 12288 mb 128 12288 96 KB 24576 64 mb 24576 64 0.5 KB
256 6144 mb 256 6144 48 KB 49152 32 mb 49152 32 0.25 KB
512 3072 mb 512 3072 24 KB 98304 16 mb 98304 16 0.125 KB
1024 1536 mb 1024 1536 12 KB 196608 8 mb 196608 8 0.0625 KB

Table 4.1: Values taken by N and M in the outermost and the innermost loops of th micro-
benchmarks code

Listing 4.1: OpenMP micro-benchmarks code

void wastetime () {
#pragma omp p a r a l l e l for default (none) p r i v a t e (i , j , k) shared (tab)

Loop1 : for (i = 0 ; i < N ; i++)
Loop2 : for (j = 0 ; j < 10000 ; j++)
Loop3 : for (k = 0 ; k < M; k++)
S1 : tab [i ∗M+k]++;
}

The first micro-benchmark mb 8 196608 corresponds to the case where every thread executes
a single outer loop iteration (Loop1 or the N-loop) and the innermost loop M-loop accesses to
a chunk of size M ∗ sizeof(int64) = 1.5 MB. This chuck size is sufficient to keep data inside
the L2 cache but not inside the L1 data cache. In other words, the first micro-benchmark
guarantees that every thread has its data in L2 but not in L1. The last micro-benchmark
mb 196608 8 corresponds to the case where every thread executes N/8 = 24576 N iterations,
the innermost M-loops access to a chunk of size M ∗ sizeof(long) = 64 B (a single cache line
size). In other words, this last micro-benchmark guarantees that every thread has all its data
in L1. The other micro-benchmarks between mb 8 196608 and mb 196608 8 cover the range for
other values of (N,M). They give us the performance of the intermediate situations when data
are fully or partly in L1. We should have (in theory) all data fully inside L2 because the chunk
sizes are all less than half of L2 size, but we see later that threads sharing common L2 may
create cache conflicts, thus data are ejected from L2.

Testing different co-running processes

We investigated three types of co-running processes:

1. CPU-bound co-running processes which are simple dummy non terminating loops (do
while (1);).

2. CPU-bound with sleeping state: that is, the co-running process makes a call to the usleep
function with various values (from 10 µs to 10 ms, this later value is the default Linux
kernel time slice). It allows us to study the behaviour of the micro-benchmark when its
co-running processes sleep completely or partially.

4.6. MICRO-BENCHMARKS PERFORMANCE WITH CO-RUNNING PROCESSES 79

3. Memory-bound co-running processes: that is, the co-running process makes extensive
accesses to the L2 cache to be in competition with the micro-benchmarks. However, the
working set of a co-running process does not exceed half of the size of L2 cache.

The experimental environment

The micro-benchmarks and the co-running processes are executed concurrently under multiple
software and environmental configurations:

• All of the micro-benchmarks and the co-running processes were compiled with the compiler
optimisation flag -O3.

• The number of threads of the micro-benchmarks is either 8 (to occupy all the cores) or 4
(to test some affinity configurations).

• Affinity is fixed in order to experiment two situations: sharing of L2 cache between threads
or not (when 4 threads are used, sharing or not the 4 L2 caches of the system).

• The number of co-running processes per core is varied from 0 to 4.

• We tested the case of active and inactive automatic hardware prefetching.

• We tested two values of memory pages: small size (4 KB) and large size (2 MB).

Memory-bound micro-benchmarks performance results and analysis

This section presents a synthesis of the experimental evaluation. The full results and analysis
are given in [MTB10]. First, we confirm the observation done in Section 4.5: given a parallel
OpenMP application, increasing the number of background co-running processes may decrease
the execution time at the user level (see Figures 4.20 and 4.21) while the real execution time in-
creases. Indeed, our extensive experiments with the different micro-benchmarks and co-running
process described in this section run in different configurations (different affinity, page sizes, dis-
abling/enabling automatic hardware prefetch) allow us to figure out the following observations:

• When we use memory-bound co-running processes, we do not observe any decrease in user
level program execution times, we observe an increase instead.

• When we use CPU-bound co-running processes, the decrease of execution times at user-
level was observed on micro-benchmarks which access chunks having a size greater than the
size of the L1 data cache. Thus, this subset of micro-benchmarks needs a high frequency
access to the L2 cache to provide the needed data by the L1 data cache leading to a
high number of L1 data cache misses. Moreover, this phenomena was confirmed for
configurations where at least two threads are running on two adjacent cores. In this
situation, the competition to access the shared L2 cache is increased. We confirmed this
observation with experiments using four threads. Indeed, running four threads on an eight
cores machine allowed us to test two configurations: 1) threads that do not share the L2
cache, and 2) threads that share the L2 cache.

• The automatic hardware prefetching combined with a small pages size generates L2 cache
conflicts (which translates to cache misses), even if enough cache capacity exists to hold
all the accessed data. Such L2 cache conflicts explain part of the performance variability
observed in our experiments.

80 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

1.
5

2.
0

2.
5

3.
0

0P 1P 2P 3P 4P

●

●

●
●

●

gcc mb_8_196608 −O3 −fopenmp

Number of processes added per core

C
yc

le
s

co
un

t i
n

us
er

 s
pa

ce
 (

se
co

nd
s)

1.
35

1.
45

1.
55

1.
65

0P 1P 2P 3P 4P

●

●

●

● ●

gcc mb_64_24576 −O3 −fopenmp

Number of processes added per core

C
yc

le
s

co
un

t i
n

us
er

 s
pa

ce
 (

se
co

nd
s)

1.
35

1.
45

1.
55

1.
65

0P 1P 2P 3P 4P

●

●

●

● ●

gcc mb_256_6144 −O3 −fopenmp

Number of processes added per core

C
yc

le
s

co
un

t i
n

us
er

 s
pa

ce
 (

se
co

nd
s)

1.
27

25
4

1.
27

26
0

1.
27

26
6

0P 1P 2P 3P 4P

●

●

●

●

●

gcc mb_512_3072 −O3 −fopenmp

Number of processes added per core

C
yc

le
s

co
un

t i
n

us
er

 s
pa

ce
 (

se
co

nd
s)

Figure 4.20: Observed User Execution Times of
some micro-benchmarks (compiled with gcc)

0e
+

00
2e

+
06

4e
+

06

0P 1P 2P 3P 4P

●

●
●

● ●

gcc mb_8_196608 −O3 −fopenmp

Number of processes added per core

C
ac

he
 L

2
m

is
se

s
in

 u
se

r
sp

ac
e

10
00

15
00

20
00

25
00

0P 1P 2P 3P 4P

●

●

● ●

●

gcc mb_64_24576 −O3 −fopenmp

Number of processes added per core

C
ac

he
 L

2
m

is
se

s
in

 u
se

r
sp

ac
e

10
00

15
00

20
00

25
00

0P 1P 2P 3P 4P

●

●

● ●

●

gcc mb_256_6144 −O3 −fopenmp

Number of processes added per core

C
ac

he
 L

2
m

is
se

s
in

 u
se

r
sp

ac
e

10
00

15
00

20
00

25
00

0P 1P 2P 3P 4P

●

●
●

●

●

gcc mb_512_3072 −O3 −fopenmp

Number of processes added per core

C
ac

he
 L

2
m

is
se

s
in

 u
se

r
sp

ac
e

Figure 4.21: Observed L2 cache misses of some
micro-benchmarks (compiled with gcc)

4.6. MICRO-BENCHMARKS PERFORMANCE WITH CO-RUNNING PROCESSES 81

In the light of these observation, we can say that co-running processes contribute to sig-
nificantly reduce contention on L2, decreasing the program execution time at the user level.
We confirmed this observation by disabling the automatic hardware prefetching and using large
pages of 2 MB. The decrease of the execution time at the user level when we increase the number
of co-running processes is due to the following fact: the co-running processes run in competi-
tion with the OpenMP threads. Consequently, the threads of the same application run with
less competition between themselves, their access to L2 cache is regulated (smoothed) by the
co-running processes. In other words, the contention on the L2 cache and on the memory bus
is reduced thanks to the co-running process which consume fraction of the CPU time. More-
over, using co-running processes with different sleeping states confirmed our findings. While
co-running processes spending long periods in the sleeping state do not decrease the user level
execution times, co-running processes with short periods effectively help to decrease it.

The next section presents a similar performance study using CPU-bound micro-benchmarks.

4.6.2 CPU-bound micro-benchmarks

In the previous sections, we presented performance data related to OpenMP applications inten-
sively accessing the memory hierarchy (particularly the L2 cache). But what is the expected
behaviour when an OpenMP application has a low access rate to memory? Answering the latter
question leads us to experiment running applications having less memory accesses.

Micro-benchmarks code

As CPU-bound benchmark, we used a prime-number benchmark. Listing 4.2 shows the code
of this application. As we can see from the listing, the code is CPU-bound (the memory access
is limited to L1 data and instruction caches).

Listing 4.2: OpenMP primenumber code

int prime number (int n) {
int i , j , prime , t o t a l = 0 ;

pragma omp p a r a l l e l shared (n) p r i v a t e (i , j , prime) reduct ion (+: t o t a l)
pragma omp for
for (i = 2 ; i <= n ; i++) {
prime = 1 ;
for (j = 2 ; j < i ; j++) {

i f (i % j == 0) {
prime = 0 ;
break ;

}
}
t o t a l = t o t a l + prime ;

}
return t o t a l ;

}

82 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

0P 1P 2P 3P 4P

3.
10

81
3.

10
83

3.
10

85
3.

10
87

● ● ● ● ●

gcc primenumber −O3 −fopenmp

Perturb Cores 0 1 4 5
Number of Processes added per core

C
yc

le
s

co
un

t i
n

us
er

 s
pa

ce
(s

ec
on

ds
)

Figure 4.22: Observed User Execution Times
for prime number application running on the 0,
1, 4 and 5 cores

0P 1P 2P 3P 4P

3.
10

84
0

3.
10

85
5

3.
10

87
0

●
● ●

●
●

gcc primenumber −O3 −fopenmp

Perturb Cores 0 1 2 3
Number of Processes added per core

C
yc

le
s

co
un

t i
n

us
er

 s
pa

ce
(s

ec
on

ds
)

Figure 4.23: Observed User Execution Times
for prime number application running on the 0,
1, 2 and 3 cores

The experimental environment

The prime-number application is executed with 4 OpenMP threads. The application (4 threads)
is run either alone as a single application on the machine (minimal system load) or in parallel
with 4, 8, 12 or 16 CPU-bound co-running processes. We have also two scheduling affinity
configurations:

1. The application threads and the co-running processes are launched on the system cores 0,
1, 4 and 5, where cores 0 and 4 share one L2 cache, similarly cores 1 and 5 share another
L2 cache.

2. The application threads and the co-running processes are launched on the system cores
0, 1, 2 and 3, where there is no sharing of L2 cache between these cores.

CPU-bound micro-benchmarks performance results and analysis

Figures 4.22 and 4.23 show program execution times for prime number application running on
shared L2 caches (0,1,4,5 cores) and non shared ones (0,1,2,3 cores) respectively. The interesting
observations from these experiments are:

1. Running the application on the two runtime affinities does not change user execution
times.

2. The variability of user execution times for each violin plot on the figures is negligible
(looking very carefully to the Y-axis).

3. Running the co-running processes affect only the whole (real) execution time. Indeed, the
whole execution times increases when we add more co-running processes. This situation
is expected since there are many processes in the system and they need some time to
complete.

4.7 Conclusion

In this chapter, we showed clearly that, even if a machine has low overhead and the dynamic
voltage scaling is inactive and the automatic hardware prefetcher is disabled, the execution

4.7. CONCLUSION 83

times of OpenMP applications on multicore platforms may be unstable (variable). This implies
to study a new performance criteria for code optimisation that was not important for sequential
codes, which is performance stability. We showed that binding threads on cores removes the
performance variability in most of the cases (when the number of threads does not exceed the
number of cores), but some applications still have unstable program performance after fixing
the thread affinity. This means that other factors (distinct from thread binding) are still playing
important role on performance variation.

Our study also highlights that executing separate co-running processes in parallel with the
threads of an OpenMP application may be beneficial for the user level execution time (but not
for the whole real time execution). Indeed, co-running processes may reduce the contention or
competition between the threads on data that reside on shared cache levels: co-running pro-
cesses push the threads of the OpenMP application to run with less concurrency, smoothing the
conflicts on shared cache levels. While co-running processes are not beneficial for real execution
times, they contribute to reduce the user level execution times, which means that the efficiency
of the whole system is improved (fraction of time where the CPU really executes applications
is improved).

The speedups that are reported in the literature are usually observed in ideal environments,
in ideal experimental setups, after retaining good execution times. The end-user however may
not observe the declared speedups, which may cause frustration. The reason is that end users do
not work in ideal environments: they may not know what are the hidden factors that influence
the performance stability of their codes, or simply they may not have a root privilege (or enough
rights) to the machine to fix it. Consequently, when an end-user executes an application that
is declared optimised, he would have a low chance to observe such performance improvements
with the declared speedup.

The next chapter studies the performance benefit and performance variability of multiple
data sharing aware thread binding strategies.

84 CHAPTER 4. VARIABILITY OF PROGRAM EXECUTION TIMES

Chapter 5

Thread Affinity Techniques for
OpenMP Applications on Multicores

This chapter presents a study on the performance of various thread affinity strategies. It in-
vestigates the performance of application independent strategies (heuristics) and application
dependent strategies. The later strategies are computed using a profile guided method based on
the amount of data sharing exhibited by multi-threaded applications.

5.1 Introduction

Multicore processors do not change fundamentally parallel computing paradigms. Any parallel
application can be run safely on multicore processors as if it is run on a classical multi-processor
machine. The operating system (OS) considers every core as a distinct processor. If we have a
processor with, say 8 cores, the OS sees 8 homogeneous processors that are capable of executing
concurrent threads, processes or jobs. However, in terms of performance tuning, we cannot con-
sider the cores as homogeneous because they share common micro-architectural resources: L2
or L3 shared caches, shared memory buses, etc. Consequently, the placement of threads on the
cores, called thread pinning, is of high importance. For instance, if two threads make extensive
accesses to common data in memory, it is better to place them on adjacent cores sharing the
same L2 or L3 cache, or the same NUMA node. Data locality and reuse are not the unique
performance factors that influence program execution times in case of concurrent applications.
Other factors have an influence: memory bus bandwidth, non uniform memory access (NUMA)
effects, OS (synchronisation costs, Input/Output, thread scheduling), etc. In this chapter we
focus on the study of cache sharing effects.

In Chapter 4 we studied performance variations when we execute an OpenMP application
multiple times (with the same data input) in a batch mode. We demonstrated the following
conclusions:

• Work balancing is satisfactory in terms of core usage ratio because threads are scheduled
and placed to optimise the usage of all cores.

• In terms of performance, execution times exhibit high variations. For every new run of the
parallel application (with the same data input), the OS may decide for a different thread
placement. In addition, threads may be migrated from one core to another to improve
work balancing and core utilisation ratio.

85

86 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

• When thread affinity is fixed, performance variations are greatly reduced, but are still
present in few cases.

• From the performance stability perspective, compared to memory page size or hardware
prefetching, thread affinity is a dominating factor in multi-threaded applications.

Work balancing is a classical performance criteria in parallelism and task scheduling, tar-
geted by OS, distributed systems, grid computing, etc. However, its direct impact on code
performance is not guaranteed. The reason is that work balancing aims to keep all cores busy.
While all cores may be executing threads, performance may still be low because of poor in-
terplay between the code and the micro-architecture: threads can spend most of their times
servicing cache misses, doing pipeline stalls and branch mispredictions. Consequently, work
balancing may improve synchronisation costs by making all threads reach the synchronisation
barrier jointly, but with poor performance.

Thread affinity has quickly appeared to be one of the most important factors that impact
program execution times on multicore processors. Still now, it is not clear how to decide for
the best thread placement that considers all the possible performance factors (data locality,
memory bus bandwidth, OS synchronisation overhead, NUMA effects, etc.). In this chapter,
we present an empirical study of nine thread placement strategies on three distinct machines.
Among them, four strategies are application independent: they apply the same thread place-
ment decision whatever the application. Five strategies are dependent on the application: they
fix the thread placement after a profile-guided analysis. For popularity in the HPC community
and availability for our work, the three test machines are based on Intel X86 (64 bits) with three
distinct designs. Other multicore architectures may be tested with exactly the same methodol-
ogy.

This chapter is organised as follows. Section 5.2 describes all the tested thread place-
ments techniques (called also thread pinning). Section 5.3 describes our experimental setup
and methodology. The results of our experiments are detailed and analysed in Section 5.4, then
we conclude. For the rest of this thesis, we use the terms threads pinning, threads affinity and
threads placement without distinction. They all define the used core for every running thread.

5.2 Tested thread pinning techniques

We experimented various thread affinity techniques. We classify these techniques into two main
families: 1) application independent and 2) application dependent thread pinning strategies.
The former family places threads on cores independently of the characteristics of the program;
for any application, threads are placed in the same way. The later places threads on cores
according to the characteristics of the program. In our study, the characteristics of the program
are computed using a profiling phase. We focus on data sharing to decide about the best thread
placement.

5.2.1 Application independent thread pinning techniques

The application independent class consists of the following four thread affinity techniques:

1. Run the application without affinity (no affinity), this means that we let the OS decide
about the thread placement on the cores of the machine. This strategy allows thread
migration between cores during the execution of the application.

5.2. TESTED THREAD PINNING TECHNIQUES 87

Socket #2

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

Socket #1

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

Machine/ Node

Socket #2

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

Socket #1

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

OpenMP thread IDs

Th #1 Th #2 Th #3 Th #4 Th #5 Th #6 Th #7 Th #8

Applying Intel Icc
compact strategy

Machine/ Node

Figure 5.1: Thread placement following the icc compact strategy on a machine with two
sockets, each socket has four cores where each pair of cores share an L2 cache

Socket #2

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

Socket #1

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

Machine/ Node

Socket #2

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

Socket #1

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

OpenMP thread IDs

Th #1 Th #3 Th #5 Th #7 Th #2 Th #4 Th #6 Th #8

Applying Intel Icc
scatter strategy

Machine/ Node

Figure 5.2: Thread placement following the icc scatter strategy on a machine with two
sockets, each socket has four cores where each pair of cores share an L2 cache

2. Run the application with a set of affinities generated randomly (random). Each repetitive
run (35 runs) corresponds to a new random affinity. The randomly generated affinity is
fixed during the whole run, there is no thread migration during a single run.

3. Run the application with a compact (Figure 5.1) strategy of the icc compiler (icc
compact). This strategy assigns successive (in order of their creation) OpenMP threads to
cores as close as possible in the topology map of the platform. This strategy is convenient
for applications that have a high data reuse between threads, so they can profit from
shared caches inside sockets.

4. Run the application with a scatter (Figure 5.2) strategy of the icc compiler (icc
scatter). This strategy distributes the OpenMP threads as evenly as possible across
the entire sockets. This strategy is convenient for applications that have a high data
locality inside each thread, so they can profit from a large private cache inside a socket
without sharing it with other threads.

5.2.2 Application dependent thread pinning techniques

This family of thread pinning techniques relies on a profile-guided method. The collected profiles
are used to exploit and to maximise the opportunities of data sharing and data reuse between
threads running on adjacent cores sharing common cache levels (L2 or L3).

The profile-guided approach is divided into four main steps:

88 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

1. Performing a memory tracing of the multi-threaded application.

2. Building an affinity graph describing data cache line sharing between every pair of threads.

3. Computing a thread pinning based on the affinity graph.

4. Running the application using the computed affinity.

Below we detail these steps.

5.2.2.1 Step 1: memory trace profile collection and analysis

We used Pin [LCM+05] to achieve the memory tracing of the parallel multi-threaded applica-
tions. Pin is a tool for dynamic binary instrumentation of programs allowing arbitrary code
(written in C or C++) to be injected at arbitrary places in the executable. Pin does not instru-
ment an executable statically by rewriting it, but rather adds the code dynamically while the
executable is running. This also makes it possible to attach Pin to an already running process.
Pin provides also a rich API that allows context information such as register contents to be
passed to the injected code as parameters or collecting memory references. Pin automatically
saves and restores the registers that are overwritten by the injected code so the application
continues to work.

We implemented a C++ Pin tool using the API provided by Pin. Our plug-in allows us
to detect the creation of each thread in the application. It allows us also to monitor all the
memory instructions of these threads. The detailed functionality of the tool is explained bellow.

To be able to collect all the memory references for each thread, we instruct Pin to insert
two instrumentation routines in the application code. The first routine registers a notification
function that is called when a new thread starts executing in the application. The call-back
happens even for the application’s root (master) thread. The second instrumentation routine
tells Pin to add a function which is used to instrument at the instruction granularity. When
this function is called, it performs a test to check whether it is a memory read or a memory
write instruction. Depending on the kind of the memory operation, the instrumentation routine
sets a call-back to two analysis routines memRead for read operations and memWrite for write
operations. Both analysis routines are called with the following arguments: the instruction
pointer, the virtual address of the referenced memory, the size of the referenced memory and
the thread identifier to distinguish between the memory references of all the threads.

We associate to each new thread one hash table. Therefore, for an application running
with n threads , we create n hash tables. Each hash table holds all the memory references
of a given thread. The entries of a hash table store the block identifier (BID) of the given
memory reference and the number of accesses to this BID. In reality, we distinguish between
the number of memory reads and the number of memory writes. The BID represents a data
block of 64 bytes size (a cache line granularity). We have to notice that we store only one
instance of the same BID per thread. Thus, if a thread performs multiple memory references
belonging to the same BID, the hash table holds only one entry for this BID and the number
of reads and writes is updated accordingly. Furthermore, for each hash table, we can deduce
the total number of BID (cache lines) accessed and the total number of all the memory accesses.

We have to notice that when an application is analysed using our Pin tool, all the hash tables
(one per thread that holds the accessed memory references) are only stored in memory. This

5.2. TESTED THREAD PINNING TECHNIQUES 89

means that we do not dump the memory access trace to disk, all computations are performed
in memory. Once the application has finish its execution (but before the return from Pin), we
compute the inter-thread data sharing information. Having the later information, we print a
final application report profile, giving the useful memory access information to build the affinity
graph presented in the next section.

5.2.2.2 Step 2: affinity graph model

The collected memory trace profile is used to build an affinity graph for each application. It is
an undirected valued graph G = (V, E , α). V is the set of application threads, E = V × V and
α : E 7→ N is a gain function applied to every pair of threads. An affinity graph is a complete
graph: we consider a fixed number of threads equal to n = ‖V‖, then the number of edges in

the graph is equal to n×(n−1)
2 .

