B. Appendix, Confined spherically expanding flame: a criterion for pressure rise

B. Figure, 1: Normalized stretched flame speed as a function of normalized stretch rate and flame radius for a stoichiometric CH 4 /air flame from

W. D. Hsieh, R. H. Chen, T. L. Wu, and T. H. Lin, Engine performance and pollutant emission of an SI engine using ethanol???gasoline blended fuels, Atmospheric Environment, vol.36, issue.3, pp.403-410, 2002.
DOI : 10.1016/S1352-2310(01)00508-8

N. M. Marinov, A detailed chemical kinetic model for high temperature ethanol oxidation, International Journal of Chemical Kinetics, vol.30, issue.3, pp.183-220, 1999.
DOI : 10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X

A. A. Konnov, Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons, Proceedings of the Combustion Institute, pp.317-325, 2000.

P. Saxena and F. A. Williams, Numerical and experimental studies of ethanol flames, Proceedings of the Combustion Institute, pp.1149-1156, 2007.

S. Jerzembeck, N. Peters, P. Pepiot-desjardins, and H. Pitsch, Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation, Combustion and Flame, vol.156, issue.2, pp.292-301, 2009.
DOI : 10.1016/j.combustflame.2008.11.009

H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, A comprehensive modeling study of iso-octane oxidation, Combustion and Flame, vol.129, issue.3, pp.253-280, 2002.
DOI : 10.1016/S0010-2180(01)00373-X

M. Mehl, H. J. Curran, W. J. Pitz, and C. K. Westbrook, Chemical kinetic modeling of component mixtures relevant to gasoline, 4th European Combustion Meeting, pp.3-133, 2009.

L. Vervisch and D. Veynante, Interlinks between approaches for modeling turbulent flames, Proceedings of the Combustion Institute, pp.175-183, 2000.
DOI : 10.1016/S0082-0784(00)80209-X

K. N. Bray, Studies of the Turbulent Burning Velocity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.431, issue.1882, pp.315-335, 1990.
DOI : 10.1098/rspa.1990.0133

J. Tien and M. Matalon, On the burning velocity of stretched flames, Combustion and Flame, vol.84, issue.3-4, pp.238-248, 1991.
DOI : 10.1016/0010-2180(91)90003-T

J. K. Bechtold and M. Matalon, The dependence of the Markstein length on stoichiometry, Combustion and Flame, vol.127, issue.1-2, pp.1906-1913, 2001.
DOI : 10.1016/S0010-2180(01)00297-8

B. Fiorina, R. Vicquelin, P. Auzillon, N. Darabiha, O. Gicquel et al., A filtered tabulated chemistry model for LES of premixed combustion, Combustion and Flame, vol.157, issue.3, pp.465-475, 2010.
DOI : 10.1016/j.combustflame.2009.09.015

URL : https://hal.archives-ouvertes.fr/hal-00472611

V. Subramanian, P. Domingo, and L. Vervisch, Large eddy simulation of forced ignition of an annular bluff-body burner, Combustion and Flame, vol.157, issue.3, pp.579-601, 2010.
DOI : 10.1016/j.combustflame.2009.09.014

P. Laffitte, La propagation des flammes dans les melanges gazeux. Hermann et Cie, Actualites scientifiques et industrielles, p.4, 1939.

E. Mallard and H. L. Chatelier, Sur la vitesse de propagation de l'inflammation dans les melanges explosifs, Comptes rendus de l'Academie des Sciences, pp.145-1881

N. Bouvet, Experimental and numerical studies of the fundamental flame speeds of methane/air and syngas, pp.5-37, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00473266

G. E. Andrews and D. Bradley, Determination of burning velocities: A critical review, Combustion and Flame, vol.18, issue.1, pp.133-153, 1972.
DOI : 10.1016/S0010-2180(72)80234-7

C. K. Law, Combustion at a crossroads: Status and prospects, Proceedings of the Combustion Institute, pp.1-29, 2007.
DOI : 10.1016/j.proci.2006.08.124

C. K. Wu and C. K. Law, On the determination of laminar flame speeds from stretched flames, Proceedings of the Combustion Institute, pp.1941-1949, 1984.
DOI : 10.1016/S0082-0784(85)80693-7

A. P. Kelley and C. K. Law, Nonlinear effects in the experimental determination of laminar flame properties from stretched flames, Eastern State Fall Technical Meeting, Chemical & Physical Processes in Combustion, pp.6-43, 2007.

