V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, Cavity polaritons in microcavities containing disordered organic semiconductors, Physical Review B, vol.67, issue.8, p.85311, 2003.
DOI : 10.1103/PhysRevB.67.085311

A. Akahane, T. Asano, B. Song, and S. Noda, High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, vol.425, issue.6961, pp.944-953, 2003.
DOI : 10.1038/nature02063

A. Alemu, B. Gil, M. Julier, and S. Nakamura, -plane sapphire, Physical Review B, vol.57, issue.7, p.37, 1998.
DOI : 10.1103/PhysRevB.57.3761

URL : https://hal.archives-ouvertes.fr/lirmm-00108790

C. Benoit, A. La-guillaume, J. Debever, and F. Salvan, Radiative Recombination in Highly Excited CdS, Phys. Rev, vol.177, p.567, 1969.

H. Altug, D. Englund, and J. Vuckovic, Ultrafast photonic crystal nanocavity laser, Nature Physics, vol.88, issue.7, pp.484-488, 2006.
DOI : 10.1038/nphys343

]. S. Aml11a, Y. T. Amloy, K. F. Chen, K. H. Karlsson, H. C. Chen et al., Polarization-resolved fine-structure splitting of zero-dimensional InGaN excitons, Phys. Rev. B, vol.83, p.201307, 2011.

]. S. Aml11b, K. H. Amloy, K. F. Yu, R. Karlsson, T. G. Farivar et al., Size dependent biexciton binding energies in GaN quantum dots, Appl. Phys. Lett, vol.99, pp.251903-251906, 2011.

]. S. Aml12, K. F. Amloy, T. G. Karlsson, P. O. Andersson, and . Holtz, On the polarized emission from exciton complexes in GaN quantum dots, Appl. Phys. Lett, vol.100, p.219, 2012.

L. C. Andreani, G. Panzarini, and J. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: Theory, Physical Review B, vol.60, issue.19, pp.13276-132, 1999.
DOI : 10.1103/PhysRevB.60.13276

]. A. And00, E. P. Andreev, and . O-'reilly, Theory of the electronic structure of GaN/AlN hexagonal quantum dots, Phys. Rev. B, vol.62, pp.15851-158, 2000.

]. M. Ari07, S. Arita, S. Ishida, S. Kako, Y. Iwamoto et al., AlN air-bridge photonic crystal nanocavities demonstrating high quality factor, Appl. Phys. Lett, vol.91, pp.51106-51109, 2007.

A. Auffèves, B. Besga, J. Gérard, and J. Poizat, cavity, Physical Review A, vol.77, issue.6, p.63833, 2008.
DOI : 10.1103/PhysRevA.77.063833

A. Antoine-vincent, . Natali, . Byrne, . Vasson, . Disseix et al., Observation of Rabi splitting in a bulk GaN microcavity grown on silicon, Physical Review B, vol.68, issue.15, p.1533, 2003.
DOI : 10.1103/PhysRevB.68.153313

URL : https://hal.archives-ouvertes.fr/hal-00272519

]. N. Av03b, F. Antoine-vincent, M. Natali, A. Mihailovic, J. Vasson et al., Determination of the refractive indices of AlN, GaN, and Al[sub x]Ga[sub 1 -x]N grown on (111)Si substrates, J. Appl. Phys, vol.93, pp.5222-52, 2003.

[. Baba, Slow light in photonic crystals, Nature Photonics, vol.14, issue.8, pp.465-469, 2008.
DOI : 10.1038/nphoton.2008.146

A. Badolato, K. Hennessy, E. Mete-atatüre-dreiser, P. M. Hu, A. Petroff et al., Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes, Science, vol.308, issue.5725, pp.1158-1169, 2005.
DOI : 10.1126/science.1109815

]. N. Bae07, S. Baer, P. Schulz, S. Gartner, G. Schumacher et al., Influence of symmetry and Coulomb correlation effects on the optical properties of nitride quantum dots, Phys. Rev. B, vol.76, p.75310, 2007.

D. Bajoni, P. Senellart, A. Lemaître, and J. Bloch, microcavity: Similarities with a polariton condensate, Physical Review B, vol.76, issue.20, p.201305, 2007.
DOI : 10.1103/PhysRevB.76.201305

D. Bajoni, P. Sénellart, E. Wertz, I. Sagnes, A. Miard et al., Semiconductor Cavities, Physical Review Letters, vol.100, issue.4, p.47401, 2008.
DOI : 10.1103/PhysRevLett.100.047401

]. R. Bar06, T. Bardoux, P. Guillet, T. Lefebvre, T. Taliercio et al., Spectral diffusion effects, Photoluminescence of single GaN/AlN hexagonal quantum dots on Si, p.1953, 2006.

R. Bardoux, Spectroscopie de boîtes quantiques individuelles GaN/AlN en phase hexagonale, Thèse de doctorat, 2007.

R. Bardoux, T. Guillet, B. Gil, P. Lefebvre, T. Bretagnon et al., Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory, Physical Review B, vol.77, issue.23, p.235315, 2008.
DOI : 10.1103/PhysRevB.77.235315

URL : https://hal.archives-ouvertes.fr/hal-01220150

]. R. Bar11, A. Bardoux, M. Kaneta, K. Funato, Y. Okamoto et al., Single mode emission and non-stochastic laser system based on disordered point-sized structures : toward a tuneable random laser, Opt. Express, vol.19, pp.9262-92, 2011.

J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick et al., Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation, Physical Review B, vol.62, issue.24, p.16247, 2000.
DOI : 10.1103/PhysRevB.62.R16247

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande et al., Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot, Nature Physics, vol.22, issue.11, p.7, 2006.
DOI : 10.1103/PhysRevB.68.233301

URL : https://hal.archives-ouvertes.fr/hal-00105812

L. Besombes, L. Marsal, K. Kheng, T. Charvolin, L. S. Dang et al., Fine structure of the exciton in a single asymmetric CdTe quantum dot, Journal of Crystal Growth, vol.214, issue.215, pp.742-749, 2000.
DOI : 10.1016/S0022-0248(00)00191-3

]. L. Bes01a and . Besombes, Spectroscopie optique de boîtes quantiques uniques de semiconducteurs II-VI, Thèse de doctorat, 2001.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission, Physical Review B, vol.63, issue.15, p.1553, 2001.
DOI : 10.1103/PhysRevB.63.155307

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, Few-particle effects in single CdTe quantum dots, Physical Review B, vol.65, issue.12, p.1213, 2002.
DOI : 10.1103/PhysRevB.65.121314

]. D. Bim00, M. Bimberg, F. Grundmann, N. N. Heinrichsdorff, V. M. Ledentsov et al., Quantum dot lasers : breakthrough in optoelectronics, Thin Solid Films, vol.367, pp.235-237, 2000.

