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ABSTRACT

Most of Eastern Africa has arid and semi-arid climate with high space-time variability in
rainfall. The droughts are very common in this region, and often persist for several years,
preceded or followed by extreme floods. Most of the livelihoods and socio-economic
activities however remain rain-dependent leading to severe negative impacts during the
periods of occurrence of climate extremes. It has been noted that one extreme event was
capable of reversing national economic growth made over a period of several years. Thus no
sustainable development can be attained in eastern Africa without effective mainstreaming of

climate information in the development policies, plans and programmes.

Many past studies in the region have focused on rainfall variability at seasonal, annual and
decadal scales. Very little work has been done at intraseasonal timescale that is paramount to
most agricultural applications. This study aims at filling this research gap, by investigating
the structure of rainfall season in terms of the distribution of wet and dry spells and how this
distribution varies in space and time at interannual time scale over Equatorial Eastern Africa.
Prediction models for use in the early warning systems aimed at climate risk reduction were
finally developed. The specific objectives of the study include to; delineate and diagnose
some aspects of the distribution of the wet and dry spells at interannual timescale; investigate
the linkages between the aspects of the distribution of wet and dry spells identified and
dominant large scale climate fields that drive the global climate; and assess the predictability
of the various aspects of wet and dry spells for the improvement of the use in the early

warning systems of the region.

Several datasets spanning a period of 40 years (1961 — 2000) were used. The data included
gauged daily rainfall amount for the three Eastern Africa countries namely Kenya, Uganda,
and Tanzania; Hadley Centre Sea Surface Temperature (SST); re-analysis data and
radiosonde observations from Nairobi (Kenya) and Bangui (Central Africa Republic) upper
air stations. The indices of El Nifio-Southern Oscillation (ENSQO), Indian Ocean Dipole and

SST gradients which constituted the predefined predictors were also used.

Missing data gaps were initially filled and the quality of rainfall data assessed. Less than
seven percent of the data were estimated in all cases. The study region was then classified
into few near-homogeneous spatial and temporal rainfall regimes using empirical orthogonal

function approach. Several intraseasonal statistics of the wet / dry spells were computed at
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both local (station) and sub-regional (near-homogeneous zone) levels to provide baseline
information on the various aspects of rainfall distribution during March-May (long rains) and
October-December (short rains) rainfall seasons. The interannual variation in the above
intraseasonal statistics at local and sub-regional levels was also assessed for any significant
trend using the non-parametric Spearman rank correlation test. The linkages between the
various intraseasonal statistics of the wet / dry spells including seasonal rainfall totals and
large scale climate fields were assessed using the total and partial Pearson correlation
analysis. Last but not least, the stepwise regression technique was used to develop
multivariate linear regression models for predicting the various intraseasonal statistics of wet
/ dry spells. The skill of these models was finally assessed using various statistical

techniques.

The results obtained indicated that the gap-filled and quality controlled daily rainfall
observations were of good quality and formed the foundation of all the analyses that were
undertaken in this study. For the first time, this study delineated daily rainfall over Equatorial
Eastern Africa into six near-homogeneous sub-regions for both the long and the short rainfall
seasons. They are however significant spatial differences in the patterns of daily rainfall
occurrences for the individual seasons which may be attributed to different climate

mechanisms and systems which are in play during the specific rainfall seasons.

At interannual scale, positive (negative) relationship existed between the intraseasonal
statistics of wet (dry) spells and the seasonal rainfall totals over most locations and sub-
regions. The relationship with the intraseasonal statistics of the wet spells was mainly
significant (at 95% confidence level) while those of the dry spells were generally not
statistically significant. The mean frequency of dry spells of 5 days or more (the number of
wet days within the season) had the least (strongest) association with the seasonal rainfall
totals. The relationships were stronger during the short rainfall season compared to the long

rainfall season.

For the first time, the study showed significant trends in all the intraseasonal statistics of the
wet / dry spells though at few isolated locations. However, significant increasing trend in the
occurrence of dry spells of 5 days or more showed organised patterns for the two seasons.
Climate change is becoming a major development concern not only over the region but the
world over. Further studies are therefore required to examine whether the trends observed in

the daily rainfall spells in this study reflects any regional climate change signals.
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Results from total and partial Pearson correlation analysis identified several large scale
oceanic and atmospheric signals with robust physical/dynamical linkages with the sub-
regional intraseasonal statistics of wet / dry spells (SRISS). The results further showed that
the linkages between sub-regional intraseasonal statistics of wet spells and large scale signals
were mainly from atmospheric fields of zonal and meridional components of wind and the
specific humidity during the long rainfall season. For the short rainfall season, stronger
linkages with oceanic variables especially SST were noted. The atmosphere has less climatic
memory when compared with the oceans. Past studies have indicated stronger predictability
potentials for the short rainfall season. By identifying stronger linkages between intraseasonal
characteristics of wet spells for long (short) rainfall season and the atmospheric (oceanic)
variables, the study has for the first time provided some insights to the prediction challenges
for the specific seasons. Thus future predictability efforts for the long rainfall season should

ensure the inclusion of atmospheric variables in the prediction models.

The study has produced cross-validated multivariate linear regression (MLR) models for
predicting some intraseasonal characteristics of wet spells that can be used to support the
current generation of models being used by the IGAD Climate Prediction and Applications

Centre and National Meteorological and Hydrological Services.

The results from this study have for the first time provided an in-depth knowledge on the
intraseasonal modes of rainfall variability and improvement in the forecasting and early
warning tools for the wet spells over the Equatorial Eastern Africa region. Better
understanding and accurate prediction of rainfall totals and intraseasonal statistics of wet /
dry spells is of paramount importance in the planning, development and management of all
rainfall-sensitive socio-economic sectors of the economy such as agricultural and water
resources; and further contribute to national efforts towards achievements of the Millennium

Development Goals.
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CHAPTER ONE
INTRODUCTION

1.1 Background

The economies of East African countries largely depend on rain-fed agriculture. Over Kenya
for example, the agricultural sector forms the main socio-economic activity accounting for up
to 30% of the country's gross domestic product, 60% of the export earnings and the largest
source of employment (ICPAC, 2006). Variation in the yields of many crops to a large extent
is dependent on rainfall amounts and their distribution in space and time. Rainfall is therefore
the most important weather factor in the region. There are however large variability of
rainfall in the region in both spatio-temporal distribution and magnitudes. This has been
witnessed by the recent droughts (1999 - 2001 and 2005 — 2006) that affected many parts of
the Horn of Africa. Localized floods were however recorded at the onset of rains in some
locations. The spatio-temporal variability of rainfall over Eastern Africa at different time
scales are due to complex topographical features and existence of large water bodies
(Kongoti, 1989; Ogallo, 1989; 1993; Mukabana and Pielke, 1996; Indeje et al., 2001; Oettli
and Camberlin, 2005; Nyakwada, 2009).

The cummulation of the specific spatio-temporal variability of rainfall in both magnitudes
and distribution is often having devastating socio-economic impacts. Impacts associated with
climate extremes include floods and droughts resulting in loss of life and property, food
insecurity, water scarcity, power and communication interruptions, poor infrastructure and
other socio-economic disruptions. Detailed spatio-temporal information of rainfall on
different temporal scales is therefore essential for effectively managing of all rainfall

dependent socio-economic systems and for disaster risk reduction.

Many studies in the past have focused on understanding the rainfall variability at monthly,
seasonal, and interannual time scales. These studies have included predictability studies using

linkages between rainfall and large scale phenomena such as El Nifio-Southern Oscillation.

Recent studies over the region that have concentrated on the understanding of atmospheric
processes and prediction of rainfall at different timescales, especially at seasonal timescale
based on SST and SST-derived variables include Mutai, 2000; Mutemi, 2003; Owiti, 2005;
Owiti et al., 2008; Nyakwada, 2009. Upper tropospheric temperature and geopotential



variables have also been used (Njau, 2006). These studies showed that over the Eastern
Africa region, the short rainfall season (October to December) has higher predictability as
compared to the long rainfall season (March to May). The long rainfall season has been
associated with complex interactions between many regional and large scale mechanisms
which generally induce large heterogeneities in the spatial rainfall distribution (Ogallo, 1982;
Semazzi et al., 1996; Okoola, 1998; Indeje et al., 2000) and virtually negligible correlation
with ENSO (Ogallo, 1988).

The higher predictability of rainfall during the October to December season is attributed to
the strong linkage with the regional and global teleconnections (Mutemi, 2003; Black et al.,
2003; Black, 2005; Owiti, 2005; Owiti et al., 2008). However, studies to improve the
understanding on the nature and characteristics of rainfall on intraseasonal timescales,
particularly daily timescale are still lacking. Notwithstanding, a number of studies have
investigated intraseasonal convective variability and pentad mean rainfall characteristics

(Okoola, 1998; Mutai and Ward, 2000; Camberlin and Okoola, 2003).

