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Abstract 

Abstract : 
 

 Les chloroplastes, responsables de la photosynthèse chez les organismes autotrophes, 

possèdent un génome plastidial codant de 100 à 130 gènes dont environ 80 pour des protéines 

principalement impliquées dans la photosynthèse, la transcription et la traduction. 

L'expression de ces gènes, coordonnée entre le plaste et le noyau, implique deux types d'ARN 

polymérases, la NEP (Nucleus Encoded RNA Polymerase) et la  PEP (plastid Encoded RNA 

Polymerase) laquelle s‟associe à l‟un des 6 facteurs sigma (SIG), codés dans le noyau pour la 

reconnaissance spécifique de promoteurs de transcription.  

 Nous avons tout d‟abord analysé le rôle de ces facteurs sigma dans la régulation 

transcriptionnelle des deux opérons codant des sous-unités de l‟ATP synthase, atpI/H/F/A et 

atpB/E, en précisant le rôle particulier de SIG3 dans la reconnaissance spécifique du 

promoteur (-418) de l‟atpH. Nous avons identifié les promoteurs des transcrits 

polycistronique et ceux situés en amont des gènes atpH et atpE, et avons montré (1) que les 

gènes des deux opérons sont co-régulés par SIG3 et SIG2 sauf atpI régulé par SIG2 seul et 

(2), que SIG3 jouerait un rôle essentiel dans la surexpression monocistronique d‟atpH par la 

reconnaissance d‟un promoteur (-418) en amont de atpH. L‟analyse systématique des 

transcrits plastidiaux accumulés en fonction de l‟éclairement des plantes nous a permis de 

corréler cette surexpression à un éclairement élevé (1300 µE) de plantes matures. 

 SIG3 reconnaît aussi spécifiquement le promoteur de psbN, gène localisé sur le brin 

opposé de l‟opéron psbB/T/H/petB/petD, produisant un ARN anti-sens de psbT et de la région 

intergénique psbT/psbH. Nos résultats montrent que l‟anti-sens de psbT couvre la région 

codante, le 5'UTR et la quasi-totalité 3' UTR  du transcrit sens psbT, pouvant ainsi réguler la 

production de PSBT en interférant dans la traduction par la formation d‟un duplex ARN. 

L‟anti-sens pourrait aussi intervenir dans le processing dans la région 5‟ UTR de psbH.   

  

Chloroplasts, responsible for photosynthesis in autotrophic organisms, have a genome 

containing 100-130 genes, 80 of which code for proteins mainly involved in photosynthesis, 

transcription and translation. Gene expression, involves two types of RNA polymerases, NEP 

(Nucleus Encoded RNA Polymerase) and PEP (Plastid Encoded RNA Polymerase). Six 

nucleus encoded sigma factors participate to PEP promoter specificity.  

We first have analyzed the role of sigma factors in the transcriptional regulation of the 

two atp operons, atpI/H/F/A and atpB/E, with special emphasis on the specific contribution of 

SIG3 to atpH gene expression. We identified the promoters responsible for polycistronic 
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transcripts and the internal promoters upstream of the atpH and the atpE genes. All genes of 

both atp operons are SIG3 and SIG2 dependent except atpI that is regulated by SIG2 only. 

The monocistronic -418 initiated atpH mRNA might contribute to the higher stoichiometry of 

atpH. A systematic analysis of plastid gene expression under different light conditions 

showed that SIG3 plays an important role in the transcript accumulation of atpH in high light 

(1300 µE) in mature plants.  

Similarly, SIG3 also recognizes specifically the promoter of psbN located between 

psbT and psbH but on the opposite DNA strand and producing an anti-sense RNA to psbT. 

We showed that the anti-sense RNA covers the coding region, the 5‟ UTR and almost the 

entire 3‟ UTR of the psbT sense transcript and thus might regulate the expression of the psbT 

gene by interfering in the translation of psbT mRNA via duplex formation. It could also be 

necessary for a processing event in the 5‟ UTR of psbH. 
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1. Plastids 

Plastids are cellular organells which are responsible for photosynthesis in autotrophic 

organisms like plants and algae. In contrast to many algal cells which contain a single 

chloroplast, mature cells of a plant leaf can have 100-150 plastids. Lens-shaped chloroplasts 

are 1 to 3 μm on their short axis and 5 to 8 μm on their long axis (Staehelin, 2003). Several 

authors (Mullet, 1988; Pyke & Leech, 1992) found 10-14 proplastids (undifferentiated 

plastids) of 1 μm diameter in each meristematic cell. It has been observed that the number of 

chloroplasts per cell depends on the size of the cell (Pyke & Leech, 1992) and that 

chloroplasts divide by binary fission in mature cells. Like in the bacterial cells, cytoskeletal 

proteins such as FtsZ form constriction rings at the mid-section of the dividing chloroplast 

(Osteryoung & Nunnari, 2003). In the mutants defective in chloroplast division (Robertson & 

Leech, 1995), there is a decreased number of chloroplasts (2 or more) but they are of large 

size, occupy the same volume and show similar photosynthetic capacity.  

Plastids are surrounded by one envelope composed of two membranes. This envelope 

not only gives a shape to the plastids but also posses specific transport systems for the 

exchange of proteins and other metabolites. The outer membrane having larger pores is less 

selective while the inner membrane has a more selective and specific transport system (Ferro 

et al., 2002; Soll & Schleiff, 2004). Transport complexes on the outer (TOC) and inner (TIC) 

membranes interact with each other as the envelope membranes are tightly appressed 

(Nishizawa & Mori, 1989; Park et al., 1999; Sluiman & Lokhorst, 1988).  

Proplastids of the seedlings grown in the dark are arrested to a transition state called 

etioplasts. Etioplasts have tubular network of membrane material called the prolamellar body.  

When etioplasts are exposed to light, they are rapidly transformed into chloroplasts. At the 

same time prolemellar bodies are transformed to thylakoid membrane system. During 

chloroplast development there is an increase in size and number of plastids, appearance and 

expansion of the thylakoid membrane and assembly of the energy transduction 

complex/processes contained within this membrane. Thylakoid membranes were found to 

develop by invagination of the inner membrane (von Wettstein, 2001), in rapidly greening 

cells of the alga Chlamydomonas reinhardtii (Hoober et al., 1991) and in cryofixed 

developing chloroplasts in rice seedlings (Bourett et al., 1999). The inner membrane 

invaginations produce vesicles which fuse to form thylakoid system. The thylakoid 

membrane, separate from the inner envelope membrane, is differentiated into cylindrical 

stacks of “appressed” membranes, called “grana”, that are interconnected with “unappressed”, 
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stromal membranes. The highly elaborated, folded membrane system encloses a single, 

continuous lumen, which is an important compartment for the process of photosynthesis. This 

arrangement seems to maximize efficiency of the overall process.  

Plastids have their own genome of 75-200 kilo base pairs. They can have as many as 

10,000 genomes per cell depending upon the physiological state of the cell. The plastid 

genome contains 100-130 genes which encode ribosomal and transfer ribonucleic acids 

(rRNAs and tRNAs) and about 80 proteins mainly involved in photosynthesis, plastid gene 

transcription and translation. For example, the plastid genome of arabiopsis is composed of 

154,478 bp (154.5 kb). It contains 87 protein coding genes, 4 ribosomal RNA genes and 37 

tRNA genes (Fig.1). Due to the gene loss/transfer from the early plastid genome, plastids lost 

their autonomy as they encode a rather small number of proteins (around 90) although their 

proteome consists of 2500 proteins. 

Figure 1. A.thaliana chloroplast DNA (inner circle: clock wise, outer: counter-clockwise). Function: 

transcription (red), translation (yellow), photosynthesis (green), tRNA (black), other (gray), unknown (orange). 

Sequence: AP000423.  See (Sato et al., 1999).  

http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Ribonucleic_acid
http://en.wikipedia.org/wiki/RRNA
http://en.wikipedia.org/wiki/TRNA
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Photosynthesis
http://en.wikipedia.org/wiki/Transcription_(genetics)
http://en.wikipedia.org/wiki/Translation
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Evidently, the plastid-encoded proteins are not sufficient for the efficient performance 

of the functions attributed to them. The majority of plastid proteins are encoded in the nucleus 

that are translated in the cytoplasm and transported to the plastids. The expression of nuclear 

and plastid genes need to be highly co-regulated for proper plastids‟ functionality.  

The different types of plastids will shortly be described now. The nomenclature for 

different types of plastids is mainly taken from book titled “ The Structure and Function of 

Plastids” edited by (Robert & Kenneth, 2007). 

1.1. Proplastids 

Proplastids are small (0.5 to 1 μm in diameter) and undifferentiated organelles. 

Internal membrane system of proplastids is not well defined as it has only a few tubules which 

are connected to the inner membrane of the proplastid envelope (Whatley, 1977). The 

proplastids found in meristematic tissues, embryonic tissues and tissue-cultured cells are 

called germinal proplastids. All other types of plastids develop as a result of differentiation of 

germinal plastids (Lancer et al., 1976; Pyke, 1999). Very little is known concerning the 

proplastid activity but a high level of gibberellic acid accumulation in meristematic tissue and 

developing seeds indicates that the proplastids might be involved in the biosynthesis of 

gibberellic acid. The discovery of colocalisation of ent Kaurene synthase (an important 

enzyme in gibberelic acid biosynthesis) with proplastids in developing wheat tissues further 

supported this idea (Aach et al., 1997). 

A particular form of proplastids named „nodule plastids‟ is found in nodule cells 

where nitrogen fixation takes place. They play an important role in the incorporation of the 

fixed nitrogen into a large number of metabolites.  

1.2. Chloroplasts  

Chloroplasts are green plastids (the colour is due to the high content in chlorophyll), 

which are present in leaves and unripe fruits of plants. Chloroplasts are essential for 

photosynthesis but they also take part in many metabolic reactions like biosynthesis of 

pigments, vitamins, plastoquinone and phylloquinone (vitamin K), fatty acids and lipids, 

aromatic and non aromatic amino acids, nitrogenous bases (purines and pyrmidines), 

isoprenoids and tetrapyroles. They are also involved in carbon oxidation via photorespiration 

(Ogren, 1984), in the starch synthesis and in a number of other metabolisms.  

 



Introduction 

 

5 

 

1.3. Chromoplasts 

  „Chromo‟ stands for colour. Chromoplasts are brightly coloured plastids found in 

fruits, flowers, and even in some root cells. They develop from chloroplasts in ripening fruits 

(Bouvier et al., 1998) while in other tissues they may arise from proplastids (Ljubesic, 1972). 

Deruere and collaborators found that chromoplasts contain fibrils, composed of 

supramolecular structures that contains a carotenoid core, a layer of lipid, and an outer layer 

composed of fibrillin (Deruere et al., 1994). Carotenoids can be of red, yellow or orange 

colour (Juneau et al., 2002). Chromoplasts are involved in pigment synthesis and storage. 

Chromoplasts lack both thylakoid membranes and photosynthetic apparatus. They help 

attracting the pollinators and fruit dispersing animals by their bright colour. Carotenoids such 

as β-carotene found in carrots and lycopene found in tomatoes act as antioxidants in the 

human diet (Yeum & Russell, 2002). 

1.4. Etioplasts 

Shoot proplastids differentiate in the presence of light. If there is no light or extremely 

low light, proplastids are developmentally arrested during the transition from proplastids to 

chloroplasts. These developmentally arrested plastids are called etioplasts. They are found in 

dark grown stem and leaf tissues but not in root tissues grown in dark (Newcomb, 1967). The 

structure of etioplasts is characterized by the presence of a complicated prolamellar body 

(PLB) composed of tetrahydrally branched tubules arranged in symmetry (B. E. S. Gunning, 

2001; Kirk & Tilney-Bassett, 1967). Carotenoids are needed for the stabilisation of the PLBs. 

PLBs develop in the darkness (Park et al., 2002) and they have plastoglobuli and ribosomes 

trapped inside the PLBs (B. E. S. Gunning, 2004). PLBs also contain protochlorophyllide a 

which is a precursor molecule of chlorophyll a. When the exposed to light, PLBs are 

converted to thylakoid membranes and etioplasts are then converted into chloroplasts. 

Induction of etioplast formation in dark and the ability of etioplast to develop into chloroplast 

in light had made it an attractive system for the study of  disruption of PLB structure, 

chlorophyll synthesis and thylakoid and chloroplast development (Baker & Butler, 1976; 

Krishna et al., 1999; Leech, 1984). Wellburn & Hampp (1979) reported that when the 

etioplasts are exposed to light, photosysem I (PSI) activity can be measured within 15 

minutes, photosystem II (PSII) within 2 hours and water-splitting, proton pumping and ATP 

formation within 2 to 3 hr. As etioplast to chloroplast transition is a step-wise controlled 

process, the assembly of the various photochemical complexes is easy to dissect and 

understand Lebkuecher et al. (1999).  
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1.5. Leucoplasts  

„Leuco‟ stands for „white‟. Leucoplast is the term used to categorize colourless, non-

pigment-containing plastids. They store a variety of large molecules like starch in 

nonphotosynthetic tissues. They are usually found in roots responsible for monoterpene 

synthesis. They also lack both thylakoid membranes and photosynthetic apparatus. 

1.6. Amyloplasts  

Amyloplasts participate in starch storage having one to many large starch grains. They 

have a minimal internal membrane system. The presence of starch grains make them capable 

of graviperception. Like nodule proplastids, amyloplasts of some species like that of alfalfa 

(Medicago sativa) also contain a key enzyme of the glutamate synthase (GS-GOGAT) cycle 

and participate in nitrogen assimilation (Trepp et al., 1999). 

1.7. Elaioplasts 

They are also called as “elioplasts.”  They are usually small and round plastids. 

Presence of numerous oil droplets dominates their internal structure. Elaioplasts are oil-

containing leucoplasts as they store fats. Their name is derived from “elaiov” which means 

olive.  Among the proteins found in elaioplasts, plastoglobule associated proteins (PAP) such 

as fibrillin are predominating (Hernandez-Pinzon et al., 1999; Wu et al., 1997). They play an 

important role in pollen maturation (Hsieh & Huang, 2004; Pacini et al., 1992; Ross et al., 

2000; Ting et al., 1998). The elaioplast sterol lipids coat the outside of the pollen grain, 

whereas the PAPs are degraded and do not appear in the coat (Hernandez-Pinzon et al., 1999).  

1.8. Proteinoplasts  

They are also called “proteoplasts”.  They are specialised for storing and modifying 

proteins. They were identified as plastids containing especially large and visible protein 

inclusions (Bain, 1968; Esau, 1944; Hurkman & Kennedy, 1976; Newcomb, 1967; Thomson 

& Whatley, 1980).  

1.9. Gerontoplasts 

„Geronto‟ stands for “old man”. During the senescence of foliar tissue it develops from 

a chloroplast (Harris & Arnott, 1973; Parthier, 1988). Gerontoplasts develop as a result of 

unstacking of grana, loss of thylakoid membranes of chloroplasts and a massive accumulation 

of plastoglobuli (Harris & Schaefer, 1981). They play an important role in controlled 

dismantling of the photosynthetic apparatus during senescence. 
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 Differrent types of plastids and their interconversions are depicted in Figure 2. 

 

Figure 2. Types of plastids and their inter conversion (redrawn and revised from  Møller (2005) and 

Robert & Kenneth (2007).   
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2.    Origin of plastids 

Plastids originated one billion (for some scientists 1.2-1.5 billion years) years ago as a 

result of an endosymbiotic event between an ancient cyanobacteria and a eukaryotic cell. 

(Martin & Russell, 2003; Palmer, 2003) proposed that the eukaryotic host in the 

endosymbiotic origin of plastid was a mitochondriate eukaryote. During the course of 

evolution, these endosymbionts lost most of their genome and from autonomous organisms 

they became semi autonomous cellular organelles. Due to the gene loss/transfer from the 

plastid to the nucleus, mechanisms were developed for organelle biogenesis and metabolite 

exchange (Dyall et al., 2004). 

Like the endosymbiotic origin of plastids, mitochondria originated more than 1.5 

billion years ago from -proteobacterium like ancestor as a result of a single ancient invasion 

of an Archea type host (Gray et al., 1999). Some scientists believe in concurrent origin of 

eukaryotes and mitochondria (Martin et al., 2001; Martin & Muller, 1998; Moreira & Lopez-

Garcia, 1998). There are two theories of mitochondrial origin, an anaerobic and an aerobic 

origin. Concerning the anaerobic origin, the methanotrophic proteobacterium provides 

essential compounds like hydrogen to the methanogenic archaean host (Martin & Muller, 

1998). Those who believe in aerobic origin of mitochondria say that an aerobic 

proteobacterium invaded an anaerobic host (Andersson et al., 2003).  

 Schimper (1883) proposed probably for the first time that chloroplasts evolved as a 

result of symbiosis between non-photosynthetic host and a photosynthetic endosymbiont. This 

hypothesis was further supported/developed by Mereschkowsky (1905) that described plastids 

as “ Little workers, green slaves” and reduced forms of cyanobacteria. The discovery of DNA 

in the chloroplast by Ris & Plaut (1962) further supported the endosymbiotic origin of 

plastids. This idea became generally accepted at the end of 1960s. On the basis of the 

different types of endosymbiosis, plastids were classified as primary, secondary and tertiary 

plastids which originated as a result of primary, secondary and tertiary endosymbiosis 

respectively. There has been a long standing debate regarding the monophylytic and 

polyphylytic origin of primary plastids.  If we consider that a single mitochondriate eukaryote 

took up a single cyanobacterial host at a single moment of time and established a stable 

relationship with it which resulted in the gene transfer and integration of the endosymbiont as 

an organelle, this will be considered as monophylytic origin of primary plastid. If a single 

mitochondriate eukaryote established a stable relationship and integration of the 

endosymbiont as an organelle took place after taking up a single/multiple cyanobacterial host 
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at more than one moment of time, this will be considered as polyphylytic origin of primary 

plastid. Recently plastid origin from a single ancestor at a single point in time was viewed as 

an oversimplification by Larkum et al. (2007b) and a “shopping bag model”  has been 

proposed for the origin of primary plastids (Howe et al., 2008; Larkum et al., 2007a; Larkum 

et al., 2007b). According to this model, the first endosymbiont might have persisted during 

certain rounds of host cell divisions and there might have been gene transfer from the 

endosymbiont to the host cell nucleus but finally this endosymbiont was lost. The successful 

integration of the endosymbiont as an organelle resulted after multiple rounds of intake and 

loss of the endosymbiont over a long period time.  

 

3. Photosynthesis 

 It is a metabolic pathway that takes place in autotrophic organisms like plants, algae, 

cyanobacteria and in some aquatic animals/plants which can have both autotrophic as well as 

heterotrophic mode of life. Heterotrophic organisms cannot directly utilize light energy for 

their physiological or metabolic needs. Only the autotrophic organisms can convert light 

energy into chemical energy. In plants, photosynthesis takes place in green parts having 

chloroplasts in them. The specialized light absorbing green pigment of chloroplast is the 

chlorophyll which is found in thylakoids of chloroplast. The mesophyll of the leaves of higher 

plants is the most active photosynthetic tissue as it has large number of chloroplasts. 

Plant chloroplasts use solar energy to oxidize H2O, reduce CO2 to synthesize organic 

compounds (carbohydrates; primary sugars) and at the same time to produce O2 as a 

byproduct. 

This complex reaction can be expressed in a simplified form in the form of following 

equation:  

6 CO2    +           12 H2O +        photons        →   C6H12O6        + 6 O2  + 6 H2O  

On the basis of utilization of light, photosynthesis could be separated in two phases: 

1. Light dependent reactions: In these reactions sun light electromagnetic 

radiations are captured by chlorophyll and used to make high energy 

molecules. Water is oxidized to oxygen, NADP
+
 is reduced to NADPH and 

ATP is produced.   

2. Calvin Cycle: These reactions utilize the high energy products of light 

dependent reactions to fix CO2 to make carbohydrates.  
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3.1. Light reaction 

It takes place in the internal membranes, thylakoids, of the chloroplast. The light cycle 

is completed with the help of four major protein complexes: photosystem I (PSI), cytochrome 

b6-f complex, photosystem II (PSII) and the ATP synthase. These membrane complexes are 

the integral membrane complexes and are found vectorially in the thylakoid membranes. 

Orientation of these four complexes results in the oxidation of water to oxygen in the 

thylakoid lumen, reduction of NADP
+
 to NADPH on the stromal side of the membrane and 

the release of ATP molecules into the stroma as the protons (H
+
) move from the lumen to the 

stroma. The photosystems (PSI and PSII) are spatially separated, physically and chemically 

different and each one has its own antenna pigments and photochemical reaction center. 

Electron transport chain links the two photosystems. The PSI reaction center, its antenna 

pigments, its electron transfer proteins and coupling factor enzyme are found in stroma 

lamellae and at the edges of the grana lamellae while PSII reaction center, its antenna 

chlorophylls and its electron transfer proteins are predominantly found in stacked regions of 

grana lamellae. Stroma lamellae are the exposed thylakoid membranes which lack stacking 

while grana lamellae are the stacked thylakoid membranes. The ATP synthase is located in 

the less curved regions of the grana end membranes and stroma lamellae (Daum et al., 2010). 

The antenna pigments are the pigments which collect light and transfer the energy to the 

photochemical reaction center where chemical reaction leads to long term energy storage. The 

antenna pigments consist of carotenoids, also called accessory pigments, chlorophyll b and 

chlorophyll a. The absorption spectrum of carotenoids is 400-500 nm while that of 

chlorophyll a is ≈ 430 and chlorophyll b is ≈ 450 nm. The energy transfer from carotenoids to 

chlorophyll is less efficient than from chlorophyll to chlorophyll. Carotenoids also play the 

role of photoprotection and avoid the production of nascent/ single oxygen. If the excited state 

of the chlorophyll is not quenched rapidly, a reaction excites the molecular oxygen to produce 

nascent oxygen which is hyper active and can cause damage to cellular components.  

PSII, cytochrome b6-f and PSI complexes are arranged in Z (zigzag) scheme. Transfer 

of excited electrons between a series of electron donors and acceptors is empowered by light 

energy. NADP
+
 is the final electron acceptor and is reduced to NADPH. Proton motive force 

produced across the thylakoid membranes by the light energy and the resulting proton 

gradient are used by ATP synthase to produce ATP molecules. So the end products of light 

cycle, high energy molecules ATP and NADPH, are then used in the dark cycle during the 

CO2 fixation. 
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3.1.1. Photosystem II and cytochrome b6-f complex 

Oxygenic photosynthesis in all photosynthetic organisms starts in a homodimeric 

multisubunit protein–cofactor complex which is embedded in the thylakoid membrane and is 

called PSII (Kern & Renger, 2007).  

PSII is located in grana thylakoids and forms a supra molecular complex composed of 

polypeptides, pigments and co-factors. The protein subunits are either plastid or nucleus 

encoded. Water splitting complex oxidizes water and is also known as oxygen evolving 

complex (OEC). The reaction center is composed of several small polypeptides and 

homologous D1 and D2 proteins which are encoded by plastid psbA and psbD genes, 

respectively. The reaction center pigment (P680) receives the light energy directly or 

indirectly from the antenna pigments. The light energy causes an intramolecular 

rearrangement of the electrons and P680 changes from the ground state to the excited state 

(P680*). Then there is an intermolecular transfer of electrons from an electron donor (P680*) 

to an electron acceptor (pheophytine). Pheophytine is reduced by accepting electrons from 

P680*.  The water splitting complex splits two molecules of H2O into 4 protons, 4 electrons 

and a molecule of oxygen. This reaction can be shown as under:  

2H2O → 4H
+
 + 4e

-
 + O2 

The electrons produced as a result of water splitting are then transferred to to a redox-

active tyrosine residue, also called Z or YZ molecule, which reduces photoxidized P680 by 

transferring electrons to it. High energy electrons enter into an „Electron Transport Chain” as 

pheophytine transfers these high energy electrons to the plastoquinone A (QA). Plastoquinone 

A transfers these electrons to the plastoquinone B (QB) which is a mobile electron carrier. The 

reduced QB transfers electron to the Cytochrome b6-f complex which consists of a rieske iron 

sulfur protein (FeSR), two b type cytochromes (cyt b) and a cytrochrome f with one covently 

bound heme c and subunit IV.  Rieske iron sulfur protein has two iron atoms bridged by two 

sulfur atoms. Cytochrome b6-f complex is distributed equally between the stroma lamellae and 

grana lamellae. But it is not the mobile carrier of electrons. Oxidised FeSR is reduced by 

accepting electrons from the reduced plastoquinone B and transfers theses electrons to 

cytrochrome f (cyt f). Cytrochrome f (cyt f) then transfers electrons to plastocyanin (PC). The 

reduced PC oxidizes itself by transferring electrons to the oxidized pigment (P700) of PSI. 

Along with the transfer of electron to oxidised FeSR, plastoquinone B also transfers an 

electron to one of the cyt b and releases its 2H
+
 in the luminal side of the membrane. This 

reduced cyt b oxidizes by reducing the second cyt b which in turn transfers its electron to the 
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oxidized plastoquinone. The plastoquinone gets a semi-quinone form by accepting one 

electron and is fully reduced by the similar flow of another electron. This reduced 

plastoquinone (quinol) oxidizes by picking protons from the stromal side of the thylakoid 

membranes and changes into plastohydroquinone. 

The net result of activity of the Cytochrome b6-f complex is the transfer of two 

electrons to the P700 (PSI reaction center) and transfer of four proton from the stromal side of 

the membrane to the lumenal side. The electrochemical potential produced as a result of 

proton gradient is used by ATP synthase to produce high energy ATP molecules.      

3.1.2. Photosystem I  

 PSI is located in thylakoids and consists of antenna chlorophylls, a reaction center 

(P700), phylloquinone, and iron-sulfur clusters. It is also a complex and highly organized 

trans-membrane structure. The light energy in PSI is also absorbed by the same trans-

membrane proteins as the one used by PSII. But here the maximum energy absorption is at 

700 nm so the pigment of chlorophyll is called P700. The overall reaction can be shown in the 

following way: 

  plastocyanin →  P700 →  P700
*
 → ferredoxin → NADPH  

      ↑                               ↓ 

     b6f           ←            plastoquinone b6-f  

When P700 absorbs energy, it obtains excited state (P700*). The electrons from P700* 

are transferred to ferrodoxin, a water soluble carrier, through a number of intermediate 

carriers. These electrons can have two different fates. The non cyclic electron transport and 

the cyclic electron transport. In non cyclic transport, the electrons are carried by ferredoxin to 

the enzyme ferredoxin NADP
+ 

oxidoreductase which reduces NADP
+ 

to NADPH. While in 

cyclic electron transport, electrons are transferred to P700 via a proton pump, cytochrome 

b6/f. The proton gradient is then used by the ATP synthase to produce ATP. NADPH and 

ATP are the end products of light phase which are used in the dark phase for carbon fixation 

and carbohydrate precursor synthesis. Photosystem I is composed of 19-21 protein subunits, 

175 chlorophyll molecules, 2 phylloqinone and 3 Fe4D4 clusters (Ben-Shem et al., 2003; 

Jensen et al., 2007). Among the protein subunits, it consists of 15 core subunits (PsaA-PsaL 

and PsaN-PsaP) while the peripheral antenna, LHCI, consist of six LHCa proteins (LHCa1-6) 

http://en.wikipedia.org/wiki/Iron-sulfur_protein
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but later on the existence of nine or ten LHCI proteins was also proposed but not yet 

confirmed (Dekker & Boekema, 2005). Most of the proteins of PSI are nucleus encoded and 

therefore should be transported from the cytosol to the plastid stroma and from stroma to be 

directed properly to the exact place in thylakoid membrane. This all renders it a great 

complexity.  Some proteins (PsaA, PsaB, PsaC and PsaJ) are also encoded by chloroplast 

genes which add to the complexity of PSI subunit assembly process.  

The electron flow from the PSII to cytochrome b6-f complex and PSI if schematically 

drawn in terms of it electric potential, forms a Z shape and hence called Z-scheme. It is 

depicted in Figure 3a. 

 

 
 

Figure 3a: Z-scheme of photosynthesis redrawn and revised from Shikanai (2007). 
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3.2. Calvin cycle 

The Calvin cycle consists of a series of biochemical reactions that take place in the 

plastid stroma, are light-independent and cyclic. The substrate for carboxylation (ribulose-1,5-

bisphosphate) is regenerated at the end of the cycle. The major enzyme involved in this cyclic 

reaction is RuBisCO (Ribulose-1,5-bisphosphate carboxylase oxygenase). It catalyses the 

carboxylation of a 5 carbon compound ribulose-1,5-bisphosphate by carbon dioxide in a two-

step reaction. The ATP and NADPH molecules produced in the light cycle are used as energy 

source in this cycle.  

 

Figure 3b: Schematic presentation of the components and mechanism of photosynthesis.            

(I used power point to modify the figure of Tameeria who created the figure in April 2007 based on: Taiz and 

Zeiger, “Light-dependent reactions of photosynthesis at the thylakoid membrane” Plant Physiology, 4th edition, 

ISBN 0-87893-856-7. The original figure is available on http://en.wikipedia.org/wiki/Photosynthesis). 

http://en.wikipedia.org/wiki/Ribulose-1,5-bisphosphate
http://en.wikipedia.org/wiki/Ribulose-1,5-bisphosphate
http://en.wikipedia.org/wiki/Ribulose-1,5-bisphosphate
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The ADP and NADP+ produced during the dark cycle are taken up by light cycle to 

convert them again into ATP and NADPH molecules. The sum of reactions in the Calvin 

cycle is the following: 

3 CO2 + 6 NADPH + 5 H2O + 9 ATP → glyceraldehyde-3-phosphate (G3P) + 2 H
+
 + 6 NADP

+
 + 9 ADP + 8 Pi 

In order to produce one mole of glyceraldehyde-3-phosphate (G3P), 3 moles of CO2 

are needed which require three runs of Calvin cycle during which 9 ATP and 6 NADPH 

molecules are used. Glyceraldehyde-3-phosphate (G3P) is either converted to sucrose via 

triose phosphates or is used to regenerate ribulose-1,5-bisphosphate which again in calvin 

cycle. The localization of different components of photosynthesis, the flow of electrons from 

PSII to cyt b6-f and PSI and Calvin cycle are shown in figure 3b. 

3.3. ATP synthase 

It is an important enzyme involved in the ATP synthesis and hydrolysis in chloroplast 

thylakoid membranes during the process of photosynthesis by using proton motive force. It 

consists of two major portions, F1 and F0.  

3.3.1.  CF1   

 CF1 is a hydrophilic peripheral membrane protein complex attached to the thylakoid 

membranes and has five subunits  , β,  ,  ,   in a stoichiometry of 3:3:1:1:1 repectively. It is 

almost spherical and has a width of    11nm and its height is     9 nm (Richter et al., 2000). Its 

subunits (  , β,  ,  ,  ) are encoded by atpA, atpB , atpC, atpD, atpE genes respectively where 

atpA, atpB and atpE are chloroplast genes while atpC and atpD are nuclear genes (Groth & 

Strotmann, 1999). Three  s and three βs together form a heterohexamer ring (Figure 3c). 

This heterohexamer ring consists of six structural domains of an N-terminal β barrel and in its 

centre of an  -β domain containing the nucleotide binding site. The three catalytic sites of β 

subunits are βT, βD and βE. Two of them are occupied by Mg.ATP and Mg-ADP while the 

third one is an empty site (Noji & Yoshida, 2001). Interestingly they have always different 

nucleotide binding state at any given moment of time. Subunits   and   are present in the 

central cavity of  , β heterohexamer ring and work as connectors between F1 and Fo (Figure 

3c). 

http://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphate
http://en.wikipedia.org/wiki/Adenosine_triphosphate
http://en.wikipedia.org/wiki/Glyceraldehyde-3-phosphate
http://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide_phosphate
http://en.wikipedia.org/wiki/Adenosine_diphosphate
http://en.wikipedia.org/wiki/Glyceraldehyde-3-phosphate
http://en.wikipedia.org/wiki/Glyceraldehyde-3-phosphate
http://en.wikipedia.org/wiki/Ribulose-1,5-bisphosphate
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3.3.2.  CFo 

CFo is a hydrophobic thylakoid membrane embedded protein complex and has four 

subunits “ a (IV), b (I), b‟ (II)‟, c (III)” in a stoichiometry of 1:1:1:14 respectively. The 

thickness of CFo was found to be 7.5 nm while it its diameter was estimated as 6.2 nm and 

8.5 nm (Richter et al., 2000). Its subunits (I, II, III,IV) are encoded by atpF, atpG, atpH and 

atpI genes respectively (Figure 3c). AtpI, atpF, atpH are chloroplast genes while atpG is a 

nuclear gene.  

 

Figure 3c: Schematic presentation of the arrangement of the subunits of ATP synthase and the genes 

encoding these subunits.  

This figure is extracted from http://www.bio.miami.edu 

 All the subunits have transmembrane  -helical structures. Subunits b and b‟ have only 

one transmembrane helix consisting of five helices. Subunit c has two anti-parallel 

transmembranes helices connected by two extramembrane polar loop (Groth and Strotmann 

1999). Subunit c oligomer forms a ring outside where subunits b, b’ and a are located (Neff et 

al., 1997). Subunits b and b‟ are involved in binding with CF1. They form a stalk and are 

connected with   subunit of CF1 while a and c subunits are involved in H
+
 translocation. 

http://www.bio.miami.edu/
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3.3.3.  ATP synthase gene expression 

The genes which encode subunits of CF0 and CF1 belong to two transcriptionally 

active compartments i.e. nucleus and plastids. The mRNAs of nuclear genes atpC, atpD and 

atpG are translated in the cytoplasm. The resulting soluble precursor proteins have plastid 

specific transit peptides. These transit peptides are proteolytically cleaved after the proteins 

have been transported to the thylakoid membranes of chloroplast for the assembly into the 

ATP synthase CFoCF1 complex. The nuclear genes involved in ATP synthase synthesis are 

expressed at the same time in response to light, organ specific factors and plastid derived 

signals (Bolle et al., 1996). In chlamydomonas the biosynthesis of chloroplast encoded 

subunits of ATP synthase is controlled at the translational level. Drapier et al. (2007) 

proposed a CES (Control by Epistasy of Synthesis) regulation for uneven stoichiometry of 

both the ATP synthase complexes i.e. CF1 and CF0. CES is a process in which the presence 

of a subunit is required for the sustained synthesis of another plastid subunit belonging to the 

same complex (Choquet & Vallon, 2000; Choquet & Wollman, 2002; Wollman et al., 1999). 

Drapier et al. (2007) reported that nuclear encoded subunit  is required for a sustained 

synthesis of chloroplast encoded  subunit which in turn stimulates the translation of the 

chloroplast encoded subunit of theCF1 complex. An important feature of CES is the 

negative autoregulatory feedback of beta on its own translation. 

In higher plants, (Sakai et al., 1998) tested the effect of tagetitoxin (a PEP inhibitor) on 

the transcript accumulation of a number of genes in isolated chloroplast (from mature tobacco 

leaves) and proplastid nuclei (cultured cells of tobacco) by northern blot hybridization. In 

tobacco, they observed 95-99 % reduction in transcript accumulation of atpA, atpB in 

developed chloroplasts and only 40-50 % reduction in transcript accumulation of these genes 

in proplastids. This suggest that atpA and atpB which encode subunits of ATP synthase are 

transcribed by two distinct RNA polymerases in proplastids and in chloroplasts. Spinach atpB 

gene codes for five different transcripts having their 5‟ ends at positions -455, -275, -180, -

100 and +1 from the translation initiation codon of atpB (L. J. Chen et al., 1990; Mullet et al., 

1985). Tobacco atpB transcripts map at positions -610, -500, -490, -290, -225, -90 (Orozco et 

al., 1990; Shinozaki & Sugiura, 1982) while -610, -490, 290 and -225 mRNAs were identified 

as primary transcripts (Kapoor et al., 1997; Orozco et al., 1990).   Kapoor et al. (1997) also 

reported the existence of non-consensus type promoters (NCII) (which are NEP dependent) in 

atpB/E operon responsible for its expression in non photosynthetic plastids which was 
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supported by the results of Sakai et al. (1998). Hirose & Sugiura (2004) reported  that atpB 

mRNA needs an unstructured sequence encompassing the start codon for its translation as 

there is no Shine-Dalgarno (SD) sequence in the 5‟ UTR. atpB and atpE have overlapping 

stop and start codons in tobacco and arabidopsis. These overlapping codons result in the 

translational coupling of atpB/atpE transcripts in maize (Gatenby et al., 1989). In tobacco an 

atpE specific transcript of 1.3 kb was found by (Shinozaki et al., 1983), being issued from a 

promoter located within the coding region of  the atpB gene (-430/-431 nt upstream of the 

atpE translation initiation codon) (Kapoor et al., 1994). Similarly an atpE transcript was 

found to be issued from a promoter located in the coding region of atpB (from -431 upstream 

of atpE translation initiation codon) in arabidopsis (thesis Wafa Zghidi, 2008). As atpE has a 

monocistronic transcript, the question is still open that whether in arabidopsis atpE is 

translationally uncoupled from atpB or not. The above mentioned results indicate that 1) 

majority of the transcripts for small ATP operon are issued from the promoters located in the 

5‟ UTR of atpB but the promoter positions are not highly conserved among different species. 

2) atpE is co-transcribed with atpB in higher plants but it is also transcriptionally uncoupled 

from atpB in tobacco and arabidopsis.  

Early data indicated that spinach atpI/H/F/A contain almost 30 different transcripts 

which range from 0.5 kb to 6.0 kb in length (Cozens et al., 1986; Hudson et al., 1987; Stahl et 

al., 1993; Stollar & Hollingsworth, 1994). Miyagi carried out a detailed transcriptional 

analysis of the atpI/H/F/A operon in tobacco and found that rps2 is also co transcribed with 

atpI/H/F/A (Miyagi et al., 1998). Miyagi et al., (1998) found three transcription initiation sites 

and four processing sites in the non coding regions of this operon. They found that one of the 

primary transcripts being issued from position -208 from the translation initiation codon of 

atpI is dependent on a non consensus promoter (NCII) while the other two (-131 atpI and -

384 atpH) are synthesized from PEP dependent promoters.  