The gain function models the attraction factor between each pair of threads. For instance,
since we rely on data reuse between threads to compute an affinity, the gain function α(Ti, Tj)
represents the number of common accesses to common memory caches lines, accessed by both
the Ti and Tj threads. Let us precisely define α for an application with a fixed number of
threads n = ‖V‖. The collected memory trace profile contains the information A(Ti, b) which
is the number of accesses of thread Ti to data block b. Let Bi,j be the set of all data blocks
accessed by the pair of thread (Ti, Tj). Equation 5.1 defines the function α(Ti, Tj), which is
exactly the number of accesses to common memory blocks by both the threads Ti and Tj (with
Ti 6= Tj):

α(Ti, Tj) =
∑

b∈Bi,j

min (A(Ti, b), A(Tj , b)) (5.1)

One may wonder why we do not use a reuse distance analysis to compute effective thread
affinity. As we showed in Chapter 2 Section 3.2, a reuse distance analysis is used to approxi-
mate the cache miss rate of an application. For a multi-threaded application, a reuse distance
analysis can be computed in two ways. First, it can be computed with a single reuse dis-
tance profile for all threads where memory references of all threads are processed by that reuse
distance. By doing so, the computed reuse distance studies the performance of a global and
unique shared cache. This situation is not realistic in our case since we target machines with
multiple caches. Second, it can be computed with a distinct reuse distance for each thread,
and merge individual reuse distances. The main problem with this approach is related to the
way the merge is performed. Indeed, should the merge model test all the sharing configurations
between threads? The merge model may be impractical for large number of threads. More-
over, deeper cache hierarchies and larger data inputs can exacerbate this problem. Besides,
a merge model has also the drawback to compute a single data reuse profile. It means again
that the computed reuse distance targets a single shared cache. For this reason, we think that
using reuse distance analysis is inadequate for our purpose to compute effective thread affinities.

The next section shows how to use the affinity graph to compute an affinity between threads
exploiting data reuse information.

5.2.2.3 Step 3: computing thread affinity using an affinity graph

Once an affinity graph is constructed for an application and for a given number of threads,
we can use it to investigate multiple thread pinning strategies. The idea is based on graph
partitioning methods [KK98c]. The affinity graph must be decomposed into disjoint subsets,

90 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

V = {T1, T2 · · · , Tn}
max

∑
Ti,Tj ,∈V Assign(Ti, Tj)× α(Ti, Tj) Ti 6= Tj

Subject to∑
Tj∈V Assign(Ti, Tj) = 1, ∀Ti ∈ V∑
Ti∈V Assign(Ti, Tj) = 1, ∀Tj ∈ T

Assign(Ti, Tj) ∈ {0, 1} α(Ti, Tj) ∈ N ∀Ti 6= Tj ∈ V

Figure 5.3: Formal mathematical definition of the linear assignment problem of threads

named a partition. A partition V = {V1, V2, · · · , Vk} has the property that
⋃

1≤l≤k Vl = V and
Vl ∩ Vm = ∅, where l 6= m and l,m ∈ [1, k]. Every subset Vl ∈ V contains a set of nodes
representing threads that have to be placed on adjacent cores sharing the same cache level
(L2 or L3, depending on the target machine). If we have k shared caches on the system, then
we compute a partition with k subsets [KK98c]. The global objective function is to maximise∑

(Ti,Tj)∈Vl×Vl
α(Ti, Tj) the sum of the gains between threads belonging to the same partition.

Graph partitioning is a classical NP-complete problem, so we have to use a heuristics such
as [KK98c]. Fortunately, we have a special polynomial case explained below.

LP technique: Partitioning the affinity graph into pairs of threads

If we are faced to a machine architecture where a cache level is shared between two adjacent
cores (such as in the Core2 machine), then the problem becomes to compute partitions with a
size equal to 2 (‖V ‖ = 2). It is easy to see that in the case of partitions of size 2 the problem is
equivalent to computing a set of thread pairs sharing a common cache while maximising a global
gain. In this special case, the optimisation problem can be solved with a simpler maximum-
weight matching in general graphs [Edm65]. Precisely, it can be polynomially and optimally
solved thanks to the algorithm of Edmonds in O(‖V‖2.‖E‖) [Edm65].

Due to the lack of an efficient implementation of the algorithm of Edmonds [Edm65], we
decided to use an existing implementation of a distinct algorithm that allows us to compute
thread pairs while optimising a global gain function1. Algorithm 1 gives an abstract view of
computing a set of thread pairs from a graph G = (V, E). Computing for thread pairs may
be modelled by a linear assignment problem [Kuh55]. This simplification does not compute
exactly the optimal solution of a maximum-weight matching in general graphs (algorithm of
Edmonds [Edm65]) but simplifies our technical implementation. Therefore, the problem of
computing thread pairs can be expressed as following: given n threads, solving the linear as-
signment problem consists in finding thread pairs that maximise the total data block share while
ensuring that each thread is assigned to only one different thread. For each pair of threads Ti
and Tj , the variable Assign(Ti, Tj) is equal to 1 if the thread Ti is assigned to thread Tj , or to
0 otherwise. Solving this assignment problem produces thread pairs, every pair of threads is
supposed to have a significant data reuse and sharing. If we execute every pair of threads on
adjacent cores sharing a common cache level, we hope to enhance cache utilisation between the
two threads (less cache misses, less use of memory bandwidth). Figure 5.3 formally defines the
linear assignment problem computing the pairs of threads.

Our mathematical model computes a thread affinity using an objective function that max-
imises the inter-thread data sharing. However, this model does not define a cost model that can

1Instead of using an implementation of the maximum-weight matching algorithm, we decided to solve the
problem by a Branch and Bound algorithm using the lpsolve framework

5.2. TESTED THREAD PINNING TECHNIQUES 91

predict a possible performance degradation as a consequence of running the application with
the computed thread affinity. Since thread affinity is computed upon a data sharing metric, we
consider that if a computed thread affinity is inefficient (in terms of program execution times),
then this means that: 1) data reuse is not effectively exploited (the reuse distance between
threads is too long) by that thread affinity, 2) the amount of data sharing in the application
is not important or 3) the computed thread affinity has to account for other factors than data
sharing (bandwidth saturation, memory pages allocation, etc.). For this reason, to analyse the
effectiveness of a computed thread affinity, we use the metrics presented in Section 5.2.3.

Algorithm 1 ComputePairs(Graph : G(V,E))

Require: G
s← |E|/2
if |E| mod 2 = 0 then
{Optimal thread pairs are computed by solving the modified version of the linear assignment
problem of threads}
return C = {C0, C1, ..., Cs} {return the set of the thread partitions}

end if

Figure 5.4 shows an example of a parallel application using four threads, its α matrix is
given by Table 5.4a. Solving the problem for this α matrix produces the assignment matrix
given by Table 5.4b. A value of an element in the assignment matrix Assign(i, j) equal to 1
means that a matching is found between the thread Ti in row i and the thread Tj in column
j. A zero value in the assignment matrix means that no matching was found. In this example
the algorithm produces the pairs (T1,T2) and (T3,T4). These two thread pairs are supposed to
define threads with strong data reuse relationship. We hope that executing every thread pair on
two adjacent cores sharing the same cache level would improve global application performance
(since cache effects between threads would be improved).

T1 T2 T3 T4
T1 0 923177138 909675518 916697725
T2 923177138 0 926145460 914237540
T3 909675518 926145460 0 940029712
T4 916697725 914237540 940029712 0

(a) α(Ti, Tj)

T1 T2 T3 T4
T1 0 1 0 0
T2 1 0 0 0
T3 0 0 0 1
T4 0 0 1 0

(b) Assignment matrix

Figure 5.4: Thread pair computation by solving the thread assignment problem

The current section explained how to optimally compute thread pairs to be executed on two
adjacent cores sharing the same cache level. We call this thread pinning technique as LP. In
many architectures, some cache levels are shared between more than two cores. This requires to
partition the affinity graph as explained in the beginning of Section5.2.2.3. Since this problem
is NP-complete, the next section explains our different heuristics.

GP technique: Partitioning the affinity graph into groups of more than two threads

In Section 5.2.2.3, we proposed an approach (called LP) based on solving the problem of linear
assignment of threads to produce optimised pairs of threads. This approach is convenient in
the case of a multicore processor cache architecture where each couple of cores share a single
cache level. If more than two cores share a cache, we present here another approach based on

92 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

graph partitioning.

If we consider an undirected graph G = (V, E), the objective of the traditional graph par-
titioning problem is to compute a balanced k-way (k > 1) partitioning such that the number
of edges (or in the case of a weighted graph, the sum of their weights) that straddle different
partitions is minimised. Assuming that P is a vector of size ‖V‖ such that P [i] stores the
number of the partition that vertex i belongs to. The edgecut of this partitioning is defined
as the number of edges that straddle partitions. That is, the number of edges (v, u) for which
P [v] = P [u]. If the graph has weights associated with the edges, then the edgecut is defined as
the sum of the weights of these straddling edges [KK98a]. In our study, we consider the affinity
graph G = (V, E , α) defined in Section 5.2.2.2 where V is the set of the application threads, E
is the set of edges between each pair of threads and where the weight α represents the data
block sharing between threads. Algorithm 2 shows an abstract view of partitioning a graph
G = (V, E) into multiple partitions.

Algorithm 2 Partition(Graph : G(V,E), number of partitions : r)

Require: G, r
{We do not need to partition the graph if the number of vertices is equal to the number of
partitions}
if |G| > r then
{The partitions are computed using the multilevel recursive bisection algorithm}
return P = {P0, P1, ..., Pr} {return the set of the thread partitions}

end if

Each partition of the affinity graph represents the set of threads to be placed on cores shar-
ing the same cache level. Consequently, the number k of partitions to compute is equal to the
number of available shared caches at a certain level(L2, L3, NUMA nodes, etc.). In the current
section, we assume that the number of cores that share a common cache must be greater than
2. The previous section studied the special case where only two cores share a common cache.

We use the METIS [KK98b] software package to achieve graph partitioning. METIS offers a
set of routines allowing to partition graphs and meshes using different algorithms. The parti-
tioning algorithms implemented in METIS are based on multilevel graph partitioning described
in [KK98a,KK98c,KK98b].

Among the various routines provided by METIS, we are interested mainly by two partitioning
routines: METIS PartGraphRecursive and METIS PartGraphKway. METIS PartGraphRecursive

is used to partition a graph into k equal-size parts using multilevel recursive bisection de-
scribed in [KK98a]. METIS PartGraphKway is used to partition a graph into k equal-size parts
using the multilevel k-way partitioning algorithm described in [KK98c]. Both of these rou-
tines are able to produce high quality partitions. However, depending on the application, one
program may be preferable than the other. In general, METIS PartGraphKway is preferred
when it is necessary to partition graphs into more than eight partitions. On the other hand,
METIS PartGraphRecursive is preferable for partitioning a graph into a small number of par-
titions as advised by the METIS development team.

The previous routines require to specify as an argument the number of graph partitions
to compute. When the partitioning finishes, each vertex in the graph is assigned to one of

5.2. TESTED THREAD PINNING TECHNIQUES 93

the computed partitions. Figure 5.5 shows an example on how the METIS routines are used to
partition a graph of eight threads. In this example, the partitioning algorithm is invoked to
produce two parts from the original graph.

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T4

T5

T6

T7

T8

Part 1

Part 2

Befor graph partitionning After graph partitionning

1

Figure 5.5: Partitioning an affinity graph of eight threads into two parts. Each part corresponds
to four threads that must be executed on adjacent cores sharing the same cache.

The two previous sections presented two methods for computing a good thread pinning.
They both optimise data locality and sharing between threads at a certain cache level only (say
L2 or L3). The next section presents another approach that tries to compute a thread pinning
which optimises data locality and sharing at multiple cache levels.

LPGP and GPLP techniques: Combining the LP and the GP techniques

This section presents a hybrid strategy to compute optimised thread pinnings. This approach
combines the LP method with the GP one. We developed this method to compute thread
affinities that optimise data locality between threads at multiple cache levels. Depending on
the method by which we start (either LP or GP) the computation of an affinity, we can consider
the following strategies: LPGP and GPLP.

Let us start by explaining the LPGP technique. It is summarised by the following steps:

1. We start by a step of optimal computation of a set of thread pairs from an affinity graph
G = (V, E , α) using the LP method as explained in section 5.2.2.3. Two threads inside a
pair must be placed on two adjacent cores. This first step aims to optimise data sharing
at a fine-grain (pair) granularity.

2. After we have computed the set of thread pairs, we compute a new affinity graph G′ =
(V ′, E ′, α′). In G′, V ′ represents the set of thread pairs, and E ′ represents the relationship
between each pair of threads. The affinity graph G′ has a gain function (weight) α′

associated with each edge. An edge e′ = (P1, P2) ∈ E ′ represents the affinity between two
thread pairs P1 = (u1, v1) ∈ V ′ and P2 = (u2, v2) ∈ V ′. We compute α′(e′) as follows:

α′(e′) = α(u1, u2) + α(u1, v2) + α(v1, v2) + α(v2, v2)

3. Now, we have the new affinity graph G′, we can proceed by a hierarchical k-partitioning
as as presented in section 5.2.2.3. The number k′ of partitions at each partitioning level
is equal to the number of shared caches at that level. For instance, if we have a machine
with 2 NUMA compute nodes, each having 4 processors. If we consider also that each

94 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

processor has 4 cores sharing a common L3 cache, and where each couple of cores share
a common L2, then we can consider the following hierarchical k-partitioning. First, G′ is
partitioned into 2 partitions (NUMA nodes level), this step fixes thread pairs into each
NUMA node. Second, each partition from G′ is in turn partitioned into 4 sub-partitions
(processor/L3 level). The later step fixes thread pairs on each processor. Finally, each
thread pair inside a processor is fixed on cores according to L2 sharing topology between
cores.

We defined another hybrid method called GPLP. This strategy starts by a hierarchical k-
partitioning of the affinity graph until the last level in the memory hierarchy is reached (shared
caches between pair of cores). When the last level is reached and for each computed partition,
we use the polynomial method to compute optimised pairs of threads for that partition in such
a way we can assign the pairs to neighbours cores with shared caches. It is clear that this
strategy is only effective in the case of target machines where memory hierarchy has at least
two levels and where the last level must be shared caches between each couple of cores.

After presenting the LPGP and the GPLP strategies above, we can give the algorithms of these
two techniques. Before, let see below the definition of terms we need :

1. Corei is the ith core of the machine.

2. Lj
i is the jth cache of level i. The first level is 1. The root level is 0. The leafs represent

compute cores.

3. Share(Lj
i) is the set of cores sharing the cache level Lj

i .

4. Height(T): returns the length of the longest downward path to a leaf from the root in
the tree T .

5. Width(T,l) returns the number of nodes in the level l of the tree T .

6. Child(Lj
i) returns the number of child nodes of the node Lj

i .

7. Graph(E) builds a complete graph from the set E.

8. Threads(P) builds a set of threads in the partition P .

Now, that we have all the definitions, Algorithms 4 and 5 give the pseudo-code of the LPGP

and GPLP strategies. Besides, we have Algorithm 3 which shows in pseudo-code how threads
are binded to the machine cores. We have to notice that we represent a machine as a tree data
structure where each level in the tree corresponds to a different level in the memory hierarchy
(Node, socket and cache level).

Summary of the application dependent thread pinning techniques

Based on the approaches presented above, we can define the following thread affinity strategies,
corresponding to the application of heuristics for solving graph k-partitioning problems at each
level of the memory cache hierarchy of the parallel machine:

1. GP strategy. Apply a graph k-partitioning only to place threads on sockets. For instance,
on the Nehalem machine, we compute two partitions since we have two shared L3 caches
(one L3 per socket).

5.2. TESTED THREAD PINNING TECHNIQUES 95

Algorithm 3 Assign(Partition of threads: Tp, Set of cores : C)

Require: Tp,C
if |Tp| > |C| then
{The number of cores must be less or equal to the number of threads}
STOP

end if
for i = 1→ |Tp| do
{Set the affinity of thread Tpi to core Ci}
set affinity(Tpi, Ci)

end for

Algorithm 4 LPGP(Affinity Graph : G(V,E), The machine tree : M)

Require: G,M
G′ ← ComputePairs(G)
H ← Height(M)
{Go through all the levels of the machine tree M}
for i = 1→ H − 1 do

if i = H − 1 then
{Stop the algorithm when we reach the L2 caches level}
for p = 1→Width(i) do
{Assign the pth pair of threads to the pair of cores in Lp

i }
Assign(Threads(P p

i), Share(Lp
i))

end for
return

end if
if i = 1 then
{Perform the first partitioning of the affinity graph G′}
{The number of partitions is equal to the number of nodes at the first level of the memory
hierarchy}
Partition(G′, Child(root))
for k = 1→ Child(root) do
{Assign the kth partition of threads to the set of cores in Lk

i }
Assign(Threads(P k

i), Share(Lk
i))

end for
else

for j = 1→Width(i− 1) do
{Partition the affinity graph for the jth cache of level i− 1}
Partition(Graph(P j

i−1), Child(Lj
i−1))

end for
{Cross all the nodes at level i and}
{assign the kth partition of threads to the set of cores in Lk

i }
for k = 1→Width(i) do
Assign(Threads(P k

i), Share(Lk
i))

end for
end if

end for

96 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

Algorithm 5 GPLP(Affinity Graph : G(V,E), The machine Tree : M)

Require: G,M
H ← Height(M)
for i = 1→ H − 1 do

if i = 1 then
{Perform the first partitioning of the affinity graph G}
{The number of partitions is equal to the number of nodes at the first level of the memory
hierarchy}
Partition(G,Child(root))
for k = 1→ Child(root) do
{Assign the kth partition of threads to the set of cores in Lk

i }
Assign(Threads(P k

i), Share(Lk
i))

end for
else

for j = 1→Width(i− 1) do
if i = H − 1 and Child(Lj

i) = 2 then
{Compute thread pairs if the cache is shared by pair of cores}
ComputePairs(Graph(P j

i−1))
else
{Partition the affinity graph for the jth cache of level i− 1}
Partition(Graph(P j

i−1), Child(Lj
i−1))

end if
end for
for k = 1→Width(i) do
{Cross all the nodes at level i and}
{assign the kth partition/pair of threads to the set of cores in Lk

i }
Assign(Threads(P k

i), Share(Lk
i))

end for
end if

end for

5.2. TESTED THREAD PINNING TECHNIQUES 97

Socket #2

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

Socket #1

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

OpenMP thread IDs

Th #1 Th #2 Th #1 Th #2

Pair #1 Pair #2 Pair #3 Pair #4
Th #1 Th #2 Th #1 Th #2

Machine/ Node

Figure 5.6: Thread placement following the LP compact strategy on a machine with two sockets,
each socket has four cores where each pair of cores shares an L2 cache

Socket #2

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

Socket #1

L2 #2

Core #3 Core #4

L2 #1

Core #1 Core #2

OpenMP thread IDs

Th #1 Th #2 Th #1 Th #2

Pair #1 Pair #3 Pair #2 Pair #4
Th #1 Th #2 Th #1 Th #2

Machine/ Node

Figure 5.7: Thread placement following the LP scatter strategy on a machine with two sockets,
each socket has four cores where each pair of cores shares an L2 cache

2. LP compact strategy (Figure 5.6). After using the polynomial method to optimally com-
pute a set of thread pairs, this strategy assigns successive thread pairs (in order of their
computation) to cores with shared caches as close as possible.

3. LP scatter strategy (Figure 5.7). After using the polynomial method to optimally com-
pute a set of thread pairs, it distributes the thread pairs as evenly as possible across the
entire set of sockets of the machines (one thread pair per socket if possible).

4. LPGP strategy (Figure 5.8). After an initial step of optimal computation of thread pairs,

98 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

Machine/ Node

L2 #1

Core #1 Core #2

L2 #2

Core #3 Core #4

Socket/
L3

L2 #3

Core #5 Core #6

L2 #1

Core #1 Core #2

L2 #2

Core #3 Core #4

Socket/
L3

L2 #3

Core #5 Core #6

L2 #1

Core #1 Core #2

L2 #2

Core #3 Core #4

Socket/
L3

L2 #3

Core #5 Core #6

L2 #1

Core #1 Core #2

L2 #2

Core #3 Core #4

Socket/
L3

L2 #3

Core #5 Core #6

Th #7 Th #8 Th #9 Th #10 Th #13 Th #14Th #11 Th #12

Pair #1 Pair #2 Pair #3 Pair #4 Pair #5 Pair #6 Pair #7 Pair #8
Step1:

compute thread pairs

Step2:
graph partitioning

(4 partitions)
Pair #1 Pair #2 Pair #3 Pair #4 Pair #5 Pair #6 Pair #7 Pair #8

Step3:
fix thread pairs

on cores
Th #1 Th #2 Th #5 Th #6Th #3 Th #4 Th #15 Th #16

Mapping 16 threads to a 4 sockets machine

Figure 5.8: Thread placement of an application running with 16 threads following the LPGP

strategy on a machine with four sockets, each socket has six cores sharing an L3 cache and
where each pair of cores shares an L2 cache

Machine/ Node

L2 #1

Core #1 Core #2

L2 #2

Core #3 Core #4

Socket/
L3

L2 #3

Core #5 Core #6

L2 #1

Core #1 Core #2

L2 #2

Core #3 Core #4

Socket/
L3

L2 #3

Core #5 Core #6

L2 #1

Core #1 Core #2

L2 #2

Core #3 Core #4

Socket/
L3

L2 #3

Core #5 Core #6

L2 #1

Core #1 Core #2

L2 #2

Core #3 Core #4

Socket/
L3

L2 #3

Core #5 Core #6

Threads:
#13,14,15,16

Th #1 Th #2 Th #1 Th #2 Th #5 Th #6Th #3 Th #4 Th #7 Th #8 Th #9 Th #10 Th #9 Th #10 Th #11 Th #12

Step1:
graph partitioning

(4 partitions)

Threads:
#1,2,3,4

Step3:
fix thread pairs

on cores

Step2:
compute

thread pairs

Threads:
#5,6,7,8

Threads:
#9,10,11,12

Threads:
#1,2

Threads:
#3,4

Threads:
#5,6

Threads:
#7,8

Threads:
#9,10

Threads:
#11,12

Threads:
#13,14

Threads:
#15,16

Mapping 16 threads to a 4 sockets machine

Figure 5.9: Thread placement of an application running with 16 threads following the GPLP

strategy on a machine with four sockets, each socket has six cores sharing an L3 cache and
where each pair of cores shares an L2 cache

we proceed by a graph k-partitioning [KK98c]. It is a hierarchical strategy, where threads
are first paired and pinned on shared L2 or L3 cache then thread pairs are partitioned

5.2. TESTED THREAD PINNING TECHNIQUES 99

and placed on the different sockets according to their affinity.

5. GPLP strategy (Figure 5.9). It is a hierarchical strategy. It starts by an initial graph
k-partitioning to fix threads on sockets, then perform an optimal polynomial algorithm
to compute thread pairs sharing L2 or L3 cache levels.

The next section presents some metrics that we use for inter-thread data sharing character-
isation.

5.2.3 Metrics for data sharing characterisation

Most often, it is necessary to quantify the amount of sharing that a given application implements.
For this purpose, we define two metrics which are deduced from the memory trace analysis: 1)
the working set size and 2) the data reuse ratio. These metrics are detailed bellow.

