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Résumé

La segmentation d'images est un domaine important dans le traitement d'image et un

grand nombre d'approches di�érentes ont été développées pendant ces dernières décennies.

L'approche des contours actifs est une des plus populaires. Dans ce cadre, cette thèse

vise à développer des algorithmes robustes, qui peuvent segmenter des images avec des

inhomogénéités d'intensité. Nous nous concentrons sur l'étude des énergies externes basées

région dans le cadre des ensembles de niveaux. Précisément, nous abordons la di�culté

de choisir l'échelle de la fenêtre spatiale qui dé�nit la localité.

Notre contribution principale est d'avoir proposer une échelle adaptative pour les

méthodes de segmentation basées sur les statistiques locales. Nous utilisons l'approche

d'Intersection des Intervalles de Con�ance pour dé�nir une échelle position-dépendante

pour l'estimation des statistiques image. L'échelle est optimale dans le sens qu'elle donne

le meilleur compromis entre le biais et la variance de l'Approximation polynomiale locale

de l'image observée conditionnellement à la segmentation actuelle. De plus, pour le model

de segmentation basé sur une interprétation Bayésienne avec deux noyaux locaux, nous

suggérons de considérer leurs valeurs séparément. Notre proposition donne une segmen-

tation plus lisse avec moins de délocalisations que la méthode originale.

Des expériences comparatives de notre proposition à d'autres méthodes de segmenta-

tion basées sur des statistiques locales sont e�ectuées. Les résultats quantitatifs réalisés

sur des images ultrasonores de simulation, montrent que la méthode proposée est plus

robuste au phénomène d'atténuation. Des expériences sur des images réelles montrent

également l'utilité de notre approche.

Mots Clés : segmentation d'image, contours actifs, statistiques région locale, ensembles

de niveaux, Intersection des Intervalles de Con�ance, images ultrasonores
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Abstract

Image segmentation is an important research area in image processing and a large

number of di�erent approaches have been developed over the last few decades. The active

contour approach is one of the most popular among them. Within this framework, this

thesis aims at developing robust algorithms, which can segment images with intensity

inhomogeneities. We focus on the study of region-based external energies within the level

set framework. We study the use of local image statistics for the design of external energies.

Precisely, we address the di�culty of choosing the scale of the spatial window that de�nes

locality.

Our main contribution is to propose an adaptive scale for local region-based segmen-

tation methods. We use the Intersection of Con�dence Intervals approach to de�ne this

pixel-dependent scale for the estimation of local image statistics. The scale is optimal in

the sense that it gives the best trade-o� between the bias and the variance of a Local

Polynomial Approximation of the observed image conditional on the current segmenta-

tion. Additionally, for the segmentation model based on a Bayesian interpretation with

two local kernels, we suggest to consider their values separately. Our proposition gives a

smoother segmentation with less mis-localisations than the original method.

Comparative experiments of our method to other local region-based segmentation me-

thods are carried out. The quantitative results, on simulated ultrasound B-mode images,

show that the proposed scale selection strategy gives a robust solution to the intensity

inhomogeneity artifact of this imaging modality. More general experiments on real images

also demonstrate the usefulness of our approach.

Keywords : image segmentation, active contours, local region statistics, level set me-

thod, Intersection of Con�dence Intervals, ultrasound images
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Notations and Symbols

We tried to use, as much as possible, well-known notational symbology. Nevertheless,

we declare some of them here below :

Ω : Image domain, usually an open subset of R2

{Ωr}Nr=1 : Subsets of Ω, where
⋃N
r=1 Ωr = Ω and Ωa

⋂
Ωb = ∅ for a 6= b

r : Label of subregions. For two phase problems, r = {i, o}
E : Energy function to be minimised (or maximised) in image segmentation

ED : Data-driven term, external energy

ER : Regularisation term, internal energy

I : Given image, observed image intensity

x : Point in Ω. For 2D image, the coordinate x = (x, y)T

I(x) : Image intensity of pixel x

∇f : Gradient of function f

∇2f = 4f : Laplacian of function f

| · | : Euclidean norm of a vector

C : Curve in image domain

C0 : Initial contour, C0 = C(t = 0)

C(s) : Parametric Curve, s ∈ [0, 1] is the normalised arc length
−→
N : Unit inward normal of a curve

κ : Mean curvature of a curve

φ : Level set function

H(·) : Heaviside function

δ(·) : Dirac function

µ(x) : Piecewise smooth approximation of a given point

λ, ν : Constant weighting parameters of regularisation terms

Gσ : Gaussian kernel with a standard deviation σ
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µr, σr : Mean intensity value and standard deviation of region Ωr

p(·) : Probability density function

η : k-dimensional real parameter vector for exponential family

Ä(η) : Hessian matrix of A with Ä(x) = ∂2A
∂η1∂η2

Kρ : Tonal kernel due to the Parzen estimator

B(·, ·) : Bhattacharyya coe�cient measures between two probability density functions
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µr(x), σr(x) : Local mean intensity value and local standard deviation in region Ωr

⋂
O(x)

∗ : Convolution

J : Original noise free image

b : Bias �eld

n : Additive noise

h : Finite set of ordered scale values
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Chapitre 1

Introduction

Chapter summary

This chapter presents the work context of this thesis. First, we recall several basic concepts

of image segmentation as well as some classical segmentation methods. In the �eld of

variational segmentation approaches, the development of parametric and geometric active

contour models will be brie�y presented. Then, we focus on studying the latter with

popular region-based external energies. Recently, local region statistics has been used in

active contours, in order to segment images with intensity inhomogeneities. After the

analysis of these existing techniques, ideas of combining global and local image statistics

are addressed. And �nally, we will put forward the structure of this dissertation.
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1.1 Image segmentation

Segmentation is one of the important problems in image processing. It aims at �nding

appropriate image characteristics, such as grey level, colour, texture, motion or prior

knowledge, in order to distinguish objects of interest from the background or from other

objects at the same time. More speci�cally, image segmentation can be formally described

as :

De�nition 1.1. Let Ω be an image domain. Image segmentation refers to the process of

partitioning Ω into disjoint subsets {Ωr}, r = 1, . . . , N , which satisfy [88] :

1.
⋃N
r=1 Ωr = Ω ;

2. Ωa

⋂
Ωb = ∅, ∀a 6= b ;

3. P (Ωr) = true, ∀r ;
4. P (Ωa

⋂
Ωb) = false, ∀a 6= b.

P (·) is a logical predicate de�ned on groups of connected pixels.

After segmentation, an observed image is converted to a more meaningful partition. The-

refore, segmentation is considered as building a connection between low level information

and objects, and in this sense it is closely related to the issue of object recognition in

computer visions.

Image segmentation is usually considered as an initial and vital step to further image

analysing and understanding in various application domains. For example, segmentation is

used to classify earth surface images acquired by satellite into roads, forests, houses and so

on [16] ; in diagnostic imaging, segmentation helps to automate or facilitate the delineation

of anatomical structures [162, 146] ; motion and spatio-temporal segmentation techniques

are developed for moving objects [219]. Segmentation can also be used in content-based

image retrieval [116], machine recognition of faces [221] and identifying �ngerprints [128].

Generally speaking, the detection, extraction and analysis of objects of interest are inse-

parable from image segmentation. Image segmentation has been extensively researched,

and the literature can be classi�ed mainly based on image information on two major

categories, namely edge-based methods and region-based methods [69, 153, 185, 78, 7] 1.

Edge-based methods : Edge-based segmentation methods, also known as edge detec-

tion, are somehow similar to the visual process of human, which is �rst attracted by

the fast changing area of a scene and by the intersection of di�erent objects. The

1. The survey of this entire �led is beyond the scope of this work. The proposed classi�cation does

not include hybrid techniques, most of which are based on the integration of edges and region-based

methods [44, 80, 160, 84, 7, 187].
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position of an edge, in other words, the location of discontinuities in the geometry,

is mathematically given by an extreme of the �rst-order derivative of the image

intensity function. Unfortunately, taking image derivatives leads to accentuate high

frequencies, and hence ampli�es noise. It is therefore prudent to smooth the image

with a low-pass �lter prior to compute the gradient. Considering the response of

edge detectors should be independent of orientation, an isotropic smoothing �lter

is desirable. The Gaussian �lter is mostly used, while alternative ones are proposed

by a number of literature [36, 54, 68, 224, 155]. As an alternative approach to

�nd the maxima in the gradient magnitude, edges can be detected by looking for

zero crossings of the second-order derivatives, for example using the Laplacian of

Gaussian or the Di�erence of Gaussians [129]. Haralick's facet model also uses this

detection mechanism [83]. It is also important to note that a more general formalism

of features detection of any type of discontinuity (not only step edges) exists in

the literature. Such model has been widely studied after the publication of the

local energy model [137]. It postulates that the discontinuities can be de�ned and

classi�ed by using their local phase. This observation led to the development of

a number of detection algorithms based on the local phase information (see eg.

[64, 65, 108, 79, 21, 201, 53]).

Classical edge-based segmentation methods, however, cannot guarantee to have

continuous and closed boundaries. Additionally, a fundamental property of edges

operators is that they are de�ned with respect to certain spatial sizes. Therefore, to

deal with noisy and physically corrupted data is usually a limitation of single scale

methods. To �gure out these di�culties, common solutions may include for instance,

scale selection and blur estimation algorithms [204, 125, 60, 149], statistical models

based detection [107], linear scale space methods [124] and non-linear di�usion

techniques that preserve edges [161, 198, 199].

Region-based methods : Region-based segmentation methods concentrate on grou-

ping image pixels based on a similarity measure of image features, rather than

on detecting isolated points or discontinuities of image intensities. Most of these

methods are statistical in nature. The simplest possible technique to segment a grey

level image is histogram thresholding [78]. However, this algorithm, even with a

globally optimised threshold, is rarely su�cient as soon as the object of interest

contains di�erent grey level values or if the background is not uniform.

Formally, histogram thresholding belongs to a larger class of region-based segmen-

tation methods called classi�cation methods. They are based on the estimation of
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a density function of the observed image data or of a set of attributes (texture

features for example) calculated from the observed image. This set of methods can

also be classi�ed based on the assumed probability density function, parametric or

non-parametric, on the classi�cation algorithm or whether prior is used to learn the

classes. This class of methods is also called mode �nding techniques and includes

popular methods such as the k-means [126, 85], mixture Models and Expectation-

Minimisation methods (see eg.[17]) and Mean shift methods [70, 43].

An alternative to mode �nding techniques, splitting algorithms [147] recursively

divide an image into small pieces by region-based statistics, and region merging-

growing algorithms [29, 41, 3] amalgamate pixels and regions in an hierarchical way.

Accordingly, it is possible to combine both splitting and merging in a medium-grain

segmentation [88, 160], which partitions an image into connected subregions and

groups neighbour parts sharing certain features. Recent contributions in this class

of methods make also use of edge cues and generally exploit the image lattice as a

graph [187].

Region- and edge-based segmentation techniques rely on two di�erent but comple-

mentary concepts. Schematically, region methods are less sensitive to noise and can model

complex textures. Edge features are generally robust to low intensity inhomogeneities and

have superior localisation properties. They are however very sensitive to image contrast

and fail on images with a low signal to noise ratio or textured images. These observations

have led to the development of new classes of methods that intrinsically integrates both

region- and edge-based information. For instance, the introduction of active contour in

segmentation has overcome many limitations of traditional methods. The following section

will brie�y review their theories and developments.

1.2 Active contour models

The original formulation of active contour models, �rst proposed in the late 80s [96,

189], is a mechanism to bring a certain degree of prior knowledge to bear on low-level

image interpretation [136, 177, 150]. These active contour models de�ne a simple closed

curve C ⊂ Ω, and attempt to minimise an energy function associated to this current C as

a sum of internal and external energies. Internal energies model the prior on the desirable

solution in terms of smoothness, length, shapes and so on. External energies are image-

driven, which are supposed to be minimal when the regions inside and outside of C are

statistically homogeneous. There exist two main families of external energies : edge-based
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and region-based. The latter relies on statistical modelling of the given image intensity.

It has been observed that region-based external energies outperform edge-based ones in

most application domains. This is the case for example in medical applications.

A natural and common way to solve the minimisation problem is the use of a gradient

decent algorithm. Variational tools are generally utilised and the minimisation leads to

solve a Partial Di�erential Equation (PDE) iteratively. Although global optimisations have

been introduced recently [26, 214], the evolution of the active contour stops generally at a

local minimum of the energy function. Hence, initialisations and the design of energies with

few local minima or convex energies have always been a concern. According to di�erent

representations of C, there are two main categories within the family of active contour

models : parametric and geometric.

1.2.1 Parametric active contours

Parametric active contour models use an explicit description of the curve C during its

deformation. Originally introduced by Kass et al. [96], the snake model allows to move

the curve by the in�uence of the internal and the external energies. The internal ones

constrain the regularisation of snakes ; while the external ones, traditionally based on

the gradient magnitude of a Gaussian smoothed version of the observed image, push the

snake toward salient image features. The snake model has the advantage of obtaining

closed segmentation curve, and also bene�ts from e�cient algorithms in searching for a

minimal energy state.

However, the snake model has several disadvantages because its external energy is

basically an edge detector :

1. The capture range of the external force is small because the external force decreases

rapidly at image positions far from the edges of objects of interest.

2. The external energy is sensitive to noise, which can lead to an undesirable local

minimum.

Thus, it is necessary to place the initial contour close to the real boundaries. It is

important to highlight that the choice of the sampling rule in space of the curve a�ects

the performance of parametric active contours. A re-sampling step is necessary throughout

the curve evolution process. Other limitations of parametric models include their inability

to support topological changes and the increase of implementation di�culties to their

generalisation to higher dimensions. To solve these problems, many alternative parametric

methods have been proposed [203, 131, 38, 18].
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A large number of researchers have studied the problem of sensitivity to the initial

contour[46, 37, 127, 131, 208]. Among them, Cohen [46] introduced a Balloon force in

the external energy, which in�ates or de�ates the contour in order to prevent the contour

being stuck at a local minima. This technique extends the external force to a much larger

range over the image domain, and consequently the initial contour needs no longer to be

very close to the desired solution. Xu and Prince [208] proposed the Gradient Vector Flow

in order to make the information of the image gradient non-local. This method allows the

image gradient to di�use. Thus, the active contour is able to segment non-convex objects.

Recent methods have also the ability to capture concavities and include the Charged-

Particle Model [91], the Charged Active Contour based on Electrostatics [211] and the

Vector Field Convolution (VFC) [117].

Regarding the second drawback of snakes, the combination of edge-based and region-

based external energies has been proposed by [168, 222]. Zhu and Yuille [222] presented

a region competition method in a Bayesian framework which minimises a Minimum Des-

cription Length (MDL) criterion. As an alternative to the variational approach, Dynamic

Programming minimisation strategies have also been applied. These techniques avoid

the estimation of higher order derivatives and improve the numerical stability of the

algorithm [6, 46, 203, 47, 168, 131, 222, 208, 75].

1.2.2 Geometric active contours

Geometric models implicitly represent the curve propagation as the zero level sets of

a high-dimensional function. They allow for automatic topology changes, such as merging

and splitting. The implicit formulation of snakes is introduced by Caselles et al. [37] and

Malladi et al. [127]. These models are built on the curve evolution theory [174, 4, 103, 104]

and level set methods [151, 177]. This implies that the evolution is independent of the

parameterisation of the curve. The evolution speed of the curve is a function of the

curvature and the image characteristics such as the gradient. Curvature acts as an internal

force to regularise the contour. Oppositely, the data-driven external force makes the curve

stop on the desired boundaries.

The authors in [38, 212] prove that the minimisation of the internal energy is equivalent

to the minimal length of the contour in a Riemannian space. Niessen et al. [143] compared

di�erent level set methods in [127, 38, 212], and introduced a new geodesic active contour

model to segment multiple objects. The method of Cohen and Kimmel [45] allows to �nd

the path, which is a global minimum energy between two points. The methods described in

the articles [51, 115, 42, 169, 191, 28, 52, 173] are examples of using shape prior knowledge
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in the context of level sets active contours.

The main disadvantage of geometric active contour models is their high computational

costs, due to the evolution and the re-initialisation of a high-dimensional surface. In order

to accelerate these calculations, various techniques have been proposed [2, 199, 184, 150,

121, 114, 26, 182]. The narrow band method [2] updates the level set function, φ, in a

small neighbourhood of interest around C instead of the whole image domain. Splitting

Operators [199, 105, 158], whose basic idea is to decompose a multi-dimensional problem

into one-dimensional cases, are very e�cient methods as large time step can be used. In

order to avoid solving the Euler-Lagrange equation of the underlying variational problem,

Song and Chan [184] calculate the energy directly and check if the energy decreases when a

point changes label from inside to outside or vice versa. In order avoid the re-initialisation

procedure, Li et al. [121, 118] have introduced an internal energy, which maintains the

level sets close to a signed distance function. The Alternating Direction Explicit [114]

method can be easily parallelised, and is also unconditionally stable, thereby it allows

fast convergence. In order to avoid local minima of the energy function, an uni�cation

of segmentation and denoising into a global minimisation framework has been presented

in [26]. Shi and Karl [182] have proposed a two-cycle algorithm to approximate level-set-

based curve evolution without the need of solving partial di�erential equations. A very

recent approach studied the representation of the level set function using radial basis

functions (RBFs) [72, 207, 13]. Therefore these are parametric representations of the level

set function but are still implicit representations of the contour. The main advantage is

to the transform the initial PDE problem to an Ordinary Di�erential Equation (ODE)

problem, which is easier to solve.

1.3 Region-based external energies

The use of region-based external energies in active contour methods, mostly within the

level set framework, led to a considerable improvement in e�ciency and robustness. For

instance, the Chan and Vese model [40] considers an image's background and foreground

as constant intensities represented by their mean values. This one of the simplest region

energies that assumes that original image is piecewise constant. The mean separation

method of Yezzi et al. [213] relies on the assumption that the object of interests should have

maximally di�erent intensities from the background. It is important to highlight that this

model does not make such a strong assumption as a piecewise constant image as in [40].

More complex statistical models can also be used within this framework. A straightforward
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approach is to de�ne the external energy as minimisation the log likelihood of the observed

image intensities within each region. Examples for the Gaussian distribution [170], the

Rayleigh distribution [175] and general models such as the exponential family [113] exist.

Non-parametric region-based energies have also been proposed [102, 171, 133], which allow

to model complex intensity distributions of observed images.

These region-based active contours, however, fail to segment images with strong in-

tensity inhomogeneities, which is almost unavoidable in real data. Indeed, when the

object of interests cannot be easily distinguished in terms of global image statistics,

region-based external energies may lead to erroneous segmentations. To overcome this

problem, some work has been recently carried out in utilising local image statistics within

the level set paradigm [32, 109, 120, 196]. The idea is to use local image statistics for

the estimation of the image model parameters along the contour (inside and outside).

The locality is de�ned generally by an isotropic window of a given scale. It has been

shown that localised segmentation methods have the ability to capture the boundaries of

inhomogeneous objects.

Such techniques, however, are found to be less robust to noise than global ones. Also,

they could be sensitive to initialisations if the size of locality is not appropriate. Indeed,

if the window size is small, the information might be insu�cient to locally evolve C ;

a bigger window, however, might cause a bias estimation of local model parameters and

make the segmentation algorithm lose its local advantages. Therefore, it brings out several

problems that need to be addressed, such as :

1. Can global and local image statistics be combined in one model ?

2. Is it possible to de�ne a pixel-dependent local scale while estimating image statis-

tics ?

These two questions are extremely important when local image statistics are utilised in

image segmentation. There has been an increasing number of literature which uses local

region-based external energies in level set methods, since their �rst introduction in 2007.

However, to our knowledge, hardly any of these works analysed the importance of choosing

appropriate local scales.

1.4 Organisation of the dissertation

In this thesis, we aim at studying segmentation methods for images with intensity

inhomogeneities. To solve this challenging problem, we begin by the review of some typical

region-based segmentation techniques, and particularly the ones considering local image
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information. We will then focus on discussing the open questions that arose in the previous

section. Finally, we will propose new methods that address these di�culties.

The remaining parts of the thesis are organized as follows :

Chapter 2 will introduce the state of the art on segmentation methods using para-

metric and geometric active contours. We will highlight the latter, and concentrate on

region-based external energies within the level set framework, which are the basis for the

succeeding chapters.

In Chapter 3, we will present and discuss recently proposed local region-based segmen-

tation methods. General formulations for region-based segmentation models are explained,

with the principles of using local image statistics to form the data energy term. For the

algorithm based on a Bayesian interpretation with two local kernels, we suggest to consider

their values separately.

In Chapter 4, we propose within the level set framework a segmentation method based

on local image region statistics. Inspired by recent development by the image denoising

community, we use the Intersection of Con�dence Intervals approach to de�ne a pixel-

dependent local scale for the estimation of image statistics. The obtained scale is based

on estimated optimal scales, in the sense of the mean-square error of a Local Polynomials

Approximation (LPA) of the observed image conditional on the current segmentation. In

other words, the scale is optimal in the sense that it gives the best trade-o� between the

bias and the variance of the LPA of the local image patches (inside and outside) along

the contour.

Chapter 5 will �rst review the methodology of ultrasound image segmentation. We

will give some segmentation results on simulated and real ultrasound images. Quantitative

evaluations of these tests are also presented, in order to demonstrate the improvement on

robustness and accuracy of the proposed segmentation method.

Finally, conclusions of the present work will be summarized in the last chapter. We

discuss a number of limitations of the proposed methods and point out directions of

ongoing and future work.
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Active contour models

Chapter summary

This chapter gives a brief review of some state of the art on image segmentation using

active contour models. First, we will present the basic idea of active contour models and

introduce a general energy function to be optimised. Then, two well-known categories

of active contour models, namely parametric and geometric, will be described. In this

context, we study several typical segmentation methods, especially geometric ones. Within

this framework, di�erent image statistics and noise models are discussed in order to build

region-based external energies.
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2.1 Introduction

Classical image segmentation methods use mainly low level image features. They

cannot account for prior knowledge to get a desirable solution. Due to this lack of

constraints, their performances highly depend on image quality. Active contour models [18]

can help to overcome these di�culties. Their basic idea is to minimise an energy E that

evolves a two-dimensional (2D) curve towards image features. It is a powerful mechanism

to bring a certain degree of prior knowledge to low-level image interpretation. The general

active contour model is described as :

E(C) =

∮ (
ED(C) + ER(C)

)
dC , (2.1)

where the curve C is a set of boundaries that separates di�erent image components.

The external energy ED, also called �delity term, is data-driven ; the internal energy ER
models the regularisation of C. By minimising the above energy function, the propagation

of C is driven by both external and internal forces. This model can use some high level

information and can ensure the smoothness of C.

According to the representation of the curve C, active contour models are classi�ed into

two main types : parametric and geometric. Parametric active contours directly describe

the curve C, which allows a real-time implementation ; and geometric ones use an implicit

representation, which can naturally deal with topological changes of C. Even though

these two methods have di�erent forms in describing their image-driven and regularisation

forces, they follow similar principles in curve evolution. In this chapter, we will brie�y

review both with some typical examples.