The genes encoding for the subunits of ATP synthase complexes (CFO and CF1) in 

unicellular green alga chlamydomonas are dispersed throughout its plastid genome.  Drapier 

and collaborators showed that atpA and atpH are co transcribed and are found in the same 

operon (atpA-psbI-cemA-atpH) (Drapier et al., 1998). They also showed a total of 8 

transcripts for this transcriptional unit (atpA), three of them were described as primary 

transcripts and other transcripts were thought to be the result of processing events.  Except 

these two genes none of the other atp genes are found in the same operon, rather minimum 
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distance among them is 7 kb (Woessner et al., 1987). The atpE is neither located on the 3‟ end 

of atpB nor has overlapping stop and start codon with it, rather it is located 92 Kb away from 

it in a single copy region (Woessner et al., 1987).  

 

4.  Plastid gene expression 

4.1.  Post transcriptional regulation in chloroplast  

The production of a functional protein from the information stored in the plastid DNA is  

not simply a two step process of transcription and translation. It consists of post 

transcriptional and post translational modifications. The main post transcriptional 

modifications are listed below: 

RNA processing is a process of the cleavage of polycistronic transcripts and generation of the 

5‟ and 3‟ ends of the cleaved transcripts. 

Editing changes the amino acids specified by the DNA sequence by converting cytosine (C) 

nucleotide to the uridine (U) nucleotide of an mRNA.  

RNA splicing is a process in which (cis or trans) removal of group I and II introns is carried 

out.   

Even though the plastid genome is derived from an ancient cyanobacteria, its gene 

expression process consists of both eukaryotic and prokaryotic features. In addition, due to the 

transfer of plastid genes to the nuclear genome and the need of crosstalk between the two 

organellar genomes, the plastid gene expression machinery has become complex and 

dependent on nucleus encoded proteins. Interestingly, original mechanisms of gene 

expression regulation have been developed in the chloroplast to optimize its integration into 

the eukaryotic cell. Take the example of the RNA polymerases required for transcription. 

Cyanobacteria which are ancestors of plastids have only one RNA polymerase consisting of 

core enzyme and sigma factors all encoded by their single genome. But in higher plants 

chloroplasts have two RNA polymerases, PEP (Plastid Encoded RNA Polymerase) and NEP 

(Nucleus Encoded RNA Polymerase). PEP is plastid encoded but it requires nucleus encoded 

sigma factors for promoter specificity and the second type of RNA polymerase is encoded by 

the nucleus and hence called NEP. Similarly in contrast to cyanobacteria where the 

polycistronis transcripts are directly translated, plastid polycistronic transcripts need to be first 

processed and edited and then translated. In addition, plastid mRNA require the different 
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trans factors for RNA stability (Stern et al., 2010), while bacterial mRNAs are stabilized by 

secondary structures. 

4.1.1.  Chloroplast ribonucleases 

 Ribonucleases are the enzymes which are responsible for maturation of precursor 

RNA and RNA degradation. Their activities depend on protein-protein interactions, protein 

modifications and RNA secondary or tertiary structures (Monde et al., 2000). There are two 

types of ribonucleases: 

1- Endoribonucleases: They cleave the polynucleotide chain of RNA by breaking the 

phosphodiester band between two adjacent nucleotides. 

 

2- Exoribonucleases: They cleave at the end (3‟) or the start (5‟) of a polynucleotide 

chain of RNA by breaking the phosphodiester band between two adjacent 

nucleotides.  

 

4.1.1.1. Endoribonuclease    

 In chloroplast, endoribonucleases are thought to be responsible for 3‟ end formation 

(R. Hayes et al., 1996; Stern & Kindle, 1993) or initiation of RNA breakdown by breaking the 

stabilising stem-loop structures (H. C. Chen & Stern, 1991; Yang & Stern, 1997). The well 

known endoribonucleases in chloroplast are CSP41 (Chloroplast Stem-loop binding Protein, 

41 kDa) (CSP41a and CSP41b), RAP 38 (Ribosome Associated Protein, 38 KDa) and RAP 

41 (ribosome associated protein, 41 KDa), RNase E (Schein et al., 2008) , RNase J1(Zoschke 

et al., 2010), RNase P (Thomas et al., 2000), RNase Z (Canino et al., 2009) and CRR2 (Okuda 

et al., 2009).  

 

4.1.1.2. Exoribonucleases 

In chloroplast, exoribonucleases participate in the 3‟ and 5‟ end maturation and also in 

the 3‟-5‟ polyadenylation assisted degradation pathway of mRNAs. The well known 

exoribonucleases in the chloroplast are Polynucleotide phosphorylase (PNP) (Hayes et al., 

2006; Perrin et al., 2004), RNase R (RNR1) (Kishine et al., 2004), RNase II RNB (Yehudai-

Resheff et al., 2007) and RNase J1 that is also a 5‟-to -3‟ exoribonuclease.  
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4.1.2.  Turn over 

The neo-synthesized polycistronic mRNA transcripts in plastids are spliced, 

processed, stabilised and edited to produce translation competent mRNAs. Both the neo-

synthesized and translation competent mRNAs enter into a degradation pathway. The 

difference of the rate of synthesis and degradation determines the turnover of the mRNA. 

The decay or degradation of the mRNA takes place in three steps, 1) endonucleolytic 

cleavage, 2) polyadenylation and 3), exonucleolytic decay or turnover  (Bollenbach et al., 

2008; Stern et al., 2010). The translation competent mRNAs are protected at their 3‟ end by a 

stem loop structure of inverted repeat sequence (IRs) and by PPR proteins or other RNA 

binding proteins. The 5‟ end of such mRNAs are also protected by RNA binding protein like 

PPR proteins. When the transcripts have to be degraded, endonucleases cleave the secondary 

structures of the 3‟ end and in the 3‟ or 5‟ UTRs outside the PPR-protected regions. 

Endonuclease can also cleave the mRNAs internally where there are no attached ribosomes. 

(Stern et al., 2010) proposed endonucleolytic cleavage as the rate limiting step of the mRNA 

decay pathway. The endo-nucleolytically cleaved mRNAs are good substrates of 

polyadenylating enzymes. Polyadenylation can be catalysized either by PAP (poly (A) 

polymerases) or by PNPases (polynucleotide phosphorylase). PAP adds only homopolymeric 

poly (A) tails while PNPase adds heteropolymeric poly (A) tails. These polyadenylated 

transcripts are substrates for the exonuclease which degrades the RNAs in 3‟-5‟ direction. If 

the exonuclease encounters a secondary structure, an endonucleolytic cleavage and 

polyadenylation are required further degradation of the transcripts. For 5‟-3‟ degradation of 

transcripts, removal of the 5‟ end stability complex by an endonucleoytic activity is followed 

by a net 5‟-3‟ degradation. The existence of a 5‟-3‟ exonuclease dependent degradation 

activity has not yet been shown in chloroplast (Bollenbach et al., 2008; Stern et al., 2010).  

In brief mRNA turn over depends on the extent of transcriptional activity, mRNA stabilising 

structures or proteins (stem loops of IRs at the 3‟ end, mRNA binding proteins like PPR) and 

the activity of enzymes responsible for mRNA degradation/decay (endonuclease, 

polyadenylation enzymes, exonuclease). 

 

4.1.3.  5’ End maturation   

On the basis of their origin, transcripts found in chloroplasts of higher plants are 

divided in two types. The ones which originate directly from transcriptional events are called 

primary transcripts while the others which are produced as a result of processing of the 



Introduction 

 

22 

 

primary transcripts are called processed transcripts. Processed transcripts are the predominant 

form of transcripts found in chloroplast of higher plants. Even in Chlamydomonas no primary 

transcripts can be detected which indicate that most if not all of the transcripts undergo 

processing and 5‟ end maturation and that this event is very fast (Stern et al., 2010). Primary 

transcripts have a tri-phosphate on their 5‟ ends while the processed transcripts have only one 

phosphate on their 5‟ end. It is possible to discriminate between primary and processed 

transcripts using a combination of TAP treatment and RT-PCR techniques. 

Two pathways are proposed for the 5‟ end maturation of the transcripts. The first one 

is an endoribonuclease pathway while the second one is a 5‟-3‟ exoribonuclease pathway. 

Endoribonuclease starts maturation by site-specific cleavage of intercistronic transcripts or by 

dephosphorylation of primary transcripts. Once a free 5‟ end is available, the mRNA becomes 

a substrate for the 5‟-3‟ exonuclease actually. The extent of this 5‟ maturation is determined 

by the presence of sequence specific binding proteins like PPR proteins which bind to the 

specific elements/sequence or by secondary structures. In addition RNA binding proteins can 

also guide endoribonuclease for site specific cleavage. 

RNAse J is thought to play a role in maize chloroplast mRNAs maturation (Pfalz et 

al., 2009). RNAse E which is another  exoribonuclease was found to be involved in the 5‟ end 

maturation of plastid RNAs (Mudd et al., 2008). Arabidopsis thaliana possess both RNAse J 

and RNAse E while Chlamydomonas has RNAse J but lacks RNAse E. RNase J and E are 

thought to possess both the endoribonucleolytic and exoribonucleolytic activities and are the 

best candidates for 5‟ end maturation of plastid transcripts (de la Sierra-Gallay et al., 2008).  

4.1.4.  3’ End maturation 

Most of the mature 3‟ ends are produced as a result of processing and not by 

transcription termination which is inefficient in chloroplast. 3‟ end maturation is also carried 

out by exoribonucleases, endoribonucleases and RNA-binding proteins. In the most frequent 

situation, a newly synthesized mRNA is taken as a substrate by PNPase (polynucleotide 

phosphorylase) for a 3‟-5‟ exoribonuclease activity. PNPase continues its activity until it 

encounters an IR (inverted repeat) secondary structure. The same pathway is observed if a 

free 3‟ end is obtained upon endonucleolytic cleavage inside a polycistronic transcript. In this 

context, Pfalz and colleagues (Pfalz et al., 2009) proposed that endonucleolytic cleavages 

inside polycistronic transcripts are random and are followed by 5‟-to 3‟ and 3‟-to 5‟ 

exonucleolytic activity in order to define overlapping 5‟ and 3‟ ends respectively. Sequence 

specific binding proteins as PPR10 play their role in stabilising the 5‟ and 3‟ ends and limiting 
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the 5‟ and 3‟ maturation. An example of this PPR10 hypothesis is a PPR protein HCF 152  

that controls the intercistronic processing of psbH and petB in Arabidopsis (Meierhoff et al., 

2003). In Chlamydomonas chloroplasts, the mature 3‟ end of atpB lies at the end of a stem 

loop forming inverted repeat (IR) sequence. The maturation of the 3‟ end of atpB pre-mRNA 

takes place by a two step process. As a first step, endonuclease cleaves 3‟ end of the pre-

mRNA till 8-10 nt downstream of the mature 3‟ end. In the second step this intermediate 

product is trimmed by a  3′ → 5′ exonuclease to produce a mature 3‟ end (Hicks et al., 2002). 

It has also been proposed a synergetic relationship between the IR and ECS (endonuclease 

cleavage site). 

 

4.1.5.  Splicing 

Splicing is the process that consists in removal of introns from the precursor mRNAs. 

There are two types of introns found in precursor mRNAs, group I and group II introns which 

are „self splicing‟ under non-physiological conditions in vitro (Saldanha et al., 1993) but not 

in land plants and in vivo need protein factors (Herrin et al., 1998).  

Splicing of group I introns needs two times trans ester bond formation. The first bond 

is formed between 5‟ end of the intron and a nucleophilic guanine nucleotide and the second 

ester bond is formed between 3‟ OH of the upstream exon and 5‟ end of the downstream exon 

(Stern et al., 2010). Land plants have only one group I intron in trnL gene. Unicellular alga C. 

reinhardtii plastid gene rrnL has one intron while psbA has four introns (Turmel et al., 1993). 

All group I introns of chlamydomonas are autocatalytic in vitro but trnL of land plants has lost 

this ability (Goldschmidt-Clermont, 2008). 

Six helical domains connected to a central core are conserved in group II introns 

(Fedorova & Zingler, 2007). Group II introns are divided into two subgroups on the basis of 

intron structure, group IIA and group IIB (Michel et al., 1989). Like group I introns, two steps 

of trans esterification are needed for splicing of this group of introns (Jarrell et al., 1988; 

Peebles et al., 1987). But here the 5‟ end of the intron is attacked by 2‟ OH (a nucleophile) of 

the bulged adenosine of the helix of the sixth domain (D6). The reaction results in the release 

of 5‟ exon and of the intron in the form of lariat. Then the 3‟ OH of the released 5‟ exon 

attacks the 3‟ splice site, reaction results in the union of 5‟ and 3‟ exons (spliced product) and 

release of the lariat intron (Fedorova & Zingler, 2007). The other mechanism of group II 

intron splicing is the hydrolytic splicing. This method is adopted in the absence of D6 free 

adenosine and OH
-
 group of H2O is used as a nucleophile (Daniels et al., 1996; Jarrel et al., 
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1988; Vanderveen et al., 1987). The second step of trans esterification results in the release of 

ligated exons and lariat intron. Arabidopsis and tobacco have 20 group II introns in the plastid 

genomes while maize has 17 (Fedorova & Zingler, 2007). 

Splicing of group I and II introns requires the involvement of nucleus-encoded factors. 

For example, 14 nuclear genes were found to be involved in trans-splicing of psaA precursor 

RNA (Goldschmidt-Clermont et al., 1990). The mature mRNA of psaA gene of chloroplast of 

C. reinhardtii is formed by three separate precursor RNAs in two steps of trans-splicing as it 

consists of three exons spread in the whole chloroplast genome (Herrin et al., 1998). Among 

the nucleus encoded factors four genes, Raa1, Raa2, Raa3 and Tr72 have been cloned. Raa2 

encodes a protein which belongs to pseudouridine synthase family while the rest of three 

encode novel proteins. Interestingly, a small non-coding RNA,  tscA, which is plastid 

encoded, is required for splicing of exon 1 and 2 to occur (Goldschmidt-Clermont et al., 

1991). Among the land plants, products of nuclear genes crs1 and crs2 were found to be 

involved in splicing of group II introns of maize chloroplast (Jenkins et al., 1997). 

Crs1(chloroplast RNA splicing-1) is involved in splicing of atpF introns (Jenkins et al., 

1997), while crs2 (chloroplast RNA splicing-2) is involved in splicing of many introns 

belonging to the subgroup B of the group II introns (Vogel et al., 1999).   

Involvement of nuclear encoded proteins in splicing of group I and group II introns 

has been established.  Using both genetic and biochemical approaches, 12 different nucleus-

encoded proteins were found to be directly involved in chloroplast splicing (Kroeger et al., 

2009; Schmitz-Linneweber & Barkan, 2007). Majority of these 12 nucleus encoded proteins 

which belong to a family of proteins containing four RNA-binding domains called CRMs 

(chloroplast RNA splicing and ribosome maturation) (Ostheimer et al., 2003). CFM2, a CRM 

domain protein, is required for trnL intron splicing. CFM3 is thought to participate in small 

ribosomal subunit biogenesis. PPR proteins also participate to RNA splicing. PPR4 contains 

16 PPR repeats and one RRM domain and it is involved in the trans splicing of the rps12-1 in 

maize and Arabidopsis (Schmitz-Linneweber et al., 2006). De Longevialle and colleagues  

showed that OTP51, having 7 PPR repeats and two RRM domains, is involved specifically in 

intron splicing of ycF3-2 and in general for group IIA introns (de Longevialle et al., 2008). 

PPR 5 saves unspliced precursor of trnG from degradation (Beick et al., 2008; Kroeger et al., 

2009). Kroeger et al., 2009 found the association of WTF 1 protein with the CAF1 (chromatin 

assembly factor 1) and CAF2 ribonucleoproteins (RNPs)  in maize. WTF1 has DUF860 or 

PORR (plant organellar RNA recognition) conserved domain. Wtf1 mutant plants of maize 

showed defects in splicing of introns. 
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Along with nuclear gene products, subgroup IIA introns also need plastid gene 

products as there was failure of splicing of subgroup IIA chloroplast introns in nuclear 

mutants which lacked plastid ribosomes (Jenkins et al., 1997; Vogel et al., 1999). One good 

candidate for plastid gene products is the product of matK gene. MatK protein is encoded by 

an intron ORF inside the trnK gene and believed to act as an intron maturase. All the group 

IIA introns except clpP intron 2 are associated with matK (Zoschke et al., 2010). 

Chlamydomonas group I introns were found to contain open reading frames. Some group I 

and group II introns encode maturases which splice and stabilize introns. Protein encoded by 

these genes can act as endoribonucleases in some group I introns but not in group II introns 

(Goldschmidt-Clermont, 2008).  

In brief, plastid introns of land plants require the assistance of proteins, which are both 

nucleus and plastid encoded. Their function is believed to be the stabilization of the catalytic 

RNA structure and /or assistance for correct folding of such structures.   

4.1.6. Editing  

The process of conversion of a specific nucleotide of RNA from C to U and less 

frequently from U to C in plant organelles is called editing. The apparent purpose of editing 

seems to convert an amino acid to a more conserved amino acid or sometimes to generate a 

start or a stop codon. Both cis and trans acting elements are required in the process of editing. 

Approaches using plastid transformation and editing-competent chloroplast extracts in vitro 

have been used to study the editing mechanism in different plastid mRNAs. The members of 

the PPR protein family are also known to be involved in RNA editing. PPR proteins are 

thought to bind to the cis acting elements and guide the recruitement of the editing enzyme on 

the precursor mRNA. A member of the PPR family, CRR4 was discovered as a first 

chloroplast editing trans factor by (Kotera et al., 2005 ) in an Arabidopis mutant which was 

defective in NAD(P)H dehydrogenase (NDH) activity. Okuda et al. (2006) later on, found that 

it is involved in the editing of ndhD-C2 which converts the ACG codon to AUG start codon. 

Okuda et al. (2009) and Okuda et al. (2007) discovered editing trans factors as CRR 21, 

CRR22, CRR28. Till now almost 17 different PPR and RRM proteins all encoded by the 

nucleus have been discovered which control the editing events in plastid transcripts in 

Arabidopsis (Stern et al., 2010), two in maize and one in rice plastid (Shikanai, 2007). 

Interestingly, till date, no editing event has been reported in the unicellular alga 

chlamydomonas. Editing not only occurs in open reading frames (ORFs) or coding regions 

but also it has been reported to occur in introns as well. Hammani and collaborators found the 
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C58 nucleotide of rps12 intron-1 to be edited. The trans factor OTP81 is involved in 

recruiting enzyme for this editing site (Hammani et al., 2009).  

Editing of tobacco psbF is necessary for its protein function (Bock et al., 1996) and 

editing of the accD mRNA to convert the serine to leucine codon is essential for a functional 

enzyme activity (Sasaki et al., 2001). These are a few examples where editing plays an 

important role in plastid gene expression but there can be silent editing sites as well which do 

not play any significant role in gene expression (Inada et al., 2004). Even though editing has 

been reported to be essential for RNA maturation and correct translation of certain gene 

transcripts (Kotera et al., 2005; Stern et al., 2010), in arabidopsis most of the editing sites 

were found to be non essential. It is not yet clear if the role of these non essential editing sites 

becomes important in certain unsuitable environmental conditions for plants.  

 Among the atp genes, editing in atpA and atpF was analysed in Tobacco, Arabidopsis, 

Pea, Rice and Maize. atpA C-264 nucleotide (cCc) is edited to (cUc) in pea and tobacco but 

not edited in Arabidopsis, Rice and Maize as they already have T in DNA. atpF C-31 (cCa) 

was edited to (cUa) in Arabidopsis and tobacco but not edited in Pea, Rice and Maize as they 

already have a „T‟ in DNA at this position, reviewed in (Sugiura, 2008). 

 Gene expression pathways especially the post transcriptional regulation is shown in 

Figure 4. 



Introduction 

 

27 

 

 

Figure 4: Gene expression pathways in chloroplast.  

PEP (Plastid Encoded RNA Polymerase). NEP (Nucleus Encoded RNA Polymerase). PPR (Pentatrichopetide 

Repeat). TPR (Tetratrichopeptide Repeat). IR (Inverted Repeat). UTR (Untranslated Region).  
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4.2. Transcriptional regulation in chloroplast 

Transcriptionally active compartments of green cells are nucleus, mitochondria and 

chloroplasts. Chloroplasts are semiautonomous, photosynthetic organelles having their own 

genome. It has been believed for a long time that the majority of plastid DNA is found in a 

circular form. In this regards, probably the most influential article was that of Kolodner & 

Tewari (1972) followed by confirmation of their results by Herrmann et al. (1975). Since 

then, even if some scientists found linear form of chloroplast DNA, no one dared to challenge 

the broken circle theory established by Kolodner & Tewari (1972). The chloroplast genome 

sequencing projects and restriction fragment mapping also resulted in circular maps of the 

chloroplast genomes. It was only in 2004 when Oldenburg & Bendich (2004) provided 

evidence that the most common form of DNA in chloroplast is linear, even though the circular 

form does exist. 

The genome size in chloroplasts of higher plants is much reduced in comparison to the 

genome of their cyanobacterial ancestor. During the course of evolution genes were either lost 

or transferred to the nucleus. The genome of Arabidopsis thaliana chloroplast consists of 

almost 120 genes which encode for ribosomal RNAs (rRNAs), transfer RNAs (tRNAs) and 

proteins engaged in transcription, translation and physiological processes. Even though the 

chloroplast genome is reduced, the transcription machinery is very complex.  In higher plants, 

the chloroplast genome is transcribed by two types of RNA polymerases, a Plastid Encoded 

RNA Polymerase (PEP) which is a multimeric eubacterial type RNA polymerase and two 

Nucleus Encoded RNA Polymerase (NEP), which are monomeric phage type RNA 

polymerases (Figure 5).  
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Figure 5: Mechanism of transcription in chloroplasts.  

NEP stands for Nucleus Encoded RNA Polymerase. It is a monomeric phage type (T3 or T7) RNA Polymerase. 

RPOT (RNA polymerase of the phage T3/T7) is the name of the genes which encode NEP. RPOTm is 

exclusively targeted to mitochondria while RPOTp is targeted to plastids (chloroplast). RPOTmp is targeted to 

both the mitochodria and chloroplast. PEP stands for Plastid Encoded RNA Polymerase which needs nucleus 

encoded sigma factors for promoter specificity.  

 

On the basis of the type of RNA polymerases needed to transcribe a gene, plastid genes are 

divided in three classes: 

1. Class I: Genes transcribed exclusively by PEP (psbB, psbD, psbE, petB, ndhA, rps14, 

atpH) 

2. Class II: Genes transcribed by both PEP and NEP (atpB, ndhB, rrn, rps16, rpl33, rps33, 

rps18, clpP, ycf1). 

3. Class III: Genes transcribed Exclusively by NEP (rpoB, accD, ycf2). 

4.2.1.  Promoters 

There are two types of promoters found in plastid genome, NEP and PEP promoters. 
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4.2.1.1. NEP promoter  

On the basis of the architecture, NEP promoters are divided into the following subgroups. 

Type Ia: NEP promoters having the conserved core motif i.e. YRTA where Y stands for 

(Pyrmidine-Cytosine/Thymine/Uracil) while R stands for (Purines-Adenine/Guanine). 

Type Ib: NEP promoters having the conserved core motif YRTA and an additional GAA-

box. 

Type II: NEP promoters having un-conserved core motifs with no resemblance to any of the 

others consensus promoters. 

4.2.1.2. PEP promoter  

 Standard plastidial PEP promoters are similar to the σ
70 

type promoters of E. coli. 

Plastidial PEP promoters have a conserved core sequence consisting of a -35 (TTGACA) box 

and a -10 (TATAAT) box.  The distance between the -35 and the -10 elements is 17-19 

nucleotides. Generally, the presense of the -35 and the -10 elements is necessary for the PEP 

dependent transcription initiation. Some promoters like the psbA promoter, have an extended 

the -10 box. This extended -10 box of psbA consists in an upstream „TGn‟ motif. The 

extended -10 box is required for transcription initiation by the σ
 70 

type RNA polymerase from 

the promoters which lack -35 element. In addition to the -35 and the -10 boxes an „AAG‟ box 

has been described which is located upstream of the -35 box of the psbD BLRP promoter 

(blue light responsive promoter). AAG box is required for transcription from the psbD BLRP 

and is proposed to interact with RNA polymerase through AGF (AAG box factor) (Kim et al., 

1999). 

4.2.2.  RNA polymerases  

4.2.2.1. Nucleus Encoded RNA Polymerase (NEP) 

At the beginning of the transcriptional analysis of chloroplast, it was believed that the 

chloroplast genome is transcribed by only one type of RNA polymerase i.e. Plastid Encoded 

RNA Polymerase (PEP). But this hypothesis was put under question by Morden et al. (1991) 

who showed that plastid transcription occurred in the parasitic plant Epifagus, which lacked 

PEP. Similar results were observed by Han et al. (1992) in maize mutants and by Hess et al. 

(1993) in ribososome deficient mutants of barley. In the coming years it was found that in the 

absence of PEP, a nucleus encoded RNA polymerase plays an important role in the 

transcription of plastid genes (Allison, 2000; De Santis-Maciossek et al., 1999; Hajdukiewicz 
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et al., 1997; Krause et al., 2000; Legen et al., 2002; Serino & Maliga, 1998). Another 

important finding by Lerbs-Mache (1993) was the discovery of a 110-kDa single subunit 

RNA polymerase which recognized the T7 promoter but not the σ
 70 

promoters in in vitro 

transcription experiments. In the following, Genes transcribed by the nucleus encoded RNA 

polymerase were found to have non-consensus type promoters in their 5‟ UTRs (Allison et al., 

1996; Hajdukiewicz et al., 1997; Kapoor et al., 1997). Furthermore, the transcription of these 

genes was not influenced by Tagetin, a specific inhibitor of the PEP (Kapoor et al., 1997; 

Sakai et al., 1998). This „Nuclear Encoded RNA Polymerase‟ was called NEP. The genes 

which code for NEP were first discovered in Arabidopsis and Chenopodium and they were 

named RpoT (RNA polymerase of the phage T3/T7 type). Three types of Nuclear Encoded 

RNA Polymerases are found in Arabidopsis. Their recent nomenclature is given below: 

RpoTp (RpoZ or RpoT;3 in former articles): Transcribed in the nucleus, translated in the 

cytoplasm and imported into the plastids. 

RpoTm (RpoY or RpoT;1 in former articles): Transcribed in the nucleus, translated in the 

cytoplasm and imported into the mitochondria. 

RpoTmp (RpoX or RpoT;2 in former articles) Transcribed in the nucleus translated in the 

cytoplasm and imported into both mitochondria and plastids (Hedtke et al., 1997, 2000; 

Hedtke et al., 2002; Hedtke et al., 1999; Kobayashi et al., 2002; Kobayashi, Dokiya, & Sugita, 

2001; Kobayashi, Dokiya, Sugiura et al., 2001). 

4.2.2.2. Plastid Encoded RNA Polymerase (PEP) 

PEP is the major plastid RNA polymerase. It is believed to have its origin from the 

ancestral cyanobacteria. It consists of a core catalytic complex composed of the   2, β, β‟ and 

β” subunits encoded by plastid genes. PEP generally recognizes the prokaryotic-type 

consensus sequences (-35/-10). The -35 consensus sequence is TTGACA and the -10 

consensus sequence is TATAAT. Promoter specificity of PEP is rendered by sigma factors 

(Allison, 2000; Liu & Troxler, 1996; Tanaka et al., 1996). Sigma factors are encoded by the 

nucleus, translated in the cytoplasm and imported into chloroplasts. The signal of chloroplast 

localization of sigma factors is present in the N-terminal transit peptides. In the Arabidopsis 

nuclear genome, six different sigma factors (SIG1-SIG6) have been found by sequencing 

studies.  

All these sigma factors belong to the σ
 70 

type sigma factors which can be divided into 

two groups i.e. important or essential sigma factors and non essential sigma factors. 

AtSIGMA3, AtSIGMA5 and AtSIGMA4 are thought to be non essential but specialized 
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sigma factors as knock out mutants of the corresponding genes do not show obvious visible 

phenotypes. AtSIG5 transcribes specifically from the light dependent psbD BLRP 

(Tsunoyama et al., 2004) and AtSIG4 from the ndhF promoter (Favory et al., 2005; 

Tsunoyama et al., 2004). AtSIGMA3 specifically transcribes the psbN and the atpH genes 

(Zghidi et al., 2007). AtSIGMA1, 2 and 6 act as more general but essential sigma factors as 

knock out mutants of the AtSIG2 and 6 have visible pale-green phenotypes that are all based 

on chlorophyll deficiency. All the genes coding sigma factors of Arabidopsis are unlinked and 

found on different chromosomes.  

4.2.2.3. Expression of genes and division of labour between NEP and PEP in Plastids 

The first model that was established concerning the functioning of NEP and PEP in 

plastids was the so-called “Cascade Model” which stated that at the early stage of chloroplast 

development, NEP transcribes house keeping genes i.e. genes encoding ribosomal proteins 

and genes encoding subunits of PEP in order to synthesize ribosomes and the PEP 

polymerase. According to this model, NEP is preferentially active during early stages of 

plastid development. With the advancement of chloroplast development, PEP takes over 

transcription and transcribes preferentially the photosynthesis related genes. It was further 

proposed that, switching from NEP to PEP activity during chloroplast development implicates 

inactivation of RpoTp by transfer RNA glutamate (tRNA
glu

) (Hanaoka et al., 2005) and 

sequestration of RpoTmp to thylakoid membranes (Azevedo et al., 2008). During the 

establishment of photosynthetically competent chloroplasts, PEP transcribes photosynthesis 

related genes that are then differentially regulated by light (Mullet, 1993).  

The “Cascade Model” was later challenged by the findings that 1) NEP and PEP are 

present in mature chloroplasts (Bligny et al., 2000), 2) the activities of both the NEP and PEP 

increase with chloroplast development in maize and 3) PEP is active even during germination 

i.e. in differentiating protoplasts and is important for efficient germination of seeds of 

Arabidopsis (Demarsy et al., 2006). From these results our group has proposed a new model 

of “Co-existence of PEP and NEP” during germination. 

 

4.2.3. The transcriptional apparatus of Chlamydomonas reinhardti chloroplast 

The chloroplast of Chlamydomonas has a different transcriptional machinery and 

arrangement of genes in transcriptional units when compared to higher plant plastids. 

Complete absence of transcription in PEP inhibited plastids (Guertin & Bellemare, 1979), the 
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failure to obtaine PEP knock out mutants (Fischer et al., 1996; Goldschmidt-Clermont, 1991) 

and the lack of tagetitoxin resistant transcription in plastids (Lilly et al., 2002) indicated that 

PEP is indispensable for plastid transcription and that there is no phage type nucleus encoded 

RNA polymerase. Only one nuclear RpoT gene was found which codes for a mitochondrion 

localized RNA polymerase. Most of the plastidial promoters do not have the -35 box but 

posses an elongated – 10 box. Surzycki & Shellenbarger (1976) at first reported a σ-like 

activity in chloroplasts. Immunological evidence of  σ
 
-like factors was then obtained by 

Troxler et al. (1994). Later on it was found that chlamydomonas posses only one gene 

(CrRpoD) encoding a σ
 
-like factor (Bohne et al., 2006; Carter et al., 2004). Lilly and 

collaborators carried out a detailed northern blot, microarray and inhibitor analysis of the 

genome wide transcription in chlamydomonas chloroplasts and found that 1) sulfate 

deficiency results in 2-10 fold reversible decrease in transcription. 2) phosphate limitation 

results in 2-3 fold increase in transcript accumulation and 3) chloroplast lacks a nucleus 

encoded RNA polymerase (Lilly et al., 2002). 

4.2.4.  Role of sigma factors in plastid transcription of higher plants 

4.2.4.1.  SIGMA 1 

AtSIG1 was at first characterized by Privat et al. (2003) in Arabidopsis by using an 

anti sense approach. The mutant plants did not show any visible phenotype. A T-DNA 

insertion mutant for sigma1 were later on characterised in Oryza sativa (Tozawa et al., 2007). 

OsSIG1 plays an important role in the chloroplast transcription of the genes of three different 

operons, psaA, psbB, and psbE. The reduction of transcripts was 68-89% for the psaA operon 

that consists of psaA, psaB and rps14; 41-48 % for the psbB operon (psbB, psbT, psbH, petB 

and petD) and 15-25 % for the psbE (psbE, psbT, psbL and psbJ) operon in sig1 plants. Thus 

sigma1 regulates PSI and PSII gene expression in rice. The genes whose transcript 

accumulation was increased in Ossig1 plants were rpl22, rpoA, rpoB, rpoC1, petE, petA, 

psbG, ORF159, psbZ and psbI. Northern blot analysis showed that the 5.2 Kb long transcript 

of psaA which is a tri-cistronic transcript was 46-49 % reduced in mutant plants. Similarly, 

the 2 Kb transcript of psbB was 23-34 % reduced in mutant plants while the 0.9 Kb transcript 

of psbE was reduced for 10-18 %. In contrast, the 2.6 Kb transcript of atpB (di-cistronic) was 

increased by 25-40%. The 1.9 Kb transcript of rbcL was present in the same quantities in wild 

type and mutant plants.  
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The western blot analysis showed that the PSI reaction center complex (PSAA-PSAB) 

was reduced by 26% in Ossig1 plants and also the activity of PSI was reduced. However, 

mutant plants have a functional PSII and the reduction in the electron transfer through PSII is 

probably due to the defect in PSI. Mature leaves of sig1 mutants have 1/3
rd

 reduction in 

chlorophyll contents. 

Using the yeast two hybrid system, a protein binding to the region 4.0 of SIGMA1 was 

found. This protein was named SibI (Morikawa et al., 2002). As it is known that region 4.2 is 

important for recognition of the -35 elements (Campbell et al., 2002), it was speculated that   

SibI may play an important role in modifying SIG1 promoter preference or regulating its 

activity. But experimental proof for this hypothesis is still lacking.  

 Recently, it was found that redox signals regulate the phosphorylation of SIG1 which 

in turn inhibits specifically the transcription of psaA gene. It was found that Thr-170 of SIG1 

is phosphorylated. Under oxidative conditions of plastoquinone (PQ) the amount of 

phosphorylated SIG1 is increased (Shimizu et al., 2010, Lerbs-Mache, 2011). The authors 

found that phosphorylation of SIG1, through psaA gene expression, plays an important role in 

regulating the stoechiometry of PS-I and PS-II.  

 

4.2.4.2. SIGMA 2 

The expression of SIGMA2 is induced by red light as well as blue light (Mochizuki et 

al., 2004). A T-DNA insertion mutant for SIG2 shows pale green cotyledons and poor growth 

(Kanamaru et al., 2001). There was 15 % reduction in chlorophyll content in the mutant 

plants. The chloroplast number was the same as in wild type plants but plastids were smaller 

in size and the internal structures were poorly developed. Sig2 plants showed reduced level of 

transcript accumulation of four out of the six tRNAs that had been analysed i.e. trnV-UAC, 

trnM-CAU, trnE-UUC, trnD-GUC. The transcript level of trnG-GCC and trnW-CCA 

remained unchanged. On the protein level, accumulation of the D1 subunit of PSII, 

cytochrome f, the β subunit of chloroplast coupling factor 1, Rubisco Large subunit, a 

catalytic subunit of clpP protease and an acetyle co-enzyme A Carboxylase subunit was 

reduced in sig2-1 plants as compared to that in wild type plants (Kanamaru et al., 2001). The 

above described decrease in tRNAs might explain the strong reduction in protein 

accumulation. In addition to tRNAs, one of the three primary transcripts (starting at position -

256 from the ATG translation initiation codon) of psbD was also highly reduced in sig2 

plants. However, the -946 primary transcript of psbD was more accumulated in sig2-1 plants 
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as compared to that in wild type plants (Kanamaru et al., 2001). A SIG2 transcriptome 

analysis was performed by microarray and showed that on the mRNA level only the psaJ  

transcript was reduced in sig2-1 plants. Transcripts of the other 47 genes were increased 

(Nagashima et al., 2004a). Most of the genes whose expression/transcript accumulation was 

increased in sig2 plants were predominantly transcribed by NEP.  

Sequence alignment of plant sigma factors with the E.coli primary sigma factor σ
70 

showed that SIG2 and SIG6 have the highest homology (Privat et al., 2003). AtSIG2 was also 

characterized in Arabidopsis by using an anti sense approach (Privat et al., 2003). SIG2 anti 

sense plants were deficient in chlorophyll during early stages of development (white 

cotyledons) and there was an efficient recovery of the wild type phenotype in later 

developmental stages. At later developmental stages, the phenotype of sig2 anti sense plants 

was different from that observed in T-DNA knock out plants (Kanamaru et al., 2001). In SIG2 

anti sense plants, chlorophyll deficiency was restricted to cotyledons while in T-DNA knock 

out plants the chlorophyll deficiency is found in leaves as well i.e. it continues till later stages 

of development. Two hypotheses were raised by the authors to explain the recovery of wild 

type phenotype in mutant plants. 1) Expression of SIG2 is regulated at the post transcriptional 

level and SIG2 deficiency is compensated by protein stability in later stages of development 

(Privat et al., 2003). 2) Phenotype recovery at later stages of development may be explained 

also because one of the other sigma factors may take over the role of SIG2 for promoter 

specificity and transcription.  SIG3 was proposed as a strong candidate for substitution of 

SIG2 as it has a similar promoter specificity (Hakimi et al., 2000; Privat et al., 2003) and 

SIG3 protein is increased in the absence of SIG2 (Privat et al., 2003). 

SIG2 is a soluble protein. Interestingly SIG2 protein is more abundant in cotyledons 

than in leaves while SIG3 protein is more abundant in leaves than in cotyledons. This 

observation could explain why SIG3 can substitute SIG2 more easily in leaves than in 

cotyledons (Privat et al., 2003). So, SIG2 might play a key role in cotyledons while SIG3 is 

required for transcription in leaves. 

4.2.4.3. SIGMA 3 

An anti sense mutant of AtSIG3 was characterized in arabidopsis by Privat et al., 

(2003) and no visible phenotype was detected. Later on, two T-DNA insertion mutants in 

SIG3 (sig3-2, sig3-4) from the SALK collection were characterised (Zghidi et al., 2007). 

Sig3-2 has an insertion at the border of intron 1 and exon 2 while sig3-4 has an insertion 

within exon 4. Both of these mutants showed no visible phenotype, thus confirming the result 
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of anti sense plants. Microarray analysis showed a strong reduction of the transcript level of 

psbN and a moderate reduction of the transcript level of all atp genes except for atpI. The 

psbN gene is located on the opposite strand of the psbB operon in the intergenic region 

between psbT and psbH. Primer extension and TAP RACE analysis showed that the promoter 

of psbN is located at position -32 from the ATG translation initiation codon of psbN and 

transcription initiation is totally under control of PEP SIG3 holoenzyme. 