E. Varea, V. Modica, A. Vandel, and B. Renou, Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures, Combustion and Flame, vol.159, issue.2, pp.577-590, 2012.
DOI : 10.1016/j.combustflame.2011.09.002

E. Varea, V. Modica, B. Renou, and A. Boukhalfa, Pressure effects on laminar burning velocities and Markstein lengths for Isooctane???Ethanol???Air mixtures, Proceedings of the Combustion Institute, pp.11-133, 2012.
DOI : 10.1016/j.proci.2012.06.072

C. K. Law and C. J. Sung, Structure, aerodynamics, and geometry of premixed flamelets, Progress in Energy and Combustion Science, vol.26, issue.4-6, pp.459-505, 2000.
DOI : 10.1016/S0360-1285(00)00018-6

F. A. Williams, Combustion Theory, p.17, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00014918

R. J. Blint, The Relationship of the Laminar Flame Width to Flame Speed, Combustion Science and Technology, vol.49, issue.1-2, pp.79-92, 1986.
DOI : 10.1080/00102208308923692

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, pp.58-134, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00270731

D. Bradley, P. H. Gaskell, and X. J. Gu, Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: A computational study, Combustion and Flame, vol.104, issue.1-2, pp.176-198, 1996.
DOI : 10.1016/0010-2180(95)00115-8

X. Qin and Y. Ju, Measurements of burning velocities of dimethyl ether and air premixed flames at elevated pressures, Proceedings of the Combustion Institute, pp.233-240, 2005.

F. Halter, C. Chauveau, N. Djebaili-chaumeix, and I. Gokalp, Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane???hydrogen???air mixtures, Proceedings of the Combustion Institute, pp.201-208, 2005.
DOI : 10.1016/j.proci.2004.08.195

S. Y. Liao, J. Gao, and Z. H. Huang, Measurements of Markstein Numbers and Laminar Burning Velocities for Natural Gas???Air Mixtures, Energy & Fuels, vol.18, issue.2, pp.328-328, 2004.
DOI : 10.1021/ef034036z

K. Tanoue, F. Shimada, and T. Hamatake, The Effects of Flame Stretch on Outwardly Propagating Flames, JSME International Journal Series B, vol.46, issue.3, pp.416-424, 2003.
DOI : 10.1299/jsmeb.46.416

G. Rozenchan, D. L. Zhu, C. K. Law, and S. D. Tse, Outward propagation, burning velocities, and chemical effects of methane flames up to 60 ATM, Proceedings of the Combustion Institute, vol.29, issue.2, pp.1461-1469, 2002.
DOI : 10.1016/S1540-7489(02)80179-1

X. J. Gu, M. Z. Haq, M. Lawes, and R. Woolley, Laminar burning velocity and Markstein lengths of methane???air mixtures, Combustion and Flame, vol.121, issue.1-2, pp.41-58, 2000.
DOI : 10.1016/S0010-2180(99)00142-X

M. I. Hassan, K. T. Aung, and G. M. Faeth, Measured and predicted properties of laminar premixed methane/air flames at various pressures, Combustion and Flame, vol.115, issue.4, pp.539-550, 1998.
DOI : 10.1016/S0010-2180(98)00025-X

W. Lowry, J. De-vries, M. Krejci, E. Petersen, Z. Serinyel et al., Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures, Journal of Engineering for Gas Turbines and Power, vol.133, pp.31-90, 2011.