5.2.3.1 The working set size

Although not accurate, comparing the amount of data accessed by each thread to the total
amount of data accessed by the whole application, may give an indication about the degree of
data sharing in the application. To do so, we can distinguish between:

• The total working set of the application: it is equal to the size of all unique 64 bytes data
blocks accessed by all the threads

• The working set of each thread: is equal to the size of all unique 64 bytes data blocks
accessed by each thread. We have to notice that in this per thread view of the working
set, the 64 bytes data blocks may be counted multiple times (once for each thread) if they
are accessed by multiple threads.

5.2.3.2 The data reuse ratio (DRR)

Most often it is necessary to quantify the amount of sharing that a given application implements.
For this purpose, we define the data reuse (share) ratio (DRR). If we consider T the set of
threads, P the set of pairs computed using the maximal-weight matching graph algorithm
where |P | = |n|

2 , Lines(p) the number of touched data blocks by the pair p and Access(p) the
number of accesses to the data blocks by the pair p then, the reuse ratio can be calculated by
the following formula :

DRR =

∑
Lines(Pi)×Access(Pi)∑
Lines(Tj)×Access(Tj)

× 100 ∀Pi ∈ P ∀Tj ∈ T

To quantify the inter-thread sharing of parallel programs using the DRR metric, we define three
interval values highlighting the sharing degree. We mainly observed these values experimen-
tally2:

1. No sharing : DRR < 1%.

2. medium sharing : 1% ≤ DRR < 4%

3. good sharing : DRR ≥ 4%

The next section presents the experimental setup that we use and the results of our performance
evaluation and analysis.

2These values are somehow dependent on our context. These three intervals can be different in other experi-
mental contexts

100 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

5.3 Experimental setup and methodology

This section describes the experimental setup that has been used to conduct the study. We
describe the benchmarks, the hardware platforms and the experimental methodology.

5.3.1 Software environment

Our experiments have been conducted using all SPEC OMP01 [Sta06] NAS Parallel Bench-
marks (NPB) [JFY99]. For all the OpenMP applications, we used both the train and ref

data inputs in SPEC and the Class B in NPB. We tested multiple number of threads for every
application according to the number of available of cores. We tested nine thread placement
strategies for every application, thread number, input data set, while repeating the execution
35 times (for statistical significance analysis).

The benchmarks have been compiled using three different compilers (gcc 4.1.3, gcc 4-3.2,
icc 11.1) with flag -O3 -openmp. In this thesis, we report the performance numbers obtained
using the vendor compiler icc 11.1 because it provided the best performance in overall. All the
tested machines run the Linux kernel.

5.3.2 Hardware setup

We conducted all our experiments on three platforms:

1. The Core2 (8 cores) machine (Figure 5.10). It is a single SMP machine with two Clovertown
sockets (Intel Xeon E5345 with the Core2 micro-architecture). Each processor has 4 cores,
each pair of cores have a shared L2 cache. The platform has two L2 4MB caches per socket,
for both instructions and data. The core frequency is 2.33 GHz. Each core has a sepa-
rate 32KB L1 data and instruction caches. The main memory size is 4 GB RAM. The
front-side bus has a clock rate of 1.33 GHz.

2. The Nehalem (8 cores) machine (Figure 5.11). It is a single SMP machine with two
Gainestown sockets (Intel Xeon X5570 with the Nehalem micro-architecture). Each pro-
cessor has 4 cores with a shared L3 cache. The platform has two L3 caches of 8 MB, one
on each chip, for both instructions and data. The core frequency is 2.93 GHz. Each core
has a private 256KB L2 cache unified for data and instructions. In addition, each core
has a separate L1 data and instruction caches with 32 KB each. The main memory size
is 24 GB. Each chip in the platform has an integrated memory controller.

3. The ccNUMA (96 cores) machine (Figure 5.12). It is an IBM System X3950M2 ccNUMA

shared memory machine with four compute nodes. Each node has four Dunnington sockets
(Intel Xeon X7460 with the Core2 micro-architecture). Each socket (chip) has 6 cores,
where each pair of cores has a shared 3MB L2 cache. The 6 cores of a chip have a shared
16MB L3 cache. The L2 and L3 caches are unified for data and instructions. Each core
has a separate L1 data and instruction caches of size 32 KB. The core frequency is 2.66
GHz. Each node has a quad 1066 MHz FSBs (one per socket) and a 47 GB RAM memory
domain (188 GB in total). In this platform, 256 MB of virtual cache per node is used
for interprocessor communications between nodes, to keep data in synchronisation (this
amounts to as much as 1 GB in total taken from main memory).

5.3. EXPERIMENTAL SETUP AND METHODOLOGY 101

Figure 5.10: Core2 SMP machine architecture

Figure 5.11: Nehalem SMP machine architecture

Figure 5.12: ccNUMA Core2 machine architecture

5.3.3 Experimental methodology

In order to improve the reproducibility of the results, the experiments were done following some
practices:

• The test machines were entirely dedicated during the experiments to a single user when
it is possible.

102 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

• Running each benchmarks 35 times [Raj91,TWB10] for each software configuration. This
high number of runs allows us to report statistics with a high confidence level;
• The repetitive executions of the same application were performed sequentially in a back-

to-back way;
• We use small memory pages (4 KB).
• All hardware prefetchers are enabled.
• The experiments were done on a minimally-loaded machine if possible. This is true only

on the Core2 SMP and in the Nehalem machines;
• All inessential shell environment variables are unset;
• Deactivation of the randomisation of the starting address of the stack (this is an option in

the Linux kernel versions since 2.6.12). This is achieved only on the Core2 SMP machine;
• Dynamic voltage scaling disabled;
• The Intel Turbo Boost and Hyper-Threading technologies were disabled on the Nehalem

SMP;
• Using the build system and scripts of OMP2001 to compile and optimise the applica-

tions, launch them, measure execution times, check validity of the results and report the
performance numbers for the experiments;
• All the measurements of the execution times for the three machines rely on the gettimeofday

function;
• No more than one application was executed at a time.
• We use violin plots to report the observed 35 execution times of each application in each

software configuration. Violin plots are similar to box plots, except that they also show
the probability density of the data at different values. The white dot in each violin gives
the median and the thick line through the white dot gives the inter-quartile range.

5.3.4 Statistical significance analysis

When faced to variations in the observed execution times, we must use rigorous statistics to
study the validity of our empirical conclusions. Empirical conclusions must not rely on sample
metrics such as sample means or medians [Raj91], we must rely on statistical tests. This is done
thanks to the Speedup-Test methodology described in [TWB10] (see Section 3.1.3.2 for a quick
recall). Declaring a statistical significance of a speedup (either for mean or median execution
times) follows a formal protocol:

• Comparing between the average execution times of two samples (two thread placement
strategies) is done thanks to the one-sided Student t-test.

• Comparing between the median execution times of two samples (two thread placement
strategies) is done thanks to the one-sided Wilcoxon-Mann-Whitney test.

Let us define X = x1, · · · , xn and Y = y1, · · · , ym as two finite sets of measurements of program
program execution times, where X represents a baseline configuration and Y an optimised
configuration. n and m are the sizes of X and Y respectively with n possibly different from m.
xi and yi represent the measurement of program execution time of the iith execution in X and
Y respectively. Having all these constraints, we can compute two types of speedups :

1. The observed speedup of the mean (average) execution times :

spmean =
mean(X)

mean(Y)

5.4. PERFORMANCE EVALUATION 103

2. The observed speedup of the median execution times :

spmedian =
med(X)

med(Y)

The next section presents and analyses the performance results of the tested thread pinning
techniques on the three experimental machine platforms.

5.4 Experimental study of the performance of the tested thread
pinning techniques

This section introduces the performance evaluation of the application independent and applica-
tion dependent thread affinity strategies. The analysis considers two aspects: 1) the performance
enhancement and 2) the performance stability. We conduct our performance evaluation using a
variety of parallel OpenMP applications. The used benchmarks are from SPEC OMP2001 and
from Nas Parallel Benchmarks (implemented with OpenMP API). We also used three different
machines showing three typical multicore architectures in the market, two machines are single
SMP machines with 8 cores (Nehalem and Core2 micro-architectures) and a 96 cores (Core2
micro-architecture) ccNUMA machine with a global shared memory. The detailed presentation of
the benchmarks and the architecture machines is presented in section 5.3. Moreover, we varied
the number of threads generated at runtime to be 4, 6 and 8 on the single SMP machines and
we experimented the 16 and 96 threads cases in the ccNUMA machine (96 cores).

Benchmark 4 8 96

wupwise 600X 420X 490X
swim 60X 35X 25X
mgrid 530X 330X 100X
applu 300X 250X 130X
galgel 890X 350X 90X
equake 670X 260X 130X

apsi 350X 180X 140X
fma3d 240X 190X 80X

art 1000X 1000X 170X
ammp 230X 450X 180X

Table 5.1: Performance overhead of memory trace analysis in SPEC OMP01 when 4, 8 and 96
threads are used.

Before presenting the detailed performance analysis, let us show the overhead inherent to
memory accesses tracing. Table 5.1 reports the slowdown factors when the number of threads
is 4, 8 and 96 compared to a native execution. It indicates that the cost of the profile execution
is significant with slowdown factors are in the range of 25X and 1000X.

5.4.1 SPEC OMP2001 benchmarks

We started our performance evaluation with SPEC OMP2001 benchmarks to evaluate the im-
pact of thread affinity on the overall performance of parallel multi-threaded applications. We
run each application from SPEC OMP2001 with 4, 6 and 8 threads on the SMP machines using

104 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

the train data input and with 16 and 96 threads in the ccNUMA machine using the ref data
input.

5.4.1.1 SMP machines results (Core2 and Nehalem)

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
4 threads

train data input

SMP Core2 machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
95

1
1.

05
1.

1
1.

15

Random
ICC Compact
ICC Scatter
LP Compact
LP Scatter
LP Scatter2

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
6 threads

train data input

SMP Core2 machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

05
1.

1

Random
ICC Compact
ICC Scatter
LP Compact
LP Scatter
LPGP

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
8 threads

train data input

SMP Core2 machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
95

1
1.

05
1.

1
1.

15

Random
ICC Compact
ICC Scatter
LP Compact
LP Scatter
LPGP

Figure 5.13: The observed speedups of the me-
dian execution times on the Core2 SMP ma-
chine

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
4 threads

train data input

SMP Nehalem machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
9

1
1.

1
1.

2
1.

3

Random
ICC Compact
ICC Scatter
LP Compact
LP Scatter
GP

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
6 threads

train data input

SMP Nehalem machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

05
1.

1

Random
ICC Compact
ICC Scatter
LP Compact
LP Scatter
GP

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
8 threads

train data input

SMP Nehalem machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
95

1
1.

05
1.

1
1.

15
1.

2

Random
ICC Compact
ICC Scatter
LP Compact
LP Scatter
GP
LPGP

Figure 5.14: The observed speedups of the me-
dian execution times on the Nehalem SMP ma-
chine

Running SPEC OMP01 applications without affinity on the Core2 machine produces a rel-
ative variability (RV) in the range 2− 27% with 4 threads, 4− 23% with 6 threads and in the
range 0−4% with 8 threads. Setting thread affinity (either application dependent or application
independent affinity) produces in general stable performance. We observed a relative variability
in the range of ≈ 0− 2% in almost all the benchmarks. On the Nehalem machine, the observed

5.4. PERFORMANCE EVALUATION 105

RV is negligible in almost all the tested thread affinity strategies (less than 4%). However, these
observations are not true for the Random strategy in both machines, this configuration exhibits
poor performance stability, it is in the range range 2−26% on the Nehalem for instance. Indeed,
although this strategy prevents thread migration, the initial random placement of threads is
important and wrong pinning leads to significant variations of program execution times. This
situation is predictable since this strategy experiments many cache sharing configurations.

Figures 5.13 and 5.14 report the observed sample speedups of the median execution times
for both machines. We have to notice that we plot only statistically significant speedups3. Each
speedup in these figures represents the median execution time of the tested pinning technique
normalised to the median execution times of the no affinity configuration. So, a bar higher
than 1 means that the tested pinning technique is better than the OS free strategy. As we can
see, the program performance behaviour of SPEC OMP applications running on the Nehalem

and the Core2 machines are quite similar. Indeed, the analysis of the observed speedups and
the amount of data sharing implemented in each application allowed us to consider three classes
of benchmarks exhibiting: small data share, medium data share and significant data share.

When the number of threads does not exceed the number of cores, the contention caused
by sharing the last level cache makes that it is better to run the mgrid, wupwise, swim, fma3d,
equake and to some extent the art benchmark in separate sockets if possible to achieve de-
cent and stable performance. Moreover, mainly these benchmarks exhibit less inter-thread data
sharing. On the other hand, sharing is beneficial for benchmarks like galgel, ammp and to some
extent the apsi benchmark. This performance behaviour is also confirmed by our data sharing
metrics regarding the amount of inter-thread data sharing implemented on these benchmarks.
Finally, we can see that mostly, the applu benchmark achieves better performance under the
LP scatter strategy (35% reduction in the last level cache misses in the Nehalem machine for
instance). This performance behaviour is explained as the following: 1) the later benchmark
exhibits a medium data sharing, and 2) we know that the LP scatter strategy represents an
intermediate situation between using full cache sharing and using separate sockets.

Let us now consider the case when the number of threads is equal to the number of cores.
Although in terms of speedups, the application dependent strategies achieve statistically better
speedups than application independent, we do not really observe any important difference. Ex-
cept for some benchmarks where wrong pinning can lead to significant slowdowns, the observed
performance behaviour can be explained by two main reasons: 1) the uniform distribution of
working sets in SPEC OMP01 (it means small amount of data sharing with 8 threads), and 2)
the working sets that in most cases exceed the size of shared caches, makes that the intensity
of accesses and contention on shared caches is balanced. Therefore, we obtain similar program
performance regardless of the tested thread pinning technique.

In this section, we shown the relation between the performance of SPEC OMP01 applications
and thread affinity on SMP machines. The next section, shows if these applications behave
similarly on a ccNUMA machine.

5.4.1.2 ccNUMA machine results

The ccNUMA machine is a 16 processors (96 cores) where each processor has 6 cores. The ma-
chine has 4 memory domains (nodes), each containing 4 processors. The exact topology of the

3We use the Speedup-Test protocol in order to compute statistically significant speedups.

106 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

machine is presented in Section 5.3. We run the SPEC OMP2001 benchmarks with 16 and 96
threads with different thread pinning strategies: no affinity, Random, compact and scatter

of the Intel OpenMP runtime, LP compact and LP scatter and the finally the LPGP and GPLP

hybrid strategies. All the applications were launched with the ref data input4 (memory trace
and performance evaluation).

We started our performance evaluation with the 16-threaded executions of the SPEC OMP01
suit. For each benchmark, we tested the eight thread affinity strategies cited above. We
had an exception for the LPGP strategy where we computed three variants. The difference
between them lies on the number of selected compute nodes in the target machine (of course,
the number of used cores is still constant). Indeed, we computed eight optimised pairs using the
polynomial method. After that, we applied the graph partitioning algorithm to compute four
or two partitions where each partition has two or four pairs of threads(four or eight threads).
Now, these partitions are pinned differently across the entire set of sockets of the machine:

1. Four partitions are pinned to four processors (a processor granularity) which are in the
same node. In this pinning, all the threads in a given partition (4 threads) are sharing a
common L3 cache.

2. Two partitions are pinned to 8 processors which are in two neighbours nodes (a node
granularity). In this pinning, each pair of threads is pinned to a unique processor and
share a common L3 cache.

3. Four parts are pinned to the 16 available processors (node granularity). This means that
two pairs of threads inside a given part are in a distinct node. This time, a pair of threads
are not pinned to one processor as usual but, to two neighbours processors which makes
each thread runs in a distinct processor with an exclusive access to the large L3 cache.

Table 5.2 shows the observed relative performance variability when running with 16 threads.
We can see that running the parallel applications without any thread affinity in a NUMA ma-
chine, leads to a significant variability (≈ 60% in the case of swim). The Random affinity is
also interesting. Even if the observed RV is less than the one observed in the no affinity

configuration, it is still important. This situation is predictable since Random exhibits various
cache sharing configurations (without migration) in each run. Consequently, it leads to differ-
ent observed program performance. Finally, we can see that all the remaining thread affinity
strategies exhibit a small variability except in apsi and equake.

To compare the performance of the tested application independent and dependent thread
pinning strategies against the no affinity strategy (base configuration), we report in Fig-
ure 5.15 the statistically observed speedups of the median execution times (using the Speedup-
Test protocol). We observe in 6 out of 10 benchmarks that the program performance is better
when each thread is pinned to one of the 16 distinct processors. This configuration ensures
for each thread an exclusive access to the large L3 cache, reducing cache access contention
and better single thread locality, hence, the observed good performance. This was observed
in wupwise, swim, mgrid, applu, equake and art. The remaining benchmarks (galgel, apsi,
fma3d and ammp) behave better when all the threads are pinned to a single node. This indicates
that there is some data reuse and sharing between the threads which makes them taking benefit
from sharing the common large L3. Furthermore, since the memory allocation follows the first
touch policy, all the needed memory is allocated in the node where the threads are pinned. This

4We conducted experiments where we use the train trace analysis and ref for performance measurement.
The obtained results remain similar.

5.4. PERFORMANCE EVALUATION 107

Benchmarks No affinity(%) Random(%) Other(%)

wupwise 41.90326 5.165399 < 1

swim 59.06282 46.33085 < 1

mgrid 27.54077 16.77693 ≤ 1

applu 30.15992 11.68915 0− 6

galgel 16.55328 12.41765 ≤ 2

equake 23.16216 15.60925 1− 7

apsi 37.37640 33.25014 3− 6

fma3d 15.40391 14.3405 < 2

art 5.179218 3.865567 < 2

ammp 15.21677 14.36428 ≤ 1

Table 5.2: Observed RV on SPEC OMP2001 benchmarks running with 16 threads and the ref

data input

prevents them from remote memory accesses.

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
16 threads

ref data input

ccNUMA Core2 machine (96 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

2
1.

4
1.

6
1.

8
2

2.
2

Random affinity
ICC Compact
ICC Scatter
LP Compact
LP Scatter
LPGP(4 sockets)
LPGP(8 sockets)
LPGP(16 sockets)
GPLP(4 sockets)

Figure 5.15: The observed speedups of the median execution times on the ccNUMA machine

In order to explain the reported speedups in Figure 5.15, we consider three benchmarks
as case studies. We analyse the swim, galgel and the fma3d benchmarks, we selected them
because we observe important speedups as far as the sharing and the non sharing of last level
caches is concerned. Let us first start by the case of swim. This benchmark highlights the case
where it is preferable to run each thread in a separate processor (icc scatter, LP scatter and

108 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

T1

T2

T3

T4

T5
T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

80%<Reuse<=100%
60%<Reuse<=80%
40%<Reuse<=60%
30%<Reuse<=40%
20%<Reuse<=30%
10%<Reuse<=20%
5%<Reuse<=10%

Reuse<=5%

Figure 5.16: Affinity graph of

swim

T1

T2

T3

T4

T5
T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

80%<Reuse<=100%
60%<Reuse<=80%
40%<Reuse<=60%
30%<Reuse<=40%
20%<Reuse<=30%
10%<Reuse<=20%
5%<Reuse<=10%

Reuse<=5%

Figure 5.17: Affinity graph of

galgel

T1

T2

T3

T4

T5
T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

80%<Reuse<=100%
60%<Reuse<=80%
40%<Reuse<=60%
30%<Reuse<=40%
20%<Reuse<=30%
10%<Reuse<=20%
5%<Reuse<=10%

Reuse<=5%

Figure 5.18: Affinity graph of

fma3d

LPGP(16 sockets) strategies). Moreover, a wrong pinning can lead to a severe performance
degradation in this machine. The important performance difference between the best and worst
case in the swim benchmark can be explained mainly by two reasons. First, this benchmark
does not exhibit significant inter-thread data reuse and sharing between its threads (See Fig-
ure 5.16). For this reason, it is preferable that each thread runs in a separate processor. Thus, it
will have an exclusive access to a large L3 cache without contention from other threads. Second,
distributing all the threads across the entire machine leads to a distributed memory allocation
on the four memory nodes, this decreases the pressure from accessing one unique memory node,
hence, a decrease in the memory latency access leading to better program performance.

The second case study is galgel. For this benchmark, program performance is better when
all 16 threads are scheduled in a single node. We can see that the icc compact, LP compact,
LPGP(4 sockets) and the GPLP(4 sockets) achieve the best program performance. It means
cache sharing has a constructive performance effect on this benchmark. From our memory trace
analysis, we can explain this performance behaviour as follows. First, regarding the amount
of shared data in this benchmark (see Figure 5.17), we can say that it is significant. Second,
the analysis of working sets shows that the sum of the individual working set of each thread
is four times greater than the total working set of the whole application. This situation shows
that in galgel, there is significant opportunities of data reuse and share which are concretely
transformed into performance benefit. Besides, we can clearly observe that the application de-
pendent strategies perform better than the application independent ones. This is predictable
since the former are built upon a model which maximises the opportunities of data reuse and
sharing.

Finally, we present the case of the fma3d benchmark. This benchmark is interesting in
the sense that it highlights an intermediate performance situation between the use of a sin-
gle compute node and using them all. Distributing all the threads across the entire machine
does not improve performance. According to the Speedup-Test protocol, the icc compact, LP
compact, LPGP(4 sockets) and GPLP(4 sockets) achieve a ≈ 1.12 speedup. We observe also
that LPGP(8 sockets) strategy (pinned to 2 compute nodes) improves program performance
by a 1.26 speedup. The study of the working sets of the application combined with the result
of the data reuse metric shows that the fma3d is not exhibiting a significant inter-thread data
reuse, but still, it is not negligible (see Figure 5.18). This may explain why running the sixteen
threads in two nodes leads to better performance. It allows each pair of threads to run in a

5.4. PERFORMANCE EVALUATION 109

separate processor, hence, take benefit from the large L3 cache and exploiting opportunities of
data reuse. The memory allocation policy also, contributes to the performance of the LPGP(8

sockets) strategy. Due to the first touch policy, the memory allocation is distributed in the
two nodes. This alleviate the problem of the memory access contention compared to the case
where all the memory pages are allocated to a single node.

In order to check how the SPEC OMP2001 applications behave when all the cores of the
ccNUMA machine are used, we run each application with 96 threads using the ref data input.
We have to notice that we have not experimented the Random strategy. The analysis of program
execution times shows that SPEC OMP01 applications exhibit an RV in the range of 15− 44%
when thread affinity is not enabled. The performance results under this configuration are not
surprising, as usual it is due to thread migration in one side and to the high impact of initial
wrong pinning (in this case due to NUMA penalties). When the SPEC OMP applications are
launched with thread affinity, the observed variability is less than 6% in almost all cases.

wupwise swim mgrid applu galgel equake apsi fma3d art ammp

SPEC OMP01 benchmarks
96 threads

ref data input

ccNUMA Core2 machine (96 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

2
1.

4
1.

6
1.

8
2

2.
2

ICC Compact
ICC Scatter
LP Compact
LP Scatter
LPGP
GPLP

Figure 5.19: The observed speedups of the median execution times on the ccNUMA machine

As usual, we present performance results in terms of speedups (computed with the Speedup-
Test protocol). Figure 5.19 report the observed speedups of the median execution times. We
can conclude with the following observations:

1. We observe statistically significant speedups in almost all the tested benchmarks whatever
the tested thread pinning strategy.