]. P. Bor01, W. Borri, S. Langbein, U. Schneider, R. L. Woggon et al., Ultralong Dephasing Time in InGaAs Quantum Dots, Phys. Rev. Lett, vol.87, p.157401, 2001.

M. Borselli, T. Johnson, and O. Painter, Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment, Optics Express, vol.13, issue.5, pp.1515-1530, 2005.
DOI : 10.1364/OPEX.13.001515

T. Bretagnon, S. Kalliakos, P. Lefebvre, P. Valvin, B. Gil et al., Time dependence of the photoluminescence of GaN/AlN quantum dots under high photoexcitation, Physical Review B, vol.68, issue.20, p.2053, 2003.
DOI : 10.1103/PhysRevB.68.205301

URL : https://hal.archives-ouvertes.fr/hal-01303926

T. Bretagnon, P. Lefebvre, P. Valvin, R. Bardoux, T. Guillet et al., Radiative lifetime of a single electron-hole pair in GaN/AlN quantum dots, Phys. Rev. B, vol.73, p.1133, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01304534

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler et al., Optical constants of epitaxial AlGaN films and their temperature dependence, Journal of Applied Physics, vol.82, issue.10, pp.5090-50, 1997.
DOI : 10.1063/1.366309

R. Butté, J. Levrat, G. Christmann, E. Feltin, J. Carlin et al., Phase diagram of a polariton laser from cryogenic to room temperature, Physical Review B, vol.80, issue.23, p.233301, 2009.
DOI : 10.1103/PhysRevB.80.233301

M. Cai, O. Painter, and K. J. Vahala, Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System, Physical Review Letters, vol.85, issue.1, p.74, 2000.
DOI : 10.1103/PhysRevLett.85.74

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, Backward quasi-phasematched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4, Appl. Phys. Lett, vol.86, p.1811, 2005.

E. Centeno, D. Felbacq, and D. Cassagne, All-Angle Phase Matching Condition and Backward Second-Harmonic Localization in Nonlinear Photonic Crystals, Physical Review Letters, vol.98, issue.26, p.263903, 2007.
DOI : 10.1103/PhysRevLett.98.263903

URL : https://hal.archives-ouvertes.fr/hal-00437532

S. Chang, N. B. Rex, R. K. Chang, L. J. Chong, and . Guido, Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities, Applied Physics Letters, vol.75, issue.2, pp.166-167, 1999.
DOI : 10.1063/1.124307

G. D. Chern, H. E. Tureci, A. Douglas-stone, R. K. Chang, M. Kneissl et al., Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars, Applied Physics Letters, vol.83, issue.9, pp.1710-1727, 2003.
DOI : 10.1063/1.1605792

J. Chen, T. Lu, Y. Wu, S. Lin, W. Liu et al., Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature, Applied Physics Letters, vol.94, issue.6, pp.61103-61106, 2009.
DOI : 10.1063/1.3079398

]. S. Che10, T. C. Chen, Y. J. Lu, T. C. Hou, H. C. Liu et al., Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers, Appl. Phys. Lett, vol.96, pp.71108-71111, 2010.

K. Cho, S. Suga, W. Dreybrodt, and F. Willmann, excitons in zinc-blende-type crystals in a magnetic field: Exchange interaction and cubic anisotropy, Physical Review B, vol.11, issue.4, pp.1512-1527, 1975.
DOI : 10.1103/PhysRevB.11.1512

]. K. Cho76 and . Cho, Unified theory of symmetry-breaking effects on excitons in cubic and wurtzite structures, Physical Review B, vol.14, issue.10, pp.4463-4507, 1976.
DOI : 10.1103/PhysRevB.14.4463

A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, Second-harmonic generation in periodically poled GaN, Applied Physics Letters, vol.83, issue.6, pp.1077-1087, 2003.
DOI : 10.1063/1.1599044

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang et al., Lasing in GaN microdisks pivoted on Si, Lasing in GaN microdisks pivoted on Si, pp.211101-211104, 2006.
DOI : 10.1063/1.2392673

G. Christmann, D. Simeonov, R. Butté, E. Feltin, J. F. Carlin et al., Impact of disorder on high quality factor III-V nitride microcavities, Applied Physics Letters, vol.89, issue.26, p.2611, 2006.
DOI : 10.1063/1.2420788

N. Carlin and . Grandjean, Room-Temperature Polariton Lasing in Semiconductor Microcavities, Phys. Rev. Lett, vol.98, pp.126405-126409, 2007.

G. Christmann, R. Butté, E. Feltin, J. Carlin, and N. Grandjean, Room temperature polariton lasing in a GaN???AlGaN multiple quantum well microcavity, Applied Physics Letters, vol.93, issue.5, pp.51102-51105, 2008.
DOI : 10.1063/1.2966369

[. Ciraci and E. Centeno, Focusing of Second-Harmonic Signals with Nonlinear Metamaterial Lenses: A Biphotonic Microscopy Approach, Physical Review Letters, vol.103, issue.6, p.63901, 2009.
DOI : 10.1103/PhysRevLett.103.063901

URL : https://hal.archives-ouvertes.fr/hal-00437961

]. D. Cit03, J. B. Citrin, and . Khurgin, Microcavity effect on the electron-hole relative motion in semiconductor quantum wells, Phys. Rev. B, vol.68, p.205325, 2003.

D. Coquillat, G. Vecchi, C. Comaschi, and A. M. Malvezzi, Jeremi Torres, and Marine Le Vassor d'Yerville. Enhanced second-and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal

P. Corfdir, J. Levrat, A. Dussaigne, P. Lefebvre, H. Teisseyre et al., Intrinsic dynamics of weakly and strongly confined excitons in nonpolar nitride-based heterostructures, Physical Review B, vol.83, issue.24, p.245326, 2011.
DOI : 10.1103/PhysRevB.83.245326

URL : https://hal.archives-ouvertes.fr/hal-00631188

H. Craighead, Future lab-on-a-chip technologies for interrogating individual molecules, Nature, vol.6, issue.7101, pp.387-390, 2006.
DOI : 10.1038/nature05061

C. Czekalla, C. Sturm, R. Schmidt-grund, B. Cao, M. Lorenz et al., Whispering gallery mode lasing in zinc oxide microwires, Applied Physics Letters, vol.92, issue.24, pp.241102-241105, 2008.
DOI : 10.1063/1.2946660

J. Dai, C. X. Xu, R. Ding, K. Zheng, Z. L. Shi et al., Combined whispering gallery mode laser from hexagonal ZnO microcavities, Applied Physics Letters, vol.95, issue.19, p.1911, 2009.
DOI : 10.1063/1.3264080

L. Si-dang, D. Heger, R. André, F. Boeuf, and R. Romestain, Stimulation of Polariton Photoluminescence in Semiconductor Microcavity, Physical Review Letters, vol.81, issue.18, p.3920, 1998.
DOI : 10.1103/PhysRevLett.81.3920

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. Denbaars et al., Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction, Applied Physics Letters, vol.87, issue.10, p.1011, 2005.
DOI : 10.1063/1.2039987

URL : https://hal.archives-ouvertes.fr/hal-00869943

A. David, High-efficiency GaN-based light-emitting diodes : Light extraction by photonic crystals and microcavities, Thèse de doctorat, 2006.
URL : https://hal.archives-ouvertes.fr/pastel-00002956

S. David, P. Boucaud, and F. Semond, Method for obtaining a structured material with through openings. in particular nitrides of type iii semiconductors structured according to photonic crystal patterns, 2009.