T. Tahtouh, F. Halter, and C. Mounaim-rousselle, Measurement of laminar burning speeds and Markstein lengths using a novel methodology, Combustion and Flame, vol.156, issue.9, pp.1735-1743, 2009.
DOI : 10.1016/j.combustflame.2009.03.013

Y. Dong, C. M. Vagelopoulos, G. R. Spedding, and F. N. Egolfopoulos, Measurement of laminar flame speeds through digital particle image velocimetry: Mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium, Proceedings of the Combustion Institute, pp.1419-1426, 2002.
DOI : 10.1016/S1540-7489(02)80174-2

Y. Huang, C. J. Sung, and J. A. Eng, Laminar flame speeds of primary reference fuels and reformer gas mixtures, Combustion and Flame, vol.139, issue.3, pp.239-251, 2004.
DOI : 10.1016/j.combustflame.2004.08.011

C. M. Vagelopoulos and F. N. Egolfopoulos, Direct experimental determination of laminar flame speeds, Proceedings of the Combustion Institute, pp.513-519, 1998.
DOI : 10.1016/S0082-0784(98)80441-4

C. M. Vagelopoulos, F. N. Egolfopoulos, and C. K. Law, Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique, Proceedings of the Combustion Institute, pp.1341-1347, 1994.
DOI : 10.1016/S0082-0784(06)80776-9

F. N. Egolfopoulos, P. Cho, and C. K. Law, Laminar flame speeds of methane-air mixtures under reduced and elevated pressures, Combustion and Flame, vol.76, issue.3-4, pp.375-391, 1989.
DOI : 10.1016/0010-2180(89)90119-3

B. Lewis and G. Von-elbe, Combustion, Flames and Explosions of Gases, pp.31-157, 1987.

O. Kurata, S. Takahashi, and Y. Uchiyama, Influence of preheat temperature on the laminar burning velocity of methane-air mixtures. SAE Technical Paper, p.31, 1994.

Y. Ogami and H. Kobayashi, Laminar Burning Velocity of Stoichiometric CH4/air Premixed Flames at High-Pressure and High-Temperature, JSME International Journal Series B, vol.48, issue.3, pp.603-609, 2006.
DOI : 10.1299/jsmeb.48.603

L. P. De-goey, A. Van-maaren, and R. M. Quax, Stabilization of Adiabatic Premixed Laminar Flames on a Flat Flame Burner, Combustion Science and Technology, vol.76, issue.1-3, pp.201-207, 1993.
DOI : 10.1080/00102209308907668

F. A. Williams, A review of some theoretical combustions of turbulent flame structure, AGARD Conference Proceedings, p.32, 1975.

M. Matalon, On Flame Stretch, Combustion Science and Technology, vol.31, issue.2, pp.169-181, 1983.
DOI : 10.1080/00102208308923638

C. K. Law, Dynamics of stretched flames, Proceedings of the Combustion Institute, pp.1381-1402, 1989.
DOI : 10.1016/S0082-0784(89)80149-3

L. P. De-goey and J. H. , A Mass-Based Definition of Flame Stretch for Flames with Finite Thickness, Combustion Science and Technology, vol.31, issue.1-6, pp.399-405, 1997.
DOI : 10.1080/00102209708935618

F. N. Egolfopoulos, D. L. Zhu, and C. K. Law, Experimental and numerical determination of laminar flame speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen, Proceedings of the Combustion Institute, pp.471-478, 1991.
DOI : 10.1016/S0082-0784(06)80293-6

D. L. Zhu, F. N. Egolfopoulos, and C. K. Law, Experimental and numerical determination of laminar flame speeds of methane/(Ar, N2, CO2)-air mixtures as function of stoichiometry, pressure, and flame temperature, Proceedings of the Combustion Institute, pp.1537-1545, 1989.
DOI : 10.1016/S0082-0784(89)80164-X

P. Clavin and G. Joulin, Premixed flames in large scale and high intensity turbulent flow, Journal de Physique Lettres, vol.44, issue.1, pp.1-12, 1983.
DOI : 10.1051/jphyslet:019830044010100

URL : https://hal.archives-ouvertes.fr/jpa-00232137

A. Matynia, Mise en place d'un dispositif experimental pour l'analyse de la structure de flammes de premelanges a haute pression Application aux flammes methane/air et biogaz/air, p.37, 2011.