The occurrence of wet and dry spells within the rainfall season determines the water
availability for the rain-fed agriculture. Very limited efforts have been made in the region to
understand their characteristics well and predict the interannual variability of the
intraseasonal characteristics of the wet and dry spells in the region. There are many previous
studies on the interannual rainfall variability at monthly, seasonal and annual timescales and
few studies on the intraseasonal variability. However the linkage between the interannual
rainfall variability and the intraseasonal wet and dry spells is still missing. This will be the
focus of this research as outline in the objective of the study in section 1.3. Detailed

justification for this study is provided later in this chapter.

1.2 Statement of the problem

East Africa is characterized by limited natural resources especially water, minerals and
agricultural land. High population growth rate, poor agricultural practices, deforestation,
abject poverty and high levels of unemployment are but some of the socio-economic

challenges that face the region.

The high population growth rate has led to people migrating into the arid and semi-arid land
(ASAL) areas thereby affecting the ecosystems of the region and rendering them more

vulnerable to hazards such as drought (Bryan and Southerland, 1989). The high population
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growth rate has also led to the encroachment of marginally productive land such as swamps
and game reserves resulting into outbreak of water borne diseases and human-wildlife

conflicts.

The enormous socio-economic challenges have overstretched the limited natural resources
leading to decline in environmental standards, land degradation, loss of biodiversity and
increased vulnerability to man-made and natural hazards most of which are weather/climate

related.

As a result of the limited natural resources, majority of the population have tended to rely on
rain-fed agriculture. Most of the past rainfall studies have concentrated largely on monthly,
seasonal and interannual time scales. However, the occurrence of wet and dry spells
determines the monthly, seasonal and annual rainfall amounts received. It is imperative to
understand the atmospheric processes and systems that influence rainfall at intraseasonal
timescales within East Africa. Increased knowledge of rainfall processes will enable the
development and improvement of forecast systems and hence accurate prediction of
intraseasonal statistics of wet and dry spells. Documentation and timely dissemination of
these predictions will help build resilience of the community to extreme events related to dry

and wet spells thus reducing the vulnerability.

This study aims at addressing the interannual variability of the temporal distribution of the
rainfall as supplied by the wet and dry spells over eastern Africa as outlined in the objectives

of the study discussed next.

1.3 Objective of the study

The overall objective of the study is to investigate the structure of the rainfall seasons in
terms of the distribution of the wet and dry spells and how this distribution varies in space
and time at interannual time scale over Equatorial Eastern Africa region during the wet

seasons. The specific objectives of the study are therefore, to:

a) Delineate and diagnose some aspects of the distribution of the wet and dry spells at

interannual timescale;

b) Investigate the linkages between the aspects of the distribution of wet and dry spells
under (a) and dominant large scale climate fields that drive the global climate during

March-April-May and October-November-December rainfall seasons.
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c) Assess the predictability of the aspects of wet and dry spells under (a) based on results

from (b) for the improvement of the use in the early warning systems of the region.

1.4 Justification of the study

Most studies have addressed rainfall variability at seasonal, annual and decadal scales, but
little work has been done at intraseasonal timescale. Although the total seasonal anomalies of
rainfall and related variables indicate wet or dry seasons, there is often a demand from users
(for example from the agricultural sector) for information about variability on intraseasonal
timescales such as the active and break phases within the season (Jadadheesha et al., 2003). It
is well known that a season with above average rainfall may not be better than a below
average season over an agricultural region if the rainfall are not well distributed in space and
time (Usman and Reason, 2004). Crops are likely to do well with evenly distributed ‘light’
rains than a few isolated ‘heavy’ rainfall interrupted by prolonged dry periods. For crop
cultivation, the consistency with which minimally required rainfall is received is more

important than the total rainfall received.

The rainfall time series during the wet seasons is marked by periods of wetness and dryness,
which are often called the wet (rainy) spells and dry spells respectively. The transitions from
the wet to dry periods and vice versa evolve slowly such that there are typically three or so

wet/dry episodes in the course of the wet season (Mpeta and Jury, 2001).

Ogallo et al. (2000) have reviewed the potential applications of seasonal to inter-annual
climate predictions in agricultural planning operations. Information and knowledge of wet
and dry spells would enrich these applications and improve the general adaptations of
ecosystems and land-use activities. Clear understanding of the key intraseasonal rainfall
variations over East Africa is crucial for planning and management purposes especially to
farmers and water managers. Such advance information of forthcoming wet/dry spells could
be used to strategize on agricultural and water management policies as well as mitigating the
adverse effects of recurring extreme climate events while fully capitalizing when more

abundant and evenly spread rainfall occurs.

This study was further motivated by previous studies done within and outside East Africa that
have corroborated or revealed significant associations between rainfall season onsets,
cessations and wet/dry spells on one hand and end-of-season agricultural yields on the other

hand (Stewart and Harsh, 1982; Sivakumar, 1992; Oladipo and Kyari, 1993; Barrow et al.,



5

2003; Barrow, 2004; Komutunga, 2006). For example, a 20-days delay in the onset of the
long rainfall season at Katumani in Eastern Kenya whose mean seasonal rainfall is 300mm
would reduce the maximum expected maize yield by 25 to 30% (Stewart and Harsh, 1982)
while occurrence of a prolonged dry spell during the flowering phase has been shown to
cause an estimated 72 — 75% reduction on maximum expected maize yield (Barron et al.,
2003). A major application of dry spell analysis is to predict extended drought durations
during the growing season, which forms a basis for planning the crop production strategies

(Sharma, 1996).

Better understanding and accurate prediction of rainfall totals and intraseasonal statistics of
wet and dry spells is of paramount importance in the policy planning and implementation of
early warning systems as well as development and management of agricultural, water
resources and other rainfall-dependent sectors of the economy. This is in line with the
Millennium Development Goals (MDGs) that were formulated in the year 2000 by the United
Nations. One of the millennium goals aimed at ensuring environmental sustainability through
improved and sustainable access to safe drinking water most of which can be harvested from
the rainfall. Timely availability of information on the distribution of wet and dry spells during
the wet seasons which this study aims to derive may contribute significantly towards the

achievement of this millennium development goal.

In summary, the key in understanding the rainfall variability lies in the acquisition of
information on intraseasonal characteristics of rainfall. Such intraseasonal characteristics of
rainfall are the onset, duration and cessation of the wet season, seasonal rainfall totals, mean
rainfall intensity, mean duration of the spell and others as summarized in Figure 1.1. It
should be clarified that the various aspects in Figure 1.1 do not follow any order of
importance whatever. The onset, cessation and duration of the seasonal rainfall have been
discussed by Alusa and Mushi (1974), Okoola (1998) and Camberlin and Okoola (2003). The
rest of the intraseasonal aspects have rarely been studied over East Africa and formed the
scope of this study. Better understanding of the behaviour of the wet and dry spells could
improve management of the excess water and promote more effective agricultural and

environmental management activities by users of climate information.
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1.5 Domain of the study

Three countries of the East Africa region namely Kenya, Tanzania and Uganda constituted
the domain of this study. This domain is located within the latitudes 5° N and 12° S and
longitudes 29° E and 42° E. It is bounded by the Indian Ocean and Somalia to the East,
Ethiopia and Sudan to the North, Burundi, Rwanda and the Democratic Republic of Congo
(formerly Zaire) to the West, and Mozambique, Malawi and Zambia to the South. The
Democratic Republic of Congo (DRC) is a tropical forested country with a small coastline
along the south-eastern Atlantic Ocean to the west. This tropical rain forest, Atlantic and

Indian Oceans are some of the main sources of moisture over the study region.

1.5.1 Physical features of the study region

Figure 1.2 shows the domain of the current study and some of its physical features. East
Africa has large diversity of topographic features. These include the eastern and western
highlands that run north-south, parallel to the Great Rift Valley. On the highlands are snow-
capped mountains; Mt Kilimanjaro and Mt Kenya whose altitudes are about 5892 metres and
5202 metres above sea level respectively. Other mountain features include Mt Elgon (4321
metres) on the Kenya/Uganda boundary, Ruwenzori Mountain in western Uganda, Mt Meru
in northeastern Tanzania and Kipengere ranges in southwestern Tanzania. The eastern and
western highlands make up the eastern and western escarpments of the Great Rift Valley
respectively. To the north of these highlands are the Ethiopian Highlands with a low level
valley region between these highlands called the Turkana channel (Kinuthia and Asnani,

1982).

