. La-rupture-en-cisaillement, Images (b)) est peu étendue dans PA1 du patch, mais elle est bien développée et d'une façon identique dans les plis à -45° et, RC)

L. Figure and I. , RD) dans les patchs, dans la plaque à réparer en composite, et aussi à l'interface entre substrats et adhésif. La RD dans le patch et dans la plaque à l'interface des plis 0//90 semblent négligeable devant l'extension importante de la RD dans les autres interfaces. L'interface entre les plis -45, 90 de la plaque et celle entre la plaque et le joint collé sont les plus affectées. La RD dans l'interface -45

I. Les-signaux-d-'ea-(-figure, 22) ont montré que la rupture finale s'accompagne de tous les types d'endommagement localisés plutôt dans les zones C, B et D autour du trou, ce qui correspond bien aux images illustrées à la Figure IV.49. En outre, la fracture sur les faciès de rupture de la réparation par les patchs [90] 4 (Figure IV.14) ne dépasse pas de ces zones. (a) Rupture transversale en traction/compression dans le patch et dans les plis à +45°, -45°et 90° de la plaque à réparer (b) Rupture en cisaillement dans le patch et dans les plis à +45° et -45° de la plaque (c) Délaminage dans le patch, et dans les plis de la plaque, 45° et 0°de la plaque à réparer

G. Gohorianu, Interaction entre les défauts d'usinage et la tenue en matage d'assemblages boulonnes en carbone/époxy, Thèse de doctorat, 2008.

F. Laurin, Introduction générale sur les matériaux composites, 2012.

E. Paroissien, Contribution aux assemblages hybrides (boulonnés/collés)-Application aux jonctions aéronautiques, Thèse de doctorat, 2006.

P. C. Cheng, Etude et optimisation de la réparation des composites stratifiés par collage des patchs externes, Thèse de doctorat, 2010.

I. Grabovac and D. Whittaker, Application of bonded composites in the repair of ships structures ??? A 15-year service experience, Composites Part A: Applied Science and Manufacturing, vol.40, issue.9, pp.1381-1398, 2009.
DOI : 10.1016/j.compositesa.2008.11.006

T. Breitzman, E. Iarve, B. Cook, G. Schoeppner, and R. Lipton, Optimization of a composite scarf repair patch under tensile loading, Composites Part A: Applied Science and Manufacturing, vol.40, issue.12, 1921.
DOI : 10.1016/j.compositesa.2009.04.033

M. Ridha, V. Tan, and T. Tay, Traction???separation laws for progressive failure of bonded scarf repair of composite panel, Composite Structures, vol.93, issue.4, pp.1239-1245, 2011.
DOI : 10.1016/j.compstruct.2010.10.015

F. Z. Hu and C. Soutis, Strength prediction of patch-repaired CFRP laminates loaded in compression, Composites Science and Technology, vol.60, issue.7, pp.1103-1114, 2000.
DOI : 10.1016/S0266-3538(00)00011-7

C. Soutis, D. M. Duan, and P. Goutas, Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches, Composite Structures, vol.45, issue.4, pp.289-301, 1999.
DOI : 10.1016/S0263-8223(99)00033-1

C. Soutis and F. Z. Hu, Design and performance of bonded patch repairs of composite structures, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol.15, issue.4, 1997.
DOI : 10.1243/0954410971532668

X. Liu and G. Wang, Progressive failure analysis of bonded composite repairs, Composite Structures, vol.81, issue.3, pp.331-340, 2007.
DOI : 10.1016/j.compstruct.2006.08.024

R. Campilho, M. De-moura, D. Ramantani, J. Morais, and J. Domingues, Buckling strength of adhesively-bonded single and double-strap repairs on carbon-epoxy structures, Composites Science and Technology, vol.70, issue.2, pp.371-379, 2010.
DOI : 10.1016/j.compscitech.2009.11.010

P. C. Cheng, X. J. Gong, D. Hearn, and S. Aivazzadeh, Tensile behaviour of patch-repaired CFRP laminates, Composite Structures, vol.93, issue.2, pp.582-589, 2011.
DOI : 10.1016/j.compstruct.2010.08.021