H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose-Einstein condensation, Reviews of Modern Physics, vol.82, issue.2, p.1489, 2010.
DOI : 10.1103/RevModPhys.82.1489

C. Dietrich, C. Lange, R. Sturm, M. Schmidt-grund, and . Grundmann, One- and two-dimensional cavity modes in ZnO microwires, New Journal of Physics, vol.13, issue.10, p.1030, 2011.
DOI : 10.1088/1367-2630/13/10/103021

A. Dousse, L. Lanco, J. Suffczynski, E. Semenova, A. Miard et al., Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography, Physical Review Letters, vol.101, issue.26, p.267404, 2008.
DOI : 10.1103/PhysRevLett.101.267404

]. Dup10, C. Dupont, D. J. Couteau, F. Rogers, G. Hosseini-teherani et al., Waveguiding-assisted random lasing in epitaxial ZnO thin film, Appl. Phys. Lett, vol.97, pp.261109-261112, 2010.

P. R. Edwards, R. W. Martin, I. M. Watson, C. Liu, R. A. Taylor et al., Quantum dot emission from site-controlled InGaN???GaN micropyramid arrays, Applied Physics Letters, vol.85, issue.19, pp.4281-4323, 2004.
DOI : 10.1063/1.1815043

]. R. Ell57 and . Elliott, Intensity of Optical Absorption by Excitons, Phys. Rev, vol.108, p.1384, 1957.

]. S. Emp96, D. J. Empedocles, M. G. Norris, and . Bawendi, Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots, Phys. Rev. Lett, vol.77, p.38, 1996.

A. Enderlin, M. Ravaro, V. Voliotis, R. Grousson, and X. Wang, Coherent control of a semiconductor qubit in the strong coupling regime: Impact of energy and phase relaxation mechanisms, Physical Review B, vol.80, issue.8, p.85301, 2009.
DOI : 10.1103/PhysRevB.80.085301

URL : https://hal.archives-ouvertes.fr/hal-01229252

[. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke et al., Lasing dynamics in single ZnO nanorods, Optics Express, vol.16, issue.2, pp.1125-1136, 2008.
DOI : 10.1364/OE.16.001125

J. Fallert, R. J. Dietz, H. Zhou, J. Sartor, C. Klingshirn et al., Lasing in single ZnO nanorods after fs- and ns-pulsed excitation, physica status solidi (c), vol.241, issue.2, pp.449-453, 2009.
DOI : 10.1002/pssc.200880308

J. Fallert, R. J. Dietz, J. Sartor, D. Schneider, C. Klingshirn et al., Co-existence of strongly and weakly localized random laser modes, Nature Photonics, vol.36, issue.5, pp.279-281, 2009.
DOI : 10.1038/nphoton.2009.67

]. S. Fau08, T. Faure, P. Guillet, T. Lefebvre, B. Bretagnon et al., Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities, Phys. Rev. B, vol.78, pp.235323-235330, 2008.

]. S. Fau09a and . Faure, Interaction lumière-matière dans les microcavités massives à base de ZnO : du couplage fort à température ambiante vers le laser à polariton, Thèse de doctorat, 2009.

S. Faure, C. Brimont, T. Guillet, T. Bretagnon, B. Gil et al., Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature, Applied Physics Letters, vol.95, issue.12, pp.121102-121105, 2009.
DOI : 10.1063/1.3232228

URL : https://hal.archives-ouvertes.fr/hal-00388499

]. I. Fav05 and . Favero, Décohérence, symétrie er relaxation de spin dans les boîtes quantiques semiconductrices, Thèse de doctorat, 2005.

H. Franke, C. Sturm, R. Schmidt-grund, G. Wagner, and M. Grundmann, Ballistic propagation of exciton???polariton condensates in a ZnO-based microcavity, New Journal of Physics, vol.14, issue.1, p.130, 2012.
DOI : 10.1088/1367-2630/14/1/013037

[. Fu, L. Wang, and A. Zunger, Excitonic exchange splitting in bulk semiconductors, Physical Review B, vol.59, issue.8, p.5568, 1999.
DOI : 10.1103/PhysRevB.59.5568

]. M. Gal01 and . Gallart, Dynamique de recombinaison excitonique dans les puits GaN/AlGaN, Thèse de doctorat, 2001.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots, Physical Review Letters, vol.76, issue.16, p.3005, 1996.
DOI : 10.1103/PhysRevLett.76.3005

J. P. Garayt, J. M. Gérard, F. Enjalbert, L. Ferlazzo, S. Founta et al., Study of isolated cubic GaN quantum dots by low-temperature cathodoluminescence, Physica E: Low-dimensional Systems and Nanostructures, vol.26, issue.1-4, pp.203-205, 2005.
DOI : 10.1016/j.physe.2004.08.053

B. Gayral, J. M. Gérard, A. Lemaitre, C. Dupuis, L. Manin et al., wet-etched GaAs microdisks containing InAs quantum boxes, Applied Physics Letters, vol.75, issue.13, pp.1908-1927, 1999.
DOI : 10.1063/1.124894

]. B. Gay01 and . Gayral, Controlling spontaneous emission dynamics in semiconductor micro cavities, Ann. Phys. Fr, vol.26, pp.1-1, 2001.

B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Granados et al., Manipulating exciton fine structure in quantum dots with a lateral electric field, Applied Physics Letters, vol.90, issue.4, pp.41101-41104, 2007.
DOI : 10.1063/1.2431758

B. Gil and A. Alemu, Optical anisotropy of excitons in strained GaN epilayers grown along the [1010] direction, Phys. Rev. B, vol.56, p.124, 1997.