Empirical and theoretical studies have shown that orography plays a leading role in the
formation of local perturbations, in the creation of vertical components of wind speeds, etc,
which promotes the formation and development of clouds, precipitation and thunderstorms
(Kongoti, 1989; Mukabana, 1992; Mukabana and Pielke, 1996; Indeje et al, 2000, 2001;
Oettli and Camberlin, 2005).

The study region has large inland water bodies in form of deep vault lakes along the Great
Rift Valley. These include Lakes Rudolf (Turkana), Baringo, Kyoga, Naivasha, Eyasi,
Manyara and Tanganyika among many others. Lake Victoria is at the centre and shared by
the three countries. It is the largest fresh water lake in Africa and second in the world, with an

area of about 68,000km?. It generates strong mesoscale circulation.
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1.5.2 Rainfall climatology of the study region

East Africa has some of the most varied topography in the world including large lakes, Rift
Valley and snow-capped mountains. As a result of this heterogeneity, there exist significant
variations in climatological mean rainfall totals. High mean monthly rainfall amounts are
mainly concentrated over the highlands and near large water bodies. Eastern and northern

Kenya, parts of eastern Uganda and central Tanzania receive low rainfall amounts.

Nearer to the equator, two rainfall and two dry seasons are observed within the year (bimodal
regime). The rainfall seasons are locally referred to as long and short rainfall seasons. The
long rainfall period occurs within March-April-May while the short rainfall season is
concentrated within October to December, with higher amounts mostly received during the
long rainfall season as represented by Kabale station over southwestern Uganda and Musoma
over northern Tanzania in Figure 1.3a and 1.3b respectively. The southern part of Tanzania
was excluded from this study since it exhibits rainfall variations that are quite dissimilar to
those of the other parts of East Africa (Camberlin and Philippon, 2002). The two rainfall
seasons tend to merge together into a single season (unimodal regime) that spans from
November to April as represented by Dodoma station over central Tanzania as shown by
Figure 1.3c. Studies have further showed that the central and southern parts of Tanzania have
an opposite signal to the rest of East Africa when the ENSO phenomenon is considered
(Indeje et al., 2000). The northern coast of Kenya represented by Lamu receives rainfall

mainly during the long rainfall season as shown by figure 1.3d.

Parts of the Rift Valley, Lake Victoria basin and most parts of Uganda exhibit the trimodal
regime with the third rainfall peak being observed in July and August (Figure 1.3e and 1.3f).
Over Soroti in western Uganda, the main rainfall peak is observed during the long rainfall
season as shown by Figure 1.3e while Nyahururu in Central Kenya, the highest peak was
observed during the July-August period (Figure 1.3f). It is worthy to note from Figures
1.3a—f that though different locations may have unimodal, bimodal or trimodal nature of
rainfall distribution, the time of occurrence and its peak are observed at different times of the
year. This alludes to the complexity of the systems that influence rainfall over the location in
question which are discussed in section 2.3. Detailed discussion on rainfall distribution over
the East Africa region can be found in Ogallo (1980) and Ininda (1995) among others. A brief

outline on the organization of this research thesis is provided in the next section.
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Figure 1.3: Patterns of annual cycle of rainfall distribution (1961 — 1990 average) for
some selected stations over East Africa. Details of these stations are provided in Figure
3.1and Table 3.1

1.6 Overview of the thesis
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This thesis is organized into five major chapters, which are briefly outlined below. Chapter

one provides the general introduction as well as the key objectives that were pursued in this

study. The problem statement and justification of the study are also given. Also discussed are

the physical features and rainfall climatology of the study domain. In the second chapter, all

literatures that were relevant for the study are reviewed. The chapter also elaborates on the

key climatic systems that influence the spatio-temporal distribution of the rainfall over the
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study area.

In the third chapter, we present the datasets that were used and the methodology for analysis
adopted to achieve each specific objective. Daily rainfall observations, Sea Surface
Temperature (SST) and re-analysis data were the main datasets used in this study. Other
datasets used include the radiosonde data and previously published SST indices. Statistical
methods were mainly used to analyse the above datasets. Rotated Principal Component
Analysis was used to sub-divide the study region into few near-homogeneous sub-regions.
The intraseasonal statistics derived at these sub-regions were assessed for any relationship
with the seasonal rainfall totals and their trend variation over time also determined.
Correlation and regression analyses were used to identify the additional potential predictor
indices and develop prediction models respectively. The limitations and major assumptions

made are finally highlighted

Results and discussions are dedicated to the fourth chapter of this thesis. The results of data
quality control are presented first, followed by those of the delineation of the study area into
near-homogenous sub-regions. The baseline information of the intraseasonal statistics of the
wet and dry spells at local (station) and sub-regional (near-homogeneous zones) is then
presented. Results of spatial coherence and potential predictability assessment are then
presented. The additional potential predictor indices are derived and discussed in this chapter.
The final section of chapter four was dedicated to the development of prediction models for

the sub-regional intraseasonal statistics of wet and dry spells.

In the final chapter, a summary of the thesis and the major conclusions drawn from the
various analyses are highlighted, together with the recommendations that could be adopted

and possibly explored further in future.
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CHAPTER TWO
LITERATURE REVIEW

2.0 Introduction

Several studies have been carried out in an effort to understand the processes and systems
associated with the spatio-temporal variability of rainfall at different timescales over the East
Africa region. The recent past has seen an upsurge in studies aimed at assessment of the
potential predictability of rainfall variability at different timescales. This literature review
considered the above two aspects from previous studies dedicated to East Africa as well as

other studies that are relevant to the current study.

As stated above, most of the studies have addressed monthly, seasonal, annual and longer

timescales, with very little work at intraseasonal timescale.

2.1 Studies to understand the processes and systems

In this section, the literature highlighting studies dedicated to the intraseasonal variability of
the rains over the region and their organization into wet / dry spells are reviewed first,
followed by those at the interannual timescales. Those studies which analyses how
intraseasonal characteristics of the rainfall vary at interannual timescales and how they have

evolved over time are finally reviewed.

Washington and Todd (1999) have studied the variability of daily rainfall derived from
satellite over Southern African-Southwest Indian Ocean from November to March. This
study showed the leading mode of daily rainfall variability to be a tropical-temperate link
spanning the latitudinal domain of the study. The study further indicated that these links have
a parallel structure such that enhanced (suppressed) activity over Southern Africa in bands off

the east coast are associated with suppressed (enhanced) activity over Southern Africa.

Mutai and Ward (2000) have indicated that the wet spells in East Africa are often associated
with synoptic disturbances that migrate eastwards into Eastern Africa region in association

with westerly near-surface wind anomalies.

Numerous studies have also used the Outgoing Longwave Radiation (OLR) as a surrogate for
tropical rainfall (Nyakwada, 1991; Nogues-Paele and Mo, 1997; Okoola, 1998; Jagadheesha

et al., 2003; Okoola and Camberlin, 2003). This is based on an average of single morning and
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evening passes of the satellite (Washington and Todd, 1999). Over East Africa which is
within the tropics, the observed rainfall is dominantly from deep convective clouds. Some of
these clouds extend as high as the tropopause levels and can therefore be seen by satellites as
regions of cold temperatures and low OLR. The fact that spatial variations of temperature in

the tropics are small makes it easier to interpret OLR data in the tropics.

Nyakwada (1991) studied the relationship between satellite derived outgoing longwave
radiation (OLR) and some meteorological parameters. The study showed significant
correlation between OLR and rainfall, with areal records giving better results as compared to
the point records. Results from Principal Component Analysis (PCA) showed some
similarities in the spatial and temporal characteristics of OLR and rainfall. Though the study
confirmed that there exists a significant association between the OLR and rainfall and further
developed regression equations, no attempt was made to forecast the rainfall using the

developed regression equations.

The pattern and evolution of intraseasonal rainfall over East Africa and its teleconnections
with the regional circulation have been studied by Mpeta and Jury (2001). Time-longitude
Hovmoller plots of filtered anomalies of OLR and zonal winds at 850hpa level in the 7.5° to
10° S latitude band was used to reveal the nature of propagation and coupling of local
circulation and convection. Time-longitude diagrams revealed eastward propagating and
quasi-stationary features in the 7.5° to 10° S latitude band. Westward propagating features
were found to be generally weak and short-lived. Many intraseasonal convective systems
were found to pass across the Africa continent with small amplitude and propagate eastward
into the Indian Ocean with increasing amplitude. Stronger equatorial convection and MJO
activity were found to favour rainy conditions over East Africa and the adjacent west India

Ocean, yet there was drier weather over much of sub-tropical Africa.