2. We do not observe any important performance difference between application independent
and application dependent thread pinning strategies.

110 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

3. There are still some benchmarks where wrong pinning can lead to significant performance
degradation. For instance, we observe an ≈ 0.72 slowdown between the icc compact and
the icc scatter strategies in ammp.

4. Application dependent thread pinning strategies provide better results when the potential
of data share in the parallel applications is high.

Synthesis with SPEC OMP2001 experimental results

Every SPEC OMP application has been executed 35 times on every machine, with different
number of threads and on two different data sets (train and ref), according to nine thread
pinning strategies. To summarise our experimental observations, we use three synthetic tables
that reflect the speedups obtained through the thread pinning strategies with respect to the
default no affinity strategy of the OS scheduler. Table 5.3 shows the overall sample speedup
of every thread pinning strategy on the Core2 and Nehalem SMP machines (having 8 cores
each). We show the speedups of the average and the median execution times of all SPEC OMP
applications executed with 4, 6 and 8 threads. Table 5.4 and Table 5.5 illustrate the same
performance metrics on the HPC ccNUMA machine where the benchmarks have been executed
with 16 and 96 threads. When only 16 threads are used (Table 5.4), the LPGP and GPLP
strategies may have some variants which are the number of sockets used for executing 16 threads
(described Table 5.4). In all the tables, we also report the minimal and maximal observed
variances of the program execution times in order to study performance stability. Below we
give our experimental conclusions and analyses:

1. On the Core2 and Nehalem machines (8 cores), we can observe that fixing a thread affinity
leads to marginal speedups and slowdowns (see Figures 5.13 and 5.14). This means that in
terms of average or median execution times, letting the OS decide about thread placement
is not a poor strategy. However, the performance variation is high (up to 82.24 for the
Core2 machine). Consequently, if performance stability is an additional quality criteria, it
is better to fix thread affinity (check the maximal observed variances in Table 5.3 except
for the random affinity strategy).

2. On the ccNUMA machine (Table. 5.4 and Table 5.5), we observe speedups for all thread
affinity strategies (no slowdown). This means that using Linux thread scheduler is not a
good choice in terms of performance.

3. When 96 threads are used on the ccNUMA machine (Table 5.5), the speedups are more
significant. The reason is that the OS thread scheduler gives higher priority to work
balancing compared to NUMA latencies: while the Linux kernel is able to distinguish
between the latencies of distinct NUMA nodes, it still prefers to schedule threads to
free available cores (to optimise work balancing by keeping all cores busy) even if such
work balancing increases the cost of memory accesses (remote access to NUMA nodes).
Consequently, a poor overall performance is observed if no affinity is fixed because
some cores access data to remote memory nodes.

4. We do not observe any important difference, in terms of speedups, between application
independent and application dependent strategies. This means that the price of profile
guided methods is not easy to justify compared to cheap and easy-to-use icc scatter or
compact strategies. One of the explanations is that fixing an affinity does not allow any
thread migration during the execution of the application. Since any parallel application
code may have different phases, it would be only by luck that the same thread placement

5.4. PERFORMANCE EVALUATION 111

Overall speedup
(mean)

Overall speedup
(median)

Min and max ob-
served performance
variances

Thread pinning strategy Core2 SMP Nehalem SMP Core2 SMP Nehalem SMP Core2 SMP Nehalem SMP

Application independent
Random 0.995 0.995 0.992 1.001 [0.00 ; 82.24] [0.00 ; 12.25]

icc compact 0.952 0.995 0.944 0.996 [0.00 ; 0.22] [0.00 ; 0.05]
icc scatter 1.013 0.998 1.004 0.999 [0.00 ; 0.25] [0.00 ; 0.31]

Application dependent

LP compact 0.952 0.995 0.945 0.996 [0.00 ; 0.11] [0.00 ; 0.32]
LP scatter 1.019 1.007 1.011 1.008 [0.00 ; 0.11] [0.00 ; 0.27]

LPGP 1.022 1.032 1.014 1.032 [0.00 ; 0.06] [0.00 ; 0.04]
GP - 1.012 - 1.013 - [0.00 ; 0.03]

Table 5.3: Overall sample speedups of the tested thread affinities with SPEC OMP2001 bench-
marks running on the Core2 and the Nehalem SMP machines. The baseline thread placement
strategy is the OS free affinity. Each benchmark is executed repeatedly 35 times, using each
run the train input dataset and with 4, 6, and 8 threads. The minimal and maximal observed
performance variances of the OS free affinity are [0.01 ; 82.24] on Core2 machine and [0.00;
0.52] on Nehalem machine.

Thread pinning strategy Overall speedup (mean) Overall speedup (median) Min and max observed
performance variances

Application independent
Random 1.053 1.046 [0.05 ; 3329.47]

icc compact 1.025 1.018 [0.06 ;12.62]
icc scatter 1.159 1.153 [0.08 ; 44.61]

Application dependent

LP compact 1.024 1.016 [0.08 ; 5.7]
LP scatter 1.165 1.155 [0.10 ; 60.45]

LPGP(4 sockets) 1.086 1.078 [0.03 ; 6.29]
LPGP(8 sockets) 1.211 1.203 [0.01 ; 14.57]
LPGP(16 sockets) 1.165 1.157 [0.02 ; 53.33]
GPLP(4 sockets) 1.083 1.075 [0.05 ; 10.63]

Table 5.4: Overall sample speedups of the tested thread affinities with SPEC OMP2001 bench-
marks running on the ccNUMA machine. The baseline thread placement strategy is the OS free
affinity. Each benchmark is executed repeatedly 35 times, using for each run the ref input
dataset and 16 threads. The minimal and maximal observed performance variances of the OS
free affinity are [0.02 ; 12015.19]

gives the optimum for all phases. This favours to investigate other affinity solution based
on thread migrations.

In the previous sections, we presented in details the result of the experiments related to the
impact of the thread affinity on the program performance of SPEC OMP applications. The
next section presents briefly our experimental results for the NBP benchmarks suite.

5.4.2 NAS Parallel Benchmarks

In order to not limit our performance study and analysis to SPEC OMP2001 benchmarks, we
decided to extend our work to include the Nas Parallel Benchmarks (NPB). We follow the same
experimental methodology and run each benchmark from the NBP suit under multiple thread
pinning strategies. As in the case of SPEC OMP applications, the selected thread affinity strate-
gies are split into application dependent and application independent strategies. We repeated
the execution of each NPB application 35 times using the B class as data input on all the
tested machines. The tested number of threads was 4, 6 and 8 on the SMP machines and 16

112 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

Thread pinning strategy Overall speedup (mean) Overall speedup (median) Min and max observed
performance variances

Application independent
icc compact 1.557 1.562 [0.11 ; 2.18]
icc scatter 1.426 1.428 [0.20 ; 1.89]

Application dependent

LP compact 1.556 1.559 [0.17 ; 2.17]
LP scatter 1.42 1.422 [0.10 ; 2.33]

LPGP 1.565 1.568 [0.10 ; 3.85]
GPLP 1.566 1.569 [0.14 ; 3.99]

Table 5.5: Overall sample speedups of the tested thread affinities with SPEC OMP2001 bench-
marks running on the ccNUMA machine. The baseline thread placement strategy is the OS free
affinity. Each benchmark is executed repeatedly 35 times, using for each run the ref input
dataset and 96 threads. The minimal and maximal observed performance variances of the OS
free affinity are [28.13 ; 3364.08]

threads on the ccNUMA machine5.

Running the OpenMP NPB applications without thread affinity leads to a relative variabil-
ity of program execution times in the range of 0 − 8% on the Nehalem SMP machine and in
the range of 0 − 34% on the Core2 SMP machine. On the other hand when thread affinity is
enabled, we observed a relative variability in the range of 0−6% in most cases on both machines.
Furthermore, we observed that program performance is more stable on the Nehalem machine
than on the Core2 machine. Regarding the performance of the NPB applications on the ccNUMA
machine, we observed a performance variability in the range of 8 − 30% when the threads are
launched without affinity. Running the NPB applications with thread affinity enabled on the
ccNUMA machine leads to a performance variability less than 6% in most cases.

As we did for SPEC OMP01 results, we make a synthesis of performance results in two tables
to reflect the speedups of thread pinning strategies compared to the no affinity configuration.
Table 5.6 shows the overall sample speedup of every thread pinning strategy on the Core2

and Nehalem SMP machines. Like the computed overall speedup in SPEC OMP applications,
we report the speedups of the average and the median execution times of the tested NPB
applications. Table 5.7 shows the overall sample speedup on the ccNUMA machine. This table
contains some variants of the LPGP strategy which are the number of sockets used for executing
the 16 threads. From the analysis of the two tables we conclude with the following:

1. On the Core2 and Nehalem machine, we can observe that fixing a thread affinity leads to
marginal speedups and slowdowns. This observation confirms the results obtained with
the SPEC OMP2001 applications. In these two machines, letting the operating system
decide about the placement of threads leads to acceptable average or median execution
times. However, the observed RV in this case is significant.

2. On the ccNUMA machine, we observe speedups for approximately all the tested thread
affinity strategies. This means that not fixing the affinity impacts negatively the perfor-
mance of NPB applications. This observation is not true for the LP compact and the
icc compact strategies. Indeed, we observe slowdowns with these two thread affinity
strategies.

3. The poor behaviour of the LP compact and icc compact strategies on the ccNUMA ma-
chine is related to the nature of the NPB applications. In almost all the applications,

5We did not have the opportunity to test the case of 96 threads on the ccNUMA machine because of time access
restriction.

5.5. CONCLUSION 113

Overall speedup (mean
execution times)

Overall speedup (me-
dian execution times

Min and max ob-
served performance
variances

Thread pinning strategy Core2 SMP Nehalem SMP Core2 SMP Nehalem SMP Core2 SMP Nehalem SMP

Application independent
Random 0.984 0.968 0.962 0.996 [0.00;569.00] [0.00;26.35]

icc compact 0.869 0.879 0.858 0.879 [0.00;11.16] [0.00;0.19]
icc scatter 0.969 0.999 0.957 0.999 [0.00;5.43] [0.00;0.06]

Application dependent

LP compact 0.87 0.88 0.859 0.879 [0.00;10.05] [0.00;0.28]
LP scatter 0.97 1.001 0.957 1 [0.00;5.11] [0.00;0.08]

LPGP 1.052 1.003 1.043 1.003 [0.00;6.73] [0.00;0.06]
GP - 1.001 - 1 - [0.00;0.09]

Table 5.6: Overall sample speedups of the tested thread affinities with Nas Parallel benchmarks
running on the Core2 and the Nehalem SMP machines. The baseline thread placement strategy
is the OS free affinity. The used data input was class B. The numbers of threads were 4, 6 and
8 for every benchmark. The number of repetitive runs per benchmark was 35. The minimal and
maximal observed performance variances of the OS free affinity are [0.00 ; 602.341] on Core2

machine and [0.00; 26.35] on Nehalem machine.

Thread pinning strategy
Overall speedup (mean
execution times)

Overall speedup (me-
dian execution times

Min and max observed
performance variances

Application independent
icc compact 0.924 0.927 [0.00;0.35]
icc scatter 1.289 1.292 [0.00;2.22]

Application dependent

LP compact 0.925 0.927 [0.00;0.15]
LP scatter 1.298 1.301 [0.00;1.72]

LPGP(4 sockets) 1.01 1.011 [0.00;0.24]
LPGP(8 sockets) 1.2 1.202 [0.00;0.36]
LPGP(16 sockets) 1.295 1.296 [0.00;0.16]
GPLP(4 sockets) 1.014 1.015 [0.00;0.22]
GPLP(4 sockets) 1.014 1.015 [0.00;0.22]

Table 5.7: Overall sample speedups of the tested thread affinities with Nas Parallel benchmarks
running on the ccNUMA machine. The baseline thread placement strategy is the OS free affinity.
The used data input was class B. The numbers of threads were 16 for every benchmark.
The number of repetitive runs per benchmark was 35. The minimal and maximal observed
performance variances of the OS free affinity are [0.00 ; 52.24].

the analysis of the memory traces shows a small inter-thread data sharing. Since these
compact strategies place the 16 threads in one compute node, the contention on the
shared buses and caches leads to a performance degradation compared to strategies which
distribute the threads among all the available compute nodes and sockets.

4. Due to the small amount of inter-thread data sharing, it makes no difference, in terms of
performance between the application dependent and application independent strategies.
Yet, we observe that application dependent strategies are slightly better than application
independent ones.

5.5 Conclusion

We investigate various application-wide cache-aware thread pinning strategies for SPEC and
NPB OpenMP applications. We performed a statistical performance evaluation and analysis
and demonstrated that fixing an affinity provides statistically significant performance improve-
ments compared to the Linux OS strategy. However, the performance improvement is marginal
on UMA Core2 and Nehalem machines, but the performance stability is better. On the tested

114 CHAPTER 5. THREAD PLACEMENT STRATEGIES ON MULTICORES

ccNUMA machine, the speedups of all thread pinnings are significant because the OS thread
scheduler gives higher priority to work balancing among cores against NUMA sensitive schedul-
ing.

Interestingly enough, we demonstrated that application independent strategies (icc scatter

and icc compact) provide equivalent performance gains compared to profile guided (application
dependent) methods. The later observation does not suggest that the profile guided methods
are useless or inefficient. First, we have shown that since application dependent strategies are
more cache-aware, they provide better performance enhancement for multi-threaded applica-
tions which implement an important amount of data sharing. Second, we have investigated
only cache effects, while there are other factors that have to be considered in order to compute
effective thread pinning strategies. For example, it is possible also to consider bus contention,
prefetch contention, last level cache contention and memory controller contention.

Another explanation for the weak observed speedups can be due to modelling issues. Since
the affinity graph is built as an aggregated view of the whole execution, it does not account for
temporally distinct sharing patterns in the application. In other words, although, the affinity
graph reports data sharing, we are not really sure that this data sharing is effectively transformed
into performance improvement by thread affinity. To overcome this limitation, we suggest to
reduce the granularity of our profile-guide method. We think that profile guided methods should
be improved by considering program phases to decide variable thread pinnings (migration).

In the next chapter, we investigate the performance impact of thread pinning and migration
strategies per parallel region for SPEC OMP and NPB applications.

Chapter 6

Dynamic Thread Pinning for
Phase-Based OpenMP Programs

This chapter presents an approach that extends the profile guided method seen in the previous
chapter. In fact, instead of computing an application-wide thread affinity strategy, a distinct
thread affinity is computed for each OpenMP parallel region. This allows to change thread
affinity dynamically (thread migrations) between parallel regions at runtime.

6.1 Introduction

In Chapter 5, we showed that thread affinity is an important factor that has to be consid-
ered when it comes to accelerate program execution times. Another advantage of fixing thread
affinity is better performance stability. We also showed that while fixing thread affinity dur-
ing the whole execution provides statistically significant performance improvements in NUMA
machines, the obtained speedups are negligible on SMP machines. Nevertheless, we think that
there is still some potential to further enhance the performance gain using thread affinity by
exploiting phase-based behaviour in OpenMP programs.

In this chapter we are going to study a phase-based or a dynamic thread pinning technique.
The later rely on the control flow graph of a parallel execution in a given program. A basic block
in this control flow graph of a parallel execution can be defined using different granularities: a
sequence of some instructions, a function call, etc. Most often, OpenMP programs implement
multiple parallel regions which are called multiple times in an iterative way. In the context of
our work, we consider the control flow as a graph representing a sequence of calls to distinct
parallel regions in a OpenMP program. This also means that we define an OpenMP phase as
the event of executing a parallel OpenMP region. Since, we are dealing with thread affinity, and
in order to reduce the number of thread migrations, we think that the parallel region granularity
represents a good trade-off between better accuracy and lower overhead.

The remainder of this chapter is structured as follows. We first present in Section 6.2 a
synthetic example aiming to show the effectiveness of using dynamic per-parallel regions thread
affinity within OpenMP programs. Section 6.3 describes the methodology that we use in order
to compute a distinct thread affinity for each parallel region. In Section 6.4, we present the
details of the experimental setup. Finally, we give in Section 6.5 the experimental results and
analysis, then we conclude.

115

116 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

6.2 Motivation and problem description

In the previous chapter, we showed that fixing thread affinity leads to better performance sta-
bility. We also showed that while fixing thread affinity during the whole execution provides
statistically significant performance improvements in NUMA machines, the obtained speedups
are negligible on SMP machines (Chapter 5). However, we think that there is still some po-
tential to further enhance the performance gain using thread affinity by exploiting phase-based
behaviour in OpenMP programs.

In our study, we define an OpenMP phase as a unique and a distinct OpenMP parallel
region. In OpenMP, each structured code started by the construct #pragma omp parallel in
C/C++ or !$omp parallel in Fortran is a new parallel region. Listing 6.1 shows an example of
a program with two parallel regions. These regions translate into two distinct OpenMP phases.

Listing 6.1: Two OpenMP parallel phases program

#pragma omp p a r a l l e l
{

.
}

#pragma omp p a r a l l e l
{

.
}

To illustrate the benefit of changing thread pinning between consecutive OpenMP parallel
regions, we use a synthetic micro-benchmark implementing two parallel regions running with 4
threads. The implemented sharing behaviour is as follows:

• In the first parallel region:

– Threads 1 and 2 share some data.
– Threads 3 and 4 share some data.

• In the second parallel region:

– Threads 1 and 3 share some data.
– Threads 2 and 4 share some data.

We run the micro-benchmark multiple times and using multiple thread pinnings on top of
an Intel SMP1 with two quad-core processors, each couple of cores share an L2 cache2. We con-
sider the no affinity strategy as the base comparison configuration. Figure 6.1 reports the
speedups of the median execution times of the tested pinning techniques. In total we have six
thread pinning strategies. Except one configuration where the pairs of threads were placed on
a single socket, we place each pair of threads on cores sharing an L2 cache in a distinct socket.
For instance, if we consider from the figure, the case of the configuration C2: 1324,1234:two

sockets, means that we place in phase 1, the pair of threads (1,3) in socket #1 and the pair
(2,4) in socket #2. Similarly, we place in phase 2, the pair of threads (1,2) in socket #1 and
the pair (3,4) in socket #2.

1There are no NUMA effects, the machine has a single memory domain.
2More details about the machine can be found in page 100

6.3. PARALLEL OPENMP PHASES EXTRACTION AND THREAD PINNING 117

FS 305 MB FS 610 MB FS 916 MB FS 1221 MB

Two parallel regions affinity impact
 4 threads

SMP Core2 machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

05
1.

1
1.

15
1.

2

1324,1234:two sockets
1234,1234:two sockets
1324,1324:two sockets
1423,1423:two sockets
1234,1234:one socket

Figure 6.1: Core2 SMP machine results (Only statistically significant speedups are plotted).

From this simple experiment, we can conclude that changing the affinity between OpenMP
parallel phases is beneficial and can lead to non negligible performance improvement over a
fixed affinity for the whole program or a no affinity strategy. We conducted a memory trace
analysis for this program, we computed an affinity graph for each of its parallel phases. Fig-
ure 6.2 shows the graphical view of the affinity graph of each parallel region. The width and
the color of each edge in the graph is proportional to the amount of data sharing between
each pair of threads compared to the total number of memory accesses of the whole applica-
tion3. For instance, edges with a red color represent high amount of inter-thread data sharing
in the application. For this micro-benchmark, the memory trace analysis confirms the results
shown above. If we consider the case of the first parallel region, achieving good performance
requires that thread 1 has to be close to thread 2. Similarly thread 3 has to be close to thread 4.

In this section we have shown the importance of dynamic thread pinning per parallel phases
for a simple program. In the next section, we explain the methodology we follow to compute
a thread pinning per parallel regions and check the effectiveness of this approach for SPEC
OMP2001 and NPB programs and for some other synthetic benchmarks.

6.3 Parallel OpenMP phases extraction and thread pinning

Once again, we focus on data sharing in order to compute effective thread pinning strategies.
On the contrary to what we did when computing an application-wide thread affinity, this time
we compute a thread pinning for each parallel region in the OpenMP program. Our extended
profile guided method consists of multiples steps. First, we instrument OpenMP constructs
to add function calls allowing us to know entry and exit point of OpenMP parallel regions.
Second, after determining entry/exit point for each parallel region, it is possible to collect a
distinct memory trace profile for each of them. Third, for each distinct memory trace profile,
we build an affinity graph. This means that we build a distinct affinity graph for each parallel

3All the accesses of all threads in the application.

118 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

T1

T2

T3

T4

80%<Reuse<=100%
60%<Reuse<=80%
40%<Reuse<=60%
30%<Reuse<=40%
20%<Reuse<=30%
10%<Reuse<=20%
5%<Reuse<=10%

Reuse<=5%

T1

T2

T3

T4

80%<Reuse<=100%
60%<Reuse<=80%
40%<Reuse<=60%
30%<Reuse<=40%
20%<Reuse<=30%
10%<Reuse<=20%
5%<Reuse<=10%

Reuse<=5%

Figure 6.2: Affinity graphs of the micro-benchmark

Listing 6.2: Before OPARI translation

#pragma omp p a r a l l e l
{

p r i n t f (” He l lo world\n”) ;
}

Listing 6.3: After OPARI translation

POMP Paral le l fork (d)
#pragma omp p a r a l l e l
{

POMP Paral le l enter (d)
p r i n t f (” He l lo world\n”) ;
POMP Parallel end (d)

}
POMP Paral le l jo in (d)

region. Finally, we apply multiple partitioning techniques in order to decompose each distinct
affinity graph into multiple parts and hence, we can compute a thread affinity for each parallel
region. We detail in the following sections all these steps.

6.3.1 Automatic detection of OpenMP parallel regions

Regarding OpenMP programs, computing a thread affinity for a parallel region requires to detect
the entry and exit events of that region. All the events are detected using the OPARI [MMSW02]
instrumentation tool. OPARI is a component of a global framework for parallel program perfor-
mance evaluation and measurement. The objective of OPARI is to provide a performance and
measurement interface for OpenMP. It is a source-to-source translation tool which automati-
cally adds function calls to a POMP runtime measurement library. This library is used to collect
runtime performance data for OpenMP applications. OPARI supports C/C++ and Fortran pro-
gramming languages. The idea behind the concept is to detect each OpenMP pragma/directive
and add functions calls to the POMP library. This method allows us to be compiler and runtime
independent. In our approach, we do not use the POMP library for performance measurement.
Instead, we have made changes in order to achieve dynamic thread pinning for each parallel
region. Listings 6.2 and 6.3 present an example of how the translation process is achieved.