B. Gil, S. Clur, and O. Briot, The exciton-polariton effect on the photoluminescence of GaN on sapphire, Solid State Communications, vol.104, issue.5, pp.267-269, 1997.
DOI : 10.1016/S0038-1098(97)00284-6

URL : https://hal.archives-ouvertes.fr/hal-00545875

S. Gradecak, F. Qian, Y. Li, H. Park, and C. M. Lieber, GaN nanowire lasers with low lasing thresholds, Applied Physics Letters, vol.87, issue.17, pp.173111-173114, 2005.
DOI : 10.1063/1.2115087

T. Holger and . Grahn, Optical polarization anisotropies in GaN films for different nonpolar orientations, Phys. Stat. Sol. (b), vol.244, pp.1839-1857, 2007.

]. T. Gui11a, C. Guillet, P. Brimont, B. Valvin, T. Gil et al., Laser emission with excitonic gain in a ZnO planar microcavity, Appl. Phys. Lett, vol.98, pp.211105-211108, 2011.

]. T. Gui12a, C. Guillet, P. Brimont, B. Valvin, T. Gil et al., Non-linear emission properties of ZnO microcavities, Phys. Stat. Sol. (c), vol.9, pp.1225-1237, 2012.

T. Guillet, M. Mexis, S. Sergent, D. Néel, S. Rennesson et al., High quality factor photonic resonators for nitride quantum dots, physica status solidi (b), vol.36, issue.3, pp.449-453, 2012.
DOI : 10.1002/pssb.201100226

URL : https://hal.archives-ouvertes.fr/hal-00633283

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard et al., Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity, Physical Review Letters, vol.81, issue.5, p.11, 1998.
DOI : 10.1103/PhysRevLett.81.1110

E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura et al., Free-standing, optically pumped, GaN???InGaN microdisk lasers fabricated by photoelectrochemical etching, Applied Physics Letters, vol.85, issue.22, pp.5179-51, 2004.
DOI : 10.1063/1.1829167

W. Basil, T. L. Hakki, and . Paoli, Gain spectra in GaAs double -heterostructure injection lasers, J. Appl. Phys, vol.46, pp.1299-1312, 1975.

]. S. Hal11, S. Halm, S. Kalusniak, H. Sadofev, F. Wunsche et al., Strong excitonphoton coupling in a monolithic ZnO, )O multiple quantum well microcavity

L. Christy, R. P. Haynes, and . Van-duyne, Nanosphere Lithography : A versatile Nanofabrication Tool for studies of size-dependent nanoparticles optics, J. Phys. Chem. B, vol.419, issue.5, 2001.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson et al., Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing, Physical Review B, vol.72, issue.19, p.193303, 2005.
DOI : 10.1103/PhysRevB.72.193303

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection, Applied Physics Express, vol.1, p.1211, 2008.
DOI : 10.1143/APEX.1.121102

]. A. Hof97 and . Hoffmann, Dynamics of excited states in GaN, Mater. Sci. Eng. B, vol.43, issue.1, 1997.

]. Y. Hu90, M. Hu, S. W. Lindberg, and . Koch, Theory of optically excited intrinsic semiconductor quantum dots, Phys. Rev. B, vol.42, pp.1713-1730, 1990.

A. Högele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton et al., Voltage-Controlled Optics of a Quantum Dot, Physical Review Letters, vol.93, issue.21, p.217401, 2004.
DOI : 10.1103/PhysRevLett.93.217401

B. Hönerlage, C. Klingshirn, and J. B. Grun, Spontaneous emission due to exciton???electron scattering in semiconductors, physica status solidi (b), vol.35, issue.2, pp.599-605, 1976.
DOI : 10.1002/pssb.2220780219

T. Ide, T. Baba-tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding, Optics Express, vol.13, issue.5, pp.1615-1631, 2005.
DOI : 10.1364/OPEX.13.001615

[. Iliew, C. Etrich, T. Pertsch, and F. Lederer, Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals, Physical Review B, vol.77, issue.11, p.115124, 2008.
DOI : 10.1103/PhysRevB.77.115124

F. Anas, R. A. Jarjour, R. A. Oliver, and . Taylor, Nitride-based quantum dots for single photon source applications, Phys. Stat. Sol. (a), vol.206, pp.2510-2535, 2009.

J. C. Johnson, H. Choi, K. P. Knutsen, R. D. Schaller, P. Yang et al., Single gallium nitride nanowire lasers, Nature Materials, vol.1, issue.2, pp.106-107, 2002.
DOI : 10.1038/nmat728

]. B. Jon10, M. Jones, V. N. Oxborrow, M. Astratov, A. Hopkinson et al., Splitting and lasing of whispering gallery modes in quantum dot micropillars, Opt. Express, vol.18, pp.22578-225, 2010.

]. M. Jul98, J. Julier, B. Campo, J. P. Gil, S. Lascaray et al., Determination of the spin-exchange interaction constant in wurtzite GaN, Phys. Rev. B, vol.57, p.67, 1998.

]. S. Kak02, T. Kako, Y. Someya, and . Arakawa, Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser, Appl. Phys. Lett, vol.80, pp.722-729, 2002.

S. Kako, K. Hoshino, S. Iwamoto, S. Ishida, and Y. Arakawa, Exciton and biexciton luminescence from single hexagonal GaN???AlN self-assembled quantum dots, Applied Physics Letters, vol.85, issue.1, p.85, 2004.
DOI : 10.1063/1.1769586

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto et al., A gallium nitride single-photon source operating at 200???K, Nature Materials, vol.95, issue.11, pp.887-895, 2006.
DOI : 10.1038/nmat1763

S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity, Applied Physics Letters, vol.98, issue.1, pp.11101-11104, 2011.
DOI : 10.1063/1.3533800

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, . Ph et al., Line narrowing in single semiconductor quantum dots: Toward the control of environment effects, Physical Review B, vol.66, issue.4, p.41306, 2002.
DOI : 10.1103/PhysRevB.66.041306

URL : https://hal.archives-ouvertes.fr/hal-00546650

E. Kammann, H. Ohadi, M. Maragkou, V. Alexey, . Kavokin et al., Crossover from photon to exciton-polariton lasing, New Journal of Physics, vol.14, issue.10, p.1050, 2012.
DOI : 10.1088/1367-2630/14/10/105003

J. Kasprzak, Condensation of exciton polaritons, Thèse de doctorat, 2006.
URL : https://hal.archives-ouvertes.fr/tel-00118316

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun et al., Bose???Einstein condensation of exciton polaritons, Nature, vol.214, issue.185, pp.409-413, 2006.
DOI : 10.1038/nature05131

S. Kéna-cohen, M. Davanço, and S. R. Forrest, Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity, Physical Review Letters, vol.101, issue.11, p.116401, 2008.
DOI : 10.1103/PhysRevLett.101.116401

S. Kéna-cohen and S. R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity, Nature Photonics, vol.95, issue.6, pp.371-374, 2010.
DOI : 10.1038/nphoton.2010.86