It was further shown that the psbN initiated transcript extends at its 3‟ end over the 

psbT gene. Thus the PEP SIG3 dependent psbN promoter not only controls the synthesis of 

the sense transcript of psbN but produces also an anti sense transcript to psbT mRNA. This 

observation suggests that SIG3 might be involved in the gene expression regulation of the 

psbB operon by anti sense RNA production (Zghidi et al., 2007). SIGMA3 holoenzyme was 

also found to be implicated in the transcription of atp genes and in particular of the atpH 

gene. Primer extension analysis showed that accumulation of the -413 atpH transcript was 

strongly reduced in sig3 plants (Zghidi et al., 2007).  

 Interestingly, atpH codes for subunit III of the ATP synthase F0 complex; an 

integral thylakoid membrane complex (see Fig. 3C on p.16), PSBN has been localized to the 

thylakoid membranes (Ikeuchi et al., 1995) and SIG3 was also found to be membrane-bound 

(Privat et al., 2003). So far, SIG3 is the only sigma factor that has been shown to be 

membrane-bound. Altogether, these data might suggest transcription of SIG3 dependent genes 

in the vicinity of the final localization of the corresponding protein products.  

 Another peculiarity of SIG3 is that this factor seems to be inactive in its full-length 

form and functionality might require proteolytic cleavage to remove the N-terminal part of the 

factor (Hakimi et al., 2000; Homann & Link, 2003). In addition, SIG3 expression is 

independent of light (Homann and Link, 2003; Privat et al., 2003) and, as shown by in vitro 

transcription assays, this factor is able to recognize many promoters in the absence of 

competition with other sigma factors. Thus, in vivo SIG3 might serve to rescue the function of 

other sigma factors in case of problems. 

 

4.2.4.4. SIGMA 4 

A T-DNA knock out mutant for SIG4 was characterized which showed no visible 

phenotype at any stage of development (Favory et al., 2005). The T-DNA tagged line was 

selected from the INRA (Versailles) collection by PCR screening of DNA pools. The T-DNA 

was found to be inserted in the first exon of the SIG4 gene at 210 base pairs downstream of 
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the ATG translation initiation codon. It was shown by microarray and primer extension 

analysis that SIGMA4 mediates transcription of the sole transcript of ndhF being issued from 

position -320 upstream of the ATG translation initiation codon. The NDHF protein is a 

component of NAD(P)H dehydrogenase or NAD(P)H-plastoquinone oxidoreductase (also 

called NDH complex). Wester blot analysis showed that the absence of NDHF in sig4 knock 

out plants causes a strong reduction (almost undetectable) in the accumulation of another 

subunit of the NDH complex i.e. the NDHH protein. The authors suggested that SIG4 controls 

the assembly of the NDH complex by specifically controlling the ndhF expression at the 

transcriptional level (Favory et al., 2005).    

4.2.4.5. SIGMA 5 

The expression of AtSIG5 is highly expressed in young leaves and less expressed in 

roots. Its expression is developmental stage specific as it is not expressed in 4 days old plants 

but highly expressed in 8 days and 22 days old plants. 

A T-DNA knock out mutant (sig5.1, SALK049021) for SIG5 was characterized and 

showed no visible phenotype at any stage of development (Tsunoyama et al., 2004). The T-

DNA insertion is in the last exon of AtSIG5 (Tsunoyama et al., 2004). The insertion site was 

found to be 1931 bp downstream to the translation initiation codon and adjacent to the 

conserved region 4.2 which is necessary for -35 recognition.  

Onda et al., (2008) found that the only sigma factor that is essential for the 

transcription from the psbD blue light responsive promoter (BLRP) is AtSIG5 as in the 

mutant sig5.1 transcription of psbD from BLRP is highly affected (Tsunoyama et al., 2004). 

In addition, it was found that the expression of AtSIG5 is induced by blue light (Mochizuki et 

al., 2004; Onda et al., 2008) suggesting that AtSIG5 acts as a mediator of blue light signalling 

(Tsunoyama et al., 2004). 

In addition to Atsig5.1, there exists another T-DNA insertion mutant sig5-2, having the 

T-DNA insertion in exon 2. This mutant showed embryonic lethality. Indicating that AtSIG5 

might act as an essential factor for plant reproduction (Yao et al., 2003). The different 

phenotypes of the two mutants are not yet understood. 

4.2.4.6. SIGMA 6 

Two SIGMA6 mutants for Arabidopsis thaliana were characterized. sig6-1 having a 

T-DNA insertion in exon 4  (Ishizaki et al., 2005) and sig6-2 having an insertion in exon 5 
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(Loschelder et al., 2006). The sig6-1 mutant has a cotyledon specific pale green phenotype (< 

20 % chlorophyll of wild type plants). The mutant phenotype is restored in 8 days old 

seedlings. Electron micrographs of chloroplasts of wild type and sig6-1 mutant cotyledons (in 

3 days old seedlings) showed that the mutant chloroplasts had smaller spongiform plastids and 

lesser internal thylakoid membranes. However, the chloroplasts in 7 days old mutant 

seedlings were indistinguishable from wild type plants. In addition, greening of etiolated 

seedlings is retarted in sig6-1 mutants. It can be concluded that SIG6 is involved in light 

dependant differentiation of proplasts and etioplasts into chloroplast (Ishizaki et al., 2005). 

Microarray and northern blot analyses of 4 days old sig6-1and sig6-2 mutant seedlings 

showed a great reduction in transcript level of most of the PEP dependent gene transcripts and 

a general increase in the NEP dependent gene transcripts. These data suggest that SIG6 acts as 

a major general sigma factor at early stages of development. Most of the SIG6 recognised 

promoters posses -35/-10 (TATAAT/ TTGACA) conserved elements. Microarray and 

northern analyses of 4 days old sig6-1 plants showed a decrease in class I genes (rbcL, psbA, 

psbB, psbC, psbD, psbH, psbN and psbT) and class II genes (rrn16, rrn23, rrn5, rrn4.5) 

(Ishizaki et al., 2005; Loschelder et al., 2006). Transcript levels of NEP dependant genes of 

class II and class III including clpP, rps15, ndhB, ycf1 and rpoB, rpoC1, rpoC2 respectively 

were increased. But this reduction was restored in 8 days old plants where the pale green 

phenotype is also restored. The expression of the trnE operon and trnQ (UUG) was reduced in 

sig6-1 mutants of 4 days while trnV (UAC) did not decrease.  

Northern blot analysrs indicate that SIGMA 6 controls the transcription of the long 

transcript of 2.6 Kb of the atpB/atpE operon from the fourth day of development onward. The 

2.0 Kb long transcript of atpB/atpE and 0.7 Kb monocistronic transcript of atpE are 

independent of SIG6. In the absence of SIG6 there is a promoter switch in which an additional 

promoter controlling transcription of a 4.8 Kb RNA is activated (Loschelder et al., 2006).   

From the above mentioned results, it seems that SIG6 has a dual role: it is an early 

general sigma factor for PEP dependent genes as psbA, rbcL and trnV while it plays an 

important role as a late sigma factor for atpB.  

 Another interesting feature of SIG6 is its phosphorylation state. Tiller & Link (1993) 

described a serine/Thrionine Kinase (cpCK2) that was found to be associated to the PEP 

polymerase (Baginsky et al., 1997). Very recently, Schweer et al. (2010) used computational 

tools to identify potential sites for cpCK2 phosphorylation in SIG6 factor. They observed 

changes in in vitro binding of SIG6 to atpB promoter sequence and in vivo alteration of the 

atpB transcript profile when they disrupted the putative cpCK2 phosphorylation sites of the 
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SIG6 factor. These data represent the first strong evidence for a role of phosphorylation of 

SIGMA factors in the regulation of plastid gene transcription.  

 

 

Figure 6: Summary of the role of sigma factors in controlling different components of photosynthesis.  

The Sigma factors are indicated on the figure which is taken from (Choquet & Vallon, 2000). 

 

The summary of the role of different sigma factors in plastid transcription is given below in 

figure 6 and in table 1. 

Table1: Summary of the role of sigma factors in plastid transcription. 

Sigma factor  Role in Transcription 

SIG1  -    controls transcription of psaA operon-PSI (68-89 %), psbB operon-PSII (41-48%),   

      psbE operon-PSII (15-25%).  

-    expression of  following gene increased in Os sig1: rpl22, rpoA, rpoB, rpoC1, petE, 

      petA,   psbG, ORF159, psbZ and psbI   

-    in Os sig1 2.6 kb atpB transcript increased by 25-40 %. 

-    in Os sig1  PSI reaction center complex (psaA-psaB) reduced  by 26 %. 

-    in Os sig1  PSI activity decreased. 

-    in Os sig1  there is functional PSII.  

SIG2  -    15 % reduction in chlorophyll content in the mutant plants. 

-    In sig2 mutant plants there is decrease in the transcript accumulation of :  (trnV-UAC,  
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     trnM-CAU, trnE-UUC, trnD-GUC) and  the transcript issued from -256 psbD  and   

     psaJ  transcript.  

-    In sig2 mutant plants transcript accumulation of  47 genes was increased.   

-    In sig2 mutant plants there was reduction in the protein accumulation of:  

       -D1 subunit of PSII,  cytochrome f,  β subunit of chloroplast coupling factor 1,  

      - Rubisco Large subunit, a catalytic subunit of clpP protease and  

       -an acetyle co-enzyme A Carboxylase subunit.  

SIG3  -    Controls specifically the transcription of the -413 atpH transcript. 

-    Controls transcription of the -32 psbN and thereby produces and anti sense transcript of psbT.  

SIG4  -    Controls the assembly of the NDH complex by controlling the transcription of ndhF gene.  

SIG5  -     It specifically controls the transcription from  blue light responsive promoter of   psbD.  

SIG6  -    In sig6 mutant chlorophyll is < 20 % of wild type plants).  

-    It is involved in light dependant differentiation of proplasts and etioplasts into chloroplast 

-    sig6 mutant  has reduced transcript accumulation of :  

         -rbcL, psbA, psbB, psbC, psbD, psbH, psbN, psbT, rrn16, rrn23, rrn5, rrn4.5, clpP,  

          rps15, ndhB, ycf1, rpoB,  rpoC1, rpoC2, trnQ genes 

           (UUG) and trnE operon. 

        -2.6 Kb transcript of the atpB/atpE    

 

4.2.5. The transcriptional Active Complex (TAC) 

It has recently been found that along with the sigma factors, transcriptional active 

chromosome (TAC) associated proteins are also required for the PEP activity.  

Till today almost 35 PEP associated or PEP co-eluted proteins have been found (for review 

see Lerbs-Mache, 2011).  Although knock out mutants of (pTAC2, -6 and -12) have shown 

that these TAC proteins influence plastid gene expression their exact function in the plastid 

gene expression has not yet been elucidated. Some of these proteins are targeted to plastids 

and to nuclei and their influence on plastid gene expression could be indirect via regulation of 

other nucleus-encoded genes. 
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Project 

In the last decades the chloroplast has become an attractive tool for biotechnology. 

The possibility to transform the chloroplast of an increasing number of plant species, the 

tolerance of the chloroplast for accumulation of high levels of foreign or endogenous proteins 

and the ease to engineer its genome via homologous recombination make the chloroplast an 

ideal site to engineer resistance traits, to improve metabolic pathways and to produce 

pharmaceuticals in plants (Bock, 2007). As I would like to work later in my carrier on the 

problem of producing substances of pharmaceutical/medical interest in plastids, I am strongly 

interested in finding an endogenous specific and inducible transcription system for plastid 

transgene expression in dependence on the tissue, organ, developmental stage and/or external 

stimuli.  

As already mentioned in the introduction section of this manuscript, the plastid 

genome in Arabidopsis is transcribed by three different types of RNA polymerases, two NEPs 

(RPOTp and RPOTmp) and one PEP. RPOTp represents the principal RNA polymerase to 

transcribe NEP controlled mRNA genes (mainly housekeeping) during early developmental 

stages while RPOTmp transcribes specifically the rrn operon from the PC promoter during 

seed stratification (Courtois et al., 2007). The PEP transcribes mainly and differentially 

photosynthetic genes in association with one out of six sigma factors in later developmental 

stages. Thus, RPOTmp and RPOTp are active only in early developmental stages excluding 

the possibility of a large production of engineered proteins. In this complex scenario, the best 

candidate for the establishment of an endogenous specific transcription system is the PEP 

system in combination with a specific sigma factor.  

 In general, eubacterial sigma factors are classified into primary and alternative sigma 

factors (Lonetto et al., 1992; Wosten, 1998). Primary sigma factors control transcription 

initiation of a large number of plastid genes and they are essential for growth and survival. In 

contrast, alternative sigma factors have more specific functions. For the higher plant 

chloroplast system we can consider SIG2 and SIG6 as primary sigma factors. They transcribe 

many genes and Arabidopsis knock-out mutants of SIG2 and SIG6 show strong chlorophyll 

deficient phenotypes. For SIG5 the question is not completely clear. SIG5 was supposed to 

play an important (primary) role during seed development as a T-DNA insertion in exon 2 

was shown to be embryo-lethal (Yao et al., 2003). However, the same insertion mutant has 

been characterized as non-lethal by Nagashima et al. (2004b) placing SIG5 among the 
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alternative sigma factors. Thus, alternative sigma factors are SIG1, SIG3, SIG4 and SIG5 

where knock-out mutants do not show visible phenotypes.  

Considering the alternative sigma factors of the PEP transcriptional system, SIG3 

seems to be the most interesting candidate for three different reasons:  

- First of all, the recognition of the -413 atpH promoter was shown to be absolutely 

specific to SIG3 (Zghidi et al., 2007) thus excluding minimal transcription from any other 

sigma factor. In contrast to SIG1, SIG4 and SIG5 specific transcripts, not even traces of SIG3 

dependent -413 initiated atpH transcripts are detectable in the corresponding knock-out 

mutants. Using such a promoter in plastid transformation experiments would provide an 

absolute specific expression of the transgene by SIG3-PEP. 

- The second reason is related to the regulation of SIG3 activity that might imply 

proteolytic cleavage for activation in analogy to the activation of sigma K of E. coli (Hakimi 

et al., 2000; Homann and Link, 2003). In contrast to most of the other sigma factors, SIG3 is 

also expressed in darkness (Homann and Link, 2003; Privat et al., 2003). However, ATPH 

and PSBN are a priori proteins engaged in photosynthetic complexes and their synthesis 

should be light dependent. Thus, proteolytic activation of SIG3 might be triggered by light 

and/or under specific stress conditions.  

- The third reason concerns the regulation of plastid gene expression by anti sense 

RNAs. It has been shown that transcription from the SIG3 specific psbN promoter produces 

anti sense RNA to psbT mRNA (Zghidi et al., 2007) which is likely involved in the regulation 

of psbT mRNA translation (thesis of Wafa Zghidi, 2008) thus providing an ideal system to 

analyze this new path of plastid gene-expression regulation.  

 

According to these three reasons, I focused work during my thesis on  

(a) the characterization of the expression of the atpH gene at the -413 SIG3 specific 

promoter and the gene expression analysis of all the other atp genes which code 

for the subunits of the atp synthase complex. 

(b) the effect of different light conditions, from low intensity to photo-oxydative light, 

on the accumulation of SIG3-PEP specific transcripts, i. e. psbN and atpH 

mRNAs. Evidently, the analysis of psbN transcripts needs to be extended to the 

analysis of psbT sense and anti sense transcripts (see point c).  

(c) the exact mapping of psbT/psbN sense/anti-sense transcripts and their expression 

levels. 
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In detail, these problems have been addressed as follows: 

(a) The question of the specificity by SIG3 from the -413 atpH promoter is connected 

to the general question of expression regulation of all plastid genes coding for proteins of the 

ATP synthase complex. The ATP synthase complex is formed by different proteins that are 

either nucleus or plastid encoded. The plastid genes that encode the subunits of ATP synthase 

are organized in two different operons, the large operon consisting of the atpI/H/F/A genes 

and the small operon consisting of the atpB/E genes. The atpH gene product is present in a 

much higher stoichiometry than all the other subunits. The -413 SIG3 specific atpH promoter 

might therefore be necessary to reach a high level of atpH mRNAs for producing high levels 

of protein. In the first chapter, I have analyzed the expression of the two ATP synthase 

operons in detail in order to find out whether there is a co-regulation of the expression of the 

two ATP synthase operons by SIG3 or by any other sigma factor and whether SIG3 plays an 

important role in the higher stoichiometry of atpH at transcript or protein level. 

(b) In the second chapter I have analyzed the effect of different light conditions on the 

mRNA levels of the plastid transcriptome. Although the most interesting part for me 

corresponded to the mRNAs that are made by SIG3-PEP, I have used the general approach of 

macroarray analyses to get an overview on all plastid mRNAs at once. As light probably will 

influence many other mRNA levels (to remind that all sigma factors are expressed in a light-

dependent manner) it is important to distinguish between general (or other) and SIG3-specific 

light effects. This can be done by a complete transcriptome analysis where we can “filter” the 

SIG3-specific effect from the general effect if we know exactly which genes are transcribed 

by SIG3-PEP. In addition, if SIG3 activity is regulated by light-triggered proteolytic cleavage 

we would expect that the light conditions for this activation are different from the light 

conditions that induce the expression of other sigma factors. Exposure of plantlets to different 

light conditions should therefore result in different plastid transcriptome patterns. Some 

selected mRNAs have been characterized in more detail by primer extension analyses.  

(c) In the last chapter (chapter 3) of my thesis I have characterized the transcripts of 

the psbT sense and the psbT anti-sense RNA in more detail in order to get a better idea on the 

formation of possible sense/anti-sense RNA hybrids. Understanding the sense and anti-sense 

RNA hybrid formation of psbT will help to better explain the role of anti-sense RNA in gene 

expression regulation. We can expect that psbT mRNA that is trapped in a psbT/psbN hybrid 

is not free for translation. Results of this chapter need to be evaluated in connection with 

results described in chapter 2. As the PSBT protein is involved in the biogenesis of PSII 

(Ohnishi et al., 2008) and in efficient repair of photo-damaged PSII reaction centers (Ohnishi 
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et al., 2001, 2007) we should expect an increase in the levels of PSBT protein (required for 

PSII biogenesis) and correspondingly in free translatable psbT mRNA during the greening of 

etiolated plants. On the other hand, the formation of psbT/psbN sense/anti-sense hybrids 

might serve photo-protection of the psbT mRNA to survive a high light stress under which 

single-stranded mRNA might be degraded. Thus, psbT mRNA might be immediately 

available after the stress to produce PSBT protein for repair supposed that strand separation is 

included in the repair mechanism. On the contrary, strong light that leads to photo-damage of 

PSII might also induce over-expression of PSBT protein by reducing the amount of anti-sense 

RNA in the plant and thus augmenting free single-stranded mRNA for translation. Results 

obtained from the light experiments (chapter 2) are interpreted corresponding to these two 

options.  

A deep comprehension of the mechanism of action of the psbT anti-sense RNA in the 

control of psbT expression might contribute to develop new strategies for gene-expression 

control. For instance, the anti-sense mediated regulation could be exploited for a fine-tuning 

control of the expression of a specific plastid trans-gene even inside of an operon. 
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1.   Expression analysis of the two plastid ATP operons:  the large 

ATPI/H/F/A and the small ATPB/E operon. 

 

The plastid atp genes are arranged in two atp operons on the chloroplast genome. The 

large atp operon consists of atpI, atpH, atpF and atpA genes (Fig. 7a-A) which code for IV, 

III, I and  subunits of the ATP synthase respectively. The small atp operon consists of atpB 

and atpE genes (Fig. 7a-B) which code for  and subunits respectively.  

 

Figure7a. Schematic presentation of the arrangement of genes of the two atp operons.  

 

Levels for all plastid-encoded atp mRNAs were more or less reduced in sig3 plants, 

except for the atpI transcript (Zghidi et al., 2007). I first have participated to the analysis of 

the role of SIG3 in the transcriptional regulation of the atp genes in collaboration with Wafa 

Zghidi who completed the thesis in our laboratory in 2008 (results included in her thesis). We 

found that SIG3 controls the transcription from the -413 atpH promoter specifically and 

completely (Fig. 7b-A). It also partially controls transcription from the -467 atpB promoter 

(Fig.7b-B and in thesis of Wafa Zghidi, 2008). All the other promoters of atp operons (the -

229 atpI, the -520 atpB and the -431 atpE) were SIG3 independent (Fig.7b and thesis of Wafa 

Zghidi 2008). These data indicated that, although SIG3 specifically regulates the transcription 

from the -413 atpH promoter and may play an important role in the higher atpH stoichiometry 

at both the transcript and protein level, it does not co-regulate the transcription of the two atp 

operons. A summary of the results obtained in collaboration with Wafa Zghidi is given below 

in Figure 7b. 
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Figure 7b. Summary of SIG3 dependent transcription initiation sites of the atp genes. 

 (Results of the experiments carried out in collaboration with Wafa Zghidi). 

                

   Indicates the 5‟ end of the primary transcript while       indicates cleavage sites of the primary transcripts. 

These arrows are used for all primary transcripts and cleavage sites respectively in the following figures. 

 

 

Keeping in view the above data/results, in the current chapter, I have included results 

that address the following questions:  

1- Which sigma factor/factors controls the transcription from the SIG3 independent promoters 

of atpI (the -229), atpB (the -520 and -467), and atpE (the -431)?  

2- What is the mechanism of expression of the atpF and atpA genes ?  

3- Is transcription of the plastid atp genes, which are located in two distinct operons but code 

for subunits of the same complex, co-regulated by a single transcription factor? 

4- What is the role of SIG3 in obtaining the higher stoichiometry of ATPH? Is the uneven 

stoichiometry of the atpH mRNA, which corresponds to the high level of ATPH protein, 

obtained at the transcriptional and/or post transcriptional level?  

 

 In order to address the above mentioned questions, I have analyzed, in collaboration 

with Dr. Livia Merendino, the expression of these two atp operons at RNA and protein level 

in detail using all the six sigma mutants that have been available in the laboratory. In addition, 

I have also carried out detailed analysis of extremities of transcripts of the atp genes. For 

better and easy understanding of the role of sigma factors in transcriptional regulation of the 

atp genes, the results are arranged according to the order of the genes present in the two atp 

operons starting from the first gene of the large atp operon (atpI).  
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Note:  

1- The RNAs used for the primer extension and northern blot analyses were first quantified by 

spectrophotometer and then their quantitative and qualitative analysis was carried out by 1% agarose 

gel (data not shown for all the experiments). 

2- The proteins used for western blot analysis were carefully quantified by Bradford assay or a 

method established in the laboratory taken from (Esen, 1978)(see materials and methods) and then 

again the quantitative and qualitative analysis was carried out by staining the SDS PAGE (for 

proteins of higher molecular weight) or by TRICINE-SDS-PAGE (for proteins of lower molecular 

weight) with Coomassie blue. The quantity of proteins among the wild type and mutants was also 

compared on the membrane after transfer of protein from the gel by staining them with “Ponceau 

Rouge”. In brief extra care was taken for the quantitative and qualitative analysis of RNAs and 

proteins. 

3- Some of the results were confirmed by complementary techniques. 

4- Mapping of the 5’ extremities of transcripts was carried out by running 5’ labelled primer 

extension product in parallel with the sequence prepared with the same oligonucleotide used for 

primer extension on the polyacrylamide gel. For repetitions of primer extension analyses the gels were 

only run with molecular weight markers instead of sequence ladders because this was sufficient to 

identify the corresponding cDNAs. Mapping of the 5’ extremities was also obtained by 5’RACE and by 

circular RT-PCR and could be compared to primer extension results to verify or correct the results 

obtained by primer extension.    

1.1. Transcriptional analysis of atpI transcripts. 

 

It was recently shown that the atpI gene has two PEP dependent promoters responsible 

for the transcription initiation from positions -229 and -225 from the ATG translation 

initiation codon of atpI (Swiatecka-Hagenbruch et al., 2007). We have analyzed the atpI 

promoter region in Arabidopsis at two stages of development (2 days and 6 days old plants) 

(data not shown for two days old plants) but in our culture conditions (see material and 

methods) we found only -229 initiated transcripts (Fig. 8C and 8E). Macroarray data showed 

that among all the plastid encoded ATP synthase genes, transcript accumulation of only the 

atpI gene remained unchanged in sig3 plants (Zghidi et al., 2007). This was also confirmed by 

primer extension analysis that showed that the -229 atpI promoter is SIG3 independent (thesis 

Wafa Zghidi, 2008).  

In order to find out which of the sigma factors is involved in the transcription initiation 

of atpI transcripts, we carried out primer extension analysis (Fig. 8C and 8D) by using wild 

type Columbia (Co) and Wassilewskija (Ws) plants and sig1 (Co), sig2 (Ws), sig3 (Co), sig4 
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(Ws), sig5 (Co) and sig6 (Co) T-DNA insertion mutants. Primer extension is a technique used 

to map the 5‟ extremities of both the primary and the processed transcripts. A 5‟ end 

radioactively labeled (P
32

) transcript specific primer is used for cDNAs synthesis from 

mRNAs. These radioactively labeled cDNAs are loaded and run on 6% polyacrylamide gel. 

For mapping the 5‟ extremity of the transcript under study, the sequence prepared with the 

same primer as used for primer extension was loaded and run on the same gel together with 

molecular weight markers. Only the molecular weight markers are shown in Fig. 8. We found 

that the -229 primary transcript is strongly reduced (almost absent) only in sig2 plants (Fig. 

8C, compare lanes 2‟ to 7‟ and Fig. 8E, lanes 8‟ and 11‟). This indicates that SIGMA2 (SIG2) 

regulates atpI initiated transcription of the large atp operon. It also indicates that the large atp 

operon is co-regulated by SIG3 and SIG2. It would be interesting to analyze the contribution 

of this SIG2 dependent transcript of atpI to the transcript levels of the downstream genes of 

this operon (atpH, atpF and atpA). In addition, this finding also raises the question, whether 

SIG2 co-regulates both atp operons (discussed later).  

If we carefully observe, it seems that the -229 initiated transcript is also slightly 

reduced in the sig1, sig3 (Fig. 8C compare lane 3‟ and 5‟ to 2‟), sig4 (Fig. 8C compare lane 7‟ 

to 6‟) and sig6 mutant (Fig. 8E, compare lane 11‟ to 10‟). These sigma factors may play a 

minor role in the transcription from the -229 promoter. As the observed reduction was not 

always reproducible and it is much less important than that observed in sig2 plants, the 

conclusion remains the same: The -229 is SIG2 dependent. 
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Figure 8. Characterization of the -229 atpI promoter. 

(A) Schematic presentation of the atpI/H/F/A operon.     Indicates the 5‟ end of the primary transcript while 

           indicates the oligonucleotide used in primer extension analysis.  

(B, D) Qualitative and quantitative analysis of total RNAs. RNAs were first quantified by the spectrophotometer 

and equal amounts were then analyzed on 1% agarose gels. Total RNA from the following Arabidopsis plants 

was analyzed: Wild type Columbia (lane 2, 8, 10) with sig1 (lane 3), sig3 (lane 5), sig5 (lane 9), sig6 (lane 11) 

and wild type Wassilewskija (lane 6) with sig2 (lane 4) and sig4 (lane 7). Lane 1 shows the 1Kb plus molecular 

weight marker detailed in (B‟). The same RNAs were then used for primer extension analyses.  

(C, E) Primer extension analysis of -229 atpI transcripts. 5 µg of total RNA extracted from 6 days old plants of 

wild type Columbia (lanes 2‟, 8‟ and 10‟) were analyzed with sig1 (lane 3‟), sig3 (lane 5‟), sig5 (lane 9‟), sig6 

(lane 11‟) and wild type Wassilewskija (lane 6‟) was analyzed with sig2 (lane 4‟) and sig4 (lane7‟). Lane 1‟ 

indicates the molecular weight marker used for identification of the transcripts. LC indicates the loading control 

which corresponds to the PCR amplified product of 800 bp added to the mixture just before phenol chloroform 

extraction after cDNA synthesis. 

 

A 

 

rps2 atpI atpH atpF atpA 

-229 (SIG2-PEP) 
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In the absence of the -229 transcript (Fig. 8C, lane 4‟), another band just below the -

229 appears, at position -225. This indicates that a -225 initiated transcript does exist and 

might only be produced in conditions where the -229 transcript is either absent or not 

sufficiently produced. 

The loading control in Figure 8C and E helps to determine a possible loss of labeled 

cDNAs in any of the samples during the procedure of purification, precipitation and loading. 

 

1.2. Transcriptional analysis of atpH transcripts. 

Two types of transcripts have been revealed for the atpH gene: one starting at position 

-413 and another one starting at position -45 from the ATG translation initiation codon (Fig. 

9B lane 2‟) (Zghidi et al., 2007). Using the 5‟ RACE technique on TAP (Tobacco Acid 

Pyrophosphatase: which dephosphralises the 5‟ ends of the primary transcripts) treated and 

untreated transcrits, it was previously shown that the -413 is a primary transcript and -45 is a 

processed transcript (Thesis of Wafa Zghidi, 2008). Sequencing of 5‟ Race products of the -

413 transcripts showed that the transcripts (data not shown) indeed start 5 nucleotides 

upstream of the -413 position that was determined by primer extension experiments (Zghidi et 

al., 2007). So further in the text they will be called -418 atpH transcripts. In the transcript 

analysis of sig3 mutant plants by macroarray analysis, atpH was the most affected atp gene 

(Zghidi et al., 2007). Primer extension analysis showed that the -418 atpH transcripts are 

SIG3 dependent and the processed transcripts (-45) are at least partially SIG3 dependent 

(Zghidi et al., 2007) (Fig. 9B, compare lane 5‟ to 2‟). This means that the -45 transcripts are 

produced as a result of processing of both the atpI (-229) and the atpH (-418) initiated 

transcripts, the -229 being SIG2 dependent. 

In order to explore the role of the other sigma factors on atpH transcription and the 

contribution of the SIG2 dependent atpI -229 transcript to the -45 atpH transcript, we carried 

out primer extension on the total RNAs extracted from 6 days old wild type plants (Columbia 

and Wassilewskija) and sig1 (Co), sig2 (Ws), sig3 (Co), sig4 (Ws), sig5 (Co) and sig6 (Co) 

mutants (Fig. 9B and C lanes 2‟ to 7‟ and 8 to 11). The localization of the oligonucleotide 

used for primer extension is shown in Fig. 10B as horizontal arrow. No clear change in the 

accumulation of -418 and -45 transcripts was observed in sig2 plants (Fig. 9B, compare lanes 

4‟ and 6‟). This result can be explained by functional compensation of SIG2 by SIG3. SIG3 

might compensate the absence of SIG2, which regulates the transcription of the -229 atpI 

transcript, by over transcribing the large atp operon from the -418 atpH promoter, the -418 
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transcript being then very rapidly processed at the -45 site. Over-expression of SIG3 in sig2 

plants had been observed previously (Privat et al., 2003). Both transcripts, the -418 and the -

45 transcripts, remain unchanged in sig1, sig4, sig5 and sig6 plants. This shows that SIGMA1 

(SIG1), SIGMA4 (SIG4), SIGMA5 (SIG5) and SIGMA6 (SIG6) do not play any role in the 

transcription of neither the -418 transcript nor the -45 transcript.  

In order to know whether the atpH transcripts exist as monocistronic or polycistronic 

transcripts and to determine 3‟ extremities of the -418 and the -45 transcripts, we used the 

circular RT-PCR technique. In this technique transcripts are treated with TAP (Tobacco Acid 

Pyrophosphatase), an enzyme that dephosphoralizes the primary transcripts and makes them 

available for auto ligation. Thereafter, mRNAs are reverse transcribed to prepare cDNAs by 

using a transcript specific primer. To differentiate between the -418 and the -45 mRNAs, we 

designed two different primers for reverse transcription (R1 and R2 respectively, 

schematically demonstrated in Fig. 10A).  

cDNAs were then PCR amplified by using transcript specific primers R1+F or R2+F. 

Cloning and sequencing of the cDNAs gave the results presented in paragraphs 1.2.1 and 

1.2.2. 
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Figure 9. Characterization of the -418 and -45 atpH mRNAs.   

(A) Qualitative and quantitative analysis of total RNAs of the wild type Columbia (lane 2), sig1 (lane 3), sig2 

(lane 4), sig3 (lane 5), and wild type Wassilewskija (lane 6) and sig4 (lane 7), on the 1% agarose gel.  Lane 1 

shows the 1Kb plus molecular weight marker whose map is shown in (Fig. 8 B‟). RNAs were first quantified by 

the spectrophotometer and then analyzed on agarose gel. These RNAs were used for the primer extension 

analysis shown in (B) while the RNAs used for primer extension presented in (C) are shown in Fig. 8D. 

(B, C) Primer extension analysis of atpH transcripts. 5 µg of total RNA extracted from 6 days old plants of wild 

type Columbia (lanes 2‟, 8 and 10), sig1 (lane 3‟), sig2 (lane 4‟), sig3 (lane 5‟), sig5 (lane 9), sig6 (lane 11) and 

wild type Wassilewskija (lane 6‟) and sig4 (lane 7‟) plants have been used for analysis. Lane 1‟ indicates the 

molecular weight marker used for mapping and identification of the transcripts. LC indicates the loading control 

which corresponds to the PCR amplified product of 800 bp added to the mixture just before phenol chloroform 

extraction after cDNA synthesis.        , processing intermediates or degradation products. 

 

 

 

 

 



Results: Chapter 1 

55 

 

 

 

 

 

Figure 10.  Mapping of atpH 3’ ends by circular RT PCR. 

(A) Schematic presentation of the circular RT PCR technique on atpH transcripts. 

(B) Schematic presentation of the atpH/atpF genes and location of the 5‟ and 3‟ ends of atpH transcripts. 

 The 5‟ end of the -418 atpH primary transcript and the -45 cleavage site of the atpH primary transcripts are 

reported. 

 

         Indicates the distribution of 3‟ ends of -418 atpH transcripts while    indicates the distribution of 3‟ ends of 

-45 atpH transcripts.      indicates the oligonucleotide used in primer extension analysis. 

 

 

1.2.1.  3’ end mapping of -418 initiated atpH transcripts. 

For selection of -418 initiated transcripts, RT-PCR was performed with primer R1 that 

is located upstream of the -45 cleavage site (Fig. 10A) and thus excludes all -45 transcripts 

from the analysis. All clones 5‟ ended at position -418 from the ATG translation initiation 

codon of atpH. On the contrary, the 3‟ ends of the clones vary considerably (listed below and 

shown in Fig. 10B as red arrows). They are found within the coding sequence of atpH, in the 

B 

A 
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intergenic region of atpH/atpF and in the coding region of atpF. This indicates that the -418 

transcripts, despite of having a stable 5‟ end, posses a highly unstable 3‟ end.  

1 clone    +141 from atpH ATG translation initiation start codon 

1 clone    +150 from atpH  ATG translation initiation start codon 

1 clone    +160 from atpH  ATG translation initiation start codon 

1 clone    -167 from atpF  ATG translation initiation start codon 

1 Clone   - 181 from atpF   ATG translation initiation start codon 

1 clone   -213 from atpF  ATG translation initiation start codon 

1 clone   -310 from atpF  ATG translation initiation start codon 

1 clone   -339 from atpF  ATG translation initiation start codon 

2 clones  +94 from atpF  ATG translation initiation start codon 

1.2.2.  3’ end mapping of  -45 processed atpH transcripts.  

For study of the -45 atpH transcripts, RT-PCR was performed with primer R2 (see 

Fig. 10A) that is located downstream to the -45 cleavage site. All clones had the same 5‟ end 

at position -45 from the ATG translation initiation codon of atpH. This indicates that the -45 

transcript has a very stable 5‟ end. The majority of the clones (six out of eight) had the same 

3‟ end in the intergenic region between atpH and atpF genes (listed below and shown in Fig. 

10B as light blue arrows).  

6 clones  -167 from atpF ATG translation initiation start codon 

1 clone   -339 from atpF ATG translation initiation start codon 

1 clone    +167 from ATG translation initiation start codon of atpH. 

The above mentioned results indicate that the atpH transcripts do exist as 

monocistronic transcripts and that the 3‟ end of the -418 initiated transcripts are unstable and 

dispersed while 3‟ end of -45 transcripts are highly stable. We can assume that -418 initiated 

transcripts are stabilized after cleavage (processing) at the -45 position. This stabilization is 

probably brought about by binding of a so-called pentatricopeptide repeat (PPR) protein, 

PPR10, to the region spanning the -45 position up to the ATG translation start codon as 

recently shown in maize (Pfalz et al., 2009). In this hypothesis the higher protein 

stoichiometry of the ATPH in our culture conditions (see material and methods) might be 

controlled on the transcriptional level by SIG3, and in addition on the post-transcriptional 

level by a PPR10 like protein. 
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1.2.3. Regulation of the higher stoichiometry of ATPH. 

The next question regarding the higher stoichiometry of the ATPH protein is to which 

extent the higher stoichiometry of the ATPH protein is determined on the transcript level. In 

order to answer this question, we carried out a macroarray analysis of the total RNAs 

extracted from the 6 days old plants. For macroarray analysis, mRNAs have been reverse 

transcribed in the presence of a radiolabelled deoxynucleotide by using specific primers to 

each plastid gene chosen as close as possible to the corresponding probes deposited on the 

macroarray. This trait in addition with the selection of 60-mer probes near the ATG start sites 

contribute to the semi-quantitative property of the macroarray developed in our laboratory 

(Patent FR 0607168). Hybridization signals on the macroarray were detected by phosphor 

imager analysis and were quantified using the Array gauge (Fuji) software. We found that the 

transcript accumulation of atpH mRNA is 16-30 times higher than that of other atp genes 

(Fig. 11). The value of atpI was considered to be one for the calculation of the relative 

amounts of transcript accumulation of other atp genes. The data presented in figure 11 is the 

average of three independent experiments.  