The translation process is done as follows:

6.3. PARALLEL OPENMP PHASES EXTRACTION AND THREAD PINNING 119

• OPARI translates OpenMP pragmas to function calls of the form POMP Name type(d)

– Name refers to name of the OpenMP directive

– type is either fork, join, enter, exit, begin, or end

– d is the context descriptor of the OpenMP directive

• The OpenMP program is linked with the POMP performance measurement library

• We modified the OPARI tool to expose only events related to parallel regions (enter/exit)

6.3.2 Memory trace profile and analysis for OpenMP regions

After the OPARI instrumentation, we make a memory tracing of the OpenMP application using
the PIN [LCM+05] instrumentation framework. To account for multiple parallel regions (PR),
and following the idea presented in in Section 5.2.2.1, we extended our C++ Pin tool. Unlike
the application-wide memory trace collection, we associate to each thread ‖P‖ hash tables,
where P represents the set of distinct parallel OpenMP regions in the application. Again, a
hash table holds all the memory references accessed by a given thread. The entries of a hash
table store the block identifier (BID) of the given memory reference (transformed to data blocks
of 64 bytes size) and the number of accesses to this BID where the number of memory reads
and writes are kept separate. From memory tracing, we build an affinity graph for each PR in
the OpenMP application. In addition, we are able to deduce the parallel regions control flow
graph PRCFG. It is a directed valued graph where the vertices represent the distinct PRs of the
program and the edges represent the predecessor and the successor relationship between them.
As reported before, an edge between a PRi and PRj is valued by the number of times the
execution of the PRi is followed by the execution of PRj . Figure 6.3 shows an example of a
parallel regions control flow graph of the CG benchmark from the NPB suit.

1

2

1

3

1

6

75

5

1

7

74

4

1

1

75

Figure 6.3: A parallel regions control flow graph of the CG benchmark

The next sections shows how we use memory trace information to build the affinity graph.

120 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

6.3.3 Building an affinity graph for each parallel region

The collected memory trace profile is used to build an affinity graph for each parallel parallel
region in the program. Each affinity graph in the application is an undirected valued graph
Gp = (V, E , α) ∀p ∈ P. V is the set of application threads, E = V × V, α : E 7→ N is a gain
function applied to every pair of threads and P is the set of parallel regions implemented in the
application. An affinity graph is a complete graph: we consider a fixed number of threads, then
the number of edges in the graph is equal to ‖V‖×(‖V‖−1)

2 .

The gain function α(Ti, Tj) represents the number of common accesses to common memory
caches lines, accessed by both the Ti and Tj threads for a given parallel region. Besides the
gain function we defined in the previous chapter that we call a simple model or SM, we added
another metric to account for inter-thread data sharing, and we call it the read/write model or
RWM. We added this model because we consider that it is important to separate read and write
accesses from the performance perspective. The reason for that is we consider that a shared
region of data wherein accesses are dominated by reads will have less impact on performance
than a shared region of data wherein the read and write accesses are balanced. In fact, when
the shared data are accessed only in a read mode, duplicating these data on multiple caches
may not harm the performance in a great extent.

Let us precisely define α for an application with a fixed number of threads n = ‖V‖ and
for a given parallel region p ∈ P. The collected memory trace profile contains the information
Ap(Ti, b) which is the number of accesses of thread Ti to data block b at parallel region p.
However, since we distinguish between reads and writes, then we exactly have RDp(Ti, b) and
WRp(Ti, b) which is the number of reads and writes respectively performed by thread Ti to data
block b and where Ap(Ti, b) = RDp(Ti, b) +WRp(Ti, b). If we consider Bp

i,j as the set of all data
blocks accessed by the pair of thread (Ti, Tj) at parallel region p, then Equation 6.1 defines the
function α(Ti, Tj), which is exactly the number of accesses to common memory blocks by both
the threads Ti and Tj (with Ti 6= Tj):

α(Ti, Tj) =
∑

b∈Bp
i,j

min (RDp(Ti, b),WRp(Tj , b)) +

min (WRp(Ti, b), RDp(Tj , b)) +

min (WRp(Ti, b),WRp(Tj , b))

(6.1)

The next section shows the different tested thread pinning strategies that we compute.

6.3.4 Tested thread pinning techniques

Once all the affinity graphs are constructed for an application and for a given number of threads,
we can use them to investigate multiple thread pinning strategies. Using graph partitioning
techniques presented in Section 5.2.2.3, we decompose all affinity graphs into multiple disjoint
partitions. The thread affinity of the application at each parallel region is computed by assign-
ing each distinct graph partition to one shared cache in the multicore platform.

The overall speedup analysis performed in the previous chapter showed us that from the per-
formance perspective, almost all the application dependent strategies provide similar program
performance. For this reason, we limit our evaluation only for the following strategies (regard-

6.3. PARALLEL OPENMP PHASES EXTRACTION AND THREAD PINNING 121

Listing 6.4: After OPARI translation

POMP Paral le l fork (d)
#pragma omp p a r a l l e l
{

POMP Paral le l enter (d)
. . .
. . .
. . .
POMP Parallel end (d)

}
POMP Paral le l jo in (d)

ing k-partitioning techniques), corresponding to the application of heuristics for solving graph
k-partitioning problems at each level of the memory cache hierarchy of the parallel machine:

1. LPGP strategy. After an initial step of optimal computation of thread pairs, we proceed
by a graph k-partitioning [KK98c]. It is a hierarchical strategy, where threads are first
paired and pinned on shared L2 or L3 cache then thread pairs are partitioned and placed
on the different sockets according to their affinity.

2. GPLP strategy. It is a hierarchical strategy. It starts by an initial graph k-partitioning to
fix threads on sockets, then perform an optimal polynomial algorithm to compute thread
pairs sharing L2 or L3 cache levels.

In addition to the application dependent strategies presented above, we consider in our
evaluation, the following application independent strategies:

1. Run the application without affinity (no affinity).

2. Run the application with a compact strategy of the icc compiler (icc compact).

3. Run the application with a scatter strategy of the icc compiler (icc scatter).

6.3.5 Setting a per-parallel OpenMP thread pinning

If we consider an OpenMP program with multiple parallel regions, each thread in the application
may have a different pinning for each parallel region highlighting different sharing patterns. The
goal is to associate for each thread, the appropriate core number whatever the parallel region.
To do so, we extended the POMP library by managing a global table where the number of rows
is equal to the number of parallel phases and the number of columns is equal to the number of
threads. In other words, this table associates a core number for each thread, and for a given
parallel region, the value at the ith row and the jth column means the pinning of thread j at
the parallel region i.

One may ask the following question: regarding the instrumented code, where is the appro-
priate location to add the sched set affinity function to set thread affinity? When we instru-
ment the OpenMP code with OPARI, each time the parallel construct #pragma omp parallel

is found, calls to the POMP Parallel fork and POMP Parallel enter functions (from the POMP

library) are added to the instrumented code. As illustrated in Listing 6.4, while the function
POMP Parallel fork is executed only by the master thread, POMP Parallel enter is executed

122 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

by each thread in the application. Consequently, we think that it makes sense to consider the
effective thread pinning at the level of this function. Using some context information (allowing
the library to know the current parallel region), and the global table of pinnings, each thread
can independently set the affinity to core corresponding to the current parallel region.

Since we know where to set the thread affinity of each thread for each parallel region, we
actually need to provide all the pinnings to the application before the beginning of the execu-
tion. In our modified version of the POMP library, we consider a solution with an environment
variable CPU AFFINITY. This variable contains all or a subset of thread pinnings corresponding
to all or a subset of parallel regions separated by commas. Each pinning has colon-separated
two parts. The first part indicates the number of the parallel region to which the pinning refers
to. The second part is a space-separated list of CPUs or cores. Let us consider the following
example for an application with two parallel regions: export CPU AFFINITY="1:0 1 2 3 4 5

6 7, 2:0 4 1 5 2 6 3 7". Each time the application reaches the parallel region one or two,
the corresponding pinning is set accordingly. In the later example for instance, when the threads
reach the parallel region number 1, thread 0 is pinned to core 0, thread 1 is to core 1, thread 2
to core 2 and so on. Similarly in parallel region number 2, thread 1 is pinned to core 0, thread
1 is pinned to core 4 and so on.

The next section shows our experimental setup before presenting the results of our perfor-
mance measurement evaluation.

6.4 Experimental setup and methodology

This section describes the experimental setup that has been used to conduct the study. We
describe the benchmarks, the hardware platforms and the experimental methodology.

6.4.1 Software environment

Our experiments have been conducted using various applications, some are micro-benchmarks
and others are standard benchmarks. The former studies the necessary conditions to make the
per parallel regions thread affinity effective to achieve good performance. The later benchmarks
are used to study the performance of our approach in a general case. We run each application
with 8 and 16 threads according to the number of available number of cores. We tested multiple
thread placement strategies for every application, thread number, while repeating the execution
35 times (for statistical significance analysis). The benchmarks have been compiled using Intel
compiler (icc 11.1) with flag -O3 -openmp. The description of the tested applications is given
in the following sections.

A synthetic benchmark

This benchmark implements two OpenMP parallel regions, each with a distinct sharing pattern.
The benchmark uses a single large rectangular (the width is much greater than the height)
matrix which is subdivided into equal parts among all the intervening threads. Figure 6.4
reports the inter-thread sharing structure of the benchmark. For example, in parallel region
1, data sharing is between (T1, T5), (T2, T6), (T3, T7) and (T4, T 8) thread pairs. Similarly, in
parallel region 2, data sharing is between (T1, T2), (T3, T4), (T5, T6) and (T7, T8) thread pairs.
Cache lines sharing between threads is implemented by allowing for each pair of threads to
access common cells from the portion of the array that has been assigned to them. For each

6.4. EXPERIMENTAL SETUP AND METHODOLOGY 123

assigned portion from the array, each thread performs simple computations like additions and
multiplications.

Figure 6.4: The two inter-thread data sharing patterns for the two distinct parallel regions of
the benchmark.

A matrix multiply benchmark

Matrix multiplication is often used as a benchmark to evaluate the performance of memory op-
timisation techniques. It is also an important routine in many optimised linear algebra libraries.
In this section, we examine the program performance of two successive matrix multiplications.
Each matrix multiplication implements a distinct sharing pattern. The computation is of the
form A × B + B × A = C, where A, B and C are matrices of equal sizes. We can find this
form of matrix computations in linear systems like the Sylverster equation [Syl84], Lyapunov
equation [BS72] or Algebraic Riccati equation [LR95]. In order to implement two distinct inter-
thread data sharing patterns, we consider that while A and C are dense matrices, matrix B has
a special structure. In fact, B is decomposed into a 4 blocks where the blocks in the diagonal
have non zero values and the remaining blocks have zero values.

Figure 6.5 shows the matrices structure and work distribution for 16 threads performing two
successive matrix multiplications. For each matrix multiply computation, each thread computes
a single and unique block in matrix C. Computing the values of a block in matrix C requires
to access to a block in matrix A and a block in matrix B. With this work distribution and
considering the special structure of matrix B, we can observe that the four non-zero blocks
(B1, B6, B11, B16) in B are shared by distinct groups of threads. We can also observe that the
inter-thread blocks sharing is different between these two successive computations. For instance,
B1 is shared between threads T1, T5, T9, T13 in phase one, and between threads T1, T2, T3, T4
in phase two.

SPEC OMP01 and NPB benchmarks

Besides the presented micro-benchmarks, we conducted also experiments using all SPEC OMP01
[Sta06] and NAS Parallel Benchmarks (NPB) [JFY99]. Regarding these benchmarks, we used
the ref data input with SPEC OMP01 and the Class B with NPB benchmarks.

6.4.2 Hardware setup

We conducted all our experiments on four platforms:

124 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

Figure 6.5: Matrices structure of a two successive parallel matrix multiply. Each thread accesses
to its own block in matrices A and C. Threads with the same color means that they share the
same block in matrix B.

1. The Core2 (8 cores) machine that we name also the SMP machine (Figure 5.10). It is
a single SMP machine with two Clovertown sockets (Intel Xeon E5345 with the Core2

micro-architecture). Each processor has 4 cores, each pair of cores have a shared L2 cache.
The platform has two L2 4MB caches per socket, for both instructions and data. The core
frequency is 2.33 GHz. Each core has a separate 32KB L1 data and instruction caches.
The main memory size is 4 GB RAM. The front-side bus has a clock rate of 1.33 GHz.

2. The Nehalem (8 cores) machine (Figure 6.6). It is an Intel NUMA machine with two compute
nodes. Each NUMA domain has a single Gainestown processor (Intel Xeon X5570 with
the Nehalem micro-architecture). Each processor has 4 cores (2 threads per core) with
an inclusive shared L3 cache. So in total, we have 16 hardware threads. The platform
has two L3 caches of 8 MB, one on each chip, for both instructions and data. The core
frequency is 2.93 GHz. Each core has a private 256KB L2 cache unified for data and
instructions. In addition, each core has a separate L1 data and instructions caches with
32 KB each. The main memory size is 24 GB (12 GB in each NUMA domain). Each chip
in the platform has an integrated memory controller. Communication between sockets is
achieved through the QPI (Quick-Path Interconnect).

3. The Shanghai (8 cores) machine (Figure 6.7). It is an AMD NUMA machine with two
compute nodes. Each NUMA domain has a single Opteron processor (AMD 2378 with
the K10 micro-architecture). Each processor has 4 cores with an exclusive shared L3
cache. The platform has two L3 caches of 6 MB, one on each chip, for both instructions
and data. The core frequency is 2.4 GHz. Each core has a private 512KB L2 cache unified
for data and instructions. In addition, each core has a separate L1 data and instructions

6.4. EXPERIMENTAL SETUP AND METHODOLOGY 125

caches with 64KB each. The main memory size is 32 GB (16 GB in each NUMA domain).
Each chip in the platform has an integrated memory controller. Communication between
sockets is achieved through the HT (Hyper-Transport) protocol.

4. The Barcelona (16 cores) machine (Figure 6.8). It is an AMD NUMA machine with four
compute nodes. Each NUMA domain has a single Opteron processor (AMD 8347HE with
the K10 micro-architecture). Each processor has 4 cores with an exclusive shared L3 cache.
The platform has four L3 caches of 2 MB, one on each chip, for both instructions and
data. The core frequency is 1.9 GHz. Each core has a private 512KB L2 cache unified
for data and instructions. In addition, each core has a separate L1 data and instructions
caches with 64KB each. The main memory size is 32 GB (8192 B in each NUMA domain).
Each chip in the platform has an integrated memory controller. Communication between
sockets is achieved through the HT (Hyper-Transport) protocol.

Machine (24GB)

NUMANode P#0 (12GB)

Socket P#1

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0 PU P#8

L2 (256KB)

L1 (32KB)

Core P#1

PU P#1 PU P#9

L2 (256KB)

L1 (32KB)

Core P#2

PU P#2 PU P#10

L2 (256KB)

L1 (32KB)

Core P#3

PU P#3 PU P#11

NUMANode P#1 (12GB)

Socket P#0

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#4 PU P#12

L2 (256KB)

L1 (32KB)

Core P#1

PU P#5 PU P#13

L2 (256KB)

L1 (32KB)

Core P#2

PU P#6 PU P#14

L2 (256KB)

L1 (32KB)

Core P#3

PU P#7 PU P#15

Figure 6.6: Nehalem NUMA machine architecture

Machine (32GB)

NUMANode P#0 (16GB)

Socket P#0

L3 (6144KB)

L2 (512KB)

L1 (64KB)

Core P#0

PU P#0

L2 (512KB)

L1 (64KB)

Core P#1

PU P#1

L2 (512KB)

L1 (64KB)

Core P#2

PU P#2

L2 (512KB)

L1 (64KB)

Core P#3

PU P#3

NUMANode P#1 (16GB)

Socket P#1

L3 (6144KB)

L2 (512KB)

L1 (64KB)

Core P#0

PU P#4

L2 (512KB)

L1 (64KB)

Core P#1

PU P#5

L2 (512KB)

L1 (64KB)

Core P#2

PU P#6

L2 (512KB)

L1 (64KB)

Core P#3

PU P#7

Figure 6.7: Shanghai NUMA machine architecture

6.4.3 Evaluation methodology

There are multiple programs where it is not necessary to fix thread affinity for all the parallel
regions. In general, we can consider that we have a range between 1 and 5 parallel regions
which dominate the total execution time and where the execution times of the remaining par-
allel regions can be considered as negligible. Focusing only on these hot parallel regions may
lower the frequency of thread migrations, and consequently improve performance. To do so,
we run each benchmark natively with the desired data input, and we measure the accumulated
execution time of each parallel region in the OpenMP program. After having the execution

126 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

Figure 6.8: Barcelona NUMA machine architecture

times of all the parallel regions, we perform a sort in a descending order of execution times. Fi-
nally, we consider the first parallel regions which contribute to ≈ 90% of the total execution time.

Sometimes, the OpenMP program performance is dominated by the performance of a unique
parallel region. For these programs, we fix thread affinity only for the dominating parallel region.
Experimentally, we define the threshold for such parallel regions to be at least 70% from the
total execution time of the whole application. We do such a choice because we consider that
the expected performance enhancement from fixing thread affinity for the remaining parallel
regions may be marginal compared to the potential performance degradation.

6.5 Experimental evaluation of phase-based thread pinning

This section introduces a performance evaluation and analysis of the effectiveness of the per
parallel regions thread affinity strategy with some micro-benchmarks, SPEC OMP01 and NPB
benchmarks.

6.5.1 Performance analysis using micro-benchmarks

Let us start our performance evaluation and analysis with some synthetic benchmarks from
the computation granularity and the amount of data sharing perspectives. We performed the
experiments presented in this section using the Intel Core2 SMP and the Intel Nehalem

NUMA machines.

6.5.1.1 Synthetic benchmark with two inter-thread data sharing patterns

We start the evaluation of the effectiveness of changing thread affinity through different parallel
regions with a simple synthetic benchmark.

Case study 1: each pair of threads share 100% of their assigned data
Figures 6.9 and 6.10 report the observed program performance of the benchmark running with 8
threads on the SMP and the NUMA machines respectively. The Y-axis represents the observed
sample median speedups. The X-axis of each figure represents the tested matrix sizes. For

6.5. EXPERIMENTAL EVALUATION OF PHASE-BASED THREAD PINNING 127

each matrix size, we report the performance of the tested distinct thread pinnings. We con-
sider five thread pinning strategies: no affinity (the baseline), icc compact, icc scatter,
LPGP/GPLP(RWM) (does consider the read/write model) and LPGP/GPLP(SM) (does not consider
the read/write model) strategies4.

8x14M 16x14M 32x14M 48x14M 64x14M

Two patterns stream benchmark, 8 threads

Core2 SMP machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

05
1.

1
1.

15
1.

2

ICC Compact ICC Scatter LPGP/GPLP(RWM) LPGP/GPLP(SM)

Figure 6.9: Speedup of the median of the tested thread affinities for the synthetic benchmark
using multiple matrix sizes and running with 8 threads on Intel SMP machine. The baseline
thread placement strategy is no affinity. Only statistically significant speedups are reported.

8x14M 16x14M 32x14M 48x14M 64x14M

Two patterns stream benchmark, 8 threads

NUMA Nehalem machine (8 cores / 16 HWT)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
95

1
1.

05
1.

15
1.

25
1.

35

ICC Compact ICC Scatter LPGP/GPLP(RWM) LPGP/GPLP(SM)

Figure 6.10: Speedup of the median of the tested thread affinities for the synthetic benchmark
using multiple matrix sizes and running with 8 threads on Intel NUMA machine. The baseline
thread placement strategy is no affinity. Only statistically significant speedups are reported.

First, it is clear that dynamic thread pinning is an effective technique to capture the inter-

4Even if the computed thread affinity using the RWM and the SM hierarchical strategies are similar, we choose
to plot these strategies in separate bars.

128 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

thread data sharing exhibited by the two parallel regions. In fact, allowing thread migrations
leads to the best program performance compared to application-wide thread pinning strategies.

Second, we observe that the speedups on the NUMA machine are larger than those on the
SMP machine. Finally, we observe that while the icc scatter strategy achieves non-negligible
observable speedups on the NUMA machine, it is not able to achieve similar performance
improvement on the SMP machine. The explanation is simple: on the SMP machine, due to
the presence of four separate L2 caches, the effect of applying icc scatter is to place threads
on cores in a way that can not lead to exploit the sharing in the application whether in the
first parallel region or in the second. Contrary to icc scatter, the icc compact strategy is
able place threads on cores which lead to exploit some sharing but only on the second parallel
region. Consequently, we observe speedups for this strategy on the SMP machine. On the
NUMA machine, since it consists of two sockets where each has a larger L3 cache shared
between four cores, applying the icc scatter strategy does exploit the sharing exhibited by
the first parallel region, thus the statistical observed speedups.

Case study 2: each pair of threads share less than 100% of their assigned data
We previously showed how our synthetic benchmark behaves under some thread pinning strate-
gies in function of matrix size. The benchmark is designed so that each thread accesses to
the same amount of data. Moreover, the amount of shared data is equal between each pair of
threads, of course with different sharing patterns across the two parallel regions. In order to
analyse how the amount of inter-thread data sharing can influence the effectiveness of thread
migrations across parallel regions, let us fix the same inter-thread data sharing in the first paral-
lel region, and vary the amount of data sharing in the second. We consider in these experiments
the 0%, 25% and 75% amounts of data sharing cases in the second parallel region.

Figures 6.11 and 6.12 show the obtained statistical median sample speedups on both the
Intel SMP and NUMA machines respectively. We consider the two application-wide icc com-
piler strategies (white and gray bars respectively) and the per parallel regions affinity strategy
(black bars). The baseline configuration is icc compact. These figures are organised as follows.
Speedups are reported for each tested matrix size. Speedups are further reported according to
the amount of data sharing in the second parallel region. Regardless of the amount of data
sharing, we report speedups using three affinity strategies. This means that for each tested
matrix size, we have two dimensions of plotting. The first dimension represents the tested
distinct amounts of data sharing (100%, 75%, 25% and 0%). In the second dimension, we fix
the amount of data sharing in the second parallel region and we report speedups for the three
(icc compact, icc scatter and the per parallel regions thread affinity strategy) tested thread
affinities. If we consider the case of the icc compact strategy (white bars), for each tested
matrix size and reading from left to right, the first white bar represents the case of 100% data
sharing, the second white bar represents the case of 75%, the third white bar represents the
case of 25% and finally, the fourth white bar represents the case of 0% data sharing.

On the SMP machine, we observe that regardless of the amount of data sharing in the
second parallel region, allowing the per parallel regions thread affinity leads to the best program
performance. We can also observe that when there is no data sharing in the second parallel
region the icc scatter obtains better performance than icc compact. With this sharing
configuration, the two strategies achieve similar performance as far as the second parallel region
is concerned (like thread migration strategy). However, when it comes to the first parallel region,
icc scatter achieves better performance. Consequently, we obtain the observed program
performance with icc scatter. On the NUMA machine, we observe that as the amount of

6.5. EXPERIMENTAL EVALUATION OF PHASE-BASED THREAD PINNING 129

8x14M 16x14M 32x14M 48x14M 64x14M

Two patterns stream benchmark, 8 threads

SMP Core2 machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
95

1
1.

05
1.

1
1.