J. M. Berthelot, Composite Materials: Mechanical Behaviour and Structural Analysis. livre, 1998.
DOI : 10.1007/978-1-4612-0527-2

R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.193, issue.1033, pp.281-297, 1948.
DOI : 10.1098/rspa.1948.0045

V. Azzi and S. Tsai, Anisotropic strength of composites, Experimental Mechanics, vol.24, issue.4, pp.1965-1974
DOI : 10.1007/BF02326292

O. Hoffman, The Brittle Strength of Orthotropic Materials, Journal of Composite Materials, vol.193, issue.2, pp.200-206, 1967.
DOI : 10.1177/002199836700100210

S. W. Tsai and E. M. Wu, A General Theory of Strength for Anisotropic Materials, Journal of Composite Materials, vol.5, issue.1, pp.58-80, 1971.
DOI : 10.1177/002199837100500106

Z. Hashin, Failure Criteria for Unidirectional Fiber Composites, Journal of Applied Mechanics, vol.47, issue.2, pp.329-334, 1980.
DOI : 10.1115/1.3153664

X. J. Gong, Rupture interlaminaire en mode mixte I+II de composites stratifiés unidirectionnels et multidirectionnels Verre, Thèse de doctorat, 1991.

X. J. Gong and M. L. Benzeggagh, Mixed Mode Interlaminar Fracture Toughness of Unidirectional Glass/Epoxy Composite, ASTM STP 1230 American Society for Testing and Materials, Philadelphia, pp.100-123, 1995.
DOI : 10.1520/STP14010S

M. J. Davis and A. Mcgregor, Assessing adhesive bond failures: mixed-mode bond failures explained. ISASI Australian Safety Seminar, pp.4-6, 2010.

M. J. Davis and D. A. Bond, The importance of failure mode identification in adhesive bonded aircraft structures and repairs, 12th ICCM, pp.5-09, 1999.

M. Meo and E. Thieulot, Delamination modelling in a double cantilever beam, Composite Structures, vol.71, issue.3-4, pp.429-434, 2005.
DOI : 10.1016/j.compstruct.2005.09.026

X. Liu, R. Duddu, and H. Waisman, Discrete damage zone model for fracture initiation and propagation, Engineering Fracture Mechanics, vol.92, pp.1-18, 2012.
DOI : 10.1016/j.engfracmech.2012.04.019

X. Xiao, M. E. Botkin, and N. L. Johnson, Axial crush simulation of braided carbon tubes using MAT58 in LS-DYNA. Thin-Walled Structures, pp.740-749, 2009.

G. Alfano and M. A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, International Journal for Numerical Methods in Engineering, vol.26, issue.7, pp.111-170, 2001.
DOI : 10.1002/nme.93

X. P. Xu and A. Needleman, Numerical simulations of fast crack growth in brittle solids, Journal of the Mechanics and Physics of Solids, vol.42, issue.9, pp.1397-1434, 1994.
DOI : 10.1016/0022-5096(94)90003-5

D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol.8, issue.2, pp.100-104, 1960.
DOI : 10.1016/0022-5096(60)90013-2

A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding, Journal of Applied Mechanics, vol.54, issue.3, pp.525-532, 1987.
DOI : 10.1115/1.3173064

R. Campilho, M. De-moura, and J. Domingues, Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs, International Journal of Solids and Structures, vol.45, issue.5, pp.1497-1512, 2008.
DOI : 10.1016/j.ijsolstr.2007.10.003

R. Campilho, M. De-moura, and J. Domingues, Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes, International Journal of Adhesion and Adhesives, vol.29, issue.2, pp.195-205, 2009.
DOI : 10.1016/j.ijadhadh.2008.03.005

R. Campilho, M. De-moura, D. Ramantani, J. Morais, and J. Domingues, Tensile behaviour of three-dimensional carbon-epoxy adhesively bonded single- and double-strap repairs, International Journal of Adhesion and Adhesives, vol.29, issue.6, pp.678-686, 2009.
DOI : 10.1016/j.ijadhadh.2009.02.004