The data presented in figure 11 show that a higher stoichiometry for ATPH does exist 

at the transcript level. Run-on experiments should be carried out to determine whether this 

higher atpH mRNA level is achieved at the transcriptional level by SIG3-PEP specific 

transcription of the atpH gene or at the post transcription level by stabilization of the 

processed -45 atpH mRNA. But it can be inferred by the data presented in section 1.2a and 

1.2b of this chapter that the higher stoichiometric accumulation of atpH mRNA observed by 

macroarray analysis is achieved by specific stabilization of the -45 monocistronic transcript 

which is produced as a result of cleavage of both the SIG2 (-229 atpI) and the SIG3 (-418 

atpH) dependent transcripts. So, the higher stoichiometric accumulation of atpH mRNA is not 

solely dependent on SIG3. 
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Figure 11. Stoichiometry of plastid encoded ATP synthase mRNAs.  

A) A part of the plastid macroarray showing the transcript accumulation of atp genes. B) The relative quantities 

of transcript accumulation, as determined by macroarray analysis of plastid genes encoding the subunits of ATP 

synthase in 6 days old green Wt plants are represented by columns. The quantity of accumulated transcripts of 

atpI was taken as one. The RNAs were qualitatively and quantitatively analyzed before being used in macroarray 

analysis (data not shown).  

 

 If a higher stoichiometry is present at the transcript level, which is evident from the 

results presented in the figure 11, then the next question is which sigma factor (SIG2 or SIG3) 

plays a more important role in the regulation of this higher stoichiometry at the transcript 

level.  

In order to answer this question, we carried out Northern blot analysis of wild type, 

sig2 and sig3 plants. This Northern blot analysis shows that in sig3 mutants the -418 

transcripts are highly reduced while the -45 transcripts are only slightly reduced (Fig. 12B). In 

contrast, in sig2 plants both the -418 and the -45 transcripts are accumulated in relation to 

wild type plants (Figure 12A). These results are coherent with the results of primer extension 

analysis discussed in the section 1.2 of this chapter. Primer extension analysis showed no 

changes in -418 and -45 transcripts in the absence of SIG2 and this result was interpreted by 

transcriptional compensation at the -418 atpH promoter by SIG3-PEP. It shows that SIG3 

plays a more important role in the maintenance of the transcript stoichiometry in the absence 

of SIG2. This raises the question whether SIG3 also plays a similar important role in the 

conditions of stress in maintaining higher transcript level (discussed in chapter 2).  
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Figure 12. Analysis of expression of atpH precursor RNAs by Northern Blot analysis.  

(A) 5 µg of total RNAs extracted from 6 days old plants of wild type Columbia (lane 1), sig2 (lane 3), sig3 (lane 

2) were separated on denaturing agarose gel, transferred onto a nitrocellulose membrane and the membrane was 

colored with methylene blue. 

The membrane was hybridized either to the -418 specific atpH probe (A‟) or to the -45 transcript specific atpH 

probe (B). The molecular weight marker, visible on the nitrocellulose membrane under UV because of Ethidium 

Bromide, was marked on the membrane with the lead pencil.  

Note: Quantitative and qualitative analysis of RNAs used in this experiment are also shown in figure 9A. 

(C) Localisation of the -45 and -418 specific probes used for northen blots. 

 

Supposed that the transcript level of atpH mRNA determines the protein level then we 

would expect a decrease in ATPH protein in sig3 mutants and an increase in sig2 mutants.  In 

order to verify this hypothesis and to determine whether the compensatory role of SIG3 at the 

transcript level is reflected on the protein level, we carried out a western blot analysis of 

proteins extracted from the 6 days old wild type plants (Columbia and Wassilewskija) and 

sig2 (Ws) and sig3 (Co) mutants. This experiment was done in collaboration with Frank Buhr. 
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Unexpectedly, western blot analysis shows that ATPH protein levels remain constant 

in sig3 and are reduced in sig2 plants (Figure 13). It is difficult to conclude on the reduction 

of ATPH in sig2 mutants. In sig2 mutant a general reduction of plastid protein accumulation 

should be observed because of reduction in tRNAs (Kanamaru et al., 2001). Keeping in mind 

the constant level of atpH transcripts in sig2 plants, it can be inferred that this reduction is due 

to absence or reduction of tRNAs necessary for translation.  

 

 

Figure 13. Analysis of ATPH protein levels in SIG2 and SIG3 knock out plants by Western blot analysis.  
5µg (lanes 1 and 2), 10 µg (lanes 3 and 4) and 20 µg (lanes 5 and 6) of total proteins extracted from the 6 days 

old plants of wild type and sig3 plants (A) and wild type and sig2 plants (B) were separated on Tricine-SDS-

PAGE (see materials and methods) and then transferred to nitrocellulose membrane. The antibody reactions 

were done with antibodies dressed against ATPH and RPL4 (a nuclear encoded plastid ribosomal protein used as 

a control). 
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From the result with the sig3 plants we must conclude that SIG3-PEP dependent atpH 

transcription, although monocistronic SIG3 dependent atpH mRNA is detectable in Northern 

blots, does not contribute significantly to the ATPH protein level, at least not under the 

growth conditions that we have used. However, another Northern analysis that was done 

under similar conditions shows much less SIG3 dependent 0,7 kb RNA as detectable in Fig. 

12 and the Western blot (Fig. 13) has been done with plant material that had not been 

analyzed in parallel at the RNA level. Because of the variability of the amount of the SIG3-

dependent monocistronic atpH RNA in different preparations, it is difficult to conclude 

something concerning the protein level. RNAs and proteins need to be analyzed from the 

same plant material grown under conditions that activate SIG3. During my work I could not 

find the condition(s) where SIG3-dependent transcription of the atpH gene becomes essential 

to establish the high atpH mRNA stoichiometry.  

In conclusion, higher stoichiometric accumulation of ATPH is also present at the 

transcript level. Both the SIG3 and SIG2 play partial and compensatory roles in transcription 

but the conditions that determine their mutual interactions are not yet elucidated, and a master 

control of the atpH monocistronic mRNA level exists probably on the post-transcriptional 

level by a PPR10 like protein. Last but not least, the activation of the SIG3 dependent 

promoter in the absence of SIG2 dependent transcription indicates a “safeguarding” role of 

SIG3 in the transcription of atp genes and we wonder if SIG3 does not become specifically 

important under some well defined stress conditions that unfortunately I could not find during 

my thesis. 

1.3. Transcriptional analysis of atpF transcripts 

Primer extension analysis shows that there are three atpF transcripts (Fig.14B). The 

two long transcripts by their size and their dependence on SIG3 correspond to the -418 and 

the -45 atpH transcripts (Fig. 14C, lanes 2 and 3). By comparison with the corresponding 

sequence, which was run on the same gel (Fig. 14 B), the 5‟ end of the third short transcript 

was mapped at position -30 from the ATG translation initiation codon of the atpF gene. In 

order to determine whether the -30 transcript is a primary or processed transcript, we carried 

out 5‟ RACE RT–PCR. In this techniques mRNA transcripts are treated with TAP (Tobacco 

Acid Pyrophosphatase), an enzyme that dephosphorylises the primary transcripts and makes 

them available for ligation with an adapter. Thereafter, mRNAs are reverse transcribed to 

prepare cDNAs by using a transcript specific primer. The produced cDNAs are then amplified 

by PCR by using a 5‟ adapter specific primer and a 3‟ transcript specific primer (external 
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primer). A second PCR, which renders more specificity for the cDNA amplification, is 

performed by using internal primers which are adapter specific and transcript specific. The 

obtained PCR products are then used for cloning and sequencing. However, we failed to 

amplify a band of the expected size for the -30 atpF transcripts.  

 

 

 

Figure 14. Expression analyses of the atpF gene.  

(A) Schematic presentation of the atpI/H/F/A operon with respect to atpF transcripts.   indicates the -30 cleavage 

site.           indicates the oligonucleotide used for primer extension.  

(B) Mapping of the small atpF precursor RNA by primer extension accompanied by the sequence ladder made 

with the same primer as used for primer extension. 

 (C) Primer extension analysis of atpF transcripts in WT and sig3 plants. 5 µg of total RNA extracted from 6 

days old wild type Columbia (lane 2) and sig3 plants (lane 3) were used for analysis. Lane 1 shows the 1Kb plus 

molecular weight marker whose map is shown in (Fig. 8 B‟). The experiment was reproduced several times 

giving identical results. 

(D) Primer Extension analysis of atpF transcripts using total RNAs of 6 days old wild type plants and SSII (lane 

4) and SSIII (lane 5) reverse transcriptases at 42 °C (lane 4) and 55 °C  (lane 5) respectively.  

 

A 

A 
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In order to know whether in the primer extension study, the signal corresponding to -

30 was due to an artifactual stop of the retro transcription caused by a secondary structure 

present, we carried out the primer extension at 42°C and 55°C by using SSII and SSIII reverse 

transcriptases, respectively (Fig. 14D). Higher temperature (55°C) helps to reduce secondary 

structures. If the band was an artifact due to secondary structures then there should be absence 

or strong reduction of signal at 55°C. Conversely, we found that the signal is even stronger 

(Fig. 14D, lanes 4 and 5). Hence it is clear from this experiment that -30 atpF transcripts do 

exist. It is known that retro transcription is less efficient for longer transcripts at 55°C and 

SSIII preferentially retro transcribes smaller transcripts. Therefore it is not surprising that we 

observe a reduction in longer cDNAs (-45 and -418 atpH) at 55°C (Fig. 14D, lane 5) and an 

increase in short cDNAs (-30 atpF).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Hypothetical hairpin structure in the atpH/atpF intergenic region and position of the 5’ end of 

the -30 atpF transcript. 

 

Analysis of the hypothetical secondary structures of atpH and atpF intergenic region 

by RNA fold (http://bioweb2.pasteur.fr) showed that the -30 site lies in the stem of a 

hypothetical hairpin structure (Fig. 15). This type of hairpin is a typical substrate for 

endonucleases. This observation suggests that the -30 atpF transcript originates from a 

processing event. 

Reduction of the -30 atpF transcript accumulation in sig3 mutant plants when compared 

to wild type plants in primer extension analysis indicates that this transcript originates 

http://bioweb2.pasteur.fr/
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preferentially from cleavage of the SIG3 initiated -418 atpH transcript. In addition, as there is 

only reduction but not complete absence of the -30 transcript in sig3 plants, we conclude that 

this transcript is produced as a result of the processing of both the polycistronic transcripts 

which are SIG2 dependent (-229 atpI initiated) and SIG3 dependent (-418 atpH initiated). 

 

1.4. Transcriptional analysis of atpA transcripts. 

We carried out primer extension analysis of atpA transcripts. We observed very long 

transcripts that are difficult to measure on 6 % acryl amide gels. We suppose that these are co-

transcripts of atpA with atpF, atpH and / or atpI. Along with these long transcripts, we also 

observed one small transcript (Fig. 16B, lanes 1‟ and 2‟). 5‟ RACE showed that this transcript 

starts at position -74 from ATG translation initiation codon of atpA. 

5‟ ends of 11 out of 19 clones ended at this position (Fig. 16A) that corresponds to the 

first nucleotide of the last codon of atpF.  

5‟ RACE with and without TAP treatment showed that this transcript is a processed 

transcript (Fig. 16B, lanes 4 and 5). No primary transcripts for atpA could be detected by 5‟ 

RACE. As reduction in accumulation of the -74 atpA transcripts was observed in sig3 plants 

(Fig. 16B, lane 2), we propose that this transcript is produced as a result of cleavage from 

both the -418 atpH initiated polycistronic mRNA and the -229 atpI initiated polycistronic 

mRNA. 
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Figure 16. Transcript characterization of the atpA gene. 

 (A) Schematic presentation of the atpI/H/F/A operon with respect to atpA transcripts.     indicates the cleavage 

site at-74.           indicates the oligonucleotide used for primer extension.  

(B) Primer extension analysis of the atpA transcripts. 5 µg of total RNAs extracted from wild type Columbia 

(lane 1) and sig3 (lane 2) plants were used for analysis. Wt RNA was also analyzed by 5‟ RACE. TAP + and 

TAP - (lane 3, 4) correspond to the RT-PCR products obtained from RNAs treated with tobacco acid 

pyrophosphatase or without treatment. Lane 3 shows the 1Kb plus molecular weight marker. Lanes 1‟ and 2‟ 

correspond to longer exposure of lanes 1 and 2. 
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1.5. Transcriptional analysis of atpB transcripts. 

 

In arabidopsis, a Northern blot analysis of the atpB transcripts showed that there are 

two types (2.6 kb, 2.0 kb) of dicistronic transcripts (Schweer et al., 2006). Later on two 

transcripts had been 5‟ mapped at -520 and -318 from the atpB ATG and found to be primary 

transcripts (Swiateka-Hagenbruch et al., 2007). The -520 transcripts were shown to be 

dependent on PEP and the -318 transcripts to be dependent on NEP. Our own analysis by 

primer extension and 5‟ RACE shows three different atpB transcripts with their 5‟ ending at 

positions -520, -467 and -84 (see Fig. 17A, B and thesis of Wafa Zghidi, 2008) where the -84 

transcript results from processing. We conclude that the 2.6 kb and 2 kb atpB transcripts 

observed in Northern experiments correspond to the -520/-467 and -84 transcripts that were 

detected by primer extension respectively. The NEP dependent -318 transcripts that were 

identified by 5‟ RACE by Swiateka and colleagues (2007) in non treated as well as 

spectinomycin treated plant materials, were, in our conditions, only observed in plants that 

were treated with spectinomycin (a PEP inhibitor) (thesis Wafa Zghidi, 2008).  

In order to identify which sigma factor was involved in the recognition of the two atpB 

promoters, we carried out primer extension on the total RNAs of 6 days old wild type plants 

(Columbia and Wassilewskija) and sig1 (Co), sig2 (Ws) sig3 (Co) sig4 (Ws), sig5 (Co) and 

sig6 (Co) plants (Fig. 17C). Our analysis shows that the -467 transcripts are predominantly 

made by SIG2 and the -520 transcripts are predominantly made by SIG6 as they are strongly 

reduced in sig2 and sig6 plants, respectively (Fig. 17, compare lanes 4 and 6 and lanes 11 and 

12). On the other hand, the -84 transcripts are not reduced in sig2 and sig6 but surprisingly, 

these transcripts are reduced in sig1 and sig3 plants (compare lane 2 to lanes 3 and 4). How 

can this be explained?  

Northern blot analysis performed with sig6 plants showed that the 2.6 kb atpB 

transcript is SIG6 dependent in 5 days old plants and that in the absence of this transcript an 

upstream 4.8 kb transcript (whose 5‟ end was proposed to map in the intergenic region of 

accD and rbcL) is activated. This 4.8 kb transcript was proposed to be processed to the 2.0 kb 

(-84) transcript which was found not to be reduced in the sig6 plants (Schweer et al., 2006). 

Our primer extension analysis of sig2 and sig6 plants shows that the -84 processed transcripts 

do not change considerably in the sig6 plants but they change in sig1 and sig3 plants (Fig. 

17C). Thus it might be that the 4.8 transcript is under control of SIG1 and SIG3. However, we 

never have observed the 4.8 kb transcript described by this group. In our case this RNA might 

be more rapidly processed to give a -84 atpB transcript. The -84 transcript pool should then 
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results from at three different promoters and the observed variations in the amount of the -84 

transcripts should be due to the interplay of transcription at these 3 different promoters and 

thus difficult to predict. 

 

 

Figure 17. Transcript characterization of the atpB gene. 

(A)   Schematic presentation of the transcripts of  atpB/E. indicates the 5‟ end of primary transcripts while  

 indicates the site of cleavage of the primary transcripts.       indicates the oligonucleotide used in primer 

extension analysis for atpB mRNAs.  

(B) Mapping of the 5‟ ends of the atpB transcripts in Wt Columbia (lane5) while using the sequence prepared 

with the same oligonucleotide (lanes 1-4).  

(C) Primer extension analysis of atpB transcripts. 5 µg of total RNA extracted from 6 days old plants of wild 

type Columbia (lanes 2, 9 and 11), sig1 (lane 3), sig2 (lane 4), sig3 (lane 5),  and wild type Wassilewskija (lane 

6), sig4 (lane7), sig5 (lane 10) and sig6 (lane 12) plants have been used for analysis. Lane 1 indicates the 

molecular weight marker used for mapping and identification of the transcripts. LC indicates the loading control 

which corresponds to the PCR amplified product of 800 bp added to the mixture just before phenol chloroform 

extraction after cDNA synthesis. 

Note: RNAs used for C (lane 2-7) part of this figure are shown in figure 8 B while the RNAs used for the C 

(lane 9-12) are shown in figure 8 D. 

2.6 Kb 

2.0 Kb 
Kb 

A 
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1.6. Expression analysis of the atpE gene. 

A primary transcript being issued from position -430/431 from ATG translation 

initiation codon of atpE was found to exist in Tobacco (Kapoor et al., 1994). This transcript 

had its 5‟ end in the coding region of atpB. Also in Arabidopsis a transcript starting at 

position -431 from ATG translation initiation codon of atpE was identified by primer 

extension (Fig. 18B). This transcript was shown to be primary and PEP dependent (Wafa 

Zghidi thesis, 2008) in arabidopsis. This transcript is a monocistronic atpE transcript.  

In order to find out the sigma factor involved in the recognition of atpE PEP promoter, 

we carried out primer extension on the total RNAs of 6 days old wild type plants (Columbia 

and Wassilewskija) and sig1 (Co), sig2 (Ws) sig3 (Co) sig4 (Ws), sig5 (Co) and sig6 (Co) 

plants (Fig. 18C). The atpB/atpE genes and the localization of the oligonucleotide that was 

used for primer extension analysis of the atpE transcript are schematically indicated in Fig. 

18A. The exact mapping of the -431 transcript by primer extension with an accompanying 

sequence ladder is shown in Fig. 18B. The primer extension analyses of all arabidopsis sigma 

mutants indicate that the -431 atpE monocistronic RNA is strongly SIG2 dependent (Fig. 18C 

compare lane 3 and 5). 

To get an idea on the quantitative relation between atpB/atpE cotranscripts and atpE 

monocistronic transcripts, we performed also a Northern blot analysis using an atpE specific 

probe. The analysis was carried out using total RNAs extracted from the 6 days old wild type, 

sig2 and sig3 plants (Fig. 19A). The result shows a higher quantity of atpB/atpE cotranscripts 

than of monocistronic atpE transcripts (compare the 2.6 kb + 2.0 kb transcripts with the 0.7 

kb transcript). In addition, the Northern experiment confirms the results of primer extension 

analyses of atpB and atpE mRNAs. It shows the absence of the -431 (0.7Kb) atpE transcript, 

the reduction in the 2.6 Kb atpB/atpE transcripts (-520 and -467) and a slight increase in the 

2.0 Kb atpB/atpE (-84) transcript in the sig2 plant. It also shows a reduction in the 2.0 Kb (-

84 atpB) transcript in the sig3 plant. All this is coherent with the primer extension results.  

 

 

 

 

 

 

 

 

       Spec 

      -     + 

Wt   sig3          wt   wt 
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Figure 18. Transcript analysis of the atpE gene.  

(A) Schematic presentation of the atpE gene. indicates the primary transcript while            indicates the 

oligonucleotide used in primer extension analysis.  

(B) Mapping of the 5‟ end of the atpE transcript in Wt Columbia (lane 6) by running the cDNA together with the 

sequence prepared with the same oligonucleotide that was used for primer extension (lanes 2-5). Lane 1 

indicates the molecular weight marker used for mapping and identification of the transcripts in further 

experiments.  

(C) Primer extension analysis of atpE transcripts. 5 µg of total RNA extracted from 6 days old plants of wild 

type Columbia (lanes 1, 7 and 9), sig1 (lane 2), sig2 (lane 3), sig3 (lane 4), sig5 (lane 8), sig6 (lane 10) and wild 

type Wassilewskija (lane 5) and sig4 (lane6) plants have been used for analysis. LC indicates the loading control 

which corresponds to the PCR amplified product of 450 bp added to the mixture just before phenol chloroform 

extraction after cDNA synthesis. The samples were run with molecular weight marker (not shown) on 

acrylamide gel. 

Note: RNAs used for C (lane 1-6) part of this figure are shown in figure 8 B while the RNAs used for the C 

(lane 7-10) are shown in figure 8 D 

 

 

A 
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Figure 19. Expression analysis of the atpE gene. 

 (A) Analysis of expression of atpE gene by Northern Blot analysis. 5 µg of total RNA extracted from 6 days old 

plants of wild type Columbia (lane 1), sig2 (lane 3), sig3 (lane 2) were separated on a denaturing agarose gel and 

then visualized for qualitative and quantitative analysis under the UV with the help of Ethidium Bromide added 

in the RNA samples. Then the RNAs were transferred on a nitrocellulose membrane and hybridized to the atpE 

specific probe. The molecular weight marker, visible on the nitrocellulose membrane under UV because of 

Ethidium Bromide, was marked on the membrane with the lead pencil. A‟ indicate the loading control. 

(B) Sequence showing the overlapping atpB stop and atpE start codons.  

(C) Immunoblot detection of ATPE and L4 (as loading control) proteins in Wt and sig2 mutant plants. Four 

different protein concentrations have been used for this analysis.  

Note: Quantitative and qualitative analysis of RNAs used in this experiment are shown in figure 9A. The 

membrane used for the northern blot analysis of -45 atpH  transcripts was de-hybridized and then re-hybridized 

with atpE specific labeled probe.  
 

 

A 
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The two genes of the small atp operon (atpB/atpE) have overlapping stop and start 

codons (Fig. 19B). We investigated whether the atpE mRNA could also be efficiently 

translated from the atpB/atpE dicistronic transcript. Translation of the atpE mRNA from the 

atpB/atpE dicistronic RNA would require a specific mechanism, the so called translational 

coupling (Yukawa & Sugiura, 2008). For this purpose we analyzed the levels of ATPE 

protein by immunoblot in Wt and in sig2 plants that lack the -431 atpE monocistronic 

transcripts.  

For the western blot analysis, ATPE specific antibodies were used. We observed the 

presence of ATPE protein also in sig2 plants (Fig.19C). This indicates that even in the 

absence of monocistronic transcripts of atpE, the protein is synthesized as a result of 

translational coupling of the atpB/atpE dicistronic transcript. We used antibodies against 

RpL4, a nuclear encoded plastid ribosomal protein, as loading control. The question of 

whether the strong reduction in the ATPE protein levels reflects an important role played by 

SIG2 in atpE gene expression or whether it is at least in part due to reduced translation 

because of reduced tRNA levels in sig2 plants cannot be answered at the moment. 

 

 

Conclusion:  

 

In brief, to answer the questions asked at the beginning of this chapter, we can conclude that   

 

1- It is SIG2 that recruits PEP at the -229 atpI, the -467 atpB and the -431 atpE promoters, 

while SIG6 also plays an important role in the transcription from the -520 and the -467 atpB 

promoters in 6 days old plants. SIG3 recruits PEP at the -418 atpH promoter. 

2- The atpF and atpA genes do not have any internal own promoters. The transcripts of both 

of them are processed transcripts produced as a result of cleavage of primary transcripts that 

are initiated from the upstream promoters of atpH (-418) and atpI (-229).  

3- The transcription of the large atp operon (atpI, atpH, atpF and atpA) is co-regulated by 

SIG2 and SIG3. SIG3 specifically regulates transcription from the -418 atpH promoter and is 

activated to play a compensatory role in the transcript accumulation of atpH in the absence of 

SIG2. SIG2 transcribes the small atp operon (atpB, atpE) together with SIG6 and SIG2 co-

regulates both atp operons. 
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4- The higher stoichiometry of atpH is also present at the transcript level. SIG3 might 

contribute to the higher stoichiometric accumulation of atpH transcripts under specific stress 

conditions and/or in other sigma mutants. However, the major role in atpH transcript 

accumulation is probably brought about at the post-transcriptional level by stabilization of the 

-45 transcripts by a PPR10 like protein.  

5- In the absence of SIG2, SIG3 has a compensatory role in the maintenance of steady state 

levels of the mRNAs of the large atp operon (except for atpI). This indicates that SIG3 may 

play an important role in atpH transcription under some specific physiological and/or stress 

conditions.
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2. Do light conditions influence the expression of SIG3 dependent 

genes? 

In the preceding chapter, the transcription of the atp operon has been studied. It has 

been shown, in particular, that the expression of the second gene in this operon, atpH, is 

activated by the presence of a specific SIG3-dependent promoter that is present in the 

intergenic region between atpI and atpH. This means that the atpH cistron could be 

transcribed independently from the whole ATP synthase operon. We have shown by Northern 

analysis that a monocistronic atpH mRNA exists and that this RNA is more or less strongly 

diminished in sig3 plants (Fig. 12B). The observed differences in the amount of SIG3-

dependent transcripts relative to all other transcripts of the large atp synthase operon made an 

interpretation concerning the importance of SIG3 for atpH expression impossible (see chapter 

1.2c). In principal, all plant material has been grown under the same or similar conditions, i. e. 

under 12h light/12h dark cycle with light intensities at 50-60 µE. Therefore, changes in SIG3 

activity are difficult to explain.  

The first idea that came to our mind was the possibility that atpH expression is under 

circadian control. To verify this hypothesis, we harvested the plant material at different time 

points of the day and we analysed the two atpH transcripts (-418 and the -45) during the 

circadian cycle by primer extension analysis. The plants were grown under a light intensity of 

50-60 µE for 7 days in a 12 hours light/12 hours dark cycle. The RNAs were extracted from 

plants frozen at the end of the dark cycle (Fig. 20, lane 1), at the middle of the light cycle (6 

hours light) (Fig. 20, lane 2), at the end of the light cycle (12 hour ligth) (Fig. 20, lane 3), at 

the middle of the dark cycle (6 hours darkness) (Fig. 20, lane 4) and again at the end of the 

dark cycle but after 24 hours (12 hours darkness) (Fig. 20, lane 5). The data show perhaps a 

little more mRNA accumulation of the -45 and the -418 transcripts at the end of the dark 

cycle (Fig. 20 B, lanes 2‟ and 6‟), but differences are so small that they cannot explain the 

differences in atpH monocistronic mRNA levels that we observed in our previously described 

experiments (see chapter 1). From this result we conclude that it is not the time point of daily 

harvesting that determines the differences in the atpH mRNA level. 
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Figure 20. Primer extension analysis of both the transcripts of atpH gene (the -45 and the -418) in the 

circadian rhythm.  

(A) Qualitative and quantitative analysis of total RNAs extracted from 6 days old WT plantlets at the end of the 

dark cycle (lane 2), at the middle of the light cycle (6 hours light) (lane 3), at the end of the light cycle (12 hour 

ligth) (lane 4), at the middle of the dark cycle (6 hours darkness) (lane 5) and again at the end of the dark cycle 

but after 24 hours (12 hours darkness) (lane 6).  Lane 1 shows the 1Kb plus molecular weight marker  whose 

map is shown in (Fig. 8 B‟). RNAs were first quantified by the spectrophotometer and then analyzed on 1% 

agarose gel. 

(B) Primer extension analysis of atpH transcripts. 5 µg of total RNA shown in (A) have been analysed. The 

small insert on the right side represents a larger exposure of the autoradiogram.      , processing intermediates or 

degradation products.  

 

On the other hand, we found an overexpression of the SIG3-specific atpH mRNA in 

sig2 knock-out mutants (see Fig. 12) pointing to a supposed “rescue” role of SIG3 under 

adverse conditions (see also role of SIG3 in the introduction). With regard to such an eventual 

role of SIG3 as “rescue factor” we expected to obtain perhaps an activation of SIG3 under 

certain stress conditions. To verify this hypothesis we next analysed the relative expression of 

the atpH gene in regard of the other atp genes that are dispersed in two operons under 

different environmental conditions. To start with, we have at first limited our research to the 

action of light considering that ATPsunthase is an essential enzyme of the photosynthetic 
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process. Because this factor is expected to influence the expression of many genes, we 

decided to start with a transcriptomic analysis that permits to analyze the expression of all 

plastid genes at once. This approach should give an overall view and should permit to detect 

if the atpH expression is singular, or if it is linked to the expression of particular genes 

involved or not in the ATP synthase complex. By using a transcriptomic approach we hoped 

also to include the SIG3-dependent psbN mRNA in our analyses, i. e. the expression of psbN, 

psbT and psbN-initiated psbT antisense RNA. As shown for Chlamydomonas, PSBT is 

required for efficient biogenesis of the photosystem II (PSII) complex and for repair of 

photodamaged PSII reaction centres (Ohnishi et al., 2007; Ohnishi & Takahashi, 2008). 

According to these results we expected to find activation of expression of SIG3-dependent 

RNAs either under the condition of chloroplast biogenesis and/or photodamage of PSII, i. e. 

under high light stress conditions. Therefore, we have used two different experimental 

systems to study light effects: 

1. Illumination of etiolated plantlets, i. e. we analyzed the influence of different light 

intensities on the plastid transcriptiome pattern during plastid differentiation when 

photosystems are built up. 

 2. Light stress on green plantlets, i. e. plantlets have been grown for 7 days at 50 µE 

under 12h light/darl cycle and were then exposed to 1300 µE photooxydative light conditions 

for several time periods.  

The expression of some selected plastid genes was further studied by primer 

extension.  

 

2.1. Illumination of etiolated plantlets. 

Sterilized seeds (see Materials and Methods) of Arabidopsis thaliana wild type 

(Columbia) were stratified at 4°C in complete darkness for 48 hours. In vitro culture medium 

having sugar in it was used. To assure efficient germination stratified seeds were shortly (two 

hours) exposed to light (60 µE). We did so because if Arabidopsis seeds are not shortly 

exposed to light after stratification, there is either very poor or no seed germination.  

After the light treatment of stratified seeds, they were transferred to a growth chamber 

in complete darkness for 5 days. Thereafter, we observed characteristic etiolated plants each 

one with long hypocotyl, yellow-coloured and closed cotyledons preceded by a typical 

hypocotyl curvature. The cotyledons lacked chlorophyll as their cells had etioplasts (not yet 

differentiated into chloroplasts). These etiolated plantlets were then exposed to different light 
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intensities (50, 200 or 1300 µE) for different exposure time (4, 8 or 16 h) while control plants 

were maintained in the dark for corresponding periods of time.  

The appearance of plants after exposition to light for 16 h is shown in Fig. 21 

(exposure to 4 h is not reported). The de-etiolation process is slightly more advanced with 16 

h than with 4 h light, as expected.  

 

 

Fig. 21. Phenotypes of etiolated plantlets after light exposure.  

Five days old etiolated plants were either maintained in darkness (a) or exposed to different light conditions as 

50 µE (b), 200 µE (c) or 1300 µE (d) for 16 h.  

 

At the end of the treatment, plant material was frozen in liquid nitrogen and total RNA 

was then extracted and used for either macroarray analysis of the plastid transcriptome or for 

primer extension analysis of several specific mRNAs. 

 

2.1.1. Macroarray analyses 

For macroarray analysis, mRNAs have been reverse transcribed in the presence of a 

radiolabelled deoxynucleotide by using specific primers to each plastid gene chosen as close 

as possible to the corresponding probes deposited on the macroarray. This trait in addition 

with the selection of 60-mer probes near the ATG start sites contribute to the semi-

quantitative property of the macroarray developed in our laboratory (Patent FR 0607168). A 

second peculiarity of this macroarray consists in the separate detection of plastid sense and 

anti sense RNAs. Therefore, it permits also to detect the expression of psbT/ psbN sense/ anti 

sense RNAs. The spotting scheme of the array is shown in Fig. 22. 
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       1   2 3        4       5     6   7       8        9      10    11      12     13     14       15     16   

 
10  psbT    psbT     rbcL    rbcL       ycf2       ycf2     ndhF.     ndhF    rpoA     rpoA    ndhC   ndhC  rpoC1    rpoC1   ycf1-1  ycf1-1 

 

9    psbH    psbH    psaI      psaI       rps12    rps12     ndhD     ndhD    rps11   rps11   atpE    atpE    rpoB.     rpoB     psbA   psbA 

  

8    rpoC2   rpoC2   rps2     rps2      atpI        atpI       atpH      atpH     atpF    atpf       atpA     atpA    rps16    rps16    matK  matK 

 

7    ndhK    ndhK    ndhJ     ndhJ      rps4      rps4      ycf3       ycf3      psaA    psaA    psaB    psaB   rps14    rps14    psbM  psbM   

 

6     psbN    psbN    clpP     clpP       rpl20     rpl20    psbE     psbE    psbF    psbF     psbL     psbL    psbJ      psbJ    atpB    atpB   

 

5    ysf1     ycf1      rps19     rps19.    rpl22    rpl22    rps3      rps3      rpl16    rpl16     rpl14    rpl14    rps8     rps8      rpl36   rpl36  

  

4    orf77   orf77     rps15     rps15     ndhH   ndhH    ndhA    ndhA    ndhI      ndhI      ndhG   ndhG    ndhE    ndhE    psaC   psaC   

  

3    psbZ    psbZ     psbC     psbC     psbD    psbD    petN    petN     psbI     psbI      psbK     psbK    rps18.    rps18   accD   accD  

 

2     psbB    psbB     rpl33     rpl33      psaJ    psaJ     petG    petG     petL     petL     petA      petA    cemA     cemA   ycf4    ycf4  

 

1     pl23    rpl23     ndhB     ndhB     rps7     rps7      ycf5     ycf5      rpl32    rpl32     rpl2       rpl2     petD      petD     petB     petB 

 

 
 Figure 22. Organization of the 60-mer Arabidopsis plastid gene probes on the macroarray.  

Spots (probes) detecting sense transcripts are coloured in red and spots detecting the anti-sense transcripts are 

coloured in blue. To facilitate the visual identification of genes, numbers are in the same order as on the 3D 

representation in the following figures.  

 

Hybridization signals on the macroarray were detected by phosphoImager analysis and 

were quantified using the Array gauge (Fuji) software. The quantitative values were 

introduced into an Excel programme in the order of the spotting schema (shown in Fig. 22) 

and visualized with the graphic option (see Figs. 23 and 24). In addition, for easy 

visualization and interpretation of the results, we have presented the values of different 

functional groups in different colours, as detailed below.  

ATP Synthase (colored in red): atpA, atpB, atpE, atpF, atpH, atpI.   

Photosystem I and Electron Transfer System (colored in light green): petA, petB, petD, 

petG, petL, petN, psaA, psaB, psaC, psaI and psaJ.  

Photosystem II and rbcL (colored in dark green): psbA, psbB, psbC, psbD, psbE, psbF, 

psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ and rbcL.  

Translation (colored in yellow): rpL 14, rpL 16, rpL12, rpL20, rpL22, rpL23, rpL32, rpL33, 

rpL36, rps11, rps12, rps14,rps15, rps16, rps18, rps19, rps2, rps3, rps4, rps7, rps8.  

Transcription (colored in blue): rpoA, rpoB, rpoC1, rpoC2.  

Chlororespiration (colored in violet): ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, 

ndhI, ndhJ, ndhK.  

Genes of other Function (colored in greenish brown): accD, cemA, clpP, matK, orf77, ycf1, 

ycf1-1, ycf2, ycf3, ycf4, ycf5.  



Results: Chapter 2 

79 

 

PSI  

PSII 

Chlororespiration 

Translation  

ATP synthase 

Transcription 

Others  

In summary, the different functional groups are colored as follows in the macroarray graphs 

of Fig. 23: 

 

 

 

 

 

 

 

 

 

 

Five days etiolated plantlets were put under light of 50 µE, 200 µE or 1300 µE, for 4 

and 16 hours. Control plants were kept in darkness for the same time periods. The 

accumulation of gene transcripts were analysed on the macroarray by using the 

phosphorimager and the Array Gauge software, as already indicated. Data obtained for sense 

and anti-sense transcripts are reported on 3D graphs in Fig. 23.  

Illumination for 4h (Fig. 23, A-D): In general, RNA levels (reflected by the height of 

each cone) are very low in etiolated plants and after illumination with 50 or 200 µE. In the 

following, we will focus only on significant changes in mRNA levels. After exposure of 

plantlets to 50 µE for 4 hours, the mRNA expression profile is still very similar to the control 

in darkness, except for psbM mRNA that increased (position 16/7, compare Fig. 23A and B). 

This early increase in psbM mRNA is surprising because PSBM seems not to be required for 

biogenesis of PSII complexes (Umate et al., 2007). After exposition to 200 µE for 4 h (Fig. 

23C) a slight but clear raise in RNA levels is observed for several gene groups, especially for 

the PSI, PSII and ATP synthase groups. Interestingly, the most increased mRNAs correspond 

to the psaJ and psbM genes (positions 5/2 and 16/7 on the array) and not to the well-known 

photogene psbA (position 16/9) that is thought to belong together with rbcL to the highest 

expressed plastid genes. To note also, for a number genes sense and antisense transcripts are 

present in rather equal amounts, look to genes as psaA, psbB, psbZ, orf77, ycf1, ndhK and 

psbN. For psaA, antisense expression is even higher than sense expression.  

After exposition of plants at 1300 µE for 4h (Fig. 23D) the mRNA levels of a number 

of genes are noticeably increased. This is the case for several genes of the PSI and PSII 

complex, for rbcL and for genes coding plastid ribosomal proteins. On the other hand, the 
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antisense expression observed under 200 µE light exposure is diminished under 1300 µE. A 

particular strong activation is observed for the psbA gene (position 16/9) that reaches now the 

level of psbM (position 16/7). However, even now psbA is not the most expressed gene. The 

highest mRNA level is detected for the psaJ gene (position 5/2). PSAJ is a small hydrophobic 

subunit of the photosystem I complex (PSI) that is important for the formation of the 

plastocyanin-binding domain of PSI and plays an important role for the stability or assembly 

of the complex (Hansson et al., 2007). Of particular interest to us, a high increase is also 

observed for atpH mRNA (position 8/8) compared to the other mRNAs of the atp sythase 

complex.  

Altogether, the short exposure of etiolated plants to light (4h) shows that many genes 

are light dependent, especially those that are necessary to establish the photosystems in 

developing young plastids. This latter observation is not surprising, but an important 

observation is that the activation of gene expression is differentiated. All the plastid genes are 

not evenly turned on by light. This implies either a regulation at the transcription level or 

differences in the stability of transcripts. As the observations are made at the very early steps 

of plastid differentiation, results are more likely to be interpreted with the first hypothesis. 

 

   
 

Figure 23. Schematic representation of macroarray results of the plastid transcriptome after 4 and 16 h 

illumination of etiolated platlets with different light intensities.  

Five-days-etiolated plants were exposed to 50 µE (B and F), 200 µE (C and G) and 1300 µE (D and H) for 4h 

(B-D) and for 16 h (F-H). Control plants kept in darkness for 4h (A) and for 16h (E). Afterwards, total RNA was 

isolated, reverse transcribed in the presence of radiolabelled dATP, hybridized to plastid-specific macroarrays 

and hybridization sigbnals were quantified with a phosphoImager as described above. 