2.2 The snake model

The snake model proposed by Kass et al. [96] is the �rst active contour model. It uses

a parametric representation of the curve :

C(s) = (x(s)) : s ∈ [0, 1]→ Ω ,

where x ∈ R2 is the coordinate of the contour C, and s is the normalised arc length. The

snake model deforms this continuous and elastic curve to �t the nearest salient image

characteristics. For any observed image I : Ω → R, the evolution of C is given by the

minimisation of the following energy function :

Esnake(C) =

∫ 1

0

1

2

(
α(s)

∣∣∣∣∂C(s)

∂s

∣∣∣∣2 + β(s)

∣∣∣∣∂2C(s)

∂s2

∣∣∣∣2 )︸ ︷︷ ︸
ER

−|∇I (C(s)) |2︸ ︷︷ ︸
ED

ds , (2.2)
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where ∂C(s)
∂s

and ∂2C(s)
∂s2

denote the derivatives with respect to the curve parameter, α(s)

and β(s) are non-negative parameters, and ∇ represents the spatial gradient operator.

The �rst two terms here correspond to the internal energy in Eq. (2.1), which constraints

the geometry of C. More speci�cally, the �rst-order di�erential measures the rate of

changes in the length of C ; the second-order one is a rigidity term that makes the snake

maintain its original smoothness and shape. Their importance are adjusted by the weights

α(s) and β(s) respectively. In the absence of other constraints, the internal energy of

snakes simply makes C collapse to a point. The external energy term of the snake model

is an edge term. It is used to control external attraction forces which drive C towards

desired edges.

The segmentation problem now turns to �nd a parametric curve that minimises both

internal and external energies de�ned in Eq. (2.2), which can be solved by the Euler-

Lagrange equation as follows :

dEsnake
dC

= − ∂

∂s

(
α(s)

∂C(s)

∂s

)
+

∂2

∂s2

(
β(s)

∂2C(s)

∂s2

)
−∇|∇I (C(s)) |2 = 0 . (2.3)

This partial di�erential equation (PDE) expresses the balance of internal forces (�rst two

terms) and external forces (last term), when the contour rests at equilibrium. Under these

two forces, C can be attracted to the boundary of the targeted object. For simplicity, α(s)

and β(s) are usually assumed to be constants. Suppose an arti�cial time t and a initial

contour C0, the motion function to minimise the snake energy Eq. (2.2) by iterative

gradient descent is given by :

∂C(s, t)

∂t
= −

dEsnake
dC

= α
∂2C(s)

∂s2
− β∂

4C(s)

∂s4
+∇|∇I (C(s)) |2 . (2.4)

C(s, 0) = C0 .

The snake model can guarantee a smooth and continuous segmentation contour, but

there still exits several limitations. The initial contour C0 should be located in the vicinity

of the real boundary ; otherwise, snakes may converge to a wrong result. Indeed, the

external energy term in Eq. (2.4) is basically an edge detector, therefore its value is

relatively large around the image boundaries and smaller in uniform regions. As illustrated

in Fig. 2.1, the input image is a uniform grey square on a uniform white background. In

order to create a su�ciently large basin of attraction, the input image is �rst Gaussian-

smoothed as shown in the middle of Fig. 2.1. Due to this procedure, the edge gradient
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is noticeable at a larger range. However, this smoothing process will lead to an over-

smoothed biased segmentation, for instance without sharp corners and �ne details, as

illustrated on the example given in the right of Fig. 2.1.

Balloon force

As we have mentioned earlier in the last chapter, several methods have been proposed

to improve the performance of the snake model. One popular and simple solution consists

on the addition of a new internal energy term to Eq. (2.2), in order to make the model

behave like an in�atable balloon [46] :

EBallons(C) = γ

∫
Ωi

dx , (2.5)

where Ωi represents the region inside of the closed curve C. The balloon force either

shrinks (γ > 0) or expands (γ<0) the contour C constantly. Therefore, we need to know

in advance whether the initial contour is located inside or outside of the object of interest.

Moreover, the magnitude of γ can lead to a biased segmentation, which, in practice, can

be minimised by decreasing the magnitude of γ during the curve evolution.

2.3 Geodesic snakes

The original snake model Eq. (2.2) can be generalised by replacing its external energy

−|∇I|2 with a family of edge detectors g(|∇I|)2 [38]. Let g : [0,+∞[→ R+ be a strictly

decreasing function, which satis�es lims→∞ g(s) = 0. Assume the rigidity term here is not

particularly important (β = 0). A smooth curve can also be obtained only with the �rst

internal term. Therefore, the energy function of the geodesic active contour (GAC) model

Figure 2.1 � Segmentation example using snake model [51]. From left to right : input image with
the initial contour, Gaussian-smoothed input image, the �nal segmentation.
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is formed as [38] :

EGAC(C) = α

∫ 1

0

∣∣∣∣∂C(s)

∂s

∣∣∣∣2 ds+

∫ 1

0

g(|∇I(C(s))|)2ds , (2.6)

Caselles et al. also proved in [38] that by applying the Maupertuis' principle of least

action, the minimisation of the above energy is equivalent to :

min

∫ 1

0

g(|∇I(C(s))|)
∣∣∣∣∂C(s)

∂s

∣∣∣∣ ds . (2.7)

This can be considered as searching a geodesic curve, for instance a curve of minimal

distance path between given points, in a Riemannian space. The in�nitesimal contour

length dC or
∣∣∂C(s)

∂s

∣∣ds is weighted by the edge detector g(·). Using calculus of variations

the Euler-Lagrange equation for the minimisation of Eq. (2.7) is given by :

∂C(s, t)

∂t
= g(|∇I|)κ ~N − (∇g · ~N) ~N , (2.8)

where κ is the Euclidean curvature of C, and ~N denotes the unit inward normal. The �rst

term of the right hand side of this equation is a curve shortening �ow, which smooths

C by means of decreasing its total length. Commonly, the �rst term can be extended by

replacing κ with κ + γ, so that a shrinking or an expansion force, similar to the balloon

force, is included. The second term works in a neighbourhood, satisfying ∇g 6= 0, which

provides an attraction to drive C towards the large image gradient. Hence, the function

g does not need to be zero to stop the evolution of the snake. Since geodesic snakes also

use an edge-based external energy, their performances also depend on the initial contour.

2.4 Implicit active contours

2.4.1 Level set methods

Parametric active contour models track the evolution curve explicitly, which are good

at capturing �ne and irregular details. They are topologically rigid, meaning that no

contour splitting and merging is possible. Furthermore, if the shape of the curve varies

dramatically, re-parameterisations may also be required during the evolution. To overcome

these limitations, an implicit representation for such closed contours, the level set method,

has been proposed by Osher and Sethian [151]. Level sets are mathematical tools to

represent the front propagation. They track the curves as the zero crossing level of

a higher-dimensional characteristic function, which can handle topological changes of

evolving interfaces and can avoid the issues of contour parameterisations. Since their
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Figure 2.2 � An example of an image with an active contour (left) and its implicit representation
by a signed distance function (right). The contour C is shown in both images by the red curve.

�rst application to edge-based segmentation algorithms, level set methods have been

extensively studied and have become a popularly used general framework for image

segmentation [127, 38, 177, 150].

Suppose a simple closed curve C(s, t) is contained in an open region Ω. The propagation

speed of C along the normal ~N has the form of :
∂C(s, t)

∂t
= F (κ) · ~N

C(s, t = 0) = C0

, (2.9)

where F is the speed function which may depend on the curvature κ. In order to track

this moving front implicitly, the level set function φ(x, t), x ∈ Ω is introduced to describe

this problem.

φ(x, t) =


d(x, C(s, t)) x ∈ Ωi

0 x ∈ C(s, t) ,

−d(x, C(s, t)) x ∈ Ωo

(2.10)

where d is a distance function, which measures the distance from a point x to C at time

t ; Ωi and Ωo are the inside and the outside regions separated by the curve C.

For example in Fig. 2.2, the input grey level image has two objects, and the curve at

time t is given by a red circle. The corresponding signed distance function and the implicit

representation of C are illustrated in the right side of the same �gure. The zero level set

is represented by C(s, t) = {x|φ(x,t)=0}. φ < 0 and φ > 0 divide the image into an inside

and an outside of C respectively.

2.4.2 Curve evolution

Given the PDE that commands the deformation of the curve, one can derive the cor-

responding PDE with the level set function. By applying the chain rule to the expression
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of the zero level set in Eq. (2.10), i.e. φ(C, t) = 0, we get :

∂φ

∂C
· ∂C
∂t

+
∂φ

∂t
= 0 .

Combining the above formula with Eq. (2.9), it can be rewritten as :

∇φ · F (κ) · ~N +
∂φ

∂t
= 0 , where ~N = − ∇φ

|∇φ|
,

=⇒ − F (κ) · |∇φ|+ ∂φ

∂t
= 0 .

This is a Hamilton-Jacobi type of equation, and ∇φ is the normal to C. Thus, the motion

of C is represented by the evolution of the zero level set, which satis�es the following

PDE :
∂φ

∂t
= F (κ) · |∇φ| , (2.11)

φ(x, t = 0) = d(x, C0) = φ0 .

Solving numerically the above PDE has been extensively studied [152]. Cares must be

taken when choosing the appropriate �nite di�erence schemes for the approximation of

the derivatives of φ. Consequently, Sethian and Strain [178] have proposed to decompose

the speed function F (κ) into two terms :

F (κ) = F0 + F1(κ) , (2.12)

where F0 is a constant speed term (an advection term), thus an upwind discretisation

scheme should be used ; F1 depends on geometric properties of the curve C via the

curvature κ, hence it can be approximated by a central di�erence scheme.

Malladi et al. [127] have proposed to modulate the above speed function with a data

term, which is used to constrain the evolution of the curve C to stop at desired image

feature. Speci�cally, they proposed the use of one of the following edge stopping functions :

gI =
1

1 + |∇Iσ|
or gI = e−|∇I−σ| ,

where Iσ denotes a Gaussian smoothed version of the observed image. The value of gI

is close to unity in homogeneous regions, and it drops to zero at high gradient image

locations. The image-based term gI is meaningful only on the curve C, i.e. at zero level

of φ. The level set evolution equation however applies for the entire image domain Ω.

Consequently, gI is extended to other level of φ, and ĝI(x) is de�ned equal to value of

gI on the closest point to x on the zero level set. The motion function Eq. (2.11) then

becomes as follows [127] :
∂φ

∂t
= ĝI(F0 + F1(κ))|∇φ| .
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2.4.3 Numerical implementation

Lets take the geodesic snakes as an example. Using the tools presented in the previous

section, the evolution equation Eq. (2.8) can be expressed within the Level set paradigm.

When adding also a balloon force, the contour evolution can be implicitly represented by

the following equation :

∂φ

∂t
= g div

(
∇φ
|∇φ|

)
︸ ︷︷ ︸

F1(κ)

|∇φ|+ [(∇g · ∇φ) + γ g]︸ ︷︷ ︸
F0

|∇φ| . (2.13)

As mentioned in § 2.3, the �rst term of this function moves the curve in the direction

of its curvature under the in�uence of the modulation function g(I), and acts as a curve

smoothing term ; the second term encourages the curve to migrate towards minima of

g(I). We also highlight here that, the balloon force is also modulated by the edge stopping

function.

We will denote the discrete version of φ((i∆x, i∆y), n∆t) by φni,j, where ∆t is the time

step and ∆x and ∆y are the spatial grid sizes. It is natural and hence common in the

image processing community to use a uniform spatial grid (i.e. ∆x = ∆y = 1).

Right side : Considering the right side of Eq. 2.13 :

1. The �rst term is approximated as :

g div

(
∇φ
|∇φ|

)
|∇φ| = g

φiiφ
2
i − 2φiφjφij + φjjφ

2
i

φ2
i + φ2

j + ε
, (2.14)

where ε is a small positive constant, in order to avoid numerical instabilities. The

�rst and second derivatives of φ(x) are approximated by a central di�erence scheme

as follow :

φi ≈
1

2
(φi+1,j − φi−1,j) , φj ≈

1

2
(φi,j+1 − φi,j−1) ,

φii ≈ (φi+1,j − 2φi,j + φi−1,j) , φjj ≈ (φi,j+1 − 2φi,j + φi,j−1) ,

φij ≈

2φi,j + φi−1,j + φi+1,j + φi,j−1 + φi,i+1 − φi−1,j+1 − φi+1,j−1, if φiφj ≥ 0

2φi,j − φi−1,j − φj+1,i − φi,j−1 − φi,j+1 + φi−1,i−1 + φi+1,j+1, otherwise
.

2. An upwind scheme is used for the discretisation of the second term :

(∇g · ∇φ)|∇φ| = max(gi, 0) (φi+1,j − φi,j)︸ ︷︷ ︸
D+

i φi,j

+ min(gi, 0) (φi,j − φi−1,j)︸ ︷︷ ︸
D−

i φi,j

+ max(gj, 0) (φi,j+1 − φi,j)︸ ︷︷ ︸
D+

j φi,j

+ min(gi, 0) (φi,j − φi,j−1)︸ ︷︷ ︸
D−

j φi,j

. (2.15)
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3. Similarly, the above strategy is also applied for the approximation of |∇φ| at the
point (xi, yj). If γ g ≥ 0

|∇+φ|i,j =
[

max(D−i φi,j, 0)2 + min(D+
i φi,j, 0)2

+ max(D−j φi,j, 0)2 + min(D+
j φi,j, 0)2

]1/2
;

otherwise

|∇−φ|i,j =
[

min(D−i φi,j, 0)2 + max(D+
i φi,j, 0)2

+ min(D−j φi,j, 0)2 + max(D+
j φi,j, 0)2

]1/2
.

Therefore, the third term is approximated by :

γ g|∇φ| = max(γ g, 0)|∇+φ|i,j + min(γ g, 0)|∇−φ|i,j . (2.16)

Left side : The left side of Eq. (2.13) can be discretized by using a forward di�erence

scheme for the time variable :
∂φ

∂t
=
φn+1
i,j − φni,j

∆t
, (2.17)

Full scheme : Finally, combining the above two, a numerical implementation of Eq. (2.13)

is obtained :

φn+1
i,j = φni,j +4t

(
gn
φnii(φ

n
j )2 − 2φni φ

n
j φ

n
ij + φnjj(φ

n
i )2

(φni )2 + (φnj )2 + ε

+
[
max(gni , 0)D+

i φ
n
i,j + min(gni , 0)D−i φ

n
i,j + max(gnj , 0)D+

j φ
n
i,j + min(gni , 0)D−y φ

n
i,j

]
+ max(γ gn, 0)|∇+φ|ni,j + min(γ gn, 0)|∇−φ|ni,j

)
. (2.18)

Remark : During the contour evolution, it is essential to periodically re-initialise the

function φ, so that it remains a signed distance function. This numerical implementation

can be easily extended to higher dimensions. Further details can be found in [151, 152].

2.4.4 Advantages and disadvantages

Major advantages of geometric active contour models are brie�y summarized :

1. The curve evolution Eq. (2.11) always remains a function as long as F (·) is smooth.

Therefore, topological changes, such as breaking, merging or forming sharp corners,

are allowed. An illustrative example is show in Fig. 2.3.

2. Finite di�erence approximations can be used to estimate these spatial and temporal

derivatives, because the level set function remains always di�erentiable.
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Figure 2.3 � Natural change of topology in the curve evolution when it is represented implicitly
by a level set function. The top row shows the curve evolution, and the bottom row shows the
associated level set function. The initial contour is the one shown in Fig. 2.2.

3. Geometric characteristics of the curve may be easily computed with the level set

function. For example, the unit inward normal to the curve and its curvature are

estimated by :

~N = − ∇φ
|∇φ|

, κ = ∇ · ~N = −∇ · ∇φ
|∇φ|

.

4. The level set function can be easily generalised to higher dimensions. Furthermore,

its basic form remains almost the same.

Level set methods also present some disadvantages. One main inconvenient is their

large computational costs associated with embedding C into the higher-dimensional func-

tion φ. However, as we have already mentioned in § 1.2.2, many e�cient algorithms have

been proposed to speed up its calculation.

2.5 Region-based external energies

As discussed in § 2.2, the edge-based external energy for active contour models is

sensitive to initialisation and is known to be less robust to noise. To overcome these pro-

blems, region-based external energies, used to model intensity statistics and homogeneity

requirements, have been developed in the framework of geometric active contour models.

One of the �rst works on using region-based energies within the level set framework

was proposed by Paragios and Deriche [157, 156]. Since then, region-based energies have
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become very popular in this context. In the following section, we are going to review

some important contributions related to our work. As discussed in § 2.2, the edge-based
external energy for active contour models is sensitive to initialisation and are known to

be less robust to noise. To overcome these problems, region-based external energies, used

to model intensity statistics and homogeneity requirements, have been developed in the

framework of geometric active contour models. One of the �rst works on using region-

based energies within the level set framework was by Paragios and Deriche [157, 156].

Since then, region-based energies became very popular in this context. In the following

section, we are going to review important contributions related to our work.

2.5.1 Mumford-Shah model

The Mumford-Shah (MS) model [139] was proposed to integrate image denoising with

image segmentation. It searches for a piecewise smooth approximation µ and a minimal

contour C for the purpose of separating a given image I into non-overlapping regions.

This idea can be expressed by the minimisation of :

EMS(µ,C)
=

∫
Ω

|I − µ|2dx + λ

∫
Ω−C
|∇µ|2dx + ν|C| , (2.19)

where λ ≥ 0 and ν ≥ 0 are constant weights. The �rst term corresponds to the �delity

term of the general active contour model in Eq. (2.1), as it ensures µ to be similar to I

in the L2-sense ; the second term controls the smoothness of the solution µ, but permits

discontinuities across C ; the last term provides the regularisation on the length of C.

The minimisation of the above function is a very di�cult problem. Some of the earliest

attempts are based on so-called coarse to �ne method [19], which minimises EMS by

gradually decreasing a continuation parameter, while each level serves as an initialisation

for the next level. Ambrosio and Tortorelli have presented a similar technique, by solving

a sequence of simpler elliptic variational problems [5]. Recently, a primal-dual projection

algorithm has proved the convergence for a convex relaxation of MS functional [165].

Within the level set framework, solutions to simpli�ed versions have been proposed by

Tsai et al. [192] and Chan-Vese [193]. The last two works are motivated mainly in solving

the segmentation problem.

2.5.2 Segmentation as Bayesian inference

Region-based image segmentation can also be examined under the Bayes' rule. It

states that a posterior distribution p(a|b) over the unknowns a given the measurements
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b can be obtained by multiplying the likelihood p(b|a) by the prior distribution p(a).

The segmentation can then be obtained in the Bayesian sens by the minimisation of a

risk function. Di�erent risk functions lead to di�erent estimators [122]. The maximum a

posteriori (MAP) estimator is probably the most popular. Traditionally, Markov random

�elds (MRF) are used to model the prior distribution [73], and the segmentation problem

is solved as classi�cation problem. Stochastic and deterministic minimisation methods

exist [122]. Here, we will be reviewing how this modelling can be used within the level set

framework.

Image segmentation can be considered as seeking for a optimal partition, given by the

curve C that maximises,

p(C|I) =
p(I|C)p(C)

p(I)
. (2.20)

The denominator p(I) is a normalising constant, which is independent of C and usually

can be neglected. p(I|C) is a �delity term, de�ned by the observed statistics of the current

partition. p(C) models our prior knowledge about the desired solution in terms of size,

shape or motion, and it acts as a regularisation term on the contour C. For example, a

prior constraint on the length of the curve C is commonly modelled as :

p(C) = exp(−ν|C|) . (2.21)

The conditional probability p(I|C), is a likelihood term. It is generally assumed that

the observed image intensities at points x ∈ Ω are independent observation of random

variables. It is also assumed that they are identically distributed within each of the N

region, obtained by the partition C. Thereby, p(I|C) can be factorized as follow :

p(I|C) =
∏
x∈Ω

p(I(x)|C,x)dx =
N∏
r

∏
x∈Ωr

p(I(x)|x ∈ Ωr)
dx , (2.22)

where dx is an in�nitesimal bin size. The probability density function (pdf) p(I(x)|x ∈ Ωr)

denotes the probability of observed I(x) when Ωr is a region of interest. The maximisation

of the posteriori probability in Eq. (2.20) is equivalent to the minimisation of the anti

log-likelihood, which can be rewritten as :

E =
N∑
r

∫
Ωr

− log p(I(x)|x ∈ Ωr)dx︸ ︷︷ ︸
anti log-likelihood

+ ν|C|︸︷︷︸
extra constraint

. (2.23)

The above energy is the basis of many region-based segmentation methods. For instance,

if the weight λ of the MS functional in Eq. (2.19) increases, the smoothing constraint
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becomes more important. Therefore, when λ → ∞, the approximation µ is no longer a

function but collapses into a single value for each separated region. Accordingly, embed-

ding a Gaussian distribution with a �xed standard deviation into Eq. (2.23) can be seen

as a simpli�ed version of Eq. (2.19), known as the cartoon limit.

The pdf p(I(x)|x ∈ Ωr) can be estimated with parametric or non-parametric methods.

In the parametric case, such as the Chan-Vese (CV) model [40], the pdf family is assumed

to be known. Therefore, one or more parameters should be estimated in order to well model

the characteristic of each region in the image. On the other hand, the non-parametric case

does not require the image regions to have a particular type of probability distribution.

The underlying distribution is estimated from the given image, for example by the Parzen

windows technique [183]. In the rest of this chapter, we will consider only a two phase

image segmentation problem for both parametric and non-parametric algorithms.

2.5.3 Parametric models

2.5.3.1 The Chan & Vese model

Suppose the noise model of the observed image is additive and follows a Gaussian

distribution with zero mean and a variance σ2. The conditional probability is as follow :

p(I|Ωr) =
1√
2πσ

exp

(
−(I(x)− µr)2

2σ2

)
,

where µr represents the mean value of image intensities inside of the region Ωr. In the

particular case of a binary segmentation, r = {i, o}, and up to a multiplicative factor and

an additive constant term, Eq. (2.23) becomes the formula of the CV model [40], whose

external energy function is given by :

ECV =

∫
Ω

(I(x)− µi)2H (φ(x)) dx +

∫
Ω

(I(x)− µo)2H (−φ(x)) dx , (2.24)

where H(·) is the Heaviside function, and it is de�ned as :

H(φ) =

1, φ ≥ 0

0, φ < 0
.

The two constants µi and µo, are obtained by the minimisation of ECV with respect

to the µr
2 :

µ̂i =

∫
Ω
H (φ(x)) I(x)dx

Ai
, µ̂o =

∫
Ω
H (−φ(x)) I(x)dx

Ao
, (2.25)

2. These actually correspond to maximum likelihood estimates.
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where Ai is the area of the inside region Ωi : Ai =
∫

Ω
H (φ(x)) dx, and Ao is the area of

the outside region Ωo : Ai =
∫

Ω
[1−H (φ(x))]dx. Keeping µi and µo �xed and minimising

Eq. (2.24) with respect to φ, the associated Euler-Lagrange equation for φ has been

deduced [40]. Parameterizing the descent direction by a time t ≥ 0, the level set function

φ(x, t) moves according to :

∂φ

∂t
= −

∂ECV(φ)

∂φ

= δ(φ)
[
(I − µ̂o)2 − (I − µ̂i)2

]
, (2.26)

where δ(·) is the Dirac function. The optimisation of ECV �nds its minimum energy when

the interior and exterior are respectively best approximated by their means µ̂i and µ̂o.