R. Campilho, M. De-moura, A. Pinto, J. Morais, and J. Domingues, Modelling the tensile fracture behaviour of CFRP scarf repairs, Composites Part B: Engineering, vol.40, issue.2, pp.149-157, 2009.
DOI : 10.1016/j.compositesb.2008.10.008

R. Gutkin, M. Laffan, S. Pinho, P. Robinson, and P. Curtis, Modelling the R-curve effect and its specimen-dependence, International Journal of Solids and Structures, vol.48, issue.11-12, pp.1767-1777, 2011.
DOI : 10.1016/j.ijsolstr.2011.02.025

R. Borg, L. Nilsson, and K. Simonsson, Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model, Composites Science and Technology, vol.64, issue.2, pp.269-278, 2004.
DOI : 10.1016/S0266-3538(03)00255-0

A. Turon, C. Dávila, P. Camanho, and J. Costa, An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models, Engineering Fracture Mechanics, vol.74, issue.10, pp.1665-1682, 2007.
DOI : 10.1016/j.engfracmech.2006.08.025

P. W. Harper and S. R. Hallett, Cohesive zone length in numerical simulations of composite delamination, Engineering Fracture Mechanics, vol.75, issue.16, pp.4774-4792, 2008.
DOI : 10.1016/j.engfracmech.2008.06.004

F. Lachaud, Délaminage de matériaux composites à fibres de carbone et à matrices organiques : Etude numérique et expérimentale, suivi par émission acoustique, Thèse: Génie mécanique, 1997.

A. J. Russell and K. N. Street, Moisture and Temperature Effects on the Mixed-Mode Delamination Fracture of Unidirectional Graphite/Epoxy, Epoxy. Delamination and Debonding of Materials, ASTM STP, vol.876, pp.349-370, 1985.
DOI : 10.1520/STP36314S

P. P. Camanho, C. G. Dávila, and M. F. De-moura, Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials, Journal of Composite Materials, vol.37, issue.16, pp.1415-1438, 2003.
DOI : 10.1177/0021998303034505

G. I. Barenblatt, Mathematical theory of equilibrium cracks in brittle failure Advances in Applied Mechanics, pp.55-129, 1962.

B. Cox and Q. Yang, Cohesive models for damage evolution in laminated composites, International Journal of Fracture, vol.133, pp.107-137, 2005.

D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol.8, issue.2, pp.100-104, 1960.
DOI : 10.1016/0022-5096(60)90013-2

M. L. Falk, A. Needleman, and J. R. Rice, A critical evaluation of cohesive zone models of dynamic fracture, Journal de Physique IV, pp.543-550, 2001.

A. Hillerborg, M. Modéer, and P. E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, vol.6, issue.6, pp.773-782, 1976.
DOI : 10.1016/0008-8846(76)90007-7

C. Y. Hui, A. Jagota, S. J. Bennison, and J. D. Londono, Crack blunting and the strength of soft elastic solids, Proc R Soc Lond A, pp.1489-1516, 2003.
DOI : 10.1098/rspa.2002.1057

G. Irwin, Plastic zone near a crack and fracture toughness Proceedings of the seventh Sagamore Ordnance materials conference, pp.63-78, 1960.

J. R. Rice, The mechanics of earthquake rupture. Dziewonski AM, Boschhi E, editors. Physics of the Earth's interior. Proceedings of the international school of physics " Enrico Fermi, Course 78, pp.555-649, 1979.

C. G. Dávila, P. P. Camanho, and M. F. De-moura, Mixed-mode decohesion elements for analyses of progressive delamination, 19th AIAA Applied Aerodynamics Conference, p.16, 2001.
DOI : 10.2514/6.2001-1486

N. Moës and T. Belytschko, Extended finite element method for cohesive crack growth, Engineering Fracture Mechanics, vol.69, issue.7, pp.813-833, 2002.
DOI : 10.1016/S0013-7944(01)00128-X

P. P. Camanho and C. G. Dávila, Mixed-mode decohesion finite elements for simulation of delamination in composite materials, 2002.