C. Kindel, S. Kako, T. Kawano, H. Oishi, and Y. Arakawa, Collinear Polarization of Exciton/Biexciton Photoluminescence from Single Hexagonal GaN Quantum Dots, Japanese Journal of Applied Physics, vol.48, issue.4, pp.4-116, 2009.
DOI : 10.1143/JJAP.48.04C116

C. Kindel, S. Kako, T. Kawano, H. Oishi, Y. Arakawa et al., Exciton fine-structure splitting in GaN/AlN quantum dots, Physical Review B, vol.81, issue.24, p.241309, 2010.
DOI : 10.1103/PhysRevB.81.241309

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, Demonstration of an erbium-doped microdisk laser on a silicon chip, Physical Review A, vol.74, issue.5, p.51802, 2006.
DOI : 10.1103/PhysRevA.74.051802

[. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing, Physical Review B, vol.75, issue.11, p.115203, 2007.
DOI : 10.1103/PhysRevB.75.115203

]. D. Kri09, K. G. Krizhanovskii, M. Lagoudakis, B. Wouters, R. A. Pietka et al., Coexisting nonequilibrium condensates with long-range spatial coherence in semiconductor microcavities, Phys. Rev. B, vol.80, p.45317, 2009.

V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kümmell, A. Forchel et al., Fine Structure of Biexciton Emission in Symmetric and Asymmetric CdSe/ZnSe Single Quantum Dots, Physical Review Letters, vol.82, issue.8, pp.1780-1797, 1999.
DOI : 10.1103/PhysRevLett.82.1780

]. S. Kun03, M. Kundermann, C. Saba, T. Ciuti, U. Guillet et al., Coherent Control of Polariton Parametric Scattering in Semiconductor Microcavities, Phys. Rev. Lett, vol.91, p.107402, 2003.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe et al., Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect, Applied Physics Letters, vol.88, issue.4, p.411, 2006.
DOI : 10.1063/1.2167801

D. Lagarde, A. Balocchi, H. Carrère, P. Renucci, T. Amand et al., quantum dots, Physical Review B, vol.77, issue.4, p.41304, 2008.
DOI : 10.1103/PhysRevB.77.041304

URL : https://hal.archives-ouvertes.fr/hal-00726726

[. Lai, P. Yu, T. Wang, H. Kuo, T. Lu et al., Lasing characteristics of a GaN photonic crystal nanocavity light source, Applied Physics Letters, vol.91, issue.4, pp.41101-41104, 2007.
DOI : 10.1063/1.2759467

]. F. Lau11, A. Laussy, E. Laucht, J. J. Del-valle, and J. M. Finley, Villas-Bôas. Luminescence spectra of quantum dots in microcavities. III. Multiple quantum dots, Phys. Rev. B, vol.84, p.195313, 2011.

P. Lawaetz, Valence-Band Parameters in Cubic Semiconductors, Physical Review B, vol.4, issue.10, pp.3460-3494, 1971.
DOI : 10.1103/PhysRevB.4.3460

]. P. Lef02, S. Lefebvre, P. Anceau, T. Valvin, L. Taliercio et al., Time-resolved spectroscopy of (Al,Ga,In)N based quantum wells : Localization effects and effective reduction of internal electric fields, Phys. Rev. B, vol.66, p.195330, 2002.

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures, Journal of the Optical Society of America B, vol.22, issue.12, pp.2581-2606, 2005.
DOI : 10.1364/JOSAB.22.002581

J. Levrat, R. Butté, E. Feltin, J. Carlin, N. Grandjean et al., Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory, Physical Review B, vol.81, issue.12, p.125305, 2010.
DOI : 10.1103/PhysRevB.81.125305

]. D. Lid98, D. D. Lidzey, M. S. Bradley, T. Skolnick, S. Virgili et al., Strong exciton-photon coupling in an organic semiconductor microcavity, Nature, vol.395, p.53, 1998.

[. Lin, J. Wang, C. Chen, K. Shen, D. Yeh et al., A GaN photonic crystal membrane laser, Nanotechnology, vol.22, issue.2, p.252, 2011.
DOI : 10.1088/0957-4484/22/2/025201

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao et al., GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN???GaN distributed Bragg reflector, Applied Physics Letters, vol.92, issue.1, pp.11129-11132, 2008.
DOI : 10.1063/1.2831716

[. Lu, Y. Lai, Y. Lan, S. Huang, J. Chen et al., Room temperature polariton lasing vs photon lasing in a ZnO-based hybrid microcavity, Optics Express, vol.20, issue.5, pp.5530-55, 2012.
DOI : 10.1364/OE.20.005530

Y. Lu, J. Kim, H. Chen, C. Wu, N. Dabidian et al., Plasmonic Nanolaser Using Epitaxially Grown Silver Film, Science, vol.337, issue.6093, pp.450-454, 2012.
DOI : 10.1126/science.1223504

G. Malpuech, A. Kavokin, and F. P. Laussy, Polariton Bose condensation in microcavities, physica status solidi (a), vol.195, issue.3, pp.568-573, 2003.
DOI : 10.1002/pssa.200306154

J. Y. Marzin, J. M. Gérard, A. Izraël, D. Barrier, and G. Bastard, Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs, Physical Review Letters, vol.73, issue.5, p.716, 1994.
DOI : 10.1103/PhysRevLett.73.716

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka et al., GaN Photonic-Crystal Surface-Emitting Laser at Blue-Violet Wavelengths, Science, vol.319, issue.5862, pp.445-449, 2008.
DOI : 10.1126/science.1150413

]. S. Mcc92, A. F. Mccall, R. E. Levi, S. J. Slusher, R. A. Pearton et al., Whisperinggallery mode microdisk lasers, Appl. Phys. Lett, vol.60, pp.289-291, 1992.

]. R. Mel08, V. Melet, A. Voliotis, D. Enderlin, X. L. Roditchev et al., Resonant excitonic emission of a single quantum dot in the Rabi regime, Phys. Rev. B, vol.78, p.73301, 2008.