Therefore, the CV model is a binary and piecewise constant model.

Remark : In practice a regularised approximation of the Heaviside function is needed.

Two popular approximations exist in the literature :

1. The �rst approximation of the Heaviside function is given [220] :

H1,ε(φ) =


0, φ < −ε
1
2

[
1 + φ

ε
+ 1

π
sin
(
φπ
ε

)]
|φ| ≤ ε

1, φ > ε

, (2.27)

which corresponds to the following Dirac function :

δ1,ε(φ) =

0, |φ| > ε

1
2ε

[
1 + cos

(
φπ
ε

)]
|φ| ≤ ε

. (2.28)

2. The second one, �rst appeared in [40],

H2,ε(φ) =
1

2

(
1 +

2

π
arctan

(
φ

ε

))
, (2.29)

δ2,ε(φ) =
1

π

ε

φ2 + ε2
. (2.30)

As ε → 0, both H1,ε(φ) and H2,ε(φ) converge to H(φ). A di�erence is that δ1,ε(φ) is

de�ned on the small interval [−ε, ε], while δ2,ε(φ) is non zero everywhere. Therefore, in

the latter all the level set of φ have the potential to be important [152]. When all the

levels are updated, not limited in a narrow band, new segmentation region can appear.

The re-initialisation to the distance function is not considered to be a good idea [152].

Doing so, the model has tendency to converge to better optimums, but requires more

computational e�ort.
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2.5.3.2 The Gaussian Model

Rousson and Deriche [172] supposed that the noise model follows a Gaussian distribu-

tion with di�erent variances inside and outside of the contour C. Therefore, the conditional

probability of the observed image follows :

p(I|Ωr) =
1√

2πσr
exp

(
−1

2

(I(x)− µr)2

σ2
r

)
,

which leads to the following external energy function :

ED =

∫
Ω

H(φ(x))

[
(I(x)− µi)2

2σ2
i

+
1

2
log(2πσ2

i )

]
dx

+

∫
Ω

H(−φ(x))

[
(I(x)− µo)2

2σ2
o

+
1

2
log(2πσ2

o)

]
dx , (2.31)

where the estimates of the means µ̂i and µ̂o are given in Eq. (2.25). The two variances

can be estimated by :

σ̂2
i =

∫
Ω
H(φ(x))I2(x)dx

Ai
− µ̂2

i , σ̂
2
o =

∫
Ω
H(−φ(x))I2(x)dx

Ao
− µ̂2

o . (2.32)

Similar to the CV model, the associated level set �ow of Eq. (2.31) is expressed as :

∂φ

∂t
= δ(φ)

[
log

σ̂2
o

σ̂2
i

+
(I − µ̂o)2

σ̂o
2 − (I − µ̂i)2

σ̂2
i

]
. (2.33)

Notice that one immediate advantage of the above Gaussian model versus the CV

model Eq. (2.24) is the possibility to distinguish regions which have similar mean values

but di�er by their variances.

Figure 2.4 � Segmentation example of a noisy image with global region-based methods. From
the left to right : the noisy image and initialisation ; segmentation result using the CV model
after 500 iterations ; result obtained by the Gaussian model. The image foreground and the
background have the same mean but di�erent variances. The red circle is the initial contour, and
the magenta curve represents the �nal segmentation. Hereafter and unless otherwise speci�ed,
all the subsequent results use these two colours to label the initial and �nal contour.
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Figure 2.4 shows a segmentation example obtained by the CV model and the Gaussian

model. The input image is corrupted by an additive Gaussian noise with two di�erent

variances. As expected, the CV model fails to segmented this image. Indeed, as the two

regions have very similar mean values, the region-based gradient �ow is zero, and the

contour C shrinks by the curvature driven regularisation force.

2.5.3.3 The Rayleigh Model

The Rayleigh distribution have been extensively used to model scattering phenomena.

For example, Backscattering is the origin of the speckle noise, which characterizes ul-

trasound imaging with a granular appearance. The speckle is a multiplicative noise,

strongly correlated and more importantly, with non-Gaussian statistics. For this reason,

several probability density functions were used to model image grey levels statistics in

medical echography [141]. Namely the Rayleigh model holds when the speckle noise is

fully developed [35, 195]. Such model has been used for the �rst time, within the levels set

framework, by Sarti et al. [175]. The Rayleigh probability distribution function is de�ned

by :

p(I|Ωr) =
I(x)

θ2
r

exp

(
−I(x)2

2θ2
r

)
.

Then, according to Eq. (2.23), its likelihood is given by :

l =

∫
Ωi

log I(x)dx−
∫

Ωi

I2(x)/(2θ2
i )dx− Ai log(θ2

i )

+

∫
Ωo

log I(x)dx−
∫

Ωo

I2(x)/(2θ2
o)dx− Ao log(θ2

o) . (2.34)

The maximum likelihood estimation (MLE) of the parameters θi and θo are the values

that maximise l. They are obtained by equating to zero the �rst derivative with respect

to θ2
i and θ

2
o :

∂l

∂θ2
i

=

∫
Ωi

I2(x)/(2θ4
i )dx− Ai/θ2

i = 0 ,

∂l

∂θ2
o

=

∫
Ωo

I2(x)/(2θ4
o)dx− Ao/θ2

o = 0 .

Then the estimation for these parameters are given by :

θ̂2
i =

∫
Ω
H(φ(x))I2(x)dx

2Ai
, θ̂2

o =

∫
Ω
H(−φ(x))I2(x)dx

2Ao
. (2.35)



2.5. REGION-BASED EXTERNAL ENERGIES 27

Substitute the estimated parameters θ̂2
i and θ̂2

o back in Eq. (2.34), the likelihood is

rewritten as :

l =

∫
Ω

log I(x)dx− (Ai + Ao)(1− log 2)

− Ai log

(
1

Ai

∫
Ω

I(x)2H(φ)dx

)
− Ao log

(
1

Ao

∫
Ω

I(x)2H(−φ)dx

)
. (2.36)

All the terms independent on the partition can be omitted. Consequently, the maximisa-

tion of this likelihood can be addressed as the gradient �ow with respect to φ [175]

∂φ

∂t
=δ(φ)

[
log

(∫
Ω
I2H(φ)dx

Ai

)
+
AiI

2 −
∫

Ω
I2H(φ)dx∫

Ω
I2H(φ)dx

(2.37)

− log

(∫
Ω
I2H(−φ)dx

Ao

)
−
AoI

2 −
∫

Ω
I2H(−φ)dx∫

Ω
I2H(−φ)dx

]
.

More details about this derivation using the Gâteaux derivative are given in Appendix B.

2.5.3.4 The Exponential family

The multi-parameter exponential family is naturally indexed by a k-dimensional real

parameter vector η(θ) and a k-dimensional natural statistic vector T(y). It is formally

de�ned as follows (see eg. [202, 111]) :

De�nition 2.1. The family of distributions of a Random Variable {pη(y) : η ∈ Θ ⊆ Rk},
is said a k-parameter canonical exponential family, if there exists real-valued functions :

� η(θ) = [η1, ..., ηk]
T : Rk → R

� h : R→ R
� A : Θ→ R
� T = [T1, ..., Tk]

T : Rk → R
such that the pdf pθ(y) may be written as :

pη(y) = h(y) exp [〈η(θ),T(y)〉 − A(η)] , (2.38)

where 〈·, ·〉 represents the scalar product in Rk. The term T is called the natural su�cient

statistic, η is the natural parameter vector and the natural parameter space is de�ned as

Θ = {η ∈ Rk;−∞ < A(η) <∞} with A(η) = log
∫
h(y) exp [〈η(θ),T(y)〉] dy .

In the context region-based active contours, Lecellier et al. [111] have recently pro-

posed that the distribution of image features belongs to some exponential families in

Eq. (2.38). Thereby, exponential families can cover most noise models encountered in



28 CHAPITRE 2. ACTIVE CONTOUR MODELS

acquired images, including the previous discussed Gaussian and Rayleigh cases. Table 2.1

provides a synthetic description of some common distributions of exponential families with

its parameters θ and associated functions. Take for example the normal distribution,

p(I|µ, σ) =
1

σ
√

2π
exp

(
−1

2

(I − µ)2

σ2

)
= exp

(
−1

2
log(2πσ2)− I2

2σ2
+
µI

σ2
− µ2

2σ2

)
,

which corresponds to :

h = 1, θ = [µ, σ2]T , T (I) = [I, I2]T , η = [
µ

σ2
,− 1

2σ2
]T ,

A(η) =
1

2

(
µ2

2σ2
+ log(2πσ2)

)
= −1

2

(
η2

1

2η2

+ log
−η2

π

)
.

There exists di�erent methods to estimate the parameters η, and the ML estimation is

usually preferred when it exists in a close form.

Using the shape derivative tools developed in [92, 10], Lecellier et al. [111] derived

general expression for the speed function for the exponential family. When the ML is used

for the estimation of the model parameters for the minimisation of the anti log-likelihood

in Eq. (2.23), the curve evolution in the direction of φ is given by [111] :

∂ED
∂φ

=

∫
C

[
log
(
p(y(x)), η̂(Ω)

)]
(φ · ~N)da(x) , (2.39)

where da(x) is the line element. For the common members of exponential families in

Table 2.1, their evolution speeds are summarized in Table 2.2. It is important to highlight

that Lecellier et al. also showed that, complicated additive terms appear in the evolution

speed when the model parameters are estimated by using an alternative method, like the

moment method.

Distribution θT η(θ)T T(y)T A(η) Θ

Normal (µ, σ2) ( µ
σ2 ,− 1

2σ2 ) (y, y2) −1
2

(
η21
2η2

+ log −η2π

)
R×]−∞, 0[

Gamma (λ, p) (−λ, p− 1) (y, log y) −(η2 + 1) log(−η1) ]−∞, 0[×]1,+∞[

+ log Γ(η2 + 1)

Poisson µ logµ y eη R
Exponential λ −λ y − log(−η) ]−∞, 0[

Rayleigh θ2 - 1
2θ2

y2 − log(−2η) ]−∞, 0[

Table 2.1 � Common exponential families studied in [111]. See [202] for more examples.
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Distribution Estimated Parameters Speed Expressions

Normal (µ, σ) log σi + (I−µi)2
2σ2

i
− log σo − (I−µo)2

2σ2
o

Gamma (λ, p) log (Γ(pi)λ
pi
i ) + I

λi
− pi log(I)

− log (Γ(po)λ
po
o )− I

λo
+ po log(I)

Poisson µ −I log(µi) + µi + log(µo) + µo

Exponential λ − log(λi) + λi I + log(λo)− λo I
Rayleigh θ2 I2

2θ2i
− log

(
I
θ2i

)
− I2

2θ2i
+ log

(
I
θ2i

)
Table 2.2 � Speed expressions of the examples of exponential distributions shown in Table 2.1,
when minimising the anti log-likelihood associated energy with the ML parameters estima-
tion [111]. For simplicity, here we use µ to represent its estimator µ̂.

In addition, image-driven energy for region-based segmentation can be modelled as

the maximisation of relative entropy, for instance the Kullback-Leibler divergence (KLD),

between the pdfs of image intensities in Ωi and Ωo :

ED =

∫ (
pi(x,ηi) log

pi(x,ηi)

po(x,ηo)

)
dx . (2.40)

This KLD-based segmentation searches for the con�guration that maximises the log-

likelihood of the data under their actual model pi, while minimising the plausibility of

the same data under po. Therefore, the KLD acts as a region competition criterion. Using

the MLE for these parameters ηi and ηo, the evolution speed obtained by the Eulerian

derivative of the above energy is given by [111] :

∂ED
∂φ

= −
〈
∇φT(y)i, η̂i − η̂o

〉
+

〈
∇φT(y)o,

∇A(η̂o)−∇A(η̂i)
¨A(η̂o)

〉
, (2.41)

where T(y) is the mean of T(y), and Ä is the Hessian matrix of A calculated as Ä(x) =
∂2A

∂η1∂η2
.

The use of this parametrisation of the exponential family appears to be a �exible tool.

The work of Lecellier et al. [111] can be used to solve di�cult segmentation problems which

involves various noise models in the external energy. The reader is refereed to [111, 112]

for further details.

2.5.3.5 Maximal discrepancy methods

The means separation algorithm, proposed by Yezzi et al. [213], relies on the as-

sumption that foreground and background regions should have maximally di�erent mean
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intensities. It uses the distance between µi and µo to measure how well the curve C has

separated the foreground from the background. Mathematically, the data energy term is

given by :

ED = −1

2
(µi − µo)2 . (2.42)

The mean values are approximated by their ML estimates given in Eq. (2.25). Then, the

gradient �ow of ED can be expressed by :

∂φ

∂t
= (µ̂i − µ̂o)

(
I − µ̂i
Ai

+
I − µ̂o
Ao

)
|∇φ| . (2.43)

There is no restriction on how well the regions are modelled by µ̂i and µ̂o. In other words,

the above model do not assume a piecewise constant image model as the CV model.

Eq. (2.42) can be further generalised by using other statistics. For instance when the

image to segment has regions with identical means but di�erent variances, we can use the

following alternative energy functional [213] :

ED = −1

2
(σ2

i − σ2
o)

2 . (2.44)

Similarly, the evolution of this variances separation algorithm via the gradient �ow is :

∂φ

∂t
= (σ̂2

i − σ̂2
o)

[
(I − µ̂i)2 − σ̂2

i

Ai
+

(I − µ̂o)2 − σ̂2
o

Ao

]
|∇φ| . (2.45)

Although the underling assumption on the image model are less restrictive for the above

two energies, in comparison to the CV model, they have not yet attracted more attention.

2.5.4 Non-parametric models

In the non-parametric region-based segmentation, the chosen image characteristics,

commonly pixel intensities, are assumed to be independent identically distributed in each

region. The foreground and background are distinct in the sense that they have di�erent

pdfs of the observed image intensities over the sub-domains Ωi and Ωo :

{I(x)|x ∈ Ωi} ∼ pi , {I(x)|x ∈ Ωo} ∼ po .

Given a level set function φ, non-parametric approaches de�ne a kernel-based estimation

of the above pdfs :

pr(z|φ(x)) =

∫
Ωr
Kρ

(
z − I(x)

)
dx

Ar
, r = {i, o} , (2.46)

where Kρ(·) is a tonal kernel which should satisfy the following properties :
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� Kρ(−a) = Kρ(a) ;

� Kρ(a) ≥ Kρ(b), if |a| < |b|. lim|a→∞|Kρ(a) = 0 ;

�
∫
Kρ(x)dx = 1.

One typical choice of Kρ(·) is the normalised Gaussian kernel. Based on the above

de�ned estimator of the pdfs, several data energies derived from information theory have

been derived in the literature to solve a segmentation problem.

The core idea is to maximise the discrepancy between the distributions inside and

outside of the current segmentation [67, 102, 133, 11]. In other words, it assumes the

optimal contour should minimise the mutual information between these subsets. A number

of measures can be used to de�ne the distance between distributions [50]. For example,

the Bhattacharyya distance between two probability densities is de�ned as − logB, where

B is the Bhattacharyya coe�cient that measures the amount of overlap, given by :

B(pi, po) =

∫
z

√
pi (z|φ(x)) po (z|φ(x))dz , (2.47)

where pi and po are estimated by Eq. (2.46). The values of B(pi, po) are always con�ned

within the interval [0, 1], where 0 indicates no overlap and 1 means a perfect match. The

rest of this subsection will give two examples of the non-parametric active contour models

using the Bhattacharyya coe�cient.

2.5.4.1 Histogram separation method

In the histogram separation active contour, the optimal segmentation is achieved

when the Bhattacharyya distance between the pdfs is the maximum, which equivalents to

minimise the corresponding Bhattacharyya coe�cient described in Eq. (2.47). Therefore,

the data-driven energy functional is de�ned as ED = B(pi, po) in [133]. In order to contrive

a numerical scheme to minimise this external energy, its �rst variation with respect to φ

should be computed :

∂ED
∂φ(x)

=
1

2

∫
z

(
∂pi(z|φ(x))

∂φ(x)

√
po(z|φ(x))

pi(z|φ(x))
+
∂po(z|φ(x))

∂φ(x)

√
pi(z|φ(x))

po(z|φ(x))

)
dz , (2.48)

where
∂pr(z|φ(x))

∂φ(x)
= δ(φ(x))

(
pr(z|φ(x))−Kρ(z − I(x))

Ar

)
. (2.49)
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Accordingly, by combination of the above two equations, the gradient �ow of the level set

function that minimises the above external energy is given by [133] :

∂φ

∂t
= −∂ED

∂φ
,

=
1

2
δ (φ(x))

[
B(pi, po)(A

−1
o − A−1

i ) +

∫
Kρ(z − I(x))L (z|φ(x)) dz

]
, (2.50)

where L (z|φ(x)) =
1

Ai

√
po (z|φ(x))

pi (z|φ(x))
− 1

Ao

√
pi (z|φ(x))

po (z|φ(x))
.

The �rst term in the above speed function is independent of the spatial position x, and

it results in increasing or decreasing the mean value of φ by a constant amount. The

second term can be viewed as a smoothed version of L(z|φ(x)), which is de�ned as the

di�erence between the square roots of the likelihood ratios pi/po and po/pi weighted by

their corresponding areas.

2.5.4.2 Statistical overlap with a prior

An equivalent idea, as the histogram separation methods, has been used to intro-

duce prior information on the pdf(s) of the object(s) of interest. An interesting example

was proposed by Ayed et al. [11], who introduced a statistical overlap constraint. This

constraint imposes that the desired segmentation is optimal when the region's pdf has

an overlap statistically similar to learned prior. Suppose the pdf of Ωi is characterized

by a known model Mi(z). Ayed et al. considered to measure the overlap between the

sample pdf outside the curve and the model distribution of the object (inside) using the

Bhattacharyya coe�cient B(Mi(z), po(z|φ(x)). Then Ayed et al. have proposed to evaluate

the conformity of B to a learned Gaussian model :

ED =
√
− logN (B(Mi, po), µB, σ2

B) . (2.51)

Notice that µB and σB here are not the statistics of certain sub-regions. They are learned

from a set of relevant training images. In the particular case of µB = 0, the overlap

between Mi and po should be minimal. Distributions other than the Gaussian model can

be employed to model B(Mi(z), po(z|φ(x)).

The minimisation of ED with respect to φ is given by the following PDE [11] :

∂ED
∂φ

= −B(Mi, po)− µB
2σ2

BED

∂B(Mi, po)

∂φ
, (2.52)

where
∂B(Mi, po)

∂C
=

1

2

√
Mi

po

∂po
∂φ

. (2.53)
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By embedding Eq. (2.49) into the above equations, the curve evolution is given by the

following gradient �ow [11] :

∂φ

∂t
= δ (φ(x))

B − µB
2σ2

BED︸ ︷︷ ︸
oc

1

2Ao

(∫
Kρ(z − I(C))

√
Mi/podz −B

)
︸ ︷︷ ︸

�ow optimising B

, (2.54)

where we have denoted dy `oc' the overlap constraint speed coe�cient. The learned mean

µB decides the sign of the overlap constraint in�uence, which keeps B close to its most

likely value µB. For example, if the overlap B is superior to µB, this coe�cient is negative

and leads to a curve evolution which decreases B. The learned variance σ2
B a�ects the

weight of this overlap constraint. A small σB means that µB is a reliable estimation, such

that it gives a higher weight to the overlap constraint and less importance to the other

functional terms (not shown here) and vice-versa.

2.6 Conclusion

In this chapter, after a brief introduction of the principle of classical active contour

models, we have introduced geometric active contours and their implicit representation

using the levels set tool. We focused on the latter, since they can naturally handle

topological changes and can be easily generalised to higher dimension. Then, within this

framework, we introduced typical region-based external energies, parametric and non-

parametric, that are commonly used in segmentation nowadays.

It is well known that active contours driven by region-data terms are quite robust to

initialisations. We have also seen that region-based tools o�er a larger choice to model

the statistical nature of the observed image intensities. It is important, however, to

highlight that they are build on the assumption that each region should be statistically

homogeneous. In other words, that the random observed intensities within a region are

identically distributed and follow a certain pdf. Therefore, the performances of parametric

models can be severely a�ected when the assumed model is not correct ; or when the

identically distributed assumption does not hold. In the next chapter, we will further

concentrate on parametric region-based segmentation algorithms, and particularly on the

ones based on local image statistics.





Chapitre 3

Local region-based methods

Chapter summary

This chapter studies the principles of using local region statistics to build the image-

driven energy for active contour models. Several typical local region-based segmentation

methods will be presented and analysed. Finally, we will introduce two general paradigms

for region-based external energies, which can include most existing global and local models

as special cases.
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3.1 Introduction

Region-based external energies in active contours exhibit a considerable improvement

in image segmentation than edge-based ones [52]. Indeed, they are known to be more

robust and e�cient in handling image noise and weak boundaries. The �rst generation of

region-based methods are global models. They are bound by a homogeneity assumption,

roughly speaking a constant intensity is required, for each object in the image. This

assumption, however, does not generally hold for ultrasound images, where inhomogenei-

ties are generally inevitable. Figure 3.1 demonstrates some images with inhomogeneous

characteristics. In these cases, the object to be segmented cannot be distinguished appro-

priately in terms of global image statistics. Therefore, active contours driven by global

region-based forces lead inevitably to erroneous segmentation.

Figure 3.1 � Examples of images with intensity inhomogeneities. From left to right : synthetic
images corrupted by gradual intensity changes and by an additive Gaussian noise ; realistic
ultrasound simulations 3 ; echocardiographic images with the presence of attenuation, shadows
and signal dropout 4.

3. See § 5.4.1 for these simulations.

4. We would like to thank Professor Alison Noble (BioMedIA Laboratory, University of Oxford) for

providing the real ultrasound data.
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Figure 3.2 � Segmentation examples of synthetic images with inhomogeneities using global region-
based methods 5. Two initialisations are tested for the �rst image. Top : results of the CV model ;
bottom : the Gaussian model.

In order to support our claim and to show the limitations of global models, we tested

the CV model Eq. (2.24) and the Gaussian model Eq. (2.31) on two synthetic images

shown in Fig. 3.1. Their results are shown in Fig. 3.2. Analysing segmentations of the �rst

image, we notice that similar partitions are obtained even with di�erent initialisations

for both models. These results are in favour of supporting that region-based method

are robust to initialisation, but also demonstrating that global external energies are not

appropriate for images with strong intensity inhomogeneities.

In order to accurately segment these inhomogeneous objects, some work, utilising local

image statistics within the level set framework, has been recently carried out. For these

methods, an appropriate spatial window K should be introduced in order to de�ne the

locality. Suppose x and y to be two distinct points in image domain Ω. The local region

can be de�ned, for example, by the following kernel [109] :

K(x,y) =

1 ‖x− y‖ < h

0 otherwise
. (3.1)

5. Unless otherwise speci�ed, the experiments in this chapter use the length term ν|C| as the internal
energy, and use the same weight ν = 1.
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Figure 3.3 � Graphical representation of local region. The locality of point x ∈ C is de�ned by
the interior of the blue circle. All points within this neighbourhood are classi�ed as local interiors
O(x)

⋂
Ωi and local exteriors O(x)

⋂
Ωo.