Okoola and Camberlin (2003) studied the intraseasonal oscillations associated with March -
May rainfall in East Africa using pentad rainfall, OLR and NCEP global re-analysis datasets.
The study depicted intraseasonal oscillations across equatorial East Africa with a 40 - 50 day
periodicity that had large interannual variability. The cross-sectional analyses of the raw OLR
showed eastward moving perturbations across equatorial Africa. The 20 - 75 day filtered
OLR anomalies showed clearer eastward propagation. The study further noted that two or
more active convection events were observed for most seasons while seasons with deficit

rainfall had only one event. Space-lagged relationships in the convection between Gulf of
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Guinea and Equatorial East Africa showed that convection over the Gulf of Guinea leads that
over the Equatorial East Africa by 1 to 2 pentads, indicating that convection over Gulf of
Guinea may be used in monitoring the start and subsequent performance in the Equatorial

East Africa wet/dry events, especially when above normal seasonal rainfall are anticipated.

A study by Ngigi ef al. (2005) over Laikipia district in upper Ewaso Ng’iro river basin of
Kenya revealed that there is 80% probability of occurrence of dry spells exceeding 10 and 12
days during the long and short rainfall seasons respectively. The off-season dry spells, which
occur after rainfall cessation, were longer and more severe than intraseasonal dry spells. The
occurrence of off-season dry spells coincides with the critical crop growth stage especially

the flowering and grain-filling stages.

Gitau (2005) studied the characteristics of wet and dry spells during the wet seasons over
Kenya. The study using the wavelet method of analysis identified three wavelet bands in the
occurrence of daily rainfall events. The wavelet bands identified were less than 10 days, 10 to
20 days and 20 to 32 days. The latter was associated with the lower modes of Madden-Julian
Oscillation which have been noted in other parts of the world (Krishnamurti and Ardunay,

1980; Sikka and Gadgil, 1980; Kripalani et al., 2004).

Other studies on the occurrence of the wet / dry spells over Eastern Africa include the works
of Alusa and Gwage (1978), Ogallo and Chillambo (1982), Otengi and Ogallo (1984), Bazira
and Ogallo (1985), Sharma (1996), Camberlin and Wairoto (1997) and Barrow et al. (2003)
among others. A detailed review on other studies related with the occurrence of wet and dry
spells over Kenya can be found in Gitau (2005), over Tanzania in Tilya (2006), and over

Uganda in Bamanya (2007).

Besides the studies dedicated to the intraseasonal variability of the rains in the region and
their organization into wet / dry spells, studies on the interannual timescale have been many.
Studies by Ogallo (1988), Ogallo et al. (1988), Indeje (2000), Mutemi (2003), Owiti (2005)
and Njau (2006) have clearly showed strong teleconnection between the seasonal rainfall

totals on one hand and oceanic and atmospheric fields on the other hand.

Zorita and Tilya (2002) studied the rainfall variability in northern Tanzania in the March-
May season and its links to large scale climate forcing. Monthly rainfall totals from 22
stations and spanning a period of 36 years (1963 — 1998) were used. The study used the sea-

level pressure, air temperature, zonal and meridional wind components near the surface,
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vertical velocity at 850mb level and winds at 200mb level all from the National Centre for
Environmental prediction / National Centre for Atmospheric Research (NCEP/NCAR) re-
analysis (Kalnay et al. 1996). Principal component analysis was undertaken on the monthly
rainfall totals. Concurrent correlation analysis was used to analyse the association of the two
leading principal components with the large scale climate forcing. The results indicated that
the March and April rainfall anomalies are linked to zonal thermal contrast between the
Indian Ocean and the Eastern African land mass, to zonal surface winds anomalies and to
vertical velocity anomalies. On the other hand, May rainfall anomalies are associated with a
meridional surface temperature contrast between the Indian Ocean and the Asian continent

and meridional surface winds anomalies, indicating a relationship with the Indian Monsoon.

However, few studies considered the interannual variability of the characteristics of the rains
apart from the seasonal rainfall totals. Ambenje et al. (2001) have analysed the trend in the
seasonal precipitation and frequency of days with precipitation above some thresholds over
19 countries in eastern and southern Africa for the four standard seasons. The frequency of
days with precipitation above Imm, 12.5mm, 25.4mm, 50.8mm and 100mm were
determined. Linear trend of the time series of the seasonal precipitation and frequency were
then determined by linear regression. Results showed that there was a general tendency for
trends of opposite signs to occur between the tropical (0° — 20° N/S) and subtropical
latitudinal belts. Over equatorial eastern Africa, the results indicated that the seasonal
precipitation and the associated frequency of days with precipitation above the various
thresholds have decreased in the humid western parts and increased over the coastal and
semi-arid regions to the east. The increase in seasonal precipitation over the coastal region
and semi-arid zones were more pronounced during the September to November, and
December to February seasons. This was associated with the warm phase of the El Nifio /
Southern Oscillation (ENSO) cycle which has occurred more frequently in the recent
decades. Decreasing trend in the frequency of days with precipitation above 50.8mm was
significant at 95% confidence levels during the March to May rainfall season over Equatorial
Eastern Africa region. Trend in the frequency of days with precipitation above the moderate

thresholds categories were however small in magnitude.

Moron et al. (2007) have examined the spatial coherence characteristics of daily station
observations of rainfall over five tropical regions during the principal rainfall season(s).

These regions were Senegal in West Africa, northern Queensland in Australia, northwestern
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India, Nordeste in northern Brazil and Kenya in East Africa. This study considered three
aspects of the rainfall which are seasonal rainfall total, daily rainfall frequency (number of
wet days) and mean rainfall intensity (mean rainfall per rainy day). The study noted that
mean rainfall frequency is the most coherent variable, followed closely by the seasonal total
while the daily intensity was a distant third. Similar results had been obtained by Moron et al.
(2006) over Senegal using 13 stations. It should be noted at this point that Kenya was
represented by nine stations only during the two main seasons of long and short rains.

Further, no attempt was made to identify regional subdivisions within the country.

2.2 Predictability studies and Forecast model development

Several studies have fitted the Markov chain models to the occurrence of the wet and dry
spells over East Africa. These include the work of Ogallo and Chillambo (1982), Mungai
(1984), Otengi and Ogallo (1984), Bazira and Ogallo (1985), Gitau (2005), Tilya (2006) and
Bamanya (2007). These studies have shown that the first-order Markov chain models

adequately describe the occurrence of the wet and dry spells over the eastern Africa region.

Ochola and Kerkides (2003) have used the concepts of conditional probability, Poisson
probability distribution function and chi-square testing to develop a first-order Markov chain
model that predicts the critical wet/dry spells over Kano plains in western Kenya. They found
that the length of critical dry (wet) spell was 14 (12) days for the long rainfall season and 12

(8) days for the short rainfall season over Ahero Irrigation Scheme.

For India, Xavier (2002) showed that the evolution of intraseasonal oscillation of rainfall (dry
and wet spells) is spatially and temporally coherent with that of circulation during the India
summer monsoon. The study established potential predictability of the dry and wet spells
from the 850mb relative vorticity. A forward stepwise multivariate linear regression model
was developed and the skill of the predictions assessed at every step. The rainfall anomalies
predicted by the empirical model were compared with the intraseasonally filtered rainfall
anomalies and the model captured the extreme events with sufficient skill. Examination of
these predictions indicated that predictions initiated from some initial conditions had more
skill than others. It was found that 15-day predictions made from active or break conditions
agreed much better with observations than those made from the transition initial conditions.
Over Eastern Africa however, no such study on the predictability of the wet and dry spells is

available.
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At seasonal timescale and using ENSO index, an energy gradient from the East African
highlands, 500-hPa geopotential height anomalies over the Near East and westerly winds
from the Congo basin, Camberlin and Philippon (2002) developed seasonal multivariate
linear regression prediction models for the March—May season over Kenya-Uganda with a
multiple correlation coefficient of 0.66 in cross-validation mode. The multivariate linear
regression (MLR) prediction model used the February predictors only due to the poor inter-
monthly persistence of atmospheric and oceanic anomalies. The models main shortcoming

was the absence of long lead-time for operational applications and practice.

Building on earlier results by Mutai et al. (1998) which identified SST predictors of the East
Africa short rainfall season, Philippon ef al. (2002) developed a prediction model for the

seasonal rainfall totals during this season.

Hastenrath (2007) has shown strong concurrent correlation (-0.85) of short rains at the
equatorial East Africa coast and the westerlies over the central equatorial Indian ocean. The
equatorial westerlies drive the Wyrtki jet (Wyrtki, 1973) in the upper ocean and enhance the
westward temperature gradient, a surface manifestation of powerful zonal—vertical circulation
cell along the Equatorial Indian Ocean. Using the September values of a number of surface
and upper air indices from equatorial zonal circulation cell as predictors, stepwise regression
models were developed for the entire period (1958 — 1997) and separately for 1958 — 1977
(training period) and 1978 — 1997 (verification period). The evaluation of the results obtained
showed that the correlations between the predictors and October-November rainfall series
(the predictand) deteriorated although the equatorial zonal circulation cell remains strong
throughout the entire period. The relation between the predictors and the predictand became

very weak during the verification period.

