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Synthése

L’augmentation de la mobilité accroit continuellement la demande de transport, et en
particulier la demande de transport routier. Face a cette augmentation de la demande,
la premiére réaction des gouvernements a été d’augmenter l'offre de transport en aug-
mentant la capacité des infrastructures existantes et en densifiant le réseau. Aujourd’hui,
les politiques de développement durable cherchent a optimiser 1'utilisation des infras-
tructures existantes. Afin d’améliorer 'utilisation des infrastructures, les usagers ont
besoin d’information disponible en temps réel en fonction de leur position. Un systéme
d’information du trafic a large échelle offre une vue générale de 1’état du trafic et permet
d’optimiser les choix d’itinéraires des utilisateurs et de faciliter la prise de décision des
gestionaires du réseau.

Afin d’optimiser 'utilisation du réseau de transport, les usagers ont besoin d’information
fiable, disponible en temps réel et qui dépend de la position géographique de 1'usager.
L’émergence des services internet sur les téléphones portables et la rapide prolifération
des systemes de géo-localisation permet le développement de nouveaux services visant a
améliorer I'expérience des usagers et de modifier la facon dont les usagers interagissent
avec les systémes de transport.

Le développement de systémes d’information du trafic a longtemps été synonyme de
larges projets d’équipement du réseau avec des capteurs permettant de mesurer les condi-
tions de circulation. Ces larges projets sont treés couteux pour les collectivités publiques
et sont généralement limités au réseau autoroutier. La densité du réseau urbain limite la
possibilité de généraliser cette approche sur I’ensemble du réseau.

Le but de cette thése est d’étudier la possibilité d’utiliser les technologies de géo-
localisation ainsi que les capacités de communication des téléphones portables pour dévelop-
per un systéme d’information du trafic sur le réseau urbain sans nécessiter l'installation
de capteurs ou d’infrastructure additionnels.

Le Chapitre 1 souligne I'importance du développement de systémes d’information du
trafic. Le chapitre présente I’étendue des projets académiques et des projets industriels
visant a améliorer I'information disponible en temps réel. Les différents types de données
permettant d’obtenir des informations sur 1’état du trafic sont détaillés dans la deuxiéme
partie du chapitre. Cette analyse des données disponibles montre le potentiel des données
de géo-localisation tout en soulignant le besoin de développer des algorithmes spécifiques
afin d’extraire I'information de ces données qui sont souvent bruitées et ne sont envoyées,
jusqu’a présent, que par une faible proportion des véhicules circulant sur le réseau.

Le Chapitre 2 étudie la littérature et analyse les modéles et algorithmes d’estimation
du trafic urbain et autoroutier, en se concentrant sur I’estimation du trafic urbain. Il ap-
parait que les modéles existants ne permettent pas d’extraire I'information contenue dans
les données de géo-localisation provenant de véhicules traceurs envoyant leur position de
fagon peu fréquente (au plus toutes les 20 ou 30 secondes). Les contraintes concernant
la quantité et le type de données disponibles ainsi que la complexité des algorithmes
existants limite les possibilités d’utiliser de tels modeéles a large échelle. La littérature
suggere que 'utilisation de modéles statistiques est adaptée au probléme d’estimation du
trafic urbain car ces modéles sont capables de représenter la variabilité des conditions de
circulation. Cette thése choisi cette approche et s’intéresse au développement de modéles
capables d’incorporer les données provenant de véhicules traceurs qui envoient leur po-
sition périodiquement avec une fréquence faible, aussi bien pour développer des modéles
d’apprentissage de la dynamique, de fagon historique que pour estimer les conditions de
circulation en temps réel.



Les données provenant de véhicules traceurs sont utilisées avec succes pour estimer
les conditions de circulation sur le réseau autoroutier. Sur le réseau autoroutier, les algo-
rithmes d’estimation sont souvent basés sur des modeéles hydrodynamiques qui représen-
tent I’écoulement des véhicules sur le réseau. Le Chapitre 3 présente un algorithme per-
mettant d’utiliser les données provenant de véhicules traceurs pour estimer de fagon fiable
et robuste les temps de parcours sur le réseau autoroutier. Le succés de ce modéle motive
le développement de modéles hydrodynamiques pour le réseau urbain adaptés a la faible
fréquence des données envoyées par les véhicules traceurs.

Le Chapitre 4 présente un modeéle de trafic urbain basé sur la modélisation du trafic
comme un fluide hydrodynamique et utilisant les résultats existants dans ce domaine. Le
modeéle fait des hypotheéses simplificatrices qui permettent d’obtenir des expressions ana-
lytiques et de controler la complexité du modeéle tout en lui laissant des caractéristiques
réalistes. Le modéle caractérise la formation de files d’attentes horizontales en amont des
intersections.

Ce modéle de trafic urbain est utilisé dans le Chapitre 5 pour obtenir ’expression
paramétrique de la probabilité de distribution de la position des véhicules sur un arc du
réseau, délimité par des intersections. Les parameétres de la distribution ont une interpré-
tation physique et sont appris a partir de données de position envoyées par les véhicules
traceurs. En plus de l'information sur le niveau de trafic d’'un arc, ces distributions
paramétriques ont des applications intéressantes dans le domaine systémes de transport
intelligents. Les distributions peuvent étre utilisées afin d’utiliser les temps de parcours
des véhicules traceurs lorsque le temps de parcours est mesuré entre deux points qui ne
coincident pas avec les débuts et fins des arcs. La loi de probabilité peut également étre
utilisée afin de détecter automatiquement la présence de feux de signalisations afin de
créer ou de mettre a jour les bases de données cartographiques a un cott plus faible et
avec une meilleure efficacité et fiabilité que les techniques actuelles.

Le modéle de trafic urbain est également utilisé au sein du Chapitre 6 pour obtenir
I’expression paramétrique de la loi de probabilité des temps de parcours entre deux points
quelconques du réseau. Il est essentiel que ces distributions soient obtenues entre deux
points arbitraires du réseau pour pouvoir les utiliser avec des données provenant de
véhicules traceurs envoyant leur position avec une fréquence faible. Cette caractéristique
du modéle est une des nouveautés les plus importantes développées dans ce travail.

Le Chapitre 7 continue le développement du modéle de trafic urbain présenté dans le
Chapitre 4. Le modéle cherche & relaxer une des hypothéses formulées dans le Chapitre 4
concernant la structure des flux d’arrivée a I’amont de chaque arc du réseau. L’augmentation
de la précision du modéle est utile lorsque les données contiennent suffisamment d’information
pour capturer le nouveau phénomeéne pris en compte par le modéle. En particulier, ce
modéle a des applications intéressantes dans les corridors urbains pour lesquels la syn-
chronisation des feux est importante et peut étre optimisée pour minimiser les temps
d’attentes des véhicules. Le chapitre présente les dérivations analytiques permettant la
synchronisation des feux et propose des stratégies de controle du trafic en corridor urbain.
Les expressions analytiques ont ’avantage de permettre la mise en place de stratégies de
controle en temps réel et de les adapter rapidement lorsque les conditions de circulations
évoluent. Les expressions aident également a améliorer la compréhension de la dynamique
du trafic urbain.
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Résumé

Face a I'augmentation de la mobilité, les politiques de développement durable cherchent
a optimiser l'utilisation des infrastructures de transport existantes. En particulier, les
systémes d’information du trafic a large échelle ont le potentiel d’optimiser 'utilisation
du réseau de transport. Ils doivent fournir aux usagers une information fiable en temps
réel leur permettant d’optimiser leurs choix d’itinéraires. Ils peuvent également servir
d’outils d’aide a la décision pour les gestionnaires du réseau. La thése étudie comment
I’émergence des services Internet sur les téléphones portables et la rapide prolifération des
systémes de géolocalisation permet le développement de nouveaux services d’estimation
et d’information des conditions de trafic en réseau urbain.

L’utilisation des données provenant de véhicules traceurs nécessite le développement
de modéles et d’algorithmes spécifiques, afin d’extraire 'information de ces données qui
ne sont envoyées, jusqu’a présent, que par une faible proportion des véhicules circulant sur
le réseau et avec une fréquence faible. La variabilité des conditions de circulations, due a
la présence de feux de signalisation, motive une approche statistique de la dynamique du
trafic, tout en intégrant les principes physiques hydrodynamiques (formation et dissolution
de files d’attentes horizontales). Ce modéle statistique permet d’intégrer de fagon robuste
les données bruitées envoyées par les véhicules traceurs, d’estimer les parameétres physiques
caractérisant la dynamique du trafic et d’obtenir ’expression paramétrique de la loi de
probabilité des temps de parcours entre deux points quelconques du réseau.

La these s’appuie sur les données et les infrastructures développées par le projet Mo-
bile Millennium & I’Université de Californie, Berkeley pour valider les modeéles et algo-
rithmes proposés. Les résultats soulignent 'importance du développement de modéles
statistiques et d’algorithmes adaptés aux données disponibles pour développer un sys-
téme opérationnel d’estimation du trafic a large échelle.
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Abstract

Sustainable mobility development requires the optimization of existing transportation in-
frastructure. In particular, ubiquitous traffic information systems have the potential to
optimize the use of the transportation network. The system must provide accurate and
reliable traffic information in real-time to optimize mobility choices. Successful implemen-
tations are also valuable tools for traffic management agencies. The thesis studies how the
emergence of Internet services and location based services on mobile devices enable the
development of novel Intelligent Transportation Systems which estimate and broadcast
traffic conditions in arterial networks.

Sparsely sampled probe data is the main source of arterial traffic data with the prospect
of broad coverage in the near future. The small number of vehicles that report their
position at a given time and the low sampling frequency require specific models and
algorithms to extract valuable information from the available data. On the one hand, the
variability of traffic conditions in urban networks, caused mainly by the presence of traffic
lights, motivates a statistical approach of arterial traffic dynamics. On the other hand, an
accurate modeling of the physics of arterial traffic from hydrodynamic theory (formation
and dissolution of horizontal queues) ensures the physical validity of the model. The thesis
proposes to integrate the dynamical model of arterial traffic in a statistical framework to
integrate noisy measurements from probe vehicle data and estimate physical parameters,
which characterize the traffic dynamics. In particular, the thesis derives and estimates the
probability distributions of vehicle location and of travel time between arbitrary locations.

The thesis leverages the data and the infrastructure developed by the Mobile Mil-
lennium project at the University of California, Berkeley to validate the models and
algorithms. The results underline the importance to design statistical models for sparsely
sampled probe vehicle data in order to develop the next generation of operation large-scale
traffic information systems.
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Chapter 1

Societal need for large scale traffic
estimation capabilities leveraging
sparsely sampled probe vehicles

Reliable, large scale traffic estimation has become a societal necessity both on highways
and on the secondary network (arterial roads). This thesis investigates the development of
global traffic monitoring capabilities on arterial networks. The present chapter motivates
the development of global traffic monitoring capabilities and presents different projects
conducted by universities, government agencies and industry to solve this challenging
problem. It presents the different sources of traffic data and analyzes their potential for
arterial traffic estimation. The subsequent chapters propose adapted modeling approaches
and estimation algorithms to reliably infer traffic conditions in real-time in large arterial
networks.

1.1 Global scale traffic monitoring

To maximize the benefit for the users of the transportation networks and for public agen-
cies responsible for their administration, it is important to understand the societal needs
for arterial traffic estimation and have a synthetic representation of the different projects
working on related problematics.

1.1.1 Societal needs for traffic monitoring

Over time, the demand for mobility has dramatically increased, leading to a $78 billion
annual drain on the U.S. economy in the form of 4.2 billion lost hours in commute and 2.9
billion gallons of wasted fuel. The economical cost of congestion has doubled between 1997
and 2007 [141, 142|. Long term projections in 2009 by the Energy Information Adminis-
tration (EIA) at the US Department of Energy and the Federal Highway Administration
(FHWA) show a flattening - but not a significant decline - in this trend [142]. In Europe,
the situation is similar. The European Commission has published a white paper entitled
a Road-map to a Single European Transport Area [13]. This white paper summarizes the
importance of managing and optimizing transportation systems. Other sources provide
important insights regarding the societal costs of transportation. Eurostat states that,
on average, 13.2% of every household’s budget is spent on transport goods and services.
The TREMOVE model, cited by the European commission white paper estimates that
Congestion costs Europe about 1% of Gross Domestic Product (GDP) every year. The
time spent in congestion is one of the important costs of congestion. For example, 20% of
London commuters spend more than two hours a day traveling to and from work, which



adds up to one working day a week [12]. In Germany, 37% of commuters spend one hour
a day commuting [63]. European Union drivers currently own one third of the world’s 750
million cars. The IEA [153] projects that by 2050 car numbers worldwide will increase to
more than 2.2 billion, with the sharpest growth in emerging economies.

Traditional, infrastructure oriented mitigation strategies, such as building more high-
ways, widening existing roads, and expanding or starting new transit or rail routes, are
unlikely to be successful by themselves. These approaches are not sustainable in the
current economic and environmental climate and their popularity is rapidly decreasing.
Rather, innovative paradigms are needed to marshal breakthroughs for operations of the
transportation network, to transform the manner by which the traffic management issues
are addressed. One missing component, key to addressing these issues, is an exhaustive
traffic information system deployed at a global scale, providing an integrated view of
the full transportation system. Such a system needs to be centered around information
gathering, integration, and distribution. To participate in a change in the way the trans-
portation system is used, the public needs location based information, available in real
time, to make more efficient decisions. These decisions may include the choice of the
mode of transportation (individual vehicle, ride sharing, public transit and so on), the
choice of route, the choice of departure time. In particular, these decisions should improve
the efficiency of the travels and increase mode shifts towards the public transit system.
The emergence of the mobile internet on portable devices and the rapid proliferation of
location based services allow for the development of initiatives that can result in paradigm
shifts in the way the public interacts with the transportation network, in particular by
giving incentives to the public to use new technology to improve its transportation expe-
rience.

Instrumenting a system at a global scale is a difficult and expensive problem for public
agencies. Most developed countries have deployed significant amounts of instrumentation
(in particular loop detectors). However, the maintenance and operations of the existing
infrastructure represent a substantial cost. Today, this infrastructure is generally limited
to the highway network (see Section 1.2 for a detailed review of sensing infrastructure
characteristics) and the equipment of the secondary network (arterial roads) with such
a dedicated sensing infrastructure has a prohibitive cost (because of the density of the
network). In addition to its cost, the loop detector system suffers significant performance
and reliability issues which can be solved using complementary information from other
sensing sources.

1.1.2 Existing and developing large scale traffic monitoring plat-
forms

Traffic information systems have witnessed an important revolution in the past years,
leveraging the development of communication and sensing capabilities of mobile devices.
Furthermore, the emergence of the Web 2.0 paradigm, crowd-sourcing and location based
services offers unprecedented potential for the development of transportation cyberphys-
ical systems, i.e. transportation platforms which merge information (data) and constitu-
tive laws modeling the physics of the system [163].

In the past decades, traffic information was merely coming from dedicated fixed in-
frastructure such as loop detectors embedded in the pavement [98], RFID transponders,
radars or cameras [118|. A processed form of this information was displayed to the pub-
lic on variable message signs, on the internet [1, 5] and, more recently, on phones using
cell phone versions of these websites. These services only provide information where the



transportation network is equipped with such sensors. To provide a global solution to this
traffic information gathering problem, mobile probes provide an affordable alternative for
this problem, leveraging existing communication and sensing capabilities. Industries and
government agencies realized early the potential of crowd-sourcing to reduce the costs and
increase the coverage and the reliability of traffic estimation.

Publicly funded projects

Government agencies have seen specific interests in the reduction of the installation and
maintenance costs of sensing infrastructure. They have also acknowledged the importance
of having reliable traffic estimates on the secondary network, too dense for a global de-
ployment of fixed dedicated sensing infrastructure. The information provided by global
traffic estimation platforms also allows for better management and operation of avail-
able infrastructure and decreases the economical costs of congestion. Numerous research
projects have been funded by Department of Transportation or equivalent public agencies
throughout the world. Some of these projects are successful illustrations of partnerships
between public agencies, universities and sometimes industry partners. A non-exhaustive
list of specific pilot projects and deployments includes:

e The Urban Platform for Advanced and Sustainable Mobility (Plateforme Urbaine
de Mobilité Avancée et Soutenable, PUMAS) was launched in the region of Rouen,
France in 2009. It is a partnership between several research institutions (ARMINES,
ESIGELEC, INRIA, INSA de Rouen), public agencies (Agglomération de Rouen
and funding from the French Department of Industry) and industries (Induct, Egis
Mobilité, Intempora, Sodit). The project aims at developing a software platform for
collecting and analyzing road traffic information in real-time. The data is obtained
by equipping a significant sample of vehicles operating constantly in a given area
with an on-board device with GSM and localization capabilities. The potential of
this deployment (and its further development) will be assessed in late 2012.

e The SINERGIT project (Systéme d’ INformation sur les d’Eplacements par véhicules
tRaceurs avec Galileo pour I'agglomératlon Toulousaine) is another example of large
scale partnership with the goal of optimizing traffic management and of providing
real-time information on driving conditions to all drivers using up-to-date personal
navigation devices in the Toulouse region, France [35]. The SINERGIT platform
relies on data from fixed sensors, floating cars, tracking of personal navigation de-
vices and cellular phones (GSM). The project produces maps of traffic conditions
which are publicly available, the data is available to public agencies for further anal-
ysis. The project is a joint collaboration between private companies (Sodit, Thalés
Alenia Space, France Telecom R&D, ASF, Polestar), research laboratories from
IFSTTAR (ex-INRETS) and public agencies (Cete Sud-Ouest, City of Toulouse).
Unfortunately, I have not found any assessment of the estimation accuracy publicly
available.

e The CarTel project [95] collects, processes and visualizes data from sensors located
on mobile units (mobile phones and in-car embedded devices). The project relies
on devices which are frequently sampled but with a low spatial accuracy (WiFi
hot-spots, GSM). An efficient map-matching algorithm [154] filters this data into
accurate probe trajectories used for traffic estimation. This project is developed by
the Massachusetts Institute of Technology (MIT) and is funded by both public and
private entities (National Science Foundation, Google and Quanta Computer Inc.)

e The Mobile Millennium project [25] gathers data available from fixed dedicated sens-
ing infrastructures (loop detectors, radars), vehicles equipped with geo-localization

5



and communication enabled devices (smart phones, fleet management devices) in
California. The project receives millions of data points every day which are pro-
cessed in real-time to provide traffic estimation to the public and real-time moni-
toring information to the public agencies (US and California Department of Trans-
portation). The project started with a successful proof of concept that highway
traffic could be accurately estimated with sparsely sampled GPS enabled probes
only. This proof of concept took place on February 8th, 2008 [59] on a 10 mile
stretch of I-880 in the East Bay Area. The success of this demonstration led to a
larger deployment, started in November 2008: the Mobile Millennium project. The
Mobile Millennium project includes the implementation of a real-time monitoring
system for California. The project was launched as a partnership with Nokia, which
had developed one of the first community sensing mobile application, providing
users with real-time detailed traffic information as they shared privacy aware infor-
mation about their journey [91]. The accuracy of the estimates have been carefully
analyzed [25] on both the highway and the arterial networks.

e In Sweden, the Mobile Millennium Stockholm project [17| was initiated by the
Swedish Transport Administration in order to address the need for a useful and
timely traffic information system. The project builds upon the knowledge and ex-
perience from the Mobile Millennium project at University of California, Berkeley.
The project focuses on algorithm for data fusion to leverage the potential of the
different sources of data available today for traffic estimation and prediction. The
project is developed as a partnership between Linkoping University, the KTH Royal
Institute of Technology and Sweco Infrastructure in Sweden, and UC Berkeley in
the United States. In parallel to this project, KTH devotes an important research
effort to data collection and management in partnership with IBM [131]. This part-
nership has lead to an experimental I'TS laboratory which collects and analyzes loop
detector data, incident information, congestion pricing data, travel time data from
automatic license plate readers, public transportation efficiency metrics, weather
data and pollutant emissions.

Navigation and traffic information providers

In parallel to publicly funded research projects, industries have developed their own esti-
mation platforms. With the generalization of geo-localization devices on board of vehicles,
real-time navigation has become standard over the past ten years. The development of
this technology is naturally improved with real-time traffic information to efficiently route
customers around traffic. Tom-Tom’s HD Traffic was one of the first industrial develop-
ment, offered as a service with a monthly charge to the owners of Tom-Tom devices [10].
Tom-Tom’s deployment was followed by other tele-navigation companies such at Tele-
Nav [9] and actors of the automotive industry, such as Renault [97]. Note that there
are several other navigation and traffic information providers interested in this technol-
ogy including Intellione [4], Octo-Tellematics [57] or NAVTEQ [6]. Pioneering work in
social community building and social games for traffic has been developed by Waze [11]:
through a game interface, this recent routing company crowdsources mapping, routes and
traffic news, rather than relying on historical data or official information from transport
authorities. The interface and the social gaming have drawn a lot of success to this mobile
application, which has seen the number of its users increase dramatically in the past few
years.



Large technology companies

A significant proportion of the leading US-based technology companies have also de-
veloped their own platforms. For these companies, the motivations are multiple. By
providing quality services, they can develop their user base, increase user engagement
and user retention for the variety of products that they offer. Another strong motiva-
tion is the collection of geo-tagged data from their users: when using the application
on mobile devices, the GPS data collected for positioning is generally sent to the com-
pany providing the service. This data is very valuable for these large companies: they
can improve location based services and develop targeted advertising. Both Apple, Mi-
crosoft and Google provide global traffic estimation and routing directions which take
into account traffic conditions, although no assessment of the accuracy of the estimate
is available, besides each users’ feeling of using the system. Microsoft Research has also
developed its own traffic estimation capabilities and pioneered research in crowd-sourcing
applications |94, 101, 171|. IBM Research has a slightly different approach as it offers its
Smart City and Smart Planet services to both government agencies, other businesses and
universities [29, 131]. Other companies, such as INRIX, specialize in providing processed
data which constitutes traffic information.

1.2 Sampling strategies

A number of sensors have been developed in the past 50 years designed to collect various
types of traffic data. Traffic data comes with various specifications including the type of
data (flow, occupancy, velocity, travel time, trajectories), the sampling frequency (how
often measurements are taken), the level of deployment (density of fixed sensors, pene-
tration rate of mobile sensors in the flow of vehicle) or the accuracy of the measurements.
The section briefly describes the most important sensors and corresponding traffic data
and analyzes their potential for arterial traffic estimation.

1.2.1 Fixed, dedicated sensing infrastructure
Loop Detectors

Inductive loop detectors are embedded into the roadway and detect vehicles as they pass
over the detector. A properly calibrated loop detector provides high-accuracy flow and
occupancy data [38] as well as velocity when two detectors are placed close together
(double-loop detectors). The sensors suffer from important reliability issues requiring
filtering to produce quality input data to traffic estimation algorithms [45]. Loop detectors
are commonly found on most major highways throughout the United States and Europe
where they have communication capabilities to transmit the data to a central server in
real-time (that can subsequently be used in traffic information systems). In the United
States, most loop detectors installed on arterial roads do not have internet connection,
preventing their use for arterial estimation. Rather, this data is generally used locally for
signal timing control.

Radar

Radars can be placed on poles along the side of the road enabling them to collect flow,
occupancy and velocity data. In general, radars provide lower accuracy data than loop
detectors, especially in urban environments [118] and their deployment remains limited.
For these reasons radar data is not considered as a viable input for arterial estimation
algorithms.
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Figure 1.1: Trajectories of vehicles obtained after processing of high-resolution video cam-
era data. The colors represent the speed of vehicles. The data was obtained by the NGSIM
project. It corresponds to a fifteen minutes arterial dataset (4pm - 4:15pm) representing
traffic patterns on a segment of Peachtree Street in the Midtown neighborhood of Atlanta,
Georgia.

High-resolution video camera

High resolution cameras placed high above the roadway track all vehicles within the
view of the camera. They cannot provide data in real-time due to the large amount
of post-processing work that needs to be done on the images to turn them into actual
vehicle trajectory data [7]. When properly processed, video provide high-resolution vehicle
trajectories (vehicle positions every tenth of a second), as illustrated by the NGSIM
project |[7]. This technology is expensive to deploy and process, thus hard to deploy
globally. It provides researchers with high-accuracy vehicle trajectories over a small spatio-
temporal domain (in the order of one mile stretch for fifteen minutes) to validate modeling
assumptions and estimation capabilities but cannot be used in real-time traffic information
systems. The quality of the data obtained with high-resolution video camera is illustrated
Figure 1.1. The figure represents the Peachtree dataset, a fifteen minutes arterial dataset
(4pm - 4:15pm) representing traffic flows on a segment of Peachtree Street in the Midtown
neighborhood of Atlanta, Georgia.

License Plate Readers

License plate readers automatically extract the license plate identification from passing
vehicles. They are generally used in pairs along the road to extract high-accuracy travel
times for vehicles passing both locations [3]. The deployment of these sensors require the
identification of appropriate locations to place them and often remains limited to specific
data collection studies.



RFID Transponders

Radio-Frequency Identification (RFID) is a ubiquitous technology used in numerous in-
dustry applications. Transit agencies make use of RFID in particular for toll or fare
collection [23]. The RFID technology can be used for traffic data collection by placing
readers at various points along the roadway. Travel times can be collected between pairs of
points and processed similarly as license plate readers data. The accuracy of travel times
provided by RFID transponders varies depending on the strength of the signal: stronger
signals increase the chance of detection but increase the duration and area of detection,
leading to a loss in accuracy especially for short distance travel times. RFID readers are
generally placed far apart from each other in current deployments, making them useful
for collecting long distance travel time information, but not for providing input data to
detailed traffic estimation algorithms. They are placed almost exclusively on highways,
making it uncommon to find this technology on arterial roads. The density of the arterial
network and the high number of possible routes and itineraries decreases the probability
to detect a specific vehicle at two distant readers, unless the entire network is equipped
with such a technology.

Bluetooth

Bluetooth readers are capable of scanning the surrounding airwaves for Bluetooth enabled
devices. They have received a lot of attention in recent years [161]. Pairs of Bluetooth
readers provide travel time measurements for all vehicles carrying a Bluetooth device,
passing both detectors successively. The Bluetooth readers suffer from similar limitations
as the RFID readers: increasing the detection range decreases the accuracy, making it
mostly applicable for long distance (a few miles) travel time measurements, with the risk
of decreasing the re-identification rate if the network is not globally equipped. Bluetooth
readers are an emerging technology and remain scarcely available on the network. The
main deployments (such as SANEF in France) are on highway networks, where the limi-
tation of the detection technology is not critical. It is likely that enhancement algorithms
will be developed that will correct for the inaccuracies in the data provided by these
devices, even though current state of the art does not provide the accuracy required for
short distance travel time data.

Wireless Sensors

Wireless sensors are devices embedded into the roadway. They are similar to loop detec-
tors but record the magnetic signature of vehicles passing them which is used for vehicle
re-identification at downstream sensors with up to 80% accuracy [103|. Besides flow and
occupancy, wireless sensors provide travel times between pairs of sensors for all the ve-
hicles for which the algorithm found a signature match between the upstream and the
downstream sensors. If there are intersections between the pair of sensors, vehicles can
enter or exit the road segment delimited by two consecutive sensors. These vehicles are
only detected by one of the sensors and will not lead to travel time measurements unless
side roads are equipped with sensors as well. In this case, the re-identification algorithm
also needs to be designed to allow for signature matches between all possible pairs of
sensors, potentially decreasing the re-identification accuracy. The wireless sensors are
cheaper to deploy and maintain than loop detectors. Moreover, they provide travel times
for a larger portion of the flow and with higher accuracy than Bluetooth readers and
RFID readers. These characteristics make them appealing for large-scale deployments on
arterials even though they are only available in a small number of locations at the current
time and monitor specific routes rather than portions of a network. Sensys Networks (8]



is currently one of the leading providers of these sensors.

1.2.2 Mobile sensing

Fixed dedicated infrastructure has been providing most of the traffic data available for
highway traffic estimation in the past 50 years. The extension of this infrastructure to
arterial networks is challenging, mainly because of the density of the network: (a) the
installation cost of sensors on the entire network is often considered as prohibitive, (b)
the number of intersections and possible routes reduces the probability to re-identify ve-
hicles between long distance travel time measurement sensors (pairs of RFID, Bluetooth
or License Plate Readers) and increases the needs for filtering. Mobile sensing offers a
promising alternative with limited costs for global deployment, as it leverages the existing
localization and communication capabilities. Experimental research on cell phone based
traffic monitoring [24, 169, 149, 170, 140| has investigated the ability to locate the position
of users using trilateration- or triangulation-based methods. It has shown limited success
for estimation of travel times due to the position measurement inaccuracy, particulary
on short distances and dense networks [110, 91]. For this reason, the use of probe data
obtained from the cellular network is not considered for arterial traffic estimation, even
though it may provide a valuable source of information for highway traffic estimation.
For arterial traffic, GPS-based traffic information has a great potential and this thesis
will focus on this source of data. There exists different sampling strategies with respec-
tive characteristics and potential for global deployment in arterial networks, as described
below.

Virtual Trip Lines

A Virtual trip lines (VTL) is a virtual line drawn on the road. Its geometry is stored in
a digital system [91]. A GPS enabled device using the VTL sensing paradigm downloads
a list of the VTLs “deployed” in its vicinity. Whenever the device crosses a VTL, it sends
an update to the central VTL server indicating its velocity, time of crossing, anonymized
identifier and VTL identifier. The accuracy of the velocity data generated by frequent
GPS sampling varies greatly with the type of GPS chip and the sensing environment. It is
generally accurate enough for highway traffic estimation when properly filtered [165, 81].
For arterials, the velocity measurements are not reliable, both because of the variability
of speeds and the lower accuracy of GPS devices in urban environments. For this rea-
son, only travel time measurements (obtained between two consecutive VTL crossings)
are considered for arterial traffic estimation. Figure 1.2 shows the variability of speeds
obtained by GPS units, both in terms of magnitude and in terms of direction, underlining
why this data is impractical to use.

The presence of a computing device on board of vehicles enables the design of other
sensing paradigms which offer trade-offs between privacy guarantees, level of traffic in-
formation which can be reconstructed from the data and amount of data to transfer to
the central server. Existing projects such as PUMAS have analyzed potential paradigms
leveraging the computing power of certain devices. When considering mobile devices,
which are not integrated to vehicles and may have battery limitations, the complexity of
the sensing algorithm also needs to be taken into account. The complexity of the front
end computations will have a direct implication on the battery life of the devices.