A Gaussian kernel with a scaling parameter σp is often chosen to de�ned this locality, and

for e�ciency reasons, it can be truncated outside the interval h = 3σp [120, 32] :

K(x,y) =

exp
(
− (x−y)2

2σ2
p

)
‖x− y‖ < h

0 otherwise
. (3.2)

It is not necessary to normalise the above function, because this will be done implicitly

in later procedures.

In the following, the local region, at a given point x along the curve C, will be denoted

by O(x) = {y : ‖x−y‖ < h}. It is represented by the area inside of the blue circle shown

in Fig. 3.3. Then, the local neighbourhood of x is divided into a local interior and exterior

by the curve C, as a result of the intersections between O(x) and Ωr with r = {i, o}.
Thereby, global image statistics, such as µr and σr, become local and pixel-dependent :

µr(x) and σr(x). Similar to the ML estimates given previously in Eq. (2.25) and Eq. (2.32)

for the global models, estimation of these local image statistics can be achieve by :

µ̂r(x) =

∫
Ωr
K(x− ζ)I(ζ)dζ∫
Ωr
K(x− ζ)dζ

, (3.3)

σ̂2
r(x) =

∫
Ωr
K(x− ζ) |I(ζ)− µ̂r(x)|2 dζ∫

Ωr
K(x− ζ)dζ

. (3.4)

The above formulas can be seen as normalised convolutions of image features with the

kernel K(·).
In this chapter, we will focus on analysing some important contributions on local

region-based segmentation methods. We will start with the work of Brox and Cremers [31,

32]. The authors derived a straightforward local Gaussian model from an interpretation of
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the piecewise smooth MS functional. We then review Li's and colleagues' contributions.

Data �tting energies, namely a binary �tting and a Gaussian �tting, to locally approximate

the observed image intensities have been proposed in [120, 196]. Based on a local intensity

clustering property, a segmentation method with a bias �eld correction is introduced

in [119]. We will also consider the region-based framework proposed by Lankton and

Tannenbaum [109], which allows to reformulate a given global external energy in a local

way. Finally, we conclude the data-driven energies by a general Bayesian interpretation

with two local kernels.

3.2 Brox and Cremers model

The idea of incorporating local region statistics in a variational framework begins with

the work of Brox and Cremers [31]. They have derived the Euler-Lagrange equation of

a local Gaussian model. The data �delity term of Brox and Cremers's (BC) model is

expressed by [31, 32] :

EBC =
∑
r

∫
Ω

Hr(φ)

[(
I(x)− µr(x)

)2

2σ2
r(x)

+
1

2
log
(
σ2
r(x)

)]
dx , (3.5)

where the Heaviside function Hr(φ) de�nes the region Ωr. The data-driven energy of a

point x is characterized by its local mean µr(x) and local variance σ2
r(x).

The exact shape gradient of EBC with respect of the contour can be computed by

the Gâteaux derivative, where the usual implementation is a coordinate descent. For

simplicity, the minimisation of the external energy for one region Ωi can be expressed

by [31] :

∂EBC(Ωi)

∂φ
= δ(φ(x))

[(
I(x)− µ̂i(x)

)2

2σ̂2
i (x)

+ log σ̂i(x)− 1

2

(
I2(x)F4(x) + I(x)F5(x) + F6(x)

)]
,

(3.6)

with the following abbreviations :

F1(x) =
(
K ∗Hi(φ)

)
(x) ,

F2(x) =
[
K ∗

(
Hi(φ)I

)]
(x) → µ̂i(x) =

F2(x)

F1(x)
,

F3(x) =
[
K ∗

(
Hi(φ)I2

)]
(x) → σ̂2

i (x) =
F3(x)

F1(x)
− µ̂2

i (x) ,
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F4(x) =

[
K ∗ Hi(φ)(I − µ̂i)2 − σ̂2

i

σ̂4
i F1

]
(x) ,

F5(x) =

{
K ∗ Hi(φ) [2Iσ̂2

i − 2µ̂i(I − µi)2]

σ4
rF1

}
(x) ,

F6(x) =

K ∗ Hi(φ)
[
σ̂2
i (
F3

F1
− 2Iµ̂r)− (I − µ̂i)2(σ̂2

i − µ̂2
i )
]

σ̂4
i F1

 (x) .

Here, K is the mirrored kernel of K and ∗ is a convolution operation. The estimation

of µr(x) and σr(x) in Eq. (3.3)(3.4) now are function of F1, F2, F3. More details on the

derivation of the above shape gradient equations can be found in Appendix A.2 and [31].

In order to de�ne the locality, the BC model uses an isotropic Gaussian kernel with a

standard deviation σp. This choice of local kernel leads to a fast implementation using re-

cursive �ltering. This has the advantage of a computational complexity that is independent

from the choice of the scale of the local spatial kernel. Notice that, the convolutions

F1, F2, F3 are already needed when we use the coordinate descent. The remaining terms

F4, F5, F6 take into account the dependency of the means and standard deviations on φ.

Figure 3.4 demonstrates that, normally, these additional terms are important only when

in
i.
1

in
i.
2

σp = 20 σp = 14 σp = 7

Figure 3.4 � In�uence of σp, the scale of the spatial kernel, on the terms (I2F4 + IF5 + F6) in
Eq. (3.6). We illustrate here the additional term of the seep function at the initial contours shown
in Fig. 3.2. Note that they become important when σp decreases.
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in
i.
1

in
i.
2

σp = 20 σp = 14 σp = 7

Figure 3.5 � Segmentation examples with the local BC model. The �gure illustrates the
importance of the choice of an appropriate size for the local kernel. For ini. 1, the optimal
scale should be between σp = 14 and 7 ; while for ini. 2, none of these scales led to an acceptable
result.

the local scale σp is small, and they could be ignored in the evolution function.

As exhibited in Fig. 3.5, we use the BC model to segment the same test image for the

global models in Fig. 3.2. Three di�erent scales are examined here, aiming at studying the

in�uence of the kernel scale σp in this local method. As expected, the BC model is more

appropriate for the segmentation of images with inhomogeneities than global ones. For

the �rst initialisation, two of the three results, obtained with the smaller kernel sizes, are

much better than the global ones. Also notice that if an appropriate scale is chosen, here

between σp = 14 and 7 for the �rst initialisation, the BC model is able to distinguish the

parts with a very low contrast between the background and the foreground. For the second

row in Fig. 3.2, however, all three scales are unable to lead to a good result. Therefore,

Figure 3.5 suggests that the segmentation achieved by the BC model is rather sensitive

to initialisations and to the choice of the size of the local kernel.

Remarks :

1. According to [142] the outcomes of some linear �lters are exact minimisers of certain

energy functional with an in�nite sum of penalised terms of arbitrarily high order.
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For a spatial position x = (x, y)T , Brox and Cremers [32] have proposed that the

convolution result for estimating local image statistics in Eq. (3.3) equals to �nding

the minimisation of the following energy function :

E(µr) =

∫
Ωr

[
(I(x)− µr(x))2 +

∞∑
k=1

λk

k!

∑
k1+k2=k

(
∂kµr(x)

∂xk1∂yk2

)2
]
dx . (3.7)

Neglecting all penalised terms of order k > 1, the energy with some boundary

constraints, for example the regularisation on the length of C, can be written as :

E =
∑
r

E(µr) + ν|C| ,

≈
∑
r

∫
Ωr

[
(I(x)− µr(x))2 + λ|∇µr(x)|2

]
dx + ν|C| , (3.8)

which corresponds exactly to the MS functional given in Eq. (2.19). The main e�ect

of ignoring the higher order terms is that, the local mean function µr(x) in Eq. (3.8)

is less smooth than the exact minimiser of Eq. (3.7). This impact can be further

reduced by choosing a slightly larger weight λ for the �rst-order approximated energy

Eq. (3.7) than the one used in the regularisation term containing the in�nite sum

of penalisations in Eq. (3.8) [32] .

2. The Bayesian model given in Eq. (2.23) can be directly generalised to local cases.

For example, by substituting the conditional probability p(I|C) ∼ N (µr(x), σ2
r(x))

with a local Gaussian probability density, we obtain the local version of the Gaussian

model and CV model expressed by :

E =
∑
r

∫
Ωr

[
(I(x)− µr(x)2)

2σ2
r(x)

+
1

2
log(σ2

r(x))

]
dx + ν|C|

E =
∑
r

∫
Ωr

(I(x)− µr(x))2 dx + ν|C|+ const , for σ2
r = 0.5 .

Consequently, this Bayesian a-posteriori maximisation based on local Gaussian mo-

del is exactly the BC model in Eq. (3.5).

3. Brox and Cremers [31] have also proposed a general solution for non-parametric

local models in Eq. (2.23), whose Gâteaux derivative is as follows :

∂E(φ)

∂φ
= δ(φ(x)) log p(I(x),x)

+ δ(φ(x))

∫
Ω

K(y − x)Hr(φ(y)) (Kρ(I(y)− I(x))− p(I(y),y))

p(I(y),y)
∫

Ω
K(y − z)Hr(φ(z))dz

dy .
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Notice here the locality K with the scale σp is di�erent from the tonal kernel in

the Parzen estimator Kρ(·). By using estimated intensity histograms, this evolu-

tion function can be implemented through convolutions, which are similar to the

parametric external model shown in Eq. (3.6).

3.3 Local intensity �tting model

Li et al. [120] have proposed a local data �tting energy for the purpose of handling

intensity inhomogeneity. For a given point x ∈ Ω, its �tting function locally approximates

the image intensity [120] :

E�t(x) =
∑
r

∫
Ωr

Kσe(x− y)|I(y)− µr(x)|2dy , (3.9)

where the local kernel Kσe satis�es Eq. (3.2). Due to the contribution of this assigned

coe�cient Kσe , intensities I(y) are e�ectively involved in the above energy within a local

region O(x). Therefore, E�t(x) can be seen as a weighted mean square error (MSE) of

the approximation of the image intensities for each region Ωr.

In order to obtain the segmentation, E�t(x) is minimised for all pixels x in the whole

image domain Ω. Hence, the external energy using this intensity model is de�ned as the

following double integral functional [120] :

ELi =

∫
Ω

E�t(x)dx =

∫
Ω

(∑
r

∫
Ωr

Kσe(x− y)|I(y)− µr(x)|2dy

)
dx . (3.10)

For a binary segmentation, the above function corresponds to the global �tting energy in

the CV model. Wang et al. [196] have extended Eq. (3.10) by taking the local variances

into account. Therefore

EWang =

∫
Ω

{∑
r

∫
Ωr

Kσe(x− y)

[
|I(y)− µr(x)|2

2σ2
r(x)

+
1

2
log(σ2

r(x))

]
dy

}
dx (3.11)

is used to �t the local Gaussian distribution. By minimising the above energy with respect

to µr(x) and σr(x), we obtain the same estimation of local model parameters given in

Eqs. (3.3) and (3.4), with σe = σp. Within the level set framework, minimisation of

Eq. (3.11) can be achieved by the following gradient descent equation [196] :

∂EWang(φ)

∂t
=−

∑
r

δ(φ)

∫
Ωr

Kσe(y − x)

[(
I(x)− µ̂r(y)

)2

2σ̂2
r(y)

+ log
(
σ̂r(y)

)]
dy . (3.12)
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in
i.
1

in
i.
2

σe = σp = 6 σe = σp = 4 σe = σp = 2

Figure 3.6 � Segmentation examples with the Gaussian �tting model Eq. (3.11). The �gure
illustrates the importance of the choices of kernel's sizes when σe = σp. The best scales are 2 for
ini. 1 and 4 for ini. 2. Even these best results have mis-localisation problems at sharp corners.

Figure 3.6 shows the segmentation results using the local Gaussian �tting method

when σe = σp on the test image shown previously. For the �rst column σe = σp = 6, the

obtained segmentations have serious mis-localisation issues. When the estimation of the

model parameters becomes more local, σe = σp = 2 for the �rst initialisation and 4 for the

second initialisation, this local Gaussian model gives its best result. The over-smoothing

of the contour however, still remains at sharp corners. If the locality shrinks further, such

as σe = σp = 2 in the second row, only the partial boundary close to the initial contour

can be found. Therefore, similar to the BC model, picking an optimal scale for Ewang is

required in order to achieve a satisfactory segmentation result.

Remarks :

1. The BC model in Eq. (3.5) can be seen as simply using a spatially varying region-

based statistics to replace the constant ones in the global energy. The Localised

energy functions described in Eq. (3.10) and Eq. (3.11) use double integrals, which

are essentially di�erent from the BC model.

2. The local binary �tting and the local Gaussian �tting introduced in [120, 196],
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Figure 3.7 � Demonstration of a priori probability. For the marked points x1,x2,x3 along the
contour C, the two partitions for x2 do not have equal probability.

assumed that all partitions p(y ∈ Ωr

⋂
O(x)) have a priori equal probabilities.

Hence this term has been ignored. In practice, this assumption is not always true.

As illustrated in Fig. 3.7, p(y ∈ Ωi

⋂
O(x1)) = p(y ∈ Ωo

⋂
O(x1)) = 1/2, however,

clearly p(y ∈ Ωi

⋂
O(x2)) < p(y ∈ Ωo

⋂
O(x2)). In addition, we check that for the

point x3, p(y ∈ Ωi

⋂
O(x3)) = p(y ∈ Ωo

⋂
O(x3)) = 1/2 because the size of the

local kernel is very small. Therefore, this underlying assumption is reliable only when

σe is extremely small and when the image boundary does not have sharp corners.

3. According to [120, 196], the local kernel Kσe is chosen to be a Gaussian one, and

K = Kσe is assumed to calculate the local region statistics. Notice that σp should

be large in order to better estimate the local image model parameters. This is the

case when the initial contour is in a comparatively homogeneous region or when the

image noise is important. On the other hand, increasing the value of σe will bring

more bias to the energy function (because of the above point). This problem will be

discussed later in § 3.5.2.

3.4 Local intensity �tting with bias correction

Li et al. [119] have recently combined the local intensity �tting models introduced in

§ 3.3 with a bias �eld estimation technique. They considered a multiplicative model of

intensity inhomogeneity, thus the observed image I can be expressed by :

I(x) = bJ(x) + n , (3.13)

where J(x) is the true image, b refers to a bias �eld or a shading image, and n is the

additive noise which is normally assumed to be zero mean Gaussian noise. In order to

establish a local external energy for this model, two assumptions are made as follows :
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1. The bias �eld b is varying slowly, which means b(x) can be well approximated by a

constant in the neighbourhood of x.

2. The true image J(x) is approximated by N distinct constant values {cr}Nr=1 in

di�erent regions {Ωr}Nr=1.

In a circular neighbourhood O(x), the values b(y) for all y are close to b(x). In other

words, b(y) ≈ b(x), when |Kσe(y−x)| > 0. Then, in each subregion O(x)
⋂

Ωr, b(y)J(y)

approximates b(x)cr. Therefore, the image model in Eq. (3.13) is locally equivalent to :

I(y) = b(x)cr + n(y) , y ∈ O(x)
⋂

Ωr . (3.14)

In the view of a clustering problem, the observed image intensities could be seen as N

clusters with centres b(x)cr. Note that the cluster centres are function of image position

x. This is what the authors have denoted as a "local intensity clustering property". Thus

given a local clustering criterion, Li and colleagues proposed a global energy function

to achieve the segmentation. For instance assuming that the variance is constant, the

L2 norm is used as a local clustering criterion which leads to the following energy data

term [119] :

ED =

∫
Ω

(∑
r

∫
Ωr

Kσe(x− y)|I(y)− b(x)cr|2dy

)
dx . (3.15)

Minimising the above energy with respect to b for �xed φ and cr gives :

where b̂(x) =
{I
∑

r crHr(φ)} ∗Kσe

{
∑

r c
2
rHr(φ)} ∗Kσe

, r = 1, 2, . . . , N . (3.16)

Alternatively, minimising with respect to cr for �xed φ and b gives :

ĉr =

∫
Ω
Hr(φ)(b ∗Kσe)Idx∫

Ω
Hr(φ)(b2 ∗Kσe)dx

, r = 1, 2, . . . , N . (3.17)

Given the estimates b̂ and ĉr, the minimisation of Eq. (3.15) with respect to φ can be

obtained by means of the Gâteaux derivative :

∂ED(φ)

∂t
=−

∑
r

δ(φ)

∫
Ωr

Kσe(x− y)|I(y)− b̂(x)ĉr|2dy . (3.18)

When b = 1, this local clustering function reduces to the data �tting term. This term,

which can be seen as a generalised CV model, aims at �nding piecewise constant means.

The energy in Eq. (3.15) evaluates the classi�cation of the intensities in the neighbourhood

O(x) given by the current partition.
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in
i.
1

�
n
al
b̂

in
i.
2

�
n
al
b̂

σp = 20 σp = 14 σp = 7

Figure 3.8 � In�uence of the scale of the local kernel and the initialisation on the segmentation
method using bias correction. From top to bottom : segmentation results and corresponding bias
�eld estimations. ν = 650.
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Figure 3.8 is a segmentation example of the degraded noisy image using Eq. (3.18). At

each time step, the contour and the bias �eld are updated according to Eq. (3.16). Thus,

the segmentation and the bias �eld estimation are jointly performed while minimising

this data-driven energy. Notice that the bias correction energy function Eq. (3.15) is not

normalised, thus the corresponding weight for internal energy should be important. In this

test, we choose a very large ν for the length term |C|, in order to avoid the over-segmented

problem. However, this could prevent the curve C to reach the sharp boundary. Indeed,

for both initialisations, using the large scale σp = 20 can not obtain the left corner of the

object of interest. To summarize this experiment, the bias correction procedure is more

signi�cant for smaller local scales, and can help in the segmentation of inhomogeneous

objects, to a certain degree.

3.5 General framework for region-based methods

3.5.1 Lankton and Tannenbaum model

Lately, Lankton and Tannenbaum have proposed a framework to guide active contours

in segmentation, which can be used to localise global region-based energies [109] :

ELT (φ) =

∫
Ωx

δ (φ(x))

∫
Ωy

Kσe(x,y)F (I(y), φ(y)) dydx , (3.19)

where the local mask Kσe(·, ·) performs similarly as that in local �tting models. F is an

energy measure used to represent local adherence to a given model at each point along the

contour. The Dirac function δ (φ(x)) is multiplied in the outer integral ; i.e. the de�ned

energy function is a line integral along the contour. Notice that this term ensures that

the curve will not change topology by spontaneously developing a new contour, although

it still allows the contour to split and merge. For every point x selected by δ, Kσe(·, ·)
guarantees that F operates on local image information about x. Therefore, the total

energy is the sum of values for every neighbourhood along the zero level set.

By taking the partial derivative of the energy ELT (φ) with respect to φ, the evolution

function is given by [109] :

∂ELT (φ)

∂t
= δ (φ(x))

∫
Oy

Kσe(x,y) ∇φ(y)F (I(y), φ(y)) dy . (3.20)

Thus, the only restriction on the function F is that its �rst variation with respect to φ
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can be computed. For example, the local binary �tting model has :

F (I(y), φ(y)) = H(φ(y))(I(y)− µi(x))2 +H(−φ(y))(I(y)− µo(x))2

⇒ ∇φ(y)F (I(y), φ(y)) = δ (φ(x))
[
(I(y)− µi(x))2 − (I(y)− µo(x))2

]
.

After the estimation of the local means for current segmentation, the above function can

be substituted directly into Eq. (3.20) to form the evolution of a completely localised

energy. With this framework, more examples such as the local mean separation and the

local histogram separation methods are derived in [109].

3.5.2 Localised Bayesian interpretation

The segmentation problem can be described as the minimisation of the following

localised Bayesian interpretation [196] :

E =

∫
Ω

[∑
r

∫
Ωr

Kσe(x− y)log p(I(y)|y ∈ Ωr)dy

]
dx + ν|C| , (3.21)

where the pdf p(I(y)|y ∈ Ωr) models the distribution of local image intensities.

The scale σp controls the size of region used for estimating the local image statistics,

and σe decides the contribution points in curve evolution. Here, we �rst eliminate the

assumption that σp = σe in [120, 109, 196], and consider their values separately. Then,

it can be shown that, based on the above energy function, most existing region-based

segmentation methods can be included as special cases. For instance, when σe = 0 and

p(I(y)|y ∈ Ωr) follows the local Gaussian distribution, the energy function Eq. (3.21)

degrades into the BC model Eq. (3.5). It can be simpli�ed further by setting to a constant

the standard deviation σr =
√

0.5 for the whole image domain ; the method becomes a

piecewise smooth one. Moreover, if µr is no longer a function but collapses into a single

value, which is known as the cartoon limit. In the particular case of a binary segmentation,

σp σe µr σr method

σp = +∞ σe = 0 global binary
√

0.5 Chan & Vese [40]

σp = +∞ σe = 0 global Gaussian global Rousson & Deriche [172]

σp = a σe = σp local binary
√

0.5 Li et.al [120]

σp = a σe = σp local Gaussian local Wang et.al [196]

σp = a σe = 0 local Gaussian local Brox & Cremers [32]

Table 3.1 � Region-based Segmentation Methods. a ∈ R+.
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Eq. (3.21) becomes the formula of the CV model. Table 3.1 gives a summary of the above

discussion.

The general frameworks in Eq. (3.19) and Eq. (3.21) are di�erent in several aspects.

The outer integral of the former equation includes the contributions from the points

nearby the zero level set, while the latter integrates over all the x in the image domain

Ω. Regarding the locality, Eq. (3.19) uses σp = σe, thus, it has the same problem in �xing

the size of local kernel as the local �tting models introduced in § 3.3. Facing with this

dilemma, we suggest that σe should be much smaller than σp. Therefore, on one hand, the

model becomes more general and is capable to include more energies. On the other hand,

a larger local window can be used in order to estimate the local model parameters. For

instance, we tested minimising Eq. (3.21) with a �xed σe = 1 by di�erent σp. According

to the obtained results shown in Fig. 3.9, we notice that a very small σe causes less mis-

localisation and gives a smoother segmentation, also using σp >> σe has the potential

to give a better estimation of local image statistics when intensity inhomogeneity is less

strong.

in
i.
1

in
i.
2

σp = 20 σp = 14 σp = 7

Figure 3.9 � Segmentation results of Eq. (3.21) when σe = 1. From left to right, the kernel size
σp changes for the estimation of local region statistics. The above results are to be compared to
Fig. 3.6
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3.6 Conclusion

In this chapter, we focused on several recently developed algorithms based on local

region statistics, including the BC model [32], local intensity �tting model [120, 196] and

the local �tting model with bias �eld correction [119]. We also gave some segmentation

examples of synthetic images with intensity inhomogeneities. We also reviewed the general

framework for local region-based segmentation models proposed in [109]. Finally, we pre-

sented a synthesis of most local methods base on a variant of the Bayesian interpretation

in [196]. Although local image statistics outperforms global ones for the segmentation of

inhomogeneous images, their results are still sensitive, mainly to the initialisation. The

results are also highly dependent on the choice of size of the locality. The following chapter

will introduce several possible solutions to these problems, such as the combination of

global and local image information as well as scale selection strategies for local active

contours.
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Chapter summary

In this chapter, we will concentrate on discussing local region-based segmentation me-

thods. More speci�cally, we aim to give answers to two questions. i) How global and

local image information can be combined ? ii) How to estimate an appropriate size of the

spatial kernel that de�nes locality ? First, we will brie�y review several algorithms that

solve similar issues in image denoising. Then, we consider segmentation methods that use

both global and local image information. Finally, our main contributions will be presented

in more details.
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4.1 Introduction

Local region-based segmentation models are surely better alternatives to global ones

for images in the presence of intensity inhomogeneities. However, they are found to be more

sensitive to initialisations if the local spatial scale is not chosen appropriately. A decrease

of robustness to noise is also observed when small neighbourhoods are used. Therefore,

this brings out two problems : the combination of global and local image statistics in one

model and the selection of optimal pixel-dependent scales for local methods. Facing with

these problems, the rest of this chapter will be organized as the following three parts.