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon et al., High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots, Optics Letters, vol.36, issue.12, pp.2203-2225, 2011.
DOI : 10.1364/OL.36.002203

URL : https://hal.archives-ouvertes.fr/hal-00554481

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon et al., High quality factor of AlN microdisks embedding GaN quantum dots, High quality factor of AlN microdisks embedding GaN quantum dots, pp.2328-2351, 2011.
DOI : 10.1002/pssc.201001161

URL : https://hal.archives-ouvertes.fr/hal-00633272

P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals, Applied Physics Letters, vol.96, issue.26, pp.261111-261114, 2010.
DOI : 10.1063/1.3459975

O. Moshe, D. H. Rich, B. Damilano, and J. Massies, quantum dots grown on Si(111), Physical Review B, vol.77, issue.15, p.155322, 2008.
DOI : 10.1103/PhysRevB.77.155322

O. Moshe, . Rich, J. Damilano, and . Massies, Polarized light from excitonic recombination in selectively etched GaN/AlN quantum dot ensembles on Si(111), Journal of Physics D: Applied Physics, vol.44, issue.50, p.5051, 2011.
DOI : 10.1088/0022-3727/44/50/505101

M. Munsch, J. Claudon, N. S. Malik, K. Gilbert, P. Grosse et al., Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes, Applied Physics Letters, vol.100, issue.3, p.311, 2012.
DOI : 10.1063/1.3678031

F. Médard, J. Zúñiga-pérez, P. Disseix, M. Mihailovic, J. Leymarie et al., Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption, Physical Review B, vol.79, issue.12, pp.125302-125307, 2009.
DOI : 10.1103/PhysRevB.79.125302

F. Médard, Conception et spectroscopie de microcavités à base de ZnO en régime de couplage fort pour l'obtention d'un laser à polaritons, Thèse de doctorat, 2010.

Y. Nabetani, T. Ishiakawa, S. Noda, and A. Sasaki, Raman coherence beats from entangled polarization Eingenstates in InAs quantum dots, Phys. Rev. Lett, vol.88, p.2236, 2002.

]. T. Nak06a, S. Nakaoka, Y. Kako, and . Arakawa, Quantum confined Stark effect in single selfassembled GaN/AlN quantum dots, Physica E, vol.32, issue.1, 2006.

T. Nakaoka, S. Kako, and Y. Arakawa, Unconventional quantum-confined Stark effect in a single GaN quantum dot, Phys. Rev. B, vol.73, p.1213, 2006.

M. Nakayama, S. Komura, T. Kawase, and D. Kim, Observation of Exciton Polaritons in a ZnO Microcavity with HfO 2 /SiO 2 Distributed Bragg Reflectors, J. Phys. Soc. Jpn, vol.77, p.937, 2008.

G. A. Narvaez, G. Bester, and A. Zunger, quantum dots: Recombination energies, polarization, and radiative lifetimes versus dot height, Physical Review B, vol.72, issue.24, p.245318, 2005.
DOI : 10.1103/PhysRevB.72.245318

H. S. Nguyen, G. Sallen, C. Voisin, . Ph, C. Roussignol et al., Optically Gated Resonant Emission of Single Quantum Dots, Physical Review Letters, vol.108, issue.5, p.57401, 2012.
DOI : 10.1103/PhysRevLett.108.057401

[. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor, Physical Review B, vol.75, issue.19, p.195313, 2007.
DOI : 10.1103/PhysRevB.75.195313

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Laser oscillation in a strongly coupled single-quantum-dot???nanocavity system, Nature Physics, vol.425, issue.4, pp.279-281, 2010.
DOI : 10.1038/nphys1518

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa et al., Ultralow-power all-optical RAM based on nanocavities, Nature Photonics, vol.19, issue.4, pp.248-250, 2012.
DOI : 10.1038/nphoton.2012.2

D. Néel, S. Sergent, M. Mexis, D. Sam-giao, T. Guillet et al., AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate, Applied Physics Letters, vol.98, issue.26, p.2611, 2011.
DOI : 10.1063/1.3605592

T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, III-nitride blue and ultraviolet photonic crystal light emitting diodes, Applied Physics Letters, vol.84, issue.4, pp.466-470, 2004.
DOI : 10.1063/1.1644050

G. Oohata, T. Nishioka, D. Kim, H. Ishihara, and M. Nakayama, Giant Rabi splitting in a bulk CuCl microcavity, Physical Review B, vol.78, issue.23, p.233304, 2008.
DOI : 10.1103/PhysRevB.78.233304

M. Pacheco and Z. Barticevic, Optical response of a quantum dot superlattice under electric and magnetic fields, Physical Review B, vol.64, issue.3, p.334, 2001.
DOI : 10.1103/PhysRevB.64.033406

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, Spin-exchange splitting of excitons in GaN, Physical Review B, vol.64, issue.11, p.1152, 2001.
DOI : 10.1103/PhysRevB.64.115201

]. B. Pat03, W. Patton, U. Langbein, and . Woggon, Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots, Phys. Rev. B, vol.68, p.1253, 2003.

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours et al., Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity, Physical Review Letters, vol.95, issue.6, p.67401, 2005.
DOI : 10.1103/PhysRevLett.95.067401

E. Peter, Couplage fort exciton-photon pour une boîte quantique de GaAs en microdisque, Thèse de doctorat, 2006.

S. Pezzagna, J. Brault, M. Leroux, J. Massies, and M. De-micheli, Refractive indices and elasto-optic coefficients of GaN studied by optical waveguiding, Journal of Applied Physics, vol.103, issue.12, p.1231, 2008.
DOI : 10.1063/1.2947598

E. Poem, J. Shemesh, I. Marderfeld, D. Galushko, N. Akopian et al., Polarization sensitive spectroscopy of charged quantum dots, Physical Review B, vol.76, issue.23, p.2353, 2007.
DOI : 10.1103/PhysRevB.76.235304

]. A. Ram11, T. M. Ramsay, S. J. Godden, E. M. Boyle, A. Gauger et al., Effect of detuning on the phonon induced dephasing of optically driven InGaAs/GaAs quantum dots, J. Appl. Phys, vol.109, p.1024, 2011.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn et al., Strong coupling in a single quantum dot???semiconductor microcavity system, Nature, vol.65, issue.7014, pp.197-199, 2004.
DOI : 10.1103/PhysRevLett.89.233001

J. Renard, R. Songmuang, C. Bougerol, B. Daudin, and B. Gayral, Exciton and Biexciton Luminescence from Single GaN/AlN Quantum Dots in Nanowires, Nano Letters, vol.8, issue.7, pp.2092-2112, 2008.
DOI : 10.1021/nl0800873

J. H. Rice, J. W. Robinson, A. Jarjour, R. A. Taylor, R. A. Oliver et al., Temporal variation in photoluminescence from single InGaN quantum dots, Applied Physics Letters, vol.84, issue.20, p.41, 2004.
DOI : 10.1063/1.1753653

H. D. Robinson and B. B. Goldberg, Light-induced spectral diffusion in single selfassembled quantum dots, Phys. Rev. B, vol.61, p.50, 2000.

]. F. Rol06, B. Rol, S. Gayral, B. Founta, J. Daudin et al., Optical properties of single non-polar GaN quantum dots, physica status solidi (b), vol.87, issue.89, p.16, 2006.
DOI : 10.1002/pssb.200565406

B. Gérard and . Gayral, Probing exciton localization in nonpolar GaN/AlN quantum dots by single-dot optical spectroscopy, Phys. Rev. B, vol.75, p.125306, 2007.