 

The X and Z axis indicate the position of the gene probes on the macroarray. 

The Y-axis corresponds to the hybridization signal intensity 

. 
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1Illuminated for 16h (Fig. 23, E-H): After exposure of plantlets to different light conditions 

for 16 h, a time period that correspond to a long day photoperiod, the mRNA expression 

profiles changes considerably. We observe a strong increase of the mRNA levels for many but 

not all genes after illumination at 50 or 200 µE of light (Fig. 23, compare F and G to E). To 

notice is the high expression of the rpl32 gene among the genes coding for ribosomal 

proteins. Taken together with the results obtained for 4h illumination we observe that for the 

three groups of genes, i. e. PSI, ATP synthase and r-proteins, always one gene is much 

stronger expressed than the others belonging to the same group. For PSI it is psaJ, for the 

ATP synthase it is atpH and for the group of ribosomal proteins it is rpl32. The meaning of 

these different mRNA levels is not yet clear. Interestingly, psaJ and atpH mRNAs seem to be 

stabilized by PPR10 in maize chloroplasts (Pfalz et al., 2009). It would be interesting to know 

whether also the rpl32 mRNA is also specifically stabilized by a PPR protein. 

In contrast to the general augmentation of mRNA levels after illumination at 50 and 200 

µE, exposure to photooxydative light of 1300 µE provokes a strong diminution of mRNA 

levels (up to 10 times), falling even below dark levels, of all the genes that are activated with 

the lower light intensities (Fig. 23, compare H to E). This overall reduction of transcript 

accumulation after high light exposure could be interpreted as a photoinhibition. The 

expression of psbA is a noticeable exception as this gene is expressed at about the same level 

under a lower light brilliance.  

Altogether, we notice very strong differences between the mRNA levels of the 

different plastid genes.  Not all mRNAs accumulate after light exposure. Many mRNAs are 

always present at very low levels only, so low that a quantitative exploration of the results for 

these genes would not give reliable results. Among these mRNAs are unfortunately most of 

the antisense RNAs and finally we cannot conclude on quantitative values between psbT 

sense and psbT antisense RNAs from the results of the macroarray analyses. However, the 

mRNA levels of the SIG3 controlled atpH and psbN genes are high enough to permit 

conclusion on their changes in response to different light conditions.  

 

2.1.2.  Action of light on SIG3 dependent gene expression  

Transcription of the atpH and psbN genes is controlled by the SIG3/PEP holoenzyme. 

Therefore, we would expect similar behaviour of these genes when plants are exposed to 

different light intensities. Relatively to the background level, atpH transcript levels are much 
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higher than psbN transcript levels (see in particular Fig. 23F and G). However, this relation is 

found already in darkness (Fig. 23A and E). To know whether the expression of psbN and 

atpH is similarly activated by light, we calculated the difference of transcript levels between 

dark and light growth for both of these genes. The ratios thus obtained are reported in Fig. 24.  

 

Figure 24. Accumulation of atpH and psbN transcripts in light relative to darkness.  

In order to get 0 for “no change” and negative values for ratios where the dark level exceeds the light level 

“ratios minus 1” are reported in the ordinate of the graph. In this way, activation (ratio > 0) and inhibition (ratio 

< 0) by light is positively or negatively represented. Values for the atpH are in red and values for psbN in green. 

Data are taken from the macroarrays analyses of etiolated plants (Fig. 23) and are reported for 4h (left hand side) 

and 16h (right hand side) in the order of increasing light intensities as indicated in the abscissa.  

 

After 4h of light exposure, atpH and psbN mRNA levels are increasing with the 

intensity of light. However, values differ for the two genes. While atpH mRNA accumulation 

is most enhanced between 200 and 1300 µE, psbN mRNA accumulation is most stimulated 

between 50 and 200 µE. Activation value are higher for psbN than for atpH, i. e. psbN mRNA 

is more photosensitive than atpH mRNA. After 16 h illumination, mRNAs levels are 

considerably enhanced at 50 µE for both genes.  Illumination at 200 µE does not result in 

remarkable additional enhancement of mRNA levels and at 1300 µE mRNA levels are 
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diminished when compared to dark levels. We concluded that the activation/inhibition of the 

expression of the two genes is quite similar but not identical. The highest accumulation of 

psbN mRNA is found at 1300 µE illumination for 4h while the highest accumulation of atpH 

mRNA is observed at 200 µE illumination for 16h (Fig. 24).  

Concerning atpH transcripts, we were looking for conditions in which the atpH mRNA levels 

are highest in relation to the mRNA levels of the other ATP synthase genes. For this reason, 

the values for all mRNA levels of the two ATP synthase genes are reported in Table I. High 

levels of atpH mRNA might correspond to mRNA stabilization or to supplementary 

transcription of the mRNA by SIG3/PEP holoenzyme. Although we cannot decide 

immediately between these two possibilities, at first we were looking to find conditions of 

high atpH mRNA levels. The first thing to notice is the already relatively high atpH mRNA 

level in etiolated plantlets that explains why the psbN expression is more sensitive to light 

than atpH expression (see Fig. 24). 

Table I. Signal intensity values of atp mRNAs in etiolated plants exposed to different light conditions 

(darkness, 50 µE, 200 µE and 1300 µE) for 4h and 16h. The signal intensity value of atpI (the first gene of the 

large ATP synthase operon) was taken as reference. The values of other atp mRNAs were divided by the atpI 

value to get the stoichiometric transcript accumulation of each atp mRNA in relation to atpI. Values were 

extracted from the macroarray analyses. For each growth condition, only one macroarray was used.  

 

Interestingly, atpH mRNA accumulation in relation to the mRNA levels of all other 

ATP synthase genes seems to be independent from light, except for 1300 µE photooxydative 

stress. Although all values are generally diminished after photooxydative light, atpH mRNA 

levels are significantly higher when compared to the other genes. 
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Conclusion on the macroarray results: 

We have used a macroarray approach to analyse the effect of light on the mRNA levels of 

SIG3 dependent plastid genes (Fig. 23). Etiolated plantlets were exposed to different light 

intensities for short (4h) and longer (16h) time. We found very large differences in the 

expression levels of different gene groups. Very lowly expressed genes are ndH genes, genes 

coding for transcriptional components and many genes that were grouped “genes of other 

functions”. For these genes, values obtained for mRNA levels were too low to conclude on 

changes in transcript levels after light treatment.  

The genes of photosystem I, photosystym II and ATP synthase are the most expressed 

plastid genes during the de-etiolation process under light exposure. But even within one group 

of genes, not all mRNA levels are equal. Highest levels were found for psaJ (PSI), psbM 

(PSII) and atpH (ATP synthase). In the case of psaJ and atpH these high mRNA levels might 

be determined by special stabilization of these mRNAs by a PPR10-like protein. PPR10 

stabilisation was only discovered very recently during my thesis and it makes the 

interpretation of the macroarray results more difficult because we cannot decide between 

stabilization and de novo synthesis of atpH mRNA. Highest mRNA amounts for atpH are 

observed after 4h illumination of etiolated plantlets at 1300 µE and after 16h illumination at 

200 µE (Fig. 24). After 16h illumination, the atpH mRNA level is even higher than the psaJ 

mRNA level.  

2.1.3. Primer extension analyses 

In order to confirm the macroarray results on atpH expression by another method and 

to distinguish between SIG3 initiated transcripts (-418 atpH mRNA) and atpI/atpH initiated 

processed transcripts (-45 atpH mRNA), we performed also primer extension analysis of total 

RNAs isolated from etiolated plantlets after 16h illumination with different light intensities 

(Fig. 25). The experiment was done using the same RNAs which were used for macroarray 

analysis. Primer extension analysis shows an increase in both atpH transcripts (the -45 and the 

-418) after exposure of etiolated plants to 50µE and 200 µE light (Fig. 25B, compare lane 2‟ 

with 3‟ and 4‟). A strong decrease in mRNA is observed for both transcripts in plants exposed 

to 1300 µE for sixteen hours (Fig. 25 B, compare lanes 2‟ and 5‟). Thus, primer extension 

analysis of atpH transcripts of 5 days etiolated plants exposed to different light intensities 

confirmed the results obtained by macroarray analysis. However, both types of RNA, atpI 
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initiated and -418 atpH initiated transcripts, augment or decrease concomitantly after the 

different light treatments and no specific SIG3 related effect could be discerned. 

  

 

Figure 25. Primer Extension analysis of atpH mRNAs. 

(A) Qualitative and quantitative analysis of total RNAs extracted from the 5 days etiolated plants exposed to 

darkness (lane 2), 50 (lane 3), 200 (lane 4) and 1300 µE (lane 5) for 16 hours.  Lane 1 shows the 1Kb plus 

molecular weight marker whose map is shown in (Fig. 8 B‟). RNAs were first quantified by the 

spectrophotometer and then analyzed on 1% agarose gel. 

 (B) Primer extension analysis of atpH mRNA. 5 µg of the same RNAs as shown in (A) have been analysed by 

primer extension. Lane 1 represents the molecular weight marker used for mapping and identification of the 

transcripts. LC indicates the loading control which corresponds to the PCR amplified product of 800 bp added to 

the reaction just before phenol chloroform extraction after cDNA synthesis. -418 is the SIG3 dependent primary 

atpH transcript while -45 is a processed transcript being cleaved from -418 atpH and -229 atpI primary 

transcripts.  

 

Conclusion on the primer extension result: 

The primer extension result indicates that results of macroarray analysis of etiolated 

plants are at least semi-quantitative and reliable. Nevertheless, the macroarray experiments 

need to be repeated biologically, using more RNA and higher radioactivity for labelling. This 

might permit to get reliable values also for the lowly expressed genes that could not be 

considered here.  
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The here presented results show in each case when atpH mRNAs augment, both atpH 

transcripts (the -45 and the -418) augment in about the same relation. In fact, when starting 

these experiments, we hoped to find conditions under which the SIG3 dependent -418 

transcripts are specifically enhanced. This would have allowed us to conclude on the function 

of SIGMA 3 and the -418 initiated monocistronic atpH transcript. Because both transcripts, 

the -45 processing product that includes also atpI initiated co-transcripts and the -418 

transcripts, augment we cannot conclude on a specific activation of SIG3 dependent 

transcription at the -418 promoter under different light conditions. Experiments need to be 

repeated by comparing WT and sig3 plants. This would allow concluding whether the 

augmentation of the -45 transcripts is due to transcription by SIG3, SIG2 or both sigma 

factors. 

 

2.2. Light stress of green plants (photoinhibition of chloroplasts). 

As seen in the chapter before, under short time illumination (4h) highest augmentation 

of many mRNA levels was obtained for 1300 µE of light intensity (Fig. 23, A-D). On the 

other hand, after treatment with high light for 16h mRNAs do not augment, on the contrary 

mRNA levels fall below the dark values, except for psbA (Fig. 23, compare E and H). In the 

former chapter, all experiments were done using young etiolated plantlets in which 

photosystems are not yet established. High light treatment might be more dangerous for 

etiolated tissues than for green tissues where photosystems are already well established. To 

verify this point we used plants now that were grown for 7 days under 12h-light/dark cycle, 

with 50-60 µE light intensity during the light period. This time, we also included sig3 plants 

for better interpretation of changes in the -45 atpH mRNA. 7 days old WT and sig3 plantlets 

were exposed to 1300 µE for 4, 8 and 16 hours. Using the RNAs extracted from these plants 

we carried out primer extension analysis for the two transcripts of atpH (the -45 and the -418) 

(Fig. 26).  
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Figure 26. Primer extension analysis of atpH mRNAs of 7 days old plants grown under 50-60 µE in 12 

hours light/12 hours dark cycle. 

(A) Qualitative and quantitative analysis of total RNAs extracted from 7 days wild type plants kept under 50-60 

µE for 4 hours (lane 2) or exposed to 1300 µE for 4, 8 and 16 hours  (lanes 3, 4, 5 respectively). Similarly 7 days 

sig3 plants were kept under 50-60 µE for 4 hours (lane 6) or exposed to 1300 µE for 4, 8 and 16 hours  (lanes 7, 

8 and 9 respectively)  Lane 1 shows the 1Kb plus molecular weight marker whose map is shown in (Fig. 8 B‟). 

RNAs were first quantified by the spectrophotometer and then analyzed on a 1% agarose gel. 

(B) 5 µg of the same RNAs as shown in (A) were  analysed by primer extension to reveal atpH precursor RNAs. 

Lane 1 indicates the molecular weight marker used for mapping and identification of the transcripts.  

 

Unexpectedly, we observe a strong reduction in accumulation of the -45 and the -418 

atpH transcripts already after 4 h exposure to high light in WT plants (compare lane 2‟ to 

lanes 3‟-5‟). A similar strong reduction is observed for the -45 transcripts in sig3 plants that 

lack the -418 transcripts (Fig. 26 B, compare lane 6‟ to lanes 7‟-9‟ and lane 3‟-5‟). In general, 

the -45 transcripts are not more diminished in sig3 than in WT plants after light stress. This 

means that only very few of -45 transcripts originate from the -418 SIG3 dependent 

transcripts. Even a little more -45 transcripts seem to exist in sig3 plants when compared to 

WT plants after 8 and 16h light exposure. This might be due to over expression of SIG2 in 

sig3 plants. To get a higher expression of SIG3 initiated atpH transcripts perhaps we should 

try to analyse SIG2 knockout plants.  
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In fact, the effect of 1300 µE light on 7 days old green plants is different to what was 

observed in etiolated plants. In etiolated plants there was at first an accumulation of atpH 

transcripts (4h light) and a strong diminution after 16h light exposure (Figs. 23 and 24 and 

Table I) but in green plants there is strong reduction in transcript accumulation of both the -45 

and the -418 transcripts already after 4h of high light treatment (Fig. 26B).  

In order to verify whether this effect of reduction in transcript accumulation in the 

plants grown under normal light conditions (green plants) on exposure to high light 1300 µE 

is specific to atpH or it is a general phenomena, we carried out primer extension analysis of 

some genes of the same operon of atpH and genes of other operons as well (Figs. 27 and 28). 

For these analyses we used only RNAs extracted from the plants exposed to 1300 µE for 4 

hours as the effect of 8 and 16 hours exposure of 1300 µE was similar to what was observed 

after 4 hours exposure. 

Primer extension analysis of the atpI -229 primary transcripts indicates that there is a 

strong reduction in accumulation of these transcripts when the 7 days old green plants are 

exposed to 1300 µE for 4 h. This reduction was observed in both the arabidopsis wild type 

and sig3 mutant plants (Fig. 27B, compare lane 2‟with 3‟ and lane 4‟ with 5‟). Similar results 

were observed in primer extension analysis of these plants for clpP gene transcripts that are 

made by the nucleus encoded NEP RNA polymerase (Fig. 27C). 
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Figure 27. Primer extension analysis of atpI and clpP mRNAs of 7 days old Arabidopsis plants grown 

under 50-60 µE under 16h light/8h dark cycle.  

(A) Qualitative and quantitative analysis of total RNAs extracted from wild type plants and sig3 plants kept 

either under 50-60 µE for additional four hours (lane 2, 4 respectively) or exposed to 1300 µE for 4 hours (lanes 

3, 5 respectively). Lane 1 shows the 1Kb plus molecular weight marker whose map is shown in (Fig. 8 B‟). 

RNAs were first quantified by the spectrophotometer and then analyzed on a 1% agarose gel. 

(B)  5 µg of the same RNAs as shown in (A) have been analysed by primer extension to reveal atpI (B) and clpP 

(C) precursor RNAs. Lane 1 indicates the molecular weight marker used for mapping and identification of the 

transcripts. 

 

 

 Equally, 16S ribosomal precursor transcripts being issued from the PC (NEP) and 

the P2 (PEP) promoters (Fig. 28 B) are diminished after light treatment. This shows that the 

transcripts of all analysed genes, atpI, clpP and 16S, are diminished after high light treatment, 

independent whether they are transcribed by NEP or by PEP.   
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Figure 28. Primer extension analysis of 16S rrn precursor transcripts using 7 days old Arabidopsis plants 

grown under 50-60 µE under 16h light/8h dark cycle.  

(A) Wild type plants and sig3 plants were kept either under 50-60 µE for additional four hours (lanes 2, 2‟ and 4, 

4‟ respectively) or have been exposed to 1300 µE for 4 hours (lanes 3, 3‟ and 5, 5‟ respectively). 

(B) Total RNA has been extracted and analysed either by agarose gel electrophoresis as quality control (A) or by 

primer extension to reveal 16 S ribosomal precursor RNAs.  The small insert at the right side of (B) represents a 

long exposure time of the autoradiogram. Lane 1 indicates the molecular weight marker used for mapping and 

identification of the transcripts.  
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Altogether, we observed large differences in changes of mRNA levels in response to 

different light conditions in the two different experimental conditions that had been used. To 

further explore the importance of the physiological stage of the plant material for light 

responses, we analysed finally the effect of 1300 µE light on the transcript accumulation of 

atpH and atpI in 34 days old mature plants (Fig. 29). Arabidopsis wild type and sig3 plants 

were grown under 50-60 µE in a 16 hours light and 8 hours dark cycle and exposed to high 

light condition for 2h30.  

 

Figure 29. Primer extension analysis of atpH and atpI transcripts using 34 days old Arabidopsis plants 

grown in 50-60 µE in 16h/8h light cycle.  

34 days old Wt (lanes 2 and 3) and sig3 (lanes 4 and 5) plants were either kept under 50-60 µE for 2h30 (lanes 2, 

and 4, respectively) or exposed to 1300 µE for 2h30 (lanes 3, and 5 respectively). Total RNA was extracted and 

analysed either on a 1% agarose gel for quality control (A) or by primer extension to reveal atpH (A) or by 

primer extension to reveal atpH (B) and atpI (C) precursor RNAs. 
LC indicates the loading control which corresponds to the PCR amplified product of 800 bp added to the mixture 

just before phenol chloroform extraction after cDNA synthesis.  

 

 

In contrast to young green plantlets (Figs. 26-28) we found an increase in 

accumulation of both the -45 and the -418 transcripts of atpH when these plants were exposed 
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to 1300 µE (Fig. 29B, compare lanes 2‟ and 3‟). Interestingly, the -45 transcripts remained 

unchanged in sig3 plants (Fig. 29B compare lanes 4‟ and 5‟). This indicates that the increase 

of -45 transcripts in WT plants after high light treatment is due to SIG3 initiated –418 

transcripts. In order to exclude that we had also an increase in PEP SIG2 initiated atpI -229 

transcripts in these conditions, we carried out primer extension analysis for atpI (Fig. 29C). 

Instead of an increase in transcript accumulation we observe a reduction/inhibition of the atpI 

mRNA level. This clearly shows that 1300 µE light exposure of 34 days old green plants for 

2h30 specifically enhances the sig3 dependent atpH -418 transcripts.  

 

 

Conclusion: 

In conclusion, the consequences of how photooxydative light influences the mRNA levels of 

plastid genes, depends highly on the physiological stage of the plant. For instance, short time 

(4h) exposure to high light (1300 µE) enhances the atpH mRNA level in etiolated plantlets, 

reduces the transcript accumulation of atpH in green plantlets and augments the atpH mRNA 

level in 32 days old mature plants. Only in mature plants the augmentation of atpH mRNA 

seems to be SIG3 dependent. In addition, this accumulation of transcripts in mature plants 

seems to be specific for SIG3 dependent genes because the accumulation of SIG2 dependent 

transcripts (atpI -229) is reduced in these plants (see Fig. 29). Thus, high light treatment of 

mature plants might represent a good model system to analyse the contribution of SIG3 

dependent atpH transcription to ATP synthase stoichiometry by comparing for instance atpH 

mRNA and protein levels in young and mature plants (WT and sig3). Unfortunately, the 

experiment with the mature plant was made rather at the end of my thesis and I had no time 

any more to exploit this promising experimental system further.  
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3. Expression analysis of the psbT sense/antisense RNAs. 

SIG3-PEP holoenzyme transcribes specifically the plastid atpH and psbN genes. In the 

first chapter we have analysed the expression of the two ATPsythase operons in detail to get a 

better understanding of how the expression of all the ATPsythase genes is coordinated. 

Results did not give a clear answer to the question under which conditions SIG3 dependent 

atpH transcription is of special importance. In order to find conditions of high atpH (and also 

psbN) expression we have then analysed the influence of different light conditions on the 

plastid transcriptome. This was done by macroarray analyses (chapter 2). From the 

macroarray results, we could conclude on the expression of the ATPsynthase genes, but the 

values obtained for psbT sense/antisense RNAs have been too low to conclude on changes in 

gene expression. Our next idea to analyse psbT sense/antisense transcripts was then to use 

semi-quantitative RT-PCR, but this idea was dropped down by the appearance of a paper 

describing artefacts of RT-PCR analysis in case of sense/antisense transcripts (Haddad et al., 

2007). To advance nevertheless in our characterization of psbT sense/antisense RNAs we 

decided therefore to map these transcripts carefully by 5‟-RACE and circular RT-PCR to get 

an idea which types of RNA/RNA double strands could form. 5‟-RACE and circular RT-PCR 

include systematic sequencing of the obtained amplification products, a fact that should 

exclude wrong interpretations due to artefacts in PCR amplification. 

 

3.1 Previous results obtained in the laboratory. 

Recently in the laboratory, analysis of the transcriptome in sig3 mutant plants has 

shown that the expression of the psbN gene is strongly affected by the absence of the SIG3 

factor (Zghidi et al., 2007). The psbN gene is located on the opposite strand in the inter-genic 

sequence between the psbT and psbH genes in the psbB operon. The psbB operon contains the 

genes psbB, psbT, psbH, petB and petD, coding for subunits of the photosystem II (psb genes) 

and of the cytochrome b6/f complex (pet genes). The gene order of the operon and the so far 

revealed transcripts of psbT sense and antisense RNAs (Zghidi et al., 2007 and unpublished 

results) are schematically demonstrated in Figure 30. It has been shown by primer extension 

that the psbN mRNA extends at its 3‟ end and covers the entire psbT gene as anti-sense RNA 

and 5‟ RACE experiments revealed that there is only one promoter for psbN (SIG3-PEP 
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PpsbN), i. e. the psbT antisense transcript is produced as a result of processing of the 

psbN/psbT antisense transcript (Zghidi et al., 2007 and detailed in Fig. 30). 

 

 

 

Figure 30. Schematic presentation of the psbB operon, the psbN gene and the psbT and psbN transcripts as 

described by Zghidi et al. (2007).  

Oligonucleotides (1) and (2) used for two primer extension of psbT anti sense and psbT sense transcripts, 

respectively, are represented as horizontal arrows (    ).  The psbN promoter is indicated by   (       ) while 

processing sites are indicated by (   ). The revealed sense and antisense transcripts are represented as dotted lines. 

The sizes of the cleavage products are represented by numbers. 

 

 

 Noteworthy, the question of whether PSBN protein belongs indeed to PSII is still 

controversial (Kashino et al., 2002). The product of the psbN gene could be a non-coding 

RNA.  

In order to get more insight into the mechanisms of sense/antisense RNA expression, 

we decided to map the 5‟ and 3‟ extremities of all psbT and psbN sense and antisense 

transcripts (this work was performed in collaboration with Dr. Livia Merendino).  

For this purpose, we performed circular RT PCR. In all these experiments we used 

self-ligated RNAs and RT reactions were performed by using specific oligonucleotides to 

discriminate between sense and antisense transcripts. Primers for RT and PCR reactions were 

designed in a way that the amplification product could include the ligated 5‟ and 3‟ 

extremities. In addition, by comparing TAP (Tobacco Acid Pyrophosphatase) treated to 

untreated RNAs, we differentiated the 5‟ ends of the primary and processed transcripts (for 

details see materials and methods). Controls without RT reaction were carried out for 

detection of DNA contamination. PCR products were then cloned and sequenced. 

5‟ psbB 

psbN 

psbT psbH 

PpsbN  

PEP SIG3 

~330 140 

~345 ~154 

(1) 

(2) 

(2) 

(1) 

petB petD 
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3.2 Mapping of psbT anti sense RNA extremities. 

We first mapped the 5‟ and 3‟ extremities of psbT anti sense transcripts (Fig. 31).  

  

  

 

 

 

 

 

ORF psbT sense 
 

5’ tATGGAAGCATTGGTTTATACATTTCTCTTAGTATCCACTTTAGGGATAA 

    TTTTTTTCGCTATTTTTTTTCGGGAACCACCTAAAATTTCAACTAAAAAA  

    TGA  3’ 

 

RT oligo     : 5‟  ATGGAAGCATTGGTTTATAC       3’ 

Forward oligo : 5’  ATCCCTAAAGTGGATACTAAGA 3’ 

Reverse oligo   : 5’  GAACCACCTAAAATTTCAAC       3’ 

 

 

D 
    a                                      

 uaacguaaucagccuccaa    u                                                                              
 auugcauuagucggagguu    a                                                               

    a 

 

 

Figure 31. Mapping of 5’ and 3’ ends of psbT anti sense RNA. 

(A) Circular RT PCR on anti sense transcripts of psbT. Lanes (1, 2) – RT control was carried out to check for 

DNA contamination. Lane (3) indicates RT PCR on TAP untreated circularised RNAs. Lane (4) indicates RT 

PCR on TAP treated circularised RNAs. 

(B) psbT anti sense transcript with its 5‟ and 3‟ ends.  

(C)  Sequence  of the coding region of psbT sense strand with the oligos used for cRT-PCR to map extremities of 

psbT anti sense transcript. 

(D) Hairpin structure localized at the 3‟ end of psbN mRNA. The cleavage site that liberates psbT antisense RNA 

is indicated in a bold letter. 

5‟ 
3‟ 

psbB 

psbN 

psbT 

5‟ 
3‟ 

psbT anti sense 

33 bp 634 bp 

PpsbB 

PpsbN 

953 bps 

(F) (R) 

(RT) 

A 

B 
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Due to difficulties in the growth of colonies having the RT-PCR product as insert, we directly 

sequenced the product of circular RT-PCR along with a few colonies. We found that both the 

5‟ and 3‟ end of the antisense transcript of psbT is well defined. The 5‟ end maps in the 

intergenic region between psbN and psbT genes, 33 nucleotides downstream to the stop codon 

(UAG) of psbN sense RNA. This corresponds to the band of 140 bps in primer extension 

analysis of Zghidi et al., (2007) (see also Fig. 30). The 3‟ end maps 634 nucleotides upstream 

to the stop codon inside the psbB coding region but on the opposite strand. 

By comparing TAP treated and untreated RNAs (Fig. 31A, lanes 3 and 4) we 

confirmed that the 5‟ end of the psbT anti sense RNA was obtained by processing of psbN 

sense/ psbT antisense transcript (Zghidi et al., 2007). Indeed, we observe that the 5‟ end maps 

inside a solid hairpin (Fig. 31D, in bold is indicated the 5‟ end position) just downstream to 

the psbN coding region.  

                 

3.3 Mapping of psbT sense RNA extremities. 

We then mapped the extremities of psbT sense transcripts (Fig. 32). Our results show 

the existence of multiple 5‟ ends (as indicated by the smeary appearance of the RT-PCR 

product, Fig. 32A). Most of the 5‟ extremities were dispersed in the coding region of psbB 

while a few were found in the intergenic region between psbB and psbT, upstream to the 

processing site at position -18 from the psbT ATG codon found by Zghidi et al. (2007). 

Conversely, the 3‟ end was well defined in a range of 8 nucleotides starting 60 base pairs 

downstream to the psbT stop codon in the intergenic region between psbT and psbN.  By 

comparing TAP treated to TAP untreated RNAs, no primary transcripts could be detected. 

 

 

 

 

 

 

 



Results: Chapter 3 

100 

 

 

 

 

 

 

 

5‟ UTR and ORF of psbT sense 

5‟aacattgctttttttcttctagtttctgtttgttattttatttaataggtagggtactgtaggaatctttatttaaatcgctgccgtt 

tctttgactctttttctttctttatcctcccaagtaaacaaaacgtaaacaaaacaggtatgaaagctataattgtaaaccacg 

atcaaatttATGGAAGCATTGGTTTATACATTTCTCTTAGTATCCACTTTAGG 

GATAATTTTTTTCGCTATTTTTTTTCGGGAACCACCTAAAATTTCAACT 

AAAAAATGA 3’ 

 

RT oligo     : 5‟  GAGTCAAAGAAACGGCAGCG  3’ 

Forward oligo   : 5’  ATGGAAGCATTGGTTTATAC 3’ 

Reverse oligo    : 5’  TTCCTACAGTACCCTACC       3’ 

 

 
Figure 32. Mapping of 5’ and 3’ ends of psbT sense RNA by circular RT PCR. 

 (A) Lane (1) indicates RT PCR on TAP untreated circularised RNAs. Lane (2) indicates RT PCR on TAP 

treated circularised RNAs.  

(B) psbT sense transcript with its 5‟ and 3‟ ends. The processing site at -18 from psbT ATG is indicated shown 

by Zghidi et al., (2007).  

(C) Sequence of the coding region of psbT gene and its 5‟ UTR with the oligos used for cRT-PCR to map 

extremities of psbT sense treanscript. 

 

In order to determine if the psbT sense RNA also extends its 3‟ end over the psbN 

gene to produce a psbN antisense RNA, we performed a new RT-PCR (Fig. 33A and B) with 

a more downstream forward oligonucleotide. Reverse and forward oligonucleotides were 

located in the ORFs of psbT and psbN (on the opposite strand) respectively (Fig.33B and C). 

We found multiple 5‟ ends that were clustered in two regions, upstream (15 clones) and 

downstream (11 clones) to the processing site at position -18 from the ATG translation 
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initiation codon of psbT (indicated as dotted line in Fig. 33B). The -18 site corresponds to the 

position where the ~154 band found by Zghidi et al. (2007) maps (see also Fig. 30). We found 

no clone that mapped exactly at -18 or -28 as described by Zghidi et al. (2007) (thesis of Wafa 

Zghidi, 2008). Conversely, the 3‟ end is very well defined and located 25 nucleotides 

upstream to the psbN ATG codon but in the opposite strand (Fig. 33B). If the -18 RNA is 

completely hybridized with antisens RNA it could not be revealed by circularization. 

 

 

 

 

 

5‟aacattgctttttttcttctagtttctgtttgttattttatttaataggtagggtactgtaggaatctttatttaaatcgctg 

ccgtttctttgactctttttctttctttatcctcccaagtaaacaaaacgtaaacaaaacaggtatgaaagctataattgt 

aaaccacgatcaaatttATGGAAGCATTGGTTTATACATTTCTCTTAGTATCC 

ACTTTAGGGATAATTTTTTTCGCTATTTTTTTTCGGGAACCACCTA 

AAATTTCAACTAAAAAATGAaataatt tttcattatc ttcattaacg taatcagcctccaaatat 

ttggaggctgattacgttaaCTAGTCCCCGTGTTCCTCGAATGGATCTCTTAGT 

TGTTGAGAGGGTTGCCCAAAGGCAGTATATAGAGCATACCCAGTA 

AAACTTACAAGTAACCCAGATATAAAGATGGCGACTAGGGTTGCT 

GTTTCCATtattatagaattgaaagaccacaccggatctatgctaagatcatttatttacaacggaatggtata 

caaagtcaacagatcgtaagaatacaaaataagattt 3‟ 

 

RT oligo      :  5’  GTTGGAAATTTTAGGTGTTC           3’  

Forward oligo   :         5’  CAAAGGCAGTATATAGAGC            3’ 

Reverse oligo   : 5’  ATCCCTAAAGTGGATACTAAGA    3’ 

 
 

Figure 33. Mapping of 5’ and 3’ ends of psbN anti sense RNA by circular RT PCR on sense transcripts of 

psbT. 

 (A) Lane (1) indicates RT PCR on TAP untreated circularised RNAs. Lane (2) indicates RT PCR on TAP 

treated circularised RNAs.  

(B) Scheme of the psbT sense transcripts with its 5‟ and 3‟ ends. 

(C) Sequence of the coding region of psbTgene with the oligos used for cRT-PCR. 
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The results of the above two experiments indicate that there are two types of psbT 

sense transcripts both having dispersed 5‟ ends and different, but stable 3‟ ends. One type of 

transcripts  (Fig. 32B) covers only the psbT gene while the other one (Fig. 33B) covers part of 

the psbT gene and the entire psbN gene as anti sense RNA. Results show the existence of a 

cotranscript psbT/psbN antisense RNA whose role has not yet been investigated. Indeed, the 

3‟ end of the monocistronic psbT sense RNA and the 5‟ end of the psbN antisense RNA map 

both in a solid hairpin (Fig. 31D shows the hairpin for the antisense RNA). In conclusion, the 

results obtained during my thesis by circular RT PCR in combination with previous analysis 

by primer extension (Zghidi et al., 2007) and TAP (5‟ RACE) indicate that the antisense 

transcripts of psbT overlap the entire psbT sense RNA including the coding region and both 5‟ 

and 3‟ UTRs. Overlapping of the psbT antisense transcript to the 5‟ UTR is particularly 

interesting, as in chloroplast transcripts the 5‟ UTR contains the signals to recruit the 

translation initiation complex. Thus, duplex formation of sense and antisense transcripts in the 

5‟ UTR should prevent the ribosome recruitment suggesting the existence of a translational 

regulation mechanism by antisense RNAs.  

 

3.4 Putative role of psbN expression on processing of psbB operon. 

 A primer extension analysis on psbH transcripts indicates that a processing event 

occurs at position -79 from psbH ATG in (Fig. 34, lane 5, compare also Fig. 30 for 

localization of psbH). The same position was found by 3‟-end mapping of psbT sense RNA 

by circular RT PCR (Fig. 33). Notably, the 5‟ end of the transcript that is synthesized from the 

PEP/SIG3 promoter of psbN overlaps with a small region of the 5‟ UTR of psbH transcripts. 

Interestingly in the absence of SIG3, the -79 psbH RNA was not detected by primer extension 

(Fig. 34 compare lane 5 to 6). 

These data suggest that duplex formation of sense and antisense RNAs may be 

required for this processing event. However, this difference in psbT/psbH intergenic 

processing events does not change the translation competence of the monocistronic psbH 

mRNA because the PSBH protein level is not diminished in SIG3 knock-out mutants (Zghidi 

et al., data not shown). Westhoff & Herrmann found two 5‟ ends (42 and 72 bps upstream to 

the translation initiation codon of psbH) for the psbH transcripts in spinach by S1 nuclease 

protection assays and northern blot analysis (Westhoff & Herrmann, 1988). Our primer 

extension analysis of Arabidopsis Wt confirmed the presence of these two processing sites 

showing conservation of processing sites between spinach and Arabidopsis (Fig. 34). 
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Figure 34. Primer Extension analysis of psbH transcripts.  

5 µg of total RNA extracted from 6 days old plants of wild type Columbia (lane 5) and sig3 (lane 6)  plants have 

been used for analysis. Lanes 1-4 indicate the sequence used to map the 5‟ extremities of the transcripts. 

Sequence was prepared with the same oligo used for primer extension. * These transcripts were also described 

by Westhoff and Herrmann (1988). 
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5‟ UTR and ORF of psbT 

5‟aacattgctttttttcttctagtttctgtttgttattttatttaataggtagggtactgtaggaatctttatttaaatcgctgccgtttctttga 

ctctttttctttctttatcctcccaagtaaacaaaacgtaaacaaaacaggtatgaaagctataattgtaaaccacgatcaaatttATG 

GAAGCATTGGTTTATACATTTCTCTTAGTATCCACTTTAGGGATAATTTTTT 

TCGCTATTTTTTTTCGGGAACCACCTAAAATTTCAACTAAAAAATGA 3’ 

 

RT oligo     : 5‟  GAAATTTTAGGTGGTTC          3’ 

PCR 1    : 5‟  GAAATTTTAGGTGGTTC          3’ 

PCR 2   :  5’ GAGTCAAAGAAACGGCAGCG   3’ 

 

 
Figure 35. A: 5’ RACE on sense transcripts of psbT.  

(A) Circular RT PCR. Lane (1) indicates RT PCR on TAP untreated circularised RNAs. Lane (2) indicates RT-

PCR on TAP treated RNAs.  

(B) Summary of psbT and psbN sense/anti sense transcripts with their 5‟ and 3‟ ends.  

(C) Sequence of the coding region of psbT gene and its 5‟ UTR with the oligos used for RT and the two PCR 

reactions (PCR1, PCR2) to map 5‟ end of psbT transcript. 

 

3.5 Existence of an internal psbT promoter within psbB gene. 

Primer extension analysis of psbT transcripts showed a transcript starting with in the 

coding region of psbB (see Fig. 30, 345). Up to now, we could not find a clearly defined 

transcript by circular RT-PCR (see Fig. 32). Therefore, we performed a 5‟ RACE analysis by 

using an oligonucleotide for PCR2 located in the intergenic region of psbB-psbT upstream to 
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the -18 position (Fig. 35B, C). The PCR reaction revealed multiple transcripts indicating 

extensive instability of the transcripts (Fig. 35A). However a single band present only in the 

TAP treated samples when compared to untreated samples showed the presence of a primary 

transcript (Fig. 35A, 700/750). Cloning and sequencing of the corresponding RT-PCR 

product (~700 bps) showed that the 5‟ end maps in the psbB coding region at position -860 

from the AUG translation initiation codon of psbT and 674 bp upstream from the psbB stop 

codon. We conclude that transcription of psbT can be uncoupled from psbB by a psbB internal 

promoter. 

The summary of the promoters, processing sites and extremities of psbT/psbN sense 

and antisense transcripts and the number of clones found for the 5‟ and 3‟ends of psbT sense 

transcript are illustrated in Fig. 36. We see that the -860 initiated sense RNA overlapps the 3‟ 

end of the long antisense RNA. The long sense RNA seems to be rapidly degraded from its 5‟ 

end while the 3‟ ends as well as the antisense RNA seems to be stable. 

 

 

 

 

Figure 36. Summary of extremities of psbT/psbN sense and antisense transcripts.  