We can learn a lot from the progress of denoising methods [34, 99, 101, 100], which

aim at smoothing images while preserving edges. Conventional denoising techniques, such

as �ltering, are based on local averaging. Therefore, these problems of choosing locality

also exist in image denosing area. An increase of the size of the averaging window does

not solve the problem, as it brings bias into image regions where the noise free data are

not constant. In this perspective, the possible solution is to use an adaptive number of

image pixels assigned with data-dependent contributions in the �ltering process.

A �rst segmentation model, which uses both global and local information within

the level set framework, has been proposed by Wang et al. [197]. Their approach is

straightforward in the sense that it adds two energy functions of the same nature, where

the region-based statistics are estimated globally in one and locally in the other. In fact,

this is not the �rst time that global and local image statistics are combined together for

the purpose of solving a segmentation problem. To our knowledge, the �rst proposition

has been introduced in [24, 23] within the Bayesian framework. The authors focus on the

adaptive character of a MAP algorithm and discuss how global and local region statistics

are utilised in order to control the adaptive properties of the segmentation process.

Similar to image denoising, an appropriate size of the local kernel can help in obtaining

a meaningful segmentation than using an empirically �xed one. Two pixel-dependent scale

selection strategies have been recently introduced in local region-based active contours.

The �rst was by Piovano and Papadopoulo, which de�nes the local scale as the smallest

one inducing an evolution speed superior to a given threshold [163]. The second one is

by us, where we proposed an optimal scale in the sense of the MSE minimisation of

a Local Polynomials Approximation of the observed image conditional on the current

segmentation [209] 6.

6. Although the work of Piovano and Papadopoulo was published before ours, we were not aware of

it until the beginning of year 2012.
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4.2 Denoising methods

Suppose the independent random observations I(xs) are given in the form :

I(xs) = J(xs) + n(xs) , s = 1, . . . ,m , (4.1)

where the observations coordinates xs are known. The original noise free image J is

corrupted by a zero-mean white Gaussian noise n(·). The goal of image denoising methods

is to recover the unknown image J from the noisy measurement I(xs). In order to search

for e�cient denoising algorithms, several popular solutions exist in the literature [190, 98,

34, 106, 99, 101, 167, 100, 86].

Image denosing techniques through �ltering assume that images typically vary slowly

over space. So adjacent pixels are likely to have similar values, and it is appropriate to

average them together. However, this assumption fails at edges, which are consequently

blurred by low-pass �ltering. Tomasi and Manduchi [190] have proposed the bilateral

�lter for edge preserving smoothing. This �lter is a normalised weighted average of a

neighbourhood around xs, given by :

Ĵ(xs) =

∑
x∈O(xs) w[xs,x]I(x)∑

x∈O(xs) w[xs,x]
. (4.2)

The weights w[xs,x] are de�ned by multiplying a spatial closeness function wc with an

intensity similarity function ws :

w[xs,x] = f (‖xs − x‖ , σs)︸ ︷︷ ︸
wc

exp

(
−(I(xs)− I(x))2

2σ2
I

)
︸ ︷︷ ︸

ws

. (4.3)

Therefore, the weights w[xs,x] includes two ingredients. The �rst term measures the

geometric proximity ‖xs − x‖. The function f is monotonically non-increasing, which

may take many forms, such as a Gaussian with a variance σ2
s . This way, close-by samples

in�uence the �nal result more than distant ones. The second weight is the proximity

among the observed intensities I(xs) and I(x). The parameter σI controls the e�ect of

the grey-level di�erence between the two pixels. This way, when two pixels are di�erent,

the corresponding weight is very small. Thereby, this neighbour should not be trusted in

averaging.

The non-local means (NLM) �lter [34] could be seen as a generalisation of the bilateral

�ltering [167]. The radiometric part in the weights of the NLM is computed by the

Euclidean distance between two image patches, which are centred at the involved two
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pixels :

w[xs,x] = f (‖xs − x‖ , σs)︸ ︷︷ ︸
wc

exp

(
−
∥∥RI

xs
−RI

x

∥∥2

2σ2
I

)
︸ ︷︷ ︸

ws

. (4.4)

Here, RI
xs

is an operator which extracts a patch of a �xed and pre-determined size (τ × τ)
from the observed image. For instance,

RI
xs

(l) = I(xs + l) , ∀ l ∈ [−τ/2, τ/2]2 . (4.5)

Obviously, when RI
xs

extracts only a single pixel, the bilateral �lter emerges as a special

case of the NLM algorithm.

The choice of σs su�ers from the same problem as the scale σp in local image statistics

estimations for segmentation. A variant of the NLM �lter optimises explicitly the size

of the local window in order to achieve the best trade-o� between a minimum bias and

a minimum variance of the estimates [101]. The selection of the best parameters of the

NLM �lter is also addressed in [59]. Their approach is based on a popular method of risk

estimation, namely the Stein Unbiased Risk Estimate (SURE) [186]. Thus, it is also a

bias and variance trade-o� method, but di�ers from the work in [101]. This is because the

SURE method focuses on the choice of the smoothing parameter σI and the latter on the

size of the searching window σs.

Anisotropic LPA-ICI denoising

An alternative approach to the above mentioned denoising techniques is based on a

Local Polynomial Approximation (LPA) of image patches. Katkovnik et al. [98, 99] have

proposed a selection mechanism based on a bias and variance trade-o� to optimise the size

of the local spatial window. Formally, the selection algorithm is based on the Intersection

of Con�dence Intervals (ICI) rule, �rst proposed in [76, 97]. The most general formulation

of the LPA-ICI method can estimate not only the size of the local window, but also its

shape when it is used in its anisotropic form. This method uses a starshaped estimation of

the neighbourhood at each point. The starshape kernel o�ers enough geometrical �exibility

to �t to edges in a large number of natural images. Examples of the ideal neighbours are

labelled by the grey regions in Fig. 4.1. In order to describe these starshapes, a directional

adaptive scale estimator has been introduced by Katkovnik et al. [98]. The authors use a

set of sectors characterized by a direction and an optimal scale obtained by the anisotropic

LPA-ICI approach. Figure 4.2 shows examples of estimations of sectorial kernels for image

denoising, where the directional resolution polar coordinates is 16.
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Figure 4.1 � Examples of ideal starshaped neighbourhoods [66]. From left to right : true image,
illustration of ideal spatial neighbourhoods used for denoising at four di�erent pixel locations.

Figure 4.2 � Examples of optimal neighbourhoods obtained by the LPA-ICI rule using sectorial
kernels [66]. Any two di�erent sectors overlap only in the central point. Notice that the shape
and the size of estimated windows are well adapted to image content at di�erent pixel locations.
This anisotropic kernel ensures the LPA-ICI �lter to average only i.i.d. observations.

Denoising example : Finally, �gure 4.3 shows the denoising example obtained by

the NLM and the anisotropic LPA-ICI. Both methods appear to be promising, which

successfully reduce the noise and preserve the edge information.

In the rest of this chapter, we will �rst introduce three typical segmentation methods,

which use both global and local image statistics. Then, our main contributions will

be detailed in § 4.4. Alternative to using a �xed local scale, we will concentrate on

�nding the optimal window size for local region-based segmentation method. Motivated by

the anisotropic LPA-ICI algorithm, we have proposed a local region-based segmentation

method with an adaptive scale selection strategy. Finally, we will discuss the performances

of our approach in dealing with image intensity inhomogeneities.
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Figure 4.3 � Image denoising example using the NLM and the anisotropic LPA-ICI. From left
to right : the noisy image with SNR=14dB, the NLM and the anisotropic LPA-ICI denoising
results. For the NLM, σs = 2, the similarity window τ = 5, and σ2

I = 0.9 σ̂2, where σ̂2 is the
estimated noise variance from the observed image. For the anisotropic LPA-ICI, the optimal scale
is chosen from the set h = [3, 6, 9, 15, 21, 33], the parameter Γ controls the trade-o� between bias
and variance is 1.05, and the directional resolution is 8.

4.3 Combination of global and local image statistics

4.3.1 A MAP-MRF framework

Boukerroui et al. [24, 23] have proposed a region-based segmentation method and dis-

cussed how global and local image statistics can be utilised within a Bayesian framework.

Their approach introduced an enhancement in controlling the adaptive properties of the

segmentation process. Thus, its data-driven energy function to be minimised is given

by [23] :

ED =
∑
xs∈Ω

ϕ(wr(xs), a)

[(
I(xs)− µr(xs)√

2σr(xs)

)2

+ log(σr(xs))

]
. (4.6)

µr(xs) and σr(xs) are local region statistics of the segmentation class r, whose similarity

to global image statistics are measured by the weighting coe�cient wr(xs). The weight

wr(xs) can be determined by any similarity measure. For instance, the authors used the

Kolmogorov-Smirnov distance between the global images statistics and the local one.

The idea behind this mechanism is to favour the expansion of homogeneous region. The

positive parameter a controls the contribution of the global region statistics, i.e. for large

values of a the function ϕ = 1 for all r. Meaning the global data-driven information is not

taken into account. However, for small a values, inhomogeneous regions are penalised by

increasing their contribution in the energy function.
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4.3.2 Local and global intensity �tting energy

Within the level set framework, a region-based model, including local and global

image information, has been proposed in [197]. Its external energy term is a direct linear

combination of a local intensity �tting term [120], which is responsible for attracting the

contour towards boundaries, and an equivalent global �tting one, which improves the

robustness :

ED = (1− ω)

∫
Ω

(∑
r

∫
Ωr

Kσe(x− y)|I(y)− µr(x)|2dy

)
dx︸ ︷︷ ︸

ELi

+ω
∑
r

∫
Ωr

(I(x)− µr)2 dx︸ ︷︷ ︸
ECV

,

(4.7)

where the positive weighting parameter ω belongs to [0, 1]. Clearly, the evolution equation

of the gradient descent of the energy is also a linear combination of the corresponding

forces of Li and CV given respectively in Eq. (3.10) and Eq. (2.24).

The in�uence of these two energies on the curve evolution is complementary. Indeed,

it is well known that global image statistics are more robust to initialisations. If the initial

contour is far away from the true boundaries, the local energy will be unable to drive the

contour to an acceptable result. In such cases, the global energy should be dominant, thus

a relatively large ω should be used. On the contrary, the accuracy of a segmentation of an

image with inhomogeneities relies on local image statistics. Local region statistics should

be essential for images with severe inhomogeneities, which means a small ω should be

chosen. Otherwise the global force may prevent the segmentation contour from stopping

at true boundaries. In the original local and global intensity �tting model [197], the value of

ω is a constant, which is chosen according to the degree of inhomogeneity. Alternatively,

authors of [216, 205] proposed that the contribution of global energy term ω could be

de�ned dynamically by local contrast of the image.

4.3.3 Non-local active contours

Non-local methods, originally proposed by Buades et al. for denoising, have been

explored in many papers because they are well adapted to texture. The idea has been

extended to image segmentation by [74, 61, 27, 95]. For example, Jung et al. [95] have

recently proposed a novel class of segmentation energies that imposes a local homogeneity

of patch features. This method is based on comparisons between pairs of patches within

each region [95] :

d(RI
x,R

I
y) =

∫
l

Ka(l)‖RI
x(l)−RI

y(l)‖2dl , (4.8)
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where Ka is used to give more in�uence to the central pixel, and a truncated Gaussian

kernel is commonly applied. RI
x and RI

y, satisfying Eq. (4.5), are two patches of the obser-

ved image centred at image points x and y respectively. The non-local interaction d(·, ·)
measures the similarity between these patches. This weighted distance only constrains

the local homogeneity, which is crucial to capture regions with smoothly spatially varying

features.

The data-driven energy de�ned by the similarity of each local region is measured by

considering all possible pairwise patch interactions at a given scale b > 0 [95] :

ED =
∑
r

ENL(Ωr)

=
∑
r

∫
Ωr

∫
Ωr
Kb(x,y)d(RI

x, R
I
y)dy∫

Ωr
Kb(x,y)dy

dx . (4.9)

Kb is a decaying function of ‖x− y‖. The parameter b is important since it controls the

scale of the local homogeneity required for the segmented object. The minimisation of the

above energy function enforces the similarity features within each region. By designing

an appropriate d(·, ·), this energy can be adapted to various segmentation problems.

4.4 Local region-based methods with adaptive scales

In order to segment an image with intensity inhomogeneities, local image statistics

should be used. However, for local region-based methods as well as the one combining

both global and local image statistics, their segmentation results depend upon the choice

of the scale of the local window 7. In certain controlled situation, appropriate scales may

be known as a priori. But under most circumstances, it may not be obvious at all to

determine in advance the proper scale. To cope with this problem, in this section, we aim

to �nd the suitable scale for each point along the contour. First, we will brie�y recall

the scale selection method proposed by Piovano and Papadopoulo [163]. Then, we will

introduce our main contributions.

4.4.1 Piovano-Papadopoulo scale selection strategy

In [163], the authors proposed a scale selection strategy when using local region

statistics in active contours. Their idea is to �nd the most salient scale for each point

7. In this thesis, the window size and the scale are interchangeable concepts. We recall that we denote

by h the half widows size and by σp, σe the kernel standard deviation.
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in order to make the contour evolved locally. As mentioned earlier, it is desirable that the

contour should evolve even in locally homogeneous area. Therefore, the pixel-dependent

scale is de�ned as the smallest one inducing an evolution speed superior to a given

threshold ξ [163] :

h∗(x) = inf
h∈h

(
h :

∣∣∣∣∂φ(x)

∂t

∣∣∣∣ > ξ

)
. (4.10)

The authors minimised the local region-based energy presented in the BC model Eq. (3.5).

Thereby, the evolution speed in the level-set notation is obtained similarly.

This scale selection method can estimate continuous scales but for e�ciency reasons,

the search is generally limited to a �nite set of ordered scale values h = {h1 < h2 < · · · <
hu}. At each iteration of the level set evolution, various kernel sizes are used to obtain

local image statistics. The optimal local scale is found for every image pixel along the zero

level set function, by increasing h from the minimum h1 to the maximum hu, until the

absolute value of the evolution speed is superior to ξ. Therefore, when the active contour

is close to a boundary, small neighbourhoods are chosen ; and large neighbourhoods are

applied if the segmentation curve is in homogeneous areas.

ξ = 0.5 ξ = 0.3 ξ = 0.1

Figure 4.4 � In�uence of the threshold ξ on the scale selection strategy proposed by Piovano and
Papadopoulo. Top row : initial (red) and �nal (magenta) contour for three values of ξ. Bottom
row : estimated sizes of the local kernels ĥ(x), where x are within a narrow band. The colourbar
indicates the values of ĥ(x). Image size is 128× 128, and h = [12, 14, 16, 18, 20, 22, 24, 27, 30,
33, 36, 40, 44, 48, 53, 58, 64, 70, 77, 84, 92,100].
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However, it is unclear how should we �x the positive constant ξ. For example, the

segmentation of a synthetic image is show in Fig. 4.4. Notice that we only consider the

estimated scales ĥ(x) within a narrow band. When the threshold is suitable, here ξ = 0.3

shown in the middle column, the Piovano's model selects proper scales for pixels around

the curve. Accordingly, this method can help to segment the image with inhomogeneities.

For ξ = 0.5 or ξ = 0.1, the selected scales have overestimation or underestimation

problems in the middle right part, because of the very low contrast between the inside and

the outside of the true boundary. Consequently, this model leads to similar segmentation

results as the single scale local region-based model.

4.4.2 LPA-ICI rule

In the following section, we will introduce an alternative approach, in order to choose

a good value for the spatial scale at every pixel location along the contour. The LPA

is a powerful non-parametric estimation in a point-wise manner based on a mean square

polynomial �tting in a sliding window. Similar to local segmentation method, the selection

of an appropriate window size is of great interest for the LPA, in order to obtain the most

natural and relevant approximation. Here, we mean by natural approximation a smooth

one and relevant a non-biased one. The ICI rule [97, 98, 99] is an adaptation algorithm,

which searches for the largest local window size where LPA assumptions �t well to the

observations. The ICI rule can be applied with many existing linear and non-linear �lters

where a bias-variance trade-o� is a good criterion for the parameter selection. The optimal

window size is de�ned by a compromise between the bias and the variance of estimation.

4.4.2.1 Basis of LPA

Recall the noisy observation model de�ned in Eq. (4.1). The LPA assumes the true

image J can be well approximated locally by a polynomial function in some neighbou-

rhoods of the point of interest. It provides estimations in a point-wise manner, which �nds

the weighted least-square �tting in a sliding window. The LPA for the point x = (x, y)T

in a neighbourhood of the centre xs = (xs, ys)
T is of the form :

Jh(x,xs) = CTψh(x− xs) , (4.11)

ψh(x) = ψ(x/h) , ψ(x) =
[
ψ1(x), ψ2(x), . . . , ψM(x)

]T
,
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m M ψh(x, y)

0 1 ψ1 = 1

1 3 ψ2 = −x ψ3 = −y
2 6 ψ4 = x2/2 ψ5 = y2/2 ψ6 = xy

3 10 ψ7 = −x3/6 ψ8 = −y3/6 ψ9 = −x2y/6 ψ10 = −xy2/6

Table 4.1 � 2D polynomials ψ for the order m ∈ {0, 1, 2, 3}.

where h is a scaling parameter. C = [C1, C2, . . . , CM ]T is a vector of the parameters, and

ψ is a vector of linearly independent 2D polynomials :

ψ = (−1)k1+k2
xk1

k1!

yk2

k2!
, with k1 + k2 = 0, 1, . . . ,m . (4.12)

The total number of polynomials is equal to M = (m + 2)(m + 1)/2. For example, the

above polynomials for the order m ∈ {0, 1, 2, 3} are shown in Table 4.1. For an order m,

the set of the polynomials includes the row corresponding to m as well as all rows with

smaller values of m.

The standard LPA minimises the following weighted least-square criteria with respect

to the coe�cient C [63] :

LSh(x) =
∑
xs∈Ω

wh(xs − x)
(
I(xs)− Jh(x,xs)

)2
. (4.13)

The window wh(x) = 1
h2
w
(
x
h

)
satis�es the conventional properties of kernel estimates

and h is a scaling parameter. The Taylor series for I(xs) with the reference point x is :

I(xs) =Jh(x)− ∂xJh(x)(x− xs)− ∂yJh(x)(y − ys)

+
1

2
∂2
xJh(x)(x− xs)2 +

1

2
∂2
yJh(x)(y − ys)2 + ∂x∂yJh(x)(x− xs)(y − ys) + · · · .

Consider the model Jh(x,xs) in Eq. (4.11) with the polynomials of the corresponding

powers :

Jh(x,xs) =C1 −
C2

h
(x− xs)−

C3

h
(y − ys)

+
C4

2h2
(x− xs)2 +

C5

2h2
(y − ys)2 +

C6

2h2
(x− xs)(y − ys) + · · · .
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Therefore, the residuals in Eq. (4.13) can be given in the following form :

I(x)− Jh(x,xs) =(Jh(x)− C1) +

(
C2

h
− ∂xJh(x)

)
(x− xs) +

(
C3

h
− ∂yJh(x)

)
(y − ys)

+

(
1

2
∂2
xJh(x)− C4

2h2

)
(xs − x)2 +

(
1

2
∂2
yJh(x)− C5

2h2

)
(ys − y)2

+

(
∂x∂yJh(x)− C6

2h2

)
(xs − x)(ys − y) + · · · .

Because all the polynomials in the above equation are linearly independent, minimisation

of Eq. (4.13) is equivalent to minimise (Jh(x)−C1),
(
C2

h
− ∂xJh(x)

)
and so on. In this way,

the estimate of the function Jh is given as Ĵh(x) = Ĉ1(x, h) and similarly its derivative is

given by :

∂xĴh(x) =
C2

h
, ∂yĴh(x) =

C3

h
, · · ·

The estimate given by the LPA can be written as the kernel operator on the observa-

tions [98, 99] :

Ĵh(x) =
∑
xs∈Ω

gh(x,xs)I(xs) , (4.14)

where the kernel is given by :

gh(x,xs) = wh(x− xs)ψ
T
h (x− xs)Ψ

−1
h ψh(0) , (4.15)

Ψh =
∑
xs∈Ω

wh(x− xs)ψh(x− xs)ψ
T
h (x− xs) .

Figure 4.5 � The kernels gh of the smoothing �lters in Eq. (4.15). From left to right, gh are
designed with a symmetric rectangular window and a Gaussian window (wh) of the orders m = 0
(blue continues lines) and m = 2 (red dotted lines). Notice that the increase of m reduces the
bandwidth of these low-pass �lters.
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When the grid is assumed to be regular, the LPA kernel gh(x,xs) becomes shift-invariant

on x, thereby, the solution of the above estimation is given by a convolution operation.

The kernel gh is de�ned by the window wh and the set of polynomials ψh. Figure 4.5 shows

examples of the kernel gh for 1D LPA. The gh based on Gaussian model is smoother than

the corresponding one based on a rectangular window.

4.4.2.2 Ideal scale

Let the accuracy of the LPA can be measured by the pointwise mean-square risk :

rĴh(x, h) = E{(eĴh(x, h))2} = E{(J(x)− Ĵh(x))2} ,

where eĴh(x, h) is the error of estimation. This function can be written as the sum of the

squared bias and the variance of the estimation :

rĴh(x, h) =
(
E{Ĵh(x)} − J(x)

)2

+ E
{(

Ĵh(x)− E{Ĵh(x)}
)2
}

+ 2E
{(

E{Ĵh(x)} − J(x)
)(

Ĵh(x)− E{Ĵh(x)}
)}

,

=m2
Ĵh

(x, h) + σ2
Ĵh

(x, h) + 0 . (4.16)

Assume the given image is sampled by a small interval ∆, and the sampling grid is regular.

Let the noise in the observation model in Eq. (4.1) be white with variance σ2. Omitting

the higher-order terms in the estimation of bias and variance, the upper bound of the

above mean-square risk rĴh is given by [98, 99] :

rĴh(x, h) ≤
(
hm+1J (m+1)(x)Ag

)2︸ ︷︷ ︸
m2

Ĵh

+σ2 ∆2

h2
Bg︸ ︷︷ ︸

σ2
Ĵh

= rĴh(x, h) , (4.17)

with Ag =
1

(m+ 1)!