A. P. Kelley, G. Jomaas, and C. K. Law, Critical radius for sustained propagation of spark-ignited spherical flames, Combustion and Flame, vol.156, issue.5, pp.1006-1013, 2009.
DOI : 10.1016/j.combustflame.2008.12.005

Z. Chen and Y. Ju, Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames. Combustion Theory and Modelling, pp.343-343, 2009.

L. Selle, T. Poinsot, and B. Ferret, Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner, Combustion and Flame, vol.158, issue.1, pp.146-154, 2011.
DOI : 10.1016/j.combustflame.2010.08.003

F. Halter, T. Tahtouh, and C. Mounaim-rousselle, Nonlinear effects of stretch on the flame front propagation, Combustion and Flame, vol.157, issue.10, pp.1825-1832, 2010.
DOI : 10.1016/j.combustflame.2010.05.013

URL : https://hal.archives-ouvertes.fr/hal-01276405

T. Tahtouh, F. Halter, C. Caillol, F. Foucher, and C. Mounaim-rousselle, Nonlinear effects of stretch on the flame propagation, 4th European Combustion Meeting, pp.43-90, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01276405

Z. Chen, On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames, Combustion and Flame, vol.158, issue.2, pp.291-300, 2011.
DOI : 10.1016/j.combustflame.2010.09.001

P. Clavin and F. A. Williams, Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity, Journal of Fluid Mechanics, vol.1, issue.-1, pp.251-282, 1982.
DOI : 10.1016/0094-5765(79)90086-9

P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Progress in Energy and Combustion Science, vol.11, issue.1, pp.1-59, 1985.
DOI : 10.1016/0360-1285(85)90012-7

B. Deshaies and P. Cambray, The velocity of a premixed flame as a function of the flame stretch: An experimental study, Combustion and Flame, vol.82, issue.3-4, pp.361-375, 1990.
DOI : 10.1016/0010-2180(90)90008-F

A. N. Lipatnikov, Some Issues of Using Markstein Number for Modeling Premixed Turbulent Combustion, Combustion Science and Technology, vol.228, issue.1-6, pp.131-154, 1996.
DOI : 10.1007/978-1-4613-2349-5

F. Baillot, D. Durox, and D. Demare, Experiments on imploding spherical flames: Effects of curvature, Proceedings of the Combustion Institute, pp.1453-1460, 2002.
DOI : 10.1016/S1540-7489(02)80178-X

G. Yu, C. K. Law, and C. K. Wu, Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition, Combustion and Flame, vol.63, issue.3, pp.339-347, 1986.
DOI : 10.1016/0010-2180(86)90003-9

D. Bradley, P. H. Gaskell, and X. J. Gu, The modeling of aerodynamic strain rate and flame curvature effects in premixed turbulent combustion, Proceedings of the Combustion Institute, pp.849-856, 1998.
DOI : 10.1016/S0082-0784(98)80481-5

A. Trouvé and T. Poinsot, The evolution equation for the flame surface density in turbulent premixed combustion, Journal of Fluid Mechanics, vol.84, issue.-1, pp.1-31, 1994.
DOI : 10.1103/PhysRevA.37.2728

S. G. Davis, J. Quinard, and G. Searby, Determination of Markstein numbers in counterflow premixed flames, Combustion and Flame, vol.130, issue.1-2, pp.112-122, 2002.
DOI : 10.1016/S0010-2180(02)00369-3

URL : https://hal.archives-ouvertes.fr/hal-00083264

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, pp.47-57, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00270731

D. Bradley and A. Mitcheson, Mathematical solutions for explosions in spherical vessels, Combustion and Flame, vol.26, pp.201-217, 1976.
DOI : 10.1016/0010-2180(76)90072-9

A. Bonhomme, L. Selle, and T. Poinsot, Curvature and confinement effects for flame speed measurements in laminar spherical and cylindrical flames, Combustion and Flame, vol.160, issue.7, p.51, 2013.
DOI : 10.1016/j.combustflame.2013.02.003

L. P. De-goey, T. Plessing, R. T. Hermanns, and N. Peters, Analysis of the flame thickness of turbulent flamelets in the thin reaction zones regime, Proceedings of the Combustion Institute, pp.859-866, 2005.
DOI : 10.1016/j.proci.2004.08.016