Indicate the 5‟ ends while  indicate the 3‟ ends of psbT sense transcripts. The number of sequenced 

clones is given under the 3‟ end indicating vertical arrows. Green lines show the regions where perfect 

RNA/RNA double-strand formation is possible while the red lines indicate overhanging regions. 
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Conclusion: 

Taken together with the unpublished results of Zghidi et al., we can conclude on the existence 

of two different psbT antisense RNAs, one covering only psbT mRNA and another one 

covering psbT and a part of psbB mRNA. PsbN transcription seems to be necessary for 

cleavage of the psbB multicistronic mRNA at the position -79 from the psbH ATG codon 

(Fig. 34), but this cleavage is not important for the PSBH protein level. PsbT sense RNA can 

be initiated at the psbB promoter of the operon or at a psbB internal promoter (-860, Fig. 36). 

Primer extension and 5‟-RACE analyses show the existence of still another psbT specific 

promoter, localized in the intergenic region between psbB and psbT (Zghidi et al., 

unpublished result) and cloning of the psbT mRNA 5‟ and 3‟ ends by circular RT-PCR 

reveals many cDNAs (Fig. 32A) indicating rapid 5‟ end degradation of psbT mRNAs. 

Surprisingly, the 3‟ ends of the mRNAs are rather stable. Sense and antisense RNAs will 

probably form RNA/RNA double strands and it is perhaps the strong sensitivity of the psbT 

sense RNA to 5‟ end nuclease digestion that makes double-strand formation necessary to 

protect psbT mRNA from rapid degradation.  

Results obtained by performing RT-PCR reactions with RNAs that were previously 

treated with low RNase A/T1 concentrations show that the psbT sense and antisense RNAs 

exist in vivo in a stable double stranded RNA form (Zghidi et al., unpublished results) and in 

sig3 plants where the psbT antisense RNA is absent, the level of PSBT protein is highly 

increased (Zghidi et al., unpublished results). Thus, by forming RNA/RNA hybrids, antisense 

RNA might regulate the expression of the psbT gene at the level of translation and/or by 

nucleolytic protection of the sense RNA. Both mechanisms are not exclusive but the final 

understanding of sense/antisense regulation needs still further analyses. 
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Expression analysis of the two plastid encoded ATPsynthase operons: the 

large ATPI/H/F/A and the small ATPB/E operon. 

We have analyzed the expression of the two plastid encoded ATPsynthase operons, 

atpI/atpH/atpF/atpA and atpB/atpE in WT plants (6 days old) of Arabidopsis thaliana by 

macroarray analyses (Lambert, Malik Ghulam and Lerbs-Mache, unpublished result). These 

analyses showed a much higher level (about 16 folds) of atpH transcripts when compared 

with the other plastid ATP mRNAs (see table 1). The atpH, I and F genes code for subunits 

III, I and IV of the CF0 complex. Our macroarray results show that the observed protein 

stoichiometry of the CF0 complex, defined as 1:1:6-14:1 for subunits I, II, III and IV 

respectively, is also approximately found on the mRNA level in Arabidopsis. In some cases, 

the accumulation of atpH mRNA versus the other mRNAs is even higher. This suggests a 

specific regulation of atpH gene expression when compared to the other plastid genes that 

encode subunits of ATPsynthase and are in the same transcriptional unit.  

A SIG3 specific promoter had been identified at position -418 upstream of the atpH 

translation start codon (Zghidi et al. 2007) and when I started my thesis, we thought that the 

high level of atpH mRNA is achieved by additional transcription of the atpH gene by 

SIG3/PEP holoenzyme at this promoter. Transcription from this promoter could decouple 

transcription of atpH and/or atpH/atpF/atpA from co-transcription with the first gene of the 

operon, i. e. atpI. Furthermore, with the exception of the atpI mRNAs, all ATPsynthase 

mRNAs were diminished in SIG3 mutants when compared to WT plants (Zghidi et al., 2007). 

These results pointed to a specific regulation of the two ATPsythase operons by sigma factor 

3 and one of the aims of my work was to elucidate this putative role of SIG3 in the expression 

of the two ATPsynthase operons in detail. 

For this aim, during my PhD work I have analyzed the expression of each gene of the 

two plastid encoded ATPsynthase operons independently in WT plants and in all sigma factor 

mutants (i.e. sig1 – sig6) of Arabidopsis thaliana. Results show further that the large 

ATPsynthase operon is transcribed from two different PEP promoters, one is under control of 

SIG2 (atpI-229/-225, Figure 8) and the other promoter (atpH-418) is specifically recognized 

by a PEP/SIG3 holoenzyme (Figure 9). At least some of the SIG3/PEP initiated atpH 

transcripts are part of polycistronic mRNAs that cover the atpH, atpF and atpA reading 

frames (Figs. 14 and 16). Both of the atpH precursor RNAs, initiated either at the -229 atpI 

promoter or at the -418 atpH promoter, are cleaved at position -45 from the atpH translation 

start codon. This is shown by the presence of the -45 transcript in both, the sig2 and the sig3, 
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mutants (Fig. 9). In the absence of SIG2 the -229 atpI transcript disappears (Figure 8C, 

compare lanes 2‟ and 4‟) but the -418 atpH mRNA accumulates slightly (Figure 9B, compare 

lanes 2‟ and 4‟). This suggests a higher activity of SIG3 in sig2 plants, a result that might 

reflect the raise of SIG3 protein in SIG2 under-expressing plants as already previously 

reported (Privat et. al., 2003). This hypothesis is also supported by our Northern analysis of 

SIG3 dependent atpH mRNA (Fig. 12A, -418 specific probe) that shows an enhancement of 

atpH mRNA in the sig2 mutant when compared to WT plants. 

The -45 atpH processing intermediate should be more stable than the -418 primary 

transcript as suggested from the quantitative difference between these two transcripts (Fig. 

9B). Specific stabilization of atpH mRNA by PPR10 protein has recently been described in 

maize (Pfalz et al., 2009). Interestingly, the stabilizing PPR10 protein was shown to bind to 

the 5‟ terminus of the atpH mRNA in the region between -46 and -20 upstream of the 

translation initiation codon, i. e. it should only protect the -45 atpH mRNA, but not the -418 

mRNA. Our analyses to determine 5‟ and 3‟ends of atpH mRNA termini (Fig. 10) are in good 

agreement with such an interpretation. The complexity of the mapped -418 atpH mRNA 3‟ 

termini suggests that -418 atpH initiated transcripts are rapidly degraded from their 3‟ end. 

The -45 atpH mRNA 3‟ ends that have been mapped just downstream to the atpH coding 

sequence are less dispersed indicating that this RNA is more stable than the -418 initiated 

RNA. Thus, the stabilization of the -45 mono-cistronic transcript should be mainly 

responsible for the high RNA level of the atpH mRNA that is observed by microarray 

analysis. During my thesis, I could not clearly define conditions under which either 

stabilization of atpH mRNA or SIG3-dependent transcription of the atpH gene is more 

important to reach the high atpH mRNA level. 

The results of the primer extension and TAP RT PCR experiments indicate that atpF 

and atpA genes are co-transcribed with atpI and atpH (Figs. 14, 15 and 16). In the case of 

atpF, long transcripts are observed that should correspond to atpH/AtpF cotranscripts starting 

either at the - 418 SIG3 dependent promoter or at the -45 atpH processing site (Fig. 14B). A 

large part of the -30 atpF transcript that has been mapped by primer extension should arise 

from cleavage of the -418 initiated atpH/atpF co-transcript. This can be concluded because 

this transcript is diminished in sig3 plants (Fig. 14C). Cleavage of double stranded RNA, e. g. 

cleavage in each strand of a hairpin stem, is made by RNase III in E. coli (Pertzev & 

Nicholson, 2006). The Arabidopsis genome encodes four RNAse III like proteins RTL2, 

RNC1, At1g55140 and At3g13740. Such type of enzyme could cleave on both sites of the 

hairpin structure containing the -30 atpF site and liberate an atpH mRNA ending with a 
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poly(A) tail. This RNA, in turn, could be substrate to immediate 3‟ exonuclease degradation, 

the reason why we could not find 3‟ends corresponding to this site by ligation mediated 3‟-5‟ 

cloning and sequencing. Our suggestion that the atpH/atpF co-transcripts might be substrates 

for RNase III cleavage is further supported by the fact that the sequence of the double helical 

structure of the -30 atpF hairpin is identical to the proximal box (pb) of R1.1[WC] RNA 

which has been shown to be important for cleavage by RNase III enzymes of different origin 

(Meng et al., 2008). For future experiments, it would be interesting to analyze the stability of 

atpH transcripts in RNase III knock-out plants. On the other hand, a 3‟end localized within a 

hairpin structures might be difficult or impossible to ligate providing another reason why we 

could not find 3‟of atpH transcripts  ending at the -30 atpF site by circular RT PCR. Lack of 

ligation might also be the reason why we could not find 5‟ ends of the atpF mRNA 

corresponding to the predicted termination structure by 5‟ RACE.  

The small ATPsynthase operon, consisting of the atpB and atpE genes, is transcribed 

from two atpB PEP promoters in young Arabidopsis plantlets, initiating transcription at 

positions -520 and -467 relative to the ATG codon (Fig. 17). The -467 promoter has not yet 

been described before. The -520 promoter is preferentially recognized by SIG6/PEP 

holoenzyme (Fig.17, compare lanes 11 and 12) and the -467 promoter is recognized by 

SIG2/PEP holoenzyme (Fig. 17C, compare lanes 4 and 6). Transcription of the small 

ATPsythase operon is also dependent on SIG1 and SIG3, although we do not know exactly 

which of the promoters is recognized by these factors. In both mutants, the -84 transcript level 

is diminished without considerable changes in the -520 and -467 precursor transcripts (Fig. 

17B, compare lane 2 to lanes 3 and 5). The promoter recognized by SIG1 and SIG2 might 

correspond to the 4.8 kb transcript that is initiated far upstream of the atpB gene (Schweer et 

al., 2006). Altogether, atpB transcription is very complex implicating at least 4 of the 6 plastid 

sigma factors and we cannot discern a specific role for SIG3 in this interplay. 

Transcription from these two atpB promoters results probably in a dicistronic RNA of 

about 2.6 kb that is cleaved at position -84 to produce a 2 kb transcript (Fig. 17A). 

Transcription of the atpE gene can be decoupled from transcription of atpB by usage of an 

atpB internal PEP promoter that is recognized by SIG2 (Fig. 18). The part of the SIG3 

initiated transcripts in the total amount of atpB/atpE transcripts is low and concerns only the -

84 RNA  (Fig. 19). We could not detect changes of ATPE and ATPB proteins in sig3 plants 

by Western immunoblotting but we observed a reduction (not absence) of ATPE in sig2 

mutant plants (Fig. 19C and not shown). Interestingly, the existence of ATPE protein in sig2 

plants (where the atpE monocistronic RNA is absent) shows that atpE mRNA is translated 
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from the dicistronic mRNA. This observation is particularly surprising because the atpE start 

codon is localized upstream to the atpB stop codon, within the atpB coding region (Fig. 19B). 

A stop codon dependent mechanism of translation of the downstream overlapping transcript 

of a dicistronic mRNA has recently been described for ndhC-ndhK using an in vitro 

chloroplast translation system (Yukawa and Sugiura, 2008). Our result suggests that this 

mechanism should also exist in chloroplast in vivo. Altogether, our results indicate 

transcriptional as well as post-transcriptional (stability) regulation of the expression of 

chloroplast ATP synthase genes, in contrast to Chlamydomonas where regulation occurs 

especially at the translational level. In Arabidopsis, all genes coding subunits of the ATP 

synthase could be regulated at the transcriptional level by SIG2 and SIG3. The only exception 

is the atpI gene that is under control of SIG2 only and does not harbor a SIG3 dependent 

promoter. Coordinated transcriptional regulation of all plastid ATPsynthase genes is probably 

necessary to keep stoichiometry of the mRNAs. The SIG2 initiated transcripts are generally 

more abundant than SIG3 initiated transcripts. This is not surprising since SIG2 is considered 

as one of the principal sigma factors in chloroplasts. However, this does not exclude that 

under specific conditions modulation of transcript levels by SIG3 becomes very important. 

Influence of light on the expression of SIG3 dependent transcripts. 

From our own analyses on atpH gene transcription in Arabidopsis (chapter I) and from 

the recent finding on atpH mRNA stabilisation by PPR10 in maize (Pfalz et al., 2008) we 

suggest that atpH gene expression in Arabidopsis is regulated at least in two different ways: 

 (1) Transcription of the atpH gene can be decoupled from the transcription of the atpI 

gene by an atpH specific promoter, localized 418 bp upstream of the atpH coding region and 

specifically recognized by SIG3/PEP holoenzyme.  

(2) AtpH mRNA can be specifically stabilized by a PPR10 like protein.  

As indicated in the first chapter of my thesis, the quantity of SIG3 dependent atpH 

mRNA varied in different mRNA preparations, although plants had been grown under the 

same conditions, i. e. in the same growth chamber under the same light cycle. This was 

difficult to understand for us and at first we thought that these differences might be due to 

changes in diurnal expression of the atpH gene, because harvesting of plant material was not 

always done at the same time on the day. This idea was not confirmed by the analysis of atpH 

transcripts from plants harvested in 6h intervals during one circadian cycle (Fig. 20).  

The next hypothesis that we tested was a specific influence on SIG3 dependent gene 

expression during light stress or in relation to changes in light intensities. This hypothesis was 
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supported by the supposed “rescue” function of SIG3 (see introduction) that might include 

rescue during and/or after photooxydative conditions, by the fact that the function of the 

ATPsynthase is related to photosynthesis and atpH expression should be influenced by 

different light conditions and finally by the importance of the PSBT protein for recovery of 

PSII after light stress (further supposed that psbT gene expression is influenced by SIG3 

dependentt psbN transcription and antisense RNA production). For these reasons, we next 

analysed the mRNA levels of psbN, of atpH and of all other ATPsynthase genes in plantlets 

that were grown under different light conditions. Especially, we were looking for conditions 

in which atpH mRNA levels are highest in relation to the other ATPsynthase mRNAs and 

also in relation to all other plastid mRNAs. Experiments were carried out by plastid 

transcriptome analyses using a plastid specific macroarray, a technique that allows analysing 

all plastid mRNAs at once. We also wanted to analyse the relation of psbT sense/antisense 

RNAs and psbN sense/antisense RNAs. However, macroarray values for these RNAs were in 

general very low and do not permit to draw solid conclusions.  

 As expected, macroarray results show that the atpH mRNA level is highly influenced 

by different light conditions. Highest atpH mRNA levels are obtained when etiolated plantlets 

were exposed to 1300 µE for 4h or to 50 and 200 µE for 16h (Figs. 23 and 24). Under short 

time light exposure (4h) mRNA levels of both genes, atpH and psbN, increase with increasing 

light intensity. Under long time light exposure (16h) mRNA levels of both genes increase 

when low (50 µE) or moderate (200 µE) light intensities are applied, however they fall under 

dark levels when etiolated plantlets were exposed to high photooxydative light (1300 µE, Fig. 

24). Thus, it seems that both SIG3 dependent mRNAs behave in the same way in response to 

light. However, it has to be mentioned again that values for psbN mRNA are very low and to 

consider with care.  

When atpH mRNAs were compared to the other mRNAs of all plastid encoded 

ATPsynthase genes we found that the relation was rather constant, indicating about 7 fold 

higher atpH mRNA levels after 4h of light exposure and about 16 fold higher atpH mRNA 

levels after 16h light exposure (Table I). Interestingly, after exposure to 1300 µE 

photooxydative light atpH mRNA levels are significantly enhanced when compared to all 

other ATPsynthase mRNAs (Table I) indicating another behavior of atpH mRNAs under 

stress conditions. The question of whether this higher level of atpH mRNA relies on specific 

transcription from the -418 atpH promoter by SIG3/PEP holoenzyme or by specific 

stabilization of atpH mRNA by a PPR10 like protein remains to be elucidated in the future. In 

order to distinguish between these two possibilities run-on transcription experiments need to 
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be performed. This method has not yet been applied to macroarray analyses and I had not 

enough time to elaborate this method. 

A new and interesting observation coming out from these experiments was the general 

and strong diminution of the levels of rather all mRNAs after long time high light exposure 

(Fig. 23, compare E with H). Therefore, this phenomenon has been further analysed by using 

also green plantlets that had been obtained by growing under 50-60 µE light intensity in 

light/dark cycle and that were then exposed to 1300 µE for 4, 8 and 16h (Fig. 26). Our 

guiding idea was that high light might be more dangerous to etiolated tissues in which 

photosystems are not yet established  than to green tissues. To our surprise, the result of the 

experiment showed the contrary (Fig. 26). In green plantlets, the atpH mRNA level is already 

diminished after only 4h of high light exposure. The same light sensitivity was found for other 

mRNAs like atpI and clpP (Fig. 27) and also for ribosomal precursor RNAs (Fig. 28). The 

only exception that we found was the psbT antisense RNA. This RNA was not diminished 

after high light exposure (not shown). This fact was of special interest because it points to a 

protection of RNAs against high light induced degradation by RNA/RNA double strand 

formation. This result provided also one of the reasons that guided us to characterize the psbT 

sense/antisense RNAs in great detail (see chapter 3). 

However, before treating the problem of sense/antisense RNAs, I want to finish the 

problem of (single-stranded) mRNA degradation under light stress. Having realized the 

differences in mRNA behavior in etiolated and green plantlets that are both at the cotyledon 

stage (Figs. 26 and 27), we also wanted to know what happens in green leaves. Therefore, we 

have also analyzed at least two mRNAs, atpH and atpI, by using mature Arabidopsis plants 

(Fig. 29). Again, we observed a different behavior of mRNA levels. While the atpH mRNA 

level increases after high light treatment (Fig. 29A) the atpI mRNA level decreases (Fig. 

29B). It is of special interest to notice that the increase in the atpH mRNA level is due to 

transcription by SIG3/PEP. This can be concluded from the fact that both the -45 and the -418 

atpH mRNA precursors augment after high light treatment in wild type plants and the -45 

transcript does not change in sig3 plants (Fig. 29A). 

In conclusion, we observed different behaviors of mRNA levels in response to high 

light when analyzing RNAs prepared from either 5 days old etiolated plantlets, 7 days old 

green plantlets or mature plants. Our results indicate that mRNA metabolism varies strongly 

dependent on the physiological stage of the plants. In consequence, the answer to the question 

of which mechanism is more important to reach a high level of atpH mRNA, SIG3 dependent 

transcription or RRP10 dependent mRNA stabilization, will strongly depend on the 
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physiological stage of the plant and on the growth conditions, probably including yet other 

parameters than only light that has been analyzed here. 

 

Expression analysis of the psbT sense/antisense RNAs. 

Many different regulatory pathways mediated by antisense RNA base pairing have 

been discovered during the last years in eukaryots as well as in bacteria (Lapidot & Pilpel, 

2006; Repoila & Darfeuille, 2009; Werner & Swan, 2010). Much less is known on regulatory 

antisense mechanisms in organelles like mitochondria and chloroplasts. So far, two RNAs 

oriented in antisense direction to known plastid genes have been revealed by cloning of small 

nc RNAs (Lung et al., 2006) and a long antisense RNA, complementary to the reading frame 

of the ndhB gene but starting within the reading frame of the ndhB, has recently been 

transcribed (Georg et al., 2010). Until now, no function has been attributed to these RNAs.  

A special case of antisense RNA had been observed in our Laboratory where it was 

shown that in Arabidopsis the transcription initiation factor SIGMA 3 is responsible for 

production of psbT antisense RNA by specific transcription of the psbN gene (Zghidi et al., 

2007). This psbT antisense RNA seemed to us of particular interest because it was shown to 

cover the entire psbT coding region. In bacteria, ncRNAs generally base pair to mRNAs in 

their 5’ or 3’ UTR and RNA duplex formation modifies translation efficiency and/or stability 

of the corresponding RNA. Transcription of entire genes in sense and antisense orientation 

has been described only for RNA polymerase II where it was shown that polymerases collide 

and stall each other on the DNA template or that transcription from a strong promoter hinders 

the transcription from a weaker promoter. This mechanism is known as “transcriptional 

interference” (Hongay et al., 2006; Yazgan & Krebs, 2007). Such a mechanisms does not 

seem to hold true for the psbT gene because the absence of psbN transcription in sig3 plants 

does not change the psbT transcript levels (Zghidi et al., 2007). Therefore, we assume that 

psbT sense/antisense RNA transcription is connected to yet another mechanism of regulation.  

In order to better understand the mechanism by which the antisense RNAs regulate 

psbT gene expression, we mapped the 5‟ and 3‟ extremities of the psbT and psbN sense and 

antisense transcripts. Our results obtained by RT-PCR on circularized RNAs and 5‟ RACE 

TAP experiments show that the psbT antisense transcript covers not only the reading frame of 

psbT but extents far into the reading frame of psbB and covers a large part of the psbT/psbH 

intergenic region (Fig. 31B). A second, shorter, psbT antisense RNA has been demonstrated 

by Zghidi et al. (unpublished results). This RNA has the same 5‟ end as the one described 
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above, but the 3‟ end is located in the intergenic region between psbB and psbT. Thus, there 

are two psbT antisense RNA of different length that could hybridize to psbT sense RNA. 

In chapter 3 we have in addition mapped 5‟ and 3‟ ends of psbT sense RNAs (Figs. 32 

and 33). These experiments show a principal difference between sense and antisense RNAs: 

Antisense RNAs have stable 3‟ and 5‟ ends, but sense RNAs have only stable 3‟ ends while 

their 5‟ ends are exposed to extensive nucleolytic degradation. This difference might be 

explained in the following way: (1) Results showing the survival of psbT RNA to RNase 

A/T1 digestion (i.e. its protection by RNA/RNA double strand formation) confirm the 

existence of double stranded RNA in vivo (Zghidi et al., unpublished result). (2) From our 

macroarray results we can conclude that antisense RNAs are present at much lower levels 

than sense RNAs. (3) Taken together, we can assume that all antisense RNA is hybridized 

with sense RNA in RNA/RNA hybrids and this hybrid formation stabilizes the RNA. In 

contrast, a large part of psbT sense RNA exists in single stranded form and this RNA is 

quickly degraded from its 5‟ end.  

If we remember now the strong diminution of plastid mRNAs after high light 

treatment in young plantlets (chapter 2) together with the fact that only psbT antisense RNA 

does not diminish (not shown), it becomes clear that double stranded RNA should also be 

protected from degradation during high light stress. Thus, one of the possible functions of 

psbT antisense RNA might consist in the protection of a part of the psbT sense RNA during 

photooxydative stress conditions to provide intact RNA for PSBT production immediately 

during recovery from the stress.  

Another possibility of regulation by antisense RNAs concerns the translational level. 

At the translational level mRNA duplex formation with antisense RNAs should prevent the 

recruitment of the translational machinery at the mRNA 5‟ UTR. That psbT douplex RNA is 

not translated becomes evident from the fact that in the absence of antisense RNA (i.e. in sig3 

plants) we observe much higher levels of PSBT protein (Zghidi, Buhr and Lerbs-Mache, 

unpublished result).  

However, at the moment, both hypothesis of psbT antisense RNA function seem to be 

contradictory. If double stranded RNA cannot be translated, what is the meaning to protect 

them during stress? It needs to suppose a mechanism that liberates the sense RNA after the 

stress and makes it competent for translation. In order to analyse possible mechanisms of 

translational regulation by antisense RNA we propose to analyse the psbT sense and antisense 

RNAs and PSBT protein accumulation during and after photooxidative conditions by using 
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methods like toe printing, polysome analysis in WT and sig3 plants and the establishment of 

an in vitro translation system using single and double stranded RNAs.  

Preliminary experiments by RT-PCR show that in tobacco as well as in 

Chlamydomonas psbT antisense RNA may exist (Merendino, unpublished results). These data 

suggest that an antisense-mediated mechanism of psbT gene expression control in chloroplast 

might be conserved in other organisms. 

Yet another function of psbN initiated antisense RNA might be related to processing 

of the polycistronic transcript of the psbB operon. Primer extension analysis of psbH 

processing intermediates showed the absence of one of the processing event in the 5‟ UTR of 

psbH in sig3 mutant plants (Fig. 34). Our results indicated that duplex formation is also 

necessary for at least one of the processing events, although the importance of this specific 

event for PSBH protein expression is not clear because the protein level does not change in 

the sig3 plants (Zghidi et al. unpublished result).   

Finally, results obtained using the oligonucleotide based macroarray approach also 

indicate the existence of other antisense RNAs in addition to the psbT antisense RNA (e. g. 

psbA and rbcL) in Arabidopsis chloroplasts (Fig. 23). These data suggest that the cell might 

use antisense-mediated regulation as a general mechanism to control plastid gene expression. 

To advance further in our understanding of antisense RNA function, we propose to 

analyse the expression of the antisense RNAs in plants grown under different physiological 

conditions, in wild type plants of different developmental stages (germinating seeds, young 

seedlings and mature plants) and in different plant organs.  

 Yet another approach to investigate the function of plastid antisense RNAs 

consists in plastid transformation. Transplastomic tobacco plants could be a mean to 

overexpress in trans some of the antisense RNAs and to analyse the stability and the 

translation efficiency of the corresponding sense RNAs subsequently by Northern blot and 

Western blot experiments, respectively. An eventual effect of the antisense RNAs on 

translation should be confirmed by analysing polysomes association of the sense and 

antisense transcripts in the transgenic plants. 
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In vitro cultivation and origin of plants : 

The Arabidopsis seeds of Wild type Columbia (Wt), Wild type Wassilevskija (Wt ws), 

sig1 (GK-758B02, Co), sig2 (Kanamaru et al., 2001; Ws), sig3 (SALK_081321, Co), sig4 

(Favory et al., 2005; Ws), sig5 (Tsunoyama et al., 2004) and sig6 (Ishizaki et al., 2005) 

mutants plants were always surface sterilised before in vitro cultivation. Surface sterilisation 

of the seeds was carried out in a 50 ml solution of 0.75% hypochlorite and 80% Ethanol. 

Seeds were dipped into the solution for five minutes and continuously agitated by inverting 

the 50 ml Falcon tube. They were washed three times with absolute Ethanol. They were kept 

under hood for at least two hours for drying. 

 The sterilized seeds were cultivated in petri dishes on 25 ml of a growth medium 

containing 4.3 g MS salt (SIGMA); 0.5 g of MES pH 5.7 (KOH); 10 g of bacto agar and 10 g 

sucrose per litre. Stratification of the seeds was done at 4°C for 72 hours in darkness in order 

to remove dormancy and to have a synchronised germination. Then the seeds were transferred 

to a growth chamber with a cycle of 16 hours light and 8 hours darkness for germination and 

growth. The light intensity in the growth chamber was 60 photons m
-2 

s
-1

, temperature 23-24 

°C. Petri dishes were scotched with urgopore scotch to avoid contamination but to ensure 

passage of air for respiration of growing seedlings. 

 In vitro Cultivation of etiolated plants was carried out in the same growth chamber but 

in complete darkness for five days. However seeds were exposed to light for two hours after 

stratification as Arabidopsis thaliana seeds need light for germination. 

 

Cultivation of plants in soil: 

 The seeds were sown on sterilised soil beneath a plastic film (until the appearance of 

the first pair of leaves). Seeds were stratified for three days at 4°C in darkness. The seeds 

were spread over the surface of the sterilised soil and were covered with a plastic film to 

avoid dryness which was removed after the appearance of first pair of leaves. 

 The plants were grown in a growth room (25 °C, light intensity 60 photons m
-2 

s
-1

, 

16h/8h light and dark cycle). The plants for the stress experiments were grown under the same 

conditions but with a different light-dark cycle, 12h/12h light and dark cycle.  
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Extraction of RNA: 

 Plants grown in vitro for five, six or seven days were collected and frozen into liquid 

nitrogen which ensures quick inactivation of ribonucleases. Then the entire plants (roots, 

stems and leaves) were ground into a fine powder in liquid nitrogen with the help of pestle 

and mortar. A volume of plant powder was used for extraction and the rest was stored at –

20°C. All the necessary measures were taken to avoid melting of frozen powder as it activates 

ribonucleases which in turn cause degradation of RNAs. 1000 µl of RNA extraction solution 

(Tris HCl 0.2 M pH 9, LiCl 0.4 M, EDTA 25 mM, SDS 1%) and two volumes of phenol 

chloroform iso-amyl alcohol for removal of proteins were added and mixture was vortexed. 

Centrifugation was carried out in a microcentrifuge at room temperature at 13000 rpm for 10 

minutes. Aqueous phase was taken into a new appendorf tube and extraction was repeated. It 

was followed by a chloroform extraction. Ribonucleic acids were preferentially (selectively) 

precipitated by LiCl (2M final concentration) at –20°C over night. Centrifugation was done at 

4°C for 20 minutes and supernatant was removed. Pelleted RNAs were dissolved in water and 

re-precipitated at -20°C over night with 1/10 volume of  10X TNE (200mM Tris pH 7.5, 

10mM EDTA, 1M NaCl) and three volume of Absolute Ethanol. Centrifugation was done at 

4°C for 15 minutes and pellets were dried under vacuum. The pellet was dissolved in 20 µl 

water. RNAs were diluted to measure the exact quantity on a spectrophotometer at 260 nm 

wavelength and were run on a 1% agarose gel to check quantification again and the quality of 

RNAs. RNA aliquots were stored at –20°C.  

 

Treatment of RNAs with DNase: 

 In order to efficiently remove DNA (as required for RT-PCR reaction) 20ug of RNA 

were treated with 3U of Turbo DNase (Ambion) for 30 minutes at 37°C and the treatment was 

once again repeated. Sterile Water was added to increase the volume to 200µl and phenol acid 

extraction was done with one volume of phenol acid followed by one chloroform extraction. 

The aqueous phase was precipitated with 1/10 volume of 10X TNE (200mM Tris pH 7.5, 

10mM EDTA, 1M NaCl) and 2 volumes of absolute Ethanol for minimum two hours to over 

night at –20°C followed by centrifugation at 13000rpm at 4°C for 20 minutes. The pellet was 

washed by 70% ethanol and dried by vacuum drier. RNAs were quantified by 

spectrophotometer and gel electrophoresis. 
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Northern Blot analysis: 

Principal 

Total RNA are extracted from a homogenized plant sample. RNA samples are then 

separated by gel electrophoresis. The RNA samples separated by size are transferred to a 

nylon membrane through a capillary system. A nylon membrane with a positive charge is 

used in northern blotting as the negatively charged nucleic acids (RNAs) have a high affinity 

for them. Formamide is used in the transfer buffer to lower the annealing temperature of the 

probe-RNA interaction which prevents RNA degradation by high temperatures. RNAs are 

immobilized through covalent linkage to the membrane by UV light or heat. The labelled 

probe is hybridized to the RNA on the membrane. Ionic strength, viscosity, duplex length, 

mismatched base pairs and base composition affect the efficiency and specificity of 

hybridization. To avoid background signals the membrane is washed. The hybrid signals are 

then detected by X-ray film.  

 

Probe preparation: 

Hybridisation probes were PCR amplified by using following (F) forward and reverse 

(F) primers specific to each chloroplast transcript. 

-418 atpH probe 

5‟ GATATTGCCTAGGTATATATG 3‟  (F) 

5‟ GTAATCGCTAAGATTAATCCAGCC 3‟  (R) 

CDS  -45 atpH probe 

5‟ ATGAATCCACTG GTTTCTGCTG 3‟  (F) 

5‟ GGCTTAAACAAAAGGATTCGC 3‟  (R) 

atpE probe  

5‟ GTGTACTGACTCCGAATC 3‟  (F) 

5‟ GCCTCAATTGTCTGTCTC 3‟ (R) 

 

The PCR amplified products were purified by using PCR purification kit (  ). The size 

of each amplified fragment (probe) was verified on 1% agarose gel. using the random priming 

kit (New England Biolabs). 30 ng of fragment was radioactively labelled by -dATP 

following the hexamer random priming method. Shortly, The amplified DNA fragment is 

denatured at 65°C for 5 minutes and put on ice for five minutes. 50 Ci of -
32

P dATP and 5 
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units of DNA pol I- Klenow Fragment 3‟>5‟ exo are added to denatured DNA along with 

dCTP, dGTP and dTTP ( 2 µl of each). Polymerization reaction is carried out for one hour at 

37°C. The probe is purified by one ml column G50 by gravity. 

 

Gel electrophoresis: 

RNA denaturing gel contained 1X MOPS pH 8.0, 2.2 M Formaldehyde and 1.3 % 

agarose. 12 µg of quantitatively and qualitatively analysed RNAs (total) of Wild type 

Columbia (Wt), Wild type Wassilevskija (Wt ws), sig2 (Kanamaru et al., 2001; Ws) and sig3 

(SALK_081321, Co) were mixed with 1X sample buffer containing deionised formamide 

(18.5 % - half volume), formaldehyde (13 %- 1/6 volume), MOPS pH 8.0 (1X), Bromophenol 

blue (0.25 %), and Xylene cyanol (0.25 %) . 

Formamide was deionised by adding 10 % amberlite 150 L IRN and put at slow 

agitation for one hour at room temperature and then filtered by 0.2 µm filter. 1µl of 400 µg/ml 

Ethedium Bromide was added to each sample before loading on the gel in order to observe the 

relative RNA quantification under UV light.  

The gel was pre-run for 30 minutes at 100 V. Upon sample loading, the gel was run 

for 8 hours at 100 V in 1X MOPS and 1/10 th volume of Formaldehyde. Recycling of running 

buffer was done by magnetic stirrer. Photos of the gel were taken under UV light. The gel was 

then rinsed in two changes of ddH2O and washed for 5 minutes in 5X SSC.  

 

RNA Transfer 

RNAs were transferred to Nylon membrane (Hybond +) from the gel in 5X SSC following the 

capillary method (Sambrook & Russell, 2005). Transfer was done for three nights. During this 

period tissue papers were changed and transfer buffer was added to the reservoir dish or 

apparatus. 

The RNAs were cross linked to the membrane by incubation at 80°C for two hours. 

The membrane was then coloured in methylene bleu solution (0.03% methylene blue, 0.3M 

NaOAc, pH 5.2 ) for 60 seconds and washed in ddH2O for two minutes. The membrane was 

scanned for photo. A photo of the membrane under UV light was also taken. The membrane 

was decoloured in ddH2O for 10 minutes.  
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Hybridisation 

The membrane was prehybridised at 65°C for two hours in 7% SDS, 0.5M Na Phosphate 

pH 7, 1mM EDTA and then overnight hybridisation was performed in the same solution in presence of 

the probe (which was denatured at 95°C for 10 minutes). The hybridised membrane was then 

quickly rinsed in 0.2XSSC, 0.2 % SDS and washed in the same solution for 20 minutes at 

65°C. The membrane was wrapped in a plastic cover and exposed to films to acquire the 

appropriate signals. 

 

Primer Extension: 

 Primer extension is a technique used to map the initiation sites of the primary or 

processed transcripts. The use of a proper loading controlallows the technique to be 

quantitative. 

 3 µl of 5‟ 
32

P labelled oligo (see below) was added to 4-10 µg of total RNA; 

depending on the expression level of the genes. RNAs were denatured at 65°C for 10 minutes 

and immediately put on ice at 4°C for 5 minutes for the RNAs to maintain their denatured 

form. The hybridization was done at 5°C less than melting temperature of the oligo (Tm – 5) 

calculated by the formula (2AT +  4GC) for 20 minutes. Again the tubes were put on ice for 5 

minutes. Reverse transcription was done in presence of 1µl dNTPs (10 mM), 5 µl first strand 

buffer 5X, 2.5 µl DTT (0.1M), 1 µl Rnase inhibitor and 0.5 µl superscript II 200 units/µl 

(invitrogen) at 42°C for 50 minutes. In case of strong secondary structures present on the 

RNAs, superscript III was used and RT was done at 55°C. The reaction was stopped by 

inactivating the enzymes at 70°C for 15 minutes. RNA was removed by adding 1 µl RNase A 

(10mg/ml) at 37°C for 20 minutes. Proteins were removed by 2 phenol chloroform and one 

chloroform extractions. Precipitation of purified cDNA was done in ethanol 1/10 volume of 

10X TNE (200mM Tris pH 7.5, 10mM EDTA, 1M NaCl) 3 volumes of absolute ethanol over 

night at –20°C followed by centrifugation at 13000rpm at 4°C for 15 minutes. The pellet was 

washed by 70% ethanol and dried by vacuum drier. The pellet was dissolved in 5µl stop 

buffer and denaturation was done by heating at 95°C for 10 minutes. cDNA were run on 6% 

acryl amide gel. The oligos used for primer extension are given below: 

atpI:  5'  CATATTGCCCTCTGACAG  3‟   (ta:49°C),  

atpH:   5‟ GTCCAATAGAAGCAAGC  3‟    (ta:50°C),  

atpF:   5‟ TCAATACACCGAAAACTACAC  3‟   (ta:55°C),  

atpA:   5‟ GGTACCGGTATTTACAATCG   3‟   (ta:53°C),  

atpB:   5‟ TTTTTCACGTATCGAAACCTCTGG  3‟  (ta:43°C),  

atpE:   5‟ CTAATTGTTTCCGCTAGACC  3‟   (ta: 53°C), 
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clpP :               5‟ GGAGAAGGAGATACATC 3‟  (ta: 40°C), 

16S :    5‟ TTCATAGTTGCATTACT 3‟    (ta: 40°C), 

psbH;    5‟ GCTTCTTGGACCAGATC 3‟    (ta: 40°C), 

 

Before phenol chloroform extraction equal quantiy of the loading control is added into 

each reaction mixture. Loading control is the labeled PCR product. The size of the loading 

control is such that it does not co-migrate with the band of interest on the polyacrylamide gel 

(see below). For labeling the purified PCR product, it is denatured at 95°C for 10 minutes and 

then the protocol for oligo labeling is followed as such (see below). For our primer extension 

analyses, we have used loading controls of 450 and 800 bps size depending on the size of the 

band of interest.  

Preparation of polyacrylamide gel: 

 For the analysis of primer extension products 6% denaturing polyacryamide gel was 

used. The gel contained 6% polyacrylamide solution [bis-acrylamide/ acrylamide; 8 M Urea 

and TBE-S 1X (45 mM Tris-Borate pH 8.3, 0.5 mM EDTA)]. Upon addition of APS 

(amonium persulfate) TMED (Tetramethylethylenediamine) the gel was polymerised at room 

temperature in 30 minutes. The samples were run on the gel for one and half hour at 30W, for 

long gels time was increased to two hours. The gel was transferred to a 3MM paper, dried and 

exposed to photographic films at -80°C or at room temperature.  