15

ICC Compact 100% share
ICC Scatter 100% share
Two phases affinity 100% share

ICC Compact 75% share
ICC Scatter 75% share
Two phases affinity 75% share

ICC Compact 25% share
ICC Scatter 25% share
Two phases affinity 25% share

ICC Compact 0% share
ICC Scatter 0% share
Two phases affinity 0% share

Figure 6.11: Speedup of the median of the tested thread affinities for the synthetic benchmark
using multiple matrix sizes and running with 8 threads on Intel SMP machine. The base-
line thread placement strategy is icc compact. White bars represent icc compact, gray bars
represent icc scatter and black bars represent the per parallel regions thread affinity. For
each tested matrix size, speedups are organised according to the amount of data sharing in the
second parallel region (four groups of separated configurations) and the tested thread affinities
(three strategies). Reading from left to right, the first group represents the case of 100% data
sharing, the second group represents the case of 75% data sharing, the third group represents
the case of 25% data sharing and the fourth group represents the case of 0% data sharing. Only
statistically significant speedups are reported.

data sharing in the second parallel region is reduced, the performance of the icc scatter and
per parallel regions thread affinity strategies are close. This is due to two reasons: 1) since these
two strategies are able to exploit the data sharing of the first parallel region, performance for
that parallel regions are similar, and 2) when there is no sharing at the second parallel region,
the precise thread pinning is not important.

6.5.1.2 A matrix multiply benchmark

In this section, we present results for large and small size matrices.

Obtained results for large size matrices
Figures 6.13 and 6.14 report the observed program performance of the tested thread affinities of
the matrix multiply benchmark running with 8 threads5 on the Intel SMP (Core2) and NUMA
(Nehalem) machines using bar plots. While the Y-axis represents the speedup of the sample
median execution times, the X-axis of each figure represents the tested matrix sizes. For each
matrix size, we report the speedup of a distinct thread pinning. For the per parallel regions
computed thread affinity, we distinguish between thread pinnings computed using whether an

5We also tested the case of 16 threads on the Intel NUMA machine by enabling Hyper-Threading and
conclude with the same observations as in the 8 threads experiments.

130 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

8x14M 16x14M 32x14M 48x14M 64x14M

Two patterns stream benchmark, 8 threads

NUMA Nehalem machine (8 cores / 16 HWT)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
95

1
1.

05
1.

1
1.

15
1.

2
1.

25

ICC Compact 100% share
ICC Scatter 100% share
Two phases affinity 100% share

ICC Compact 75% share
ICC Scatter 75% share
Two phases affinity 75% share

ICC Compact 25% share
ICC Scatter 25% share
Two phases affinity 25% share

ICC Compact 0% share
ICC Scatter 0% share
Two phases affinity 0% share

Figure 6.12: Speedup of the median of the tested thread affinities for the synthetic benchmark
using multiple matrix sizes and running with 8 threads on Intel NUMA machine. The base-
line thread placement strategy is icc compact. White bars represent icc compact, gray bars
represent icc scatter and black bars represent the per parallel regions thread affinity. For
each tested matrix size, speedups are organised according to the amount of data sharing in the
second parallel region (four groups of separated configurations) and the tested thread affinities
(three strategies). Reading from left to right, the first group represents the case of 100% data
sharing, the second group represents the case of 75% data sharing, the third group represents
the case of 25% data sharing and the fourth group represents the case of 0% data sharing. Only
statistically significant speedups are reported.

aware or an unaware read/write model6. Moreover, we have to notice that the LPGP(RWM)

and GPLP(RWM) strategies are the same. Similarly, we notice that the LPGP(SM) and GPLP(SM)

strategies are equivalent. We conclude with the following observations:

1. On both machines, the performance of the LPGP/GPLP(RWM) strategies is similar to the
performance of the icc compact strategy. Since B is a read only matrix, the read/write
model is unable to capture the true sharing behaviour between threads. Consequently, the
computed thread affinity of each parallel region is the same as the one set by the Intel

compiler.

2. On both machines, the LPGP/GPLP(SM) strategy achieves the best program performance
whatever the tested matrix size, this means that changing the affinity between parallel
regions does improve program performance. The obtained speedups are in the range
[1.2, 1.7]

3. On the Intel NUMA machine, we observe important speedups for all the tested thread
affinities regardless of the tested matrix size. This situation can be simply explained by

6See Section 6.3.3 in page 120 for an aware read/write model and Section 5.2.2.2 in page 89 for an unaware
read/write model.

6.5. EXPERIMENTAL EVALUATION OF PHASE-BASED THREAD PINNING 131

1536x1536 2048x2048 2560x2560 3072x3072 3584x3584 4096x4096

Matrix Multiply, 8 threads

SMP Core2 machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

1
1.

3
1.

5
1.

7

ICC Compact ICC Scatter LPGP/GPLP(RWM) LPGP/GPLP(SM)

Figure 6.13: Speedup of the median of the tested thread affinities for the matrix multiply
benchmark using multiple matrix sizes and running with 8 threads on Intel SMP machine.
The baseline thread placement strategy is no affinity. Only statistically significant speedups
are reported.

1536x1536 2048x2048 2560x2560 3072x3072 3584x3584 4096x4096

Matrix Multiply, 8 threads

NUMA Nehalem machine (8 cores / 16 HWT)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

1
1.

1
1.

3
1.

5
1.

7

ICC Compact ICC Scatter LPGP/GPLP(RWM) LPGP/GPLP(SM)

Figure 6.14: Speedup of the median of the tested thread affinities for the matrix multiply
benchmark using multiple matrix sizes and running with 8 threads on Intel NUMA machine.
The baseline thread placement strategy is no affinity. Only statistically significant speedups
are reported.

132 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

the fact that the Linux scheduler does not behave very well in NUMA machines (it allows
frequent thread migrations).

4. On the Intel SMP machine, except for the 1536 × 1536 matrix size, for all the tested
matrix sizes, icc compact and icc scatter achieve either non statistically significant
or negligible statistically significant speedups. This means that in terms of the sample
median execution times, the Linux scheduler obtains good performance compared to icc

compact and icc scatter for this benchmark.

Obtained performance for small size matrices
In the previous paragraph, we considered performance results for large matrix sizes. In other
words, we considered only the case where the total working set of the benchmark does not fit
in the available last level caches on both machines. Let us now present performance results
for matrix sizes less than 1536. In this context, we vary the matrix sizes from 256 to 1536
(1.5MB to 54MB). For more accuracy of our measurements, we repeat the execution of each
parallel region 1, 10, 50 and 100 times7. This means that we have to execute the whole first
parallel region with all the iterations before executing the second parallel region with all its
iterations as well as showed in Listing 6.5. By doing so, we want to check the relation between
the computation granularity and the size of the working set. For large matrix sizes, it is obvious
that the granularity of each matrix multiply is sufficient to change thread pinning. However, it
is not clear if this situation is true for smaller size matrix sizes.

Listing 6.5: Program code for small matrices

for (i = 1 ; i <= NumberIterat ions ; i++)
{

Para l l e lMar ixMul t ip ly 1 () ;
}
for (i = 1 ; i <= NumberIterat ions ; i++)
{

Para l l e lMar ixMul t ip ly 2 () ;
}

Figures 6.15 and 6.16 report the observed speedups of the median execution times for the
tested thread affinities regarding multiple small matrix sizes on both the Intel SMP and the
NUMA machines respectively. We consider the two application-wide icc compiler strategies
(white and gray bars respectively) and the per parallel regions affinity strategy (black bars).
The baseline comparison is the icc compact strategy8. These figures are organised as follows.
Speedups are reported for each tested matrix size. Speedups are further reported according to
the number of repetitions of each parallel region. Regardless of the number of repetitions, we
report speedups using three affinity strategies. This means that for each tested matrix size, we
have two dimensions of plotting. The first dimension represents cases where the execution of
each parallel region is repeated 1, 10, 50 and 100 times. In the second dimension, we fix the
number of repetitions and we report speedups for the three (icc compact, icc scatter and
the per parallel regions thread affinity strategy) tested thread affinities. If we consider the case

7Since we use small matrix sizes, the execution times are too short. Consequently, the benchmark may be
sensitive to performance variability

8We have to notice that if we consider the non affinity configuration as a baseline, all the tested pinning
strategies obtain important performance improvement

6.5. EXPERIMENTAL EVALUATION OF PHASE-BASED THREAD PINNING 133

256x256 512x512 768x768 1024x1024 1280x1280 1536x1536

Matrix Multiply, 8 threads

SMP Core2 machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
98

1
1.

01
1.

03
1.

05

ICC Compact 1
ICC Scatter 1
Two phases affinity 1

ICC Compact 10
ICC Scatter 10
Two phases affinity 10

ICC Compact 50
ICC Scatter 50
Two phases affinity 50

ICC Compact 100
ICC Scatter 100
Two phases affinity 100

Figure 6.15: Speedup of the median of the tested thread affinities for the matrix multiply
benchmark using multiple matrix sizes and running with 8 threads on Intel SMP machine.
The baseline thread placement strategy is icc compact. White bars represent icc compact,
gray bars represent icc scatter and black bars represent the per parallel regions thread affinity.
For each tested matrix size, speedups are organised according to the number of repetitions of
each parallel region (four groups of separated configurations) and the tested thread affinities
(three strategies). Reading from left to right, the first group represents the case where each
parallel region is repeated 1 time, the second group represents the case where each parallel
region is repeated 10 times, the third group represents the case where each parallel region is
repeated 50 times and the fourth group represents the case where each parallel region is repeated
100 times. Only statistically significant speedups are reported.

of the icc compact strategy (white bars), for each tested matrix size and reading from left to
right, the first white bar represents the case where each parallel region is repeated 1 time, the
second white bar represents the case where each parallel region is repeated 10 times, the third
white bar represents the case where each parallel region is repeated 50 times and the fourth
white bar represents the case where each parallel region is repeated 100 times. We conclude
with the following observations:

1. On the SMP and Nehalem machines, we observe that for matrix sizes below 1280, we do
not observe any performance benefit from applying the icc scatter or the per parallel
regions thread affinity compared to the icc compact strategy. This means that neither
the icc scatter nor the LPGP/GPLP(SM) strategies are adequate for small size matrices.
Actually, this observation does not suggest that icc compact is better, it just says that
we do not observe statistically significant performance difference.

2. We observe non negligible performance improvement for the per parallel regions thread
affinity strategy for the 1280 and 1536 matrix sizes regardless of the number of iterations.

3. The per parallel regions thread affinity strategy is not effective for matrix sizes smaller
than 1280 because the working set accessed by each thread fits completely on the last

134 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

256x256 512x512 768x768 1024x1024 1280x1280 1536x1536

Matrix Multiply, 8 threads

NUMA Nehalem machine (8 cores / 16 HWT)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
98

1
1.

02
1.

04
1.

06
1.

08
1.

1

ICC Compact 1
ICC Scatter 1
Two phases affinity 1

ICC Compact 10
ICC Scatter 10
Two phases affinity 10

ICC Compact 50
ICC Scatter 50
Two phases affinity 50

ICC Compact 100
ICC Scatter 100
Two phases affinity 100

Figure 6.16: Speedup of the median of the tested thread affinities for the matrix multiply
benchmark using multiple matrix sizes and running with 8 threads on Intel NUMA machine.
The baseline thread placement strategy is icc compact. White bars represent icc compact,
gray bars represent icc scatter and black bars represent the per parallel regions thread affinity.
For each tested matrix size, speedups are organised according to the number of repetitions of
each parallel region (four groups of separated configurations) and the tested thread affinities
(three strategies). Reading from left to right, the first group represents the case where each
parallel region is repeated 1 time, the second group represents the case where each parallel
region is repeated 10 times, the third group represents the case where each parallel region is
repeated 50 times and the fourth group represents the case where each parallel region is repeated
100 times. Only statistically significant speedups are reported.

level caches (4MB L2 cache on SMP machine and 8MB L3 cache on the NUMA machine).
Moreover, matrix B (non-zero blocks) can be hosted almost in all the last level caches
without harming the overall performance. Consequently, allowing thread migrations is
not useful.

4. When we consider, the 1280 and 1536 matrix sizes9, matrix B can not be hosted entirely in
all the last level caches without harming the overall program performance. Consequently,
the precise thread affinity for each parallel region is important, it permits to share only
useful parts of B, thus preventing unnecessary cache misses.

We said earlier that for small matrices, non zero blocks of matrix B can be hosted in all the
available last level caches. Let us analyse the situation of small matrices for the 1024 × 1024
matrix size case on the Intel SMP machine. This machine has four L2 caches of 4 MB each.
When we decompose each matrix into 4×4 blocks, each block has a 0.5 MB size. With matrices
decomposed into 16 blocks and 8 threads, each thread has to compute two blocks of matrix C.
Since computing a block of C requires one block in A and another of B, work distribution in
the benchmark assigns for each thread, two blocks of C, two blocks of A and 2 blocks of B.

9We have to notice that we tested intermediate size matrices, we conclude with similar observations.

6.5. EXPERIMENTAL EVALUATION OF PHASE-BASED THREAD PINNING 135

Let us now measure the footprint for each L2 cache. With an L2 cache shared between each
pair of cores, and with a number of cores equal to the number of threads, each L2 cache has
to host the working set of two threads in order to compute two distinct blocks in C. With a
0.5 MB block size, each thread has to access to a 0.5 MB size block of C and a 0.5 MB size
block of A, what makes 1 MB. The footprint for two threads is 2 MB. Matrix B has four non
zero blocks, which makes 2 MB of memory cache footprint. Consequently, at most there are
4 MB (2 MB from A and C and at most 2 MB from B) of working set in each L2 cache (an
L2 cache has 4 MB), sufficiently enough to compute two distinct blocks in C. Because all L2
caches can host the non zero blocks of B, the exact pinning is not important to take any benefit
from sharing some parts of matrix B. That is why we do not observe any performance benefit
from allowing thread migration between the two parallel regions.

Obtained results for an iterative behaviour for the matrix multiply benchmark
In our benchmark, we considered only the case where, regarding the parallel regions control
flow, the second matrix multiply (2nd phase) is executed after the first one before the bench-
mark resumes its execution. That is, the expected performance behaviour when we execute
the two matrix multiplications in a iterative way is unclear. In order to answer this question,
we performed a set of experiments in which, after fixing a matrix size and a thread affinity
strategy, we repeat in an iterative way the execution of the two matrix multiplications. In these
experiments, the considered number of iterations is 1, 2, 4, 6, 8 and 10 (see Listing 6.6).

Listing 6.6: Iterative behaviour of two phases matrix multiply

for (i = 1 ; i <= NumberIterat ions ; i++)
{

Para l l e lMar ixMul t ip ly 1 () ;
Para l l e lMar ixMul t ip ly 2 () ;

}

Figures 6.17 and 6.18 report the observed speedups of the median execution times for the
tested thread affinities regarding some tested matrix sizes on both the Intel SMP and the
NUMA machines respectively. We consider the two application-wide icc compiler strategies
(white and gray bars respectively) and the per parallel regions affinity strategy (black bars).
The baseline comparison is the icc compact strategy10. These figures are organised as follows.
Speedups are reported for each tested matrix size. Speedups are further reported according to
the number of iterations of the two parallel regions. Regardless of the number of iterations, we
report speedups using three affinity strategies. Again, this means that for each tested matrix
size, we have two dimensions of plotting. The first dimension represents cases where the number
of iterations (for each iteration, the two parallel regions are executed) in the program is 1, 2, 4,
6, 8 and 10. In the second dimension, we fix the number of iterations and we report speedups
for the three (icc compact, icc scatter and the per parallel regions thread affinity strategy)
tested thread affinities. Using the case of the icc compact strategy (white bars) for illustration
purpose, for each tested matrix size and reading from left to right, the first white bar represents
the case where the number of iterations is equal to 1, the second white bar represents the case
where the number of iterations is equal to 2, until the sixth white bar which represents the case

10We have to notice, that if we consider the non affinity configuration as a baseline, the obtained speedups are
far more significant

136 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

512x512 1024x1024 1536x1536 2048x2048 2560x2560

Matrix Multiply, 8 threads

SMP Core2 machine (8 cores)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
9

1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7

ICC Compact 1
ICC Scatter 1
Two phases affinity 1

ICC Compact 2
ICC Scatter 2
Two phases affinity 2

ICC Compact 4
ICC Scatter 4
Two phases affinity 4

ICC Compact 6
ICC Scatter 6
Two phases affinity 6

ICC Compact 8
ICC Scatter 8
Two phases affinity 8

ICC Compact 10
ICC Scatter 10
Two phases affinity 10

Figure 6.17: Speedup of the median of the tested thread affinities for the matrix multiply
benchmark using multiple matrix sizes and running with 8 threads on Intel SMP machine. The
baseline thread placement strategy is icc compact. White bars represent icc compact, gray
bars represent icc scatter and black bars represent the per parallel regions thread affinity.
For each tested matrix size, speedups are organised according to the number of executions
(iteratively) of the two parallel regions (six groups of separated configurations) and the tested
thread affinities (three strategies). Reading from left to right, the first group represents the case
where the execution of the two parallel regions is repeated 1 time, the second group represents
the case where the execution of the two parallel regions is repeated 2 times, the third group
represents the case where the execution of the two parallel regions is repeated 4 times, the fourth
group represents the case where the execution of the two parallel regions is repeated 6 times,
the fifth group represents the case where the execution of the two parallel regions is repeated 8
times and the sixth group represents the case where the execution of the two parallel regions is
repeated 10 times. Only statistically significant speedups are reported.

where the number of iterations is equal to 10.

First, we can observe that on both machines, the observed speedups are not statistically
significant for matrix sizes below than 1536. Second, when matrix size is equal or larger to
1536, the observed speedups are not negligible. Finally, we observe that whatever the tested
number of iterations11, the obtained speedups with larger matrices are almost the same. This
means that iteratively migrating threads through the two parallel regions does not degrade the
overall program performance. Therefore, this strategy provides better program performance
than application-wide strategies as long as the amount of work in each parallel region is impor-
tant to overcome the overhead inherent to thread migrations.

The next section presents obtained performance results using SPEC OMP01 and NPB bench-
marks.

11We also tested a number of iterations equal to 16, 32, and 64, the conclusions are similar

6.5. EXPERIMENTAL EVALUATION OF PHASE-BASED THREAD PINNING 137

512x512 1024x1024 1536x1536 2048x2048 2560x2560

Matrix Multiply, 8 threads

NUMA Nehalem machine (8 cores / 16 HWT)

S
pe

ed
up

 o
f t

he
 m

ed
ia

n

0.
9

1
1.

1
1.

2
1.

3
1.

4
1.

5

ICC Compact 1
ICC Scatter 1
Two phases affinity 1

ICC Compact 2
ICC Scatter 2
Two phases affinity 2

ICC Compact 4
ICC Scatter 4
Two phases affinity 4

ICC Compact 6
ICC Scatter 6
Two phases affinity 6

ICC Compact 8
ICC Scatter 8
Two phases affinity 8

ICC Compact 10
ICC Scatter 10
Two phases affinity 10

Figure 6.18: Speedup of the median of the tested thread affinities for the matrix multiply
benchmark using multiple matrix sizes and running with 8 threads on Intel NUMA machine.
The baseline thread placement strategy is icc compact. White bars represent icc compact,
gray bars represent icc scatter and black bars represent the per parallel regions thread affinity.
For each tested matrix size, speedups are organised according to the number of executions
(iteratively) of the two parallel regions (six groups of separated configurations) and the tested
thread affinities (three strategies). Reading from left to right, the first group represents the case
where the execution of the two parallel regions is repeated 1 time, the second group represents
the case where the execution of the two parallel regions is repeated 2 times, the third group
represents the case where the execution of the two parallel regions is repeated 4 times, the fourth
group represents the case where the execution of the two parallel regions is repeated 6 times,
the fifth group represents the case where the execution of the two parallel regions is repeated 8
times and the sixth group represents the case where the execution of the two parallel regions is
repeated 10 times. Only statistically significant speedups are reported.

6.5.2 Performance analysis using SPEC OMP01 and NPB benchmarks

In this section, we present the results of our performance evaluation regarding the effectiveness
of dynamic thread pinnings for SPEC OMP2001 and NPB applications on NUMA machines.
We run each benchmark multiple times under multiple thread pinning strategies. For the
purpose of the evaluation, we used three NUMA machines: the Nehalem machine with 8 (16
hardware threads) cores, the Shanghai machine with 8 cores and the Barcelona machine with
16 cores. Each benchmark was run with 8 and 16 threads with respect to the maximal number
of physical cores. We also tested the case of the 16 threads on the Nehalem machine by using all
the hardware threads12. Besides, we used the ref and Class B data inputs for SPEC OMP and
NPB respectively, for both memory trace collection and the performance measurement when
applying different thread pinnings.

12Hyper-Threading enabled

138 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

6.5.2.1 Experimental results

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of SPEC OMP01 benchmarks
8 threads, ref data input

Nehalem NUMA machine (8 cores / 16 HWT)

O
ve

ra
ll

S
pe

ed
up

0.
75

0.
85

0.
95

1.
05

1.
15

1.
25

1.
35

mean sample speedup median sample speedup

0.796

1.262
1.281 1.281

1.258 1.259

0.783

1.242
1.26 1.26

1.238 1.238

(a)

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of SPEC OMP01 benchmarks
16 threads, ref data input

Nehalem NUMA machine (8 cores / 16 HWT)

O
ve

ra
ll

S
pe

ed
up

0.
98

1.
00

5
1.

03
1.

05
5

1.
08

mean sample speedup median sample speedup

1.052

1.068

1.05 1.049

1.02 1.02
1.023

1.039

1.021 1.02

0.992 0.993

(b)

Figure 6.19: Overall sample speedups of the tested thread affinities with SPEC OMP2001
benchmarks running on the Intel NUMA machine. The baseline thread placement strategy is
the OS free affinity.

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of SPEC OMP01 benchmarks
8 threads, ref data input

AMD Shanghai NUMA machine (8 cores)

O
ve

ra
ll

S
pe

ed
up

1.
02

1.
02

5
1.

03
1.

03
5

1.
04

mean sample speedup median sample speedup

1.036

1.027

1.037 1.037

1.026

1.027

1.033

1.024

1.033 1.033

1.022

1.023

(a)

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of SPEC OMP01 benchmarks
16 threads, ref data input

AMD Barcelona NUMA machine (16 cores)

O
ve

ra
ll

S
pe

ed
up

0.
95

1
1.

05
1.

1
1.

15

mean sample speedup median sample speedup

1.112

1.059

1.117 1.116

0.991 0.988

1.093

1.046

1.098 1.097

0.975 0.972

(b)

Figure 6.20: Overall sample speedups of the tested thread affinities with SPEC OMP2001
benchmarks running on the AMD NUMA machines. The baseline thread placement strategy is
the OS free affinity.

Three figures reflect the speedups through the tested thread pinning strategies (icc compact,
icc scatter, LPGP(RWM), GPLP(RWM), LPGP(SM) and GPLP(SM)) compared to the default no

affinity strategy of the OS scheduler. Figure 6.19 and 6.20 show the overall sample speedups
of every thread pinning strategy on the Nehalem and the AMD NUMA machines using bar plots.
We report the speedups of the average and the median execution times of all SPEC OMP appli-
cations running with 8 and 16 threads. Similarly, Figure 6.21 illustrates the same performance
metrics on the Nehalem machine for NPB benchmarks. For each figure, while each bar in the
X-axis represents a distinct thread pinning strategy, the Y-axis reports the observed sample
speedups. We conclude the following:

1. On the Nehalem and Barcelona machines, running OMP01 and NPB with 16 threads
with thread affinity enabled, leads to marginal speedups and slowdowns (Figures 6.19b,
6.20b and 6.21b).