S. Balusamy, A. Cessou, and B. Lecordier, Direct measurement of local instantaneous laminar burning velocity by a new PIV algorithm, Experiments in Fluids, vol.106, issue.3, pp.1-13, 2010.
DOI : 10.1007/s00348-010-1027-5

URL : https://hal.archives-ouvertes.fr/hal-00638762

S. Suzuki and K. Abe, Topological structural analysis of digital binary images by border following. Computer Vision, Graphics and Image Processing, pp.32-46, 1985.

A. Razet, Méthode des moindres carrés appliquée au cercle pour une utilisation en interférométrie, Bulletin du BNM, vol.108, pp.39-48, 1997.

A. P. Kelley and C. K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combustion and Flame, vol.156, issue.9, pp.1844-1851, 2009.
DOI : 10.1016/j.combustflame.2009.04.004

G. R. Groot and L. P. De-goey, A computational study on propagating spherical and cylindrical premixed flames, Proceedings of the Combustion Institute, pp.1445-1451, 2002.
DOI : 10.1016/S1540-7489(02)80177-8

B. Lecordier, Etude de l'interaction de la propagation d'une flamme de prémélange avec le champ aréodynamique par association de la tomographie laser et de la PIV, pp.85-86, 1997.

C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski et al., Gri-mech homepage, gas research institute, pp.90-91, 1994.

Z. Chen and Y. Ju, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combustion Theory and Modelling, pp.427-435, 2007.

Z. Chen, Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit, Combustion and Flame, vol.157, issue.12, pp.2267-2276, 2010.
DOI : 10.1016/j.combustflame.2010.07.010

G. Broustail, P. Seers, F. Halter, G. Moréac, and C. Mounaim-rousselle, Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends, Fuel, vol.90, issue.1, pp.1-6, 2011.
DOI : 10.1016/j.fuel.2010.09.021

URL : https://hal.archives-ouvertes.fr/hal-00657842

Y. Ju, G. Masuya, and P. D. Ronney, Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames, Proceedings of the Combustion Institute, pp.2619-2626, 1998.
DOI : 10.1016/S0082-0784(98)80116-1

S. K. Marley and W. L. Roberts, Measurements of laminar burning velocity and Markstein number using high-speed chemiluminescence imaging, Combustion and Flame, vol.141, issue.4, pp.473-477, 2005.
DOI : 10.1016/j.combustflame.2005.02.011

K. J. Bosschaart and L. P. De-goey, The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method, Combustion and Flame, vol.136, issue.3, pp.261-269, 2004.
DOI : 10.1016/j.combustflame.2003.10.005

K. T. Aung, M. I. Hassan, and G. M. Faeth, Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure, Combustion and Flame, vol.109, issue.1-2, pp.1-24, 1997.
DOI : 10.1016/S0010-2180(96)00151-4

D. R. Dowdy, D. B. Smith, and S. C. Taylor, The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures, Proceedings of the Combustion Institute, pp.325-332, 1990.
DOI : 10.1016/S0082-0784(06)80275-4

K. T. Aung, M. I. Hassan, and G. M. Faeth, Effects of pressure and nitrogen dilution on flame/stretch interactions of laminar premixed H2/O2/N2 flames, Combustion and Flame, vol.112, issue.1-2, pp.1-15, 1998.
DOI : 10.1016/S0010-2180(97)81753-1

M. Matkowsky and B. J. Matalon, Flames as gas dynamic discontinuities, Journal of Fluid Mechanics, vol.124, pp.239-259, 1982.