Jury et al. (2009) found that the East African rainfall and zonal winds over the equatorial east
Atlantic and West Indian Ocean which found an in-phase relationship. The strongest signal is
a 2 to 2.3-year cycle from 1961 to 1968 and again in the late 1990s. The winds led rainfall by
about 3 months from 1960 to 1970. However rainfall led wind by more than 3 months from
1970 to 1998. Further consideration of the East Indian Ocean zonal winds found a more
robust teleconnection while cross-wavelet analysis revealed 2 to 4-year cycles and the time
delay indicated that winds lead rainfall up to 8 months from 1982 to 1998. A model for OND
seasonal rainfall developed using the central Indian Ocean zonal winds averaged over three

months (JAS) was found to adequately hit 60% of the target categories but under-predicts the
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intensity of big events.
From the foregoing discussions on previous studies, it has been observed that;

a. Most of the studies have concentrated on understanding the processes and systems
based on the observed historical rainfall data. However other studies have used the
outgoing long wave radiation as a surrogate of the observed rainfall. These studies
cover both the interannual and intraseasonal timescales, but little work which

combines the two timescales is available.

b. Some studies have made an effort to assess the predictability of the seasonal rainfall
anomalies most based on the development of linear regression models. However,
there is virtually no previous work available on the predictability of the intraseasonal
statistics of the wet and dry spells. There is therefore the need to further our
understanding on the intraseasonal statistics of the wet and dry spells in order to
provide a more comprehensive picture on the evolution of rainfall activity within the

season and assess its predictability.

c.  The studies aiming at the prediction of seasonal rainfall anomalies have mainly
concentrated on predictors with a one month lag which may be too soon for the users
of such models. The monthly predictors that have been used are mostly released on
13/14 day of the next month which means that the models outputs will be available
when the season have already started. There is therefore the need to consider
predictors with longer time lags for the models outputs to be meaningful to the users.
Alternatively, the variables/predictors which can be forecasted by the Global
Circulation Models (GCMs) with a good skill could be used.

d. The few studies which have attempted to develop seasonal rainfall regression models
have tended to concentrate mainly on the Indian Ocean and its circulation patterns
without much consideration for other parts of the tropics. Other studies have also
concentrated on the Central Pacific Ocean due to the influence of the ENSO
phenomenon on the tropical climate. This study is aimed at considering the tropical
region and parts of middle latitude in search for the predictors for seasonal rainfall
and intraseasonal statistics of the wet and dry spells prediction. Apart from SSTs that
are normally used in predictability studies, large-scale atmospheric predictors were

also looked for. Despite the lower internal memory of the atmosphere as compared
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to the ocean, previous studies have demonstrated the utility of these predictors,

which also have the potential to be simulated by GCMs.

2.3 Systems that influence rainfall over the study domain

The spatio-temporal variability of rainfall over East Africa is controlled by a number of
global, regional and local processes/systems. The variability results from complex
interactions of these processes at various temporal scales. Observational studies have shown
that the diurnal variation of precipitation in East Africa is largely determined by the
mesoscale flows, the synoptic scale flows, and the interaction between the mesoscale and the
synoptic scale flows (Asnani and Kinuthia, 1979; Mukabana and Pielke, 1996). The synoptic
scale and higher scale circulations which affect weather and climate over East Africa include
systems such as the monsoons, tropical cyclones, subtropical anticyclones, easterly and
westerly wave perturbations, jet streams, global and regional modes of variability. These as

well as the mesoscale systems are briefly discussed in the next sub-sections.

2.3.1 Inter-Tropical Convergence Zone

The Inter-Tropical Convergence Zone (ITCZ) may be defined as a narrow zone into which
low-level tropical equatorward moving air masses from both hemispheres generally converge
(Okoola, 1999a). It may be summarised as a zone marked with maximum cloudiness,

humidity and precipitation; and minimum wind and pressure.

Over the East Africa region, the ITCZ has a rather complex structure consisting of zonal and
meridional arms. The ITCZ is diffuse and thus difficult to locate at low levels but is
detectable in the wind field near 700mb (Kiangi ef al., 1981). The structural complexity has
been attributed to the geography of the Rift valley and the mountain chains of East Africa and
the associated thermally-induced mesoscale circulations which makes the ITCZ patterns near
the surface much diffused (Mukabana and Pielke, 1996). The zonal (conventional) arm has
east-west orientation and oscillates in the north-south direction with the overhead sun. The
double passage of the zonal arm of ITCZ over Eastern Africa region lagging behind the
overhead sun is associated with the two rainfall seasons namely the long and the short rainfall
seasons during which a large portion of the annual rainfall is received over Eastern Africa.
The meridional arm which has a north-south orientation is formed by the convergence
between the easterly winds from the Indian Ocean and moist westerlies from the Atlantic

Ocean. This arm fluctuates from east to west and vice versa, with the easternmost extent



20

observed in July-August. The July/August rainfall received over most parts of Uganda,
western Kenya and parts of Rift valley has been associated with the eastward extent of the

westerlies from the Atlantic Ocean.

Over the East Africa, the ITCZ is the major synoptic-scale system that controls seasonal
rainfall (Asnani, 1993; 2005). The fluctuations in the rainfall amounts and distribution have
been attributed to the anomalies in the large scale factors that influence the characteristics of
the ITCZ over East Africa region. The location of the ITCZ together with its overall
horizontal and vertical structures largely depends on the intensity of the north-easterly and
south-easterly winds which are in turn driven by the subtropical anticyclones. Comprehensive
details of the ITCZ over East Africa region can be found in Ogallo (1993), Ininda (1995) and
Okoola (1996) among others.

2.3.2 Monsoons

A monsoon is a wind in low-latitude climates that seasonally changes direction between
winter and summer. Monsoons usually blow from the land in winter (called the dry phase,
because the wind is composed of cool, dry air), and from water to the land in summer (called
the wet phase, because the wind is composed of warm, moist air), causing a drastic change in

the precipitation and temperature patterns on the area impacted by the monsoon.

The driving force for the monsoons is the differential heating of land and water surfaces by
the solar radiation, which results in land-ocean pressure differences. The monsoonal winds
are mostly confined to the tropics where the temperature contrast between the land and ocean
is sufficiently high to generate the circulation. The monsoon is an important feature of
atmospheric circulation, because large areas in the tropics and subtropics are under the
influence of monsoons which bring humid air from over the oceans to produce rain over the
land. The agricultural economies of impacted areas such as Asia and India frequently depend

on the moisture provided by monsoon wind driven storm.

East Africa is subject to two monsoonal wind circulations, the Northeast (NE) and the
Southeast (SE) monsoons. These monsoons coincide with the months of the year when the
ITCZ is further from East Africa and thus are associated with relatively little rainfall (Okoola,
1999a). The northeast (NE) monsoon airstream occurs during the Northern Hemisphere
winter (December to February) and emanates from the Arabian anticyclone which is situated

on the Arabian Peninsula. It then recurves south of the equator to become a north-westerly
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flow. The NE monsoonal winds have a sea trajectory of modest length thus they are warm
and dry. The southeast (SE) monsoon current occurs during Northern Hemisphere Summer
(June to August) and comes from the Mascarene highs over the southern Indian Ocean hence

it is cool and moist. The flow then recurves north of the equator to become south-westerly.

Both monsoons are generally diffluent in the low levels and flow parallel to the coast. They
are relatively shallow extending up to about 600hpa and capped aloft by an easterly flow
resulting in a persistent inversion near 600hpa. The inversion inhibits cloud development, but

it is occasionally broken by incursions of the westerlies (Okoola, 1982).

2.3.3 Tropical Cyclones

A tropical cyclone refers to an intense spiral storm that originates over warm tropical oceans
and is characterized by low atmospheric pressure, strong winds and heavy rainfall. A
characteristic feature of tropical cyclones is a warm centre with clear skies, light winds and
low atmospheric pressure called the eye. Eye diameters are typically 40km but can range
from under 10km to over 100km. The eye is surrounded by a dense ring of cloud about 16km
high known as the eye wall which marks the belt of strongest winds and heavy rainfall. There
is also a rapid variation of pressure across the storm which mostly occurs near the centre and
resulting in very steep pressure gradient force, which is responsible for the strong winds
present in the eye wall. Tropical cyclones derive their energy from the warm tropical oceans
and do not form unless the Sea Surface Temperature (SST) is above 26.5°C, although once

formed they can persist over lower SST.