The VTL sensing paradigm was developed by Nokia in 2007 [92] and validated for
highway traffic estimation during the Mobile Century experiment in February 2008 [81].
This traffic data collection system is a privacy aware “participatory sensing” system that
allows individuals to download an application onto their GPS-enabled smartphone that
both sends traffic data as well as receives traffic information and alerts. An experimental
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Figure 1.2: Speed measurements collected from the GPS units of probe vehicles in San
Francisco. Each arrow starts at the location where the measurement was received and
points towards the direction indicated by the vehicle. The length is proportional to the
speed of the vehicle. The speed is obtained by the GPS units using standard finite
differencing techniques of high frequency locations with correction algorithms. As can be
seen, the urban canyoning effects and multipath effects results in significant errors in the
computation of the speed, leading to misalignment with the road network.

11



wh

e
]

]

§ .u”_,...,,.umu;m
s

- e l.b-«-nn' [t
G\‘i - : 'y "i - B -
" -
el A RGN i g ;:'E"
3 b @ poach S 3
R . NEH
L] . -
Aieescr :

L]
> o8

Figure 1.3: Example of a Bay Area VTL deployment as part of the Mobile Millennium
system.

deployment of VTLs was tested as part of the Mobile Millennium project, covering all of
California and illustrated in the Bay Area Figure 1.3. The GPS devices reporting VTL
data are limited to the ones which have downloaded a specific application and agreed to
share pieces of their trajectories through the VTL sensing paradigm. For this reason, we
also consider other sources of GPS data to complement the data gathered by the VTL
deployment.

Sparsely-sampled GPS

Sparsely-sampled probe GPS data refers to data received from probe vehicles reporting
their current location at a low frequency (either temporally or spatially, e.g. every 60 sec-
onds, every 400 meters and so on, depending on the sensing strategy). The frequency is
not high enough to directly measure velocities or link travel times (i.e. duration between
successive measurements greater than 20 seconds). Today, sparsely sampled GPS data is
the main data source available in the US for arterial traffic with the prospect of global
coverage in the near future. Sparsely-sampled probe data is a “massively available source
of sparse data”, making it both a challenging and a promising source of data. Sparsely-
sampled probe data shares many of the characteristics used to define Big Data, which has
received a lot of attention in the past few years: the amount of available measurements
(received by all the vehicles) require specific data management and processing infrastruc-
ture and the sparsity of each of the measurement requires specific algorithms to extract
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valuable information:

e A pre-processing step required to use sparsely-sampled probe data is to map GPS
measurements to the road network representation used by the traffic information
system and to reconstruct the path between successive measurements, as vehicles
may travel several links between successive measurements. This process is known
as map matching and path inference, and has been studied in parallel with the
development of mobile sensing technologies [113, 154, 96|. The sparsely-sampled
GPS data used in this thesis has been preprocessed by an algorithm using models
of GPS accuracy and driving behavior in a Markov random field developed at UC
Berkeley [96] and operational in the Mobile Millennium system.

e Since probe vehicles can often travel multiple links between measurements when
the sampling frequency is low, one must infer the travel times on each link tra-
versed by the vehicle. This process is known as travel time allocation or travel time
decomposition |79, 84].

e Finally, the measurements being taken uniformly in time (or in space), measure-
ments are received at any location on the network. In particular, the path of the
vehicle does not necessarily cover entire portions of the links of the network, lead-
ing to information on partial link travel times which must be incorporated in the
estimation framework.

Sparsely-sampled probe GPS data is currently the most ubiquitous data source on the
arterial network. An example of this type of data comes from the Cabspotting project [2],
which provides the positions of 500 taxis in the Bay Area approximately once per minute.
Figure 1.4 shows one full day of raw data, which demonstrates that even just a single
data source such as taxis can provide broad coverage of a city. This data clearly has
some privacy issues as it is possible to track the general path of the vehicle. However,
the majority of this data today comes from fleets of various sorts (such as UPS, FedEx,
taxis, etc.). Most of this data is privately held among several companies, but between all
sources there are millions of records per day in many major urban markets. Figure 1.5
shows the distribution of sampling frequencies for the data feeds available in the Mo-
bile Millennium system and underlines the importance to design algorithms adapted to
sparsely sampled probe data. The Mobile Millennium system receives several millions of
data points per day in North California from vehicles sampled with a very low frequency
(duration between successive measurements of most of the available data feeds is in the
order of one minute). The research and development conducted as part of the Mobile Mil-
lennium project illustrate both the challenge and the potential impact of probe vehicle
data for the future of Intelligent Transportation Systems.

High-frequency GPS

High-frequency probe GPS data refers to the case where probe vehicles send their cur-
rent GPS location every few seconds, providing detailed trajectory data, especially after
appropriate map-matching and filtering [96]. From this data, one can directly infer veloc-
ities and short distance travel times. Figure 1.6 depicts a sample of high-frequency data
collected as part of the Mobile Millennium project during a field test experiment. This
figure illustrates the level of detail that can be extracted from high-frequency data, but
also shows the relatively low percentage of vehicles that were being tracked, even during
a data gathering field experiment. Sampling a vehicle’s position every few seconds is
privacy invasive and also comes with large communication costs and battery drain issues.
For these reasons, it is not common to receive this data with any kind of regularity or
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Figure 1.4: One day of sparsely-sampled GPS data from San Francisco taxi drivers as
provided by the Cabspotting project. [Courtesy of T. Hunter [96]]
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Figure 1.5: Example of distribution of sampling frequency for a commercial feed of probe
data (vendor confidential and undisclosed). The histogram shows the number of probe
vehicles as a function of their average sampling rate. For the clarity of the figure, only the
probes which were sampled more frequently than once per five minutes are considered. In
the United States, the majority of commercially available probe vehicle feeds is sampled
at a rate close to once per minute.
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Figure 1.6: Vehicle trajectories from the Mobile Millennium evaluation experiment on
San Pablo Avenue in Berkeley, Albany and El Cerrito, California. The high-frequency
GPS data in this figure is represented as distance (meters) from an arbitrary start point
upstream of the experiment location. The horizontal lines represent the locations of the

traffic signals along the route.

global coverage. This data is often collected for specific experimental studies, but is not
generally available for real-time traffic information systems.

The analysis of available traffic data for arterial traffic estimation demonstrates the
potential of sparsely sampled probe vehicle data to provide the main input for estimation
algorithms. Even though this data is massively available, its processing is challenging
and specific modeling and estimation capabilities must be developed to turn the data
into valuable information. Wherever additional sensing infrastructure is available and
provides measurements with appropriate quality, it is possible to fuse the different sources
of data into the estimation algorithms. However, these sources do not provide the coverage
necessary for global traffic estimation. For this reason, this thesis focuses on sparsely
sampled probe data. In order to leverage the existing work in the field of traffic modeling
and estimation, a literature review is presented in the following chapter.

1.3 Problem statement

This introduction Chapter has presented the importance of real-time, large scale traffic
estimation capabilities. Providing up-to-date information to the transportation network
users allows them to make informed mobility choices including changes in mode of trans-
portation, itinerary or departure time, leading to a more optimized use of available trans-
portation infrastructures. The information is also valuable to traffic management center
to deploy real-time control strategies such as ramp metering or variable speed limitations.
This need is well understood by government agencies and universities which devote sig-
nificant resources to solve this problem. The private sector has also acknowledged the
potential of such systems. Most major Tech-Companies (Google, Apple, IBM, Microsoft)
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have developed their own traffic estimation capabilities and work on the extension of
these systems on the secondary network and on the improvement of the reliability of the
estimates and predictions. The first building block for traffic estimation is traffic data,
coming from a variety of sensors, presented and analyzed in the previous section.

Given this perspective, a natural question arises: “What can be done using probe
data for traffic?” This thesis focuses principally on traffic information systems, and more
specifically on the traffic estimation process in arterial networks. This thesis investigates
the following fundamental question: “Is it possible to create traffic information systems
in urban environments based principally on probe data?” A concurring question is the
following: “Which models and estimation algorithms can be developed to create such a
traffic information system?” These question are not only of interest to researchers, but
also to the government and to industry, as demonstrated by the large amount of traffic
applications that have emerged in the past few years. This thesis focuses on the technical
feasibility of modeling and estimation of arterial traffic from probe vehicle data (floating
car data). The thesis does not detail the data collection process, the privacy issues or the
policy questions raised by this problematic. The thesis will take the example of the Mobile
Millennium project to demonstrate the feasibility of real-time arterial traffic estimation
from probe vehicle data only.

1.4 Organization of the thesis

Chapter 1 introduced the problem of interest developed by the present thesis. It un-
derlined the need for large scale traffic monitoring systems and argues for the potential
of sparsely sampled probe vehicle as the main source of traffic data in urban networks
available at a large scale in the near future.

Chapter 2 reviews existing models and estimation algorithms in both highway and
arterial networks, with a focus on arterial networks. From this literature review, it appears
that the available models and algorithms are not able to leverage sparsely sampled probe
vehicle data. The data requirements and/or computational complexity of these models
limit their applicability at a large scale. The review of previous work argues for the
development of statistical models and inference algorithms to represent the variability
of arterial traffic dynamics, which is the approach chosen in this thesis. The chapter
shows the necessity to develop large scale statistical models of arterial traffic. The models
need to be able to incorporate sparsely sampled probe vehicles, both to calibrate the
model (historical training) and to estimate and predict traffic conditions in real-time with
streaming data.

Probe vehicle have been successfully used for highway traffic estimation based on flow
models derived from hydrodynamic theory. Chapter 3 presents a possible use of probe
vehicle data to robustly estimate travel times on sections of the highway network. The
successful integration of probe vehicle data into highway traffic low models motivates the
development of flow models adapted to urban traffic which can integrate sparsely sampled
probe vehicle data [44].

Chapter 4 presents a model of arterial traffic based on hydrodynamic theory. The
model requires simplifying assumptions to keep the derivations tractable and increase the
interpretability of the results while keeping it realistic. It characterizes the formation and
dissolution of horizontal queues upstream of traffic signals [87].

The arterial traffic model is used in Chapter 5 to derive parametric probability dis-
tributions of the locations of vehicle on a (generic) link of the network, delimited by
signalized intersections. The parameters of the probability distributions have physical in-
terpretations and can be learned from location reports of probe vehicle data [87]. Besides
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providing general information on the congestion level of a link, these parametric distribu-
tions have valuable applications in Intelligent Transportation Systems. They can be used
to scale travel times of probe vehicles when the location reports do not coincide with the
beginning or the end of the links of the network, providing an algorithm to use travel
time information on partial links into travel time information on the entire link [82]. The
parametric probability distributions can also be used to automatically detect the presence
of traffic signals and create or update digital map databases at much lower cost and higher
time efficiency than current techniques [86].

The arterial traffic model is also used in Chapter 6 to derive parametric probability
distributions of travel times between arbitrary locations. The fact that these distributions
are valid between arbitrary locations is crucial for the development of arterial traffic
monitoring platforms based on sparsely sampled probe vehicle data and is one of the
most important novelty of this work [87, 90].

Chapter 7 builds upon the arterial traffic model of Chapter 4. It relaxes one assumption
made in Chapter 4 regarding the structure of the arrival flows on arterial links. The
refinement of the model is valuable when the amount of data available provides enough
information for the more precise modeling to be captured. It is of particular interest
on arterial corridors in which the signal coordination is important. The model also has
interesting applications for real-time signal control. The chapter derives analytical signal
coordination control strategies on arterial corridors. The analytical derivations have the
advantage to allow real-time control and provide interesting insight and understanding of
the traffic dynamics [21].

Figure 1.7 shows the organization of the thesis and the logical relationship between
the different chapters.
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Chapter 2

Existing traffic models and estimation
algorithms

A major contribution of arterial traffic research is the development of models and algo-
rithms to estimate traffic conditions from the available measurements. A possible ap-
proach is to directly report traffic conditions as measured by the sensors: the sensor
measurements or a simplistic processing of them are given as output to represent the traf-
fic conditions. With such an approach, it is necessary to place sensors everywhere in the
network where traffic information is needed. The density of the sensor deployment and
the sampling frequency must be high enough to represent the spatio-temporal variability
of arterial traffic. The quality of the representation of traffic conditions depends directly
on the quality and reliability of the sensors. In arterial networks, researchers have tried
to directly measure delays and travel times from probe vehicles [144, 137, 168] or through
vehicle re-identification [125, 103|. This work analyzes the bias and required sample size
to characterize delay and travel time [78]. These techniques require an ubiquitous fixed
sensing infrastructure or high penetration rate of probe vehicles, both of which do not
correspond to the available data for the entire arterial road network (or even close to that
coverage), as analyzed in Chapter 1.2. For this reason, traffic models and data assimi-
lation algorithms must be developed to efficiently transform the available measurements
into reliable traffic information.

A pre-requisite for reliable estimation is to reconcile the features of the measurements
(input), the physics of the underlying processes (system) and the estimates (output). The
choice of model complexity has to find an appropriate compromise between the model com-
plexity (a more complex model may be a more accurate representation of the physics) and
the risk of overfitting. Overfitting generally occurs when the model complexity does not
match the amount and precision of the available measurements, leading to poor predictive
performance. This trade-off will be underlined in the analysis of existing research and the
development of novel models and algorithms.

This chapter reviews the existing models and inference algorithms developed over the
past fifty years to characterize traffic conditions from available measurements. The chapter
starts with a review of highway traffic modeling and estimation, which is important for
both historical reasons and for its influence in arterial traffic estimation. Arterial traffic
estimation has seen the influence of two main fields: traffic flow theory and statistical
models. The chapter reviews the state of the art of arterial traffic estimation and analyzes
the additional research needed to develop reliable large scale arterial traffic monitoring
platforms.
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2.1 Highway traffic estimation

Traffic estimation algorithms have first been developed for the highway network. This
network is not as dense as the arterial network and thus easier (and not as expensive) to
equip with fixed dedicated sensing infrastructure. For this reason, the highway network
has been well-instrumented with fixed-location sensors (mostly loop detectors) through-
out most of the United States and Europe. For highway networks covered by such an
infrastructure, it has become common practice to perform both system identification of
highway parameters (free flow speed, traffic jam density and flow capacity) and estimation
of traffic state (flow, density, length of queues, bulk speed and shockwave location) at a
very fine spatio-temporal scale [165, 28]. These highway traffic monitoring approaches
heavily rely upon both the ubiquity of data and highway traffic flow models developed
over the last half century [108, 49, 152].

Highway networks were also the first to be studied when GPS probe data first started
becoming available. The Mobile Century experiment [59] (a predecessor to Mobile Mil-
lennium) demonstrated the capability of estimating highway traffic conditions using GPS
probe data only [81, 80, 165|. Several extensions to that original work have been developed
in the past two years, leading to a thorough understanding of how to perform traffic esti-
mation using a combination of fixed-location sensor data and GPS probe data [165, 42, 43|.
The techniques used in these papers combine an underlying flow model of highway traffic
with an Ensemble Kalman Filtering (EnFK) algorithm [61] for estimating real-time traffic
conditions. These techniques rely on the assumption that highway traffic acts roughly as
a continuous fluid. The important point to note here is that the problem of using GPS
probe data on highways (along with fixed-location sensor data) has been solved with a
high degree of accuracy.

For arterials (the secondary network), traffic monitoring is more challenging: probe
vehicle data is the only significant data source with the prospect of global coverage in the
future. Aside from less abundant sensing compared to existing highway traffic monitoring
systems, the arterial network presents additional modeling and estimation challenges as
the underlying flow physics which governs it is more complex. The main challenges
arise from the presence of traffic lights (often with unknown cycles), intersections, stop
signs, parallel queues, and others [105, 39]. Highway traffic can be considered as an un-
interrupted flow, whereas urban traffic is interrupted at intersections, causing specific
modeling and estimation challenges.

2.2 Traffic low models for arterial traffic estimation

The review of arterial traffic estimation can be separated into two classes: model based
and data driven. On the one hand, model based estimation relies on an abstraction (mod-
eling) of physical principles representing the dynamics of traffic on a link, a route or a
network. On the other hand, data driven estimation is based on models learned (trained)
from measurements. They may be inspired from physical principles (spatio-temporal de-
pendencies between variables representing how congestion spreads on a network) and a
posteriori give information on the physics of the system, but this is not a requirement.
This review of arterial traffic estimation starts with model based estimation (Sections 2.2-
2.4) and presents data driven algorithms in Section 2.5.

The fundamental idea for estimation techniques based on flow models is to adapt
traffic theory principles used for highway traffic estimation, in most cases the LWR
model [108, 134], to arterial traffic and to estimate the traffic quantities of interest (flow,
density, velocity, travel time). For arterial traffic, the goal is generally to estimate travel
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times, because it is a metric with a high interpretability power, both for the network
users and the traffic management center. Following classical traffic flow theory, most con-
tributions in arterial traffic estimation from traffic flow models model vehicular flow as
a continuum and represent it with macroscopic variables of flow q(z,t) (veh/s), density
p(z,t) (veh/m) and velocity v(z,t) (m/s). Researchers commonly make the assumption of
a triangular fundamental diagram for both estimation and control applications |72, 173|.
Moreover, the differences in fundamental diagram do not change significantly the dynam-
ics of traffic on a large scale [30].

Arterial traffic estimation research has developed aggregate models to estimate aver-
age speeds or travel times from loop detectors measurements [69, 145, 146, 172|. This
research defines general guidelines to relate travel times to flows in arterial networks. The
models depend on the specific features of each road segment (e.g. volume to capacity
ratio), the cycle time and the ratio of green to cycle time, as summarized in the Highway
Capacity Manual [155]. These models have interesting long term planning potentials but
provide limited accuracy for real-time traffic estimation. In particular, this research does
not take into account the variability of travel times among the vehicles traveling on the
network [124]. The literature review and this thesis focus on the importance of taking
into account travel time variability for arterial traffic estimation.

More recently, several authors have studied the ability to define fundamental diagrams
for arterial traffic, an empirical relationship relating the travel times to the density of ve-
hicles on specific routes [70, 54] and arterial links [77]. These novel approaches have
received a lot of attention and provide a macroscopic large scale representation of arterial
traffic, even though they do not take into account variability for estimation purposes.

On the other end of aggregate models are simulation models, which reconstruct the
movement of each individual vehicle (microscopic simulation), represent the evolution of
macroscopic variables such as flow and density (macroscopic simulation) or simulate tra-
jectories at an aggregate level from queuing theory or speed-density relationships (meso-
scopic simulation). Simulation models have the capacity to represent very accurately
complicated physical phenomena. They can be used for estimation and control of arterial
networks [40, 58]. However, they require precise calibration of a large number of parame-
ters, including Origin-Destination (OD) matrices, turn ratios, precise signal plans. This
calibration and the computational costs of such models make them impractical for real-
time large scale traffic estimation, even though they represent great tools for planning,
control and validation purposes. The large number of parameters needed to fully charac-
terize the road dynamics in these simulation models increases the risk of overfitting (too
many degrees of freedom compared to the precision of the available data). Moreover, some
of these parameters are hard to estimate accurately such as origin destination matrices
or turn ratios.

2.3 Estimation of delays

Delays at intersections cause a major part of travel times on arterials [158]. Arterial
travel times are commonly represented as the sum of the free flow travel time and the
delay. The free flow travel time is the travel time that a vehicle would have experienced
with no interaction with other vehicles nor with the signalization, i.e. the travel time
experienced if the vehicle was able to choose its speed and maintain it on its entire path.
This free flow travel time may depend on user behavior or other features (weather, type
of road, visibility, and so on), and this discussion will be continued in the following chap-
ters. Delays represent the additional time spent on the network by the vehicle. A major
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source of delay is the necessity to stop at signalized intersections. As will be underlined
further, the duration of the delay is strongly correlated with the time at which a vehicle
enters a road segment (because of the traffic light cycle) and represents a major reason
for travel time variability in arterials (Sections 2.4). If the number of vehicles present
on a link at the initial time is known, delays can be reconstructed from precise vehicle
counts upstream and downstream of the segments using the cumulative number of vehi-
cles function [51]. However, such precise information is rarely available: the initial state
of a network is rarely accessible, as it would correspond to taking an aerial photo of the
network. Moreover, such a method is not robust to noise in the measurements and its
accuracy will decrease over time because of the potential drift in the vehicle counts of
the loop detectors. The conservation of vehicles may also be violated because of vehicles
entering and exiting the network through parking lots and residential lanes.

As delays vary with the arrival time in an arterial link, previous research has char-
acterized delays on arterial routes depending on the entrance time. In these models, it
is common to assume that all the intersections share the same cycle length and that the
cycle and the offsets between consecutive signals are fixed. From one intersection to the
next, the fixed offset determines the arrival profile of vehicles, and thus the delays expe-
rienced by the vehicles [71, 147, 66]. This work relies on the characterization of platoons
and arrival profiles along the links of an arterial |71, 148|.

The requirements of these models are that loop detectors are installed along the route
and the signal system is capable of providing data about the green and red light times back
to the traffic estimation system. These techniques generally require precise calibration
(fundamental diagram parameters) and have strong data availability assumptions (precise
loop detector data for each signal at each intersection, real-time information about signal
settings, etc.). The strong assumptions in terms of data availability allow for very precise
estimation of traffic conditions: the models estimate the travel time of each arriving ve-
hicle and characterize the queue length of each of the links in real-time. This line of work
provides a very sound basis for estimating travel times on arterial roads and has inspired
significantly the work presented in this thesis. The primary limitation of the work is the
fact that loop detectors and traffic signals in urban networks are very rarely connected
to a communication network that would allow for processing of the data in real-time.
Moreover, this dedicated sensing infrastructure does not have global coverage nor does
it have the prospect of extended coverage in the near future. These models also require
precise calibration of the parameters of the arterial road network. Documenting the de-
tailed parameters into an accessible electronic database would require the cooperation of
numerous government agencies, making this information unreliable (most of this informa-
tion is not stored in electronic format and is shared among different organizations) and
tedious to obtain (each city, county or district has the information for the network it is
responsible for managing), at least until the data volume significantly increases [128, 157].
The other limitation is that the model focuses on estimating travel times along a specific
route and does not study travel times between any two locations in an arterial network.
Other models have studied delay and travel time estimation in arterial networks from loop
detector data [166, 111, 167], limiting their applicability for global monitoring purposes.

Flow models have also been developed to leverage probe vehicle data. Assuming
that vehicles report their link travel times (through VTL sampling for example) it is
possible to reconstruct travel time profiles, depending on the arrival time of vehicles [22].
This algorithm does not assume the availability of traffic signal settings. It requires
the calibration of the fundamental diagram parameters and only provides estimates a
posteriori (reconstruction of the state of traffic). Provided that the communication of
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probe vehicle travel times to the central server is instantaneous, the model reconstructs
at a given time the situation of the previous traffic signal, which is not a strong limitation
in practice. In reality, communication of data is not instantaneous and the latency between
real-time and estimates is closer to five minutes. As for the macroscopic models using
loop detector data, this approach leverages traffic flow principles to provide accurate
reconstruction of traffic conditions. The main limitation of this approach is that it relies
on probe vehicle penetration rates which are far from standard today (about 20 to 30%
penetration rate is required to obtain reliable results). Moreover, this model does not
have forecast capabilities (only a posteriori estimation) and is not robust to missing data.

2.4 Characterizing the variability of arterial travel times

An important challenge in arterial traffic estimation is the characterization of travel time
distributions. Travel time variability is typically categorized into three groups [124]:

e wvehicle-to-vehicle variability represents the differences of travel times experienced
by different vehicles departing within the same departure period,

e over the course of the day variability characterizes the variation of travel times
through the different Time Of the Day (TOD e.g. morning rush hour, mid-day,
evening rush hour, evening),

o day-to-day variability describes the variations due to weather, special events and
so on, which are responsible for the variations between a specific Day Of the Week
(DOW) and TOD from one week to the next.

The over the course of the day and day-to-day variability are due to differences in the
traffic conditions (weather, demand, capacity of the network) leading to different level
of congestion. The vehicle-to-vehicle variability does not characterize the evolution of
congestion on the network. Rather, it models the variability due to the traffic signals:
their presence causes queues and delays which are experienced differently depending on
the entrance time in the network. Other factors add to the vehicle-to-vehicle variabil-
ity, in particular differences in driving behavior and interactions with other flows of the
transportation network (bus, pedestrians, parked vehicles, transit priorities). The char-
acterization of this variability is crucial for arterial traffic estimation. The available data
prevents a detailed temporal description of these variations, suggesting that a statistical
approach is adapted. It is often acknowledged that arterial traffic has periodic dynamics,
when studied over the duration of several traffic cycles, the periodicity being forced by
the cycle of the traffic lights [70, 148]. Under such considerations, it is possible to study
the probability distribution of delay or travel times.

The study of speeds and travel time distributions is part of ongoing research that
started in the 1950s with the emergence of flow-based traffic engineering [27]. This research
area has been closely related to queuing theory and delay estimation for fixed cycle traffic
lights. A major early contribution was developped by Webster [162|, modeling arrivals of
vehicles as a Poisson Process and deriving the mean average delay and queue length at the
end of the green time from analytical expressions and numerical simulation. This work
has been used widely to set cycle timings at isolated intersections for which the demand
and capacity have been previously estimated.

This work was followed by other statistical models generalizing the assumptions and
the setting of Webster’s work [117, 116, 76]. These results are generalized to arrival
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processes for which the number of arrivals per time interval is a discrete random vari-
able, not necessarily with a Poisson distribution [55, 156, 106]. The probability generating
function (pgf) of overflow queue [55] was derived for general arrival distributions. The
characterization of the stationary delay distribution was derived under simplification as-
sumptions |16, 76] and with computational methods [126]. These articles model queues at
traffic signals under stationary assumptions and numerically characterize the link delay
distribution based on vertical queueing theory: vehicles are assumed to stack up upon
one another at the point where congestion begins or at the stop line of a traffic signal.
This modeling has the limitation to consider that vehicles incur no delay traveling to the
point of congestion. The stationarity assumption is also limiting and has been addressed
using time dependent vertical queueing models [100, 159] and discrete time systems.

Horizontal queueing theory has received recent interest [62] and has a lot of potential
for arterial traffic estimation from probe vehicles, as this thesis will demonstrate.

2.5 Data driven models

By nature, arterial traffic has very high variability, which makes it challenging to use flow
models for arterial networks. A statistical approach is suitable because sensing every vehi-
cle is impractical and because this allows for the incorporation of other information types
(such as human mobility patterns [73|). Data driven models may be easier to implement
and show robust performances, even though they may not necessarily have a physical
justification nor interpretation.

Previous research has studied the estimation and short term prediction of sensor read-
ings using Dynamic Bayesian Networks [102, 129] and regression models [119]. These
articles assume that sensors (such as loop detectors) provide measurements with a fixed
frequency at fixed locations. Probe data on arterials is assumed to be available at random
times and random locations, making this assumption limiting for arterial traffic estima-
tion, as sparsely sampled probe data is available at random times and random locations.
Other approaches [83, 65| assume that either a single measurement per time interval or
aggregated measurements per time interval are available for each road segment of the
network (according to the map discretization). This assumption limits the capacity to
represent the variability of travel times among the vehicles traveling on the network.
Moreover, such approaches are not adapted to missing data, when no information is avail-
able on some parts of the network.

A specific statistical approach inspired from the Ising model was developed in [65]. Tt
relies on measurements of the level of congestion, as a value in the [0, 1] interval. Trans-
forming traffic data into binary congested /uncongested values is a difficult process by itself
and has not been specifically addressed in the literature. Neural networks and pattern
matching [57] have been used to estimate traffic from GPS data. The model presented
in [57] makes the critical assumption that the velocity is spatially homogeneous and sim-
ilar among drivers. This assumption does not take into account the variability of travel
times due to the frequent stops at traffic signals. Some researchers have examined the pro-
cessing of high-frequency probe data (one measurement approximately every 20 seconds
or less) [95], which allows for reliable calculation of short distance speeds and travel times.

Markov chains have also been used to compute route travel times [109, 132], considering
the travel time on a link as a mixture distribution (e.g. the components of the mixture
represent different delay patterns such as delayed and non-delayed vehicles). A transition
matrix models the probability to experience a certain type of delay, given the type of delay
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experienced on the upstream link. This approach is very promising, its main limitation
being the amount of data or prior knowledge currently needed to train the models as
presented in [109, 132].

2.6 Conclusion

Existing research in the field of traffic modeling and estimation underlines the importance
of two approaches: physical and statistical models.

e Physical models describe the dynamics of traffic flows on the network. They have
been successfully applied for highway traffic estimation, using data from dedicated
infrastructure, mobile sensors or a combination of both. The models developed
for arterial traffic are also very promising. Their main limitation is often the type
and /or amount of available data which is assumed to be available. The calibration
of the models can also be a source of inaccuracy. It may also limit the possibility of
large scale deployment of the models.

e Statistical models provide a very general framework to represent traffic dynamics.
The models take advantage of the increasing amounts of data collected today. They
have the prospect to estimate and forecast traffic conditions very accurately with
appropriate training. However, these models may be hard to interpret and may
produce results which are physically infeasible.

From these insights, a statistical model based on the physics of traffic flow seems to be
a very promising approach for urban traffic modeling and estimation. This is the approach
developed in the present dissertation.
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Chapter 3

The potential of probe vehicle data for
traffic estimation

Chapter 1 underlines the need for real-time reliable traffic information on both the major
freeways and the secondary network. To provide a global solution to this traffic informa-
tion gathering problem, one needs traffic information everywhere where there is congestion
within the transportation network. Given the high costs of deploying a traffic monitoring
system and the lack of public infrastructure, the thorough analysis of the potential of
mobile probes to provide a feasible alternative for this problem is very valuable for both
traffic researchers and practitioners. In this chapter, the attention focuses on highway
traffic estimation to motivate the use of sparsely sampled probe data for traffic estima-
tion. The case of arterial traffic is analyzed in the remaining chapters.

One of the major challenges in using mobile probe data for traffic estimation is the
difficulty to incorporate this data into traffic models, which are traditionally used to
describe highway traffic. Several types of models can be used: statistical models [101, 28|,
and flow models [108, 134]. When a flow model is used, this process is known as inverse
modeling or data assimilation: it consists in incorporating data in the mathematical model
of a physical system, in order to estimate the current state of the system and forecast
its future state [107, 26]. In the field of inverse modeling, Lagrangian sensing specifically
refers to measurements performed along a sensor’s trajectory which it usually cannot
control. Examples of this are smartphones traveling onboard cars following highway traffic
flow. This is in contrast to Eulerian sensing, in which sensors are fixed (for example, video
cameras or loop detectors along highways) and monitor a specific location or domain.