∣∣∣∣∫ g(u)um+1du

∣∣∣∣ , Bg =

∫
g2(u)du ,

where J (m+1) is the (m+ 1)th derivatives of the noise free data.

The window size h is crucial for the accuracy of the LPA. Figure 4.6 demonstrates

the in�uence of the h on the 1D LPA of a noise degraded signal. Obviously, using a small

kernel size, generally leads to a small bias in estimation, but a large variance is caused

by the noise. On the contrary, a big one brings a smooth estimation, which has a very

larger bias for inhomogeneous parts and a small variance. Analyse the expression of mean-

square risk in Eq. (4.17) and the above example of the LPA, we notice that : the bias of

the estimation mĴh
is a monotonically increasing function of h, while the variance σ2

Ĵh
is a
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Figure 4.6 � The contribution of bias m2
Ĵh

and variance σ2
Ĵh

to the mean-square risk r
Ĵh
. The

ideal scale h∗ corresponds to the minimal r
Ĵh
.

monotonically decreasing one. Therefore, it exists a bias and variance balance giving the

ideal scale h∗(x), which can be found by the minimisation of the rĴh(x). This idea leads

to following inequality [98, 99] :

|mĴh
(x, h)|

{
≤ γ · σĴh(x, h) if h ≤ h∗ ,

> γ · σĴh(x, h) if h > h∗ ,
(4.18)

which means the ideal bias-variance trade-o� is achieved when the ratio between the

absolute value of the bias to the variance is equal to γ. Under the assumption of an additive

Gaussian noise, the following inequality holds with probability p = (1− α) [98, 99] :

|eĴh(x, h)| ≤ |mf̂h
(x, h)|+ z(1−α/2)σĴh(x, h) , (4.19)

where z(1−α/2) is the (1−α/2)th quantile of the standard Gaussian distribution. σĴh is the

standard deviation of the estimates, which can be estimated given the noise model and

its variance :

σ̂2
Ĵh

(x, h) = σ2
∑
xs∈Ω

g2
h(x− xs) .

The above function relies on the preliminary estimation of the noise variance σ̂2, which can

robustly be estimated from the input data [110]. More details can be found in Appendix C.

4.4.2.3 The ICI Rule

The two inequalities Eq. (4.18) and Eq. (4.19) are the starting point for the develop-

ment of a hypothesis testing, on which the data-driven scale selection method is built.

Combine the �rst inequality of the former with the latter inequality, the estimation error

satis�es :

|eĴh(x, h)| ≤ (γ + z(1−α/2))︸ ︷︷ ︸
Γ

σĴh(x, h) , ∀h ≤ h∗(x) . (4.20)
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Figure 4.7 � Illustration of the idea and implementation of the ICI rule. Left image : the
con�dence intervals Qi = [Li, Ui] are labelled by thick vertical lines. Right image : the successive
intersections, marked by thick vertical lines, are decreasing with the increasing hi.

This determines the con�dence intervals Q(h) of the estimate :

Q(h) =
[
Ĵh(x)− Γ · σĴh(x, h), Ĵh(x, h) + Γ · σĴh(x, h)

]
. (4.21)

Denote the sequence of the Qi as follows :

Qi = Q(hi) = [Li, Hi] , hi ∈ h ,

where Li and Hi respectively represent lower and upper bounds of the con�dence interval.

Eq. (4.21) is equivalent to : ∀hi ≤ h∗(x), Jhi(x) ∈ Qi holds with certain probability p,

related to the threshold Γ. Therefore, for all hi < h∗, the intervals Qi have a point in

common, namely J(x). On the contrary, if the ICI is empty, it indicates hi > h∗. In this

way, the ICI rule can be used to test the existence of this common point and to obtain

the adaptive window size.

The ICI rule aims at searching for the largest local window size (minimising local

variances) where the LPA �ts well to the observations (minimising local bias). The

estimates Ĵh(x) are calculated for hi ∈ h and compared. The ICI rule, which uses the

estimates and their variances, identi�es a scale closest to the ideal one, ĥ ≈ h∗. Figure 4.7

illustrates graphically the ICI rule. Assuming the intersection with hn+1 is empty, the

adaptive scale is ĥ = hn.

The following algorithm implements the ICI rule [98, 99] :

1. De�ne a sequence of con�dence intervals Qi, ∀hi ∈ h as in Eq. (4.21) with their

lower bounds Li and upper bounds Ui.
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2. For i = 1, 2, . . . , u− 1, let

L1 = L1, Li+1 = max{Li, Li+1} ;

U1 = U1, U i+1 = min{U i, Ui+1} .

According to these formulas, Li+1 and U i+1 are respectively non-decreasing and

non-increasing sequences.

3. Find the largest value i, when

Li ≤ U i, i = 1, 2, . . . , u ,

is still satis�ed. Denote this value by n. As was discussed above, the ICI adaptive

scale is ĥ = hn.

These calculations are point-wise repeated for each x.

Remark :

� The ICI depends on the estimates Ĵhi(x) giving a centre position of theQi and on the

width of the interval Γ ·σĴh(x, h). This thresholding parameter Γ plays an important

role in the ICI algorithm. Assuming α = 0.05 or 0.01 [98, 99], the theoretical values

of Γ are given by :

m = 0 , Γ =

3.0 α = 0.05

4.0 α = 0.01
;

m = 1 , Γ =

2.7 α = 0.05

3.7 α = 0.01
.

In practice, if the signal I is piecewise smooth with rare and slow variations, larger Γ

is recommended for better noise reduction ; otherwise, smaller Γ is used to preserve

more details of the data.

4.4.2.4 1D denoising example

Figure 4.8 is an example of 1D denoising using the LPA-ICI method. Here we use

the LPA estimator of order m = 1 with the symmetric Gaussian window. The denoised

curve demonstrates that the LPA-ICI �lter generally preserves the jumps of signal and

smooths the piecewise constant parts. Compared with the noisy free signal, there still

exists oversmoothing problems. The root mean square error (RMSE) is 9.073. The bottom

row of Fig. 4.8 shows the optimal windows sizes estimated by the ICI rule. We notice that



4.4. LOCAL REGION-BASED METHODS WITH ADAPTIVE SCALES 69

the ICI rule chooses smaller values at signal's discontinuities and larger ones for the

continuous parts. For example, the largest jump in the observed data corresponds with

the minimal scale in h.

Figure 4.9 shows the denoisnig results of the same noisy signal with polynomials of the

orderm = 2. As expected, the higher order estimation has a relatively smaller RMSE than

that in Fig. 4.8. Also, the corresponding computation cost improves largely. Therefore, we

use m = 1 for the following test. Figure 4.10 provides more details about the anisotropic

LPA-ICI algorithm. The optimal right and left scales for the noisy signal are shown on the

top two rows. Reconsider the largest jump in observed data, the values of a left Gaussian

Figure 4.8 � 1D denoising example using the LPA-ICI rule. From top to bottom : the noisy
observation ; the noise free signal (red dotted line) and the LPA estimation (blue continuous
line) of the order m = 1 with the symmetric Gaussian window, while the RMSE = 9.073 ; the
corresponding adaptive window sizes ĥ obtained by the ICI rule for Γ = 1. The set of local
windows size is h = [1, 2, . . . , 100].
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Figure 4.9 � 1D LPA-ICI denoising using higher orderm = 2. The LPA estimations use symmetric
Gaussian window. The RMSE is 8.6956. Γ = 1, h = [1, 2, . . . , 100].

Figure 4.10 � 1D denoising using the anisotropic LPA-ICI approach. From top to bottom :
adaptive windows sizes obtained respectively by the right and left Gaussian kernels, and the
fused denoising result. m = 1, Γ = 1, h = [1, 2, . . . , 100], RMSE = 5.8462.
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windows decrease for that part, while the right one behaves oppositely. The anisotropic

method combines these two kernels sizes in the denoising process, therefore, it leads to a

large improvement with a RMSE = 5.8462.

4.4.3 Proposed segmentation algorithm

4.4.3.1 Local region-based segmentation using the LPA-ICI rule

In [210], we have proposed applying the ICI approach to optimise the spatial adap-

tation for local region-based active contours. For each point, the ICI �nds an optimal

kernel size that meets the trade-o� between the bias and the variance of the LPA. This

optimal local scale is then used for the estimation of local image statistics used in the

segmentation model.

Suppose we are given a noisy image with intensity inhomogeneities. We de�ne an

initial zero level set C, as the red contour shown in Fig. 4.11. Given a �nite set of window

sizes h, we calculate gh for each element. Then utilise the LPA Eq. (4.14) to get the local

estimations of the regions inside Ωi and outside Ωo, respectively. This means that if a point

x is inside of C, its approximation uses only observed image pixels in O(x)
⋂

Ωi, and vice

versa. As introduced in the previous section, we can calculate the con�dence intervals Qh

of these estimations, then apply the ICI algorithm for each point. After that, we obtain

the optimal kernel sizes that well balance the trade-o� between bias and variances.

Figure 4.11 � Demonstration of kernel sizes selection. Four pairs of points P1, . . . , P4 are studied.
For each pair, one point locates inside and the other is outside of C (marked by green + and blue
• respectively). The circle centred at each labelled point represents the size of local kernel. Left :
scale estimations obtained by the LPA-ICI rule. Right : scale estimations after the maximum
�ltering operation.
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In order to study the relation of these data adaptive scales with the position of the

segmentation contour, we picked out several typical points for analysis. As we are only

interested in a narrow band of C, within which we select four pairs of neighbours P1 to P4.

For each pair, one point locates inside and the other is outside of C, marked with green

`+' and blue `•' respectively in the left image of Fig. 4.11. The corresponding estimated

scales are illustrated by the sizes of circles, shown in the same �gure.

� The leftmost pair P1 is around a region with very low contrast between Ωi and Ωo,

where the local region statistics for inside and outside are very similar. Also the

contour near P1 is the correct boundary, where locally the segmentation has been

achieved. In order to maintain this partition, we tend to consider more image infor-

mation, which corresponds to the large kernel size obtained by LPA-ICI algorithm.

� For the pair P2 around the top of C, the inside one, laying between C and the

true boundary, has a small kernel size. This is expected as larger windows, in

that position, will introduce greater estimation bias. However, its symmetric point

has larger scale estimates, because the image is relatively homogeneous in this

neighbouring region within Ωo.

� The pairs P3 and P4 are laying on the foreground. Thus, they have larger window

size inside and smaller one outside, which are opposite to P2.

Therefore, if we directly use these kernel sizes ĥ in the segmentation algorithm, as

the curve C evolves closer to the real boundary, the local regions of points between them

should be decreased, and so will be the estimated local scale. This brings out the problem

that the closer C is to the correct segmentation, slower the evolution speed is. Analysing

the case P2 (or P3), the spatial scale for the local inside (outside) need to be at least as

big as the outside (inside), in order to increase the force driving the segmentation process.

To overcome this problem, we smooth the estimated local scales ĥ inside and outside of

C respectively, and run a max �lter of a small size, 3 × 3 for example. So for the points

near C, their estimated scales have similar values. Indeed, the estimated scales are very

appropriate as it can be seen on the correct segmentation of P1. This �ltering operation

is necessary only when the algorithm is in progress. For the purpose of maintaining the

accuracy, we run a few iterations by replacing the maximum with an average �ltering and

then by using the estimated scales directly.

As a summary, the proposed segmentation method using adaptive windows sizes

selected by the LPA-ICI algorithm has following basic steps :

1. Initialisation : Give an image I, an initial segmentation C0 or φ0, a �nite set of win-
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dow sizes h = {hi, i = 1, 2, . . . , u}, a vector of 2D polynomials ψ, a threshold Γ and

the weights of internal and external energies for the local region-based segmentation.

(a) Estimate the noise variance σ̂2 from the observed image 8.

(b) For each h ∈ h, build the set of linear �lters gh for the LPA.

2. Spatial kernel size estimation by the LPA-ICI algorithm : Consider the pixels x wi-

thin a narrow band of the current segmentation C.

(a) For the inside points x ∈ Ωi and the outside points x ∈ Ωo respectively,

calculate the LPA estimation Ĵh(x), ∀gh.

(b) According to Eq. (4.21), determine the lower bounds Li and upper bounds Ui

of the con�dence intervals Qi for the estimation Ĵhi(x). Loop on i, update the

bounds of intersections. Test the existence of the ICI, and get the adaptive

window sizes {ĥ(x), ∀x}.

(c) For the inside and the outside regions, smooth the obtained ĥ(x) respectively.

When the algorithm is in process, run a maximum �ltering locally for all the

smoothed ĥ(x) ; otherwise, use an average �ltering for few iterations, then use

directly the smoothed ĥ(x).

3. Local region-based segmentation : Compute the internal energy of C, and the ex-

ternal energy, for example, proposed by Brox and Cremers Eq. (3.5).

(a) For all x, their optimal neighbourhoods O(x) are de�ned by ĥ(x). Calculate

the local image statistics by the ML estimation for Ωi

⋂
O(x) and Ωo

⋂
O(x)

regions.

(b) By the obtained local region statistics, the external energy is calculated. Toge-

ther with the internal energy, update the contour C.

4. Repeat steps 2 and 3 until convergence.

The proposed method utilises an adaptive size of the local kernel at every image loca-

tion. Thus, it combines the advantage of using local region statistics with the consideration

of relatively global information.

4.4.3.2 Segmentation examples and discussions

Figure 4.12 shows the segmentation of three images with inhomogeneities obtained

using the proposed scale selection strategy. As expected, our segmentation method leads

8. The noise variance may be estimated respectively for the regions inside and outside of the current

segmentation, and be updated after a �xed number of iterations.
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to very satisfactory results. The values of colour maps correspond to the dynamically

selected local kernel sizes. Notice that the estimated window sizes for the local inside are

smaller than those for the local outside for all three images. This can be explained by

the fact that the inhomogeneity in Ωi is relatively stronger than in Ωo. This di�erence

of scales, between Ωi and the Ωo, is important for the forces in competition around low

contrasted boundaries.

In order to further consider the in�uence of the noise level on the estimation of the

spatial kernel size, we use a synthetic image and study the LPA-ICI behaviour on two

pairs of points. A number in `1' to `4' is assigned to each point as shown in Fig. 4.13.

Figure 4.12 � Segmentation example of images with inhomogeneities using the proposed method.
From left to right : noise free images with initialisations, noise degraded images with segmentation
results and the estimated kernel sizes for the �nal contour. The size of three images is 128× 128,
and the local optimal scales are selected from the same h used in Fig. 4.4.
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The study is carried out for the special case of an ideal segmentation, in other words,

we discard the in�uence of bias estimation. In order to obtain statistically meaningful

estimations, we run the experiment 20 times and for 7 di�erent SNR values. The means

and the standard deviations, calculated with the 20 estimated kernel sizes, are visualised

as error bars versus decreasing SNR values on Fig. 4.13, one curve for each point.

We observe that the kernel sizes for these estimations are inversely proportional to the

SNR values. It implies that, when the image noise increases, the corresponding optimal

kernel size also increases, and the proposed segmentation method tends to be more global.

We also notice that the scales of the inside point `1' are always smaller than those of the

outside point `2'. But point `3' and point `4', in the regions with low contrast between

foregrounds and background, have similar kernel size for SNR values lower than 16dB.

Figure 4.13 � In�uence of the noise level on the estimation of local scales. Top : noisy image
with SNR = 32dB, 8dB and 4dB. Point `1' and `3' (green +) belong to the foreground, and
point `2' and `4' (red ◦) belong to the background. Bottom : the plot shows the estimated kernel
sizes versus the image SNR values. The error bars are drawn from 20 repeated experiments when
Γ = 2.2. The numbers `1',`2',`3',`4' on the left side of each curve represent the point number
shown in the top image. Image size is 128× 128, and h is the same set used in Fig. 4.12.
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Figure 4.14 � In�uence of Γ on the estimation of local scales. The plot shows the estimation
kernel size versus the Γ values. The error bars are drawn from 20 repeated experiments. Each
curve represents the estimated kernel sizes for a point shown in Fig. 4.13. Left : SNR=16dB.
Right : SNR=4dB. h is the same set used in Fig. 4.12.

The role of the threshold parameter Γ is to de�ne the reliability of the adaptive estimate

Ĵĥ. At �rst glance, it may seem that Γ should be as small as possible, so as to minimise

the risk of the adaptive-scale estimate. However, a too small Γ makes the probabilities of

the con�dence intervals too small to have any practical signi�cance. In order to study the

e�ects of Γ on the estimated local windows sizes, we do a similar test to the one shown

in Fig. 4.13 for the same labelled points. Figure 4.14 illustrates that the estimated kernel

sizes are proportional to the values of Γ. For both noise levels, the estimated scales for

the outside points (red dotted curves) are generally larger or equal to their corresponding

inside ones (green continuous curves), which corresponds our former discussions. However,

when the inside and outside regions have very low contrast, here points `3' and `4', the

estimations for Γ = 3.1 for SNR = 16dB and at Γ = 1.3 for SNR = 4dB do not follow

the others patterns. Therefore, when the image noise is less important, we tend to use a

smaller threshold Γ in order to increase the sensitivity of the ICI rule. On the contrary, if

the noise is very important, a larger Γ should be used in segmentation.

Finally, we compare the behaviour of the proposed automatic scale selection algorithm

with the Piovano and Papadopoulo's method. Figure 4.15 shows the contour evolution

and the estimated scale maps. In the �rst column, both ĥ(x) for the initial contour re�ect

clearly the degradation of image intensity. From the values of local kernels shown by the

colour maps, we observe that the Piovano and Papadopoulo's method initially gets higher

scales, and then uses smaller size when the algorithm approaches to convergence. in this

method, the evolution speed is small when C is in an homogeneous region, thus large ĥ(x)

are selected ; while C approaches the ideal boundary, ĥ(x) decreases in order to keep the
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same evolution speed ξ ; once C reaches the boundary, all the ĥ(x) are almost equal to

the smallest value in the set h. For the proposed algorithm, ĥ(x) aims to well balance the

bias-variance trade-o�. When x belongs to an homogeneous region, local image statistics

of its neighbours are very similar, thus larger ĥ(x) are obtained by the LPA-ICI algorithm.

Here, ĥ(x) de�nes the optimal region that represents well the image statistics at point x.
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Figure 4.15 � Comparison of the behaviour of two scale selection strategies. Top two rows :
Piovano's model [163], ε = 0.5. Bottom two rows : the proposed one [209], Γ = 2.5. From left to
right : the curve evolution from the initial contour to the �nal contour with the corresponding
estimated ĥ. Image size 128× 128, h is the same set used in Fig. 4.12.
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4.5 Conclusion

In this chapter, we discussed possible solutions for two problems in the local region-

based segmentation. We have recalled the denoising algorithms which have similar dif-

�culties. We reviewed three segmentation models, which make use of both global and

local image statistics. Then, we proposed a local region-based segmentation method with

adaptive kernel scales within the level set framework. These optimal scales, derived by

the LPA-ICI rule, are determined respectively for interior and exterior regions around

the segmentation contour. Through some segmentation examples of synthetic images, we

found that the proposed method is quite promising in the segmentation of images with

inhomogeneities. More experiments and further analysis will be presented in the following

chapter.



Chapitre 5

Ultrasound image segmentation

Chapter summary

This chapter will �rst review the methodology of ultrasound image segmentation. We will

present the development of segmentation algorithms, in the consideration of ultrasound

physics and prior information. Then, a more rigorous analysis of our proposed segmen-

tation method will be given. We will use comparative experiments to verify the interest

of our contribution. Complete analysis on these results will be demonstrated. Finally, we

will provide some application examples on segmentation of real medical images.
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5.1 Introduction

Medical ultrasonography is a non-invasive imaging technique used for the visualisation

of subcutaneous body structures, and has steady progresses in the last decades [30, 194].

It helps the diagnosing process and is involved in all stages of disease treatment. Seg-

mentation, quanti�cation and analysis of ultrasound images could ultimately improve

the comprehension of diseases, the early detection of degradations and the interventional

therapy. In a standard ultrasound system, there are three basic types of data available

for analysis [145] : radio-frequency (unprocessed) signals, envelope (magnitude) detected

signals, and B-mode (log-compressed) images. In this study, we will focus on the segmen-

tation of ultrasound B-mode images, because B-mode ones are traditionally available on

commercial ultrasound systems.

Ultrasound image segmentation, largely driven by clinical needs, is a particularly chal-

lenging task. The echography has advantages in studying the function of moving structures

in real-time. However, its segmentation result is strongly in�uenced by the quality of the

acquired data [146]. Ultrasound B-mode images are known to have a low SNR, a low

contrast between areas of interest and high amounts of speckle. Furthermore, the presence

of characteristic artefacts, such as non-linear attenuation, shadows and signal dropout,

also complicate the segmentation task. Finally, the orientation dependence of acquisition

can result in missing boundaries [146]. Therefore, the appearance of geometric boundaries

in ultrasound images is dependent on the acoustic impedance di�erence between tissues

and on the above mentioned factors. Thus, conventional segmentation methods, which

assume strong-intensity edges, often perform poorly on ultrasound images. Facing with

this problem, numerous studies have been carried out [181, 146, 145]. These methods can

be broadly de�ned in terms of those that make use of imaging physics constraints and

those that make use of anatomical shape or temporal constraints.

In the rest of this chapter, we will �rst brie�y recall used intensity models for the

speckle noise. Then we will review several ultrasound image segmentation methods in

consideration of prior constraints, such as intensities, phase, texture and shape. After

that, we will give the justi�cation of the proposed local region-based method with the scale

selection strategy. In order to demonstrate the usefulness of our approach, segmentation

results on simulated and real ultrasound images will be presented. We will further analyse

its performance in comparison with several previously introduced segmentation methods

based on local image statistics. Finally, we will present few results when applied on CT

images.
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5.2 State of the art on ultrasound image segmentation

5.2.1 Statistics of speckle

Speckle is caused by the backscattered echoes of either randomly or coherently distribu-

ted scatterers in the tissue. It gives the granular texture appearance of ultrasound images.

This signal dependent e�ect has been well studied in ultrasound-based imaging. The

speckle can be seen either as a noise introduced by the sensor or as a signal carrying some

information about the observed tissues. Regarding the former, there exist an extensive

literature on speckle reduction. Recent works include [57, 225, 217, 1, 62, 215]. This

denoising step can be considered as a preprocessing step before performing segmentation.

In the latter, speckle is used as a valuable information and is used as a feature in order

to separate di�erent tissues.

The statistical properties of the received echo signal depend on the density and the

spatial distribution of the scatters [195]. A suitable model of the observed speckle is

useful not only for segmentation, and several distribution families have been proposed

in the literature [58, 141, 145, 55]. When there is a large number of randomly located

scatterers, known as the case of fully developed speckle, the statistics of the envelope signal

follow a Rayleigh distribution [195, 33] ; if there is an additional non-random coherent

component in the echo signal, the Rice distribution is an appropriate model [195]. Both

models suppose the presence of a large number of scatterers in the tissue. In practice,

the e�ective number of scatterers is �nite, thus the K-distribution is proposed for this

case of partially developed speckle [90, 180]. More generalisations, namely the homodyned

K-distribution [56, 166], the Nakagami distribution [179], the Gamma distribution [12]

and the Rician inverse of Gaussian distribution [62], have been proposed for di�erent

scattering conditions. A recent critical review of most existing models is provided in [55].