[. Roumpos, C. Lai, T. C. Liew, Y. G. Rubo, A. V. Kavokin et al., Signature of the microcavity exciton-polariton relaxation mechanism in the polarization of emitted light, Phys. Rev. B, vol.79, 2009.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-mieg, R. Andre et al., High-temperature ultrafast polariton parametric amplification in semiconductor microcavities, Nature, vol.414, issue.6865, pp.731-738, 2001.
DOI : 10.1038/414731a

C. Santori, S. Gotzinger, Y. Yamamoto, S. Kako, K. Hoshino et al., Photon correlation studies of single GaN quantum dots, Applied Physics Letters, vol.87, issue.5, pp.51916-51919, 2005.
DOI : 10.1063/1.2006987

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, Quantum well excitons in semiconductor microcavities : Unified treatment of weak and strong coupling regimes. Solid State Comm, pp.733-740, 1995.

]. K. Seb06, H. Sebald, J. Lohmeyer, T. Gutowski, D. Yamaguchi et al., Microphotoluminescence studies of InGaN/GaN quantum dots up to 150 K, Phys. Stat. Sol. (b), vol.243, pp.1661-1677, 2006.

K. Sebald, A. Trichet, M. Richard, L. S. Dang, M. Seyfried et al., Optical polariton properties in ZnSe-based planar and pillar structured microcavities, The European Physical Journal B, vol.90, issue.3, pp.381-384, 2011.
DOI : 10.1140/epjb/e2011-20551-9

URL : https://hal.archives-ouvertes.fr/hal-01000187

]. R. Seg04, S. Seguin, A. Rodt, L. Strittmatter, T. Reissmann et al., Multi-excitonic complexes in single InGaN quantum dots, Appl. Phys. Lett, vol.84, p.40, 2004.

]. D. Sel73, S. E. Sell, R. Stokowski, J. V. Dingle, and . Dilorenzo, Polariton Reflectance and Photoluminescence in High-Purity GaAs, Phys. Rev. B, vol.7, pp.4568-4613, 1973.

[. Sellers, . Semond, . Leroux, . Massies, . Disseix et al., Strong coupling of light with A and B excitons in GaN microcavities grown on silicon, Phys. Rev. B, vol.73, p.333, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00090380

]. S. Ser09a and . Sergent, Fabrication and study of nitride-based photonic nanocavities containing GaN quantum dots for UV emitters integrated on silicon, Thèse de doctorat, 2009.

S. Sergent, J. Moreno, E. Frayssinet, S. Chenot, M. Leroux et al., GaN Quantum Dots Grown on Silicon for Free-Standing Membrane Photonic Structures, Applied Physics Express, vol.2, p.510, 2009.
DOI : 10.1143/APEX.2.051003

]. S. Ser11, B. Sergent, T. Damilano, J. Huault, M. Brault et al., Study of the growth mechanisms of GaN, Al, Ga)N quantum dots : Correlation between structural and optical properties

]. S. Ser12a, M. Sergent, S. Arita, S. Kako, Y. Iwamoto et al., High-Q (> 5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots, Appl. Phys. Lett, vol.100, p.1211, 2012.

]. S. Ser12b, M. Sergent, S. Arita, K. Kako, S. Tanabe et al., High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer, Appl. Phys. Lett, vol.101, pp.101106-101110, 2012.

B. [. Schmidt-grund, C. Rheinländer, G. Czekalla, H. Benndorf, M. Hochmuth et al., Exciton???polariton formation at room temperature in a planar ZnO resonator structure, Applied Physics B, vol.53, issue.2-3, pp.331-334, 2008.
DOI : 10.1007/s00340-008-3160-x

]. R. Shi08, J. Shimada, V. Xie, U. Avrutin, H. Özgür et al., Cavity polaritons in ZnO-based hybrid microcavities, Appl. Phys. Lett, vol.92, p.111, 2008.

J. Simon, N. T. Pelekanos, C. Adelmann, E. Martinez-guerrero, R. André et al., Direct comparison of recombination dynamics in cubic and hexagonal GaN/AlN quantum dots, Physical Review B, vol.68, issue.3, p.35312, 2003.
DOI : 10.1103/PhysRevB.68.035312

D. Simeonov, E. Feltin, H. Buhlmann, T. Zhu, A. Castiglia et al., Blue lasing at room temperature in high quality factor GaN???AlInN microdisks with InGaN quantum wells, Applied Physics Letters, vol.90, issue.6, pp.61106-61109, 2007.
DOI : 10.1063/1.2460234

]. D. Sim08a, A. Simeonov, R. Dussaigne, N. Butté, and . Grandjean, Complex behavior of biexcitons in GaN quantum dots due to a giant built-in polarization field, Phys. Rev. B, vol.77, p.75306, 2008.

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J. Carlin et al., High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers, Applied Physics Letters, vol.92, issue.17, pp.171102-171105, 2008.
DOI : 10.1063/1.2917452

. Logan, Threshold characteristics of semiconductor microdisk lasers, Appl. Phys. Lett, vol.63, pp.1310-1323, 1993.

]. D. Sol11, T. Solnyshkov, G. Weiss, N. A. Malpuech, and . Gippius, Polariton laser based on a ZnO photonic crystal slab, Appl. Phys. Lett, vol.99, p.1111, 2011.

P. M. Hu, D. Petroff, and . Bouwmeester, Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers, Phys. Rev. Lett, vol.96, p.127404, 2006.

]. S. Str11, F. Strauf, and . Jahnke, Single quantum dot nanolaser, Laser & Photon. Rev, vol.5, pp.607-613, 2011.

[. Sturm, H. Hilmer, R. Schmidt-grund, and M. Grundmann, Observation of strong exciton???photon coupling at temperatures up to 410???K, New Journal of Physics, vol.11, issue.7, p.730, 2009.
DOI : 10.1088/1367-2630/11/7/073044

[. Sturm, H. Hilmer, M. Schmidt-grund, and . Grundmann, Cavity-photon dispersion in one-dimensional confined microresonators with an optically anisotropic cavity material, Physical Review B, vol.83, issue.20, p.205301, 2011.
DOI : 10.1103/PhysRevB.83.205301

]. J. Suf09, A. Suffczynski, K. Dousse, A. Gauthron, I. Lemaître et al., Origin of the Optical Emission within the Cavity Mode of Coupled Quantum Dot-Cavity Systems, Phys. Rev. Lett, vol.103, p.27401, 2009.