While inverse modeling using Lagrangian sensors is a somewhat established field in
some areas such as oceanography [107, 26|, it is still a relatively novel technique in the
field of transportation engineering. Traditional approaches such as Kalman Filtering
(KF) and its extensions have been applied to traffic models to perform estimation, in
particular using first order models such as the Cell Transmission Model (CTM) [49, 50],
see in particular [120, 122, 121, 151|. Extended Kalman (EKF) filtering has been used
to handle second order models, when the discretization scheme used allows it, see for
example [160]. Ensemble Kalman Filtering (EnKF) [61] arises as a technique capable of
capturing shocks [30] and has been used for speed estimation on the highway [164, 165]. All
the aforementioned methods produce a best estimate of traffic (in some sense, for instance
in the least square sense), sometimes with statistics related to the produced results, such
as confidence or probability associated with the prediction. The research in [164, 165|
demonstrates the potential of probe data for highway traffic estimation. This chapter
investigates a practical problem which goes beyond the specific data assimilation problem
(i.e. production of an estimate), which we define as the guaranteed range of travel times
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as follows.

Problem 3.1 (Guaranteed range of travel times). Given a set of loop detectors, and given
a set of probe vehicles equipped with GPS, (i) how to reconstruct travel time, (ii) how to
produce a guaranteed range for travel time, given the available data?

This problem specifically addresses needs from the traveling public, since it is aimed
at providing the public with the travel time information [46], and a range of validity of
this information. The term “guaranteed range” refers to the possible range of travel times,
taking into account the uncertainties in the model, and assuming that the loop detector
and probe data are exact. In addition, the problem of sampling strategy is also analyzed
for its importance in large scale deployments and its relationship to estimation accuracy
and confidence:

Problem 3.2 (Sampling strategy). What is the influence of the penetration rate of
equipped vehicles and of the spatial sampling strategy on the range of the travel time
estimation?

This second problem is helpful for cellular network operators and cellular phones man-
ufacturers, who are currently in the process of mapping the transportation network with
“virtual detectors”, i.e. GPS data collection mechanisms which partly rely on the geome-
try of the transportation network.

This chapter is organized as follows: Section 3.1 summarizes the flow models used in
this study and introduces the notation specific to the present chapter. Section 3.2 de-
scribes how sparsely sampled probe vehicle data, and in particular data gathered through
the specific spatial sampling strategy developed by Nokia (Virtual Trip Lines, see Sec-
tion 1.2.2) can complement existing loop detector data. The section summarizes the data
assimilation procedure and the corresponding algorithm developed for the estimation of
ranges of guaranteed travel times. In section 3.3, the method is implemented using the
Mobile Century data set [81, 59, 164|, which consists of loop detector and GPS-based
smartphone data collected for 8 hours of traffic on 1880 in Union Landing, CA, for 100
vehicles equipped with Nokia N95 phones. This section presents some conclusions of nu-
merical results obtained for travel time estimation, as well as a study of the influence of
penetration rate and spatial sampling strategy.

3.1 Background

3.1.1 Traffic low models

Kinematic wave theory

Traffic flow on a highway segment can be described using both density and flow functions,
which represent an aggregated number of vehicles per space (respectively time) unit. The
Lighthill- Whitham-Richards (LWR) partial differential equation (PDE) [108, 134] is a first
order model obtained from conservation of vehicles and an empirical relation between
vehicle flow ¢(¢, x) and vehicle density p(t,z) and commonly used in traffic engineering:

Op(t,x)  dq(plt, 7))
ot Ox
The flow-density relation ¢(p) is known as fluzx function or fundamental diagram. The
theory [20, 42| used in this chapter assumes that the flux function is concave. For sim-
plicity, we choose a specific flux function, the triangular diagram [49, 50|, as commonly
done in the literature:

=0 (3.1)
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Figure 3.1: Representation of a triangular flux function.
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In the diagram of Figure 3.1, vy is the free flow speed, p. is the critical density, and
Pmax 18 the maximal density. All these quantities are illustrated in Figure 3.1. The capac-
ity of the road is the maximal flow gmax = p.vy. The parameters vy, w, p. and pmax are
related by pmaxw = pc(vf + w), which means that the triangular fundamental diagram is
fully characterized by three parameters.

Because density is an aggregated quantity, which cannot be measured by probe vehi-
cles directly, the LWR PDE is difficult to use as such to incorporate vehicle trajectory
data available from probe vehicles. To face this issue, the present model uses an alternate
(equivalent) representation of traffic which was introduced by Newell and Daganzo, fol-
lowing the work of Moskowitz [123, 52, 53]. The modeling uses consecutive integer labels
assigned to vehicles entering the highway at a user defined location x = x;,. The vehicles
are counted from the reference point (t = 0,2 = xj,). The first vehicle is assigned an
arbitrary label, usually chosen to be 0. The choice of this arbitrary label at ¢ = 0 and
T = xj, does not influence the results. Assuming that vehicles do not pass each other,
one could imagine that an observer at location z = x;, numbered the vehicles as they
passed him, starting to count from the arbitrary first label (usually chosen to be zero).
The Moskowitz function M(t, x) (also known as cumulative number of vehicles function)
is a continuous representation of the label of the vehicle at location x and time ¢, and
encodes the distribution of the vehicles on the highway at all times. The space and time
derivatives of the Moskowitz function are related to the flow and density functions as
follows [123, 52, 53]:

T B B . L ) (3.2)

Using equation (3.2), one can transform equation (3.1) into the following Moskowitz
Hamilton-Jacobi PDE [52, 53]:

o, (otea) g

Solution of the Moskowitz HJ PDE

Solutions to PDE (3.3) subject to initial and boundary conditions are known [48, 64| and
can be computed with standard numerical analysis tools. Solving equation (3.3) requires
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the knowledge of the initial state of the highway, i.e. the knowledge of an initial func-
tion My(z) := M(0,x) at time ¢t = 0, which would represent a distribution of labels of
vehicles initially on the highway. Note that when this knowledge is not available, one
can use the “flush” effect of the highway (i.e. waiting long enough until initial vehicles
have disappeared from the section of interest) to avoid the need for this data. Assuming
that loop detector data is available at locations x = z;, (upstream) and = = xoy > Tin
(downstream), one can prescribe counts at these locations, i.e. M(t, z;,) = 7(t) and
M(t, xout) = B(t), where y(t) and B(t) are the vehicle counts measured by the detectors.
In other words, the label ~(¢) is incremented by one each time a car drives by the location
T = Tiy. A similar rule applies at © = z4,. Finally, given a vehicle with an integer label
M, and a trajectory given by x;(t), the value of the function M(¢, z;(t)) is constant and
equal to M. This fact is true because the value of the label M; does not change along
the trajectory x;(t) of vehicle My, thus M(t, x4(t)) = M; for all times ¢ during which the
vehicle is on the corresponding segment of highway. The value imposed to the soluton
of 3.3 along the trajectory of a vehicle is an internal condition.

The mathematical properties of the solution of (3.3) require specific treatments to in-
troduce internal boundary conditions. A specific control framework based on Lax-Hopf’s
formula and viability theory [20, 42] enables the introduction of internal boundary con-
ditions. Using this framework, one can derive the unique Barron-Jensen/Frankowska
solution of the Hamilton Jacobi Partial Differential Equation. The details of the deriva-
tions of the solution are out of the scope of this thesis and can be found in [42, 43|. It is
possible to introduce passing rates in the model as done in [42; 43]. The corresponding

initial, boundary and internal conditions on the function M(¢, z) can thus be summarized
by:

e Initial condition M(0, z) = My(x) Vehicle distribution at initial time
o Left boundary condition M(¢, zi,) = (%) Inflow of vehicles
e Right boundary condition M(¢, zou) = 5(%) Outflow of vehicles
e Internal conditions M(t, z;(t)) = M; Trajectory measurement for the vehicle

labeled M; for all

3.1.2 Reconstruction of a posteriori travel time function

This work is focused on the computation of the a posteriori travel time TT(t) at time ¢
from the estimation of the Moskowitz function. The a posteriori travel time is defined
as follows. If a vehicle M; crosses the upstream boundary i, of the highway at time 7,
and crosses the downstream boundary ., at time ¢, the a posteriori travel time T7(t)
is defined by TT(t) = t — 7, and represents the time necessary to cross the road section
observed by the vehicle M; leaving the highway at time t. The a posteriori travel time can
thus be obtained from the boundary condition functions v(7) and 3(7) using the following
procedure:

Algorithm 1 Algorithm for computing the travel time function
Input ¢ (time at which one wants to compute travel time)
Read M := §(t) from downstream loop detector
Find 7 such that ~(7) = M from upstream loop detector (using backtracking search)
Compute TT(t):=t—7 (if 7 exists)
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3.2 Data assimilation using mixed Eulerian/Lagrangian
Data

3.2.1 Model of label evolution and trajectories
Boundary conditions

Figure 3.2(a) illustrates the physical interpretation of the boundary conditions () and
B(+) of the Moskowitz function in terms of the loop detector counts. As can be seen in this
figure, data is prescribed at x = xj,: M(t, i) = (t) where (¢) is the label function at
Zin, Which is constructed from the loop detector measurements by summing the vehicles as
they pass it. For example, if the label of the vehicle passing at t = 17 (min) is y(17) = 25,
and five vehicles pass between ¢ = 17 (min) and ¢ = 18 (min), then y(18) = 22. Similarly,
downstream, at © = xou: M(t, Tou) = B(t) where 5(t) is the label function at x4y, which
is constructed from the loop detector at x = xqys.

Initial conditions

The knowledge of the initial vehicle distribution (similar to an aerial picture of the road at
time ¢ = 0), would give the initial condition represented with a dash line in Figure 3.2(a),
in other words the labels of cars as initially positioned on the highway. The corresponding
function is called My(z). For example, if the vehicle at © = x;, and ¢ = 0 is (arbitrarily)
labeled vehicle zero (M(0, zi,) = 0), and if there are 20 vehicles between x = z;, and
r > Ty, then M(0,2) = —20. Note that the labels can all be arbitrary shifted by the
same amount, which is prescribed at x = x;, and t = 0: if one arbitrarily decided to call
the vehicle at x = z;, vehicle 28, i.e. M(0, z;,) = 28, it would follow that M(0,z) = 8.
It can easily be seen that this shift does not impact equation (3.3) since the PDE only
depends on derivatives of M(-, -). For practical reasons, initial condition data is not easily
measurable and rarely available. For this reason, the method proposed in this chapter
does not assume knowledge of M.

Probe vehicle conditions

In Figure 3.2(a) the solid trajectory line on the time-space diagram represents the suc-
cessive locations where the phone can be probed along a vehicle trajectory using the
VTL sampling paradigm. The travel times between successive VT'Ls are then linearly
interpolated to represent the vehicles trajectory. For privacy reasons, the system does
not track entire trajectories of the vehicles (it is represented this way on the figure for
illustration purposes — in practice only subsets of this trajectory would be transmitted to
the system). The sparsely sampled trajectory of vehicle M is characterized by the times
t when measurements are received and corresponding locations z;(¢). When the vehicle
reports its position x;(t) at time ¢, it provides information on the Moskowitz function:
M(t, z;(t)) = M;. In practice, the label M; of the vehicle reporting its position is not
known. The estimation algorithm takes into account this unknown.

3.2.2 Computation of the boundary condition functions using
loop detector data

Figure 3.2(b) illustrates the procedure developed to collect the data used for the data
assimilation procedure.
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Figure 3.2: Physical interpretation of the boundary conditions on the Moskowitz function.

31



Assimilation of the boundary conditions

The data assimilation procedure requires the incorporation of loop detector data (flow
data only) into the flow model. For this, the knowledge of the functions v and S is
necessary. By definition of these loop detector flows, v and § can be obtained (modulo
a constant) by direct integration of the flows measured by the detectors. Thus, calling
Ginflow (t) the flow measured by the upstream detector and goutfiow () the flow measured by
the downstream detector, it follows that:

A1) = / Gnioe(@)d0 and B(1) = / Gouton(0)d0 + A (3.4)

The parameter A represents the value! of 3(0,Zo.). The total number of vehicles
present on the highway at time ¢ = 0 is —A > 0, which is an unknown of our problem.
If the parameter A was known (for instance by taking a picture of the highway at initial
time and counting the total number of vehicles on the highway), then the a posteriori
travel time could be computed exactly, assuming that the loop detector flow data was
errorless. However, since it is not the case, the parameter A must be estimated. Once A
has been estimated, Algorithm 1 can then be used to compute the travel time. As will
appear in the next sections of this algorithm, A is never known a priori (unless My is
known, which is difficult in practice). It will therefore become one of the decision variables
of the algorithm.

Assimilation of the probe data

Internal conditions of the problem are collected using Virtual Trip lines (VTLs), as de-
scribed in Section 1.2. Recall that VTLs are geographical markers stored in the client
(i.e. the mobile handset), which trigger a position and speed update whenever a probe
vehicle crosses them. A VTL can thus be viewed as a virtual loop detector, which detects
crossing of equipped vehicles. In essence, it provides readings of the z;(¢) function at
specific geographical locations on the highway according to a sampling procedure used
by Nokia to guarantee privacy of the users. Figure 3.2(b) illustrates the data available
through VTL sampling. As can be seen from Figure 3.2(b) the location of probe vehicles
is known at sampling locations (VTLs) and corresponding crossing times. Each vehicle
is uniquely identified at each crossing VTL and reports its travel time between succes-
sive VTL crossings. Between successive VTL crossings, we assume in this model that
the vehicle has a constant speed, corresponding to linear trajectories in the space-time
diagram. In practice, trajectories are not necessarily linear between sampling locations,
in particular if the sampling locations are distant and cover junctions, ramps or merges.

3.2.3 Linear Program formulation of the data assimilation prob-
lem

Integration of the loop and probe data into the model

The problem of integrating initial, boundary and internal conditions into the Moskowitz
equation (3.3) is in general extremely challenging. This complex problem can be de-
composed into many simple problems associated to each of the value conditions (initial,
boundary, and internal). For this, define a component function as the solution of the
Moskowitz PDE associated to each individual value condition [42, 43]. The definition of
the different components is done as follows:

Note that v(0) = 0 by assumption.
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o Initial condition component: My, (t,z). This initial condition function can be
computed directly from the initial condition My(z); it encodes the dependence of
the solution on the initial condition.

o Left boundary condition component: M., (t,x). This left boundary condition function
can be computed directly from the left boundary condition 7(t); it encodes the
dependence of the solution on the left boundary condition (upstream loop detectors).

e Right boundary condition component: Mpg(t,x). This right boundary condition
function can be computed directly from the right boundary condition 5(t); it encodes
the dependance of the solution on the right boundary condition (downstream loop
detectors).

e Internal condition component: Mg (¢, ). This internal condition function can be

computed directly from the trajectory x;(t) of vehicle M;; it encodes the dependance
of the solution on the internal condition.

The component functions can be computed individually using dynamic programming
methods [52, 53|, a Lax-Hopf formula [19], or using the minimization of closed-form ex-
pression functions [43]. Compatibility conditions [42, 43|, which have a direct physical
interpretation, ensure the well-posedness of the problem. In this chapter, we choose
the last method to compute the component functions. The method has the advantage
to compute exact value of the Moskowitz function at any time ¢ and location = and
does not require any discretization scheme. The details of the derivations are presented
in [42, 43, 115] and are out of the scope of this thesis. As shown in [115], the assumption
of a triangular fundamental diagram simplifies even more the computation, even though
any concave diagram can be used in this setting. When physical compatibility conditions
are met [42], the solution to the Moskowitz equation (3.3) can be simply computed as the
minimum of the component functions [19, 42, 43]:

M(t, z) = min (Mwm, (¢, 2), M, (¢, 2), Mg(t, z), My, (£, 2), ..., Mgz (¢, 2)) (3.5)

This property is proved in detail in [19, 42]. In order to be able to simultaneously
impose the initial, boundary and internal conditions, these conditions must satisfy nec-
essary and sufficient conditions known as compatibility conditions [42, 43]. Indeed, any
arbitrary initial, boundary and internal conditions cannot be simultaneously imposed on
the Moskowitz function. For instance, if the initial condition consists in a completely
congested highway, no positive inflow can be imposed at the entrance x;,, since there is
no available space for entering vehicles. Similarly, if the highway is initially empty, no
positive outflow can be imposed since no cars are present.

Linear program formulation

Let X be defined as X := (A, My, My, ..., M,,) where n is the total number of probe ve-
hicles used for the internal conditions. The variable X represents the decision variable of
the estimation problem. Recall that A represents the number of vehicles initially present
on the road segment and that M, is the label of the i** probe vehicle. The compatibility
conditions can be shown to be equivalent to a set of k linear inequalities 2 in the variable
X. The mathematical proof of this fact is cumbersome and algebraically involved. It
is out of the scope of this thesis and available in [41]. The linear inequalities resulting

2The number k depends upon the type of conditions used for the reconstruction, the repartition of
the car trajectories, and the time horizon.
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from [41] can be written formally as AX < b, where A € R**"*1 and b € R*. The matrix
A and the vector b depend upon the inflow, outflow, and trajectory data.

Let the vector ¢ be defined as ¢ = (1,0,0,...,0). Using this definition, the analytical
expression of A is given by A = ¢’ X. To compute the value of A, consider the following
Linear Programs (LPs):

min: c’'X max: c’'X

s.t.: AX <) and s.t.: AX <) (3.6)

The solution of the above LPs yield two objective values A, and Ay, which can
be interpreted as follows: the value —A,;, represents the maximal number of vehicles
that can possibly be present on the highway, and the value —A ., represents the minimal
number of vehicles that must be present on the highway (assuming our data is exact).
To the possible range of values for A, [Anyin, Amax], corresponds a possible range of travel
times defined by TTiin(t) and TTpa.(t) and computed using Algorithm 1. The overall
method is represented in Algorithm 2.

Algorithm 2 Process used to construct travel time ranges from Fulerian/Lagrangian
measurements.

Input Loop detector data (flow data) and VTL data

Compute Boundary and internal conditions ~, § and pu;

Compute A and b

Compute A, and Ay, (using LP (3.6))

Compute TT(t)

3.3 Mobile Century Implementation

This section analyzes the estimation capabilities of the previously described procedure
using loop detector data, probe vehicle data, and video detector data collected during a
field experiment known as Mobile Century [81, 59|. Tt presents an analysis of the sampling
strategies and the number of equipped vehicles to implement this algorithm in practice.

3.3.1 Description of the experiment

The Mobile Century [81, 59] experiment took place on February 8th, 2008. It was con-
ducted on Highway 1-880, near Union City, CA, between Winton Ave. and Stevenson
Blvd. (see Figure 3.3). This 10-mile long section of highway was selected specifically for
its complex traffic properties, which include alternating periods of free-flowing, uncon-
gested traffic, and slower moving traffic during periods of heavy congestion. The section
also has a high density of loop-detectors (17 loops on the section of interest). The data
from these sensors is collected by the Freeway Performance Measurement System (PeMS).

The experiment consisted in deploying 100 GPS- equipped Nokia N95 cell phones on a
freeway during eight hours. For the duration of the experiment, 165 UC Berkeley students
drove loops on the section of interest between 10am and 6pm. This period encompasses
both free flow and congested traffic, and the transition between the two of them.

The data was collected in two ways during the experiment.

(i) A privacy aware architecture was developed, which uses the concept of Virtual Trip
Line (VTL) explained earlier (Section 1.2.2). During the experiment, 40 VTLs were
deployed in the section of interest (each VTL covers both travel directions). This
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Figure 3.3: Set-up of the Mobile Century experiment. The figure represents the placement
of the video camera and the loop detectors selected for the computation and the validation
of our results.

(i)

data was used to produce real-time travel time and speed estimates on the section
of interest and presented to the press in real-time. During the experiment, a data
assimilation algorithm based on Ensemble Kalman Filtering (EnKF) [164] provided
travel time estimates in real-time. On February 8, 2008, the goal of the algorithm
was to show the possibility of reconstructing speeds and travel time in real-time
from a set of probe vehicle measurements.

Each cell phone was storing its position and velocity every three seconds. This data
(trajectory data) was stored for archival purposes in order to evaluate the quality of
the data a posteriori. It was only generated for experimental validation, and would
not be collected in an operational system.

In order to validate the estimation results of all algorithms developed during this field
experiment, video data was collected from three bridges in the deployment area. The
travel times were experimentally measured using a set of six HDV cameras deployed on
the Mowry Ave., Decoto Rd. and Winton Ave. overpasses. The video data was sent to
six laptops which were synchronized before the experiment and archived the data with
timestamps. The camera footage was analyzed after the experiment, and the identifiable
license plates (approximately 70% of the vehicles) were subsequently stored in a database.
A matching algorithm was used to compute travel time through license plate reidentifi-
cation. Figure 3.3 shows the deployment area of two of the three camera locations used
to produce the data presented in this chapter. The travel times measured by the video
camera are depicted by dots in the figures of the subsequent sections.
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3.3.2 Analysis of probe vehicle penetration and VTL spacing

This section presents an analysis of probe vehicle penetration rate and VTL spacing, using
the data presented in the previous section.

Penetration rate

The penetration rate achieved during the experiment was 3% to 5% depending on the
time of the day [81, 59]. VTL data was collected at each of the 40 VTLs deployed on the
section of highway. In an operational system, not all VTL measurements would be used
by the system to probe all the vehicles systematically. In practice, a vehicle traveling
across a VTL is randomly probed. In the present study, the number of measurements
used by the algorithm is artificially decreased in order to simulate lower penetration rates.
This procedure is a way to degrade the data set in order to assess the performance of the
algorithm for low penetration rates and determine the penetration rate required for robust
estimation.

VTL degradation

In order to study the influence of VTL spacing on the quality of the results, the available
VTLs deployed for this study was reduced, i.e. some of the VT'Ls were artificially sup-
pressed in the parametric study. The goal of this procedure is to study the performance
of the algorithm when measurements are spatially sparse.

Parametric study of penetration rate and VTL sampling

Using the two decimation procedures outlined above, the two linear programs (3.6) for
Apnin and A, are solved for each of the penetration rates and the VTL spacing chosen in
the study. For each of these values, the length of the period considered for the assimilation
is 1 hour and 25 minutes. The corresponding bounds on travel times (computed from the
Apin and Ay, ) are obtained for a vehicle initially entering the segment of interest. The
results are summarized in Figure 3.6. This figure represents, for each pair (penetration rate
- VTL spacing), the difference 77 ax(t) — TT1nin(t). This range represents the guaranteed
bound on average travel time under the assumption that overtaking and measurement
noise are relatively small enough to be ignored. As expected, the range is the smallest
for high penetration rates and low VTL spacing. The best corresponding range provided
by the method is of the order of 100 seconds, for an average travel time of about 1200
seconds. This corresponds to a 8% error provided by the method. These results are
very encouraging: they show that even with low penetration rates, and reasonable VTL
spacing, the method is able to evaluate a guaranteed range for average travel time within
less than 10% of its actual value. This type of information is very helpful for deployment
studies, in order to determine the operational conditions for which this system would
become valuable.

3.3.3 Results
Figures 3.4, 3.5 and 3.6 illustrate the numerical results obtained by solving problem (3.6).

e Figure 3.4 shows the range of travel times provided by the method if loop detectors
only are used. Obviously, with two loop detectors separated by 6.06 miles, the range
cannot be tight because of the extremely large uncertainty of traffic when only two
measurement stations are available for such a long distance. The figure displays
the validation data obtained from the video camera. Notice that all measurements
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are within the guaranteed range of travel times. The figure also shows the estimate
which would be obtained by computing the travel time from the PeMS speed data
directly. This travel time falls outside of the guaranteed range and does not match
the validation data accurately. As can be seen in the right subfigure, the estimate
using the 16 PeMS speed detectors available in the section of interest falls inside the
range and is closer to the cloud of points. However, this density of loop detector is
rarely available on the highway network because of the important installation and
maintenance costs.

e Figure 3.5 represents the guaranteed bounds on the travel time obtained from the
algorithm throughout the experiment duration. As expected, this range gets tighter
as the number of vehicles reporting their travel time through the VTL sensing
paradigm increases. The addition of a single vehicle trajectory already produces
drastic improvements in the predicted range. By construction of the optimization
program, incorporating new trajectory information adds new constraints, which
reduce the size of the feasible set AX < b, thus reducing Apax — Amin and the
range of guaranteed average travel times. Because the assumption that overtaking
and measurement noise are negligible may not hold very accurately in practice, the
ranges computed for the travel time function do not necessarily encompass exactly
the actual travel times anymore. The next section provides explanations for this
fact. Note however that, while there might be some relatively small error with these
bounds, one can clearly see from these four figures that the estimates are not only
tight, but also reproduce the trends of the validation data (in the present case the
progressive decrease of travel time as morning congestion dissipates).

3.3.4 Comments on the results

The quality of the results depends on the validity of the assumptions of the model. The
following analyzes some of the sources of inaccuracy of the results.

e The model assumes that cars do not overtake each other (no shearing) and com-
putes an associated possible range of travel times for all the vehicles driving at the
same time. This is a common assumption in numerous transportation engineering
articles. However, vehicles overtake each other, their label is not constant along
their trajectory. As the distribution of the travel times (in Figure 3.5) do not sat-
isfy the non-shearing assumption, some travel times may not satisfy the guaranteed
bounds (which are computed for a non-shearing situation only). The mathemati-
cal framework [42, 43| used to compute the components of the Moskowitz function
allows for the introduction of a passing rate for each probe vehicle. Note however
that the LWR model does not take overtaking into account and the potential of this
refinement of the model is not analyzed in the present example.

e Flow from and to on- and off-ramps are not taken into consideration by this study,
because of the lack of available data. The conservation of vehicles assumption is
therefore violated. Data shows that the cumulative number of vehicles that exits
the road section by the loop at point B is increasing faster than the cumulative num-
ber of vehicles that enter at point A. Over the course of eight hours, the difference
reaches 9247 vehicles, which exceeds the road section capacity (5041 vehicles) and
consequently invalidate this assumption. To produce the results, the model inte-
grates this additional flow of vehicles as a constant throughout the day. A temporal
refinement of this flow correction or measurements of inflows and outflows at ramps
would improve the accuracy of the estimation.
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Figure 3.4: Comparison of the computation of the travel time using our algo-
rithm and a naive method based on integration of the speed data given by
the loop detectors. Loop detector data only is used in this example (no VIL data).
The horizontal axis represents the time ¢ (unit: hours and minutes). The vertical axis
represents the travel time (unit: sec). The upper and lower bounds on travel time, com-
puted by the algorithm (using flow data) described before, are represented by dashed
lines. The actual travel times obtained from the video data are represented by dots. On
both figures, they are computed using flow data from the first and last loop detectors
only. The travel time computed by the commonly used PeMS algorithm using velocity
data is represented by a solid line. It uses only the first and last loop in the top figure,
whereas all the intermediate loop are used in the bottom figure.
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Figure 3.6: Guaranteed range (unit: seconds) for the estimation of the travel
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tion rate (unit: percent) of the GPS-equipped phones in the traffic. The vertical axis rep-
resents VI'L density (unit: number of VTL per mile). The total error 17T ax(t) =T Tinin(t)
on the parameter T7'(¢) is indicated using a grey scale, a darker shade representing a larger
erTor.

e Loop detector data is known to be noisy and biased. Loop detectors report their raw
data to the PeMS system every 30 seconds. This raw data is hardly directly useable.
PeMS filters this data and averages it on a five minutes time period. Despite the
filtering and the data processing, this data still has significant reliability issues which
are not specifically addressed in this study. The bounds are guaranteed only when
the VTL and loop detector data are exact. Since this is never the case in practice,
the guarantee is lost.

e The time sampling of the loop detectors is low. The average five minute update
gives a low time resolution for the boundary conditions. Using a confidence interval
or a probability distribution for the upstream and downstream boundary condi-
tions improves the robustness of the model by making the bounds depend on this
uncertainty [85].

e In the experimental set-up, the location of the first and last loop detectors does
not match perfectly the location of the video cameras, as illustrated in Figure 3.3.
The travel times computed by the algorithm are linearly interpolated to match the
distance between the two video cameras located on the bridges. As the road section
considered for the computations (delimited by the loop detectors) represents 88% of
the road section delimited by the cameras, the computed travel time is assumed to
be equal to 88% of the travel time between the two video cameras. This is obviously
an approximation, and may induce additional numerical error.

3.4 Conclusion

This chapter investigates a specific data assimilation technique used to incorporate probe
vehicle data into flow models. The study uses a traditional traffic flow model (the Lighthill-
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Whitham-Richards theory), formalized using the Moskowitz framework. This framework
enables the use of a function, whose isolines correspond to vehicle trajectories. The
problem of including loop detector data (flow data) in this framework is done following
the traditional kinematic wave approach. The problem of fusing it with probe data is
formulated using the Moskowitz function. Based on this formulation, two linear programs
are created to compute upper and lower bounds of the estimate of initial numbers of
vehicles on the highway segment. These bounds are taking into account the uncertainty in
the model, and are used to find bounds on travel time through the corresponding section
of highway. The method is implemented on data collected during the Mobile Century
experiment, using 100 Nokia N95 phones traveling onboard vehicles driving loops on 1880
in California. A sampling and penetration rate study shows that the method provides
accurate travel time estimates at low penetration rates and reasonable, privacy aware,
sampling strategies. The numerical results show the importance of using probe vehicle
data to improve travel time estimates without the need for a dense deployment of costly
dedicated infrastructure. The results also underline that the data gathered by a few
vehicles is sufficient to significantly improve results obtained by sparse loop detectors. It
is possible to take into account uncertainty of the data and to relax the non-overtaking
assumption to improve the robustness and the reliability of the estimation.
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Chapter 4

Analytical derivations of an
hydrodynamic model of arterial traffic

An important challenge in arterial traffic estimation is the characterization of travel time
distributions. The literature review (Chapter 2) indicates that statistical models repre-
senting the dynamics of traffic flows are well-suited towards designing a robust, scalable
arterial traffic monitoring system. The integration of statistical models and traffic theory
is a very promising approach to capture the variability of arterial traffic and leverage the
increasing amount of traffic data collected from probe vehicles. The mathematical ab-
straction of physical phenomena by traffic flow models is coupled with a statistical model
to fully take advantage of the traffic data collected today.

This chapter presents an arterial traffic model based on hydrodynamic theory to rep-
resent the physics of traffic flows. The model characterizes the formation and dissolution
of horizontal queues upstream of capacity reductions caused by traffic signals. Recall that
the main difference between horizontal queues and vertical queues is as follows: vertical
queues consider that vehicle stack up vertically, incurring no delay to travel to the point
of congestion. On the other hand, horizontal queues model the physical location where
vehicles queue, modeling the time necessary to travel to the point of congestion when the
queue releases. The model is based on specific assumptions on the physics of traffic flow
which make the problem tractable, while keeping it realistic.