6.5. EXPERIMENTAL EVALUATION OF PHASE-BASED THREAD PINNING 139

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of NPB benchmarks
8 threads, ref data input

Nehalem NUMA machine (8 cores / 16 HWT)

O
ve

ra
ll

S
pe

ed
up

0.
65

0.
85

1.
05

1.
25

1.
45

mean sample speedup median sample speedup

0.698

1.32 1.325 1.327
1.297 1.297

0.727

1.376 1.38 1.383
1.352 1.352

(a)

ICC Compact ICC Scatter LPGP (RWM) GPLP (RWM) LPGP (SM) GPLP (SM)

Overall speedup of NPB benchmarks
16 threads, ref data input

Nehalem NUMA machine (8 cores / 16 HWT)

O
ve

ra
ll

S
pe

ed
up

0.
95

0.
97

5
1

1.
02

5
1.

05

mean sample speedup median sample speedup
1.04

1.033

1.023
1.026

1.01

1.016
1.02

1.011

1.004
1.007

0.989

0.995

(b)

Figure 6.21: Overall sample speedups of the tested thread affinities with NPB benchmarks
running on the Intel NUMA machine. The baseline thread placement strategy is the OS free
affinity.

2. On the Shanghai machine, fixing thread affinity for OMP01 running with 8 threads leads
to marginal speedups (Figure 6.20a).

3. On the Nehalem machine, when running OMP01 and NPB with 8 threads (Figures 6.19a
and 6.21a), except the icc compact strategy, we observe non-negligible speedups for all
the tested strategies. The reason is that the experiments were performed with Hyper-Threading

(HT) enabled. Enabling this option increases the number of possible OS scheduling pos-
sibilities and since the OS scheduler gives higher priority for load balancing, the direct
result is an increase in thread migrations and consequently a poor overall performance is
observed13. This observation explains the poor performance of the icc compact strategy
as well. Indeed, when HT is enabled, the icc compact strategy places all the 8 threads
on a single socket14.

4. Even if the difference in terms of speedups is not significant, we observe that the LPGP(SM)
and the GPLP(SM) produce poor performance compared to LPGP(RWM) and GPLP(RWM)

strategies. As a reminder, while the former strategies (SM) are computed from affin-
ity graphs that do not consider the read/write model, the later strategies (RWM) are
computed from affinity graphs that do consider a read/write model15.

5. Regarding the test machines, we do not observe any important difference, in terms of
speedups, between the tested thread affinity strategies. This situation may suggest that
there is no benefit in enabling a per parallel regions thread affinity. Moreover, it is possible
to conclude that this approach is not effective for SPEC OMP01 and NPB benchmarks.

13We also performed other experiments, thanks to cpusets: we constrain threads to run only on a subset of
cores (as if there are 8 cores on the machine without HT). In this configuration, the observed speedups were
marginal.

14If we consider the case the icc compact strategy which distributes threads evenly on both sockets (4 threads
per socket) then, the observed performance with this strategy is very close to LPGP(RWM)

15See Section 6.3.3 in page 120 for an aware read/write model and Section 5.2.2.2 in page 89 for an unaware
read/write model.

140 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

6.5.2.2 Discussion

As noticed in the previous section, from our experiments, we made two main observations which
are highly related:

1. The relative poor performance of strategies computed upon a model which does not con-
sider the read/write model. If we consider strategies that do not consider the RWM, the
observed overall sample speedup of the median is the range [0.972− 1.352]. On the other
hand, strategies that do consider the RWM have an overall sample speedup of the median
in the range [1.004− 1.383].

2. The non clear benefit of enabling a per parallel regions thread affinity. If we compare
the best overall sample speedup of the median obtained by application independent and
application dependent strategies for each tested configuration (tested machine, number of
threads and benchmarks suit), we observed that while application independent strategies
have speedups in the range [1.033−1.376], application dependent strategies have speedups
in the range [1.007 − 1.26]. Even if the differences between the obtained speedups are
not important, it is possible to conclude that per parallel regions affinity is not effective
compared to application-wide (application independent) strategies.

In order to understand the presented experimental results, we first show in Table 6.1 the
total number of times for which the computed per parallel regions thread affinity (the LPGP and
GPLP strategies computed using whether an aware or an unaware read/write model) consists of
an application-wide thread affinity. This means, that the computed thread affinity is almost
the same for all the parallel regions (Tables 6.2 and 6.3 report the number of parallel regions in
all the studied benchmarks), or at least for the detected most time consuming parallel regions.
From Table 6.1, we can observe that using LPGP(RWM) and GPLP(RWM) strategies, at least half
of the benchmarks (either OMP01 or NPB) were run with a single (application-wide) thread
affinity. On the other hand, the LPGP(SM) and GPLP(SM) strategies do not seem to reflect the
same behaviour. Indeed, for the SM strategies, we can observe that almost all the computed per
parallel regions thread affinity have a thread affinity computed for at least two parallel regions.

In the light of the previous observations, we can say as a first conclusion, that thread affin-
ity strategies computed from affinity graphs that do consider read/writes, better capture the
sharing behaviour of threads than strategies that do not consider read/writes. Consequently,
the thread pinnings computed with these strategies are more likely to lower the number of
possible thread migrations. Moreover, since almost all the per parallel regions thread affinity
computed with a read/write model tend to be application-wide strategies, explains why we
observe that the performance of the RWM strategies is close to the performance of strategies
like icc compact or icc scatter16.

Now, we have to understand why strategies that exhibit distinct thread pinnings for distinct
parallel regions are less effective compared to application-wide strategies. There are mainly two
reasons for this performance behaviour given in a decreasing order of importance:

1. The ratio between the number of times each parallel region is called, and the execution
time elapsed in the execution of a single iteration of a given parallel region is very low (as
noticed before in Tables 6.2 and 6.3). Consequently, the inherent overhead from frequent
thread migrations and due to the small granularity of the selected hot parallel regions lead
to lower the benefit from that migrations.

16We observed in Chapter 5 that there is no any important difference, in terms of speedups, between application
independent and application dependent strategies.

6.6. CONCLUSION 141

Benchmarks suit #Threads Machine LPGP (DM) GPLP (DM) LPGP (SM) GPLP (SM)

SPEC OMP01

8 Nehalem 10/10 10/10 3/10 3/10
8 Shanghai 10/10 10/10 3/10 3/10
16 Nehalem 5/10 5/10 4/10 4/10
16 Barcelona 10/10 10/10 4/10 5/10

NPB
8 Nehalem 5/8 7/8 4/8 4/8
16 Nehalem 3/8 3/8 3/8 3/8

Table 6.1: Number of benchmarks where the computed per-parallel region thread affinity con-
sists of setting a single-global-wide thread affinity. Each benchmark is executed using 8 and 16
threads on the Nehalem and/or the Shanghai and Barcelona machines

2. The poor inter-thread data sharing exhibited by the distinct parallel regions for the tested
benchmarks. Thus, applying the dynamic thread affinity technique on SPEC OMP01 and
NPB benchmarks leads to the observed poor program performance. Unfortunately, this is
true (see Chapter 5) as a direct consequence of: 1) the uniform distribution of the working
set between threads and 2) the presence of non-uniform data sharing patterns is rare.

Benchmarks #Parallel regions #Iterations

wupwise 10 402

swim 8 1198

mgrid 12 18250

applu 22 50

galgel 32 117

equake 11 3334

apsi 24 50

fma3d 30 522

art 4 1

ammp 10 202

Table 6.2: Number of parallel regions in SPEC
OMP01 benchmarks running with the ref data
input. For each benchmark, the number of iter-
ations of the first hot parallel region is reported.

Benchmarks #Parallel regions #Iterations

bt 9 202

cg 7 75

ep 3 1

ft 8 22

lu 9 251

mg 10 170

sp 13 402

ua 55 2251

Table 6.3: Number of parallel regions in NPB
benchmarks running with the CLASS B data in-
put. For each benchmark, the number of itera-
tions of the first hot parallel region is reported.

6.6 Conclusion

We have presented an approach to exploit phase-based behaviour in OpenMP programs using
thread affinity. The presented technique rely on the control flow graph of the parallel OpenMP
regions. The control flow graph gives for each parallel region its predecessor and successor in
the execution flow. In other words, it is the graph representing the execution flow of distinct
parallel regions. We have extended an existing tool to instrument the OpenMP constructs.
Using a binary instrumentation tool, we build an affinity graph for each parallel region in the
program. After that, we compute multiple thread pinning strategies for each parallel region.

Besides the computed thread affinity for each parallel region (from its affinity graph) in the
program, the extracted control flow graph of the parallel regions gives also information about

142 CHAPTER 6. DYNAMIC THREAD PINNING FOR PHASE-BASED PROGRAMS

the call frequency of each parallel region. We think that the later information is valuable when
it comes to exploit dynamic thread pinning. Indeed, combined with a timing measurement of
each parallel region, the call frequency allow us to focus only on hot parallel regions. Therefore,
we prevent thread migration on short parallel regions which may degrade performance.

We investigate the effectiveness of a per-parallel regions thread affinity using various affin-
ity graphs decomposition techniques for SPEC and NPB OpenMP programs. We also tested
the performance of some synthetic micro-benchmarks which capture some non-frequent inter-
thread sharing patterns. Using the application independent no affinity, icc compact and
icc scatter strategies and the application dependent LPGP and GPLP strategies, we performed
a statistical performance evaluation and analysis. We conclude, that as far as SPEC OMP01
and NPB benchmarks are concerned, they do not really take benefit from dynamic thread
pinning compared to the obtained benefit by using only application-wide (either application
dependent or application independent) strategies for example. This does not suggest that this
approach degrades performance in a great extent. Actually, we observed marginal speedups and
slowdowns for almost all the tested strategies in SPEC and NPB benchmarks. Consequently,
using a statistical significance analysis, as far as thread affinity is used, the obtained program
performance is better than the Linux free strategy.

Regarding the tested synthetic micro-benchmarks, the conclusions are different. Indeed,
this class of applications effectively take benefit from the per-parallel region thread affinity
approach. For the all tested micro-benchmarks the performance difference between application-
wide strategies and the dynamic thread pinning approach can not be considered as negligible.
This is due to the high amount of inter-thread data sharing and to the implemented distinct
sharing patterns.

The factors that influence the most on the effectiveness of the dynamic thread pinning
technique, are the call frequency information, the granularity of a distinct parallel region and
the amount of data sharing. Too short execution times, combined with a high number of calls to
each parallel region produces inevitably a high overhead due to frequent thread migrations even
with a presence of an important inter-thread data reuse ratio in each parallel region. One way to
overcome this limitation is to aggregate consecutive parallel regions. We mean the fusion of that
regions (in terms of memory tracing and affinity computation) so that they can be considered as
a unique parallel region of code. By doing so, we can compute a thread affinity for the merged
parallel regions and consequently reduce the number of possible thread migrations.

Chapter 7

Conclusion

In this thesis, we studied the performance behaviour of multi-threaded OpenMP applications
running on multicore processors in terms of program execution times stability and shared cache
performance improvement. In the first part, we analysed the variability of program execution
times of OpenMP applications under multiple software configurations. We followed a methodol-
ogy in which after fixing the experimental setup, we stressed some micro-architectural, architec-
tural and OS parameters. For performance analysis, we used a rigorous statistical performance
evaluation approach with the aim to quantify and qualify factors that influence the most on
performance stability.

In the second part, we studied the impact of inter-thread data sharing on the performance of
multi-threaded applications. For this purpose, we used thread affinity as a technique to exploit
that sharing. In fact, while we know the impact of thread affinity in terms of performance sta-
bility, we further studied its constructive or destructive impact in terms of program execution
improvement. To do so, we rigorously studied the impact of exploiting the inter-thread data
sharing exhibited by OpenMP applications using various thread affinity strategies on the overall
program performance. In addition, depending on data characteristics of the parallel applica-
tion, the benefit from application-wide thread pinning strategies taking into account affinity
relationships between threads is obvious. However, it is possible to further exploit inter-thread
data sharing using thread affinity at different levels in the program through a single run. For
this reason, we also proposed a technique to exploit the phase behaviour exhibited by OpenMP
applications in order to compute effective thread placements strategies and allowing migrations
to improve the whole program execution time. In this conclusion we first summarise our findings
and contributions before discussing future work and perspectives.

7.1 Contributions

Variability of program execution times is an important factor to consider when it comes to study
the performance of programs. Indeed, underestimating this problem can lead to misleading
conclusions about the true performance behaviour of programs. Using a rigorous experimen-
tal methodology and a statistical performance evaluation protocol [TWB10], we performed an
extensive experimental study that aims to quantify and qualify the factors that influence the
most on variability of program execution times. Besides, we define a metric that measures this
variability, it measures the disparity between extrema observations or outliers.

Our extensive experimental study demonstrate that, contrary to sequential long running appli-
cations, OpenMP applications exhibit a variability of program execution times up to 30% on

143

144 CHAPTER 7. CONCLUSION

SMP multicore platforms. We showed that even if it is not unique, using thread affinity removes
the performance variability in most of the cases if the number of threads does not exceed the
number of cores. Yet, other factors such as automatic hardware prefetching, the size of memory
pages or the OS time slice still play an important role on performance stability. These factors
can contribute to increase performance variability of OpenMP programs from 1% to 40% in
multicore platforms.

As reported by our performance variability study, thread affinity plays an important role in
terms of performance stability. To check how thread affinity improves or degrades the over-
all program performance, we investigate the performance of various application-wide thread
pinning strategies for SPEC and NPB OpenMP applications. In our study, we considered
cache-unaware strategies 1 and cache-aware strategies 2. For strategies that rely on the char-
acteristics of the application, we use a profile guided method that produces an affinity graph
representing the relationship between each pair of threads in terms of data sharing. Once an
affinity graph constructed, we use graph partitioning techniques to compute effective thread
affinity strategies as far as data sharing is concerned.

Our statistical performance evaluation and analysis demonstrated that fixing an affinity pro-
vides statistically significant speedups in the range of [1 − 2.2] compared to the Linux OS
strategy. However, while the performance improvement on UMA (Uniform Memory Access)
machines is marginal, on NUMA (Non Uniform Memory Access) machines it is significant. We
also showed that cache-unaware thread affinity strategies provide equivalent performance gains
compared to cache-aware strategies. Of course, this observation does not suggest that we do
not need precise thread affinity strategies. Still, we have to distinguish between three situa-
tions. First, cache-aware strategies provide better performance improvements in benchmarks
with significant inter-thread data sharing. Second, most of the tested OpenMP applications do
not exhibit enough data sharing to observe any important difference between cache-aware and
cache-unaware thread pinning strategies. Finally, the study focuses only on cache effects. But
there are other factors that may influence the performance obtained by precise affinity strategy.
For instance, we can consider bus contention, prefetch contention, last level cache contention,
memory controller contention or OS memory pages allocation.

In addition, we think that profile guided methods should be better if they consider program
phases to decide about variable thread pinnings. To do so, we exploit the fact that most
often, OpenMP programs implement multiple parallel regions with possibly distinct sharing
patterns. Indeed, on smaller code fragments, the computed thread affinity can be more ef-
fectively translated into shared data. Consequently, applying this affinity may lead to better
program performance. In order to compute a distinct thread affinity for each parallel region,
we have extended the OPARI instrumentation tool to instrument the OpenMP parallel region
constructs. Using binary instrumentation, we build an affinity graph for each parallel region in
the program. After that, we compute multiple thread pinning strategies for each parallel region.

Using a statistical performance evaluation and analysis, we investigate the performance of the
per-parallel regions thread affinity using SPEC and NPB OpenMP programs and some synthetic
micro-benchmarks. Regarding SPEC OMP01 and NPB benchmarks, we have showed that there
is no performance difference between the per-parallel regions approach and the application-wide
approach. From a statistical significance analysis perspective, and as far SPEC and NPB appli-

1We apply the same strategy for all the tested benchmarks.
2We compute a distinct strategy for each benchmark based on its data characteristics.

7.2. PERSPECTIVES 145

cations are concerned, we observed marginal speedups and slowdowns for almost all the tested
strategies. The reason is mainly due to the limited amount of inter-thread data sharing, and to
the uniform distribution of the working set between threads. This is obvious since these standard
benchmarks are written to target symmetrical multiprocessors. This means that multi-threaded
applications have to consider these factors in their design when it comes to improve cache per-
formance of multicore platforms using thread affinity. On the other hand, regarding the tested
synthetic micro-benchmarks, the conclusions are different. Indeed, these applications effectively
take benefit from the per-parallel regions thread affinity approach. For the all tested micro-
benchmarks, the performance difference between application-wide strategies and the dynamic
thread pinning approach are important. Of course, this is due to the high amount of inter-thread
data sharing and to the implemented distinct sharing patterns. Moreover, we have performed
a performance sensitivity analysis to demonstrate the conditions required for the per-parallel
regions thread affinity technique to be effective. Our analysis shows that factors that influence
the most are the call frequency information, the amount of data sharing and the granularity
of a distinct parallel region. In fact, a parallel region that executes for a relatively too short
execution time (compared to the overhead of migrating threads) combined with a high number
of calls to each parallel region, leads to frequent thread migrations which inevitably degrade
program performance.

7.2 Perspectives

As a natural extension of this work, we can consider two complementary aspects that we will
detail later: 1) better application characterisation by the compiler, and 2) effective OS moni-
toring policies. Furthermore, accurate performance prediction models are necessary in order to
tackle the challenges inherent to new many-core architectures.

The first aspect that we discuss is better application characterisation by the compiler.
Through static code analysis, a compiler can achieve data sharing detection and quantifica-
tion or code restructuring in order to account for the cache topology of multicore processors.
With this application characterisation, extra code can be added to the generated code which
may handle whether thread placement on cores or memory pages placement on memory nodes.
Of course, this thread/data placement needs information about the topology of the machine
which can be easily retrieved nowadays by many libraries like HWLOC [BCOM+10]. Even
if this approach requires more intention, it is actually not easy to perform an accurate data
characterisation since, information like data input and number of threads are only known at
runtime. Furthermore, compilers are not as effective with irregular codes as with regular data
access patterns. To overcome this limitation, we think that it is possible to generate extra
code, which at runtime does data sharing characterisation and thread/memory page placement.
Another alternative, could be to define some API allowing the application layer to communicate
the compiler about data sharing and data distribution.

The second aspect that we can consider is with effective OS monitoring policies. We dis-
cussed the advantages and drawbacks of a full compiler approach. We think that it can be
augmented with an operating system support for overall system performance optimisation. In
fact, as a resource manager, the operating system can play an important role in monitoring and
satisfying the requirements in terms of shared resources of all the tasks running concurrently in
the system by enforcing better and intelligent scheduling policies. To achieve this objective, we
think that there are two complementary strategies. Indeed, as the number of competing tasks
increases, the main problem is to identify the requirements and the affinities between them

146 CHAPTER 7. CONCLUSION

at runtime and to enforce the adequate scheduling policy. One approach is to allow the OS
monitoring all the running threads using hardware performance counters present in almost all
modern multicore processors. These monitoring units can be used to approximate for instance
the needs in terms of inter-thread cache sharing or inter-thread memory pages sharing. Due
to the non-negligible overhead of this monitoring work, an alternative consists of extending the
programing interface of the OS. To do so, it is possible to use some special system calls to
express the resources requirements of each application/thread in terms of data sharing or any
other optimisation metric. Once the OS identifies the requirements of all the running applica-
tions on the system, it is possible to dynamically apply scheduling policies that aims to improve
the overall system performance.

In the light of the needs for more coordination between compilers and operating systems,
a better performance understanding of future multicore architectures is necessary. Indeed, in
addition to the increasing complexity of memory hierarchy, we witnessed the shift from symmet-
rical to asymmetrical designs. General purpose multicore processors are supported by a variety
of accelerators like GPUs and FPGAs requiring special programming environments and highly
intrusive code modifications of existing applications. Moreover, we assist now to the emergence
of new accelerators designs like the Intel MIC architecture which can be programmed using
OpenMP for instance. To effectively achieve sustainable performance, programming models
like hybrid models, computing environments or operating system scheduling policies have not
to consider anymore that computing units are homogeneous. In fact, they have to effectively be
able to map the hierarchical parallelism exhibited by parallel applications into the hierarchical
multicore machines.

Bibliography

[ATSS09] Reza Azimi, David K. Tam, Livio Soares, and Michael Stumm. Enhancing op-
erating system support for multicore processors by using hardware performance
monitoring. SIGOPS Operating Systems Review, 43(2):56–65, 2009.

[AW03] Alaa R. Alameldeen and David A. Wood. Variability in architectural simulations
of multi-threaded workloads. In Proceedings of the 9th International Symposium
on High-Performance Computer Architecture, (HPCA ’03), page 7, Washington,
DC, USA, 2003. IEEE Computer Society.

[BCOM+10] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,
Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc:
a generic framework for managing hardware affinities in HPC applications. In Pro-
ceedings of the 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP2010), pages 180–186, Pisa, Italia, February
2010. IEEE Computer Society Press.

[BD01] K. Beyls and E.H. D‘Hollander. Reuse distance as a metric for cache behavior.
In T. Gonzalez, editor, Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Systems, pages 617–622, Anaheim, Cali-
fornia, USA, 8 2001. IASTED.

[BDG+00] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable
cross-platform infrastructure for application performance tuning using hardware
counters. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), (Supercomputing ’00), page 42, Washington, DC, USA, 2000. IEEE
Computer Society.

[Bel97] Frank Bellosa. Follow-on scheduling: Using TLB information to reduce cache
misses. In Sixteenth Symposium on Operating Systems Principles (SOSP ’97),
Work in Progress Session, Saint Malo, October 5–8 1997.

[BH04] E. Berg and E. Hagersten. Statcache: a probabilistic approach to efficient and ac-
curate data locality analysis. In Proceedings of the 2004 IEEE International Sym-
posium on Performance Analysis of Systems and Software, (ISPASS ’04), pages
20–27, Washington, DC, USA, 2004. IEEE Computer Society.

[BH05] Erik Berg and Erik Hagersten. Fast data-locality profiling of native execution.
SIGMETRICS Performance Evaluation Review, 33(1):169–180, 2005.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: characterization and architectural implications. In Proceedings
of the 17th international conference on Parallel architectures and compilation tech-
niques, (PACT ’08), pages 72–81, New York, NY, USA, 2008. ACM.

147

148 BIBLIOGRAPHY

[BS72] R. H. Bartels and G. W. Stewart. Algorithm 432: Solution of the matrix equation
ax + xb = c. Communications of the ACM, pages 820–826, 1972.

[BS96] Frank Bellosa and Martin Steckermeier. The performance implications of locality
information usage in shared-memory multiprocessors. Journal of Parallel and
Distributed Computing, 37:113–121, August 1996.

[CCZ07] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the
chapel language. International Journal of High Performance Computing Applica-
tions, 21(3):291–312, August 2007.

[CDC+99] W. Carlson Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick, Eugene
Brooks, and Karen Warren. Introduction to UPC and language specification.
Technical report, CCS-TR-99-157, George Mason University, Mai 1999.