Cyclones that affect the East Africa region (mostly southeastern coast of Tanzania) are those
that form over Southwest Indian Ocean basin upto about 100° E. They generally occur from
November to May but are more common during the months of January to March. On average,
there are nine tropical disturbances a season, with about 50% of them reaching Tropical
Cyclone (TC) status. However, their effect on East Africa weather may be indirect. Their
formation during late March and early April often leads to delayed and below normal long
rainfall over Eastern Africa region as was the case in 1984 (Okoola, 1999a). High frequency
of the TC in the Mozambique Channel during 1984 resulted in winds being diverted to the
Channel resulting into the non-establishment of the ITCZ over the Eastern Africa region
during the long rainfall season. This led to loss of lives and livestock due to the drought that

resulted.
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2.3.4 Subtropical Anticyclones

These are synoptic-scale quasi-permanent pressure cells that form the descending arms of the
tropical Hadley circulations. The pressure difference between the equatorial regions and the
sub-tropical anticyclones drive the tropical trade winds. The four anticyclones affecting the
synoptic flow over East Africa region are the Azores and Arabian anticyclones in the
northern hemisphere (Griffiths and Solimani, 1972) and Mascarene and St. Helena
anticyclones in the southern hemisphere (Van de Boogaard, 1977). The anticyclones are most
intense during the winter season of each hemisphere and weaker during summer. The relative
location, strength, structure and spatial orientation of these anticyclones determine whether

they will pump in moist air or dry air over a region.

The Arabian anticyclone generates a stronger North Easterly (NE) flow during the short
rainfall period than the South Easterly (SE) flow from the weaker Mascarene anticyclone.
However, since the NE flow does not have long trajectory over the ocean as compared to the

SE flow, it results in lesser rainfall during the September-November period.

The Mascarene and St. Helena are more pronounced during the southern hemisphere winter
(June to August). The Mascarene anticyclone generally determines the characteristics of the
moist SE monsoon flow over the Indian Ocean which influences rainfall over most of Eastern
Africa. During the March-May season, the Mascarene anticyclone drives stronger and more
moist SE flow into East Africa. Convergence of SE flow with the NE flow, both of which
have stronger easterly component results into more rainfall in this season. The intensity and
relative position of St. Helena anticyclone determines the position and depth of the quasi-
permanent low pressure centre over central Africa, and therefore the intensity of the weather
associated with it and how far to the east this weather will penetrate due to the strength of the

meridional arm of the ITCZ.

2.3.5 Jet streams

A jet stream is a narrow, fast, upper atmospheric wind current, flowing at around 10
kilometers above the surface of the Earth. The jet stream may extend for thousands of
kilometers around the world, but it is only a few hundred kilometers wide and usually less
than 1.6 kilometers thick. A jet stream forms at the boundaries of adjacent air masses with
significant differences in temperature. The jet stream is thus mainly found in the tropopause,

at the transition between the troposphere (where temperature decreases with height) and the
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stratosphere (where temperature increases with height).

The two jet streams that affect the weather and climate over the East Africa region are the
Turkana Jet stream and the East Africa Low Level Jet stream (EALLJ). The Turkana jet
stream is a strong SE low level jet in the Turkana Channel which separates the Ethiopian
Highlands and the East Africa Highlands. This jet stream exists throughout the year, with the
morning winds being stronger than the afternoon winds, mainly due to stronger vertical
mixing and dilution of the jet maximum in the afternoon (Kinuthia and Asnani, 1982). Details
of the Turkana Jet stream can be found in Kinuthia and Asnani (1982), Kinuthia (1992) and

Indeje et al., (2001) among others.

The East Africa Low Level Jet (EALLJ) stream occurs near the coast of East Africa. This jet
stream is one of the major well-recognized cross-equatorial flows that have been studied
through observational and numerical models (Findlater 1966; 1977; Krishnamurti et al. 1976;
among others). The jet core is generally located between 1 and 1.6 km above the mean sea
level and is associated with flows across the equator carrying Southern Hemisphere air
northward up the African continent and ending at the Indian subcontinent. This jet stream
induces strong currents and upwelling over the western equatorial Indian Ocean. It thus plays
an integral role in the seasonal development of the Somali Current, an intense ocean current
that flows northward only during the southwest monsoon. The jet builds during the months of
April and May, becomes more pronounced in June to August and decays in September and
October, during which the flow reverses to NE monsoons. Its horizontal divergence and

vertical wind shear leads to dry conditions over East Africa.

2.3.6 Global and regional modes of climate variability

A mode of variability is a climate pattern with identifiable characteristics, specific regional
effects, and often oscillatory behavior. Many modes of variability are used as indices to
represent the general climatic state of a region affected by a given climate pattern. Such
modes of variability may be found closer or far away from the target area, yet have an effect

on the latter.

Climate dynamics research has demonstrated the existence of several modes of climate
variability. The large scale modes of climate variability that relates to the East Africa rainfall
include the El Nino/Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) Mode, Quasi-

Biennial Oscillations (QBO) and Intraseasonal Oscillations (ISO) among others.
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2.3.6.1 Quasi-Biennial Oscillations

The Quasi-Biennial Oscillation (QBO) is a quasi-periodic reversal of the equatorial zonal
wind between easterlies and westerlies in the tropical stratosphere with a mean period of 23
to 30 months averaging at about 26 months. The alternating wind regimes develop at the top
of the lower stratosphere and propagate downwards at about 1.2 km per month until they are
dissipated at the tropical tropopause. At the top of the vertical QBO domain, easterlies

dominate, while at the bottom, westerlies are more likely to be found.

Several studies have confirmed the presence of the QBO in various atmospheric parameters.
Some variables that have exhibited QBO include temperature, ozone, Indian monsoon and
Africa rainfall (Ogallo et al, 1994; Indeje and Semazzi, 2000). A study by Indeje and
Semazzi (2000) has shown that about 36% of rainfall variability over Eastern Africa during
the long rainfall season is associated with the QBO in the lower equatorial stratospheric zonal
winds and further suggested that the relative role of QBO and rainfall over Eastern Africa is

stronger in the time-lag sense than the simultaneous relationship.

2.3.6.2 El Nifio /7 Southern Oscillation

El Nifio / Southern Oscillation (ENSO) is a set of interacting parts of a single global system
of coupled ocean-atmosphere climate fluctuations that come about as a consequence of

oceanic and atmospheric circulations.

ENSO is the largest coupled ocean—atmosphere phenomenon resulting in climatic variability
on interannual time scales (Godi nez-Dominquez et al., 2000). This wide ranging influence
of ENSO has attracted the attention of the global climate community, particularly due to the
well-documented economic and societal impacts, both today and throughout historical times,

recorded locally and globally, within a wide latitudinal band about the equator.

El Nifio which is the oceanic component of ENSO refers to the anomalous and sustained
warming of the Sea Surface Temperature anomalies of magnitude greater than 0.5°C across
the central and eastern tropical Pacific Ocean. The cooling phase is referred to as La Niiia.
When the anomaly is met for a period of less than five months, it is classified as El Nifio or
La Nina conditions; if the anomaly persists for five months or longer, it is classified as an El

Nifio or La Nifia episode.

The atmospheric signature of ENSO, the Southern Oscillation (SO) reflects the monthly or
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seasonal fluctuations in the air pressure difference between Tahiti and Darwin. In using the
Southern Oscillation Index (SOI) based on just two stations, it must be recognized that there
are many small-scale and high frequency phenomena in the atmosphere, such as the Madden—
Julian Oscillation that can influence the pressures at stations involved in forming the SOI but
that do not reflect the Southern Oscillation itself. As such, a 5-month running mean of SST
anomalies and SOI is made in order to smooth out the possible intraseasonal variations in the

tropical ocean.

While ENSO events show basically in phase variations between the Pacific and Indian
Oceans, their signature in the Atlantic Ocean lag behind the Pacific events by 12 to 18
months. Many of the countries most affected by ENSO events are developing countries
whose economies are largely dependent upon their agricultural and fishery sectors as a major

source of food supply, employment and foreign exchange.

ENSO is the most prominent known source of interannual climate variability around the
world including Eastern Africa with an irregular cyclicity of 3 to 8 years. Many studies have
investigated the relationship between East African rainfall and ENSO. Mutemi (2003) found
a strong relationship between rainfall over East Africa and evolutionary phases of ENSO.
Shifts in the onset/cessation of rainfall patterns over some regions were observed while in
others significant reduction in the seasonal peak was evidenced. Nicholson and Kim (1997)
observed that ENSO has little influence on the long rainfall season but significantly
modulates rainfall during the short rainfall season. Ogallo (1988) found significant
instantaneous and time lagged negative correlations between East African seasonal rainfall
and the Southern Oscillation Index (SOI). By correlating the global SST anomalies within the
tropics (30° N/S) with the rotated principal component analyses (RPCA) modes of the
autumn rainfall over Eastern Africa, Ogallo ef al. (1988) found that 36% of the short rainfall
variation in East Africa could be explained by SST variations in western Pacific and most of

Indian Ocean.