In traffic monitoring systems relying on probe data, probe vehicles send periodic loca-
tion measurements, which provide two sources of indirect information about the arterial
traffic link parameters: (i) as the location measurements are taken uniformly over time,
more densely populated areas of the link will have more location measurements and (ii)
the time spent between two consecutive location measurements provides information on
the speed at which the vehicle drove through the corresponding arterial link(s). We use
these properties and the arterial model presented in the present chapter to develop a
statistical model of arterial traffic, which can be trained with probe data and used for
inference in arterial networks:

e Chapter 5 derives parametric probability distributions of vehicle locations on arte-
rial links, delimited by signalized intersections which has valuable applications in
Geographic Information Systems and traffic monitoring. Because of the presence of
traffic signals, vehicles spend more time downstream of the links, where they experi-
ence delay. The probability distribution of vehicle locations enables the estimation
of queue lengths, which is a measure of congestion.

e Chapter 6 derives parametric probability distributions of delays and travel times
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between arbitrary points of the network. These distributions are characterized by
a small set of parameters with direct physical interpretation (signal timing, queue
length). These parameters represent valuable information for traffic management
entities.

The present chapter presents the traffic theory results derived from hydrodynamic
models and queuing theory which are used in the following chapters to derive probability
distributions of vehicle locations on a link and probability distributions of travel times
between arbitrary location on a link from horizontal queuing theory. Section 4.1 intro-
duces the macroscopic traffic flow model. Section 4.2 details the specific assumptions on
the physics of traffic flow which make the problem tractable, while keeping it realistic.
Section 4.3 derives the horizontal queuing theory results. The notation is summarized in
Section 4.4 and the potential applications of the horizontal queuing theory are presented
in Section 4.5, before being expanded in the following chapters.

4.1 Hydrodynamic theory

In traffic flow theory, it is common to model vehicular flow as a continuum and represent
it with macroscopic variables of flow q(x,t) (veh/s), density p(z,t) (veh/m) and velocity
v(x,t) (m/s). The definition of flow gives the following relation between these three
variables [108, 134]:

q(z,t) = p(x,t) v(zx,t). (4.1)

This property is used throughout the derivations of traffic models.

For low values of density, experimental data shows that the velocity of traffic is rel-
atively insensitive to the density; and all vehicles travel close to the so called free flow
velocity of the corresponding road segment vy. As density increases, there is a critical den-
sity p. at which the flow of vehicles reaches the capacity guax of the road. As the density
of vehicles increases beyond p., the velocity decreases monotonically until it reaches zero
at the maximal density pma.x. The maximal density can be thought of as the maximum
number of vehicles that can physically fit per unit length, and at this density, vehicles are
unable to move without additional space between vehicles. Experimental data indicates
a decreasing linear relationship between flow and density, as the density increases beyond
pe. The slope of this line is referred to as the congested wave speed, noted w. This leads
to the common assumption of a triangular fundamental diagram (FD) to model traffic
flow dynamics [54, 72].

A triangular fundamental diagram was used in Chapter 3 to estimate guaranteed
travel time bounds on highway segments. It is illustrated in Figure 3.1. The triangular
fundamental diagram is fully characterized by three parameters: vy, the free flow speed
(m/s); Pmax, the jam (or maximum) density (veh/m); and guayx, the capacity (veh/m). Its
expression is reminded for convenience and reads:

alp) = { vrp if pel0,p]
w(pc - P) + Uppe if p e [pm pmaX] ’
where w = - Pe

#fpc. Note that p. represents the boundary density value between (i) free
flowing conditions for which cars have the same velocity and do not interact and (ii)
saturated conditions for which the density of vehicles forces them to slow down and the
flow to decrease. When a queue dissipates, vehicles are released from the queue with the

maximum flow—capacity ¢max—which corresponds to the critical density p. = ¢max/Vs-
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For a given road segment of interest, the arrival rate at time ¢, i.e. the flow of vehicles
entering the link at ¢, is denoted by ¢,(t). Conservation of flow relates it to the arrival

density pa(t) = qa(t)/vy-

4.2 Modeling assumptions

The model is based on the following assumptions on the dynamics of traffic flow:

1. Triangular fundamental diagram: this is a standard assumption in transportation
engineering, both for highway and arterial traffic modeling and estimation. Chap-
ter 3 also uses a triangular fundamental diagram to successfully derive robust travel
time bounds on highway segments. Other arterial models commonly make this
assumption [54, 72].

2. Stationarity of traffic: during each estimation interval, the parameters of the light
cycles (red and cycle time) and the arrival density p, are constant. Moreover,there
is not a consistent increase or decrease in the length of the queue, nor instability.
With these assumptions, the traffic dynamics are periodic with period C' (length of
the light cycle). The work is mainly focused on deriving travel time distributions for
cases in which measurements are sparse. Constant quantities (for a limited period
of time) do not limit the derivations of the model since the aim of this model is to
study trends rather than fluctuations.

3. First In First Out (FIFO) model: overtaking on the road network is neglected.
When traffic is congested, it is generally difficult or impossible to pass other vehicles.
In undersaturated conditions, vehicles can choose their own free flow speed, but as
done in the LWR model, the derivations are based on the assumption that the
free flow speeds are similar enough that the “no overtaking” assumption is a good
approximation.

4. Model for differences in driving behavior: the free flow pace (inverse of the free flow
speed) is not the same for all vehicles: it is modeled as a random variable with vec-
tor of parameter 6,—e.g. the free flow pace has a Gaussian or Gamma distribution
with parameter vector 6, = (py, 5,)" where p; and o, are respectively the mean and
the standard deviation of the random variable.

4.3 Horizontal queuing theory

In arterial networks, traffic is driven by the formation and the dissipation of queues at
intersections. The dynamics of queues are characterized by shocks, which are formed at
the interface of traffic flows with different densities.

There exists two discrete traffic regimes: undersaturated and congested, which repre-
sent different dynamics of the arterial link depending on the presence (respectively the
absence) of a remaining queue when the light switches from green to red. Figure 4.1
illustrates these two regimes under the assumptions made in Section 4.2. The speed of
formation and dissolution of the queue are respectively called v, and w. Their expression
is derived from the Rankine-Hugoniot [60] jump conditions and given by

Vg = P and w= LY (4.2)

Pmax — Pa Pmax — Pe
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Undersaturated regime

In this regime, the queue fully dissipates within the green time. This queue is called the
triangular queue (from its triangular shape on the space-time diagram of trajectories).
It is defined as the spatio-temporal region where vehicles are stopped on the link. Its
length is called the maximum queue length, denoted l,.«, which can also be computed
from traffic theory:

lowe = R—22 — g Yt PePa (4.3)

W — Vg Pmax Pec — Pa

The duration between the time when the light turns green and the time when the queue

fully dissipates is the clearing time or queue dissipation time denoted 7, derived as follows

1 1
T = lmax (_ + _) . (44)
w Uf

Replacing the [,.x and w by their expressions derived in equations(4.3) and (4.2), the
expression of 7 reads

Pa

T=R .
pc_pa

(4.5)

Congested regime

In this regime, there exists a part of the queue downstream of the triangular queue called
remaining queue with length [, corresponding to vehicles which have to stop multiple
times before going through the intersection.

All notations introduced up to here are illustrated for both regimes in Figure 4.1.

Stationarity of the two regimes

Assumption 2 made earlier implies the periodicity of these queue evolutions (see Fig-
ure 4.1). As indicated by the slopes of the trajectories in the figure, when vehicles enter
the link, they travel at the free flow speed v;. The distance between two vehicles is the
inverse of the arrival density 1/p,. The time during which vehicles are stopped in the
queue is represented by the horizontal line in the queue. The length of this line represents
the delay experienced at the corresponding location. The assumption of a triangular fun-
damental diagram implies that the distance between vehicles stopped in the queue is the
inverse of the maximum density 1/pmax. When the queue dissipates, vehicles are released
with a speed vy and a density p.. The trajectory is represented by a line with slope vy,
the distance between two vehicles is 1/p..

For the two distinct traffic regimes, the following chapters present the derivations of
the probability distribution function (pdf) for the location of vehicles on a link and for the
travel time along a link (Chapter 5) and of the pdf of delays and travel times between
any two arbitrary locations on the network (Chapter 6).

4.4 Notation

The list below summarizes the notation introduced earlier and to be used to fully charac-
terize the arterial traffic model. The parameters are specific for each network link j. The
index j is omitted for notational simplicity.

e Model parameters:
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— Free flow pace, py (seconds/meter), inverse of the free flow velocity vy. The
free flow pace is a random variable. Its probability distribution function (p.d.f.)
is denoted ¢”(p); it models the different driving behavior by assuming a distri-
bution of the free flow pace among the different drivers,

— Cycle time, C' (seconds),
— Red time, R (seconds),
— Length of the link, L (meters).

e Traffic state variables:

— Clearing time T,
— Triangular queue length [y,

— Remaining queue length [,.

This set of variables is sufficient to characterize the model and the time evolution of
the state of traffic. The location x on a link corresponds to the distance from the location
to the downstream intersection. From these variables, it is possible to compute the other
traffic variables, including velocity, flow, and density of vehicles at any x and time ¢ and
queue length. The remaining queue length [, is specific to the congested regime (I, = 0
in the undersaturated regime). Similarly, the existence of a clearing time is specific to
the undersaturated regime (the clearing time is null and thus 7 = C'— R in the congested
regime). The undersaturated and congested regimes are labeled u and ¢ respectively.

4.5 Applications of the arterial traffic model

This chapter reviewed an analytical model of arterial traffic dynamics on a link delim-
ited by signalized intersections. The model builds upon traditional first order traffic flow
model (the LWR model) and makes specific assumptions to maintain the tractability of
the model while keeping it realistic. The goal of these derivations is to characterize the
formation and dissolution of queues upstream of traffic signals. Characterizing the forma-
tion and dissolution of queues is key to enable estimation algorithms specific to arterial
traffic. Indeed the periodic formation and dissolution of queues is the main specificity of
arterial traffic when compared to highway traffic. It is important to accurately capture
this main feature of arterial traffic as it is the main source of variability in arterial traffic,
both temporally and spatially.

The importance of the variability of traffic variables, both in space and in time mo-
tivates the derivation of statistical models of arterial traffic dynamics. In particular,
there is specific interest in developing probability distribution of vehicle location on a link
and probability distribution of travel times between arbitrary locations on the network.
The probability distribution of vehicle location represent the spatial variability of traffic
within an arterial link, delimited by signalized intersections. The probability distribution
of travel times illustrate the differences in travel time experienced by vehicles traveling
during the same time interval but which enter the network at different time instants.

The following chapters present the derivation of these probability distributions. The
probability distribution of vehicle locations is denoted f*(x), s € {u,c}. The variable x
indicates the distance to the intersection, so the location of the intersection is at x = 0 and
the start of the link is at x = L. The function f* encodes the probability of a vehicle to be
at location x, which depends on x because of the spatial heterogeneity of the density, due
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to the formation of queues at intersections, as can be seen in Figure 4.1. The probability
distributions for the delay d,, ,, and travel time y,, ,, between two locations z; and xs on
a link of the network are denoted respectively h(d4, »,) and g(yz, 4,). The derivations are
based on the stationarity assumption, which allows for the definition of temporal averages
of the traffic variables. These averages are then taken over a light cycle C'. For example,
chapter 5 defines the variable Z as the average number of vehicles present on a link, with
index u (resp. c¢) for the undersaturated (resp. the congested) regime.
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Chapter 5

Spatial distribution of vehicles and
applications

Leveraging horizontal queuing theory, this chapter presents the mathematical characteri-
zation of the probability distribution of vehicle location on a link. The distributions are
mathematical abstractions of the following fact: the (temporal) average density of vehicles
within a link increases with the average delay experienced at this location. The arterial
model of Chapter 4 provides the basis for the derivation of parametric probability distri-
butions of vehicle location. As illustrated in the data exploration, the parameters of these
distributions can be learned with probe vehicle data: probes which send periodic location
measurements are more likely to report their position where they experience delay. The
parameters of the probability distributions can be learned from the probe measurements
collected over large periods of time. There are interesting applications of this work for
arterial traffic:

e It provides a convenient way to scale partial travel times, i.e. to infer the travel
time on an arterial link from the travel time on a portion of this link. This method
is more accurate than scaling with respect to the distance traveled because of the
important differences in average speeds within an arterial link caused by the presence
of signals.

e The distribution of vehicle location can be used to automatically detect the presence
of traffic signals (stop signs or traffic lights), which is a valuable application for the
creation and update of accurate Geographic Information Systems.

e The training of the model and estimation of the parameters provide an estimation
of the queue length which is an indicator of congestion levels.

The present chapter is organized as follows. Section 5.1 presents the derivations of the
statistical model representing the spatial statistical distribution of vehicles. The derivation
relies on the computation of the average vehicle density over a traffic cycle based on the
arterial traffic model of Chapter 4. Section 5.2 illustrates the potential of the model to
scale partial link travel times and validates it with probe data collected by the Mobile
Millennium system. Besides the interest for arterial traffic estimation, the analysis of
the results motivate the application of the model for automatic signal detection. The
challenges of the creation of accurate Geographic Information Systems are presented in
Section 5.3 as well as the potentials of probe data to make this process automatic and more
reliable. The automatic detection algorithm of traffic signals is presented in Section 5.4
and the potential of the algorithm are analyzed in Section 5.5.
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5.1 Modeling the spatial distribution of vehicles on an
arterial link

This Section builds upon the arterial traffic model presented in Chapter 4 to derive para-
metric probability distribution for the location of vehicles on an arterial link.

5.1.1 Statistical modeling

Using the stationarity assumption, the density at location z is time periodic with period
C'. Define the average density d(x) at location x as the temporal average of the density
p(x,t) at location x and time ¢:

c
d(z) = %/o p(x,t)dt.

In practice, flow is never perfectly periodic of period C' (even in stationary conditions),
but the model assumes that the above averaging over a duration C' is a good proxy of a
longer average.

According to the model assumptions, the density at location x and time ¢ takes one of
the three following values, numbered 1 to 3 for convenience: (1) p; = pmax, Wwhen vehicles
are stopped, (2) p» = p. when vehicles are dissipating from a queue, (3) p3 = p, when
vehicles arrive at the link and have not stopped in the queue.

The average density at location x is thus

where «;(z) represents the fraction of time that the density is equal to p; at location z.
The probability distribution f(x) of vehicle location at location x is obtained from
the average density d( ) at location x by normalization. The normalization constant Z

is given by Z = fo x) dx and the expression of the distribution f reads
d(x)
/ (J}) Yy :
Jy d(z)dzx

In the undersaturated and the congested regime, the computation of the «a;(+), i =
1...3 enables the derivation of the probability distribution of vehicle locations. The
following section presents how the analytical expressions of «;(-), 7 = 1...3 are derived
from the arterial traffic model presented in Chapter 4.

5.1.2 Undersaturated regime

Upstream of the maximum queue length, the density remains constant at p, throughout
the entire light cycle. Downstream of the maximum queue length, the value of the density
varies over time during the light cycle and takes one of the three density values p;, p2 or ps.

Using the assumption that the fundamental diagram is triangular and that the arrival
density is constant, the average density increases linearly from p, to the value it takes
at the intersection, where = = 0. At the intersection, the density is pupax during the
red time R. The density is p. when the queue dissipates, i.e. during the clearing time
T = lmax(i + %) Replacing w and . by their expressions, the time during which the

queue dissipates is Rp p“p . The rest of the cycle has a duration C' — R z P and it has

a

density p,. The average density at the intersection is the sum of the arrlval maximum and

20



critical densities, weighted by the fraction of the cycle during which each of the density
is experienced. The average density at the intersection is:

1 a
d(O) = 6 Rpmax + R ppc+<c_<R+Rpp_p>)pa
Red time R — LI ~~ - -
at density pmax Clearing time T Extra green-time C—(R+7)
at density pc at density pq
R
== E,Omax + Pa

Given that the density grows linearly between the end of the queue and the intersection,
the density at location x is given by

d(x) = pa if £ > lax

d(x) = pa+t EpmaxcB2=t if & <oy,

which can be summarized as

R max(lmpax — ,0)
d = Pa = Pmax
(@) = pa+ &P ™
The normalization constant Z, is defined by Z, fo x)dz and represents the

temporal average of the number of vehicles on the link. Its expllclt value is given by

Zy = Lp, + lm;" g Pmax- Lhe normalized density of vehicles as a function of the position

on the link, defined by f*(z) = d(z)/Z, is thus equal to

fi(z) = 2= if > lyax
fu<x> = 'L + Cpmaxlmaxzx if 2 < lpax

lmax u

When vehicles report their locatlon arbitrarily in time, this function represents the
probability of receiving a measurement at location x.

5.1.3 Congested regime

In the congested regime, the average density is constant upstream of the maximum queue
length—equal to p,—and increases linearly until the remaining queue. In the remaining
queue, it is constant and equal to % Prmax+(1— R) pe- The different spatio-temporal domains
of the density regions are illustrated Figure 5.1 (left). The probability distribution of
vehicle locations is:

fe(z) = % if 2 > Loy + I
@) = 24 (Epmax+ (1= &) pe — pa) 5ioatle if o€ [l by + 1] . (5.1)
foo) = Bt (-8)% fz<i

where Z, is the normalizing constant that ensures that the integral of the function on
[0, L] equals 1. We have

lmax R R
Zc:La lr ~~ Pmax 1——= c ™ Pa | -
“(2 " )(Op *( 0)p p)

Remark 5.1 (General case). The undersaturated regime is a special case of the congested
regime, in which the remaining queue length 1. is equal to zero. In the remainder of this
report, we consider the congested regime as the general case for the spatial distribution of
vehicle location.
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Figure 5.1: Left: The estimation of vehicle spatial distribution on a link is derived
from the queue dynamics of the traffic flow model. The space-time plane represents the
space-time domain in which density of vehicles is constant. Domain 1 represents the
arrival density p,, domain 2 represents the critical density p. and domain 3 represents
the maximum density pmax. Right: Using the stationarity assumption, we compute the
average density at location z and normalize to derive the probability distribution of vehicle
locations on the link.

The probability distribution of vehicle location is fully determined by three indepen-
dent parameters. The following parameters are used to non-ambiguously specify the
probability distribution f¢: the remaining queue length [,., the triangular queue length
Imax and the normalized arrival density p, = p./Z.. Using this parameterization, the
probability distribution of vehicle location is illustrated in Figure 5.1 (right) and reads:

fc(x) = ﬁa lf € 2 lmax + lT‘
fo@) = pat+ EHm2AL if g€ [l bnax + 1]
fo(@) = patAD; if 2 <1,
. 1— gL
th Ay = —Fo 2
T 21 L, 52)

The expression of A; above, can be obtained easily by noticing that fOL fé(z) dz must
be equal to 1 as f¢ is a probability distribution function. The expression of A; can also
be obtained by direct computation from Equation (5.1), by replacing Z. by its expression
(Equation (5.2)) and p, by Z.p,. The explicit dependency of f¢ on the parameters [,,
lmax and p, is omitted for the sake of notational simplicity, as long as it does not impair
the understandability and readability of the derivations. When the explicit dependency
is needed, f°(; pa, lmaz, l») denotes the density of probability of receiving a measurement
at location z for the specific value of the parameters.

5.1.4 Learning the parameters of the model

The parameters pg, L and [, of the distribution of vehicle location on a link are learned
by maximizing the likelihood of the set of location observations. The location observations
are position reports communicated by probe vehicles and sampled uniformly in time. The
set of observations is denoted (z,),co and may be collected over large periods of time
(historical data) for specific Time Of the Day (TOD) and Day of the Week (DOW).
Because the logarithm is an increasing function, it is equivalent to maximize the logarithm
of the likelihood (referred to as log-likelihood). For numerical reasons, it is commonly
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preferred to maximize the log-likelihood rather than the likelihood. The optimization
problem is given by
e 0)
A (5.3)
st. 0 S Pa S E,O S lra 0 S lmax7

lr + lmax < L

The constraints come from the physics of the problem. The first constraint illustrates
the fact that the arrival density is inferior to the average density on the link. The other
constraints illustrate that the total queue cannot extend beyond the length of the link
and that the triangular queue and the remaining queue must be non-negative. Note that
the constraints on the queue lengths do not limit the generality of the model. Under spill-
over conditions (queue length extending beyond the upstream intersection), we consider
that the queue length extends up to the upstream intersection, the rest of the queue is
accounted for in the upstream links. Bounds on the parameters can be added based on
physical a priori knowledge about the parameters to limit the feasible set and ensure the
quality of the results when little data is available.

Remark 5.2. The objective function is not concave in the optimization variables. How-
ever, the search space is limited (three bounded parameters) and we perform a grid search
followed by a local gradient ascent for the B best solutions of the grid-search. The defi-
nition of the grid and the value of B are left to the user. We found that a very fine grid
was not necessary to provide good results, leading to efficient computation times.

5.2 Scaling of partial link travel times

Since probe vehicles can send their positions at any location on the network, the path
between successive location reports can start and end at any location and the first and
last links of the corresponding path are not fully traversed by the vehicle. They are called
partial links of the path. Besides the probability distribution of travel times on each link of
the network, the model has to define the pdf of travel times on partial links, i.e the pdf of
travel times on link ¢ between offsets x; and x5 (where x,,, m = 1, 2 represents the distance
to the downstream intersection). Let Y define the random variable representing the
travel time on partial link ¢ between offsets x1 and x5 (27 > z3). Following this notation,
le;i,o represents the travel time on link i (between offsets L', length of link 7, and 0).
Numerous traffic estimation algorithms do not rely on an arterial flow model. When
using these models to estimate arterial traffic with sparsely sampled probe vehicles, the
estimation algorithm requires a specific module to take into account partial link travel
times. There are two main solutions to integrate partial link travel times in such models:

e Refine the spatial discretization, by dividing each link into cells. This approach will
increase the adequation of the location reports with the beginning and end of the
cells of the network. However, it increases significantly the number of parameters
which need to be estimated leading to risks of overfitting and unreliable estimation
and prediction capabilities.

e Define a scaling function. The scaling function estimates the duration of travel
on an entire link based on the travel time on a partial link. More specifically, a
scaling function may be defined as a function o such that the travel time Y _ on

)
a portion of link 7, delimited by x; and x, is related to the travel time Y7, , on link
i by Y}, ., = o'(x1,22)Y}; . This approach includes the possibility to refine the

spatial discretization but provides more flexibility. The choice of the function o
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determines the complexity of the model and can be chosen appropriately depending
on the amount and the quality of available data.

This section focuses on the derivation of such a function o adapted to the amount of
probe vehicle data available today. The function o is defined on the domain D,: C [0, L]*.
The domain D, is defined as follows:

Dai = {(l‘l,.l’Q) € [O, LZ]2 L > 33'2}.

5.2.1 Modeling the scaling function

For the consistency of the model, the function o’ must satisfy the following conditions:

e The travel time on a partial link is a fraction of the link travel time: V(z1,z5) €
D,:, a(z1,79) € [0,1]. In particular, if the partial link spans the entire link, the
partial travel time has the same distribution as the link travel time i.e. o/(L?,0) = 1,

e If a partial link is included in another partial link, its travel time should be smaller:
V1, the function x5 — of(xq, 25) is a decreasing function of x9 and Vz,, the function
r1 — o'(z1,72) is an increasing function of z;.

e The probability for a vehicle to experience delay increases as the location gets closer
to the downstream intersection. For the same distance traveled, travel times are
on average longer close to the downstream intersection because of the presence of
traffic signals. To model this intuitive fact, another condition is imposed on «o': Vz,
the function zy — (1, 7) is a convex function of . Similarly, Va,, the function
x1 > af(xy,39) is a concave function of z;.

For example, the function defined by a'(zy,23) = (v — x5)/L" would satisfy these
conditions. However it assumes that the travel time on a partial link is proportional to
the distance traveled on the link, but does not take into account the presence of traffic
signals. The idea developed here is to leverage the hydrodynamic model of traffic flow to
derive a parametric model for the function af. The parameters of the functions o’ can be
learned from the sparse measurements of probe vehicle locations. More specifically, define
o' as the cumulative distribution function (cdf) of a specific random variable. For a probe
vehicle sampled uniformly in time and reporting its position while traveling on link ¢, the
random variable represents the position of the vehicle on the link as it reports its location.
Its probability density function is precisely the probability distribution of vehicle location
derived in Section 5.1 from the hydrodynamic model of traffic flow. Its parameters are
learned from past measurements of probe vehicle locations.Because of the presence of
traffic signals, the distribution is a decreasing function of the distance to the downstream
intersection (increasing function of the distance from the upstream intersection). The
function ' is chosen as follows:

(w1, 22) = 7fc(x) dz,

which satisfies all the above requirements.
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Figure 5.2: The subnetwork of San Francisco, CA used for the validation of the travel
time scaling.

Table 5.1: OQutcome of statistical tests.
True hypothesis

Hy is true Hy is false
Wrong decision,
Type II error, rate 8

Accepts Hy Right decision

Wrong decision,

Rejects Hy Type I error, rate a

Right decision

Decision

5.2.2 Numerical validation of the travel time scaling capabilities
Experimental setup

The numerical validation is based on data collected by the Mobile Millennium system
from a fleet of 500 taxis in San Francisco, CA. The vehicles report their location every
minute. The study focuses on a subnetwork of San Francisco (Figure 5.2) with 815 links
and 527 intersections (more than 12.6 km. of roadway). For the application of interest, a
historical time interval is a tuple consisting of a day of the week, a start time, and an end
time. The locations reported by the vehicles on each link of the network are aggregated for
each historical time interval. The parameters of the density model are learned from these
observations. The numerical results analyze the data on historical intervals representing
Tuesdays from 4 to 8pm with 15 minutes duration each (i.e. (Tuesday, 4pm, 4:15pm),
..., (Tuesday, 7:45pm, 8pm)).

Description of the statistical test of the model

For each link of the network and each historical interval, the Kolmogorov-Smirnov (K-
S) statistics tests whether the locations of the probe vehicles are distributed according
to the density model [114] or not. The K-S statistic is computed as the maximum dif-
ference between the empirical and the hypothetical cdf (density model). In contrast to
other tests (e.g. T-test that tests uniquely the mean, or chi-squared test that assumes
that the data is normally distributed), the K-S test is a standard non-parametric test to
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Table 5.2: Percentage of positive K-S tests for different values of @ and the two hypothesis
(density model or uniform distribution).

Distribution of «Q Mean bovalue
vehicles 0.1 \ 0.05 \ 0.01 1l p-vaid

Density model 0.75 0.80 0.89 0.35
Uniform 0.46 0.55 0.67 0.15

state whether samples are distributed according to a hypothetical distribution. The K-S
statistics is the basis for a test which decides to accept (or to reject) the null hypothesis.
The null hypothesis Hj is stated as follows, “Hy: The measurements of probe vehicles
are distributed according to the density model”. When performing a statistical test, four
situations described in Table 5.1 arise. The performance of a statistical test is defined
by its statistical significance (1 - «, where « is the probability to reject Hy when it is
actually true) and statistical power (1 — 3, where (3 is the probability to accept Hy when
it is actually false). The p-value is used to decide to accept or reject the null hypothesis
H,. Low p-values indicate that the data does not follow the proposed distribution. The
hypothesis Hj is rejected at the « significance level if the p-value is smaller than o and
accept it otherwise. The parameter « is commonly set to values ranging from 0.001 to
0.1, and often conventionally set to a = 0.05. Smaller levels of « increase confidence in
the determination of significance, but increase the risk of Type II errors, and so have less
statistical power. The K-S test has a probability of Type II error § that tends to zero
as the number of samples tends to infinity. Since the number of samples is finite, the
power of the statistical test is maintained by (i) not testing links that do not have enough
measurements, (ii) experimenting with different levels of significance, and (iii) reporting
the p-value for each decision.

The goal of the numerical analysis is to validate the capability of the density model
to properly scale travel time on portions of arterial links. In particular, it is interesting
to compare the results of the density model to a simpler scaling function consisting in
scaling travel times proportionally to the distance traveled. Such a scaling function arises
from the assumption that vehicles are uniformly distributed on the length of the link.
The expectation is that the scaling with the function o will perform better than a scaling
proportional to the distance traveled because the density model takes into account the
fact that vehicles are more likely to experience delay close to the downstream intersec-
tion. To illustrate this reasoning, the outcome of the K-S test for the density model is
compared to the outcome of a K-S test for which the null hypothesis would consider that
vehicles are uniformly distributed on the link. The comparison of the test outcomes on
both hypotheses is presented in Table 5.2.

The results indicate that for a majority of arterial links, the average location of vehicles
is a random variable that follows the density model. The spatial distribution of vehicle
location is better represented by the density model than by a uniform distribution. A
graphical representation of the data for the different links of the network provides valuable
qualitative information:

e Cumulative locations reported by the probe vehicles. For each link of the network,
the cumulative distribution of measurements is displayed as follows

1. sort the locations reported by the probe vehicles in ascending order,

2. plot the points (x;,i/N) for i = 1... N, where N is the number of locations
collected for the link and historical interval and x; is the i*® location on the
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Figure 5.3: Empirical and proposal cdf of the average vehicle locations. (Top): Link with
p-value equal to 0.09. The model predicts a sharp increase in the density of measurements
towards the downstream extremity of the link but no measurements are received in the
last 15 meters of the link and the hypothesis Hj is rejected for « = 0.1. Note that the
digital map does not model the width of the road or the intersection, which might be the
reason for the absence of measurements on the last 15 meters. (Bottom): Link with
p-value equal to 0.33. The model learns the characteristics of the distribution of vehicle
locations. In particular, it estimates the historical queue length (around 30 meters) which
provides information on the average congestion of the link.

link (in meters from the upstream intersection).
e Empirical (Kaplan-Meier) cumulative distribution function [99] of the measurements

e Proposed distribution: the distribution of vehicle locations derived from the hydro-
dynamic model of arterial traffic and calibrated with the training data.

Figure 5.3 illustrates the cdfs obtained for two links of the network during the first
historical interval. The first link shows a good qualitative fit. However, the p-value is
only 0.091. The relatively poor result may be due to the map discretization: it does not
take into account the width of intersections. For this reason, the length of the link stored
in the database represents the length of the link between the middle of the upstream and
downstream intersections, which is larger than the length of the link up to the signal. The
second link has an average p-value and shows a good fit to the model. In both cases, the
data follows the sharp increase in the density of measurements close to the downstream
intersection, as predicted by the model because of the presence of a queue caused by the
traffic signal. The model also provides an estimate of the historical queue length on each
link of the network which can be used for planning and network congestion analysis.