 

Sequencing: 

  T7 sequencing kit (usb) was used for sequencing of genomic fragments. 2 µg of the 

plasmid DNA containing the genomic fragments of interest and 10 pmoles of the 

corresponding oligo were added in a tube with a final volume of 12 µl. Denaturation was done 

at 65°C for 10 minutes in the presence of 1.5 µl NaOH (1N) solution. After denaturation 1.5 

µl of HCl was immediately added to the mixture for neutralisation. For hybridisation of 

primer with the genomic fragment 2 µl of annealing buffer was added and incubation was 

done at 37°C for 10 minutes and at room temperature for five minutes. Then 5.3 µl of the 

premix (containing 3 µl labelling buffer A, 2 µl dilution buffer, 0.5 µl T7 DNA polymerase 

10U/µl and 1 µl of  -P
32

-dATP) was added followed by polymerisation at room temperature 

for five minutes. 4.5 µl of this reaction was added to 2.5 µl of each ddNTP and incubated for 

five minutes at 37°C. 5µl of stop buffer (97.5 % formamide, 10mM EDTA, 0.3 % 

bromophenom blue, 0.3 % xylène cyanol) was added to the reaction in each tube to stop the 
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reaction. Before loading 3 µl of reaction on 6% denaturing polyacrylamide gel, denaturation 

was done at 95°C for 10 minutes.  

 

Oligo labelling: 

 Oligo labeling which is required for primer extension technique is performed by 

phosphorylation of the 5‟ end with  - P
32 

-ATP. 100 ng of the oligo is incubated for 10 

minutes at 37°C with 5 µl  - P
32 
–ATP (10 u Ci/ µl, 3000 Ci/mmol), 5µl of 5X buffer and 10 

units of T4 polynucleotide Kinase (invitrogen) in a total volume of 25 µl. Labelled oligo-

nucleotide is then purified to remove unincorporated nucleotides by chromatography using G-

25 columns (GE healthcare).  

PCR Amplification: 

PCR (polymerase chain reaction) is the technique used for amplification of  a specific 

DNA/ cDNA fragment from total DNA. 

 The reaction was carried out in a final volume of 25 µl contaning 1 µl of DNA, 5 µl 

Taq DNA polymerase buffer (5X), 1.5 µl of 25 mM MgCl2 , 0.5 µl of dNTPs mix (10 mM 

each), 1 µl of each (forward and reverse) primer (10 µM) and 0.1 µl of Taq DNA Polymerase 

enzyme. 

 Denaturation of double stranded DNA was done at 94°C for 5 minutes and it was 

followed by n cycles of amplification which generally included 1 minute at 94°C, 30 sec at Ta 

(Tm-5) and 1 minute at 72°C. For the fragments longer than 1kb  extended time at 72°C was 

increased at the rate of 30 sec for each 500 bps. If the fragment was amplified for cloning then 

one cycle at 72°C for 10 minutes was added at the end.   

Cloning of the DNA Fragment: 

Principle: 

 When required, DNA fragments amplified by PCR or RT-PCR were directly inserted 

in TOPO 2.1 PCR vectors by the standard protocol given by the supplier (invitrogen). These 

vectors contain gene for resistance to ampiciline. The insertion site for the fragment is in 

LacZ gene which codes for galactosidase. When the DNA fragment is inserted in it, the 

gene becomes inactive and there is no production of galactosidase enzyme. Bacteria were 

allowed to grow in liquid lauria broth (LB 1 % trypton p/v, 0.5 % Yeast Extract p/v, 0.5 % 

NaCl) for one hour. Selection is done on agar plates containing both the ampiciline and X-gal. 
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Bacteria transformed with vectors containing the insert grow into white colonies due to the 

absence of galactosidase enzyme while the bacteria transformed with empty vectors grow 

into blue colonies as a result of cleavage of X-gal due to the production of galactosidase. 

Protocol: 

Commercially availanle XL-2 bleu competent bacterial cells provided in the Kit 

(invitrogen) were transformed with the ligated vectors by thermal shock. These bacteria were 

first cultured in LB liquid for one hour at 37°C and this culture is then spread on LB agar (1% 

tryptophane; 0.5% yeast extract, 0.5% NaCl and 15 g/l bacto-agar) plates containing 

ampicilline (50 µg/ µl) and X-gal over night at 37°C. The white colony bacteria are then 

cultured again in liquid LB medium over night at 37°C in the presence of ampicilline (50 

µg/ml) at continuous horizontal agitation at 200 rpm. The bacteria are pelleted at 9000 rpm 

for 5 minutes at room temperature and DNA is then extracted. 

Miniprep; Plasmid DNA Extraction: 

 Plasmid Extraction from bacteria was carried out by alkaline Lysis method (Sambrook 

et al., 1989). Bacteria cultured over night at 37°C were pelleted by centrifugation at 9000 rpm 

for 5 minutes at room temperature in a 2 ml tube. The pellet is re-dissolved in 100 µl of 

solution I (glucose 50 mM ; EDTA 10 mM; Tris.HCl pH 8, 25 mM).  Lysis of the bacteria 

and denaturation of DNA is done by 200µl of alkaline solution II (1% SDS, O.2 N NaOH) 

and incubated for 5 minutes at room temperature. 150 µl of Solution III (sodium Acetate 5M, 

Galacial acetic acid, pH 5.2) is added for renaturation of the plasmid DNA. The mix is 

agitated gently by inverting the tubes and incubated for 10 minutes at 4°C on ice. 

Centrifugation is done at 13200 rpm for 15 minutes which precipitate the chromosomal DNA 

while plasmid DNA remains in supernatant. The supernatant is taken in a new tube and 

precipitated with two volumes of cold absolute ethanol at -20°C for two hours. The plasmids 

are pelleted by centrifugation at 13200 rpm for 15 min. The pellet is washed with 70% 

ethanol, dried under vacuum and re-dissolved in 20 µl sterile water. 

 

RNA Analysis by RT-PCR:     

 Upon DNase treatment total RNA is denatured at 65°C for 5 minutes in the presence 

of 1 µl of gene specific primer (2 µM), reaction buffer (50mM Tris HCl; pH 8.5, 75 mM KCl, 

3 mM MgCl2    and 10 mM EDTA) and 0.5 mM dNTPs. The reverse transcription is done in 

the presence of 200 U of Superscript II H-RT (invitrogen) and 100 U of RNase inhibitor at 
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42°C during 50 min. The reaction is stopped by heating at 70°C for 15 min. 1-2 µl of cDNA is 

utilised to carry out the PCR reaction as mentioned above. 

Analysis of plastidial transcript profile expression by cDNA macroarray: 

 cDNA macroarray was used for plastid transcriptome analysis. The technique is 

carried out in the following steps: 

 cDNA synthesis: Labelling of plastid mRNAs was obtained by reverse transcription in 

the presence of 
 
P

32
-dATP and gene specific primers. 

 Hybridisation of cDNA on the membrane where 80 gene-specific primers were 

spotted. 

 Analysis of results. 

cDNA synthesis: 

 6 µg of DNAase treated total mRNAs are denatured at 65°C for 5 min in the presence 

of 0.2 pmol of oligonucleotide mix (plastidial gene specific primers), 1.25 mM of d CTP, 1.25 

mM of dGTP, 1.25 mM of dTTP and 10 µl of  P
32 
–dATP (10 µCu/µl). Reverse transcription 

is done with 600 U of superscript II H-RT (invitrogen) in the presence of 100 U of RNase 

inhibitor during 50 min at 42°C. Reaction is stopped by heating at 70°C for 15 minutes. The 

labelled cDNAs are purified by 1 ml column of G-50 Sephadex columns. In order to check the 

quantity of incorporated radioactivity, 1 µl labeled and purified cDNA is run on denaturing 

acrylamide gel. 

 

Hybridisation of labelled cDNAs on membrane:   

 Macro-array membranes made of nitrocellulose, were imbibed in SSC 2X (0.3 M Na 

Citrate, pH 7). The membranes were then pre-hybridised for one hour in hybridisation 

solution (NaHPO4 pH 7.2, 1mM EDTA, 7 % SDS, 1 % BSA) at 65°C and then hybridized 

with labeled cDNAs (upon denaturation at 95°C for 5 minutes) in 25 ml hybridisation solution 

for 72 hours at 65°C. The membranes are then washed with 25ml washing buffer (40 mM 

NaHPO4 pH 7.2, 1 mM EDTA, 1% SDS) for 5 min at 65°C and then at room temperature for 

10 min in 100 ml washing buffer. The membranes are then covered with a plastic film and 

exposed to photo-sensible (fujifilms imaging plates) films during two weeks at room 

temperature. The signal intensities from the screens are converted in digital signals by 

phosphor-imager (fujifilm FLA 8000).  
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Analysis of Results:  

 The digital signals were then processed with the Array guage software. After 

background substraction, the values were transferred to Microsoft excel sheets. 

 

TAP (Tobacco Acid Pyrophosphate) treatment and 5’ RACE:  

 Principle: 

The plastidial primary transcripts have three phosphate groups on the 5‟ extremity. The 

processed transcripts which are issued as a result of cleavage of primary transcripts have one 

phosphate group attached on the 5‟ extremity. An RNA adaptor can only ligate with the 5‟ 

extremity of processed transcripts and not to primary transcripts. But if the transcripts are 

treated with TAP (tobacco acid pyrophosphate) which removes two phosphate groups (β,   

phosphates) and the adaptor ligation is possible also for primary transcripts. In order to 

differentiate between the primary and processed transcripts TAP treated and TAP untreated 

transcripts were amplified by RT-PCR by using RLM-RACE kit (ambion). Cloning and 

sequencing of products of RACE-PCR can also be used to map exactly the 5‟ extremities.  

The principle of the process in shown in Fig 36. 

 Protocol: 

  10 µg of DNase treated RNAs were treated with 2 µl TAP enzyme (first choice 

RLM- RACE; Ambion) in presence of the proper buffer and 40 units of RNase inhibitor in a 

final volume of 20 µl for 1h at 37°C. A control reaction without TAP was carried out. 4 µl of 

each + TAP and – TAP reactions were ligated to 300 ng of  5‟ adaptor with the help of  5 U of 

T4 RNA ligase in presence of its buffer at 37°C for 1h in a final volume of 10 µl. Reverse 

transcription  of 2 µl of ligated RNAs was done with a gene specific oligo (2 µM). 
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Figure 37: Schematic presentation of the principle of 5’ RACE TAP PCR. A) primary 

transcript. B) processed transcripts. 

A 

B 
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 In order to enhance the specificity of amplification two successive PCRs were carried 

out on the obtained cDNA. First PCR was carried out with the help of an adaptor specific 

external oligo and transcript specific external oligo. While the second PCR was carried out 

with an adaptor specific internal oligo and transcript specific internal oligo. PCR products 

were run on agarose gel. Presence of band (amplification) in un-treated (-TAP) transcripts 

shows that the RNA is a processed transcript while absence of band in treated transcripts 

(+TAP) shows that the RNA is a primary transcript. 

Circular RT- PCR:  

 Principle: 

  This technique is used to determine the 5‟ and 3‟ extremities of a given 

transcript. For the purpose RNAs are TAP treated and then auto ligated, reverse transcribed 

and PCR amplified with specific oligos situated near the 3‟, 5‟ junction. PCR product is 

cloned. Many clones are then sequenced and analysed to determine 5‟ and 3‟ extremities. 

Protocol: 

  5-6 µg of total RNAs treated with DNase and TAP are denatured at 70°C for 5 

min and immediately transferred to ice for 5 min. Auto-ligation is done with 50 U of T4 RNA 

ligase (fermentas) in the presence of RNase inhibitor (40 U) for 1h at 37°C. Auto-ligated 

RNAs are then purified with two phenol chloroform extractions followed by ethanol 

precipitation. Upon centrifugation at 13000 rpm at 4°C for 15 minutes, the pellet is washed 

with 70% ethanol and once dried, it is re-suspended in sterile water. Reverse transcription was 

done in presence of 1 µl of transcript specific oligo (2 µM)  and  200 U of superscript II H-Rt 

(invitrogen) in a final volume of 20 µl for 1h at 42°C. 2 µl of this cDNA mixture are used for 

PCR. PCR product was cloned and many clones were sequenced.  

Western Blot Analysis: 

Principal 

Total proteins are extracted from an homogenized plant sample. The proteins are then 

separated by size by gel electrophoresis and transferred to a membrane (nitrocellulose or 

PVDF). The transferred proteins are then detected by using antibodies specific to the target 

protein.  

 

http://en.wikipedia.org/wiki/Nitrocellulose
http://en.wikipedia.org/wiki/PVDF
http://en.wikipedia.org/wiki/Antibody
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Protein extraction 

Plants grown in vitro for seven days were collected and frozen into liquid nitrogen 

which ensures quick inactivation of proteases. Then the entire plants (roots, stems and leaves) 

were ground into a fine powder in liquid nitrogen with the help of pestle and mortar. 

Equal quantities (100 µg) of the powder of Wild type Columbia (Wt), sig2 (Kanamaru et al., 

2001), sig3 (SALK_081321) plants were suspended in the 1V of  4X loading buffer (200 mM 

Tris HCL, pH 6.8; 5 % (v/v) β-mercapto ethanol; 0.2 % bleu de Bromophenol ; 20 % glycerol 

and 4 % SDS). The solution was vortexed and denatured at 100 °C for 10 minutes. After 

denaturation it was centrifuged at maximum speed (13200 g) for 15 minutes. The supernatant 

was taken into a new appendorf. This supernatant can directly be used for quantification and 

migration by electrophoresis. For the western blot analysis of smaller plastid proteins (ATPH 

and PSBT), a portion of extracted proteins (100 µg) was precipitated in acetone 80 % at -80 

°C for about half an hour. The samples were centrifuged for 12 minutes at room temperature 

at 12 000 rpm. The pellet was washed with 200-250 µl 100 % acetone and the pellet was dried 

on the bench at room temperature. The pelleted proteins were dissolved in an appropriate 

volume of the loading buffer by automatic pipette and used for quantification and migration 

by electrophoresis. The proteins were always denatured at 95 °C for 10 minutes and put 

at ice for 5 minutes before loading on the gel. 

 

Protein quantification  

  The protein quantification was carried out by Esen Method as following: 

2 l of a protein extract (in SDS sample buffer, heat-denaturated at 95°C for 5 

min) were spotted on a square of Whatman paper (1 x 1 cm). For the zero spot SDS 

sample buffer was used while for the fixed point spot BSA-solution of known 

concentration was used. The Whatman paper  was dried at room temperature. Proteins 

fixing on the paper was done by incubating it in Fixing-Buffer (25% (v/v) Isopropyl 

alcohol, 10% (v/v) acetic acid) for 5 minutes with gentle agitation. Proteins were 

coloured by incubation in Colour-Buffer [25% (v/v) Isopropyl alcohol, 10% (v/v) 

acetic acid, 0,1% (w/v) Coomassie Brilliant Blue R250)] for 15 min with gentle 

agitation. The paper was rinsed one to two times with cold water. The paper was then 

decoloured by putting it in boiling water for two minutes. The paper was rinsed one 

time with cold water. The paper was dried at room temperature. The squares were cut 
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and each one was put in an eppendorf-tube. 1 ml of Elution-Buffer (0,5 % SDS) was 

added and the blue  colour was elute over night at RT or for 2 h at 50°C. The 

absorbance was measured at 578 nm against the zero-probe and the protein-

concentration was calculated by comparing to the fixed point value.  

 

Gel preparation 

The gel apparatus was set and sealed with 1 % agarose gel at the base and sides to 

avoid leakage of the gel.  The gel for the proteins of  >10 kDa consisted of two parts like  

stacking (Tris HCL 0.5 M pH 6.8, SDS 0.4 %) and separation gel (Tris HCL 1.5 M pH 8.8, 

SDS 10%). 

20 µl of 10 % ammonium per sulphate (APS) and 5 µl of TEMED were added to 

20 ml separation gel solution. Out of it, 5-6 ml of separation gel solution  was poured. 1 ml of 

either H2O or isopropanol was added to it to keep the surface levelled. After 30 minutes water 

or ethanol was removed with the help of whatman paper and 1-2 ml of the stacking gel 

solution having appropriate quantities of APS and TEMED were added to it. The comb of 

required sized was placed on it. After 30 minutes the comb was removed and the denatured 

samples of protein and molecular weight marker were loaded to it. 

The gel was run in an electrophoretic buffer (25 mM Tris, 200mM Glycine and 0.05 % SDS) 

for 2 hours at 100 V. 

 

Protein Transfer 

Normally two gel were prepared, loaded and run in parallel. One was used for 

coomassie blue staining for verification of quantity and quality of the proteins and the other 

was used for western blot analysis.   

Electric transfer of the proteins to the membrane (nitocellulose) was done in the 

transfer solution (25 mM Tris, 200 mM Glycine, 0.04 % SDS, 20 % EtOH) for sixty 

minutes at 100 V. The current flows from cathode to anode, so the proteins being negatively 

charged due to SDS move from the gel (cathode side) to the membrane (anode side) and are 

trapped in the membrane.  

  The membrane is stained in “Ponceau Rouge” to confirm that the protein transfer was 

successful. Membrane blocking was done in TBS-Tween 0.1 % and 5 % milk for  one hour 

with agitation at room temperature. Then the incubation with the first antibody was 



Material and Methods 

132 

 

done at room temperature for one hour in TBS-Tween 0.1 % and 5 % milk.  The 

membrane was washed 3-4 times with TBS-Tween 0.1 %. The membrane was again 

incubated with the 2
nd

 antibody for one hour at room temperature in TBS-Tween 0.1 % 

and 1 % milk. The membrane was washed 3-4 times in the TBS-Tween 0.1 %. 1 ml of 

ECL solutions was added on the membrane and exposed to films.   

 

Western Blot analysis for smaller proteins 

We carried out the western blot analysis very small protein (ATPH- ~5 kDa) as well. 

According to the protocol described by (Schagger, 2006). For the gel preparation two mother 

solutions like  Tris/ Tricine 3X solution (3M Tris, SDS 0.3 % pH 8.45) and Acryl amide/ 

Bisacrylamide 06 (AB 06) (46,5 g acrylamide (49,5%), 3 g bisacrylamide (6%), into 100 ml 

H2O) were prepared. Separation gel of 5-6 cm (7,5 ml 14% acrylamide, 2.3 ml H2O, 2.5 ml 

Tris/Tricine buffer 3x, 2,1 ml Acryl amide/ Bisacrylamide 06, 0,6 ml Glycerol, 37,5 l APS 

10%, 3,75 l TEMED) was followed by 1 cm intermediate gel (1 ml 10% acrylamide, 67 l 

H2O, 333 l Tampon Tris/Tricine 3x, 200 l Acryl amide/ Bisacrylamide 06, 5 l APS 10%, 

0,5 l TEMED). 1 ml of H2O was added on top of them and were allowed to polymerize for 

30 minutes. The water was taken off by whatman paper and 1cm of stacking gel (3 ml 4% 

acrylamide, 2 ml H2O, 750 l Tampon Tris/Tricine 3x, 250 l Acryl amide/ Bisacrylamide 

06, 22,5 l APS 10%, 2,25 l TEMED) was deposited on them and allowed to polymerize 

with the comb in it. The arrangement of different parts of the gel is shown in the following 

figure. 
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Figure 38: Schematic presentation of  the formation of the gels for loading and migration of 

low molecular weight proteins. (Drawn in power point) 

 

Procedure 

The cathode buffer (0.1 M Tris, 0.1 M Tricine, 0.1 % SDS) was added in the upper 

part while the anode buffer (0.1 m Tris-HCl pH 8.9) at the base. The migration was started 

with very low voltage (20 V). When the samples entered in the intermediate gel, the voltage 

was increased to 40V: when the samples entered in the separation gel, the voltage was 

increased to 100 V. This migration procedure takes almost 6 hours. The transfer of proteins 

from the gel to the membrane (nitrocellulose 0.2 m) was carried out at 50 V for 50 minutes 

in transfer solution (2.6 mM Tris, 0.19 glycine, EtOH 20 %). After colouring the membrane 

with the “ponceau rouge”, the normal procedure was followed. 
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SUMMARY 

 

We have analysed the expression of the two plastid ATP synthase operons 

atpI/atpH/atpF/atpA and atpB/atpE in arabidopsis wild type plants and different sigma 

factor mutants (sig1, sig2, sig3, sig4). Results indicate regulation on the transcriptional 

and post-transcriptional level. Both operons are under control of SIG2 and SIG3 and 

could be coregulated via these two sigma factors. Transcription of the large ATP 

synthase gene cluster starts either at the atpI gene that is under SIG2 control or from a 

SIG3 specific promoter that is located in the intergenic region between atpI and atpH. 

Besides existing as (atpI)/atpH/atpF/atpA cotranscript, the atpH mRNA exists as 

monocistronic RNA that accumulates to rather high levels. Two different mechanisms 

might contribute to the accumulation of the atpH mRNA: a) Specific transcription of the 

atpH gene, starting at the SIG3 specific atpH promoter and terminating at a potential 

terminator that is located at the end of the atpH gene. b) Stabilisation of processed atpH 

transcripts originating either from SIG3/atpH initiated polycistronic transcripts or from 

SIG2/atpI initiated transcripts. Regarding the dicistronic atpB/atpE operon, two PEP 

promoters are found upstream of the atpB gene. One is recognized by SIG2/PEP 

holoenzyme as well as by SIG3/PEP. AtpE transcription could be decoupled from atpB 

transcription by an atpB internal, SIG2 dependent, promoter. However, the atpE mRNA 

is also translated from dicistronic atpB/atpE mRNA for which overlapping stop/start 

codons have been described. This is shown by the existence of the ATPE protein in 

SIG2 knock-out plants.   
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INTRODUCTION 

 

H+-ATPases (ATP synthases) catalyse proton transport coupled with ATP synthesis. 

They exist in bacteria, chloroplasts and mitochondria. ATP synthases are composed of 

the membrane integrated F0 complex (CF0) and the surface exposed F1 complex (CF1). 

The CF1 part consists of five different subunits (α, β, γ, δ, ε) present in a 3:3:1:1:1 

stoichiometry. The CF0 part consists of four different subunits (I, II, III, IV) with a 

stoichiometry defined as 1:1:6-12:1 (Böttcher and Gräber, 2000). In photosynthetic 

organisms subunit α (atpA), β (atpB), ε (atpE), I (atpF), III (atpH) and IV (atpI) are 

plastid encoded. The question of how the stoichiometry is achieved is not yet 

completely answered. Considerable advance to solve this problem has been made with 

Chlamydomonas reinhardtii, a unicellular green alga that is amenable to a diversity of 

genetic manipulations. Studies with mutants have shown that assembly controls the 

stability of newly synthesized ATPase polypeptides (Choquet and Vallon, 2000) as well 

as translation rates (Drapier et al., 2007). Generally, post-transcriptional/translational 

regulation represents the prevailing mode of gene expression regulation in 

Chlamydomonas (Barkan et al., 2000). This is probably connected to the fact that only 

one RNA polymerase and only one sigma factor exist in chloroplasts (Bohne et al., 

2006) thus limiting the option of transcriptional regulation.  

 Unlike Chlamydomonas, the transcriptional apparatus of the plastid genome of 

higher plants is more complex. Transcription is performed by two different transcription 

systems, either plastid or nucleus encoded. The nucleus encoded plastid RNA 

polymerase (NEP) is monomeric and of the phage type. The plastid encoded RNA 

polymerase (PEP) is a multimeric, eubacterial type, RNA polymerase that is 

Page 3 of 39

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

  4 

complemented with nucleus encoded transcription initiation factors of the sigma type. 

Six different genes coding sigma factors have been revealed in arabidopsis (Shiina et 

al., 2005; Liere et al., 2006). SIG4 has been proposed to determine the quantity of NDH 

complexes by regulating the expression of the ndhF gene (Favory et al. 2005). SIG5 has 

been shown to regulate blue-light dependent expression of the psbD gene (Tsunoyama 

et al., 2004). These and other examples indicate that transcriptional regulation plays an 

important role in plastid gene expression of higher plants. Our recent analyses of plastid 

gene expression patterns in arabidopsis WT and sig3 T-DNA insertion mutants showed, 

beside a strong reduction of psbN mRNA, moderate reduction of several mRNAs of the 

ATP synthase complex in the SIG3 mutant (Zghidi et al., 2007). Among these, the atpH 

mRNA was most reduced, indicating that also transcriptional regulation, especially by 

sigma factor 3 (SIG3), participates to the establishment of the observed stoichiometry of 

the CF0 subunits at the protein level. 

In higher plants the plastid-encoded ATP synthase genes are localized in two 

different transcriptional units. One of them comprises rps2, atpI, atpH, atpF and atpA 

(Henning and Herrmann, 1986; Stahl et al., 1993; Stollar and Hollingsworth, 1994a; 

Miyagi et al., 1998). The other transcription unit contains the atpB and atpE genes 

(Zurawski et al., 1982; Shinozaki et al., 1983). The atpB promoter region is not well 

conserved between different plant species. For instance, in tobacco the atpB operon is 

transcribed from three PEP promoters and one NEP promoter (Orozco et al., 1990; 

Hajdukiewicz et al., 1997), while in maize and in arabidopsis only one NEP and one 

PEP promoter have been described (Silhavy and Maliga, 1998; Swiatecka-Hagenbruch 

et al., 2007). Independent of the exact number of transcription start sites, the presence 

of several promoters suggests expression regulation of the atpB operon on the 
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transcriptional level by differential promoter usage. The same holds true for the large 

ATP synthase operon where different transcription start sites have been determined, 

located upstream of the rps2, atpI and/or atpH genes (Stahl et al., 1993; Stollar et al., 

1994a; Miyagi et al., 1998). The atpI gene of tobacco is transcribed from one NEP and 

one PEP promoter (Miyagi et al., 1998). In arabidopsis, the atpI gene is solely 

transcribed from one PEP promoter (Swiatecka-Hagenbruch et al., 2007). 

The expression of both operons is regulated by several mechanisms. The two 

genes (atpB and atpE) of the small ATP synthase operon have overlapping translation 

stop/start signals (Zurawski et al., 1982). They are transcribed as dicistronic mRNA for 

which translational coupling has been demonstrated in E. coli (Gatenby et al., 1998). 

Whether this mechanism functions also in higher plants is not clear because an atpE 

specific promoter is localized within the coding region of the atpB gene and 

transcriptional coupling is not necessary for atpE expression (Kapoor et al., 1994). 

Northern analysis shows the existence of two dicistronic transcripts of different sizes, 

one of them is under control of SIG6 (Schweer et al., 2006).  

In the case of the large ATP synthase gene cluster, the different transcripts 

starting either upstream of rps2, atpI and/or atpH terminate downstream of atpA (Stahl 

et al., 1993; Stollar et al., 1994a; Miyagi et al., 1998). Co-transcription of atpH, atpF 

and atpA should result in an initial RNA ratio of 1:1:1 for the three genes and the 

question arises how the protein stoichiometry of 6-12 molecules ATPH against 1 

molecule ATPF in the CF0 complex is achieved. Different mechanisms like ribosome 

pausing and cleavage-induced alteration of mRNA stability have been proposed as 

explanation (Stollar et al., 1994b; Hotchkiss and Hollingsworth, 1997).  
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 In the present paper, we have analysed the expression of the two ATP synthase 

operons in detail by using different sigma factor knock-out mutants and by paying 

special attention to the question of whether transcription of the atpH gene by SIG3/PEP 

holoenzyme might contribute to the stoichiometry of the CF0 complex. We show that 

both ATP synthase operons are under control of SIG2 and SIG3 and that several 

mechanisms like differential promoter usage, mRNA stability (atpH) and translational 

coupling (atpB/atpE) contribute to expression regulation.  

 

 

RESULTS 

 

Analyses of atp mRNA levels by microarray hybridisation 

ATP mRNA levels were quantified using data obtained with our recently developed 

plastid microarray. Figure 1a, left hand side, shows the hybridisation signals of all 

plastid genes coding ATP synthase subunits. Signal quantification and standard 

deviations obtained from three independent experiments are diagrammed on the right 

hand side. If the atpI RNA level is set to 1 the stoichiometry of the different mRNAs is 

1(atpI):16(atpH):0,5(atpF):0,6(atpA):0,4(atpB):0,6(atpE), i. e. the level of atpH mRNA 

corresponds well to the high number of ATPH subunits in the CF0 complex. The 

observed mRNA pattern suggests that atpH gene expression is specifically regulated 

and we wanted to know whether the recently described SIG3 dependent atpH promoter 

plays a significant role in achieving this high atpH mRNA level. Also, atpE mRNA 

seems to be more abundant than atpB mRNA. To better understand these differences in 

mRNA accumulation we have analysed the expression of the large and the small ATP 
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synthase operon genes (schematically presented in Figures 1b and 6a, respectively) in 

arabidopsis WT plants and several sigma factor knock-out mutants by using different 

methods like primer extension, 5’ and 3’end mapping, Northern hybridisation and 

Western immunoblotting.  

 

Analysis of atpI transcripts 

Transcription initiation sites of the arabidopsis atpI gene have been mapped recently 

using either green leaves from normally grown plants or chlorophyll-deficient plantlets 

grown in the presence of spectinomycin (Swiatecka-Hagenbruch et al., 2007). Two 

different transcripts having 5’ends at positions -229 and -225 had been detected in RNA 

preparations from green leaves only, suggesting that both transcripts were made from 

PEP dependent promoters.  

 In order to confirm transcription by PEP and to determine sigma factors that are 

engaged in atpI transcription we performed primer extension analyses using RNAs of 

WT plants grown in the presence of spectinomycin and SIG1, SIG2, SIG3 and SIG4 

mutants (Figure 1c). We could not clearly distinguish two different transcripts, but 

transcripts are not present in spectinomycin treated plantlets (compare lanes 5 and 6) 

confirming that transcription initiation occurs exclusively at PEP promoters. The 

analyses of arabidopsis sig1, sig2, sig3 and sig4 plants show strong diminution of atpI 

transcripts only in sig2 plants (lanes 7-12). This indicates a special importance of sigma 

factor 2 for atpI transcription. 

 

Analysis of atpH transcripts 
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 Our previous analyses revealed two different atpH transcripts, ending at positions -45 

and -413 relative to the ATG translation initiation codon (Zghidi et al., 2007). We had 

further shown that the -413 transcript results from transcription initiation by SIG3/PEP 

holoenzyme. In order to know more on the synthesis of the two different transcripts, we 

have analysed these two RNAs by primer extension during germination and early 

seedling development and we have verified the origin of the -45 transcript by 5’-RACE 

without and after treatment of mRNAs with tobacco acid pyrophosphatase (TAP).  

Results show that the -45 transcript accumulates before the -413 transcript during early 

plant development (Figure 2b, lanes 1-5) and that only the -413 transcript results from 

transcription initiation (Figure 2b, lanes 6-9), i. e. the -45 transcript should result mainly 

from cotranscription of atpH with atpI, cleavage occurring rapidly after transcription. 

This assumption is supported by the fact that the -45 atpH transcript is only slightly 

diminished in sig3 plants compared to WT (Figure 2c, compare lanes 1 and 4).  

The quantitative relation between the -45 and the -413 RNAs is much in favour 

of the -45 transcripts, indicating rather low transcription from the -413 promoter and a 

strong stabilisation of -45 processed RNAs. In sig2 plants both atpH transcripts 

accumulate slightly, pointing to an enhancement of transcription from the -413 SIG3 

specific atpH promoter in order to compensate for the lack of atpI initiated transcripts 

(Figure 2c, compare lanes 3 and 5). Sequencing of the 5’-RACE product of the -413 

transcript shows that the RNA is 5 nucleotides longer than estimated from the primer 

extension results, i. e. the transcription starts with the G nucleotide located at position -

418 upstream of the ATG translation start codon (not shown). From now, we will name 

the -413 transcript as -418 transcript. 
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Analysis of atpF transcripts 

 Next we have analysed the expression of the atpF gene by primer extension using 

primer 2 (Figure 3a). Three different transcripts are revealed (Figure 3b). One ends up 

in the atpH/atpF intergenic region, at position -30 from the atpF translation initiation 

codon. The two longer transcripts are too long to be mapped on a 6% polyacryamide 

sequencing gel. It is very likely that they correspond to atpH/atpF cotranscription, 

starting at positions -418 or -45 of the atpH gene. This assumption is supported by the 

facts that the longest transcript (supposed to be the -418 transcript) is absent in sig3 

(compare lanes 2 and 3 of Figure 3b). In addition, this transcript is a primary transcript 

as shown by 5’-RACE (lanes 6 and 7). The smaller one of the two large transcripts 

(supposed to be the -45 transcript) is only slightly diminished in sig3 (lanes 2 and 3) and 

originates from RNA processing (lanes 6 and 7). Both transcripts disappear after 

spectinomycin treatment, indicating that they are made by the eubacterial-type RNA 

polymerase, PEP (Figure 3b, lanes 4 and 5).  

 Interestingly, the 5’end of the -30 atpF transcript (Figure 3b, lanes 8-12) is 

localised within the stem of a hypothetical hairpin structure. RNA cleavage at position -

30 would liberate an atpH mRNA with a stretch of 10 successive A residues near its 

3’end (Figure 3c). Such oligo(A) tails are believed to create ‘loading pads’ for nucleases 

that will then initiate mRNA degradation. Thus, cleavage of the atpH/atpF cotranscript 

at position -30 might direct the atpH mRNA into the polyadenylation-assisted RNA 

degradation pathway that acts in prokaryotes and organelles (Slomovic et al., 2006). 

The -30 transcript is reduced in the SIG3 mutant (Figure 3b, lanes 2 and 3) indicating 

that a considerable part of the SIG3 initiated transcripts is cleaved at this position. We 

were not able to reveal the -30 atpF transcript by 5’-RACE but we could confirm its 
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existence by primer extension using a second, different, primer (Figure 3a, primer 1 and 

Figure 3b, lanes 8-12).  

Next, we have mapped 3’ends of atpH transcripts by self-ligation of 5’-3’ends 

followed by sequencing of RT-PCR products of the circularised RNAs (Perrin et al., 

2004). Especially, we wanted to know whether -418 and -45 atpH mRNAs have the 

same or different 3’ends. For this reason, two different 5’primers have been used in 

order to distinguish between -45 and -418 atpH circularised transcripts. Figure 4 shows 

the predicted secondary structure of the entire atpH/atpF intergenic nucleotide sequence 

(rnafold; http://bioweb2.pasteur.fr). Besides the -30 stem-loop structure another region 

of dyad symmetry is found immediately downstream of the atpH coding region 

(labelled as T). This structure is followed by a poly(U) tract, thus representing a 

structure reminiscent for transcription termination signals (Chen et al., 1995). We 

expected to find two different 3’ends of atpH mRNAs corresponding to these two 

structures. 

Ten clones have been analysed having 5’ends at position -418 and 8 clones 

having 5’ends at position -45. No clone was obtained showing other 5’ends than at the -

418 and the -45 position. All of the -418 clones had different 3’ends; three of them 

ended at different positions within the reading frame of atpH mRNA and two ended at 

different sites in the reading frame of the atpF mRNA (not shown). This 3’end 

dispersion indicates rapid degradation of -418 SIG3/PEP initiated transcripts. The 

3’ends of the remaining 5 clones are located within the atpH/atpF intergenic region. 

These ends are indicated in Figure 4 by arrows and as (-418). In contrast to the -418 

transcripts, the 3’ends of the -45 transcripts are less randomly distributed. Only one of 

the -45 mRNA 3’ends is found within the reading frame of the atpH mRNA (not 
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shown). Seven transcripts end within the atpH/atpF intergenic region, six of them, i. e. 

75%, end at the same position (Figure 4, *). We could not detect any clone whose 3’end 

corresponds to the -30 atpF cleavage site neither to the supposed atpH terminator.  

 

Analysis of atpA transcripts  

Primer extension analysis of atpA transcripts reveals two different transcripts. One of 

them is much longer than 500 bases and ends within or upstream of the atpF coding 

region. This transcript should result from cotranscription of atpA and atpF (Figure 5a, 

lane 1). The smaller transcript locates near the 3’end of the atpF gene. Both transcripts 

are reduced in the sig3 indicating their origin from the -418 atpH promoter as well as 

from the atpI promoter (Figure 5a, lanes 1 and 2). 5’-RACE of atpA transcripts reveals 

several transcripts, all of them result from processing (Figure 5a, lanes 4 and 5). 

Sequencing of these RACE products show that 11 out of 19 transcripts (i. e. 58 %) end 

up with the first nucleotide of the last codon of the atpF coding region. The 5’ends of 

the other transcripts are scattered over the atpF/atpA intergenic region (not shown).  

To confirm cotranscription of atpH/atpF/atpA and to design processing 

intermediates of the transcripts we performed Northern analysis of WT and sig3 RNAs 

using an atpH specific probe (Figure 5b, lanes 1 and 2). The ~3500 bases RNA 

corresponds in length to atpH/atpF/atpA cotranscripts (schematically demonstrated in 

Figure 5c).  This is confirmed by hybridization with an atpA specific probe (lane 3). The 

atpF intron should already have been removed from the transcripts because 

hybridisation with an intron specific probe does not reveal this ~3500 bases transcript 

(Figure 5b, lane 4). Processing intermediates of the large ATP synthase gene cluster are 

schematically presented in Figure 5c. Results are conceivable by most of the atpH 
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mRNAs ending either at the supposed terminator or at the 3’end that had been 

determined by circular RT-PCR (Figure 4, *). 

 

Analysis of transcripts of the atpB/atpE operon  

Northern analysis of atpB operon transcripts reveals three different RNAs of about 2.6; 

2.0 and 0.7 kb (Schweer et al., 2006; schematically represented in Figure 6a). Primer 

extension analysis of the atpB transcripts shows three different transcripts ending at 

positions -520, -462 and -84 apart from the atpB translation initiation codon (Figure 6b, 

left hand side, lane 5 and right hand side, lane 1). The -318 NEP transcript, that has 

been recently described in green control and spectinomycin-treated chlorophyll-

deficient tissues (Swiatecka-Hagenbruch et al., 2007), is not detectable. To confirm our 

result, we analysed also spectinomycin-treated plant material (Figure 6b, left hand side, 

lanes 7 and 8). All three transcripts (-520, -462 and -84) diminish in spectinomycin-

treated plantlets, showing that they originate from PEP. After long exposure, a faint 

band is visible that could correspond to the -318 RNA (not shown). The differences in 

the abundance of this transcript might be due to the different physiological stages that 

have been analysed in the two experiments (one and three weeks old plants).  