Using an atmospheric General Circulation Model (GCM) forced with various combinations
of Indian and Pacific SST anomalies, Goddard and Graham (1999) observed that while the
SST variability of the tropical Pacific exerts some influence over the African region, it is the
atmospheric response to the Indian Ocean variability that is essential for the model simulating
robust rainfall response over eastern, central and southern Africa. This may point to the

importance of the Indian Ocean Dipole (IOD) in climate studies which is discussed next.
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Further details of the ENSO influence over East Africa can be found in Mutemi (2003),
Ogallo (1988) and Ogallo et al. (1988) among others.

2.3.6.3 Indian Ocean Dipole

Previous studies have identified a unique ocean—atmosphere mode characterized by
anomalously warm SSTs over the western Indian Ocean and anomalously cold SSTs in the
eastern Indian Ocean (Saji et al., 1999; Owiti, 2005; Owiti et al, 2008). The evidence
indicates that Indian Ocean SST anomalies have a significant impact on regional atmospheric
circulation and rainfall anomalies that extend into Eastern and Southern Africa. As the wind
flow entering East Africa mostly originates from the Indian Ocean, it would be reasonable to
assume that Indian Ocean Dipole (IOD) SST anomalies would have a marked influence on

the moisture supply to the adjacent landmasses (Reason, 2001).

Indian Ocean Dipole (IOD) refers to the occasional occurrences of see-saw SST anomalies
over the southeastern and western parts of equatorial Indian Ocean (Figure 2.1). The
difference between mean SST anomalies observed in tropical western Indian Ocean (50° E —
70° E, 10° S — 10° N) and tropical southeastern Indian Ocean (90° E — 110° E, 10° S —
Equator) has been used to quantify the zonal temperature gradient representative of the [OD

(Saji et al., 1999).

Analysis on the evolutional phases of IOD index by Owiti (2005) and Owiti et al, (2008)
indicate the significant SST anomalies begin to appear around April, attains maximum peak
around October/November and starts decaying in January. Most cycles do not extend beyond
one year. As such, the significant association between the IOD and Eastern Africa regional
rainfall is stronger during the short (OND) rainfall season while the correlation values are

generally not significant during the long (MAM) rainfall seasons.

Available records show that at times the strong positive (negative) IOD events co-occurred
with El Nifio (La Nifia) episodes. This may be indicative of some possible interactions
between ENSO and IOD. However, some strong IOD events were observed in non-ENSO
events. A study by Trenberth (1997) indicate that warming over the western Indian Ocean
during the ENSO events is associated with high moisture fluxes over the marine boundary
layer. The increased tropospheric moisture associated with the warm El Nifio events is
advected into the Eastern Africa by the relatively strong easterly wind flow during the wet

seasons. The advected moisture supports enhanced convection and orographic precipitation
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through latent heat release thus sustaining wet conditions over the East African region.
Comprehensive details of the IOD over East Africa region can be found in Saji et al. (1999);
Black et al. (2003); Clark et al. (2003); Black (2005); Owiti (2005) and Owiti et al. (2008)

among others.

Figure 2.1: SST anomalies (red shading denotes warming; blue-cooling) during (a)
positive and (b) negative Indian Ocean dipole (10D) event. (Source A. Suryachandra
Rao, Institute for Global Change Research, Japan)
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2.3.6.4 Intraseasonal Oscillations

Studies have shown that intraseasonal oscillations (ISO) are present in the proxies of the
rainfall such as outgoing longwave radiation over the tropical region (Anyamba, 1990; Soden
and Fu, 1995; Barr-Kumarakulasinghe and Lwiza, 1998; Omeny, 2006). A study by Gitau
(2005) over Kenya has suggested the existence of ISO in the occurrence of the daily rainfall
events. A quasi biweekly oscillation with 10 to 20 days periodicity has been found in the
occurrence of rainfall events (Okoola, 1989; Gitau, 2005). Another form of the intraseasonal
oscillations that is most prominent in the tropical region is the Madden-Julian Oscillation
(MJO). The Madden-Julian Oscillation plays an important role in climate variability and has
a significant influence on medium-to-extended ranges of weather forecasting in the tropics
(Jones et al. 2000; Pohl and Camberlin, 2006; Omeny, 2006; Omeny et al., 2008). Goswami
et al. (2003) have suggested that the slow evolution of the monsoon intraseasonal oscillations
on account of the 30 - 60 days dominant periodicity could make it potentially predictable by

up to about three weeks in advance during the Indian summer monsoon.

2.3.7 Mesoscale systems/features

Mesoscale systems are small-scale weather systems with the horizontal dimension ranging
from 5 to 500 km and typically possessing lifetimes of a day or less. They cannot therefore be
observed on synoptic charts. For such systems, the vertical motion is as important as the
horizontal ones and Coriolis force has little or no effect due to the short lifetime or the over-
riding magnitude of other forces. Proximity to the ocean, varied topography and existence of
large inland lakes induces vigorous mesoscale circulations with a strong diurnal cycle over

several parts of the East Africa region.

2.3.7.1 Effects of orography

Spatial distribution of weather in East Africa is to some extent determined by the interactions
between the quasi-stationary mesoscale circulations and the seasonally varying large scale
flow. By modeling the interaction of the mesoscale circulation and synoptic scale
circulations, Mukabana and Pielke (1996) and Indeje et al. (2001) demonstrated that
orography plays a role in causing rainfall at nearly all places in Kenya and East Africa

respectively.

Oettli and Camberlin (2005) have defined statistical models to explain the spatial distribution

of rainfall in Eastern Africa (southern Kenya and NE Tanzania) based on various



29

topographical descriptors. The results indicated that the north—south exposure contrasts are
the main factor of rainfall variation, except in the northern summer (June to September).
South-facing stations are wetter, especially during the long rainfall (March to May) season
since southerly winds are slightly wetter than those with a northerly component. East-facing
stations are wetter in the short rains season (October to December) and drier in the monsoon
season. These variations coincide with seasonal atmospheric circulation changes over the
study region. The study finally concluded that mean elevation had little effect on the monthly
rainfall while other factors especially north-south exposure describe the interaction between

rainfall and topography more adequately.

2.3.7.2 Land and Sea/Lake Breezes

These are diurnal local winds that are generated as a result of the different specific heat

capacities of the water and land near the shores.

The sea/lake breeze is one of the most frequently occurring mesoscale weather systems. The
sea/lake breeze refers to a diurnal, thermally driven circulation in which a surface
convergence zone often exists between airstreams having over-water versus over-land
histories. It results from the unequal sensible heat flux of the lower atmosphere over adjacent
solar-heated land and water masses. Because of the large specific heat capacity of a water
body, the air temperature changes little over the water while over land, the air mass warms
during daytime. Occurring during periods of fair skies and generally weak large scale winds,
the sea/lake breeze is recognizable by a wind shift to onshore, generally several hours after

sunrise.

The reverse occurs at night, the land cools off quicker than the ocean due to differences in
their specific heat capacities, which forces the dying of the daytime sea/lake breeze. If the
land surface temperature drops below that of the adjacent sea/lake, the pressure over the
water will be lower than that of the land, setting up a land breeze. The colder air from the
land then moves offshore. Typically, the land breeze circulation is much weaker and

shallower than its daytime counterpart, the sea/lake breeze.

Breeze circulations are created within the vicinity of Lake Victoria and along the coast.
Sea/LLake breeze dominates during the afternoon/evening. The katabatic (drainage) winds
coupled with the land breeze, dominate during late night/early morning up to at least 100 km

from the shore. This circulation interacts with the seasonal flow and forces convection up to a
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distance of even 150-200 km from the Lake Victoria shore (Mukabana, 1992; Okeyo, 1987).

The occurrence and strength of the both sea/lake and land breezes is controlled by land-sea
surface temperature differences, the synoptic wind and its orientation with respect to the
shoreline; the thermal stability of the lower atmosphere and the geometry of the shoreline and

the complexity of the surrounding terrain.
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CHAPTER THREE
DATA AND METHODS

This chapter provides the description of the datasets that were used in the current study to
achieve the objectives discussed in section 1.3. It also provides the methodology that was

adopted.