Additional application for traffic signal detection

The thorough investigation of the results on the links with very poor p-values helps
to understand the limitations of the model and provides valuable insight for additional
applications. Figure 5.4 presents the result for a link with p-value equal to 6.8 x 10~%. The
model predicts sharp increases in the density of measurements to occur upstream of traffic
signals. This work relies on a NAVTEQ digital map database. The database contains
attributes of the transportation network, such as road characteristics, presence of traffic
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Figure 5.4: Detecting signal locations using the average spatial distribution of vehicles.
The figure illustrates an example of very low p-value for a link of the network. Analyzing
the results with Google Street View confirmed the intuiting that a signal was missing in
the database, explaining the poor fit of the model.

lights, and so on. On this link, the cumulative distribution of vehicle location exhibits
two important increases, whereas only one signal was present in the map database.

The analysis of the location of the link in Google Street View confirms that there was
a signal which was not in the database. With the corrected information and updated
proposal distribution, the p-value is equal to 0.29. This realization motivates the use of
probe vehicle data and of the model of probability distributions of vehicle location to
automatically detect the presence of traffic signals. Such a capability is very valuable for
digital map companies as it has the potential to speed up and reduce the costs of map
creation and updates while improving their reliability and accuracy. Another potential
interest is for the development of autonomous driving or assisted driving services. Other
sources of poor fitting of the model are related to specific behaviors of the taxi, such
as waiting in front of major hotels, which can be filtered, when considering successive
locations of the vehicle.

5.3 Creating large scale accurate Geographic Informa-
tion Systems

Geographic Information Systems (GIS) are designed to capture, store and present all
types of geographically referenced data. In the context of Intelligent Transportation Sys-
tems, accurate and reliable GIS (such as NAVTEQ or OpenStreetMap) are needed for
a large number of applications. For example, an accurate description of the geometry
and the features of the road network is necessary to develop real-time traffic informa-
tion systems [25, 95|, routing [139] and driver assistance technologies. The collection and
processing of data for GIS is an expensive and time consuming process, making auto-
mated techniques desirable. Besides the cost and time inefficiencies, the developments
and updates of digital maps are traditionally based on surveying methods and digitiz-
ing of satellite images which lead to inaccuracies and systematic errors. The emergence
of new technologies opens new possibilities to increase the efficiency in developing and
maintaining reliable GIS, in particular in developing countries where the infrastructure is
evolving rapidly.

The use of GIS for Intelligent Transportation Systems applications has attracted a lot
of interest in the computer vision and robotics community to improve driver assistance
technologies. For example, the use of real-time, video processing, detection algorithms
combined with accurate GIS significantly improves the capabilities to infer speed limita-
tions [130]. Similarly, object recognition algorithms based on image processing allow for
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the real-time detection of traffic signals by intelligent vehicles [56]. These algorithms can
update existing map databases as intelligent vehicles travel the network. The distributed
nature of the problem makes crowdsourcing approaches appealing as they leverage infor-
mation collected by a large number of vehicles traveling on the road network.

GPS traces have attracted the interest of the machine learning community to lower
the costs of producing and updating digital maps while improving their accuracy. In
particular, GPS traces have been used to learn the map network geometry using clus-
tering and graph inference algorithms [36]. In [136], data-mining approaches are used to
process GPS traces and refine existing digital maps to enable safety applications, such
as lane-keeping, and convenience applications, such as lane-changing advice. However,
GPS traces requiring high frequency sampling remain scarcely available, mainly because
of privacy concerns, communication costs and limitation of the battery life of portable
GPS devices. Sparsely sampled probe data is the main source of geo-location data with
the prospect of global coverage in the near future. For these reasons, the present section
focuses on the use of sparsely sampled data for digital map learning.

The potential of sparsely sampled probe vehicle data for transportation engineering ap-
plications has been demonstrated through the successful implementations of reliable real-
time traffic information systems on both the highway and the arterial networks [25, 95].
The following sections investigates the use of sparsely sampled probe data collected by
the Mobile Millennium system [25] to improve and update existing digital map databases.
More specifically, the chapter studies how to use this data, in addition to the road net-
work geometry, to automatically detect the presence of traffic signals (traffic lights or stop
signs) at each intersection.

The algorithm relies on the derivations of Section 5.1 to develop a model which charac-
terizes the probability distribution of the location of a vehicle on an arterial road segment.
It is motivated by the numerical results of Section 5.2 to learn the parameters of the prob-
ability distribution of the location of vehicles and present an unsupervised classification
algorithm which identifies whether there is a signal at the upstream end of each road
segment in the network. In this chapter, a road segment (link) is defined as the stretch
of road between consecutive intersections.

The following section (Section 5.4) describes the unsupervised classification algorithm
based on model selection information criterion. Section 5.5 analyzes the signal detection
potentials of the algorithm using data collected by the Mobile Millennium system in an
arterial network of San Francisco, CA of over 1,000 links.

5.4 Automatic signal detection

The present section presents two algorithms based on the statistical model derived in
Section 5.1 to automatically identify the presence (resp. absence) of traffic signals at
intersections with model selection criteria. The distribution of vehicle locations is fully
determined by three independent parameters: the remaining queue length /.., the trian-
gular queue length [, and the normalized arrival density p, = p,/Z. The dependency
on these parameters is underlined by denoting ¢ (; fa, lmaz, [») the probability density of
measurement at location x for the specific value of the parameters. These parameters are
learned for each link of the network independently.

99



5.4.1 Detection based on a single link

The algorithm independently classifies each link of the network as having a traffic signal
(stop sign or traffic light) at the downstream intersection or not. Under the hypothesis that
there is a traffic signal, the parameters of the probability distribution are the optimizers
of Equation (5.3), computed from location measurements z, sent by sparsely sampled
probe vehicles. For link ¢ with length L; and learned parameters p.,[% I the learned
distribution of measurements is denoted
szs'lg(x) = fc(x; ﬁfzv inaam l;)

Under the hypothesis that there is no traffic signal, the distribution of measurements

@, ™8 is expected to be uniform on the link:

no sig -1 ,
SOZ (:C> Ll [O’Lz]<x>7

where 1 1] is the indicator function of interval [0, L;].

5.4.2 Detection based on two consecutive links

Another possible approach to the signal detection is the following. Consider two consec-
utive links ¢ and j (with link ¢ upstream of link j), connected by an intersection. The
decision algorithm detects the presence (or absence) of a signal at the downstream inter-
section of link 7. According to the density modeling of Section 5.1, the decision is based
on the results of two models trained on the location measurements: the first one assumes
that there is a signal at the end of link ¢, the second one assumes that there is no signal
at the end of link .

Under the assumption that there is a signal at the downstream intersection of link ¢,
the parameters of the distribution of vehicle location on link ¢ and on link j are learned
independently, using the measurements received on each link respectively. These mod-
els are combined to represent the distribution of measurements on the stretch of road
representing link ¢ and j. For this purpose, x denotes the distance from the upstream
intersection of link ¢ on the stretch of road (i,7). The distribution of measurements is
denoted @Dfl]g (x) and is given by

UPE(x) = o fO(@s Bl Lo 1) 10,2 (2)
+ (1 - O'/Z’J)fc(x - Li; ﬁzu lgnazv lq]")l[LiyLH-Lj](x)

The maximization of the likelihood with respect to a®’ leads to a closed form formula:
the number of measurements received on link ¢ over the number of measurements received
on links ¢ and 7 combined.

In the United States, links which do not have a signal at the downstream intersection
have the priority at the downstream intersection. If traffic conditions are not congested,
this limits the possibilities for delays at the downstream intersection to left turn move-
ments. Under the assumption that there is no signal at the downstream intersection of
link ¢, links 7 and j are aggregated as a single link of length L; + L;. The parameters
of the distribution of vehicle on this aggregated link are learned using the measurements
received on both link 7 and link j. The parameters are denoted p7, [7 —and [% and the

’ a ’ "max
no sig

corresponding distribution of vehicle location is denoted ; ; () and given by

UR @) = (0 A L 1)
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5.4.3 Model selection

Whether the modeling considers the distribution of vehicles on a single link ¢ or on two
consecutive links ¢ and 7, the signal detection problem amounts to a model selection prob-
lem. For the single link approach, the algorithm decides whether 5 or I ¥ represents
the distribution of measurements most accurately. The model S8 is fit using the probe
vehicle data received on link i. The model ;™ 8 does not require ﬁttmg as it corresponds
to a uniform distribution of the measurements over the length of the link. Model selection
criterion are used to select the model which explains the best the data. The model with
the higher prediction power, i.e. the model that minimizes the selection criterion is chosen
for the signal detection decision.

The different models, representing the presence or the absence of a traffic sign, have
different complexities. Here, model complexity refers to the number of parameters re-
quired to specify the model. Various criteria have been developed to trade-off between
model fit and model complexity. Increasing the model complexity (i.e, the number of
model parameters) leads to a better fit, and thus a higher likelihood but may overfit the
available data. Information criteria penalize the score of the models depending on their
complexity, i.e. models with a large number of parameters will be penalized more than
models with a small number of parameters. Information criteria are used to compare the
fit of models with different number of parameters, as is the case here.

In the present case, the uniform distribution is a special case of the parametric distri-
bution function f¢(z; g, %, %) for which ¢ = 1/L;. The other parameters, I’ and I’
can be chosen arbitrarily in their admissible range. The likelihood of the training data
under the distribution ¢} will therefore necessarily be higher than under the distribu-
tion ¢;° S8 For the two links modeling approach, both models require fitting based on
the available probe measurements. As for the one link approach, the model wSIg has a
higher number of parameters. The following results shows the additional complex1ty of

the model wSIg

Proposition 5.1 (Comparison of fitting potentials). If o’/ is considered as a free param-
eter, the followmg result holds. For all set of parameter (p3 159 1% ) there erists a set

T 7 'max

Of parameters ( va 7l;’l§nax7p]7 ro max) such that V. € [O L +L; ] ¢SZQ( ) = ¢Z; Sig(x)'
This property shows that the model representing the assumption that there 1s a signal at
the downstream end of link i can also represent the assumption that there is no signal at

the downstream end of link 1.

Proof. For a given set of parameters for the model without signal, the following choice of
parameters provides the same distribution of vehicles on the aggregated links ¢ and j:

i1y, = (1= at)ph = g
Pa = 1/LZ lf» == l;’jj l?nax - l:;ljax

]

Note that the choice of a®/ is driven by the number of measurements received on links
¢ and 7 rather than on the respective distribution of the measurements on the link. For
this reason, this parameter may not be considered as a free parameter which is set during
the fitting.

Property 5.1 indicates that the model w should provide a higher likelihood score on

training data than the model ;' sig Comparmg the likelihood of the models is thus not
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informative as the model with a signal will always have a better score, whether there is
actually a signal or not, underlining the importance to define appropriate model selection
criteria.

The selection capabilities of three model selection criteria are compared in the ex-
periments: the Aikaine Information Criterion (AIC), its correction for finite sample sizes
(AICc) and the Bayesian Information Criterion. The model selection capabilities of the
AIC and the AICc have theoretical motivations from Information theory [15, 37|, whereas
the derivations of the BIC arise from Bayesian statistics [143]. The different criteria have
an analytical expression given by:

AIC = —2In(A) + 2p,
AICc = —2In(A) + 2pn+p,1a
BIC = —2In(A)+pln(n),

where A is the likelihood of the estimated model, p is the number of model parameters
and n is the data size. All the criteria consist of the sum of the opposite of the log-
likelihood and a penalization term that depends on the complexity of the model (number
of parameters p) and, for some of them, on the size n of the dataset used to train the
model. The dependency on n in the information criteria takes into account the finite
sample sizes.

For the one link approach, the parameters of the model with signal are p:, ! = and
I* and thus p = 3. The model without signal does not have free parameters: the two
parameters of the uniform distribution are 0 and the length of the link and are not set
based on the data. As for the two link approach, the parameters of the model with
signal are pi, I 1% pl 13 17 and o, and thus p = 7. The model without signal is

max’ "r’ a’ "max’ ’r

parameterized by g4/ % and %7 and thus p = 3

max

5.5 Validation of the automatic signal detection algo-
rithm

5.5.1 Experimental setup

The signal detection algorithm is tested on data collected by the Mobile Millennium
system in the Bay Area of San Francisco, CA. The system collects several millions of
GPS data points per day from probe vehicles reporting their location at a given sampling
frequency (typically about every minute). The data used for the specific study presented
below comes from a sub-fleet of around 500 probe vehicles within the Mobile Millennium
system [25] collected on Tuesdays from 6 am to 10 am. In practice, numerical experiments
have shown that the assumption of uniform arrival rates and periodicity (Section 5.1)
does not limit the decision capabilities of the algorithm. For signal detection, the most
important feature of the model is the queue length which specifically characterizes the
presence of a traffic signal. The numerical analysis presented in the present article was
also performed on data collected during 15 consecutive days (all times of day from January
Ist, 2011 to January 15th, 2011) with very similar conclusions.

5.5.2 Automatic signal detection

Before being used for signal detection, the GPS measurements are filtered and mapped on
the road network using a map-matching and path inference algorithm [96] which combines
models of GPS measurements and drivers’ behavior into a conditional random field. The
road network is given by the NAVTEQ Inc. digital map which includes the geometry of
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each of the links along with numerous attributes such as the presence of a traffic light or
a stop sign. The present model cannot distinguish between traffic lights and stop signs
who. Both types of signalization induce the formation of queues and the existence of delay
experienced by the probe vehicles at the downstream end of the link. For this reason,
each link is classified according to whether or not the algorithm determines that it has a
signal (traffic light or stop sign) at the downstream intersection. The sub-network of San
Francisco, CA of interest is composed of 1,172 links which have either signal or no traffic
signal at the downstream intersection. The percentage of signalized links, as indicated in
the NAVTEQ database, is 54%. For each link of the network, the probe data collected
by the Mobile Millennium system is integrated in the classification algorithm to identify
the presence of a traffic signal. The decision of the algorithm is then compared with the
information available in the NAVTEQ database (Quarter 3, 2008).

Section 5.4 investigates two different approaches to identify the presence of a signal
using data collected on the link or on the link and the downstream consecutive link.
The section also suggestes different model selection criteria to classify each link as being
signalized or not. The results of all the proposed approaches are summarized in Table 5.3.

The confusion matrices obtained seem to be at first glance a little deceptive with only
around 70% of matches with the digital map database for all the criterions (AIC, AICc,
BIC) and all the methods (one link, two links). Furthermore, the results show an unex-
pectedly high false-positive rate (e.g. 30.7% for BIC using two links), i.e. a significantly
large number of links for which the algorithm detects the presence of a signal while the
database does not indicate the presence of a signal. The differences between the one link
models and the two links models are quite small, and the same apply for AIC and AICc
which give very similar results. We expected the results of the AIC and the AICc to be
similar as the difference between the criteria tends to zero as the sample size increases and
most links received several hundreds of measurements. The main differences are observed
between the AIC type criterion (AIC and AICc) and the BIC criterion. AIC approaches
give higher false positive rates comparing to BIC which is more balanced between the two
kinds of errors. This observation is natural since, BIC penalizes more the complex models
than AIC does.

However, the performance analysis reported in Table 5.3 is based on a GIS which is
also prone to errors, even though the quality of the NAVTE(Q maps is internationally
acknowledged. The existence of inaccuracies in the digital map database was first noticed
in Section 5.2 and motivated the derivation of an algorithm for automatic signal detection.
The analysis of the empirical distribution of the measurements on the links that were
identified as signalized by the algorithm whereas they were recorded as not signalized in
the GIS database (i.e. the false positive) is very informative. It underlined the idea that
the map database might have erroneous information. The confusion matrices presented
in Table 5.3 do not directly indicate the performance of the algorithm: they represent
a quantitative comparison between the GIS labels (which contain some label noise) and
the labels provided by the algorithm for each of the proposed approach (model with one
or two links and different model selection criteria). To improve the conclusion regarding
the importance of the approach, it was important to check the accuracy of the GIS used
for validation. The analysis of the database accuracy consisted in a manual labeling of a
subset of the map database using Google Street View. The attention was focused on the
false positive of the BIC-two links decision algorithm. This choice was made to limit the
number of manual checks. The false positives were considered to be the most likely to
arise from errors in the database. The results of the human labeling are reported in the
next section and underline the importance of the automatic labeling approach.
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Table 5.3: Confusion matrix between prediction and GIS information for the two ap-
proaches (one link or two links) and the different model selection criteria.

AIC - one link Prediction
Signal No signal
Actua No sgu ot o7
AICc - one link
Actual Nilfgal ggg ;(2)1
BIC - one link
Actua No s 119 5
AIC - two links
Actual Niifgal g?é 28622
ACCec - two links
Actual Nilfir;llal %S 28659

BIC - two links
Signal 429 204
No signal 165 373

Actual

5.5.3 GIS manual labeling and update

Besides producing the confusion matrices, the code developed for the experiment produces
a plot of the empirical distribution of the measurements and the models corresponding
to the two possible decisions regarding the presence of a signal at the downstream end
of the link or not. This qualitative analysis of the results seemed to indicate that, for
a large number of the false-positive decisions, the model which was estimated under the
assumption that the link was signalized fit the empirical data very accurately, whereas the
model corresponding to the assumption of a non-signalized intersection did not capture
the shape of the distribution. Figures 5.5 and 5.6 illustrate the fitting results on such a
link: the algorithm classified the link as signalized whereas the database did not indicate
the presence of a signal. The figures represent the empirical distribution of measurements
along with the fitted distribution of measurements under the hypothesis that the link is
signalized (red dashed line) or not signalized (green dotted line). Figure 5.5 represents the
results obtained with the one-link approach and Figure 5.6 corresponds to the two-link
approach. The intuition that a signal was actually present was validated by obtaining the
geometry of the link (latitude and longitude points which characterize the location of the
link) and checking for the presence of a traffic signal using Google Street View.

The manual verification lead to the realization that some of the signalized intersections
were not present in the map database. In order to analyze the importance of the missing
labeling, the links which were classified (using BIC on two links) as being signalized when
the database indicated no signal (false-positives) were manually checked using Google
Street View. The analysis conducted has important implications for the results of the
algorithm and underlines the importance of automatic signal detection. Among the 165
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Figure 5.5: Qualitative comparison of the one-link models. The model with traffic signal
fits the empirical data accurately, whereas the assumption of uniform distribution does
not fit the observations. All information criteria accurately classify the link as having a
traffic signal at the downstream intersection.
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Figure 5.6: Qualitative comparison of the two-links models. The position of the intersec-
tion of the two links is depicted by the vertical black line. The two models independently
learn the parameter under the assumption that there is a signal at the end of the first
link or that there is no signal at the end of that link. The second fitting cannot capture
the sharp increase in the empirical cdf and results in a poor fitting of the data. The in-
formation criteria accurately classify the link as having a traffic signal at the downstream
intersection of the first link.
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false-positives, 40% actually had traffic signals, 17% had stop signs. Therefore more than
half of the false positives are in reality true positives. Among the 71 remaining links, 17%
had specific features that explain the false-detection. Such features include the presence
of a pedestrian crossing at the downstream end of the link even though there is no actual
signal. Other factors include tunnels in which GPS reception and cellular communications
are nonexistent or inaccurate or complicated intersections for which the downstream end of
the link does not coincide with the the location of the signalization, even though queuing
occurs on a regular basis on these links. Some of these cases (pedestrian crossing and
complicated intersection) are illustrated in Figure 5.7.

5.6 Conclusion

From the hydrodynamic theory, the present chapter proposes a statistical model to rep-
resent the probability distribution of the locations reported by the probe vehicles. The
distribution characterizes the mathematical model of traffic flow dynamics and illustrates
the fact that vehicles spend, on average, more time close to downstream signalized inter-
sections because it is the location where they are the most likely to experience delay.

The mathematical characterization of this empirical fact is important to properly scale
the travel time of probe vehicles when they only travel a fraction of the link (partial link).
A scaling which takes into account the spatial inhomogeneity of travel times significantly
improve estimation capabilities based on machine learning algorithms [89].

The automatic signal detection algorithm leverages the physics of traffic to derive a
statistical model representing the distribution of vehicles on a link, depending on the pres-
ence (resp. the absence) of signalization. The model parameters can be estimated using
sparsely sampled probe vehicle data which makes it very promising given the emergence
of this data at a large scale. The method is a first step towards automated GIS updates
regarding signal location. The algorithm produces interesting result (more than half of
the automatic signal detections that were not recorded in the GIS database correspond
to actual stop signs or traffic lights). Furthermore, experiments with one week coverage
data, lead to similar results as experiments based on data collected for a longer period of
time, for a specific Day Of the Week and Time Of the Day. This realization motivates a
periodic use of the algorithm to update and correct a GIS, in particular in areas where
the infrastructure evolves rapidly such as developing countries.

This first step towards automated GIS updates and cleaning has the prospect to be
improved and generalized by taking into account additional features. For example, the
graph structure of the network structure can be leveraged to improve the decision results
e.g. at an intersection with a light, all links are signalized and therefore a global decision
by intersection (and not by link) should improve the robustness of the decision. Another
possible extension of the methodology regards the discrimination of stop signs from traffic
lights. Other information derived from sparsely sampled probe vehicle data such as travel
times should be a mean to perform this discrimination by looking at the distribution of
delay (and maybe average speed as well). However, no specific algorithm with promising
results has been derived so far.
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Figure 5.7: Illustration of the features of the downstream intersection of some links de-
tected as being signalized by the algorithm (false-positives).
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Chapter 6

Probability distribution of delays and
travel times

The location of probe vehicle measurements provide important information regarding the
relative density of measurements on a link which has valuable application for scaling
travel times and automatic digital maps creation and update. When the vehicle can be
re-identified between two measurements, the data can be used to infer travel times on the
network.

The literature review presented in Chapter 2 motivates the development of statistical
models for arterial traffic. In particular, the use of horizontal queuing theory to derive
probability distribution of delays shows promising results [174]. Previous work has fo-
cused on the derivations of link travel time distributions. Since probe vehicles can send
their positions at any location on the network, the path can start and end at any location
and the first and last links of the corresponding path are not fully traversed by the vehicle
(partial links). The derivations of link travel time distributions is not adapted to leverage
the travel time information contained in the partial links of the path. One possibility is
to use the travel time scaling algorithm presented in Section 5.2. However, the hydro-
dynamic based arterial traffic model (Chapter 4) develops the necessary framework to
derive a model which specifically characterizes the probability distribution of delays and
travel times between arbitrary locations. This approach has the prospect to yield more
accurate results as it models the changes in the shape of the distribution depending on
the measurement locations rather than only providing a scaling factor of the distribution.

From the hydrodynamic theory presented in Chapter 4, the chapter derives a statistical
model for the probability distribution of travel times on an arterial network. The travel
time between two locations is considered as the sum of two independent variables: the
delay (stopping time) and the free flow travel time. For the delay, the origin of variability is
the entrance time in the link (compared to the beginning of the cycle), which is considered
as a random variable. For the free flow travel time, the randomness represents differences
in driving behavior. Section 6.1 derives the probability distribution of delays between
arbitrary locations. Section 6.2 derives the probability distribution of travel times and
prove the quasi concavity of link travel time distributions. This feature is key to enable
machine learning algorithms used in large scale traffic estimation algorithms [88|.

68



6.1 Probability distribution of delay among the vehicles
entering the link in a cycle

The travel time experienced by vehicles traveling on arterial networks is conditioned on
two factors. First, the traffic conditions, given by the parameters of the network, dictate
the state of traffic experienced by all the vehicles entering the link. Second, the time
(after the beginning of a cycle) at which each vehicle arrives at the link determines how
much delay will be experienced in the queue due to the presence of a traffic signal and the
presence of other vehicles. Under similar traffic conditions, drivers experience different
travel times depending on their arrival time. Using the assumption that the arrival density
(and thus the arrival rate) is constant, arrival times are uniformly distributed on the du-
ration of the light cycle. This allows for the derivation of the pdf of delay, which depends
on the characteristics of the traffic light and the traffic conditions as defined in Section 4.4.

In this work, the data available for traffic estimation comes from probe vehicles which
report their location periodically in time with a low frequency (on average once per
minute). The vehicles send tuples of the form (xq,t;,2z2,ty) where x; is the location
of the vehicle at ¢; and x4 is the position of the vehicle at t5. This is representative of the
most widely available data source with the prospect of global coverage in the near future
(see Section 1.2 for a review of the different data types and their specificities). It includes
taxi fleets or delivery fleets (FedEx, UPS and so on) which typically send data every
minute in urban networks for fleet management purposes. Each tuple sent by the vehicles
is considered independently. The assimilation of the measurements into the model has to
be done independently for each data points if the sampling strategy does not track vehicle
for more than two successive location reports.

6.1.1 Total delay and measured delay between locations z; and z»

Let us consider a vehicle traveling from location z; to location x5 and sending its location
r1 at time t; and its location x, at time t,.

Definition 6.1 (Measured delay from z; to z3). The measured delay from x; to o,
experienced in the time interval [t1, ts], in short “measured delay from zy to x5” is defined
as the difference between the travel time of the vehicle (to — t1) and the travel time that
the vehicle would experience between x1 and xo without the presence of other vehicles nor
signals.

Definition 6.2 (Free flow travel time between z; and z). For a vehicle with free flow
pace py, we call free flow travel time between x1 and 2, the quantity Ys.,, 1, = Ps(r1 —2),
representing the travel time between x1 and x4 if the vehicle is not slowed down or stopped
on 1ts trajectory.

The delay experienced between z; and x5 is the difference between the travel time
Yz, .2, Of the vehicle between x; and xo—mnot necessarily at free flow speed—and the free
flow travel time yy. 4, »,. In this model, vehicles are either stopped or driving at the free
flow speed. The measured delay from x; to xs, experienced in the time interval [tq, 5] is
the cumulative stopping time between t; and t,.

Definition 6.3 (Total delay from x; to z3). The total delay from x; to xo is defined as
the cumulative stopping time of the vehicle on its trajectory from x1 (from the first time
it joined the queue, if the vehicle was in the queue at x1) to xo (until the time it left the
queue, if it was in the queue at x5).
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In particular, if the vehicle stops at x; or at x5 the total delay from x; to x5 covers the
full delay experienced during the stop, without taking into account the sampling scheme.
Note that for vehicles sampled at x; and x5 that do not stop at x; nor at x5 the total delay
is equal to the measured delay. For vehicles stopping in x; or in x5, the measured delay
is less than or equal to the total delay experienced by the vehicle (Figure 6.1 (right)).

A simple case illustrates the difference between measured and total delay and improves
the understanding of the definitions. Let a vehicle be sampled every 30 seconds. Assume
that the vehicle stops at the traffic signal (z = 0) and that the duration of the red time
is 40 seconds. The vehicle sends its locations x; at ¢; and x4 at £, = t; + 30. We do
not receive additional information on the trajectory prior to t; or past t5. The measured
delay is at most 30 seconds (sampling rate); the total delay is 40 seconds. As a general
remark, a vehicle reporting its delay during a stop reports a delay that is less than or
equal to the total delay experienced on the trajectory, it represents the delay experienced
between the two sampling times.

The following section derives the pdf of the measured and the total delay between
any two locations x; and x5 from the modeling assumptions defined in Section 4.1 and
Definitions 6.1 and 6.3 . Given two sampling locations x; and w9, the probability distri-
bution of the total (resp. measured) delay 0, ., is denoted h'(dy, z,) (resp. h™(dz 2,))-
The stationarity and constant arrival assumptions lead to analytical expressions for the
speed of formation and dissolution of the queue, respectively denoted v, and w (4.2).
Under the stationarity assumption, the traffic variables are periodic with period C'. To
each arrival time corresponds a specific delay experienced by the vehicles on its trajectory
from x; to xq, traveled during the time interval [t1, ts], as illustrated in Figure 4.1. The
uniform arrival assumptions allows analytical derivations of the probability distribution
of (measured or total) delays between any location x; and wxs.

6.1.2 Probability distribution of the total and measured delay
between z; and 7, in the undersaturated regime

Pdf of the total delay between x; and z-

In the undersaturated regime, let 7y .. denote the fraction of the vehicles entering the
link during a cycle that experience a delay between x; and x,. The remainder of the
vehicles entering the link in a cycle travels from z; to x5 without experiencing any delay.
The proportion 7y, . of vehicles delayed between z; and zy in a cycle, is computed
as the ratio of vehicles joining the queue between x; and x5 over the total number of
vehicles entering the link in one cycle (Figure 6.1, left). The number of vehicles joining
the queue between x; and w5 is the number of vehicles stopped between x; and zs:
(min(lmax, £1) — Min(Imax, Z2)) Pmax- The number of vehicles entering the link is v;Cp,,.
The proportion of vehicles delayed between x; and x5 is thus:

pmax

viCpa

7741;1@2 = (min(‘rla lmax) - min(ﬂfg, lmax))

The total stopping time experienced when stopping at x is denoted by 6“(z) for the
undersaturated regime. Because the arrival of vehicles is constant, the delay §“(x) in-
creases linearly with z. At the intersection (z = 0), the delay is maximal and equals the
duration of the red light R. At the end of the queue (2 = l;,ax) and upstream of the queue
( > lmax), the delay is null. Thus the expression of §%(x):

min(z, lyax) )

lmax

5(z) = R (1 .
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Figure 6.1: (Left) The proportion of delayed vehicles 7y, ,, is the ratio between the num-
ber of vehicles joining the queue between x; and x5 over the total number of vehicles
entering the link in one cycle. The trajectories highlighted in purple represent the tra-
jectories of vehicles delayed between z; and x5. (Right) The vehicles reporting their
location during a stop at x experience a delay § € [0,0%(z2)] in the time interval [t1, t5].
This delay is less than or equal to the total delay (6%(z9)) experienced on the trajectory.

Given that the arrival of vehicles is uniform in time, the distribution of the location
where the vehicles reach the queue between x; and x5 is uniform in space. For vehicles
reaching the queue between z; and x5, the probability to experience a delay between
locations z; and xg is uniform. The uniform distribution has support [6%(z1), " (x2)],
corresponding to the minimum and maximum delay between x; and x».

The total delay experienced between x; and x5 is a random variable with a mixture
distribution with two components. The first component represents the vehicles that do
not experience any stopping time between x; and x5 (mass distribution in 0), the sec-
ond component represents the vehicles reaching the queue between x; and x5 (uniform
distribution on [d%(x1), 6%(x2)]). We note 14 the indicator function of set A,

lifze A
1A(m)_{01f:€¢A

Let Dirgq(-) denote the Dirac distribution centered in a, used to represent the mass
probability. The pdf of total delay between x; and x5 (Figure 6.3, left) reads:

U
Nay s

( 1, 2) ( Uml,mg) 1I'{0}< 1 2) + 5“(ZE2) —(5”(1]1) (6% (z1),0%( 2)]( 1 2)

The cumulative distribution function of total delay H'(-) reads:

0 if 0y 0 <0
Ht<5 ) _ (1 - ngl,m) T lf 5117062 S [O’ 5u(l‘1>]
e (1 =13, 00) + M a5 lodsu(ay A Owra € [0(21),0"(22)]
1 i 8,0y > 0%(x2)

Pdf of the measured delay between x; and z-

Because of the sampling scheme, the measured delay differs from the total delay experi-
enced by the vehicles.