The work of Nillesen et al. on modelling envelope statistics of blood and myocardium for

the segmentation of echocardiographic image is also of interest [144].

As it has been already pointed out by several researchers, for instance in [123, 146, 22],

it is important to highlight that all these statistical models only give the speckle probabi-

lity density function at the transducer output. Meaning that the models are valid only for

the un�ltered envelope of the received RF signal (i.e. before interpolation, log-compression

and Time-Gain-Compensation). Thus, the validity of such models on ultrasound images

acquired under clinical conditions is questionable [123, 188, 223]. Empirical models of

speckle in clinical log-compressed images have been reviewed and compared in [188].
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5.2.2 Prior information

The resolution of ultrasound B-mode images is quite poor, in comparison with other

clinical imaging techniques. In addition, ultrasound images have the problem of missing

boundaries. Therefore, the utilisation of prior knowledge is a good way to characterize the

object of interest, and helps solving the segmentation problem of ultrasound images. Here,

we will brie�y introduce three main categories of constraints [146, 145] : the intensity-

based, the geometric and temporal priors.

1. Intensity derivatives : Similar to edge-based segmentation method, this prior is ap-

propriate if the goal is to �nd acoustic (impedance) discontinuities in ultrasound

images. As speckle gives a strong gradient response, intensity derivatives methods

work only at high SNR observations. Therefore, speckle reduction techniques are

usually necessary [159]. Some speci�c edge operators, which take into account the

presence the multiplicative nature of speckle noise, have been proposed (see eg.

[218]). This constraint works well when there is a strong boundary between di�erent

tissues. One of its limitations is caused by the anisotropy of ultrasound image

acquisition. In real images the object of interest usually has missing edges.

2. Phase information : As a robust alternative to intensity gradient, the local phase

has been proposed for acoustic boundary detection in [138]. The most important

advantage of this method is its theoretical contrast invariance. Therefore, it is

in principle robust to attenuation. Generally, phase is estimated by means of a

quadrature �lter bank [21]. Recently, phase information has attracted a lot of interest

and an increase of its application in the processing of ultrasound images is observed.

See for instance [15, 14] for recent examples of image segmentation within the level

set framework.

3. Grey level distribution : As introduced earlier, various intensity distributions can

be employed to describe the speckle in the envelope signal. The Rayleigh model

has been popularly used in segmentation, for example it is incorporated into the

level set framework in [175, 22]. The Gaussian [23, 123] and the Gamma [188]

distributions have also been applied for the segmentation of ultrasound images.

This parametric pdf constraint works well for region-based methods. Global model

parameter estimation decreases the robustness as it ignores e�ects such as signal

attenuation, shadowing and signal drop-out.

4. Image texture : Texture analysis methods have been proved capable in the ex-

traction of relevant ultrasound image characteristics, and have been utilised in
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segmentation methods with some success [140, 82, 23, 154]. However, this constraint

is intrinsically a descriptor of the microstructure of the observed tissue and the

imaging system. Thus, di�erent system parameters lead to di�erent texture patterns

and the true characterisation of physical properties of tissues is still an issue. Texture

characterisation is also strongly limited to the chosen spatial scale. Therefore, multi-

resolution approaches are commonly considered [140, 146].

The above mentioned intensity-based priors generally use the features extracted from

the given ultrasound image, which are often insu�cient for a reliable segmentation. The-

refore, geometric and temporal information are often introduced to improve segmentation

results.

5. Shape : Such constraint can be embedded in segmentation algorithms in several

forms. To our knowledge, the shape constraint used in ultrasound image is �rst given

by a parametric shape in [87]. With this prior, one major problem in segmentation

is how to choose a general model, which is valid for all objects even those with

pathological tissues. Thus, the shape information is commonly obtained from a

training process [89, 48, 77]. Alternatively, the shape prior may be de�ned simply as

a boundary regularisation, which corresponds to the internal energy in active contour

methods. The shape information can be represented explicitly as a point distribution

model [49], or implicitly as a signed distant transform [115]. Note that the shape

constraint is only as good as the training samples from which it was built and the

chosen shape-space model framework. Also, texture and shape information can be

combined in a single model, known as the Active Appearance Models (AAM) [135].

6. Motion : Since ultrasound is a real time imaging modality, it is useful to consider

the temporal information in segmentation when available. The segmentation solution

may simply require global [39] or local [176] temporal coherence. Image segmenta-

tion can also be formalised as a motion estimation problem. Typical examples are

using optical �ow estimation [134] or block matching velocity estimation [25]. More

complex models exist in the literature, which extend the AAMs to include motion,

namely the Active Appearance Motion Models (AAMM) [20].

In practice, a number of image segmentation methods combine two or more of the

above mentioned constraints. Here, the review and organisation is not an exhaustive list of

all forms of priors that appeared in the image segmentation literature. We may for example

use the incompressibility constraint on echocardiographic image segmentation [223], the

volume conservation constraint [71] or the statistical overlap constraint [11].
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5.3 Justi�cation of our approach

The segmentation of images with intensity inhomogeneities is quite a challenging

problem. Our main objective is to provide an acceptable solution to these degraded

images, such as the attenuation problem in ultrasound images. In order to well segment

these images, there exists many methods that take the advantage of prior information.

According to the �ndings in the previous section, these prior constraints can overcome

some di�culties, like the low contrast and missing boundaries. For instance, a statistical

model, which exploits knowledge of image formation, has been proposed for magnetic

resonance images [200] and then adapted for ultrasound images segmentation [206]. The

underlying model can simultaneously enhance image contrast and help the segmentation.

In this work, we focus on studying the external energy, and use a length term as an internal

constraint for regularisation. The combination of other prior information is beyond the

scope of our current study.

We mainly concentrate on handling the segmentation of images with intensity inho-

mogeneities using local region-based methods. Indeed, segmentation methods based on

global image statistics are known to fail on this type of data, mainly because of the

intensity inhomogeneities. Region-based methods using local image statistics have better

results. Through our study presented in Chapter 3, it is clear that the size of the spatial

window appears to be important for local methods. Therefore, in order to build a more

robust model to handle images with intensity inhomogeneities, we have proposed to use

a pixel-dependent adaptive local scale. More speci�cally, this scale value is de�ned using

the LPA-ICI scale selection strategy conditional on the current segmentation. From the

segmentation examples in Chapter 3, we have found out that the method using optimal

locality leads to better results than applying a single scale.

Note that the LPA method assumes an additive Gaussian noise for the observed

image. This assumption is not valid in practice, for example for displayed ultrasound

data. However, some literature [8, 23] takes the advantage of the Central Limit Theorem,

which states that the average of a large number of random variables must tend toward

a Gaussian distribution around their collective mean. This proposition is reasonably

acceptable for low-pass �ltered and decimated images that are originally governed by

non-Gaussian statistics [8, 23]. Alternatively to the multi-resolution implementation used

in [8, 23], our approach is based on local region statistics with optimal window sizes. The

proposed segmentation model can be implemented very e�ciently using recursive Gaus-

sian �ltering [164, 31], although its performance may decrease when the local Gaussian

approximation is violated.
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5.4 Experiments and discussion

In this section, we will test the previously introduced segmentation algorithms based

on local image statistics. Within the level set framework, we will use six models from two

categories, which include 9

i) Local region-based methods with a single scale

(a) the straightforward local Gaussian model : Brox and Cremers [32], § 3.2, Eq. (3.5),
(b) the local intensity �tting energies : Wang et. al [196], § 3.3, Eq. (3.11),
(c) the local intensity �tting energies with σp � σe : proposed in § 3.5.2, Eq. (3.21),
(d) the local intensity �tting with a bias correction technique : Li et. al [119], § 3.4,
Eq. (3.15) ;

ii) Local region-based methods with adaptive scales

(e) Piovano and Papadopoulo's scale selection strategy [163] : § 4.4.1, Eq. (4.10),
(f) our scale selection strategy based on the LPA-ICI rule : proposed in § 4.4.3.

We will present comparative experiments of these methods on images with intensity

inhomogeneities. To this end, the results will be compared qualitatively and quantitati-

vely. For the latter one, we will use two distance measures, namely the Dice Similarity

Coe�cient (DSC) and the Mean Average Distance (MAD). The DSC is de�ned as :

DSC(S, Strue) = 2
|S
⋂
Strue|

|S|+ |Strue|
, (5.1)

where S and Strue represent the segmentation and the true boundary respectively. The

closer the DSC values to 1, the better is the segmentation. The MAD computes the

average distances between two curves C1 and Ctrue, which are described as a set of points

C1 = {a1, a2, . . . , an} and Ctrue = {b1, b2, . . . , bm}. The distance between a point ai and

its nearest one on Ctrue is calculated by :

d(ai, Ctrue) = min
bj∈Ctrue

‖bj − ai‖ .

These distances are averaged for all the points of the two curves. Thus, the MAD of C1

and Ctrue is given by :

MAD(C1, Cture) =
1

2

[
1

n

n∑
i=1

d(ai, Cture) +
1

m

m∑
j=1

d(bj, C1)

]
. (5.2)

9. In all subsequent experiments, we will refer to these local region-based segmentation algorithms by

method (a) to (f).
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5.4.1 Simulated ultrasound images

First, we will show experiments on realistic ultrasound simulations. To this end, we

have used the simulation program Field-II [94, 93], to synthesize phantom data with

known ground truth. A linear scan of a �rst phantom (PH1) was done with a 290 ele-

ments transducer using 64 active elements. The scatterers in the phantom were randomly

distributed within the phantom of 80 × 80 × 15 mm cube size. The scatters amplitudes

follow a Gaussian distribution with di�erent standard deviations for each homogeneous

tissue. A single transmit focus was placed at 70 mm, and receive focusing was done at

10 mm intervals from 30 mm from the transducer surface. 128 lines were simulated at 5

Mhz. The second phantom (PH2) of size 100× 100× 15 mm cube was placed at 10 mm

depth from the transducer surface, and was scanned with a 7 MHz 128 elements phased

array transducer. A single transmit focus at 60 mm from the transducer was used, and

focusing during reception is at 10 to 150 mm in 1 mm increments. The images consist

of 128 lines with 0.7 degrees between lines. Hanning apodisation in transmit and receive

was used in all experiments. Three levels of tissue attenuations were simulated for both

phantoms. We also used di�erent dB ranges for the envelope log compression to simulate

di�erent image contrasts.

For the following experiments, we use the weighted length term ν|C| as the internal
energy, where ν = 650 for method (c) and ν = 2 for all the other segmentation models. The

maximal time step ∆t is set to 0.2. For the Heaviside function, we use the approximation

given by Eq. (2.30) with ε = 0.7. For method (e) and (f), the set of local windows sizes is

h = [12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 40, 44, 48, 53, 58, 64, 70, 77,84, 92, 100]. We will

test on 60 simulated ultrasound images of size 192× 192 with 3 di�erent initialisations.

i) Single scale methods

Figure 5.1 shows the behaviour of the BC model (method (a)) when di�erent sizes

of the local spatial kernel and di�erent initialisations were used. Notice the low contrast

between tissues, the speckle and the attenuation in these simulated ultrasound images.

This experiment clearly shows that the size of the local spatial kernel σp a�ects the

segmentation. When using a very large scale value, the top row in Fig. 5.1, the algorithm's

behaviour is similar to the global method. For σp = 70, this method is quite robust to

noise (ini. 2) but can not deal with the weak boundary (ini. 1) and the attenuation (ini.

3). As expected, the smaller scales σp = 20, 12 lead to satisfactory results. Notice that for

the �rst initialisation, σp = 20 performs poorly at a part of the inside boundary. Small
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ini. 1 ini. 2 ini. 3
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Figure 5.1 � Segmentation results of the BC model (method (a)) on simulated ultrasound images
with 3 di�erent initialisations. From left to right column : images `PH1_45dB', `PH2_35dB' and
`PH2_ATT_60dB'. Here, `45dB' means a range of 45dB is used in log envelope compression.`Att'
means with images with attenuation simulation. ν = 2.
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local scales generally decrease the capture range of the active contour and increase the

number of local minima. This is the case, for example, for the results of the last row when

σp = 6. Therefore, the selection of an appropriate kernel scale should be determined by

the very speci�c cases, such as the position of the initial curve C, the noise level and the

size of the target.

Figure 5.2 shows the segmentation results of method (b) on the same simulated

ultrasound images of Fig. 5.1. In the work of Wang et al., σe = σp = 3 is applied for

testing. However, this setting fails on our data. Clearly, local Gaussian �tting energy

with σp = σe can not �nd the correct image boundaries for all initialisations. The �rst

image shows that, the large window size, for instance σe = σp = 5, leads to serious mis-
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1

Figure 5.2 � Segmentation results of the local Gaussian �tting model (method (b)). From left to
right column : images with 3 di�erent initialisations used in Fig. 5.1. ν = 2.
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locaisation issues for the outsider contour, and the inside contour disappears totally. On

the other hand, the small ones σe = σp ∈ {3, 1} perform comparatively better for the

outside contours (ini. 1). Still both scales are inappropriate, particularly when the initial

curves are far from the true boundaries (ini.2 and 3).

Figure 5.3 shows the segmentation results of method (c). Recall the dilemma of method

(b) discussed in § 3.5.2. We suggest to use a very small σe and set σp � σe. Therefore,

this small σe can help to obtain a smoother segmentation with less mis-localisations, and

the locality de�ned by σp can better estimate the local region statistics. With σe = 1, all

the outcomes of Fig. 5.3 are more appropriate in comparison with these of the method

(a) and (b) shown in �gures 5.1 and 5.2.

ini. 1 ini. 2 ini. 3
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1,
σ
p

=
6

Figure 5.3 � Segmentation results of method (c). From left to right column : images with 3
di�erent initialisations used in Fig. 5.1. σe = 1, ν = 2.
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Finally, we segment these simulated ultrasound images by the local images �tting

energy with bias correction (method (d)). Notice that, we use an extremely large weight

of the internal term, ν = 650. This value depends on the intensity range of the input data

(because its external energy function in Eq. (3.15) is not normalised). Method (d) also

estimates the bias �eld with the current segmentation. Thus, it should be generally more

robust to the attenuation than methods (a) to (c). In Fig. 5.4, the image shown in the

3rd column has strong intensity inhomogeneities. For this image, acceptable segmentation

results are obtained when using the local scales σp = 20, 12. However, applying σp = 6

shows no improvement than the previously presented methods. To summarise up, the

ini. 1 ini. 2 ini. 3
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6

Figure 5.4 � Segmentation results of the local intensity �tting energy with bias correction
algorithm (method (d)). From left to right column : images with 3 di�erent initialisations used
in Fig. 5.1. ν = 650.
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performance of method (d) also depends highly on the choice of the local scale, which is

a typical problem for local region-based algorithms.

ii) Local region-based methods with adaptive scales

Figure 5.5 shows the corresponding results to �gures 5.1 to 5.4, when method (e)

and (f) are applied. Both models obtain the appropriate inside and outside boundaries,

because they use scale selection procedures to set an optimal scale for each pixel. In order

to understand better the behaviour of these two automatic scale selection algorithms, Fi-

gure 5.6 shows the contour evolution and the estimated scale maps for the two approaches

on the third image of Fig 5.5. As it has been reported recently in [22], the interpretation

of the threshold ξ in Piovano and Papadopoulo's method is more di�cult than that of α

in the ICI algorithm. The proposed approach is based on a compromise between bias and

variance for the LPA conditional on the current segmentation.

Figure 5.6 clearly shows that our algorithm uses higher scale values than method (e),

when the algorithm converges. For the last few iterations, we no longer apply the max

�lter, thus the scale maps are reduced in order to increase the accuracy of segmentation.

ini. 1 ini. 2 ini. 3

m
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m
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h
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Figure 5.5 � Segmentation results of the local region-based methods with adaptive scales (method
(e) and (f)). From left to right column : images with 3 di�erent initialisations used in Fig. 5.1.
Top : Piovano and Papadopoulo's method, ξ = 1 ; bottom : our proposed method, Γ = 2.5. ν = 2.
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For the �nal scales map, the method (e) uses the minimal value of h for almost every

point, and the proposed one can better re�ect the local image information around the

segmentation contour.

Figure 5.6 � Behaviour of the automatic scale selection algorithms for method (e) and (f). From
left to right : the evolution of the segmentation and its corresponding local scales. The top two
rows : Piovano and Papadopoulo's method, ξ = 1 ; bottom two rows : our approach, Γ = 2.5.
ν = 2.
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iii) Quantitative comparison

We will quantitatively compare our approach with the Piovano and Papadopoulo's

scale selection method, as well as the above mentioned algorithms with single local scales.

We use 60 simulated ultrasound images with the 3 initialisations shown in previous experi-

ments. The quantitative evaluations are summarized in Table 5.1. It shows statistics of the

DCS errors (1-DSC) and the MAD values. Indeed, the table lists the minimum, the three

quartiles, the maximum and the interquartile range (IQR) of these two measurements,

for �ve local region-based methods. The closer these statistics to 0, the better is the

segmentation. The Q3 and the maximal values of the DSC error and the MAD indicate

the worst cases. Notice that the IQR values is a robust measure of dispersion. 10

100-DSC (%) MAD (in pixels)

min Q1 Q2 Q3 max IQR min Q1 Q2 Q3 max IQR

method (a)

σp =70 5.26 6.68 11.55 23.52 50.16 16.84 1.46 1.78 1.96 8.83 34.86 7.05

σp =40 4.53 4.89 5.29 8.57 44.82 3.68 1.39 1.52 1.62 3.54 16.82 2.02

σp =30 4.35 4.58 4.88 5.36 43.24 0.78 1.38 1.46 1.55 4.07 36.90 2.61

σp =20 4.14 4.37 4.59 5.27 54.24 0.90 1.35 1.42 1.48 4.51 23.55 3.09

σp =12 3.99 4.26 4.56 11.29 57.85 7.03 1.25 1.44 1.52 3.35 22.40 1.91

σp =6 4.07 4.44 9.88 22.90 38.22 18.47 1.34 1.51 6.84 12.63 24.23 11.12

method (c)

σp =40 4.29 4.67 5.09 5.65 46.86 0.98 1.39 1.49 1.62 1.74 23.65 0.26

σp =30 4.10 4.18 4.56 5.06 46.54 0.88 1.40 1.42 1.48 1.61 23.25 0.18

σp =20 3.74 4.04 4.18 4.42 54.45 0.38 1.30 1.38 1.41 1.49 18.01 0.11

σp =12 3.60 3.91 4.10 4.32 55.21 0.41 1.24 1.36 1.45 1.51 17.39 0.16

σp =6 4.10 4.21 5.10 18.39 37.19 14.17 1.20 1.45 1.50 7.75 21.04 6.31

method (d)

σp =40 4.06 5.11 5.51 7.87 32.69 2.76 1.32 1.45 1.58 1.85 14.14 0.40

σp =30 4.00 4.38 5.09 5.51 32.56 1.13 1.29 1.41 1.50 1.60 10.99 0.19

σp =20 3.71 4.05 4.71 5.04 32.31 0.99 1.16 1.34 1.48 1.56 14.73 0.22

σp =12 3.54 4.35 4.53 5.44 28.56 1.09 1.11 1.41 1.47 1.57 17.63 0.16

σp =6 3.70 4.21 6.35 19.40 30.32 15.19 1.12 1.39 1.44 4.14 20.44 2.75

Scale selection

method (e) 3.61 4.07 4.27 4.53 35.46 0.50 1.17 1.30 1.47 1.51 21.02 0.19

method (f) 3.53 4.06 4.21 4.56 29.44 0.47 1.15 1.27 1.42 1.51 16.59 0.24

Table 5.1 � Statistics of the DSC errors and the MAD measures obtained on 60 simulated
ultrasound images with 3 di�erent initialisations. σp is the standard deviation of its spatial
kernel. From top to bottom : method (a) σe = 0, method (c) with σe = 1 and σp � σe, method
(e) for ξ = 1 and method (f) when Γ = 2.5.

10. A similar comparison was previously used in [22].
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Table 5.1 clearly shows that local image statistics should be used for images in the

presence of intensity inhomogeneities. Recall that the BC model [32] is equivalent to the

local Gaussian �tting model [196] with σe = 0. The largest value of local scale, here

σp = 70, for the BC model leads to the worst results. In this case, the local region-based

method behaves similarly as the global Gaussian �tting model presented in § 2.5.3.2.
With the proposed setting σe = 1, we notice that the segmentation errors of method

(c) are smaller than those of the BC model. The maxima of DSC errors and MAD are

much smaller for the method (d) in comparison to method (a) and (c), while the rest

of the quantitative measures are nearly equivalent. It means that, segmentation results

with the help of bias correction algorithm have less outliers in their DSC and MAD.

Considering the statistics of all three methods, we can conclude that the decreasing of

windows sizes, for example from σp = 40 to 12, could probably improve the performance of

segmentation algorithms for these tested images. If the local scale is too small, here σp = 6,

the segmentation errors would increase. This re�ects exactly the problem of segmentation

methods using local image statistics with a single scale.

σp = 20 σp = 12 σp = 6

Figure 5.7 � Segmentation of a synthetic image by the intensity �tting model with bias correction
(method (d)). The top row : segmentation results using σp ∈ {20, 12, 6}. Bottom row : the
estimated bias �led corresponding to the above results. Image size 128 × 128, ν = 650. See
�gures 4.4 and 4.12 for the results obtained by method (e) and (f).
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The bottom part of table 5.1 shows the statistics of the segmentation results obtained

by two scale selection methods : the Piovano and Papadopoulo's algorithm and the

proposed one. Notice that both approaches performed pretty well on this dataset. Among

all the listed models, our approach generally leads to the smallest minimal and Q1 to Q3

values. The interpretation of these measurements indicates a superiority of our algorithm

on Piovano and Papadopoulo's.

From Table 5.1, we found out that method (d) has quite robust results for the

segmentation of ultrasound images. Indeed, its bias correction strategy has the advantage

of dealing with the attenuation. In practice, a very large value should be used for its

internal term, because its internal energy is not normalised. However, this may ignore small

details and decrease the accuracy of the segmentation. Additionally, method (d) supposes

the bias �eld is smooth. If the true bias �eld is piecewise smooth, the corresponding

segmentation can not grantee a good result. Figure 5.7 shows an example, where the

image foreground and background are degraded separately. The estimated bias �eld fails

to model this piecewise smooth case, thus the segmentation results show no advantage

than other local region-based methods with a single local scale.

5.4.2 Echocardiographic images

Ultrasound imaging is the most widely used technique in cardiology, because of its

good temporal resolution and relatively low cost. In this part, we will apply local region-

based methods for the segmentation of echocardiographic image. Figure 5.8 illustrates

several results obtained by the local region-based segmentation methods using a single

spatial scale. Form the 1st to 3rd rows, method (a) utilises σp = 10, 7, 4 ; and the bottom

two rows illustrate the results obtained by method (d) with σp = 10, 7. As expected, an

appropriate scale is necessary. The segmentation results are very sensitive to the choice

of σp, because of the complexity of echocardiographic images. For the examples shown in

Fig. 5.8, if the size of the spatial window is large, method (d) performs better than (a) ;

if the size of spatial window is smaller, for example σp = 7, the segmentation results of

method (d) are usually over-smoothed. This is because of the large regularisation term

applied for the method with bias correction technique.