C. K. Law, P. Cho, M. Mizomoto, and H. Yoshida, Flame curvature and preferential diffusion in the burning intensity of bunsen flames, Proceedings of the Combustion Institute, pp.1803-1809, 1988.
DOI : 10.1016/S0082-0784(88)80414-4

C. Tang, J. He, Z. Huang, C. Jin, J. Wang et al., Measurements of laminar burning velocities and Markstein lengths of propane???hydrogen???air mixtures at elevated pressures and temperatures, International Journal of Hydrogen Energy, vol.33, issue.23, pp.7274-7285, 2008.
DOI : 10.1016/j.ijhydene.2008.08.053

C. J. Sun, C. J. Sung, L. He, and C. K. Law, Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters, Combustion and Flame, vol.118, issue.1-2, pp.108-128, 1999.
DOI : 10.1016/S0010-2180(98)00137-0

S. C. Taylor, Burning Velocity and the Influence of Flame Stretch, p.126, 1990.

O. L. Gulder, Laminar burning velocities of methanol, ethanol and isooctane-air mixtures, Symposium (International) on Combustion, vol.19, issue.1, pp.275-281, 1982.
DOI : 10.1016/S0082-0784(82)80198-7

D. Bradley, M. Lawes, and M. S. Mansour, Explosion bomb measurements of ethanol???air laminar gaseous flame characteristics at pressures up to 1.4MPa, Combustion and Flame, vol.156, issue.7, pp.1462-1470, 2009.
DOI : 10.1016/j.combustflame.2009.02.007

S. P. Marshall, S. Taylor, C. R. Stone, T. J. Davies, and R. F. Cracknell, Laminar burning velocity measurements of liquid fuels at elevated pressures and temperatures with combustion residuals, Combustion and Flame, vol.158, issue.10, pp.1920-1932, 2011.
DOI : 10.1016/j.combustflame.2011.02.016

K. Eisazadeh-far, A. Moghaddas, J. Mulki, and H. Metghalchi, Laminar burning speeds of ethanol/air/diluent mixtures, Proceedings of the Combustion Institute, pp.1021-1027, 2011.
DOI : 10.1016/j.proci.2010.05.105

A. A. Konnov, R. J. Meuwissen, and L. P. De-goey, The temperature dependence of the laminar burning velocity of ethanol flames, Proceedings of the Combustion Institute, pp.1011-1019, 2011.
DOI : 10.1016/j.proci.2010.06.143

C. Ji and F. N. Egolfopoulos, Flame propagation of mixtures of air with binary liquid fuel mixtures, Proceedings of the Combustion Institute, pp.955-961, 2011.
DOI : 10.1016/j.proci.2010.06.085

E. Varea, A. Vandel, V. Modica, and B. Renou, Laminar burning velocity and markstein length relative to fresh gases determination for isooctane-ethanol air flames, pp.136-139, 2011.

M. Metghalchi and J. C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combustion and Flame, vol.48, pp.191-210, 1982.
DOI : 10.1016/0010-2180(82)90127-4

F. N. Egolfopoulos, D. X. Du, and C. K. Law, A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes, Proceedings of the Combustion Institute, pp.833-841, 1992.
DOI : 10.1016/S0082-0784(06)80101-3

G. I. Sivashinsky, Hydrodynamic theory of flame propagation in an enclosed volume, Acta Astronautica, vol.6, issue.5-6, pp.631-645, 1979.
DOI : 10.1016/0094-5765(79)90023-7

C. K. Law, Combustion Physics, p.157, 2006.
DOI : 10.1017/CBO9780511754517

L. He, Critical conditions for spherical flame initiation in mixtures with high lewis numbers. Combustion Theory and Modelling, pp.159-172, 2000.

R. J. Kee, F. M. Rupley, and J. A. Miller, Sandia national laboratories report, pp.89-8009, 1990.

L. Neindre, Conductivité thermique des liquides et des gaz, p.158, 1998.

J. Hirschfelder, C. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids, volume 1st Edition, p.159, 1964.

F. Dinkelacker, B. Manickam, and S. P. Muppala, Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach, Combustion and Flame, vol.158, issue.9, pp.1742-1749, 2011.
DOI : 10.1016/j.combustflame.2010.12.003

C. K. Law and O. C. Kwon, Effects of hydrocarbon substitution on atmospheric hydrogen???air flame propagation, International Journal of Hydrogen Energy, vol.29, issue.8, pp.867-879, 2004.
DOI : 10.1016/j.ijhydene.2003.09.012