In the following, ¢ refers to the upstream or the downstream measurement locations
(i € {1,2}). When sending their location z;, some vehicles are stopped at this location.
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Figure 6.2: Classification of the trajectories depending on the stopping location. Vehicles
travel between the two measurement points x; and z5. They are sampled uniformly in
time.

These vehicles may not report the full delay associated with location z; (Figure 6.1, right).
In particular, a vehicle stopped at x; when sending its location at time ¢; will only report
the delay experienced after ¢;. Similarly, a vehicle stopped at x5 when sending its location
at time to will only report the delay experienced before t,.

e For a measurement received at x;, the probability that it comes from a vehicle
stopped in the queue is d g i), which is the ratio of the time spent by the stopped
vehicle at x; over the duration of the cycle.

e For a vehicle stopped at x5, observed at t5 coming from a previous observation point
zy (at tq), the probability of a stopping time experienced by the vehicle until ¢5 is
uniform between 0 and §%(x9), since the vehicle is sampled arbitrarily during its
stopping phase.

The vehicles traveling from z; to x5 (where x; and xs are measurement points) are
classified depending on the locations of their stop with respect to x; and z5. This classi-
fication of the trajectories is also illustrated in Figure 6.2:

A) Vehicles do not experience any delay between the measurement points x; and xs.

B) Vehicles reach the queue at x with x € (3, x1). These vehicles are not stopped when
they send their location at xy and x,.

C) Vehicles reach the queue at x1, where they report their location at time ¢;. At t;, the
vehicle was already stopped (or was just stopping) and the measurement only accounts
for the delay occurring after ¢;, which is less than or equal to 6“(z1). Because of the
uniform sampling in time, the reported delay has a uniform distribution on [0, 6% (z1)]
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Figure 6.3: (Left) Probability distribution of the total delay between z; and x5 in the
undersaturated regime. (Right) Probability distribution of the measured delay between
x1 and x5 in the undersaturated regime. Vehicles are assumed to be sampled uniformly
in time.

D) Vehicles reach the queue at x5, where they report their location at time t5. At ¢, the
vehicle is still stopped and the measurement only represents the delay occurring up
to tg, which is less than or equal to 0"(z3). Because of the uniform sampling in time,
the reported delay has a uniform distribution on [0, 0" (x2)]

Let s,, denote the event “vehicle stops at location x;”. Denoting by P(A) the proba-
bility of event A, we have P(s,,) = &;i). The notation 5., represents the event “vehicle
does not stop at location x;”. The notation (S, S,,) represents the event “vehicles do not
stop at location x1 nor xo”. We assume that the events 5,, and s,, are independent. The

probability of event (S,,, 5,,) reads:

P(521,525) = P(52,)P(52,) Independence assumption
= (1 —="P(s4))(1 —P(sz,)) Complementary events

The event (8, S.,) corresponds to trajectories of type A (vehicles do not stop between
x1 and x5) and trajectories of type B (vehicles stop strictly between z; and x5 but neither
in z; nor in x9). Among the vehicles stopping at none of the measurement points, a
fraction 7}, ,, is delayed between x; and x5 (trajectories of type B) and a fraction 1—ny
does not experience delay between x; and o (trajectories of type A). Given a delay
measurement between locations x; and x5, the probability that it was sent by a vehicle
with a trajectory of type A is P (84, 82,)(1 =1}, ,,). Similarly, the probability that it was
sent by a vehicle with a trajectory of type B is P(5,,, 52,)1}, 4,-

Given that a measurement is received at location x;, the probability that this mea-
surement is sent by a vehicle that joined the queue at z; is proportional to the delay
experienced at location x;. Given successive measurements at locations z; and x5, the
probability that a vehicle reports its location z; (i € {1,2}) while being stopped at this
location is denoted (,,. From this definition and given that the delay measurement is
received between locations x; and x5, the probability that it was sent by a vehicle with a
trajectory of type C is (,,. The probability that it was sent by a vehicle with a trajectory
of type D is (,,. Note that vehicles cannot stop both at z; and zy (they stop only once
in the queue); thus P(s,,, Sz,) = 0. Given that a vehicle was sampled at x; and x5, the
following equation holds:

Cﬂ?l + <$2 + P(Smw 812) + P(SIN SIQ) =1
~—~— —~— —_————— —_————
Prob. that the veh Prob. that the veh Prob. that the veh Prob. that the veh
stopped at z; only stopped at x2 only stopped neither at 1 nor at z2 stopped both at z1 and at x2
(=0)
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The probability of stopping either at z; or at x5 is 1 — P(S.,, Ss,) (complementary of
stopping neither at z; nor at z3). Among these vehicles, the proportion that stops in x;
is proportional to the delay experienced in z; for i € {1,2}. It follows that

G ) S0 |y p ey P
{ Ca:l +Cx2 =1 —P(§x1,§x2) = C:ch - (1 —P(Smasxz)) 5“‘(1‘1) +5U<I2) (RS {1,2}

The probability distribution of measured delay is a finite mixture distribution, in
which each component is a mass probability or a uniform distribution. The theoretical
probability distribution function is illustrated Figure 6.3, right. It is the sum of the
following terms that also refer to Figure 6.2:

(A) a mass probability in 0 with weight (1 — % . )P (5., 5.,), representing the vehicles
that do not reach the queue between z; and -,

(B) a uniform distribution on (6*(x1),"(x2)) with weight 7}, . P(54,, 3.,), representing
the vehicles that reach the queue strictly between x; and s,

(C) a uniform distribution on [0, 6%(z1)] with weight (,,, representing the vehicles that
stop in z,

(D) a uniform distribution on [0, 6%(x9)] with weight (,,, representing the vehicles that
stop in xo.

The pdf of the measured delay is related to the pdf of the total delay as:

o Ca Ca
hm 6:E1 z9) — P 83!717 S(JCQ ht 51‘1 x2 + - ]- U(xq 511 2 + : ]- U(xo 63!71 o
(021.02) = P( W o) g 3 L0 @) Oan0a) + 550 S L1000 20 (901.02)

6.1.3 Probability distribution of the measured delay between x;
and x5 in the congested regime

In the congested regime, the delay distribution can be computed using a similar method-
ology as for the undersaturated regime, by deriving the delay experienced between x; and
xo for each arrival time. Let ng, be the maximum number of stops experienced by the
vehicles in the remaining queue between the locations x; and x5. The delay experienced
at location x when reaching the triangular queue at x is readily derived from the expres-
sion of the delay in the undersaturated regime. The delay experienced when reaching the
remaining queue is the duration of the red time R. The expression of the delay at location
x is then

R if x <,
0°(x) = ¢ Rbtma=t if g€ [l ], + lyay)
0 lf X 2 lr + lmax

The details of the derivation are given in Appendix A and illustrated in Figures A.1-
A.4. Note that to satisfy the stationarity assumption, the distance traveled by vehicles in
the queue in the duration of a light cycle is lay.

The section summarizes the derivations, classified depending on the location of the
positions z; and xo with respect to the remaining and triangular queue lengths:

1. x; Upstream — x9 Remaining (Figure A.1): The location x; is upstream of the queue
and the location x5 is in the triangular queue. Let the critical location . be defined by
Te = Tg + Nglpax. Vehicles reaching the triangular queue upstream of . stop ng times
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in the remaining queue. On the road segment [x1, 23], vehicles reaching the triangular
queue downstream of x. stop ns — 1 times in the remaining queue. The vehicles
experience a delay uniformly distributed on [din, Omax] With dpin = (ns — 1) R + 6°(2,)
and Opax = ns R+ 0°(x.) = din + R. The probability distribution of total delay reads:

1 Omin = 0°(z¢) + (ns — )R

ht(5901,902) - — 5 1[5min75max} (5931,9@)7 5max _ 5C(xc) +n,R

5111 ax

. a1 Triangular — o Triangular (Figure A.2): Both locations z; and x5 are upstream of
the remaining queue (in the triangular queue or upstream of the queue). Given that
the path is upstream of the remaining queue, this case is similar to the undersaturated
regime, where derivations are updated to account for the fact that the triangular queue
starts at r = [,. Adapting the notation from Section 6.1.2, n; . denotes the fraction
of the vehicles entering the link in a cycle that experience delay between locations

and x,.
min(zy — by, lmax) — min(zs — by, lnax)

Cc _
771:171‘2 -

lmax

This delay is uniformly distributed on [§¢(x1),0°(z2)]. The reminder do not stop be-
tween x; and x5. The probability distribution of total delay reads:

t c . nacc T
h (54”1@2) = (1 - 77I1,r2)D1r{0}(6$1’$2) + 56(1’2) 1— (QSC(IL'l) 1[5C(’U1)75c($2)}(5¢r1w2)

. x1 Remaining — x5 Remaining (Figure A.3): Both locations x; and x5 are in the
remaining queue. Let the critical location z. be defined by x. = xo + (ns — 1)lnax- The
vehicles reaching the queue between z; and z. stop ng times in the remaining queue
between x; and w9, their stopping time is ngR. The reminder of the vehicles stop ny,—1
times in the remaining queue and their stopping time is (ns — 1)R. The probability
distribution of total delay reads:

X1 — T X1 — T

ht(éxl,m) =

Dir{nsR} (65101,902) + (1 - ) Dir{(nS—I)R}(ézhm)

lmax lmax

. 1 Triangular — x5 Remaining (Figure A.4): The upstream location z; is in the trian-
gular queue and the downstream location x5 is in the remaining queue. Let the critical
location x. be defined by z. = x5 + Nglmax.

o If xy > x., afraction (z; — x.)/lmax Of the vehicles entering the link in a cycle join
the triangular queue between x; and x.. They stop once in the triangular queue
and n, times in the remaining queue. Among these vehicles, the stopping time is
uniformly distributed on [0°(z1) + nsR, 0°(z.) + nsR]. A fraction (z. — [.)/lnax
of the vehicles entering the link in a cycle join the triangular queue between =z,
and l,.x. Among these vehicles, the stopping time is uniformly distributed on
[0°(x.) + (ns — 1)R, ngR]. The remainder of the vehicles reach the remaining
queue between [, and x1 — [, and their stopping time is nyR. The probability
distribution of total delay reads:

t _ 21—z 18€(s1)+nsR, 8¢ (we)+ns R) (021,22) . .
h (55017:02) [~ 3 (@e)—0 (1) Vehicles stopping between z1 and z.
_1.. Lisc _
-+ xlfm)l: [6%””(7}%_3):&2; LA R Vehicles stopping between z. and [,
+ <1 o r[;;ir) Dir{nsR}(5I17x2) Vehicles stopping between I, and =1 —Imax
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o If x; < x., afraction (z1 —[,)/lmax of the vehicles entering the link in a cycle join
the triangular queue between x, and [.. They stop once in the triangular queue
and ng— 1 times in the remaining queue. Among these vehicles, the stopping time
is uniformly distributed on [0°(x1) + (ns — 1) R, nsR]. A fraction 1 — (z. — ;) /lmax
of the vehicles entering the link in a cycle join the remaining queue between [,
and x, — lyax. The stopping time of these vehicles is nsR. The remainder of the
vehicles experiences a stopping time of (ns — 1)R. The probability distribution of
total delay reads:

—1, Lse )R, nsR] 0z ,zp) ) )
ht ((5;,;1@) = mlina,lf : @1)“7;_3)&(;; 701,72 Vehicles stopping between z1 and I,
-+ (1 — ﬁ;;)l: I)il'{n5 R} (5z1,x2) Vehicles stopping between - and zc—Imax
+ %])H’{(ng —1)R} ((le ,xQ) Vehicles stopping between z.—lmax and 1 —Ilmax

These cases represent the pdf of total delay. From the results derived in Section 6.1.2,
we derive the pdf of measured delay. From the previous derivations, we have:

P(§x1:§x1> = (1 o 7)(5:101))(1 o ,P(‘;éf?)))
Ca = (=P, %)) saniemy (€112}

It is the sum of the following terms:

(i) the delay distribution given that the vehicles stop neither in x; nor in x5, with weight
7)<§:E1 9 §£E2 ) 9

(ii) the delay probability distribution given a stop in z, with weight (,,,
(iii) the delay probability distribution given a stop in x5, with weight (,,.

We summarize the different components of the delay distribution, described as a mix-
ture distribution for all the different cases in Tables 6.1 and 6.2.

6.2 Probability distributions of travel times

On a path between x; and x9, the travel time y,, 5, is a random variable. It is the sum
of two random variables: the delay 0., ,, experienced between x; and z, and the free
flow travel time of the vehicles yy. 4, 4,. The free flow travel time is proportional to the
distance of the path and the free flow pace py such that yy.,, », = ps(x1 — z2). The travel
time Yy, 2, 1S given by Yo, 20 = 021 00 + Yfiz1,20-

In the following, the delay and the free flow pace are assumed to be independent
random variables, thus so are the delay and the free flow travel time.

The differences in traffic behavior are modeled by considering the free flow pace py as a
random variable with distribution ¢” and support D, ». For convenience, for a probability
distribution ¢ with support D, let us define its prolongation by zero of out of D,. With
a slight abuse of notation, this new function is still denoted ¢.

Using a linear change of variables, the probability distribution ¢  of free flow travel
time yy. 4, 2, between z; and w, is derived as follows:

Yf; 21,22 1
~ Yy Yy . = P
by ' (pf) = Qp:m,:vz(yf’zl’mﬁ ¥ <x1 — :Eg) X1 — Tg

The pdf of travel times is derived from the following fact:
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Table 6.1: The pdf of measured delay is a mixture distribution. The different components
and their associated weights depend on the location of stops of the vehicles with respect
to the queue length and sampling locations (Table 1 of 2).

Case Trajectories Weight Dist. | Support
Case 1 Does not stop at | P(8z,, Sz, ) Unif. [(ns = ?CRJF 0%(ze),
gl ; ér + lmax, To s+ (lc)]
2 > bpy C
Te = T2 + Nslmax Stop at xo Cen =1 —"P(84,,8z,) | Unif. 5”& N }5)61(143]5 (2e),
No stop between P(SII’CSIQ)X Mass | {0}
Case 2 (1—ms ..)
z1 and o T1,%2
21 2, P(52,,52,) ¥
xo > 1, Reach the (trian- o e Unif. | [6¢(z2),d%(21)]
gular) queue be- a2
tween z1 and xo
Stop at x; Cay Unif. | [0, 6°(x1)]
Stop at x Cas Unif. | [0, 6¢(x2)]
P (5, 52,) %
Case 3 Reach the (re- | 21— Mass | {nsR}
1 <1, maining) queue Lmax
xo < l,, between x; and
Te =2+ (ns - l)lmax Lc
P (81 s Say) X
Reach the (re- | ¢ — @1 4 lmax Mass | {(ns — 1)R}
maining) queue Imax
between z. and
€Tl — lmax
Stop at x; Cay Unif. | [(ns — )R, nsR]
Stop at x9 Cas Unif. | [(ns — 1)R, nsR]

Fact 6.1 (Sum of independent random variables). If X and Y are two independent ran-
dom wvariables with respective pdf fx and fy, then the pdf fz of the random wvariable
Z =X +Y is given by f7(2) = fx * fy(2)

This classical result in probability is derived by computing the conditional pdf of Z
given X and then integrating over the values of X according to the total probability law.
For each regime s, the probability distribution of travel times reads:

9 Waran) = (B° % Y 1) Yy 20)

Notice that the delay distributions are mixtures of mass probabilities and uniform
distributions. The importance of these classes of distribution motivates the derivation of
the general expression of the travel time distributions when vehicles experience a delay
with mass probability in A and when vehicles experience a delay with uniform distribution
on [dmin, Omax) -

6.2.1 Travel time distributions
Travel time distribution when the delay has a mass probability in A

The stopping time is A. This corresponds to trajectories with ng stops (ns > 0) in the
remaining queue. This includes the non stopping vehicle in the undersaturated regime,
when the remaining queue has length zero. The travel time distribution is derived as

g(ymhxz) Dlr{A} * (10?[:17132 <y$17$2)

= 90271@2 (y$171’2 - A) (61)
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Table 6.2: The pdf of measured delay is a mixture distribution. The different components
and their associated weights depend on the location of stops of the vehicles with respect
to the queue length and sampling locations (Table 2 of 2).

Case Trajectories Weight Dist. | Support
P (5, 52,) % c
Case 4a Reach the (triangular) | 21 e Unif. %ﬁjéi((;l)%?
21 € [lpy by + lmax), | queue between x; and z,. lnax s ¢
i) S lr, P(gx 751: )X _ c
Te = To + Nslmax, Reach the (triangular) | = —llr ’ Unif. 5”13] DR+ 0%(e),
T < 21 queue between z. and [, linax s
P52, 80,)%
Reach the (remaining) I, =21 +lnax | Mass | {nsR}
queue between [, and lnax
1 — lmax
Stop at x Cay Unif. | [nsR, nsR + 0°(x1)]
; [(ns — 1) R+ 6%(zc),
Stop at zo Cas Unif. noR + 5°(x,)]
P (52, ,52,) % B c
Case 4b Reach the (triangular) | —1l7~ ’ Unif. 5”1%] DE+0%(21),
21 € [lpyly + lmax), | queue between z; and I, Lo s
xo <y, P(g.’,t]’ng)x
Te = To + Nslmax, Reach the (remaining) | I —%¢+lnmax | Mass | {n,R}
Te > X1 queue between [, and Imax
Te — Imax
P(§$1 ’ §I2) X
Reach the (remaining) Te—T1 Mass | {(ns —1)R}
queue between r. — lmax Imax
and 21 — lmax
. ns — 1R,
Stop at 1 Cay Unif. E(ns B 1))R - 6%(a)]
Stop at x2 Cas Unif. | [(ns — 1)R, nsR]
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Travel time distribution when the delay is uniformly distributed on [0yin, Omax]

Vehicles experience a uniform delay between a minimum and maximum delay respectively
denoted dyin and dyax. The probability of observing a travel time y,, , is given by

1 +oo
g(ya?hxz) = ﬁ/ 1[5min75max](yx17x2 - Z) ngLxQ(Z) dz. (62)

(o)

The integrand is not null if and only if ¥z, 2, — 2 € [dmins Omax), ¢-€. if and only if
2 € [Yoron — Omax> Yoroo — Omin)- Since oY . (2) is equal to zero for z € R\ D, the
integrand is not null if and only if 2 € [Ys, 2, — Omax, Yz1,00 — Omin) [ Pep-

As an illustration, the derivation of the probability distribution of travel times on an
entire link in the undersaturated regime, for a pace distribution with support on R* is
detailed below and illustrated in Figure 6.4 (left). The length of the link is denoted L. A
fraction 1—nj  of the vehicles entering the link in a cycle has a delay with mass probability
in 0 (vehicles do not stop on the link). The probability distribution of travel times of
these vehicles is computed via Equation (6.1) with A = 0. The reminder of the vehicles
(fraction nf ;) experiences a delay that is uniformly distributed on [0, R]. The probability
distribution of travel times of these vehicles is computed via Equation (6.2) with 6y, = 0
and . = R. The probability distribution of travel times on an undersaturated arterial
link reads:

0 it yr0<0
” y 77%,0 Lo y d L
0" (yr.0) = (1 =n%0)e10(yro) = ¢ro(z)dz if yro €0, R] (6.3)
’ u NLo [Y&° )
(1 =nz0)¢Lo(yro) + 5 o o(z)dz if yro>R
yrL,0o—R

In the more general case of a travel time distribution on an undersaturated partial
link between locations x; and x4, the delay distribution is a mixture of mass probabilities
and uniform distributions. Using the linearity of the convolution it is possible to treat
each component of the mixture separately and sum them with their respective weights to
derive the probability distribution of travel times.

The derivations are similar in the congested regime. For the different cases described
in Section 6.1.3, the delay is a mixture of mass probabilities and uniform distributions.
For example, the probability distribution of link travel times (Case 1) is illustrated in
Figure 6.4 (right). When the delay is uniformly distributed on [0yin, dmax], the probability
distribution of travel times is computed via Equation (6.2) and reads

0 5 if YrL,0 < 5min
gc(yL,O) - 5maxi5min nyL,O_ o (piyo(z)dz if YrL,0 S [5min7 5max] (64)
75min :
6max£6min nyL:;)O_émax SO%,O<Z) dZ lf yL7O Z 5max

6.2.2 Quasi-concavity of the probability distributions of link travel
times

The probability distributions of travel times depend on a set of parameters that must be

estimated to fully determine the statistical distribution of the travel times. A parameter

with true value 6, is estimated via an estimator §. The estimator is in general chosen
to have some optimality properties—extremum point based on an objective function, e.g.
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Figure 6.4: Probability distributions of link travel times. Left: Undersaturated regime.
The figure represents the probability distribution function of travel times for the following
choice of parameters: the traffic light has duration 40 seconds, 80% of the vehicles stop
at the light (n} , = .8). Right: Congested regime. The figure represents the probability
distribution function of travel times with the following choice of parameters: the traffic
light has duration 40 seconds, all the vehicles stop in the triangular queue and 50% of
the vehicles stop once in the remaining queue. Both figures are produced for a link of
length 100 meters. The free flow pace is a random variable with Gamma distribution. The
mean free flow pace is 1/15 s/m and the standard deviation is 1/30 s/m. The probability
distribution function v of a Gamma randﬁg}m variable x € RT with shape « and inverse

scale parameter [ is given by 7y(z) = mxo‘_le_ﬂx, where I' is the Gamma function

defined on R* and with integral expression I'(z) = [," t*~le~*dt.

least square estimator, maximum likelihood estimator. In particular, the maximum like-
lihood estimator is widely used in statistics. Its computation requires the maximization
of the likelihood (or log-likelihood) function. The likelihood function is the probability
(probability density in the continuous case) of observing a set of data points as a function
of the parameters of the distribution. The log-likelihood is the logarithm of the likeli-
hood function and is commonly used to simplify numerical expressions and improve the
numerical stability of the optimization algorithms.

Here, the function to maximize is the probability distribution of travel times. Prop-
erties on the concavity of this function are important for designing efficient maximiza-
tion algorithms with guaranty global optimality. This section presents the proof of the
quasi-concavity of the link travel time distributions in both the undersaturated and the
congested regimes. We also prove the log-concavity of the different components of the
distribution of travel times, considered as mixture distributions.

Definition 6.4 (Quasi-concavity (Boyd)). [34] A function f : R"™ — R is called quasi-
concave if its domain is conver and if Vo € R, the superlevel set Sf, (Sfo = {x €
Ds|f(z) > a}) is conver.

From this definition, one can derive equivalent characterization of quasi-concavity,
when f has first (and second) order derivatives. Further references on quasi-concavity are
detailed in [34]. In particular, the proofs of quasi-concavity of the probability distributions
functions use the characterization of continuous quasi-concave functions on R (Lemma 6.1)
and the second order characterization (Lemma 6.2):

Lemma 6.1 (Characterization of continuous quasi-concave functions on R). [34] A
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continuous function f : Dy — R is quasi-concave if and only if at least one of the following
conditions holds:

e f is nondecreasing
e f is nonincreasing

o there is a point x. € Dy such that for x < x. (and x € Dy), f is nondecreasing, and
for x >z, (and x € Dy), f is nonincreasing.

Lemma 6.2 (Second order characterization of quasi-concave functions). [34] f € C? is
quasi-concave if and only if ¥V(z,y) € Ds*, y'Vf(z) = 0 = yIVif(z)y < 0. If f is
unidimensional, f is quasi-concave if and only if f'(x) = 0= f"(z) <O0.

Note that for probability distributions, the focus is often on the properties of the logarithm
of the probability distribution function.

Definition 6.5 (Log-concavity (Boyd)). [84] A function f: R"™ — R is log-concave if
and only if its logarithm In(f) is concave. The second order characterization is as follows:

[ € C? is log-concave is and only if Vo f(x)V2f(x) X Vf(z)V f(z)T0.

Fact 6.2. For [ a twice differentiable function taking values in R}, f is quasi-concave
< In(f) is quasi-concave.

f(@)V2f(z) - V@)V ()"

Proof. We have VIn f(z) = f(x)?

and V?In f(z) =
e If f is quasi-concave then In(f) is quasi-concave:
Since f is quasi-concave and has its image included in (0, +00), it follows from
Lemma 6.2 that for all (z,y) € D}, "V f(x) = 0 implies 4"V f(z)y < 0.
Let z and y be such that y"VIn(f(z)) = 0, i.e. y"Vf(z) = 0. From the quasi-
concavity of f, it follows that y"V2f(z)y <0

f@)y" V2 f(x)y —y"'Vf(2)Vf(x)y

T2 _
y Vin(f(x))y = f(x)?
T2
— f(z) %(Z)Qf(x)y since y' Vf(x) =0
< 0 using the quasi-concavity of f

So y"VIn(f(z)) = 0= y"V?In(f(z))y <0 and In(f) is quasi-concave.

e If In(f) is quasi-concave then f is quasi-concave:

Since In(f) is quasi-concave, it follows from Lemma 6.2 that for all (z,y) € D7,
yI'VIn(f(z)) = 0implies that y* V2 In(f(z))y < 0. Using the expression of V In(f(x))
and V?In(f(z)), this condition can be rewritten as follows:

Y(x,y), y' V() =0=y"V?f(z)y <0

And this proves that f is quasi-concave.
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In the following, we assume that the pdf ¢? of the free flow pace is strictly log-concave,
and thus so is the pdf Y 2o of the free flow travel time between location z; and x,. Note
that most common probability distributions (e.g. Gaussian or Gamma with shape greater
than 1) are log-concave.

Lemma 6.3. In one dimension, a strictly log-concave probability distribution function ¢
defined on D, C R has a unique critical point y. € D,. If ¢ is defined on a finite or
semi-finite interval, the critical point y. may be one of the finite boundaries of D,. On
the domain D, the function ¢ is strictly increasing for y < y. and strictly decreasing for

Y 2 Ye-

Proof. The function ¢ is strictly log-concave. Since the logarithm is strictly increasing, it
follows that ¢ is either (i) strictly increasing or (ii) strictly decreasing or (iii) that there
exists y. such that ¢ is strictly increasing for y < y. and strictly decreasing for y > v..
The case (iii) corresponds to the conclusion of the Lemma. It remains to prove that for
case (i), there exists a such that D, C (—o0, a) and that for case (ii), there exists b such
that D, C (b, 4+00). For both cases, reasoning by contradiction and using the fact that ¢
is integrable on D, concludes the proof. n

Proposition 6.1 (Quasi-concavity of the probability distribution of link travel times in
the undersaturated regime). The probability distribution function of travel times on an
undersaturated link, denoted g* and with analytical expression given in Equation (6.3), is
quasi-concave.

Proof. Let A denote the maximum delay experienced (i.e. the red time R) and 7 the
fraction of delayed vehicles (previously denoted 7y} ;). The length of the link L is a scale
parameter that does not change the concavity properties of the function. For notational
simplicity, let ¢ denote the probability distribution function of travel times and omit the
locations x; = L and x5 = 0 in this section. Recall the travel time probability distribution
on an undersaturated link (Equation (6.3)):

9“(y) = (1 =n)e(y) + % /;A p(2) dz

with the convention ¢(z) =0 for z < 0.
The function ¢g* is continuously differentiable on R* and Vy € R* its derivative reads:

(9" () = (1= M (v) + 1 (o) — oy = D). (6.5)

The function (¢g*) is continuously differentiable on R* and Vy € RT the second
derivative of ¢g* is given by:

(9")"(y) = (1 =" (y) + %(w’(y) —¢'(y—A4)) (6.6)
Using the expression of (¢")'(y), it follows that:
(9" () =0 & (1 =n)¢'(y) = 2oy — &) = 2(y)) (6.7)

The goal of the present proof is to show that (¢*)' (y) =0 = (¢*)"(y) <0, so let y be

such that (¢*)'(y) = 0.

Q

e Case 1: ¢'(y) >0
Lemma 6.3 implies that ¢ is strictly increasing on (—oo,y|. Thus ¢(y — A) < ¢(y).
Plugging back into (6.5), it follows that ¢'(y) > 0 = (¢*)'(y) > 0 which contradicts
the hypothesis (¢*)'(y) = 0.
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e Case 2: ¢'(y) <0
From (6.6) and the log concavity of ¢, the following inequality holds

(9")"(v)

IA
—~
—_
|
=
~—

Moreover, equation (6.7) and the condition ¢'(y) < 0 imply that o(y — A) < p(y).
Reasoning by contradiction, assume that ¢'(y—A) < 0. From Lemma 6.3, it follows
that ¢'(y — A) < 0 implies ¢(y — A) > (y), which contradicts the assumption of
Case 2. Thus necessarily, ¢'(y — A) > 0 and plugging into (6.6), (¢*)"(y) < 0.

The derivations have proven that (¢*) (y) = 0 = (¢*)"(y) < 0. From the definition of
quasi-concavity (Definition 6.4), the proof concludes that g“(y) is quasi-concave. O

Proposition 6.2 (Quasi-concavity of the probability distribution of link travel times in
the congested regime). The probability distribution function of travel times on a congested
link, denoted g¢ and with analytical expression given in Equation (6.4), is quasi-concave.

Proof. Let dpin (resp. Omax) denote the minimum (resp. maximum) delay experienced.
Recall the travel time probability distribution on a congested link:

y_émin

1
gc(y) = m/y cp(y) dy

_(5max

The function g, is continuously differentiable on R* and Vy € R* its derivative g.

reads:
1

oy = ———

S (Y = Omin) — P(Y — Omax)) -
Let us prove that there exists an interval [ such that y ¢ I = ¢.(y) # 0. From
the characterization of quasi-concave function given in Lemma 6.1, it follows that g. is
quasi-concave.
Referring to Lemma 6.3, let y. denote the critical point of the pace distribution ¢.