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai et al., Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity, Physical Review Letters, vol.100, issue.15, pp.156403-156407, 2008.
DOI : 10.1103/PhysRevLett.100.156403

[. Sun, Z. Chen, Q. Ren, K. Yu, W. Zhou et al., Polarized photoluminescence study of whispering gallery mode polaritons in ZnO microcavity, physica status solidi (c), vol.2, issue.1, pp.133-134, 2009.
DOI : 10.1002/pssc.200879892

[. Sun, H. Dong, W. Xie, Z. An, X. Shen et al., Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod, Optics Express, vol.18, issue.15, pp.15371-153, 2010.
DOI : 10.1364/OE.18.015371

]. N. Syr04, I. M. Syrbu, V. V. Tiginyanu, V. V. Zalamai, E. V. Ursaki et al., Exciton polariton spectra and carrier effective masses in ZnO single crystals, Physica B : Condensed Matter, vol.353, pp.111-112, 2004.

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt et al., Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots, Physical Review B, vol.61, issue.15, p.99, 2000.
DOI : 10.1103/PhysRevB.61.9944

A. C. Tamboli, E. D. Haberer, . Sharmarajat, H. Kwan, S. Lee et al., Room-temperature continuous-wave lasing in GaN/InGaN microdisks, Nature Photonics, vol.85, issue.1, p.61, 2007.
DOI : 10.1038/nphoton.2006.52

A. C. Tamboli, M. C. Schmidt, A. Hirai, S. P. Denbaars, and E. L. Hu, Observation of whispering gallery modes in nonpolar m-plane GaN microdisks, Applied Physics Letters, vol.94, issue.25, pp.251116-251119, 2009.
DOI : 10.1063/1.3160550

S. Tomi? and N. Vukmirovi?, theory and configuration-interaction method, Physical Review B, vol.79, issue.24, p.245330, 2009.
DOI : 10.1103/PhysRevB.79.245330

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe et al., Giant second-harmonic generation in a one-dimensional GaN photonic crystal, Physical Review B, vol.69, issue.8, p.85105, 2004.
DOI : 10.1103/PhysRevB.69.085105

URL : https://hal.archives-ouvertes.fr/hal-00540436

J. Torres, M. L. Vassor-d-'yerville, D. Coquillat, E. Centeno, and J. P. Albert, Ultraviolet surface-emitted second-harmonic generation in GaN one-dimensional photonic crystal slabs, Physical Review B, vol.71, issue.19, p.195326, 2005.
DOI : 10.1103/PhysRevB.71.195326

URL : https://hal.archives-ouvertes.fr/hal-00437966

A. Tredicucci, Y. Chen, V. Pellegrini, M. Börger, L. Sorba et al., Controlled Exciton-Photon Interaction in Semiconductor Bulk Microcavities, Physical Review Letters, vol.75, issue.21, pp.3906-3945, 1995.
DOI : 10.1103/PhysRevLett.75.3906

]. S. Tri08, T. E. Tripathy, A. Sale, V. K. Dadgar, K. Y. Lin et al., GaN-based microdisk light emitting diodes on (111)-oriented nanosilicon-on-insulator templates, J. Appl. Phys, vol.104, pp.53106-53113, 2008.

]. A. Tri11, L. Trichet, G. Sun, N. A. Pavlovic, G. Gippius et al., One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature, Phys. Rev. B, vol.83, p.41302, 2011.

A. Trichet, One-dimensional polaritons in ZnO microwires : Towards onedimensional quantum degenerate gas of bosons, Thèse de doctorat, 2012.

]. S. Tsi08, N. T. Tsintzos, G. Pelekanos, Z. Konstantinidis, P. G. Hatzopoulos et al., A GaAs polariton light-emitting diode operating near room temperature, Nature, vol.453, pp.372-375, 2008.

]. S. Ulr07, C. Ulrich, S. Gies, J. Ates, S. Wiersig et al., Photon Statistics of Semiconductor Microcavity Lasers, Phys. Rev. Lett, vol.98, p.43906, 2007.

A. M. Ver12-]-marijn, D. Versteegh, J. I. Vanmaekelbergh, and . Dijkhuis, Room- Temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory, Phys. Rev. Lett, vol.108, p.157402, 2012.

K. Lambert, S. Van-vugt, P. Rühle, H. C. Ravindran, L. Gerritsen et al., Exciton Polaritons Confined in a ZnO Nanowire Cavity, Phys. Rev. Lett, vol.97, p.147401, 2006.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Physical Review Letters, vol.69, issue.23, pp.3314-3347, 1992.
DOI : 10.1103/PhysRevLett.69.3314

J. Wiersig and M. Hentschel, Combining Directional Light Output and Ultralow Loss in Deformed Microdisks, Physical Review Letters, vol.100, issue.3, p.33901, 2008.
DOI : 10.1103/PhysRevLett.100.033901

M. Winkelnkemper, A. Schliwa, and D. Bimberg, model, Physical Review B, vol.74, issue.15, p.155322, 2006.
DOI : 10.1103/PhysRevB.74.155322

M. Winkelnkemper, R. Seguin, S. Rodt, A. Schliwa, L. Reissmann et al., Polarized emission lines from A- and B-type excitonic complexes in single InGaN/GaN quantum dots, Journal of Applied Physics, vol.101, issue.11, pp.113708-113712, 2007.
DOI : 10.1063/1.2743893

[. Winkelnkemper, . Seguin, . Rodt, D. Hoffmann, . Bimberg et al., GaN/AlN quantum dots for single qubit emitters, Journal of Physics: Condensed Matter, vol.20, issue.45, p.454211, 2008.
DOI : 10.1088/0953-8984/20/45/454211

M. Witzany, R. Rossbach, W. Schulz, M. Jetter, P. Michler et al., )P quantum dots in microdisk cavities, Physical Review B, vol.83, issue.20, p.205305, 2011.
DOI : 10.1103/PhysRevB.83.205305

[. Wu, P. Weng, Y. Hou, and T. Lu, GaN-based photonic crystal surface emitting lasers with central defects, Appl. Phys. Lett, vol.99, p.2211, 2011.

[. Yi, M. Kim, and C. Kim, Lasing characteristics of a Lima[c-cedilla]on-shaped microcavity laser, Appl. Phys. Lett, vol.95, p.1411, 2009.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs et al., Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, vol.89, issue.7014, pp.200-202, 2004.
DOI : 10.1038/nature03119

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, ZnO as a material mostly adapted for the realization of room-temperature polariton lasers, Physical Review B, vol.65, issue.16, p.161205, 2002.
DOI : 10.1103/PhysRevB.65.161205

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation, Applied Physics Letters, vol.93, issue.5, pp.51101-51104, 2008.
DOI : 10.1063/1.2965797

A. Mariano, F. Zimmler, S. Capasso, C. Müller, and . Ronning, Optically pumped nanowire lasers : invited review, Semic. Sci. and Technol, vol.25, p.240, 2010.