[CGKS05] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-
thread cache contention on a chip multi-processor architecture. In Proceedings
of the 11th International Symposium on High-Performance Computer Architec-
ture, (HPCA ’05), pages 340–351, Washington, DC, USA, 2005. IEEE Computer
Society.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster computing. In Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’05, pages 519–538, New York, NY, USA,
2005. ACM.

[CJ06] Sangyeun Cho and Lei Jin. Managing distributed, shared l2 caches through os-
level page allocation. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 455–468, Washington, DC,
USA, 2006. IEEE Computer Society.

[CP03] Calin Cascaval and David A. Padua. Estimating cache misses and locality using
stack distances. In Proceedings of the 17th annual international conference on
Supercomputing (CDROM), (ICS ’03), pages 150–159, New York, NY, USA, 2003.
ACM.

[CPHL01] Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon, and Alvin R. Lebeck. Ex-
act analysis of the cache behavior of nested loops. In Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and implementation,
(PLDI ’01), pages 286–297, New York, NY, USA, 2001. ACM.

[CSG98] David Culler, J.P. Singh, and Anoop Gupta. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann, 1st edition, 1998. The Morgan
Kaufmann Series in Computer Architecture and Design.

[DC09] Chen Ding and Trishul Chilimbi. A composable model for analyzing locality of
multi-threaded programs. Technical report, MSR-TR-2009-107, Microsoft Re-
search, 2009.

[DM03] Ulrich Drepper and Ingo Molnar. The Native POSIX Thread Library for Linux.
Technical report, RedHat, Inc, 2003.

BIBLIOGRAPHY 149

[DZ01] Chen Ding and Y Zhong. Reuse distance analysis. Technical report, UR-CS-TR-
741, University of Rochester, Rochester, NY, USA, 2001.

[DZ03] Chen Ding and Yutao Zhong. Predicting whole-program locality through reuse
distance analysis. In Proceedings of the ACM SIGPLAN 2003 conference on Pro-
gramming language design and implementation, (PLDI ’03), pages 245–257, New
York, NY, USA, 2003. ACM.

[Edm65] Jack Edmonds. Maximum matching and a polyhedron with 0-1 vertices. Journal of
Research of the National Bureau of Standards, 69-B(1-22):125–130, January-June
1965.

[Era04] Eranian, Stephane. The perfmon2 interface specification. Techni-
cal report, HPL-2004-200R1, Hewlett-Packard Laboratory, February 2004.
http://www.hpl.hp.com/techreports/2004/HPL-2004-200R1.html.

[Fah97] Thomas Fahringer. Estimating cache performance for sequential and data parallel
programs. In Proceedings of the International Conference and Exhibition on High-
Performance Computing and Networking, (HPCN Europe ’97), pages 840–849,
London, UK, UK, 1997. Springer-Verlag.

[FDZ99] Basilio B. Fraguela, Ramon Doallo, and Emilio L. Zapata. Automatic analytical
modeling for the estimation of cache misses. In Proceedings of the 1999 Interna-
tional Conference on Parallel Architectures and Compilation Techniques, (PACT
’99), pages 221–, Washington, DC, USA, 1999. IEEE Computer Society.

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementa-
tion of the Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN
1998 conference on Programming language design and implementation, (PLDI ’98),
pages 212–223, New York, NY, USA, 1998. ACM.

[Fly72] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, 21(9):948–960, September 1972.

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java
performance evaluation. In Proceedings of the 22nd annual ACM SIGPLAN con-
ference on Object-oriented programming systems and applications, (OOPSLA ’07),
pages 57–76, New York, NY, USA, 2007. ACM.

[GMM99] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations:
a compiler framework for analyzing and tuning memory behavior. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 21(4):703–746, July
1999.

[GNU] GNU. GNU Pth: The GNU Portable Threads. http://www.gnu.org/s/pth/.

[Gri09] Grigori Fursin and Olivier Temam. Collective Optimization. In the 4th Interna-
tional Conference on High Performance and Embedded Architectures and Compil-
ers (HIPEAC), volume 5409 of Lecture Notes in Computer Science, pages 34–49.
Springer, 2009.

[HKA+01] Christopher J. Hughes, Praful Kaul, Sarita V. Adve, Rohit Jain, Chanik Park,
and Jayanth Srinivasan. Variability in the execution of multimedia applications
and implications for architecture. In Proceedings of the 28th annual international

150 BIBLIOGRAPHY

symposium on Computer architecture, (ISCA ’01), pages 254–265, New York, NY,
USA, 2001. ACM.

[Hug09] Hugh Leather and Michael O’Boyle and Bruce Worton. Raced Profiles: Effi-
cient Selection of Competing Compiler Optimizations. In Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES ’09). ACM SIG-
PLAN/SIGBED, June 2009.

[Int] Intel. Intel Threading Building Blocks (TBB) for Open Source.
http://threadingbuildingblocks.org/.

[JFY99] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation
of NAS parallel benchmarks and its performance. Technical re-
port, NAS-99-011, NASA Ames Research Center, October 1999.
http://www.nas.nasa.gov/Resources/Software/npb.html.

[JM10] Emmanuel Jeannot and Guillaume Mercier. Near-optimal placement of MPI pro-
cesses on hierarchical NUMA architectures. In Proceedings of the 16th interna-
tional Euro-Par conference on Parallel processing: Part II, (Euro-Par’10), pages
199–210, Berlin, Heidelberg, 2010. Springer-Verlag.

[Joh88] Eric E. Johnson. Completing an MIMD multiprocessor taxonomy. SIGARCH
Computer Architercture News, 16:44–47, June 1988.

[Joh02] John L. Hennessy and David A. Patterson and David Goldberg . Computer Ar-
chitecture: A Quantitative Approach. Morgan Kaufmann, 2002. ISBN-13: 978-
1558605961.

[JZTS10] Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen. Is reuse distance
applicable to data locality analysis on chip multiprocessors? In 19th Interna-
tional Conference on Compiler Construction (CC), volume 6011 of Lecture Notes
in Computer Science, pages 264–282. Springer, 2010.

[KBH+08] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Using OS
observations to improve performance in multicore systems. IEEE Micro, 28:54–66,
May 2008.

[KFA08] Vahid Kazempour, Alexandra Fedorova, and Pouya Alagheband. Performance
implications of cache affinity on multicore processors. In Proceedings of the 14th
international Euro-Par conference on Parallel Processing, (Euro-Par ’08), pages
151–161, Berlin, Heidelberg, 2008. Springer-Verlag.

[KK98a] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20:359–392, December 1998.

[KK98b] George Karypis and Vipin Kumar. Multilevel algorithms for multi-constraint
graph partitioning. In Proceedings of the 1998 ACM/IEEE conference on Su-
percomputing, (Supercomputing ’98), pages 1–13, Washington, DC, USA, 1998.
IEEE Computer Society.

[KK98c] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irreg-
ular graphs. Journal of Parallel and Distributed Computing, 48:96–129, January
1998.

BIBLIOGRAPHY 151

[Kle05] Andi Kleen. A NUMA API for Linux. Technical report, Novell-4621437, Novell,
April 2005.

[KMN+09] Mahmut Kandemir, Sai Prashanth Muralidhara, Sri Hari Krishna Narayanan,
Yuanrui Zhang, and Ozcan Ozturk. Optimizing shared cache behavior of chip
multiprocessors. In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 505–516, New York, NY,
USA, 2009. ACM.

[KOWT11] Tobias Klug, Michael Ott, Josef Weidendorfer, and Carsten Trinitis. autopin: au-
tomated optimization of thread-to-core pinning on multicore systems. In Trans-
actions on high-performance embedded architectures and compilers III, pages 219–
235. Springer-Verlag, Berlin, Heidelberg, 2011.

[KSP09] Thomas Karcher, Christoph Schaefer, and Victor Pankratius. Auto-tuning support
for manycore applications: perspectives for operating systems and compilers. ACM
SIGOPS Operating System Review, 43(2):96–97, 2009.

[Kuh55] Harold W. Kuhn. The Hungarian Method for the assignment problem. Naval
Research Logistics Quarterly, 2:83–97, 1955.

[KYM+10] Mahmut Kandemir, Taylan Yemliha, SaiPrashanth Muralidhara, Shekhar Srikan-
taiah, Mary Jane Irwin, and Yuanrui Zhnag. Cache topology aware computation
mapping for multicores. SIGPLAN Not., 45(6):74–85, 2010.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming language design and
implementation, (PLDI ’05), pages 190–200, New York, NY, USA, 2005. ACM.

[LLD+08] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sa-
dayappan. Gaining insights into multicore cache partitioning: Bridging the gap
between simulation and real systems. In 14th International Symposium on High
Performance Computer Architecture, (HPCA ’08), pages 367–378. IEEE Computer
Society, 2008.

[LR95] Peter Lancaster and Leiba Rodman. Algebraic Riccati equations. Oxford Univer-
sity Press, 1995.

[LWRC10] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan Clark.
Thread tailor: dynamically weaving threads together for efficient, adaptive par-
allel applications. In Proceedings of the 37th annual international symposium on
Computer architecture, (ISCA ’10), pages 270–279, New York, NY, USA, 2010.
ACM.

[MCT96] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Transaction on Programming Languages and
Systems (TOPLAS), 18(4):424–453, July 1996.

[MDHS09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Pro-
ducing wrong data without doing anything obviously wrong! In Proceedings of the
14th international conference on Architectural support for programming languages

152 BIBLIOGRAPHY

and operating systems, (ASPLOS ’09), pages 265–276, New York, NY, USA, 2009.
ACM.

[MGST70] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2):78–117, June 1970.

[MMSW02] Bernd Mohr, Allen D. Malony, Sameer Shende, and Felix Wolf. Design and proto-
type of a performance tool interface for openmp. The Journal of Supercomputing,
23:105–128, August 2002.

[Moo75] Gordon E. Moore. Progress in digital integrated electronics. In International
Electron Devices Meeting, volume 21, pages 11–13. IEEE, 1975.

[Moo02] Shirley V. Moore. A comparison of counting and sampling modes of using per-
formance monitoring hardware. In Proceedings of the International Conference
on Computational Science-Part II, (ICCS ’02), pages 904–912, London, UK, UK,
2002. Springer-Verlag.

[MPI] MPI forum. The Message Passing Interface Standard. http://www.mpi-
forum.org/.

[MTB10] Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, and Denis Barthou. Measuring and
Analysing the Variations of Program Execution Times on Multicore Platforms:
Case Study. Technical report, HAL-inria-00514548, University of Versailles Saint-
Quentin en Yvelines, 2010.

[MTM10] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. Feedback-directed page
placement for ccNUMA via hardware-generated memory traces. Journal of Parallel
and Distributed Computing, 70:1204–1219, December 2010.

[Net94] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation. PhD thesis,
University of Cambridge, November 2004, 1994.

[NR98] Robert W. Numrich and John Reid. Co-array Fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, August 1998.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN con-
ference on Programming language design and implementation, (PLDI ’07), pages
89–100, New York, NY, USA, 2007. ACM.

[oBFG+10] Frano̧is Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André Wacrenier, and
Raymond Namyst. ForestGOMP: an efficient OpenMP environment for NUMA
architectures. International Journal on Parallel Programming, Special Issue on
OpenMP; Guest Editors: Matthias S. Muller and Eduard Ayguadé, 38(5):418–439,
2010.

[Per] Perfctr. http://user.it.uu.se/ mikpe/linux/perfctr/.

[PJN08] Marc Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A unified parallel
runtime for clusters of numa machines. In Proceedings of the 14th international
Euro-Par conference on Parallel Processing, (Euro-Par ’08), pages 78–88, Berlin,
Heidelberg, 2008. Springer-Verlag.

BIBLIOGRAPHY 153

[PKB+91] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks. SunOS
multi-thread architecture. In In Proceedings of the Winter 1991 USENIX Confer-
ence, pages 65–80, 1991.

[QP06] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared caches.
In MICRO 39: Proceedings of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 423–432, Washington, DC, USA, 2006. IEEE
Computer Society.

[Raj91] Raj Jain. The Art of Computer Systems Performance Analysis : Techniques for
Experimental Design, Measurement, Simulation, and Modelling. John Wiley and
Sons, New York, 1991.

[RLT06] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Architectural sup-
port for operating system-driven CMP cache management. In Proceedings of the
15th international conference on Parallel architectures and compilation techniques,
(PACT ’06), pages 2–12, New York, NY, USA, 2006. ACM.

[SDR02] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In Proceedings of the 8th
International Symposium on High-Performance Computer Architecture, (HPCA
’02), page 117, Washington, DC, USA, 2002. IEEE Computer Society.

[SKM+06] Srinivas Sridharan, Brett Keck, Richard Murphy, Surendar Ch, and Peter Kogge.
Thread migration to improve synchronization performance. In In Workshop on
Operating System Interference in High Performance Applications, 2006.

[SKP10] Derek L. Schuff, Milind Kulkarni, and Vijay S. Pai. Accelerating multicore
reuse distance analysis with sampling and parallelization. In Proceedings of the
19th international conference on Parallel architectures and compilation techniques,
(PACT ’10), pages 53–64, New York, NY, USA, 2010. ACM.

[SMD07] Fengguang Song, Shirley Moore, and Jack Dongarra. Feedback-directed thread
scheduling with memory considerations. In Proceedings of the 16th international
symposium on High performance distributed computing, (HPDC ’07), pages 97–
106, New York, NY, USA, 2007. ACM.

[SMD09] Fengguang Song, Shirley Moore, and Jack Dongarra. Analytical modeling and op-
timization for affinity based thread scheduling on multicore systems. In Proceedings
of the 2009 IEEE International Conference on Cluster Computing (CLUSTER),
August 31 - September 4, 2009, New Orleans, Louisiana, USA, pages 1–10. IEEE,
2009.

[SPP10] Derek L. Schuff, Benjamin S. Parsons, and Vijay S. Pai. Multicore-aware reuse
distance analysis. In IEEE International Symposium on Parallel and Distributed
Processing (IPDPS) Workshops, pages 1–8. IEEE, 2010.

[SRD04] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache
memory. The Journal of Supercomputing, 28:7–26, April 2004.

[Sta06] Standard Performance Evaluation Corporation. SPEC CPU.
http://www.spec.org/, 2006.

154 BIBLIOGRAPHY

[STaMB10] Dirk Schmidl, Christian Terboven, Dieter an Mey, and H. Martin Bucker. Binding
nested openmp programs on hierarchical memory architectures. In International
Workshop on OpenMP, pages 29–42, 2010.

[Syl84] J.J Sylvester. Sur l’equations en matrices px=xq. Comptes Rendus des Séances
de l’Académie des Sciences. Paris, pages 67–71,115–116, 1884.

[TaMS+08] Christian Terboven, Dieter an Mey, Dirk Schmidl, Henry Jin, and Thomas Reich-
stein. Data and thread affinity in openmp programs. In Proceedings of the 2008
workshop on Memory access on future processors, (MAW ’08), pages 377–384, New
York, NY, USA, 2008. ACM.

[TAS07] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: sharing-aware
scheduling on SMP-CMP-SMT multiprocessors. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, (EuroSys
’07), pages 47–58, New York, NY, USA, 2007. ACM.

[TDF90] George Taylor, Peter Davies, and Michael Farmwald. The TLB slice – a low-
cost high-speed address translation mechanism. In Proceedings of the 17th annual
international symposium on Computer Architecture, (ISCA ’90), pages 355–363,
New York, NY, USA, 1990. ACM.

[Thea] The Open Group Base Specifications. POSIX.
http://pubs.opengroup.org/onlinepubs/009695399/.

[Theb] The OpenMP Architecture Review Board. The OpenMP API specification for
parallel programming. http://www.openmp.org/.

[TMV+11] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa.
The impact of memory subsystem resource sharing on datacenter applications. In
Proceeding of the 38th annual international symposium on Computer architecture,
(ISCA ’11), pages 283–294, New York, NY, USA, 2011. ACM.

[TWB10] Sid-Ahmed-Ali Touati, Julien Worms, and Sebastien Briais. The Speedup-Test.
Technical report, HAL-inria-00443839, University of Versailles Saint-Quentin en
Yvelines, January 2010. http://hal.archives-ouvertes.fr/inria-00443839.

[TWB12] Sid-Ahmed-Ali Touati, Julien Worms, and Sébastien Briais. The Speedup-Test:
A Statistical Methodology for Program Speedup Analysis and Computation. To
appear in the Journal of Concurrency and Computation: Practice and Experience,
2012.

[VX02] Xavier Vera and Jingling Xue. Let’s study whole-program cache behaviour ana-
lytically. In Proceedings of the 8th International Symposium on High-Performance
Computer Architecture, (HPCA ’02), pages 175–, Washington, DC, USA, 2002.
IEEE Computer Society.

[Wei98] Boris Weissman. Performance counters and state sharing annotations: a unified
approach to thread locality. In Proceedings of the 8th international conference on
Architectural support for programming languages and operating systems, (ASPLOS
’98), pages 127–138, New York, NY, USA, 1998. ACM.

[WL91] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference on Programming
language design and implementation, (PLDI ’91), pages 30–44, New York, NY,
USA, 1991. ACM.

[WM08] Vincent M. Weaver and Sally A. McKee. Can hardware performance counters be
trusted? In Proceedings of the 4th International Symposium on Workload Char-
acterization (IISWC 2008), pages 141–150. IEEE Computer Society, September
14-16 2008.

[WY11] Meng-Ju Wu and Donald Yeung. Coherent profiles: Enabling efficient reuse dis-
tance analysis of multicore scaling for loop-based parallel programs. In Proceedings
of the 20th international conference on Parallel architectures and compilation tech-
niques, (PACT ’11), New York, NY, USA, 2011. ACM.

[XL08] Yuejian Xie and Gabriel H. Loh. Dynamic classification of program memory be-
haviors in CMPs. In Proceedings of CMP-MSI, held in conjunction with ISCA-35,
2008.

[YSP+98] Katherine A. Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,
Arvind Krishnamurthy, Paul N. Hilfinger, Susan L. Graham, David Gay, Phillip
Colella, and Alexander Aiken. Titanium: A high-performance java dialect. Con-
currency - Practice and Experience, 10(11-13):825–836, 1998.

[ZBF10] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In Proceedings of the
15th edition of ASPLOS on Architectural support for programming languages and
operating systems, (ASPLOS ’10), pages 129–142, New York, NY, USA, 2010.
ACM.

[ZDS09] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page coloring-
based multicore cache management. In Proceedings of the 4th ACM European
conference on Computer systems, (EuroSys ’09), pages 89–102, New York, NY,
USA, 2009. ACM.

[ZJH09] Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth. Accuracy of perfor-
mance counter measurements. In Proceedings of the 2009 IEEE International Sym-
posium on Performance Analysis of Systems and Software, (ISPASS ’09), pages
23–32. IEEE Computer Society, April 26-28 2009.

[ZJS10] Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. Does cache sharing on modern
CMP matter to the performance of contemporary multithreaded programs? In
Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of
parallel programming, (PPoPP ’10), pages 203–212, New York, NY, USA, 2010.
ACM.

[ZKY11] Yuanrui Zhang, Mahmut Kandemir, and Taylan Yemliha. Studying inter-core data
reuse in multicores. In Proceedings of the ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems, (SIGMETRICS
’11), pages 25–36, New York, NY, USA, 2011. ACM.

[ZSD09] Yutao Zhong, Xipeng Shen, and Chen Ding. Program locality analysis using reuse
distance. ACM Transactions on Programming Languages and Systems (TOPLAS),
31(6):1–39, 2009.

	Introduction
	Goals and contributions of the thesis
	Performance stability of OpenMP applications
	Enhancing data sharing with efficient thread placements

	Dissertation outline

	The Multicore Era
	Hardware evolution: the race for more parallelism
	Taxonomy of parallel machines
	Instruction-level parallelism
	SIMD parallelism and vector processors
	Multiprocessor parallelism
	Multicore processor architecture

	Programming models
	Message passing programming
	Shared memory programming
	Libraries for parallel programming in shared memory machines
	Parallel programming languages for shared memory machines

	Virtual shared memory programming
	Hybrid programming model

	Conclusion of the chapter

	Multicore Performance Evaluation and Tunning
	Variability of program execution times
	Factors influencing the variability of program execution times
	Quantifying and qualifying variability of program execution times
	Statistical performance evaluation
	JavaSats
	The Speedup-Test protocol

	Discussion on variability of program execution times

	Data locality and reuse distance analysis
	Measuring data locality
	Architecture-dependent metrics
	Architecture-independent metrics

	Single-threaded data reuse distance analysis
	Multi-threaded data reuse distance analysis
	Discussion about data locality measurement

	Processes co-scheduling and cache performance
	Predicting inter-thread shared caches contention
	Cache partitioning
	Software cache partitioning
	Hardware cache partitioning
	Combined hardware and OS approach for shared caches management

	Discussion on inter-thread shared cache contention

	Data sharing and thread affinity
	Explicit software support for thread affinity
	Application level data sharing detection and thread mapping
	Compiler and runtime data sharing detection and thread mapping
	Discussion about inter-thread data sharing and thread placement

	Variability of program execution times
	Introduction
	Experimental setup and methodology
	Hardware setup
	Software environment
	Experimental methodology
	Reporting performance data with violin plots

	Definition of program performance variability

	Program execution times variability of SPEC benchmarks
	Variability of SPEC CPU2006 execution times
	Variability of SPEC OMP2001 execution times

	Thread affinity impact on performance variability
	SPEC OMP performance with co-running processes
	Experimental setup
	SPEC OMP2001 with co-running processes performance results and analysis

	Micro-benchmarks performance with co-running processes
	Memory-bound micro-benchmarks
	CPU-bound micro-benchmarks

	Conclusion

	Thread placement strategies on multicores
	Introduction
	Tested thread pinning techniques
	Application independent thread pinning techniques
	Application dependent thread pinning techniques
	Step 1: memory trace profile collection and analysis
	Step 2: affinity graph model
	Step 3: computing thread affinity using an affinity graph

	Metrics for data sharing characterisation
	The working set size
	The data reuse ratio (DRR)

	Experimental setup and methodology
	Software environment
	Hardware setup
	Experimental methodology
	Statistical significance analysis

	Performance evaluation
	SPEC OMP2001 benchmarks
	SMP machines results (Core2 and Nehalem)
	ccNUMA machine results

	NAS Parallel Benchmarks

	Conclusion

	Dynamic Thread Pinning for Phase-Based Programs
	Introduction
	Motivation and problem description
	Parallel OpenMP phases extraction and thread pinning
	Automatic detection of OpenMP parallel regions
	Memory trace profile and analysis for OpenMP regions
	Building an affinity graph for each parallel region
	Tested thread pinning techniques
	Setting a per-parallel OpenMP thread pinning

	Experimental setup and methodology
	Software environment
	Hardware setup
	Evaluation methodology

	Experimental evaluation of phase-based thread pinning
	Performance analysis using micro-benchmarks
	Synthetic benchmark with two inter-thread data sharing patterns
	A matrix multiply benchmark

	Performance analysis using SPEC OMP01 and NPB benchmarks
	Experimental results
	Discussion

	Conclusion

	Conclusion
	Contributions
	Perspectives