The following holds:

e For y € [0, Yo + Omin), the following inequalities hold ¥ — dax < ¥ — Omin < Ye. Thus
(Y — Omax) < ©(y¥ — Omin) and g.(y) > 0.

e For y € [y, + Omax, +00], the following inequalities hold y. < ¥y — dmax < ¥ — Omin-
Thus ¢(y — max) > ©(y — dmin) and g;(y) < 0.

e For y € [y. + Omins Ye + Omax, the following inequalities hold y — dpax < ye <
Y — Omin- For all ¥y € [ye + Omin, Ye + Omax), ¥ — Omax < Yo and thus the function
Yy — @©(y — Omax) 18 strictly increasing on [y. + Omin, Ye + Omax)- Similarly, for all
Y € [Ye + Omin, Ye + Omax)s ¥ — Omax > Ye and the function y — @(y — Omin) 18
strictly decreasing on [ye + Omin, Ye + Omax]. The function ¢’® is strictly decreasing on
[Ye + Omin, Ye + Omax). Moreover ¢"°(ye + dmin) > 0 and ¢’°(ye + Omax) < 0. Using the
monotonicity of ¢’ on [ye + dmin, Ye + Omax] and the theorem of intermediate values,
it follows that ¢/ is equal to zero in a unique point on [ye + dmin, Ye + Omax]-
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The function g. has a unique critical point (unique point where g¢ equals zero). From
the characterization of quasi-concavity given in Lemma 6.1, we conclude that g.(y) is
quasi-concave. Note that we have also proven strict quasi-concavity since we showed that
the critical point of g. is unique. n

6.2.3 Learning the probability distribution of travel times

From traffic flow theory, we derived a probability distribution of travel times between
arbitrary locations on an arterial link. These distributions are parameterized by the
network parameters (average red time R, average cycle time C, driving behavior 6, and
saturation queue length /2 ) and the level of congestion represented by the queue length
Imax- As probe vehicles report their location periodically in time, the duration between
two successive location reports z; and x5 represents a measurement of the travel time of
the vehicle on its path from z; to x5. We use these travel time observations from probe
vehicles to learn the parameters of the travel time distributions.

Common sampling rates for probe vehicles are around one minute and probe vehicles
typically traverse several links between successive location reports. It is possible to opti-
mally decompose the path travel time to estimate the travel time spent on each link of the
path [84]. In this section, we assume that this decomposition has already been achieved
and we focus on the estimation of the pdf of travel times. Since probe vehicles may report
their location at any point x; and zo, they provide partial link travel time measurements
that allow for the estimation of the independent parameters of each link: the red time
R, the queue length [.x, the fraction of stopping vehicles on the link among the vehicles
entering the link in one cycle 7} ; and the driving behavior ¢,. The estimation of the
parameters of link i is done by maximizing the likelihood (or more conveniently the log-
likelihood) of the (partial) link travel times of this link with respect to these parameters.
Note that the parameters of the travel time distribution (R’, i}, I' and 6}) do not de-
pend on the locations x7 and x5 of measurement j. In particular, we learn the travel time
distributions using travel time measurements which span different portions of the link,
i.e. the locations x; and xs depend on the index of the measurement (j), even though we
do not explicit this dependency for notational simplicity. Let (ygm) j=1.gi represent the
set of (partial link) travel times allocated to link i. The estimation problem is given by:

,]i
minimize » —In(¢'(y}, ,,)) (6.8)
P j=1

st.nj,€(0,1], I' € [0,L7].

Additional constraints and bounds may be added to limit the feasible set to physi-
cally acceptable values of the parameters and improve the estimation when little data is
available. The optimization problem (6.8) is not convex but it is a small scale optimiza-
tion problem (feasible set of dimension five). Numerous optimization techniques can be
used to solve this problem including global optimization algorithms [93, 175]. Moreover,
since the parameters represent physical parameters, they can be bounded to limit the
feasible set to a compact set (of dimension five). It is thus possible to do a grid search.
The grid search algorithm defines a grid on the bounded feasible set and evaluates the
objective function for each set of parameters defined by the grid. We keep the B best set
of parameters, associated with the lowest values of the objective function and perform a
first or a second order optimization algorithm [34] from this best set of parameters. In
the implementation of the algorithm used to produce the results of Section 7.3, we set
B = 4 and used the active-set algorithm in the Matlab optimization toolbox, which is
a second order optimization algorithm based on Sequential Quadratic Programming |31].
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Figure 6.5: Arterial corridor in Chula Vista, CA (Telegraph Canyon Road) where the
data was collected using Sensys Networks technology.

6.3 Numerical experiments and results

6.3.1 Experimental setup

The numerical experiments are based on data collected from wireless vehicle detection
systems deployed by Sensys Networks [75]. The sensors record the magnetic signature of
the vehicles and can re-identify a vehicle between successive sensors, thus providing travel
time measurements of individual vehicles. In this article, we focus on data collected on
February 10th, 2011 on an arterial corridor in Chula Vista, California (Telegraph Canyon
Road). This network consists of 18 sensors in both directions located at the 9 signalized
intersections, as illustrated Figure 6.5. Sensys Networks reports that approximately 70%
of the vehicles traveling on the corridor are properly re-identified. Note that the un-
matched vehicles include vehicles changing direction (no successive crossings) or vehicles
with a magnetic signature that was not properly re-identified by the algorithm.

6.3.2 Model selection for travel time distributions

The chapter presents a statistical model of arterial traffic to characterize probability
distribution of travel times on arterial networks. To validate the approach, the goodness
of fit of the traffic distribution, derived from hydrodynamic theory, is compared to other
standard distributions. The present section also analyzes the potential to improve the
estimation capabilities by learning some of the traffic parameters from historical data and
considering them fixed in the estimation procedure.

As for the numerical analysis of Chapter 5, information criterion are useful for model
selection. The Akaike Information Criterion (AIC) or the Bayesian Information Criterion
measure the relative goodness of fit of statistical models and define trade-offs between the
accuracy and the complexity of each model. Because the sample size is finite, AIC is
typically corrected and denoted AICc. For a model with k parameters, trained with n
samples and resulting likelihood L, the information criterion are defined as follows,

2%h(k + 1)

AIC =2k —21In(L AlICc = AIC
n(L), ¢ TR

BIC = kln(n) — 2In(L).

The information criterion are computed for different classes of probability distribu-
tions. The class of probability distributions which represents the best trade-off between
model complexity and accuracy is chosen to characterize the probability distribution of
travel times. The traffic distribution, derived from hydrodynamic theory, is compared
to standard distributions (normal, Gamma and log-normal) and to a Gaussian mixture
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model with two components. The model allows to input prior knowledge on some of the
parameters. Note that the prior information can also be incorporated in a Bayesian frame-
work by considering that the parameters are r.v. with a specified distribution. Among
the standard distributions, the log-normal distribution consistently performs better than
both the normal and the Gamma distribution. For this reason, only the results for the
log-normal distribution report are reported and compared to the results obtained for the
traffic distribution. Regarding the possibility to fix some of the parameters of the traffic
distribution, the results do not improve if the mean of the free flow pace is fixed. How-
ever, significant improvement is obtained when both the mean and the variance of the
free flow pace are fixed. The analysis reports the results obtained when fixing none of the
parameters (labeled traffic) or both the mean and variance of the free flow pace (labeled
traffic with fized pace).

Figure 6.6 presents the AICc and BIC computed for the different models for varying
sizes of the training dataset. When only a few measurements are available (less than 7 or
10), the results are unstable and the risk of over-fitting is large. With more than 10 or 15
observations, the size of the training dataset does not influence the results significantly.
The Gaussian mixture model has the largest values of both the AICc and the BIC. Even
though the model provides a good fit on the training data, the larger number of parameters
(compared to the other models) leads to a higher risk of overfitting. The traffic model
and the log-normal model have similar results for the AICc and the log-normal model has
a slightly better value for BIC, which penalizes the number of parameters more strongly
than AICc does. The traffic model has the potential to fit the data more accurately but
the complexity of the model is penalized. This motivates the investigation of reducing
the traffic model estimation complexity by fixing some of the parameters. Fixing the free
flow pace does not improve the AICc or BIC scores. However, fixing both the mean and
the variance of the free flow pace provides much better results and is the model chosen in
the remainder of the numerical analysis.

6.3.3 Validation of the fitting results

To further validate the choice of the traffic model, with fixed free flow pace distribution, 30
points are randomly sampled from the data set to form the training set. The parameters
of the traffic with fixed pace model and the parameters of a log-normal distribution are
learned on this training set. The learned distributions are compared to the remaining
data (validation set) in Figure 6.7.

The large validation set underlines further the capacity of the traffic model to charac-
terize the probability distribution of travel times. It captures specific aspects of traffic dy-
namics resulting from the presence of a traffic signal, in particular the differences between
the stopping and non-stopping vehicles and the long tail of the distribution illustrating
the variability of delays experienced depending on the arrival time in the link.

6.4 Conclusion on the probability distribution of delays
and travel times

The present chapter proposes a parametric probability distribution of travel times between
arbitrary locations on an arterial link. The probability distribution is derived from the
hydrodynamic theory presented in Chapter 4 and represents the dynamics of traffic flow on
arterial links. In particular, it captures the delay of vehicles due to the presence of a queue
that forms and dissipates periodically because of the presence of a traffic signal at the
downstream intersection. These distributions are parameterized by physical parameters
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Figure 6.6: Information criterion computed on the different potential models to represent
probability distribution of travel times on arterial networks. The two information metrics
(AICc and BIC) lead to the same conclusions in terms of model selection. Top: Corrected
Aikaike Information Criterion (AICc). Bottom Bayesian Information Criterion.
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Figure 6.7: Validation of the pdf of travel time derived from horizontal queuing theory.
The parameters of the log-normal distributions and the traffic distribution with fixed
pace are learned using 30 travel time observations sampled randomly from the dataset.
The histogram of the data and the empirical distribution illustrate the distribution of the
validation data. The empirical pdf is computed using a normal kernel function [33] and
the empirical cdf represent the Kaplan-Meier estimator [47|
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which characterize the arterial network, the driving behavior and the level of congestion.

The travel time distributions are adapted to real-time traffic estimation from sparsely
sampled probe data. The following specificities make the model particularly adapted to
probe vehicle data:

e The pdf of travel times between any two locations on a link are parameterized
by the same set of parameters. This makes the model particularly interesting for
learning with sparsely sampled probe data. As seen in Section 5.2, travel speeds vary
significantly on arterial links (the probability of delay is higher close to intersections).
Scaling partial travel times takes into account the spatial inhomogeneity of travel
times. The main limitation of scaling partial travel times is that it only scales
the distribution without changing the shape of the distribution. This does not
accurately reflect the evolution of the probability distribution function when the
sampling locations change. Moreover, a finer discretization of the road network
would imply the learning of a larger number of parameters which increase the risk
of over-fitting given the amount of data available today at a large scale.

e The probability distributions of link travel times are quasi-concave distributions.
The proof of this property is important to develop estimation capabilities from
sparsely sampled probe vehicles and guarantee convergence of machine learning
algorithms.

The goodness of fit of the distributions was tested on data collected by Sensys Networks
in Chula Vista, CA. The numerical results show the superiority of the traffic distribution
to represent the distribution of travel times compared to “classic” distributions (normal,
log-normal, Gamma distributions, Gaussian mixture model), commonly used to represent
the distribution of travel times. We also show how prior estimates of certain parameters
(distribution of free flow pace) improves the estimation capabilities. The model represents
the best trade-off between model complexity (in terms of number of parameters) and
goodness of fit and performs well when a limited amount of data is available.

The assumption of uniform arrivals is the most restrictive assumption on which this
work is based. It may limit the accuracy of the model when signal synchronization is
important. The following chapter, Chapter 7 proposes a model to relieve this assumption
while keeping a small number of parameters and controlling the computational complex-
ity of the model. Improvements on the model are mostly important for control strategies
which study light synchronization. The model presented in this chapter is sufficient to
characterize the probability distribution given the information contained in the data avail-
able today.

Another possible refinement of the model is to consider a lane-dependent model which
takes into account differences in the way queue forms depending on the turn movements.
When arterial links have protected turn movements, the queuing dynamics on these lanes
may differ from the queuing dynamics for the through movements. As probe vehicles
report their location periodically in time, it is possible to differentiate the measurements
depending on the turn movements. As the number of parameters per link increases, so do
the risks of overfitting and a trade-off analysis is necessary to decide which level of model
detail is adapted to the data available.

The model presented in this chapter characterizes the formation and dissolution of
queues on each link of the network independently. The model can be extended to take into
account network dynamics and model how congestion spreads and dissipates throughout
the network. A model enforcing the conservation of vehicles at intersections and param-
eterized by the turn ratios provides a network-wide statistical dynamical model of urban
traffic which can be used to estimate travel time distributions [88].
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Chapter 7

Going further: a three-stream model
for arterial traffic

The present chapter focuses on an extension of the hydrodynamic model of arterial traffic
presented in Chapter 4. The extension proposes analytic derivations for arterial traffic
modeling which release the most potentially limiting assumption of Chapter 4 while con-
trolling the number of parameters required to characterize the model. This extension has
important applications to model arterial traffic on a route, in particular when signal co-
ordination invalidates the uniform arrival assumption of Chapter 4. After arterial traffic
modeling and estimation, a natural continuation in traffic engineering is traffic control.
Control is closely related to both modeling and estimation: in classical control theory,
an estimation of the state of the system is fed into the controller to adapt the control
strategy according to the dynamics of the system.

The majority of the studies on arterial traffic use numerical algorithms for signal op-
timization (127, 112, 77, 67|, or rely on simulation. These methods can handle scenario
analysis of complex systems and can generate the desired signal control numerically. How-
ever, the complexity of the solution process grows rapidly with the size of the problem
[32], in addition to the fact that the amount of information needed for the optimization
is large and tedious to obtain for large networks. In addition, numerical solutions might
not provide physical insight on the traffic patterns controlled by such schemes. Analyt-
ical solutions provide a deeper understanding of traffic flow dynamics. The purpose of
analytical methods is generally not to provide detailed solutions to specific problems, but
to generate general principles to solve the problem, by making specific assumptions to
reduce the number of parameters and the complexity of the problem. For example, [150]
derives expressions for delays at signalized intersections assuming platoon inflow. The
present article considers platoon traffic and ignores secondary traffic. This is comple-
mented by [138] which considers both platoon traffic and secondary traffic.

This chapter focuses on analytical methods and proposes a novel model relying on
hydrodynamic traffic models [18]. In the present model, the arrival and departure of traf-
fic lows at each signalized intersection are represented by three streams of traffic during
each cycle. Each traffic stream is characterized by its flow and duration (the time it takes
for all the traffic within the stream to go through a point in space). This is realistic if
one inspects the downstream of an intersection, where there are mainly three streams of
traffic: no traffic during the red time, saturation flow during the beginning of the green
time (as the queue dissipates), and less than saturation flow (if undersaturated) during
the end of the green time, once the queue is fully dissipated. The present model ap-
proximates the third traffic stream with a constant flow. When both the arrival and the
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departure traffic are modeled in this way, the results from a single signalized intersection
are automatically applicable to a corridor including multiple signalized intersections. In
addition, the number of parameters is limited and only grows linearly with the size of the
network, facilitating analytical solutions.

The chapter is organized as follows. Section 7.1 presents the three stream model, which
characterizes the departure traffic streams based on the arrival traffic streams. Section 7.2
presents how the model can be used for signal control and corridor optimization. The
section proves that the total delay is a quasi-convex function in the traffic light offset.
This property enables the derivation of the optimal offset under different scenarios for
the input streams. The section also characterizes how the streams evolve through the
corridor. The model is compared against microsimulation data in Section 7.3. Section 7.4
discusses the generality of the model and provides conclusion about the benefits of the
method for both arterial traffic modeling, estimation and control.

7.1 Modeling traffic flows through a single signalized
intersection

The present section develops a model of traffic dynamics through a single intersection.
The model treats the arrival traffic as inputs and the departure traffic as outputs. The
model describes traffic flow at each intersection with a limited number of parameters,
which does not grow with the complexity of the network. This property, referred to as
parameter efficiency, facilitates analytical solutions which are leveraged to derive tractable
estimation and control algorithms. The model is structured so that results from a single
intersection can easily be extended to a series of intersections.

7.1.1 Three stream model

The three-stream model builds upon the hydrodynamic arterial flow model of Chapter 4.
As done in Chapter 4, vehicular flow is modeled as a continuum and represented with
macroscopic variables of flow q(x,t) (veh/s), density p(x,t) (veh/m) and velocity v(z,t)
(m/s). Flow and density are empirically related by the fundamental diagram, as commonly
done in traffic modeling [108, 134]. For arterial traffic, it is common to assume that this
dependency is piecewise linear, leading to the assumption of a triangular fundamental
diagram [54, 112|. The triangular fundamental diagram is illustrated Figure 3.1. It is
fully characterized by three parameters: v, the free flow speed (m/s); pmax, the jam (or
maximum) density (veh/m); and gnax, the capacity (veh/s). Its analytical expression is

given by
vsp if pel0,p]
— . , 7.1
a(p) { w(pe — p) +vppe i p € [pe, Pmax] (7.1)
where w = —2.—_ Let p, denote the critical density. It is the boundary density value

Pmax —Pc

between (i) free flowing conditions for which cars have the same velocity and do not
interact and (ii) congested conditions for which the density of vehicles forces them to slow
down and the flow to decrease.

Definition 7.1 (Stream of vehicles of density p and duration 7). A stream of
vehicle of density p and duration T is a group of vehicles characterized by a uniform
density p. As the arrival or departure streams always travel at free flow speed vy, the flow
within the stream is also uniform. The duration T of the stream is the time it takes for
all vehicles within the stream to go through a point in space.
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Definition 7.2 (Undersaturated/congested regime). The presence of traffic signals
leads to the formation of queues during the red time which start to dissipate as the signal
turns green. If the queue fully dissipates before the end of the green time, the traffic
conditions are undersaturated. Otherwise, the regime is congested.

Definition 7.3 (Residual green time). In an undersaturated arterial link, the residual
green time is the period of time between the end of the queue dissipation and the beginning
of the red time.

The solution of the Lighthill-Whitham-Richards partial differential equation when the
fundamental diagram is triangular (as defined by (7.1)) and the arrival rate is constant
is computed analytically. The analytical solution is represented in a space-time diagram,
as shown in Chapter 4. For convenience, the space-time diagram is also displayed in
Figure 7.1. Note the three distinct streams of the departure flow in this figure: (1) the
red time with flow zero and duration R, (2) the queue dissipation time with flow at
capacity ¢max = pcvy and duration 7, and (3) the residual green time with flow equal to
the arrival flow and duration C'— R — 7, where C' is the cycle length. Note that in the
congested regime, the duration of the third state is zero since there is no residual green
time. Also note that the speed of the back propagating wave for queue dissipation is
denoted by w, and that for queue formation is denoted by v,.

As the departure streams of a link correspond to the arrival streams of its downstream
link, model the arrival traffic as three streams, characterized by their density p; and their
duration T}, ¢ € {1,2,3}. If the arrival traffic includes three streams, the departure traffic
is not necessarily three streams, as shown in the Figure 7.2(d). The density of traffic during
the residual green time may come from different streams and may not be uniform. This
fact makes an exact modeling of the flow intractable. The number of streams increases in
an unbounded fashion as the flow traverses the successive intersections of an arterial route.
To reduce the number of parameters required to describe the system and make the model
tractable, the output flow is modeled as a three stream flow. The three different streams
correspond to the three stages of the output flow: the red time, the queue dissipation
time and the residual green time. The density of traffic during the residual green time
is approximated as a stream with uniform density. The average density during the extra
green time is denoted p; and computed analytically in the remainder of this section. This
assumption is all the more appropriate if street segments are long and vehicle streams of
different densities merge into one stream with uniform density [71].

The conservation of vehicles yields the following equation for the average density py
of the last departure stream (of duration C'— R — 7):

3
vapiTi = Q«E + VyPeT + 3]fpf<C—R—T).
i=1 , Red time Queue dissipation time Residual ;een time

Arrival streams

Note that the triangular fundamental diagram yields a simple relation between the flow
q and the density p as ¢ = vyp whenever p < p.. It yields the following expression for p¢

3
Z:lpzcrz = PcT
i S— 2
PI= G TR (7.2)

Note that, the density p; depends on the duration of the queue dissipation 7. The
expression of 7 is derived analytically as a function of the arrival streams (p;, T;);=1.3 in
Section 7.1.2.
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Figure 7.1: Space time diagram of vehicles trajectories under uniform arrivals of density
pa- Top: undersaturated regime. Bottom: Congested regime.

7.1.2 Dynamics of a stream through an intersection

Given an arrival stream of density p; and duration 7;, its dynamics through the intersection
follows one of the four cases:

Case 1. No vehicle of the stream stops in the queue. There is one departure stream with
the same characteristics as the arrival stream, (p;, T;).
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Figure 7.2: Dynamic of streams of vehicles through an intersection. Figure 7.2(a): All
the vehicles of the stream go through the intersection without stopping (Case 1). Figure
7.2(b): The first few vehicles of the stream do not stop at the intersection, they represent
a fraction « of the vehicles of the stream (Case 2). Figure 7.2(c): All the vehicles of
the stream stop at the intersection (Case 3). Figure 7.2(d): The last few vehicles of the
stream do not stop at the intersection, they represent a fraction a of the vehicles of the
stream (Case 4).

Case 2.

Case 3.

Case 4.

The first vehicles of the stream go through the intersection without stopping
but some vehicles at the end of the stream stop in the queue. We denote by
a the fraction of vehicles arriving in stream ¢ that go through the link without
stopping. Note that at most one arrival stream follows this case during a cycle.
Downstream of the traffic signal, there are three departure streams: the non-
stopping vehicles (p;, aT;), the red time stream (0, R) and the stopping vehicles
released at capacity during the queue dissipation (p, (1 — a)Ti%). This case is
illustrated in Figure 7.2(b).

All the vehicles of the stream stop at the red light. There is one departure stream
corresponding to the queue dissipation of these vehicles. It has characteristics

. Pi
(pmﬂpc)‘

The first vehicles of the stream stop in the queue but the last ones go through
the intersection without stopping. As for Case 2, we denote by « the fraction
of vehicles of the stream that do not stop in the queue. The derivation of the
departure streams is similar to Case 2: the stopping vehicles released at capac-
ity during the queue dissipation (p,, (1 — oz)Ti%) and the non stopping stream
(pi, aT;). This case is illustrated in Figure 7.2(d).
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Note that there is a fifth possible case, corresponding to a combination of Cases 2
and 4. In this last case, the first vehicles of the stream go through the intersection
without stopping. The middle of the stream stop in the queue. The last vehicles of the
stream arrive after the queue dissipation and do not stop. This additional case will be
incorporated in the modeling framework of Case 4 in the following.

Let A; denote the delay experienced by the first vehicle of stream ¢. If the arrival flow
is uniform, the speed of queue formation is constant and is denoted v;. The speed of queue
dissipation, w, is also constant. They can be derived from the Rankine-Hugoniot [133|
jump conditions as

v; = P andw = P (7.3)
Pmax — Pi Pmax — Pe

Remark that the inequality w > v; necessarily hold. It follows that the delay decreases
linearly among the vehicles of the stream. If the queue does not fully dissipate as the last
vehicle in stream ¢ arrives (Cases 2 and 3), this last vehicle will experience a delay A, =
A; = T;(1 = £) (see Figure 7.2(b)). This expression is valid if and only if A; > T;(1 — £2).
If this condition is not satisfied (Case 4, Figure 7.2(d)), the queue dissipates before the
end of stream ¢ and the last vehicles of the stream do not experience delay. The general

expression for A;yq is
i+1 — Imax (0, Az - E (1 - —>) . (74)
Pe

We introduce 6; such that 6;/T; represents the fraction of stream 7 which stops at the
intersection and have

Pc — Pi

7.1.3 Characterization of the departure streams

This section derives analytical expressions for the densities and durations of the departure
streams, parameterized by the characteristics of the arrival streams. Without loss of
generality, the sections assumes that the signal turns red at ¢ = 0, and that stream 1 hits
the red light at the beginning of the cycle.

A fraction 1 — « of the vehicles of stream 1 reaches the intersection after the signal
turns red whereas the remaining vehicles reach the intersection before the signal turns
red. In this model, the arterial traffic dynamics are considered as periodic (as done in
Chapter 4). With this consideration, it is natural to consider that the remaining vehicles
reach the intersection at the end of the cycle. This second representation simplifies the
notation in the derivations. The arrival streams are thus modeled as four streams with
densities p; and duration T; with 77 = (1 — )T, Ty =Ty, T3 = T3, T, = T} and
P4 = P1.

In a corridor with several signalized intersections, « is determined by the offset between
consecutive signals. The delay experienced by the first vehicle that stops at the signal is
Al = R.

The expressions of (A;);=1.5 and (6;);=1.4 are computed for the four streams according
to equations (7.4) and (7.5), with the initialization A; = R (see Figure 7.3). It follows
that:
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Ay = max(0,R— fl(l — %))
By = max (0.8 =T1 - 8 ~T(1— ) (7
Ay = max(0,R—Ti(1— p—l) —Tr(1 fp’_i) — T3(1 %>>
As = max O’R_ﬁ(l_%)_ﬁ(l lp)_i)_Ti’*(l_pi) T(l_pc)>
and
61 — Rp pcp
c— Ml
0 = max (0, R—T(1-2)) L
f; = max <0 R—T, (1—2) _pjc’ (1pi Pz)) L (7.7)

Pc

~ ~ pC
_ _ _ Py _ p2 _p3y) __Fe
§, — max (o,R Ti(1—2) — Ty(1 - 2) - Ty(1 )) p—
The intersection modifies the structure of the three arrival streams into several depar-

ture streams as follows:

Departure streams
7\

(0r) ]

(pc,mln T1,91)2—>

Arrival streams (pl’ max(0 Tl 91))

TR | (i)
(2, T2) p ¥— <p2 max(0, T — 92)) (7.8)

(3, T3) (pc,mln (T, 03) 2 )

(pg max (0 T3 — 03)>

(pc,mln T4,94) )
\ (pl,maX(O,T4—94)> )

For simplicity, the presentation of the three stream model does not take into account
side street traffic, i.e. vehicles exiting or entering the route at intersections. The deriva-
tions presented in this chapter can be generalized to take into account side street traffic.
For example, it may be natural to add two parameters: one representing the average (po-
tentially negative) flow corresponding to the balance of exiting and arriving vehicles during
the red time and another one representing the average (potentially negative) flow corre-
sponding to the balance of exiting and arriving vehicles during the green time. Another
modeling approach might consider that there is a fixed turning ratio at each intersection
and take these parameters into account in a network setting. Other characterization of
side street traffic are possible and not detailed here. Section 7.2 analyzes how side street
traffic may affect the model and its perturbation on signal optimization plans.

As seen in (7.8), the number of departure streams can be more than three. Indeed,
each stream ¢, i € {1,...,4} leads to up to two streams: a stream representing the queue
discharge if A; > 0 (otherwise this stream has duration zero) and a stream representing
the vehicles which do not stop if A1 = 0 (otherwise this stream has duration zero).
This leads to up to eight streams to which we add the red phase of the signal which

96



>

space, T

Figure 7.3: Top: Arrival streams of vehicles. The stream that reaches the signal as the
traffic light turns red is split between two streams denoted stream 1 and stream 4. Stream
1 has duration (1 —«)Ty = T;. It reaches the intersection as the signal turns red. Stream
4 has duration oy = Ty. It reaches the intersection at the end of the cycle. The waiting
times of the first and last vehicles of stream i are denoted A; and A;,;. Note that the
A; can be null. In particular, in an undersaturated regime, we have Ay = 0 since the
queue fully dissipates as the signal turns red. Bottom: Dynamic of three arrival streams
through a signalized intersection, illustrating equation (7.8)
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creates a ninth stream of density 0 and duration R. Modeling the exact progression of
the characteristics of streams through a corridor rapidly leads to an over-parameterized
model. The level of details of the modeling does not match the precision of available
data. It also assumes a perfect, non-noisy model of traffic which is also unrealistic. To
limit the number of parameters and control the complexity of the model, the departure
streams listed above are approximated by three departure streams, corresponding to the
red time, the queue dissipation time, and the residual green time. The red time leads to
a stream of density 0 and duration R. The queue dissipation leads to a stream of density
p. and duration 7 and the multiple streams of the residual green time are aggregated into
a single stream of density p; and duration C'— (R4 7), as derived in (7.2). The densities
and durations of the three departure streams are given by

Averaged departure streams
Arrival streams A\

(p1,T1) | (O’ R)
(p2,T2) p — (pc, T) (7.9)
(3, T3) <pf,C—R—T>

with

o 7 =min(aTy,6;)% +min(T3, 02) 22 +-min(73, 63) 22 +min((1—a)T7, 64) 5F the duration
of the queue dissipation,

e p; the merging density which only depends on 7 and the parameters of the inter-
section as computed in (7.2).

7.2 Application to the optimization of traffic signals

The model described in Section 7.1 provides a framework to analyze the dynamics of
traffic flows through an arterial corridor. The assumptions lead to analytical derivations
and a better understanding of the dynamics, providing insight for the control of arterial
networks. This section leverages this framework to analyze the well studied problem of
one way corridor signal optimization. The derivations lead to analytical optimal control
strategies for different scenarios of the arrival streams. This allows for timely adjustments
of the control strategy in real time as congestion changes throughout the day.

7.2.1 Problem setting

The derivations focus on the minimization of the total delay D experienced at an inter-
section. The total delay is defined as

D= /0 W (t)q(t)dt = /0 W (t)osp(t)dt, (7.10)

where W(t) is the delay experienced by the flow entering at time ¢, ¢(t) and p(t) are the
flow and the density of the stream that enters at time t. C'is the cycle length assumed
to have the same value for all signals.

The algorithm optimizes the total delay because it finds a compromise between the
duration of the delay experienced by the stopping vehicles and the proportion of vehicles
that go through the intersection without stopping. Other choices of optimization prob-
lems are possible such as the maximization of the number of vehicles going through the
intersection without stopping or the minimization of the maximal delay.
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The objective function has an analytical expression, which is derived under the assump-
tion that vehicles arrive from an upstream intersection with a three-stream structure. The
cost function is additive, in the sense that the contribution of each stream to the total
delay can be computed independently. The individual contributions of each stream are
summed to get the total delay.

As derived in Section 7.1.2, the delay decreases linearly among the stopping vehicles
of a stream ¢ (from the first stopping vehicle with delay A; to the last stopping vehicle
with delay A;,1). The total delay experienced by the vehicles of a stream is the average
delay of the stopping vehicles times the number of stopping vehicles. According to the
definition of 6;, the number of vehicles stopping in the queue is p;v;0; and the minimum
and maximum delays of the stopping vehicles of stream i are given by A;;; and A;
respectively (see Figure 7.3).