Figure 5.9 shows the segmentation results of the same echocardiographic images in

Fig. 5.8, as well as three more examples. It veri�es that the Piovano and Papadopoulo's

and our approaches with scale selection methods can handle this problem. Both methods

lead to more acceptable outcomes than the above single scale ones. Therefore, they have

the potential to well segment the real ultrasound images. In practice, the prior information
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is frequently introduced in segmentation in order to obtain more precise partitions. We

believe that the combination of our data-based energy with certain priors can provide

more accurate segmentation results.

5.4.3 CT images

In this subsection, we will show segmentation examples of liver in 2D CT scans.

The liver segmentation is not an easy task. Indeed, inspecting the lower left part of

the �rst image shown in Fig. 5.10, for instance, the contrast between the liver tissue

and its surroundings is very low. Thus, leakage problems often appear. The results of

the single scale local method, are shown in the top two rows of Fig. 5.10, for two scales

σp ∈ {10, 5}. A local window of scale σp = 10 is already considered as too big when

the curve arrived to the most blurred part of the liver, even with strong regularisation. In

these cases, method (a) su�ers from the same drawback as the global region-based model.

If, however, a smaller kernel is used, the method su�ers from slow convergence, when the

initial curve is too far from the true boundary of the liver tissue. It even moves inwards

before its convergence. Ultimately, it does converge after 200 more iterations than using

σp = 10 and the other approaches with scale selection strategies.

The Piovano and Papadopoulo's and the proposed segmentation methods outperform

the BC model, which uses a single scale. This is expected as they can adaptively choose the

local kernel size. Therefore, they generally can well segment the liver after fewer iterations.

Notice that, the quality of the CT image is much better than the ultrasound one, thus a

smaller Γ is used for our approach.

5.5 Conclusion

In this chapter, we have brie�y reviewed the state of the art for the segmentation of

ultrasound images, and given some arguments in favour of the proposed local region-based

method with the scale selection strategy. Then, we have applied the region-based segmen-

tation methods, presented in previous chapters, on simulated and real echocardiographic

images. The qualitative and quantitative comparisons have been done between four single

scale methods and two adaptive ones. The experiments show that the methods using

scale selection strategies generally obtained the best possible segmentation on ultrasound

images with attenuation. Results also show the bene�ts of the proposed segmentation

method than the Piovano-Papadopoulo's one. Additionally, we have applied our model on

CT images. These results again suggest that the proposed method has the potential to well
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segment images with intensity inhomogeneities. To our knowledge, the other literature,

using local region-based segmentation methods, gives a very little attention on choosing

appropriate scales for the spatial window.
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Figure 5.8 � Segmentation of echocardiographic images using local region-based segmentation
methods. Top three rows : the BC model, ν = 2. Bottom two rows : the intensity �tting model
with bias correction. Image size 208× 208, ν = 650.
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Figure 5.9 � Segmentation of echocardiographic images using local region-based segmentation
methods with scale selection strategies. Top : Piovano and Papadopoulo's model, ξ = 0.5 ;
bottom : our approach, Γ = 2.5.
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Figure 5.10 � Segmentation examples of liver in 2D scans. The top two rows : the BC model with
σp = 10 after 200 iterations and σp = 5 after 400 iterations. The bottom two rows : the Piovano
and Papadopoulo's method (ξ = 0.5) and the proposed method (Γ = 1.5) after 200 iterations.
Image size is 256× 256. ν = 2.



Chapitre 6

Conclusions

6.1 Conclusions

The central objective of this work is to propose e�ective methods for the segmentation

of images with intensity inhomogeneities. To this end, we have studied the recently

proposed local region-based segmentation methods. We found out that their performances

rely on the choice of the spatial scales, which are used for the estimation of local region

statistics. Therefore, we considered this problem when utilising local image information.

Chapter 2 started with an introduction of parametric and geometric active contours.

We focused on principles and implementations of the latter and considered methods

with an implicit representation of the contours. The segmentation task is achieved via

a minimisation of a two terms energy function. We choose to use the conventional length

measure as a regularisation term and we limit our analysis to statistical region-based

models for the data term. Global segmentation methods are quite robust to initialisations.

Also, their external energies can be designed by various statistical models in order to �t

the distribution of image intensities. However, they are not valid when the region is

statistically inhomogeneous.

In Chapter 3, we investigated the recent developed segmentation algorithms using

local image statistics. Through some segmentation examples of simulated images, we

have experimentally veri�ed that : 1) local region-based methods outperform global ones

in dealing with images with intensity inhomogeneities ; 2) their results are dependent on

the choice of the size of the locality. Moreover, we investigated a general functional based

on a Bayesian interpretation of the energy function. Originally, it uses the same spatial

scale, for the curve evolution (σe) and for the estimation of local image statistics (σp).

We proposed that their sizes should be de�ned di�erently. Thus, most existing region-

based energies can be incorporated into this model. Additionally, our analysis and test

results illustrated that using a very small σe with σp � σe has certain advantages in the

segmentation.

In order to improve the robustness of localised segmentation methods, Chapter 4 gave
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several possible solutions which can be organized in two categories : 1) combination of

global and local image information 2) utilisation of scale selection strategies. We have

highlighted that formally these original problems have strong links with image denoising

and recent techniques are of interest to our study. Our main contribution was to propose

a local region-based segmentation method with adaptive scales. The ICI rule was used

to derive a pixel-dependent scale for interior and exterior points along the current seg-

mentation contour. This value is de�ned in the sense of the MSE minimisation for a LPA

of the observed image intensities, inside and outside respectively. The proposed method

was successfully applied for the segmentation of some simulated images. We discussed

the estimated scales under di�erent SNR levels and probabilities of con�dence intervals.

These analyses proved that our method outperforms the Piovano and Papadopoulo's scale

selection technique.

Finally, Chapter 5 began with a brief review of the state of the art on ultrasound

image segmentation. It thereby provides certain foundations of using local region-based

segmentation methods. Then, we have evaluated the previously presented segmentation

methods using �xed local scales (the BC model [32], the local intensity �tting model

of Wang et al.[196] and our modi�ed version with σp � σe, the local �tting model

with bias �eld correction [119]) and methods with adaptive scales selection (Piovano

and Papadopoulo's [163] and our LAP-ICI based approach). Experiments on simulated

ultrasound images showed that, the local �tting model with bias �eld correction performs

better than other algorithms with a single scale. And as expected, the methods using

adaptive scales generally obtained the best possible segmentation. Our approach works

quite reliably on images in the presence of intensity inhomogeneities.

6.2 Future works

There are still several issues that need to be further developed in the future.

The quantitative experiments in Chapter 5 have proven that, the local �tting method

using the bias correction [119] can handle the attenuation problem in ultrasound images,

and may lead to promising segmentation results. Therefore, more discussions and com-

parisons should be made between this segmentation method and the proposed one with

the scale selection strategy. And we may extend our scale selection technique in order

to �nd the optimal local scales for the estimation of local region statistics and bias �eld

compensations.

In Chapter 3, recent local region-based segmentation methods have been introduced.
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We noticed that all these algorithms assume a Gaussian distribution in the calculation of

local image statistics. In practice, for instance the ultrasound image, the intensity of the

observed image does not follow a Gaussian model. For global region-based segmentation

methods, a large number of literature has extensively studied the non-Gaussian case.

However, their utilisation in local segmentation techniques is quite limited so far [22].

Therefore, there is still a room for further research.

Finally, a very little attention was given to the internal energy. It will be very inter-

esting to combine our data driven energy with an application dependent prior, such as

recent non-linear (kernel-based) active shape models, in order to objectively assess the

new developments in comparison to the state of the art on ultrasound image segmentation.
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Annexe A

Minimisation of local region-based BC

energy

A.1 Gâteaux derivative

The Gâteaux derivative [9] is a generalisation of the concept of directional derivative

in di�erential calculus. Suppose X and Y are locally convex topological vector spaces,

U ⊂ X, E : X → Y . The Gâteaux di�erential of E at u ∈ U in the direction ψ ∈ X is

de�ned as :

dE(u;ψ) = lim
τ→0

E(u+ τψ)− E(u)

τ
=

d

dτ
E(u+ τψ)

∣∣∣
τ=0

. (A.1)

If the limit exists for all u ∈ X, E is Gâteaux di�erentiable at u. The Gâteaux derivative

can be used in the optimisation of integral function.

Remarks :

1. At each point u, there is a Gâteaux derivative for each direction ψ. In one dimension,

there are two Gâteaux di�erentials for every u, namely forward and backward ; in

two or more dimensions, there are in�nitely many Gâteaux di�erentials.

2. The Gâteaux derivative is a one-dimensional calculation along a speci�ed direction

ψ. Therefore, ordinary one-dimensional calculus and the chain rule work for Gâteaux

derivative.

A.2 Gâteaux derivative of the BC model's energy func-

tional

As proposed by Brox and Cremers [32], the data-driven energy of the BC model can

be expressed by :

E =
∑
r

∫
Ω

Hr(φ)

[(
I(x)− µr(x)

)2

2σ2
r(x)

+
1

2
log
(
2πσ2

r(x)
)]
dx . (A.2)
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For better readability, omit the subindex r, and simply replace µ, σ,H with µ̂r, σ̂r, Hr.

Therefore, the external energy of Eq. (A.2) for a single region is written as :

E(φ) =

∫
Ω

H
(
φ(x)

) [(I(x)− µ(x)
)2

2σ2(x)
+

1

2
log
(
σ2(x)

)]
dx , (A.3)

where the expressions for µ(x) and σ2(x) in dependence of φ are given by :

µ(x) =

∫
Ω
K(x− ζ)H(φ(ζ))I(ζ)dζ∫
Ω
K(x− ζ)H(φ(ζ))dζ

,

σ2(x) =

∫
Ω
K(x− ζ)H(φ(ζ))I2(ζ)dζ∫
Ω
K(x− ζ)H(φ(ζ))dζ

− µ2(x) ,

For computing the minimisation of Eq. (A.3), Brox and Cremers seek its Gâteaux

derivative for any direction function ψ(x) :

∂E
(
φ(x) + τψ(x)

)
∂τ

∣∣∣
τ→0

=

∫
Ω

δ(φ(x))ψ(x)

[
(I(x)− µ(x))2

2σ2(x)
+ log σ(x)

]
dx

− 1

2

∫
Ω

H(φ(x))

σ4(x)

[
2
(
I(x)− µ(x)

)
µφ(x)σ2(x) +

(
I(x)− µ(x)

)2

σ2
φ(x)

]
dx

+

∫
Ω

H(φ(x))

2

σ2
φ(x)

σ2(x)
dx

=

∫
Ω

δ(φ(x))ψ(x)

[
(I(x)− µ(x))2

2σ2(x)
+ log σ(x)

]
dx

− 1

2

∫
Ω

H(φ(x))

σ4(x)

{
2
(
I(x)− µ(x)

)
σ2(x)µφ(x) +

[(
I(x)− µ(x)

)2

− σ2(x)

]
σ2
φ(x)

}
dx ,

(A.4)

where µφ(x) =

∫
Ω
K(x− ζ)δ(φ(ζ))ψ(ζ)(I(ζ)− µ(x))dζ∫

Ω
K(x− z)H(φ(z))dz

,

σ2
φ(x) =

∫
Ω
K(x− ζ)δ(φ(ζ))ψ(ζ)(I2(ζ)− σ2(x)− µ2(x))dζ∫

Ω
K(x− z)H(φ(z))dz

− 2µ(x)µφ(x) .

Notice that : the �rst integral in Eq. (A.4) is the usual part considered when applying

coordinate descent ; the rest integral takes charge in the changes in the distribution by
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varying φ. Substitute x→ y and ζ → x in the second integral of Eq. (A.4) :

∂E(φ(x) + τψ(x))

∂τ

∣∣∣
τ→0

=

∫
Ω

δ(φ(x))ψ(x)

[
(I(x)− µ(x))2

2σ2(x)
+ log σ(x)

]
dx

− 1

2

∫
Ω

H(φ(y))

σ4(y)
2
(
I(y)− µ(y)

)
σ2(y)

∫
Ω
K(y − x)δ(φ(x))ψ(x)

(
I(x)− µ(y)

)
dx∫

Ω
K(x− z)H(φ(z))dz

dy

− 1

2

∫
Ω

H(φ(y))

σ4(y)

[(
I(y)− µ(y)

)2 − σ2(y)
]

∫
Ω
K(y − x)δ(φ(x))ψ(x)

[
I2(x)− σ2(y)− µ2(y)− 2µ(y)

(
I(x)− µ(y)

)]
dx∫

Ω
K(x− z)H(φ(z))dz

dy .

Then, change the order of integration :

∂E(φ(x) + τψ(x))

∂τ

∣∣∣
τ→0

=

∫
Ω

δ(φ(x))ψ(x)

[(
I(x)− µ(x)

)2

2σ2(x)
+ logσ(x)

]
dx

− 1

2

∫
Ω

δ(φ(x))ψ(x)

∫
Ω

H(φ(y))

σ4(y)

[
2
(
I(y)− µ(y)

)
σ2(y)K(y − x)

(
I(x)− µ(y)

)∫
Ω
K(x− z)H(φ(z))dz

]
dydx

− 1

2

∫
Ω

δ(φ(x))ψ(x)

∫
Ω

H(φ(y))

σ4(y)
[(
I(y)− µ(y)

)2 − σ2(y)
]
K(y − x)

[
I2(x)− σ2(y)− µ2(y)− 2µ(y)

(
I(x)− µ(y)

)]
)∫

Ω
K(x− z)H(φ(z))dz

 dydx .

Therefore, the shape gradient of the external energy of the BC model can be given by :

∂E(φ)

∂φ
= δ(φ(x))

[(
I(x)− µ(x)

)2

2σ2(x)
+ log σ(x)

]

− 1

2
δ(φ(x))

∫
Ω

H(φ(y))K(y − x)

σ4(y)
∫

Ω
K(x− z)H(φ(z))dz

2
(
I(y)− µ(y)

)
σ2(y)

(
I(x)− µ(y)

)
dy

− 1

2
δ(φ(x))

∫
Ω

H(φ(y))K(y − x)

σ4(y)
∫

Ω
K(x− z)H(φ(z))dz

{[(
I(y)− µ(y)

)2 − σ2(y)
]

[
I2(x)− σ2(y)− µ2(y)− 2µ(y)

(
I(x)− µ(y)

)]}
dy .

The expressions of the second and the third integrals are rather complex. However, one

can verify that for a kernel of in�nite width these terms can be cancelled. This indicates

that the last two terms are only important if the kernel width is very small. In order to
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allow for a more e�cient implementation, the above function is rearranged and rewritten

as [31] :

∂E(φ)

∂φ
= δ(φ(x))

[(
I(x)− µ(x)

)2

2σ2(x)
+

1

2
log σ2(x)− 1

2

(
I2(x)F4(x) + I(x)F5(x) + F6(x)

)]
,

(A.5)

with the following abbreviations :

F1(x) =

∫
Ω

K(x− y)H(φ(y))dy =
(
K ∗H(φ)

)
(x) ,

F2(x) =

∫
Ω

K(x− y)H(φ(y))I(y)dy = (K ∗ (H(φ)I))(x) → µ(x) =
F2(x)

F1(x)
,

F3(x) =

∫
Ω

K(x− y)H(φ(y))I2(y)dy =
[
K ∗ (H(φ)I2)

]
(x) → σ2(x) =

F3(x)

F1(x)
− µ2(x) ,

F4(x) =

∫
Ω

K(y − x)H(φ(y))
[(
I(y)− µ(y)

)2 − σ2(y)
]

σ4(y)F1(y)
dy =

[
K ∗ H(φ)(I − µ)2 − σ2

σ4F1

]
(x) ,

F5(x) =

∫
Ω

K(y − x)H(φ(y))

σ4(y)F1(y)

{
2
(
I(y)− µ(y)

)
σ2(y)− 2µ(y)

[(
I(y)− µ(y)

)2 − σ2(y)
]}

dy

=

{
K ∗ H(φ) [2Iσ2 − 2µ(I − µ)2]

σ4F1

}
(x) ,

F6(x) =

∫
Ω

K(y − x)H(φ(y))

σ4(y)F1(y)

{
2
(
I(y)− µ(y)

)(
− µ(y)

)
σ2(y) +

[(
I(y)− µ(y)

)2 − σ2(y)
]

(
− σ2(y) + µ2(y)

)}
dy

=

K ∗ H(φ)
[
σ2(F3

F1
− 2Iµ)− (I − µ)2(σ2 − µ2)

]
σ4F1

 (x) ,

where K denotes the mirrored kernel K. Therefore, the Gâteaux derivative of Eq. (A.3)

can be implemented e�ciently using recursive �lters.



Annexe B

Maximum likelihood segmentation

with a Rayleigh distribution

Recall the likelihood function with a Rayleigh distribution introduced in § 2.5.3.3 :

l = −Ai log

(
1

Ai

∫
Ω

I(x)2H(φ)dx

)
− Ao log

(
1

Ao

∫
Ω

I(x)2H(−φ)dx

)
. (B.1)

The maximisation of this likelihood can be expressed using the �rst variation of the

functional with respect to φ. Introducing a function ψ of the same type of φ, it is necessary

to solve the following Gâteaux derivative :

∂l(φ+ τψ)

∂τ

∣∣∣
τ→0

= −
∫

Ω

∂H(φ+ τψ)

∂τ

∣∣∣
τ→0

dx

(
log

∫
Ω
I2H(φ)dx

Ai

)
− Ai

τ

∂τ
log

∫
Ω
I2H(φ+ τψ)dx∫

Ω
H(φ+ τψ)dx

∣∣∣
τ→0

−
∫

Ω

∂H(−(φ+ τψ))

∂τ

∣∣∣
τ→0

dx

(
log

∫
Ω
I2H(−φ)dx

Ao

)
− Ao

∂

∂τ
log

∫
Ω
I2H(−(φ+ τψ))dx∫

Ω
H(−(φ+ τψ))dx

∣∣∣
τ→0

= −
∫

Ω

δ(φ)ψdx

(
log

∫
Ω
I2H(φ)dx

Ai

)
− Ai

Ai∫
Ω
I2H(φ)dx

(∫
Ω
I2δ(φ)ψdx

Ai
−
∫

Ω
I2H(φ)dx

∫
Ω
δ(φ)ψdx

A2
i

)
+

∫
Ω

δ(φ)ψdx

(
log

∫
Ω
I2H(−φ)dx

Ao

)
− Ao

Ao∫
Ω
I2H(−φ)dx

(
−
∫

Ω
I2δ(φ)ψdx

Ao
+

∫
Ω
I2H(−φ)dx

∫
Ω
δ(φ)ψdx

A2
o

)
= −

∫
Ω

δ(φ)

(
log

∫
Ω
I2H(φ)dx

Ai
+
I2Ai −

∫
Ω
I2H(φ)dx∫

Ω
I2H(φ)dx

− log

∫
Ω
I2H(−φ)dx

Ao
−
I2Ao −

∫
Ω
I2H(−φ)dx∫

Ω
I2H(−φ)dx

)
ψdx . (B.2)
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This function can be rewritten as the inner product 〈·, ψ〉. Therefore, maximisation of the

likelihood evolutes best following the direction :

∂l(φ)

∂φ
=− δ(φ)

[
log

(∫
Ω
I2H(φ)dx

Ai

)
+
I2Ai −

∫
Ω
I2H(φ)dx∫

Ω
I2H(φ)dx

− log

(∫
Ω
I2H(−φ)dx

Ao

)
−
I2Ao −

∫
Ω
I2H(−φ)dx∫

Ω
I2H(−φ)dx

]
. (B.3)



Annexe C

Noise estimation methods

Noise estimation methods have been proposed in many studies. A recent review [110]

has classi�ed them as Block [130], Average or Median [148], Pyramid [132] based methods

and so on. The commonly used observation model supposes a piecewise constant image

with additive white noise I(x). Thereby, it is possible to estimate the statistics of the

noise, for example by the following di�erence function :

d(i, j) = 2I(xi,j)− I(xi−1,j)− I(xi,j−1) ,

where i = 1, 2, · · · , n , j = 1, 2, · · · ,m, xi,j ∈ Ω ⊂ R2. Thus, d mainly contains infor-

mation about the noise as well as image discontinuities. The mathematical expectation

and the variance of d can be estimated as :

E[d(i, j)] = 2E[I(xi,j)]− E[I(xi−1,j)]− E[I(xi−1,j−1)]

' 2E[I(xi,j)]− E[I(xi,j)]− E[I(xi,j)] ' 0 .

Var(d(i, j)) = 4Var(I(xi,j)) + Var(I(xi−1,j)) + Var(I(xi,j−1))

' 6Var(I(xi,j)) = 6σ2 . (C.1)

Meanwhile, the variance of d can be empirically obtained by :

σ̂2
d =

1

nm− 1

∑
i,j

(
d(i, j)− d

)2
. (C.2)

Combining the above two results, σ can be estimated by :

σ̂ =
σ̂d√

6
. (C.3)

Suppose the additive noise is Gaussian, the median of the absolute deviation [81] can

be simply calculated as :

σ̂M =
median(|d−median(d)|)

0.6745
, (C.4)
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where d = (d(i, j)) is a vector formed by the di�erences between adjacent samples of the

noisy observations. The constant 0.6745 is the approximation of Φ−1(3/4), where Φ−1 is

the inverse of the cumulative distribution function for the standard normal distribution. In

other words, for a symmetric distribution with zero mean, the population median absolute

deviation is the 75th percentile of the distribution.

Figure C.1 shows images degraded by an additive Gaussian noise (the top two rows)

and by a Rayleigh noise (the bottom two rows). From left to right, this �gure presents the

noisy observations at four di�erent noise levels. Using Eq. (C.3) and Eq. (C.4) respectively

for these images, we achieve the estimated image noise variances listed in Table C.1. For

the images with high SNR, both σ̂ and σ̂M over estimate the true noise variance ; and for

the severely degraded images, the estimations are quite accurate. Also, we notice that σ̂

is comparatively better than σ̂M . This is because of the accuracy of the median absolute

deviation method depends highly on the noise model, although the median has been

proven to be robust with respect to outliers.

Noise House Lena

Gaussian

σ 5.00 15.00 25.00 35.00 5.00 15.00 25.00 35.00

σ̂ 6.46 15.95 25.64 35.47 7.44 16.87 26.37 36.17

σ̂M 8.22 16.37 25.83 35.70 11.49 18.21 27.06 36.58

Rayleigh

σ 4.60 13.84 22.81 32.03 4.63 13.86 23.03 32.74

σ̂ 6.16 14.86 23.82 33.21 7.13 15.90 24.74 33.80

σ̂M 8.04 15.38 24.07 33.42 11.37 17.37 25.37 34.41

Table C.1 � The values of real standard deviations and the estimated ones for the noisy images

shown in Fig. C.1.
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Figure C.1 � Original images and their noisy observations. Top two rows : noise free images

and observations at four levels of an additive Gaussian noise with standard derivations σ =

{2, 15, 25, 35} ; bottom two rows : Rayleigh noise with σ = {4.63, 13.86, 23.03, 32.74}.
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