 5’-RACE experiments performed after and without TAP treatment show that the 

two larger transcripts (-520 and -462) result from transcription initiation (Figure 6b, 

right hand side, lanes 7 and 8). The -84 transcript represents a processing product 

(Figure 6b, left hand side, lanes 9 and 10). The -462 transcript has not yet been 

described before. This transcript is diminished in the SIG3 mutant, indicating that SIG3 

plays a role in transcription from the -462 atpB promoter (compare lanes 5 and 6 on the 

left hand side and lanes 1 and 2 on the right hand side). The -84 transcript is also 
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diminished in sig3 plants suggesting that this transcript results to some extent from 

cleavage of the -462 transcript. Taken together, we suggest that the 2.6 kb RNA that is 

observed in the Northern experiment, corresponds to both, the -520 and the -462 

transcripts. These transcripts cannot be distinguished by Northern. The -84 transcript 

should correspond to the 2.0 kb transcript that has been described from Northern 

studies.  

Analysis of the -520 and -462 transcripts using sig1 to sig4 plants shows that the 

-462 transcript is also under strong control of SIG2 (Figure 6c, compare lanes 3 and 5), 

i. e. the -462 promoter is recognized by SIG2/PEP as well as by SIG3/PEP holoenzyme. 

At least one of these two promoters should be also recognized by SIG6/PEP 

holoenzyme because the 2.6 kb RNA diminishes in sig6 plants (Schweer et al., 2006).  

 

Analysis of atpE monocistronic transcripts  

Primer extension analysis of atpE mRNAs reveals one transcript at a position around -

431 relative to the atpE translation start codon (Figure 7a, lane 1). Such a transcript has 

previously been described in tobacco (Kapoor et al., 1994). This transcript is made by 

transcription initiation as shown by 5’-RACE (lanes 7 and 8) and sequencing of the 

RACE product determines the 5’end at position -431, inside the coding region of the 

atpB gene. This monocistronic atpE RNA is absent in spectinomycin treated plant 

material (Figure 7a, lane 2), i. e. this RNA is made by PEP. More precisely, this RNA is 

made by SIG2/PEP holoenzyme as shown by primer extension analysis of sig1 to sig4 

plants (Figure 7b, lanes 1-6). Transcription by SIG2/PEP holoenzyme from this atpB 

internal atpE promoter is also confirmed by Northern analyses as revealed by the 

absence of the 0.7 kb RNA in sig2 plants (Figure 7c). The protein level of ATPE is 
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reduced in sig2 when compared to WT plants (Figure 7d). However, the protein is not 

completely absent. This shows that the atpE mRNA is translated in vivo from the 

atpB/atpE cotranscript, i. e. the overlapping stop/start signals do not prevent translation. 

 

 

 

DISCUSSION  

 

We have analysed the expression of the two plastid encoded ATP synthase operons, 

atpI/atpH/atpF/atpA and atpB/atpE in WT and SIG1, 2, 3 and 4 mutants of Arabidopsis 

thaliana. We have been interested in these studies for two different reasons. First of all, 

microarray analyses of the plastid transcriptome showed a much higher level of atpH 

transcripts when compared with the mRNAs of the other plastid encoded subunits of 

ATP synthase. This suggests specific/differential regulation of atpH gene expression 

when compared to the other ATP synthase genes. Secondly, with the exception of the 

atpI mRNA, all ATP synthase mRNAs were diminished in SIG3 mutants when 

compared to WT plants, suggesting a SIG3 coordinated regulation of the transcription 

of the two ATP synthase operons (Zghidi et al., 2007). 

By transcript quantification, we observe a 16-fold higher atpH mRNA level 

compared to the other mRNAs of the large ATP synthase operon (Figure 1a). The atpH 

gene codes for subunits III and the atpI/atpF genes code for subunits I and IV of the CF0 

complex. Our results show that the observed protein stoichiometry of the CF0 complex, 

defined as 1:1:6-12:1 for subunits I, II, III and IV respectively, is also approximately 

found on the mRNA level in arabidopsis. Results show further that the large ATP 
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synthase operon is transcribed from two different PEP promoters, one is under control 

of SIG2 (atpI-229/-225, Figure 1c). The other promoter (atpH-418) is specifically 

recognized by a PEP/SIG3 holoenzyme (Figure 2b and c). During early seedling 

development, the -45 atpH mRNA accumulates before the -418 atpH transcript (Figure 

2b). Both transcripts (atpI-229 and atpH-418 initiated) are cleaved at position -45 

upstream of the atpH translation start codon (Figures 2c and 3b). In the absence of SIG2 

the -229 atpI transcript disappears (Figure 1c, compare lanes 11 and 9) but the -418 

atpH mRNA and the -45 atpH cleavage product accumulate slightly (Figure 2c, 

compare lanes 3 and 5). This suggests a higher activity of SIG3 in sig2 plants, a result 

that might reflect the raise of SIG3 protein in SIG2 under-expressing plants (Privat et. 

al., 2003). 

The -45 atpH processing intermediate should be more stable than the -418 

primary transcript as suggested from the quantitative difference between these two 

transcripts. Specific stabilisation of atpH mRNA by PPR10 protein has recently been 

described in maize (Pfalz et al., 2009). Interestingly, the stabilizing PPR10 protein was 

shown to bind to the 5’terminus of the atpH mRNA in the region between -46 and -20 

upstream of the translation initiation codon, i. e. it should only protect the -45 atpH 

mRNA, but not the -418 mRNA. Our analyses to determine 5’ and 3’ends of atpH 

mRNA termini (Figures 2 and 4) are in good agreement with such an interpretation. The 

complexity of the mapped -418 atpH mRNA 3’termini suggests that -418 atpH initiated 

transcripts are rapidly degraded from their 3’end. The -45 atpH mRNA 3’ends are less 

dispersed indicating that this RNA is more stable than the -418 initiated RNA. Thus, 

specific stabilisation of -45 processed, monocistronic, atpH mRNA at the 5’ as well as 
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at the 3’ends should be mainly responsible for the high RNA level of the atpH mRNA 

that is observed by microarray analysis. 

 The atpF and atpA genes do not have independent promoters. Both genes are 

cotranscribed with atpI and atpH (Figures 3 and 5). In the case of atpF, long transcripts 

are observed that should correspond to atpH/AtpF cotranscripts starting either at the -

418 SIG3 dependent promoter or at the -45 atpH processing site (Figure 3b). A large 

part of the -30 atpF transcript that been mapped by primer extension should arise from 

cleavage of the -418 initiated atpH/atpF cotranscript. This can be concluded because 

this transcript is diminished in sig3 plants (Figure 3b). Cleavage of double stranded 

RNA, e. g. cleavage in each strand of a hairpin stem, is made by RNase III in E. coli 

(Pertzev and Nicholson, 2006). The arabidopsis genome encodes two RNase III 

homologues with putative transit peptides for chloroplast localization (At3g20420 and 

At4g37510). Such type of enzyme could cleave on both sites of the hairpin structure and 

liberate an atpH mRNA ending with a poly(A) tail. This RNA, in turn, could be 

substrate to immediate 3’ exonuclease degradation, the reason why we could not find 

3’ends corresponding to this site by ligation mediated 3’-5’ cloning and sequencing. 

Our suggestion that the atpH/atpF cotranscripts might be substrates for RNase III 

cleavage is further supported by the fact that the sequence of the double helical structure 

of the -30 atpF hairpin is identic to the proximal box (pb) of R1.1[WC] RNA which has 

been shown to be important for cleavage by RNase III enzymes of different origin 

(Meng et al., 2008). For future experiments, it would be interesting to analyse the 

stability of atpH transcripts in RNase III knock-out plants. On the other hand, a 3’end 

localized within a hairpin structures might be difficult or impossible to ligate providing 

another reason why we could not find the -30 atpF transcript by 5’-RACE.  Lack of 
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ligation might also be the reason why we could not find 3’ends corresponding to the 

predicted termination structure (Figure 4). 

The small ATP synthase operon, consisting of the atpB and atpE genes, is 

transcribed from two atpB PEP promoters in young arabidopsis plantlets, initiating 

transcription at positions -520 and -462 relative to the ATG codon (Figure 6b). Both 

promoters are recognized by SIG2/PEP holoenzyme (Figure 6c). Transcription from the 

-462 promoter is also dependent on SIG3. The -462 promoter has not yet been described 

before. Transcription from these two atpB promoters results probably in a dicistronic 

RNA of about 2.6 kb that is cleaved at position -84 to produce a 2 kb transcript (Figure 

6a and b). Transcription of the atpE gene can be decoupled from transcription of atpB 

by activation of an atpB internal PEP promoter that is recognized by SIG2 (Figure 7a-

c). The part of the SIG3 initiated transcripts in the total amount of atpB/atpE transcripts 

is very low (Figure 6b) and we could not detect changes of ATPE and ATPB proteins in 

sig3 plants by Western immunoblotting (not shown). However, the existence of ATPE 

protein in sig2 plants shows that atpE mRNA is translated from the dicistronic mRNA 

although translation must start upstream of the atpB stop codon within the atpB coding 

region (Figure 7d). A stop codon dependent mechanism of translation of the 

downstream overlapping transcript of a dicistronic mRNA has recently been described 

for ndhC-ndhK using an in vitro translation system (Yukawa and Sugiura, 2008). Our 

result suggests that this mechanism should also exist in vivo. 

Altogether, our results indicate transcriptional as well as post-transcriptional 

regulation of the expression of chloroplast ATP synthase genes, i. e. in contrast to 

Chlamydomonas, regulation can also occur on the transcriptional level in arabidopsis. In 

arabidosis, all genes coding subunits of the ATP synthase could be regulated at the 
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transcriptional level by SIG2 and SIG3. The only exception is the atpI gene that is 

under control of SIG2 only and does not harbour a SIG3 dependent promoter.  

Coordinated transcriptional regulation of all plastid ATP synthase genes is 

probably necessary to keep stoichiometry of the mRNAs. The SIG2 initiated transcripts 

are generally more abundant than SIG3 initiated transcripts. This is not surprising since 

SIG2 is considered as one of the principal sigma factors in chloroplasts. However, this 

does not exclude that under specific conditions modulation of transcript levels by SIG3 

becomes very important. We have not yet found under which conditions SIG3 

dependent transcription will be important. To analyse different development and growth 

conditions to find differences in the importance of SIG3 dependent transcription will be 

a challenge for the future.  

 

 

EXPERIMENTAL PROCEEDURES 

 

Plant growth conditions 

Arabidopsis (Arabidopsis thaliana) seeds of wild-type (ecotypes Wassilewskija and 

Columbia) and sig1 (GK-758B02, Co), sig2 (Kanamaru et al., 2001; Ws), sig3 

(SALK_081321, Co) and sig4 (Favory et al., 2005; Ws) mutants were surface-sterilized 

for in vitro culture. Seeds (0) were spread on MS agar plates, kept for 72 h at 4°C in 

darkness (0+), and then grown for up to 7 days at 23°C under a 16h/8h light/dark cycle 

at 70 µmol of photons m-2 s-1. Where indicated, plates contained spectinomycin (0.5 

mg/ml). Mutant plants were grown until they have reached the same developmental 

stage as wild type. 
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Selection of arabidopsis sig1 plants 

Arabidopsis seeds of the sig1 line (GK-758B02) have been obtained from the GABI-

Kat collection (http://www.gabi-kat.de). Homozygous plants were PCR-selected using 

primers 5’-gctatcactgaggagtggtgc-3’ and 5’-tgcatttcctttgaatgg-3’. The T-DNA insertion 

into the 8th exon of the sig1 gene was confirmed by T-DNA border sequencing with 

primers 5’-tgcatttccttctttgaatgg-3’ and 5’-gatttcccggacatgaagcc-3’. 

 

RNA purification 

Frozen material of plants was ground in a mortar and resuspended in 3 volumes of 

solution A (10 mM Tris-HCl pH 8 ; 100 mM NaCl ; 1 mM EDTA ; 1% SDS). Upon 

two phenol-chloroform and one chloroform extractions, RNAs were precipitated first in 

2M LiCl and then in ethanol. When stages 0 and 0+ were included into the analyses, 

RNAs from all samples were purified according to the protocol described in Suzuki et 

al. (2004). 

 

Primer extension  

Upon denaturation at 65°C, 5-10 µg of total RNAs were annealed with 200 nmols of 5’ 

32P-labeled primer at the primer annealing temperature (ta) and then retro-transcribed in 

presence of 100 U of SuperScript II (Invitrogen) at 42°C according to manufacturer’s 

protocol. RNAs were digested with 10µg of RNase A and cDNAs were 

phenol/chloroform purified and precipitated with ethanol. As loading control a radio-

labeled PCR product was added to the reactions before phenol/chloroform treatment. 

cDNAs were separated in a 6 % acrylamide denaturing gel in parallel to sequencing 

reactions performed with the same primer. The primers used for primer extension are 
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the following: atpI: 5'CATATTGCCCTCTGACAG3’ (ta:49°C), atpH: 

5’GTCCAATAGAAGCAAGC3’ (ta:50°C), atpF1: 

5’GGTATTAAATCCGAAACTCCC3’ (ta:55°C) atpF2: 

5’TCAATACACCGAAAACTACAC3’ (ta:55°C), atpA: 

5’GGTACCGGTATTTACAATCG3’ (ta:53°C), atpB2: 

5’TTTTTCACGTATCGAAACCTCTGG3’ (ta:43°C), atpB1: 

5’ATAGGAATAGGCAAGCC3’(ta: 45°C), atpE: 

5’CTAATTGTTTCCGCTAGACC3’ (ta: 53°C).  

 

5’-RACE 

In order to distinguish between primary and secondary transcripts, the first choice 

RLM-RACE kit was used (Ambion). In short, Turbo DNase (Ambion)-treated RNAs 

were first incubated with TAP (Tobacco acid pyrophosphatase) and then ligated to the 

5’-RACE adapter. 400 ng of RNAs were retro-transcribed using a gene specific primer 

and the Super Script II enzyme. The first PCR was performed in presence of the 5'-

RACE outer primer (as forward primer) and a backward gene specific outer primer. The 

second nested PCR was performed in presence of the 5'-RACE inner primer and a 

backward gene specific inner primer. Control reactions were carried out without TAP 

and without RT. Gene specific primers for reverse transcription are as follows: for the -

45 and –418 atpH transcripts: 5’GTCCAATAGAAGCAAGC3’;  for atpF  transcripts: 

5’TCAATACACCGAAAACTACAC3’; for atpE  transcripts: 

5’GCCTCAATTGTCTGTCTC’; for the –467/–520 atpB transcripts: 

5’GTAAGCACTCGATTTCGTTGGTCC3’; for the –84 atpB transcripts: 

5’GGAAGGCTACATCCAGTACC3’; for the atpA transcripts: 
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5’AGGGCAATACCTATAGTACC3’. Gene specific outer primers for the first PCR are 

the same as used for reverse transcription, except for the atpA transcripts for which the 

following oligo was used: 5’GCCATTACTTCATCAAGACC3’. Gene specific inner 

primers for the second PCR are as follows: for the -45 atpH transcripts: 

5’CAACAGCCAACCCAGCAGC3’; for the -418 atpH transcripts: 

5’CGCTAAGATTAATCCAGCC3’; for the atpF transcripts: 

5’GGTATTAAATCCGAAACTCCC3’; for the atpA transcripts: 

5’GGTACCGGTATTTACAATCG3’; for the atpE transcripts: 

5’TACACCAATTTGTCCAC3’; for the –84 atpB transcripts:  

5’TTTTTCACGTATCGAAACCTCTGG3’; for the –467/-520 atpB transcripts: 

5’AAGCTCAACTAACTGAAACCTAG3’. The 5’-RACE inner and outer primers are 

provided by the kit. 

 

Northern 

10 µg of total RNA were loaded in 1.3% agarose-formaldehyde gel (containing MOPS 

pH 8) and separated in MOPS pH 7 buffer containing 1/10th vol of formaldehyde 

solution. RNAs were then transferred to nylon membranes that were then pre- 

hybridized and hybridized in phosphate buffer, as already described (Zghidi et al., 

2007). After quick rinsing in pre-warmed (65°C) solution 0.2 x SSC, 0.2% SDS, 

membranes were washed in the same buffer for 20 minutes at 65°C. Probes were 

amplified from total DNA using the following primers: atpH- 

5’GAATCCACTGGTTTCTGCTG3’ and 5’GGCTTAAACAAAAGGATTCGC3’; 

atpE - 5’GTGTACTGACTCCGAATC3’ and 5’GCCTCAATTGTCTGTCTC3’, atpF 

intron - 5’CAAGAATAGGCTGGATTCA3’ and 5’CATTTGGCTCTCATGCTC3’; 
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atpA - 5’GTAACCATTAGAGCCGACG3’ and 5’GAGCTTAATTTAGCGGCTC3’. 

Probes were radio-labeled using the random priming kit (New England Biolabs). 

 

Plastid microarray  

Description of the A. thaliana plastid-specific DNA microarray (patent FR06.07168), 

labeling of plastid RNAs by retro-transcription and array analysis have been detailed in 

Zghidi et al. (2007).  

 

Protein purification and Western blot analysis 

200 mg of plant material were frozen-grounded and resuspended in 200 µl of protein 

loading dye. After boiling for 10 min, protein extracts were cleared by full speed-

centrifugation in a micro-centrifuge. Equal amounts of protein extracts were separated 

by SDS-PAGE and transferred to nitrocellulose membranes. For immunodetection 

antibodies were diluted 1:1000 and revealed by the ECL detection kit (GE Healthcare). 

 

Circular RT-PCR 

In order to map the extremities of the atpH transcripts, the first choice RLM-RACE kit 

(Ambion) was used. Total RNAs were first incubated with TAP and then self-ligated. 

400 ng of RNAs were retro-transcribed using 5’GTCCAATAGAAGCAAGC3’ as gene 

specific primer and the Super Script II enzyme. In order to determine the ends of either 

the –45 or the –418 transcripts, PCR was performed in presence of a -418 specific 

primer (5’TGATAGTAGTTCCTATCCGC3’) or a -45 specific primer 

(5’CAACAGCCAACCCAGCAGC3’) with the atpH oligonucleotide 
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(5’TCAAGGTACAGCTGCGGG3’) as the second primer. -TAP and -RT reaction were 

carried out as controls. 

 

  

ACKNOWLEDGEMENTS 

 

We are grateful to K. Tanaka for providing arabidopsis sig2 seeds and to Alice Barkan 

for providing antibodies against subunits of the ATP synthase complex.  

 

 

 

REFERENCES 

 

Barkan, A. and Goldschmidt-Clermont, M. (2000) Participation of nuclear genes in 

chloroplast gene expression. Biochimie, 82, 559-572. 

Bohne, A.V., Irihimovitch, V., Weihe, A. and Stern, D. (2006) Chlamydomonas 

reinhardtii encodes a single sima70-like factor which likely functions in 

chloroplast transcription. Curr. Genet. 49, 333-340. 

Böttcher, B. and Gräber, P. (2000) The structure of the H+-ATP synthase from 

chloroplasts and its subcomplexes as revealed by electron microscopy. Biochim. 

Biophys. Acta, 1458, 404-416. 

Chen, L.J., Liang, Y.J., Jeng, S.T., Orozco, E.M., Gumport, R.I., Lin, C.H. and 

Yang, M.T. (1995) Transcription termination at the E. coli thra terminator by 

Page 23 of 39

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

  24 

spinach chloroplast RNA polymerase in vitro is influenced by downstream NA 

sequences. Nucleic Acids Res. 23, 4690-4697. 

Choquet, Y. and Vallon, O. (2000) Synthesis, assembly and degradation of thylakoid 

membrane proteins. Biochimie, 82, 615-634. 

Drapier, D. Rimbault, B. Vallon, O. and Wollmann, F.A. (2007) Intertwined 

translational regulations set uneven stoichiometry of chloroplast ATP synthase 

subunits. EMBO J. 26, 3581-3591. 

Favory, J.J., Kobayshi, M., Tanaka, K., Peltier, G., Kreis, M., Valay, J.G. and 

Lerbs-Mache, S. (2005) Specific function of a plastid sigma factor for ndhF gene 

transcription. Nucleic Acids Res. 33, 5991-5999. 

Gatenby, A.A., Rothstein, S.J. and Nomura, M. (1989) Translational coupling of the 

maize chloroplast atpB and atpE genes. Proc. Natl. Acad. Sci. USA, 86, 4066-

4070.  

Hajdukiewicz, P.T.J., Allison, L.A. and Maliga, P. (1997) The two RNA polymerases 

encoded by the nuclear and the plastid compartments transcribe distinct groups of 

genes in tobacco plastids. EMBO J. 16, 4041-14048. 

Henning, J. and Herrmann, R.G. (1986) Chloroplast ATP synthase of spinach 

contains nine nonidentical subunit species, six of which are encoded by plastid 

chromosomes in two operons in a phylogenetically conserved arrangement. Mol. 

Gen. Genet. 203, 117-128. 

Hotchkiss, T. and Hollingsworth, M.J. (1997) RNA processing alters open reading 

frame stoichiometry from the large ATP synthase gene cluster of spinach 

chloroplasts. Plant Mol. Biol. 33, 635-640. 

Page 24 of 39

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

  25 

Kanamaru, K., Nagashima, A., Fujiwara, M., Shimada, H., Shirano, Y., 

Nakabayashi, K., Shibata, D., Tanaka, K. and Takahashi, H. (2001) An 

Arabidopsis Sigma Factor (SIG2)-Dependent Expression of Plastid-Encoded 

tRNAs in Chloroplasts. Plant Cell Physiol. 42, 1034-1043. 

Kapoor, S., Wakasugi, T., Deno, H. and Sugiura, M. (1994) An atpE-specific 

promoter within the coding region of the atpB gene in tobacco chloroplast DNA. 

Curr. Genet. 26, 263-268. 

Liere, K. and Börner, T. (2006) Transcription of plastid genes. In Regulation of 

Transcription in Plants (Grasser, K.Q., ed). Oxford: Blackwell Publishing Ltd., 

pp. 184-224. 

Meng, W., Nicholson, R.H., Nathania, L., Pertzev, A.V. and Nicholson, A.W. (2008) 

New approaches to understanding double-stranded RNA processing by 

Ribonuclease III: Purification and assays of homodimeric and heterodimeric 

forms of RNase III from bacterial extremophiles and mesophiles. Methods 

Enzymol. 447, 119-129. 

Miyagi, T., Kapoor, S., Sugita, M. and Sugiura, M. (1998) Transcript analysis of the 

tobacco plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus 

type II (NCII) promoter upstream of the atpI coding sequence. Mol. Gen. Genet. 

257, 299-307. 

Orozco, E.M., Chen, L.J. and Eilers, R.J. (1990) The divergently transcribed rbcL 

and atpB genes of tobacco plastid DNA are separated by nineteen base pairs. Curr 

Genet. 17, 65-71. 

Perrin, R., Meyer, E.H., Zaepfel, M., Kim, Y.J., Mache, R., Grienenberger, J.M., 

Gualberto, J.M. and Gagliardi, D. (2004) Two exoribonucleases act 

Page 25 of 39

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

  26 

sequentially to process mature 3’-ends of atp9 mRNAs in Arabidopsis 

mitochondria. J. Biol. Chem. 279, 25440-25446. 

Pertzev, A.V. and Nicholson, A.W. (2006) Characterization of RNA sequences 

determinants and antideterminants of processing reactivity for a minimal substrate 

of Escherichia coli ribonuclease III. Nucleic Acids Res. 34, 3708-3721. 

Pfalz, J., Bayraktar, O.A., Prikryl, J. and Barkan, A. (2009) Site-specific binding of 

a PPR protein defines and stabilizes 5’ and 3’ mRNA termini in chloroplasts. 

EMBO J. 22, 2042-2052. 

Privat, I., Hakimi, M.-A., Buhot, L., Favory, J.-J. and Lerbs-Mache, S. (2003) 

Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, 

SIG2 and SIG3. Plant Mol. Biol. 55, 385-399. 

Schweer, J., Loschelder, H. and Link, G. (2006) A promoter switch that can rescue a 

plant sigma factor mutant. FEBS Lett. 580, 6617-6622. 

Shiina, T., Tsunoyama, Y., Nakahira, Y., Khan and M.S. (2005) Plastid RNA 

Polymerases, Promoters, and Transcription Regulators in Higher Plants. Int. Rev. 

Cytol. 244, 1-68.  

Shinozaki, K., Deno, H., Kato, A. and Sugiura, M. (1983) Overlap and 

cotranscription of the genes for the beta and epsilon subunits of tobacco 

chloroplast ATPase. Gene, 24, 147-155. 

Silhavy, D. and Maliga, P. (1998) Mapping of the promoters for the nucleus-encoded 

plastid RNA polymerase (NEP) in the iojap maize mutant. Current Genetics, 33, 

340-344. 

Page 26 of 39

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

  27 

Slomovic, S., Portnoy, V., Liveanu, V. and Schuster, G. (2006) RNA polyadenylation 

in prokaryotes and organelles; different tails tell different tales. Crit. Rev. Plant 

Sci. 25, 65-77. 

Stahl, D.J., Rodermel, S.R., Bogarad, L. and Subramanian, A.R. (1993) Co-

transcription pattern of an introgressed operon in the maize chloroplast genome 

comprising four ATP synthase subunit genes and the ribosomal rps2. Plant Mol. 

Biol. 21, 1069-1076. 

Stollar, N.E. and Hollingsworth, M.J. (1994a) Expression of the large ATP synthase 

gene cluster from spinach chloroplasts. J. Plant Physiol, 144, 141-149. 

Stollar, N.E., Kim, J.K. and Hollingsworth, M.J. (1994b) Ribosomes pause during 

the expression of the large ATP synthase gene cluster in spinach chloroplasts. 

Plant Physiol. 105, 1167-1177.  

Suzuki, Y., Kawazu, T. and Koyama, H. (2004) RNA isolation from siliques, dry 

seeds, and other tissues of Arabidopsis thaliana. Biotechniques, 37, 542-544.  

Swiatecka-Hagenbruch, M., Liere, K. and Börner, T. (2007) High diversity of 

plastid promoters in Arabidopsis thaliana. Mol. Genet. Genomics, 277, 725-734. 

Tsunoyama, Y., Ishizaki, Y., Morikawa, K., Kobori, M., Nakahira, Y., Takeba, G., 

Toyoshima, Y. and Shiina, T. (2004) Blue light-induced transcription of plastid-

encoded psbD gene is mediated by a nuclear-encoded transcription initiation 

factor, AtSig5. Proc Natl Acad Sci USA, 101, 3304-3309. 

Yukawa, M. and Sugiura, M. (2008) Termination codon-dependent translation of 

partially overlapping ndhC-ndhK transcripts in chloroplasts. Proc. Natl. Acad. Sci. 

USA, 105, 19550-19554. 

Page 27 of 39

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

  28 

Zghidi, W., Merendino, L., Cottet, A., Mache, R. and Lerbs-Mache, S. (2007) 

Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene 

in plastids. Nucleic Acids Res.  35, 455-464. 

Zurawski, G., Bottomley, W. and Whitfeld, P.R. (1982) Structures of the genes for 

the b and e subunits of spinach chloroplast ATPase indicate a dicistronic mRNA 

and an overlapping translation stop/start signal. Proc. Natl. Acad. Sci. USA, 79, 

6260-6264. 

 

  

   

FIGURE LEGENDS 

 

Figure 1. Microarray analysis of plastid ATP synthase mRNAs and characterisation of 

atpI transcripts.  

(a) Relative transcript levels of all plastid encoded ATP synthase genes are visualized 

by microarray analysis of RNAs extracted from seven days old plantlets (left hand side). 

Quantification of the surrounded spots is presented in a diagram on the right hand side. 

Values correspond to three independent experiments. (b) Schematic presentation of the 

large ATP synthase operon.  Localisation of the principal atpI promoter (-229/-225). 

 Localisation of the primer extension oligonucleotide. (c) AtpI transcripts have been 

analysed by primer extension using total RNA extracted from wild type (lanes 5-7, lane 

11) or SIG1 (lane 8), SIG2 (lane 9), SIG3 (lane 10) and SIG4 (lane 12) knock-out plants 

6 days after stratification. Lanes 5 and 6 correspond to primer extension analyses of 

RNAs extracted from 6 days old plantlets that have been grown either in the presence 
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(lane 6) or in the absence (lane 5) of spectinomycin. The accompanying sequence ladder 

(lanes 1-4) was established by using the same primer oligonucleotide as for primer 

extension. 

 

Figure 2. Characterization of atpH transcripts.  

(a) Schematic presentation of atpH transcripts and primer localisation.  Localisation 

of the operon internal SIG3 dependent atpH promoter.  Localisation of the -45 

processing site.  Localisation of the primer extension oligonucleotide. (b) AtpH 

transcripts have been analysed by primer extension using total RNAs extracted from dry 

seeds (lane 1), seeds after imbibition (lane 2) and plantlets 2, 4 and 7 days after 

germination (lanes 3-5). The 5’ends of the -418 and -45 transcripts have been 

characterized by 5’-Race with (lanes 6 and 8) and without (lanes 7 and 9) prior TAP 

treatment. (c) The -418 and -45 atpH transcripts have been analysed by primer 

extension using RNAs from WT (lanes 1 and 5) and SIG1 (lane 2), SIG2 (lane 3), SIG3 

(lane 4) and SIG4 (lane 6) knock-out plants 6 days after germination. Load corresponds 

to a radiolabelled PCR product that was added to the primer extension reaction as 

loading control before phenol/chloroform treatment.  

 

Figure 3. Characterization of atpF transcripts.  

(a) Schematic presentation of the atpF transcripts and primer localisation.  

Localisation of the -30 processing site.  Localisation of the primer extension 

oligonucleotides. (b) AtpF transcripts have been analysed by primer extension using 

primer 2 and RNAs extracted from 6 days old WT (lanes 2, 4 and 5) and ∆SIG3 (lane 3) 

plants grown without (lanes 2 - 4) or in the presence of spectinomycin (lane 5). The 
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5’ends of the two long transcripts have been characterised by 5’-Race with (lane 6) and 

without (lane 7) prior TAP treatment. The insert at the right hand side shows the exact 

localisation of the 5’ end of the short transcript by re-analysis of primer extension 

products using primer 1 (lane 8) together with the corresponding sequence ladder (lanes 

9-12). The sequence was established with the same primer that was used for primer 

extension. (c) Secondary structure of the sequence surrounding the -30 atpF processing 

site.  

 

Figure 4. Secondary structure of the atpH/atpF intergenic region. 

AtpH 3’ ends that have been determined by retrotranscription, PCR amplification, 

cloning and sequencing of circularized RNAs (circular RT-PCR) starting either at 

position -418 or at position -45 relative to the atpH translation initiation codon, are 

marked by arrows. The number of (-418) and (-45) clones that have been found are 

indicated below the arrows. (*) corresponds to the most frequently found 3’end, T 

corresponds to a hypothetical terminator and -30 indicates the position of the 5’end of 

atpF RNA as determined by primer extension.  

 

Figure 5. Characterization of atpA transcripts and processing intermediates.  

(a) AtpA transcripts have been analysed by primer extension using RNAs from 6 days 

old WT (lane 1) and sig3 (lane 2) plantlets. The asterisk shows a 450 bases PCR product 

that was added to the reactions before phenol/chloroform treatment and served as 

loading control. Lane 3 corresponds to molecular weight standards. Transcripts have 

been further characterized by 5’-Race with (lane 4) and without (lane 5) prior TAP 

treatment. (b) RNAs of WT (lanes 1, 3 and 4) and sig3 plants (lane 2) have been 
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analysed by Northern hybridisation using probes corresponding to the atpH gene (lanes 

1 and 2), to the atpA gene (lane 3) and to the atpF intron (lane 4). The different 

transcripts are labelled by arrows and letters corresponding to schema (c). (c) Schematic 

presentation of the transcripts. Probes that have been used in Northern experiments are 

marked as double lines. The putative atpH terminator is shown as stem-loop structure. 

 Localisation of the atpA primer extension oligonucleotide,  Localisation of 

processing sites at positions -45 atpH, -30 atpF and atpH 3’end (*) as determined by 

circular RT-PCR (Figure 4, *). 

 

Figure 6. Characterisation of atpB transcripts.  

(a) Schematic presentation of the small ATP synthase operon.  Transcription start 

sites.  Processing sites.  Primer extension oligonucleotides. = Northern hybridisation 

probes.  Transcripts. (b) Total RNA extracted from 6 days old WT (lanes 5, 7 and 8, 

left hand side and lane 1, right hand side) and ∆SIG3 plantlets (lane 6, left hand side and 

lane 2, right hand side) have been analysed by primer extension using either primer 2 

(lanes 5 and 6, left hand side) or primer 1 (lanes 1 and 2, right hand side) for cDNA 

synthesis. Lanes 7 and 8 on the left part correspond to primer extension analysis (primer 

2) of RNA extracted from 6 days old plantlets grown either without (lane 7) or in the 

presence of spectinomycin (lane 8). The accompanying sequence ladders are made with 

the same primers as used for primer extension. The -84 (lanes 5 and 6, left hand side) 

and the -462/-520 transcripts (lanes 1 and 2, right hand side) have been further 

characterized by 5’-RACE without (lane 10 left hand side and lane 8 right hand side) or 

with prior TAP treatment (lane 9 left hand side and lane 7 right hand side). (c) RNAs 

from 6 days old WT plants (lanes 1 and 5) and from sig1 (lane 2), sig2 (lane 3), sig3 
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(lane 4) and sig4 (lane 6) plants have been analysed by primer extension. Load 

corresponds to a radiolabelled PCR product that was added to the reactions before 

phenol/chloroform treatment and served as loading control.  

 

Figure 7. Characteristion of the atpE transcripts.  

(a) Total RNAs extracted from WT plantlets grown without (lane 1) or in the presence 

of spectinomycin (lane 2) have been analysed by primer extension using the atpE 

primer indicated in Figure 6a. The -431 transcript has been further characterized by 5’-

RACE without (lane 7) or after (lane 8) TAP treatment. The sequence ladder (lanes 3-6) 

was established with the same primer as used for primer extension. (b) Total RNAs 

extracted from 6 days old WT (lanes 1 and 5), sig1 (lane 2), sig2 (lane 3), sig3 (lane 4) 

and sig4 (lane 6) plants have been analysed by primer extension. Load corresponds to a 

PCR loading control. (c) RNAs from WT (lane 1), sig3 (lane 2) and sig2 (lane3) plants 

have been analysed by Northern blotting using atpE as probe (see Figure 6A). (d) 1,5; 2; 

2,5 and 3 µg of protein from WT (lanes 1-4) and sig2 plantlets (lanes 5-8) have been 

analysed using antibodies made against ATPE. Antibodies that had been raised against 

the chloroplast ribosomal protein L4 (RPL4) have been used as loading control.  
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 7 
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Abstract : 
 

 Les chloroplastes, responsables de la photosynthèse chez les organismes autotrophes, 

possèdent un génome plastidial codant de 100 à 130 gènes dont environ 80 pour des protéines 

principalement impliquées dans la photosynthèse, la transcription et la traduction. 

L'expression de ces gènes, coordonnée entre le plaste et le noyau, implique deux types d'ARN 

polymérases, la NEP (Nucleus Encoded RNA Polymerase) et la  PEP (plastid Encoded RNA 

Polymerase) laquelle s’associe à l’un des 6 facteurs sigma (SIG), codés dans le noyau pour la 

reconnaissance spécifique de promoteurs de transcription.  

 Nous avons tout d’abord analysé le rôle de ces facteurs sigma dans la régulation 

transcriptionnelle des deux opérons codant des sous-unités de l’ATP synthase, atpI/H/F/A et 

atpB/E, en précisant le rôle particulier de SIG3 dans la reconnaissance spécifique du 

promoteur (-418) de l’atpH. Nous avons identifié les promoteurs des transcrits 

polycistronique et ceux situés en amont des gènes atpH et atpE, et avons montré (1) que les 

gènes des deux opérons sont co-régulés par SIG3 et SIG2 sauf atpI régulé par SIG2 seul et 

(2), que SIG3 jouerait un rôle essentiel dans la surexpression monocistronique d’atpH par la 

reconnaissance d’un promoteur (-418) en amont de atpH. L’analyse systématique des 

transcrits plastidiaux accumulés en fonction de l’éclairement des plantes nous a permis de 

corréler cette surexpression à un éclairement élevé (1300 µE) de plantes matures. 

 SIG3 reconnaît aussi spécifiquement le promoteur de psbN, gène localisé sur le brin 

opposé de l’opéron psbB/T/H/petB/petD, produisant un ARN anti-sens de psbT et de la région 

intergénique psbT/psbH. Nos résultats montrent que l’anti-sens de psbT couvre la région 

codante, le 5'UTR et la quasi-totalité 3' UTR  du transcrit sens psbT, pouvant ainsi réguler la 

production de PSBT en interférant dans la traduction par la formation d’un duplex ARN. 

L’anti-sens pourrait aussi intervenir dans le processing dans la région 5’ UTR de psbH.   

  

Chloroplasts, responsible for photosynthesis in autotrophic organisms, have a genome 

containing 100-130 genes, 80 of which code for proteins mainly involved in photosynthesis, 

transcription and translation. Gene expression, involves two types of RNA polymerases, NEP 

(Nucleus Encoded RNA Polymerase) and PEP (Plastid Encoded RNA Polymerase). Six 

nucleus encoded sigma factors participate to PEP promoter specificity.  

We first have analyzed the role of sigma factors in the transcriptional regulation of the 

two atp operons, atpI/H/F/A and atpB/E, with special emphasis on the specific contribution of 

SIG3 to atpH gene expression. We identified the promoters responsible for polycistronic 

transcripts and the internal promoters upstream of the atpH and the atpE genes. All genes of 

both atp operons are SIG3 and SIG2 dependent except atpI that is regulated by SIG2 only. 

The monocistronic -418 initiated atpH mRNA might contribute to the higher stoichiometry of 

atpH. A systematic analysis of plastid gene expression under different light conditions 

showed that SIG3 plays an important role in the transcript accumulation of atpH in high light 

(1300 µE) in mature plants.  

Similarly, SIG3 also recognizes specifically the promoter of psbN located between 

psbT and psbH but on the opposite DNA strand and producing an anti-sense RNA to psbT. 

We showed that the anti-sense RNA covers the coding region, the 5’ UTR and almost the 
entire 3’ UTR of the psbT sense transcript and thus might regulate the expression of the psbT 

gene by interfering in the translation of psbT mRNA via duplex formation. It could also be 

necessary for a processing event in the 5’ UTR of psbH. 
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