Remark 7.1 (Control variables). In traffic signal optimization, the control variables
are the duration of the red light and the offset between the two traffic signals. In a one way
corridor, it is not relevant to minimize according to the duration of the red time because,
without any constraints, the optimal value of the objective function is zero, corresponding
to a red time equal to zero. For this reason, only the actual offset © between the two
traffic signals is considered as a control variable. The standardized offset ty is defined as
to=0— UA The standardized offset takes into account the free flow travel time of vehicles

along the link. Here, L represents the length of the link between the two intersections.

The standardized offset ¢ is related to « by tg = (1 — «)T;. This gives the explicit
expression of the total delay as a function of ¢y, denoted D(ty). Moreover, the offset
to determines which stream hits the signal first. This leads to an implicit dependence
represented by the cyclic permutation between the streams, so that the stream that reaches
the intersection as the signal turns red is denoted 1. The analytical expression of the total
delay D(to) is the sum of the contributions of the three arrival streams. The previous
derivations yield to:

Ay + Ao
2

As + Ag

D = Vr | P1 min(é’l,Tl — to) 9

+ pomin(6sy, T5)

Az + A .
BT4 + p1 min(fy, to)

In the case of a congested regime, all vehicles experience some delay. Let A, represent
the minimum delay experienced by the vehicles on the link, then the total delay is given
by Dsat = D + Anin¥y 2?21 piT;. Only the first term of the sum, D, depends on ¢y, it is
therefore equivalent to minimize D or Dg,. Without loss of generality equation (7.11) is
used to minimize the total delay in both the undersaturated and the congested regime.

Ay+ A

—|—p3 min(Qg,Tg) (711)

7.2.2 Convexity of the cost function

Equation (7.7) implies that for all 7, §; < 6;_1. In particular, if there exists j such that
§; = 0, then 0,, = 0 for any m greater than or equal to j. Moreover, A,, = 0 for m > j
since 0, = Pe A,

Pec — Pm
Proposition 7.1 (Analytical expression of D). In an undersaturated regime, for all
to, there exists a unique m € {1,...,4} such that 0 < 0,, < Tm. The expression of the
cost function is simplified as follows:

m—1

~ A+ A pe A2
D = E il ———— m — 7.12
Vet 2 2 712
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Proof. Intuitively, the index m represents the stream of vehicle from Case 4, for which the
last vehicles of the stream do not stop on the queue. The proof of existence and uniqueness
of this index m is based on two intermediate results (Lemma 7.1 and Lemma 7.2).

Lemma 7.1. For all i greater than or equal to 2, 7, > 0 if and only if ;1 > iy

Proof. Replacing 6; by its expression (Equation (7.5)), multiplying the strict inequality,
0; > 0, by the positive term pcp_cp" and rearranging the sum yield the following inequality

1—2

- Pn - Pi—
R-) T.(1- E) >Ti4(1— pcl).

n=1

Multiplying this inequality by —L it follows that

ZT 1 = L > j:ifl
Pc — Pi-1

and in particular 6;_; > ﬁ-_l > 0. O]
Lemma 7.2. For all v less than or equal to 3, 0; < ﬁ if and only if 0,11 < 0.

Proof. Replacing 6; by its expression (Equation (7.5)) and multiplying the inequality,
0; < T;, by the positive term %& yield the following inequality

R— ZT 1—— <0

Pc
Pc—Pit+1
Equation (7.5) appears. Since, ;.1 is non negative by definition, 6, is necessarily equal

to zero. It follows that 6, < ﬁ_i_l. O

By multiplying the inequality by the positive term , the expression of 6;,; from

Proof of the existence and uniqueness of m: the proof is in two steps. The first step
proves that if such an m exists, it is necessarily unique. The second step proves the
existence of such an m.

o Uniqueness. Let m be an index such that 0 < 6,, < T. By induction, Lemma 7.1
and 7.2 imply that Vj <m, 6; > T >0andVj>m, 0, =0 < T This proves
that if m exists, it is unique.

e Euistence. Let j be defined by j = max{n € {0,...,4}|6, > T,}, where 6, and T
are chosen arbitrarily such that 6, > To. The proof shows that m = j + 1.
In an undersaturated regime, 6, < tg, so 5 < 3. The condition 6y > To implies that
j > 0 and thus the definition of j is proper (j is not infinite). The maximality of j
implies that 0;,; < fjﬂ. Lemma 7.2 implies that Vi > j + 2, 6; = 0. It remains to
prove that 6;; > 0. Reasoning by contradiction, assume that 6;,; = 0.

— If 5 = 0, this implies that Vn € {1,...4}, 6, = 0 which means that no vehicle
experiences delay and contradicts the assumption 6;,1 = 0 as long as the red
time is positive. and thus Vi > 5+ 2, 6, = 0.

— If 5 > 1, then Lemma 7.2 implies that 6; < fj, which contradicts the maxi-
mality of j.
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It is now possible to conclude that ;; > 0 and thus m = j + 1 is the unique index
such that 0 < 46,, <7T,,.

]

Remark 7.2. The index m is piecewise constant in to and thus the expression of D holds
on each of these intervals. Physically, m represents the index of the first stream in which
some vehicles go through the intersection without stopping. Moreover, the expression holds
in the case of a congested regime, with m =5 and the convention ps = 0.

Proposition 7.2 (Property of D). The function ty — D(to) is piecewise quadratic.

Proof. The analytical expression of the cost function D(-) over an interval in which m is
constant is given by Proposition 7.1. Both the A;s and T; are linear in to. All the terms
of the sum from ¢ = 2 to m — 1 are linear in ;. The first term of the sum is quadratic in
to. Therefore, D is the sum of a quadratic term and of linear terms and is quadratic on
each interval in which m is constant. On each of these intervals, the expression of D(ty)
is written as a quadratic function: D(ty) = at3 + bt + ¢ with

(pe = p1)(pm — p1)

o= 7.13
2<pc - pm) ( )
— ) = S Ti(pe — —
b _Rpc(m Pm) i1 Li(pe — p1)(pi — pm) (7.14)
Pec — Pm

and the optimum (either a minimum or a maximum according to the sign of a) is reached
n:

N g P (7.15)
20 = pm—p1 Pe — P1

]

The function D(-) is piecewise quadratic. The study of its monotonicity on each
interval in which m is constant leads to the characterization of the global optimum.

Definition 7.4 (Quasi-convex function [34]). A function f: Dy — R is called quasi-
convex if its domain Dy and all its sublevel sets Sy, = {x € Dy : f(z) < a} fora € R are
convex. In particular, a function is quasi-convex if one of the following conditions hold:
(1) f is non decreasing, (2) f is non increasing, (3) 3¢ € Dy such that for t < ¢ (and
t € D), f is nonincreasing, and fort > ¢ (and t € Dy¢), f is nondecreasing.

Proposition 7.3 (Quasi-convexity property). If the time initialization is chosen such
thatt = 0 as the beginning of the stream with the highest density enters the link, to — D(t)
is a quasi-convex function on [0,C].

Proof. Sketch of the proof, the full proof is available in [21].

The proof studies the monotonicity of D over each interval corresponding to the three
arrival streams —i.e. over [0,T1], [T1,T1 + Ts], [T} + Tz, C]- and proves that there exists
t. such that the function ¢ty — D(to) is non increasing for ¢y € [0,¢.] and non decreasing
for tg € [t.,C]. The cost function is nonincreasing over the interval corresponding to the
arrival stream with the highest density, it is nondecreasing over the interval corresponding
to arrival stream with the lowest density and the behavior over the last interval is such that
the minimum is either reached over this interval or at the bounds of this interval. It may be
reached outside of this interval if the interval over which the cost function is nonincreasing
and the interval over which the cost function is nondecreasing are consecutive. The
enumeration of all possible cases proves the quasi-convexity of the function. O
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7.2.3 Optimization of a one-way corridor

The variations of D(-) on [0, C], derived in the proof of Proposition 7.3 provide analytical
solutions for the optimal control (choice of the offset ¢y) analytically. The following
derivations are based on the definition of two families of control solutions: (i) the corner
solutions in which ¢y corresponds to the beginning of a stream and (ii) the solutions in
which tg lies inside the arrival time of a stream. The latter solutions only exist if the
optimal ¢y is such that the first stream which stops at the signal is the one with the
intermediate density, (see [21] for details). The intermediate density is indexed by 1. In
the following, the convention ps < p; < p3 is adopted. The optimal ¢, is denoted ¢.

In corridor optimization, the offset of traffic signals is optimized over several consec-
utive intersections. Optimizing the sum of the total delays at each intersection over each
offset is a difficult problem to solve analytically. Instead, the algorithm solves an opti-
mization problem for each intersection. Given the departure streams resulting from the
optimal control at intersection i (arrival streams of the downstream intersection i + 1),
the algorithm computes the optimal control to be applied at intersection i+ 1. A scenario
is defined as a class of arrival streams leading to a specific choice of ¢, denoted control
strategy. A scenario s is unstable if it leads to a different scenario at the downstream
intersection. The scenario of intersection ¢ is unstable if either the structure of the arrival
streams or the optimal control strategy of intersection ¢ + 1 is different from the struc-
ture of the arrival streams or the optimal control of intersection . On the contrary, a
scenario is stationary if, once this scenario occurs at an intersection, it will occur at all
the downstream intersections. The derivations identify specific conditions on the arrival
streams for each control strategy to be the optimal one. The derivations also identify
conditions for scenario to be stationary or unstable. The details of the derivations can be
found in [21]|. The most insightful part of the derivation is the interpretation of the results.

The Optimal Control Is a Corner Solution

The optimal control ¢j is either 0,71, or 71 + T5. One of the three streams is coordi-
nated such that its first car reaches the signal at the beginning of the red time. Intuitively,
this stream should have the lowest density. However, the following stream, which may
have a density close to p., can join the queue before it fully dissipates, causing a rapid
increase in the queue length and thus in the total delay. Depending on the densities of
the streams and on how many streams join the queue, the corner solution can be either
of the three possibilities. Figure 7.4 summarizes the different scenarios representing an
optimal control strategy associated with a class of arrival streams.

The Optimal Control Is Not a Corner Solution
There is only one scenario in which the optimal control is not a corner solution, then

P3 — P1 Pec — P1
density, is split into: a stream which does not stop in the queue (stream 4) and a stream

which reaches the intersection as the signal turns red (stream 1). As the offset increases,
additional vehicles from the first stream experience long delays. These long delays are
not compensated by the smaller number of vehicles from the third stream (with the
highest density) which experience short delays. As the offset decreases, fewer vehicles
from the first stream (intermediate density) experience delay. This reduction in the total
delay for the first stream is overcompensated by the significant increase in the total
delay experienced by the vehicles from the third stream (with the highest density). This
illustrates a trade-off between having a few cars with long delays and a lot of cars with
short delays.

. In this scenario, the first stream, with the intermediate
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7.2.4 Relations between the scenarios and convergence towards
a unique stationary optimal control

Each scenario corresponds to a specific structure of the arrival streams. Each inter-
section modifies this structure, potentially leading to a different control strategy at the
downstream intersection. The relationships and transitions from one control strategy to
another as a vehicle traverses a corridor can be represented using a directed graph. Each
node of the graph represents a control strategy for a class of arrival streams. The arrows
indicate the possible transitions from a control strategy to the control strategy at the
downstream intersection. The directed graph is represented Figure 7.4.

The green dotted arrows indicate that different evolutions of the control strategies
are possible: the scenario at the downstream intersection depends on the parameters of
the arrival streams. The solid red arrows indicate that there exists a unique scenario for
the optimal control at the downstream intersection. This means that once the scenario
occurs, there is a unique scenario possible at the downstream intersection. We notice that
all the scenarios converge after a finite number of iterations towards the unique stationary
scenario (bottom left of the figure).

Physically, the limit scenario corresponds to what is called a green wave [68]. A green
wave is a flow of vehicles going through a series of intersections without stopping at any
red light. This result is intuitive. Indeed, at each intersection, one of the departure stream
has no vehicles, corresponding to the red light. Because of the conservation of vehicles,
the two other streams have a higher density after each intersection, until it reaches the
critical density p,.

In a green wave, vehicles are clustered in a single stream of critical density. They
arrive at the intersection during the green time and do not experience any delay. This is
possible as long as the regime is undersaturated, since the duration of the single stream,
at critical density, must be inferior to the duration of the green time. This minimum,
expected to be local because we only optimize each intersection individually and not the
entire set of intersections at once, is actually a global minimum because the cost function
is null, it is not possible to do better.

However, a green wave has limitations when it comes to synchronizing traffic signals
because it is very sensitive to external factors. At critical density, the traffic dynamics
may be unstable (showing the limits of the modeling of traffic flow with a fundamental
diagram). A single incident on the network (pedestrian, parking, accident and so on) or
small calibration errors may cause significant delays and the formation of queues.

Real-time dynamic control improves the robustness of the optimization. At each in-
tersection, the optimal control is chosen given the traffic conditions at the upstream inter-
section (from sensors for instance). This dynamic control strategy anticipates an incident
which would have disrupted the green wave. This idea of real-time control traffic has
already been studied with real-time computations [104, 14, 135]. Here, all computations
can be done off-line and analytically, reducing the online computations to comparisons
between parameters, which are quasi-instantaneous.

The presence of side traffic changes the values of the densities of the streams as they
traverse each intersection. The structure of the stream (duration of each stream) may
remain unchanged. The transitions between the different control strategies presented in
Figure 7.4 no longer holds. However, if turning flows or turning ratios can be measured
or estimated, the density of the streams can be updated and the derivations of the control
strategies remain valid. In control theory, it is important to analyze the stability of the
controller to avoid undesirable oscillations of the system. To limit this risk, it is possible to
consider piecewise constant controls which average the information of the upstream links
for a given interval before applying the control, leading to a smoother feedback which
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Figure 7.4: The figure represents the different control scenarios (optimal control strategy
and corresponding class of arrival streams). It also shows the dynamics of the scenario in
a corridor leading to a unique stationary scenario which corresponds to a green wave.
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integrates the past dynamics.

7.3 Numerical analysis and validation

This section validates the model with microsimulation data. The flow dynamics predicted
by the model are compared with the results from CORSIM [74].

CORSIM simulates an arterial corridor equipped with four signalized intersections.
The comparison focuses on one direction of traffic. As the derivations considered traffic
from /to side streets to be negligible, the simulation is set such that all the flow movements
at the intersections correspond to through traffic. The intersections are numbered from 1
to 4 in the direction of traffic. The settings of the simulation are the following:

e The distance between two consecutive intersections is 500 feet (152.4 meters)

The cycle has the same duration for every signal and lasts 60 seconds

Every link is assumed to have one lane only

Arrival flow upstream of the first intersection is 300 vehicles/hour

Saturation flow is 2000 vehicles/hour

The arterial corridor is simulated for a range of values of the red time and the offset.
For every simulation, the red time is common to every signal and the offset between two
consecutive traffic lights is the same on each link. Each simulation is run 10 times for
every set of values of the parameters and each simulation lasts 20 cycles. The comparison
variable between the simulation and the model is the total delay of all the vehicles,
experienced at an intersection, during a cycle. To avoid the effects of initialization, the
total delays are averaged over the last 10 cycles of each simulation.

The model considers that the arrival flow upstream of intersection 1 is uniform. De-
parture streams of each intersection are computed according to Equation (7.9). The
departure streams of intersection ¢ are the arrival streams of intersection i + 1. At each
intersection, the total delay per cycle is computed using Equation (7.11).

Figure 7.5 compares the total delays per cycle from the simulation and from the
model. The left column represents the results computed between intersections 1 and
2. From top to bottom, the figure represents the total delay per cycle computed by
the model, the microsimulation and the difference between the microsimulation and the
model. The results are presented as functions of the red time R and the offset t;,. The
model underestimates the total delay by about 20% on average. The two surfaces have
extremely similar shapes. The total delays computed by the simulation and by the model
exhibit a similar dependency on the parameters (red time and offset), which implies that
the assumptions of the models are reasonable for signal control.

The model is relevant to obtain better understanding of traffic flow dynamics and
study problems for which the value of the objective function is not as important as gaining
intuition on the response of a corridor to a change in the values of the parameters. The
traffic signal optimization problem is a good application of the model because the key point
of this problem is to obtain the value of the optimal control and not the one of the minimal
total delay. Even though the minimal value of the total delay is underestimated by about
20% by our model, the optimal control derived by the model and by the simulation are
close due to the similar shapes of the surfaces representing the total delay.

From a hydrodynamical theory point of view, if we consider an intersection with
uniform arrivals (a single stream of density p and duration C'), there are exactly three

105



Model

Total Delay per Cycle (minutes)

30

0
Offsettu (seconds) 1 Red Time R (seconds)

Simulation

: R

Total Delay per Cycle (minutes)

30

0
Offset tﬂ (seconds) 10 Red Time R (seconds)
Comparison '
5.
2l

Difference in total delay per cycle
{simulation minus model} {minutes)

30

0
Offsettu (seconds) L Red Time R (seconds)

Figure 7.5: Comparison of the total delay computed by the microsimulation and by the
model. Top: Total delay per cycle computed by the model. Center: Total delay per
cycle computed by the microsimulation. Bottom: Difference between the total delay per
cycle computed by the microsimulation and by the model.
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streams downstream of the intersection (red time with density zero and duration R,
queue discharge with density p. and duration 7 and residual green time with density p
and duration C' — (R+7)). The differences in the computation of the total delay between
the model and the microsimulation do not result from the three-stream approximation.
The 20% error may be due to the triangular shape of the fundamental diagram and to
the deterministic trajectories of the vehicles. This 20% difference between the model and
the simulation may be considered as a baseline error.

7.4 Discussion and conclusion

This work presents the derivations of a model of arterial traffic flow through signalized
intersections. This model allows the traffic flow to be characterized by a small number of
parameters. Moreover, the study of a corridor is made easier and analytical by the similar
structure of the arrival and the departure flows at each intersection.

The model provides an analytical solution to the classic problem of traffic light coordi-
nation. The total waiting time of the vehicles during a cycle is a quasi-convex function of
the offset between successive traffic signals. The proof of this quasi-convexity property is
used to derive the optimal control analytically. For a corridor with multiple intersections,
this analysis provides optimal control for the traffic signal at an intersection as a function
of the departure streams of the upstream intersection.

After a few intersections, the analysis shows that the choice of the optimal offset
leads to a green wave, an intuitive optimization of the offset on a corridor. The results
go beyond recalling that the formation of a green wave is the optimal control strategy
on a corridor. They provide analytical optimal control strategies for the choice of the
offsets, as a function of the arrival streams. This provides valuable information for a real-
time implementation with timely adaptation of the control strategies as traffic conditions
change, since it does not require additional computation. Given flow measurements from
sensors, the traffic signals can compute the optimal offset from the analytical expressions
derived in this article. In particular, no online optimization is necessary which is crucial
to implement real-time control strategies. The implementation of such algorithms have
become a realistic approach to real-time traffic signal control in the recent years, with the
emergence of novel sensing technologies available for online control [8].

This model is not limited to the one-way synchronization problem and could be applied
to model the flow in numerous arterial traffic situations. The two-way corridor can be
studied with the same method and preliminary results are available in [21]. In a similar
fashion, the modeling approach presented in the present chapter can be generalized to a
network. This network generalization requires to take into account additional specifities
of traffic flow such as conflicting flows which may cause delays in the intersection. In
a congested regime, it is optimal to optimize the direction of traffic with the longer red
light duration. In addition to traffic lights synchronization, this model has potential
applications to model the probability distribution of travel times on arterial corridor.
In particular, we are interested in the additional accuracy provided by the three-stream
approach compared to models which do not take into account light synchronization and
assume constant arrival rates as done in Chapter 4 and in [90, 87].
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Chapter 8

Conclusion

This thesis presents novel large scale modeling and estimation algorithms of urban traffic
dynamics. The thesis focuses on the integration of hydrodynamic theory and statistical
modeling in order to accurately represent the physical characteristics of traffic flow and
capture the intrinsic variability of traffic dynamics. From hydrodynamic theory, the thesis
derives parametric, analytical expressions for the probability distributions over the loca-
tion of vehicles between intersections as well as for the probability distributions of delays
and travel times between any two points on the road network.

Sparsely sampled probe vehicle data appears to be the main source of available data
for arterial networks with the prospect of coverage in the near future, at a global scale. For
this reason, it is essential that modeling and estimation techniques be designed to leverage
data from sparsely sampled probe vehicles. The specific design of algorithms to extract
valuable information from sparse and noisy probe vehicle data is the main contribution
of this thesis and is essential to develop the next generation of traffic information and
management systems. The main features of the approach which makes it particularly
adapted to probe vehicle data are the following:

e The statistical modeling approach provides a framework to learn the dynamics his-
torically and estimate traffic conditions in real-time from limited amounts of data.
The dynamics are learned from large amounts of historical data. In real time, the
statistical model leverages the historical learning to provide estimates of the traffic
conditions. The historical learning increases the robustness of the real-time esti-
mates when little data is available. This feature is important as the penetration
rate of probe vehicles remains limited, in particular because of the diversity of data
providers. Besides the robustness to missing data, statistical models are more ro-
bust to noise and are able to filter outliers and to detect deviations from the learned
dynamics.

e The underlying physical model of hydrodynamic theory leads to a parametric model
in which the parameters have physical interpretations. This property of the model
increases the robustness to missing data. When the parameters are learned from
historical data or updated in real-time, bounds on their minimum and maximum
values and constraints between the variables can be added to represent the physical
phenomenon. These bounds and constraints restrict the feasible set of solutions and
ensure the quality of the solution when little data is available or when measurements
are noisy.

e The statistical modeling approach captures the intrinsic variability of traffic dy-
namics. The current penetration rate of probe vehicles and the low sampling rates
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do not provide sufficient information to fully characterize the macroscopic traffic
state (flow, velocity, density) at each point of the network and at each time. As
this precise characterization cannot be achieved, it is necessary to have a statisti-
cal approach to represent the various traffic conditions experienced by the vehicles
traveling on the network at similar times. This variability of traffic conditions is
mainly due to the presence of traffic lights which induce queues which form and dis-
sipate periodically, leading to important differences in the delay experienced by the
vehicles. This variability is not taken into account when only a mean travel-time is
provided. The thesis also argues that common distributions (Gaussian, Log-Normal,
Gamma) do not fully capture the variability phenomenon.

The travel time distributions are derived between arbitrary locations on an arte-
rial link. This feature is essential as probe vehicles report their position at a low
frequency (on average once per minute) and the location reports do not coincide
with the network discretization and a finer discretization would require learning
additional parameters with important risks of over-fitting.

Besides the modeling and estimation of traffic conditions, the thesis presents other
applications of probe vehicle data for Intelligent Transportation Systems. The
derivations of the density of probe vehicle measurements can be used to automati-
cally detect the presence of traffic signals (either traffic lights or stop signs) which
is a key component of digital map databases and Geographic Information Systems,
in particular for routing applications, as well as to develop automated or assisted
driving capabilities.
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Appendix A

Derivation of the probability
distribution of total delay between
arbitrary locations in the congested
regime

We derive the probability distribution of travel times for vehicles traveling from a location
21 to a location x5 on the link. As in the previous notations, x represents the distance to
the intersection.

We call n; the maximum number of stops in the remaining queue experienced by the
vehicles between the locations x; and w9, and omit the indices x; and x5 for notational
simplicity. In the duration of a light cycle, the distance traveled by vehicles stopped in
the queue is l.¢. Thus, the maximum number of stops in the remaining queue, between
1 and o,

min(zy, ) — min(xs, I,)
ng = :
lmax
The delay experienced when reaching the triangular queue is readily derived from
the expression of the delay in the undersaturated regime. The delay experienced when
reaching the remaining queue is the duration of the red time R. The expression of the
delay at location z is then

R if v <,
0°(x) = { Rbtma=t if g € [l ], + lpay]
0 if © > 1, + lyax

A.1 Case 1: z; is upstream of the total queue and x, is
in the remaining queue

Condition 1: 1 > I, + lpax 22 <,

Since x; is upstream of the total queue and x5 is in the remaining queue, all the vehicles
stop once in the triangular queue between x; and x,. We define the critical location x,
as the location in the triangular queue such that

e Vehicles reaching the triangular queue upstream of x. stop ng times in the remaining
queue. They represent a fraction Hllf“#“ of the vehicles entering the link in a cycle.

max

e Vehicles reaching the triangular queue downstream of x. stop n, — 1 times in the
remaining queue. They represent a fraction "”f—’“ =1- “Jrllm# of the vehicles

entering the link in a cycle. - o
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spacet time

- Vehicles stopping in the triangular queue only

Figure A.2: Case 2: Some vehicles stop in the triangular queue. The others do not
experience delay.

The location x. is given by x. = X3 + nglmax.

The values of the minimum and maximum delays are given by dyin = (ns—1)R+0%(x.)
and Opax = nsR 4 §°(x.). The delay experienced by the vehicles is uniformly distributed
on [Omin, Omax)-

We note that n, > 1 since x5 < ,.

space

€y -
- Vehicles stopping in the triangular queue
and n, times in the remaining queue

7///% Vehicles stopping in the triangular queue

and n, -1 times in the remaining queue

Figure A.1: Case 1: All the vehicles stop in the triangular queue. A fraction stops ng
times in the remaining queue, the other ones stop ng — 1 times.

A.2 Case 2: z; and x5 are upstream of the remaining
queue

Condition 2: z; > [, 9 >,

Given that x5 is upstream of the remaining queue, this case is similar to the under-
saturated regime. A fraction of the vehicles does not experience delay between x; and x».
The vehicles reaching the queue between x; and x5 experience a delay in the triangular

queue. This delay is a random variable, uniformly distributed on [§¢(x1), 0°(x2)].
min(Imax+ir,z1)—min({max+1r,22)

lmax

The fraction of vehicles experiencing delay is 73, ., =
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A.3 Case 3: r; is in the remaining queue, and thus so
1S i)

Condition 3: x1 < I, (which implies x5 < I,.)

The path starts downstream of the triangular queue. Some vehicles stop n, times and
experience a delay ngR and the other vehicles stop ng — 1 times and experience a delay
(ns — 1)R.

We define the critical location z. as the location in the remaining queue such that

e Vehicles joining the queue between z; and x. stop ng times between x; and z».
Their stopping time is ngR and they represent a fraction (z7 — 2.)/lnax of the
vehicles entering the link in a cycle.

e Vehicles joining the queue between z. and . — [, stop ns— 1 times between x; and
x9. Their stopping time is (ns — 1) R and they represent a fraction 1 — (x1 — x.) /lmax
of the vehicles entering the link in a cycle.

The critical location z, is given by z. = x5 + (ns — 1)l ax-

space

]Illil.X

% Vehicles stopping n; times in the remaining queue

Vehicles stopping n, -1 times in the remaining queue

Figure A.3: Case 3: A fraction of the vehicles stop ns times in the remaining queue. The
rest stop ng — 1 times in the remaining queue.

A.4 Case 4: x; is in the triangular queue, z- is in the
remaining queue

We distinguish two different cases to derive the probability distribution of travel times.
We define the critical location z. as . = x9 + nglnax and derive probability distributions
of travel times for the two subcases 4a (z. < z1, Figure A.4 (top)) and 4b (z. > xy,
Figure A.4 (bottom)).

Case 4a. x. < x1. The delay patterns are the following:

— One stop in the triangular queue and ng stops in the remaining queue. The
queue is first reached between x; and z.. The delay is a random variable with
uniform distribution with support [0°(x1) + nsR, §°(x.) + nsR]. The vehicles
following this pattern represent a fraction %—%< of the vehicles entering the
link in a cycle.
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— One stop in the triangular queue and ng — 1 stops in the remaining queue.
The queue is first reached between z. and [,.. The delay is a random variable
with uniform distribution with support [0(z.) + (ns — 1) R, 0°(1,) + (ns — 1) R].
Noticing that §°({,) = R, we derive that the support of the delay distribution
is [0°(z.) + (ns — 1)R, nsR]. The vehicles following this pattern represent a

fraction ””lc—“ of the vehicles entering the link in a cycle.

nax

— No stop in the triangular queue and n, stops in the remaining queue. The
queue is first reached between [, and x; — l,,.x. The delay is nyR. The vehicles

following this pattern represent a fraction % of the vehicles entering
the link in a cycle.

We can check that the weights of the different components sum to 1:

T — Te xc_lr+lr_(x1_lmax):1
lmax lmax lmax

We remark that, zo < [, implies that ny, > 1. Then using the definition of x.,

T, = T9 + Nglmax and the fact that x; > z., we prove that 1 — . > 2 and all

vehicles reach the queue between xy and 1 — lax.

Case 4b. z. > x1. The delay patterns are the following:

— One stop in the triangular queue and ngy — 1 stops in the remaining queue. The
queue is first reached between x; and [,.. The delay is a random variable with
uniform distribution on [§°(x;) + (ns — 1)R, d°(1,) + (ns — 1)R], i.e. uniform
distribution on [6(z1) + (ns — 1)R, nsR]. The vehicles following this pattern

represent a fraction xll_“ of the vehicles entering the link in a cycle.

— No stop in the triangular queue and ng stops in the remaining queue. The
queue is first joined between [, and x. — l.. The delay is ngR. The vehicles

following this pattern represent a fraction lr_(glgc—_lm“) of the vehicles entering
the link in a cycle.

— No stop in the triangular queue and ny; — 1 stops in the remaining queue. The
queue is first joined between z. — I, and x1 — lyax. The delay is (ns — 1)R.
The vehicles following this pattern represent a fraction %= of the vehicles
entering the link in a cycle.

We can check that the weights of the different components sum to 1:

lr_ c_lmx _lr c
(x a)+x1 +x T _

lmax lmax lmax
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Space time

B ) B T e YTt e ————— PP
lmax
19+ lpax | € _ I T G772 ...
[ma.x
Lo ¢ 2 .. %
1 I e . T T

- Vehicles stopping in the triangular queue
and n times in the remaining queue

- Vehicles stopping in the triangular queue
and n, -1 times in the remaining queue

E Vehicles stopping n, times in the remaining queue

space time
e T e S

ro + [max

.‘171 -

Te

- Vehicles stopping in the triangular queue
and n, -1 times in the remaining queue

% Vehicles stopping n, times in the remaining queue
- Vehicles stopping ns-1 times in the remaining queue

Figure A.4: Case 4: (Top) Case 4a: a fraction of the vehicles stop in the triangular queue
and ng times in the remaining queue, a fraction of the vehicles stop in the triangular
queue and n, times in the remaining queue, the rest stop n, times in the remaining queue.
(Bottom) Case 4b: a fraction of the vehicles stop in the triangular queue and ns — 1
times in the remaining queue, a fraction of the vehicles stop n, times in the remaining
queue, the rest stop ng — 1 times in the remaining queue.
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