G. Alfano, On the influence of the shape of the interface law on the application of cohesive-zone models, Composites Science and Technology, vol.66, issue.6, pp.723-730, 2006.
DOI : 10.1016/j.compscitech.2004.12.024

M. L. Benzeggagh, K. Khellil, and T. Chotard, Experimental determination of TSAI failure tensorial terms Fij for unidirectional composite materials, Composites Science and Technology, vol.55, issue.2, pp.145-156, 1995.
DOI : 10.1016/0266-3538(95)00098-4

J. D. Whitcomb, Analysis of instability-related growth of a through-width delamination, 1984.

M. L. Benzeggagh and M. Kanane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Composites Science and Technology, vol.56, issue.4, pp.439-449, 1996.
DOI : 10.1016/0266-3538(96)00005-X

P. W. Harper and S. R. Hallett, Cohesive zone length in numerical simulations of composite delamination, Engineering Fracture Mechanics, vol.75, issue.16, pp.4774-4792, 2008.
DOI : 10.1016/j.engfracmech.2008.06.004

A. Turon, C. P. Costa, J. Renart, and J. , Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness, Composite Structures, vol.92, issue.8, pp.1857-1864, 2010.
DOI : 10.1016/j.compstruct.2010.01.012

M. De-moura, R. Campilho, and J. Gonçalves, Crack equivalent concept applied to the fracture characterization of bonded joints under pure mode I loading, Composites Science and Technology, vol.68, issue.10-11, pp.2224-2230, 2008.
DOI : 10.1016/j.compscitech.2008.04.003

URL : https://hal.archives-ouvertes.fr/hal-00594918

M. De-moura, R. Campilho, and J. Gonçalves, Pure mode II fracture characterization of composite bonded joints, International Journal of Solids and Structures, vol.46, issue.6, pp.1589-1595, 2009.
DOI : 10.1016/j.ijsolstr.2008.12.001

F. J. Chaves, M. De-moura, L. Da-silva, and D. Dillard, Numerical analysis of the dual actuator load test applied to fracture characterization of bonded joints, International Journal of Solids and Structures, vol.48, issue.10, pp.1572-1578, 2011.
DOI : 10.1016/j.ijsolstr.2011.02.006

L. F. Da-silva, N. Ferreira, V. Richter-trummer, and E. Marques, Effect of grooves on the strength of adhesively bonded joints, International Journal of Adhesion and Adhesives, vol.30, issue.8, pp.735-743, 2010.
DOI : 10.1016/j.ijadhadh.2010.07.005

E. A. Marques and L. F. Da-silva, Joint Strength Optimization of Adhesively Bonded Patches, The Journal of Adhesion, vol.10, issue.11, pp.915-934, 2008.
DOI : 10.1080/00218460600948511

J. T. Beattie and R. A. Jaramillo, The measurement of energy in acoustic emission, Review of Scientific Instruments, vol.45, issue.3, pp.352-357, 1974.
DOI : 10.1063/1.1686627

X. L. Gong, Développement d'une méthodologie expérimentale associée à une approche analytique pour la compréhension du comportement de plaques composites non-trouées et trouées sous chargement simple et combiné de traction-torsion, Thèse de doctorat, 1994.

P. Liu, J. Chu, Y. Liu, and J. Zheng, A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission, Materials & Design, vol.37, pp.228-235, 2012.
DOI : 10.1016/j.matdes.2011.12.015

A. Matzenmiller, J. Lubliner, and R. Taylor, A constitutive model for anisotropic damage in fiber-composites, Mechanics of Materials, vol.20, issue.2, pp.125-152, 1995.
DOI : 10.1016/0167-6636(94)00053-0

S. Deteresa, L. Allison, B. Cunningham, D. Freeman, M. Saculla et al., Experimental Results In Support Of Simulating Progressive Crush In Carbon-Fiber Textile Composites, p.143287, 2001.
DOI : 10.2172/15005998