3.1 Datasets

Several secondary datasets were used in this study. These are the observed daily rainfall
amounts, Hadley centre Sea Surface Temperatures (SSTs), NCEP/NCAR and ERA40 re-
analysis data, radiosonde observations, the indices of Nifio, Indian Ocean Dipole (IOD), and
Sea Surface Temperature (SST) gradients. These datasets covered about 40 years starting
from 1958. The daily rainfall dataset covers the East Africa region while the SSTs and re-
analysis data covered the tropical region and part of the mid-latitudes (50° N - 50° S).
Radiosonde observations were obtained over Nairobi in East Africa and Bangui in Central

Africa.

Like the rest of Africa, East Africa continues to experience some difficulties with the
availability of long-time climate data (see Figure 1 in Camberlin and Philippon, 2002).
The available surface observations are rather sparse and their number has tremendously
reduced over time. Each of the three East Africa countries has one operational upper-air

observation station (Njau, 2006) out of which two have a lot of missing data.

3.1.1 Rainfall data

The observed daily rainfall amounts for 36 stations across the three East Africa countries and
extending from January 1962 to December 2000 was used in this study. The amount of
missing data from each station is highly variable (at most 7%). At times, data are missing for
all the days in a month since the report forms are filled and sent to the headquarters of the
National Meteorological services on a monthly basis. In such a case, the report forms were
sourced from the Headquarters of the National Meteorological services and used to fill the

gaps. However such cases were quite few.

The spatial distribution of the stations with long un-interrupted time series was carefully
selected in order to minimize the amount of the missing data. At the same time, an evenly

distributed gauge network throughout the study region was required. Figure 3.1 shows the
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spatial distribution of the Eastern African stations used in the study. Table 3.1 which gives

the names of the station used, their location and elevation. Based on the requirement of this

study for a long un-interrupted time series of daily rainfall observations with few missing

data points, the network of the station was assumed to be the most representative of the daily

rainfall climatology over the study area. This dataset was obtained from the archives of

Kenya Meteorological Department, IGAD Climate Prediction and Applications Centre

(ICPAC) both of which are in Nairobi, Kenya and the Centre de Recherches de Climatologie

(CRC) at Université de Bourgogne in Dijon, France.
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Figure 3.1: Network of the East African rainfall stations used
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Table 3.1: Details of the East African rainfall stations used in the study

. . . o Elevation in M
No | Stations Latitudes Longitudes (°E) (AMSL)
KENYA
1 | Mandera 3.93°N 41.87 230
2 | Moyale 3.53°N 39.05 1113
3 | Lodwar 3.12°N 35.62 566
4 | Marsabit 2.32°N 37.98 1219
5 | Maralal 1.10°N 36.70 1951
6 | Wajir 1.80°N 40.07 244
7 | Kakamega 0.28°N 34.75 1555
8 | Nyahururu 0.03°S 36.35 2374
9 | Kisumu 0.10°S 34.58 1146
10 | Garissa 0.47°S 39.63 128
11 | Dagoretti 1.30°S 36.75 1798
12 | Narok 1.13°S 35.83 1890
13 | Lamu 2.27°S 40.90 9
14 | Makindu 2.28°S 37.83 1000
15 | Malindi 3.23°S 40.10 3
16 | Voi 3.40°S 38.57 579
17 | Mombasa 4.03°S 39.62 57
UGANDA
18 | Kitgum 3.30°N 32.88 940
19 | Arua 3.05°N 30.92 1280
20 | Gulu 2.78°N 32.28 1106
21 | Soroti 1.72°N 33.62 1127
22 | Masindi 1.68°N 31.72 1146
23 | Namulonge 0.53°N 32.62 1150
24 | Kasese 0.18°N 30.10 691
25 | Entebbe 0.03°N 32.45 1183
26 | Bushenyi 0.57°S 30.17 1590
27 | Mbarara 0.60°S 30.68 1412
28 | Kabale 1.25°S 29.98 1867
TANZANIA
29 | Bukoba 1.33°S 31.82 1143
30 | Musoma 1.70°S 33.93 1147
31 | Mwanza 2.47°S 32.92 1139
32 | Moshi 3.35°S 37.33 869
33 | Kigoma 4.88°S 29.67 999
34 | Tabora 5.08°S 32.83 1182
35 | Dodoma 6.17°S 35.77 1120
36 | Dar es salaam 6.87°S 39.20 53
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3.1.2 Re-analysis data

Re-analysis data refers to a gridded dataset representing the state of the Earth's atmosphere,
incorporating direct observations, remote-sensed observations and global climate model
(GCM) output. Data from different sources such as surface, ship, aircraft, radiosonde,
satellite and GCMs are quality controlled, merged and interpolated at grid points

(assimilated) to obtain the re-analysis data.

Different types of re-analysis data have been developed over time by different climate
centres. These include the re-analysis data from the National Centre for Environmental
Prediction (NCEP) and the National Centre for Atmospheric Research (NCAR) as
documented by Kalnay et al. (1996), ERA40 and ERA-interim from the European Centre for
Medium-range Weather Forecast (ECMWF) as documented by Uppala et al., (2005) and
JRA25 from the Japanese Meteorological Agency among others. In the current study, the
JRA dataset could not be considered since it spans a short duration of 26 years only from
January 1979 to December 2004 for JRA (Kazutoshi et al, 2005). The ERA-interim dataset

could not be used for similar reason.

The NCEP/NCAR re-analysis and ERA40 datasets are both gridded to a horizontal resolution
of 2.5° latitude by 2.5° longitude. Though the data assimilation system remained unchanged
over the re-analysis periods to help eliminate perceived climate jumps associated with
changes in the real time data assimilation system, the NCEP/NCAR re-analysis data is still
affected by changes in the observing systems (Kalnay et al. 1996; Kanamitsu et al., 2002).
These two re-analysis datasets have been used in Eastern Africa with satisfactory results in
Mutai and Ward (2000), Zorita and Tilya (2002), Camberlin and Philippon (2002), Black et
al. (2003), Pohl et al. (2005) for the NCEP/NCAR and in Mukabana and Pielke (1996) and
Okoola (1999b; 1999c) for the ERA40.

The NCEP/NCAR re-analysis dataset was downloaded from the database of the National
Oceanic and Atmospheric Administration (NOAA) website while the ERA40 dataset was
downloaded from the database of the European Centre for Medium-range Weather Forecasts
(ECMWF) website. The two re-analysis datasets were compared with the radiosonde data
over the study area and the surrounding regions. The re-analysis dataset that mostly replicated
the radiosonde data was thus adopted and used for further analysis to accomplish the
objectives of the study. It should however be noted that re-analysis dataset are not simple

interpolation of the observed data to the grid-points and therefore we do not expect a perfect
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match between the observed radiosonde and re-analysis data.

From the re-analysis dataset that mostly replicate the radiosonde data, four variables were
extracted at 925mb, 700mb and 200mb levels representing the lower, middle and upper
atmospheric levels. The four variables extracted were the zonal (u) and meridional (v)

components of wind vector, the specific humidity (q) and the geopotential heights ().

Due to the importance attributed to the circulation patterns while studying the rainfall
patterns, it was necessary to ascertain the re-analysis dataset that closely replicated the

measured radiosonde data.

3.1.3 Radiosonde data

Radiosonde sounding systems use in sifu sensors carried aloft by a small, balloon-borne
instrument package, the radiosonde, to measure vertical profiles of atmospheric pressure,
temperature, and moisture (relative humidity or wet bulb temperature) as the balloon ascends,
and transmit the data to a ground-based receiver and data acquisition system. A rawinsonde is
a radiosonde that is designed to also measure wind speed and direction. Rawinsondes are
commonly referred to as radiosondes. The radiosonde electronic subsystems sample each

sensor at regular intervals.

Upper-air winds (horizontal wind speed and direction) are determined during radiosonde
ascents by measuring the position of the radiosonde relative to the earth's surface as the
balloon ascends. By measuring the position of the balloon with respect to time and altitude,
wind vectors can be computed and represent the layer-averaged horizontal wind speed and

wind direction for successive layers.

An upper-air station exists in each of the three countries considered in this study. They are
located at Nairobi (01° 18°S, 36° 45°E), Entebbe (00° 03°N, 32° 27°E) and Dar-es-Salaam
(06° 50’S, 39° 12’E). Njau (2006) observed that the later two stations had a lot of data
missing and hence unsuitable for analysis. In view of this, Nairobi upper—air station was

chosen to represent the East Africa region.

The zonal and meridional wind components of radiosonde wind data at different standard
pressure levels from two locations (Nairobi in Kenya and Bangui in Central Africa Republic)
spanning a period of 30 years and extending from January 1959 to December 1988 was used

to assess the quality of the re-analysis datasets. Bangui radiosonde station is located at 04°
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24°N, 18° 31’E at an altitude of 366 M above Sea Level (Duree et al., 2006). The radiosonde
data for Bangui upper-air observational station was downloaded from the Research Data
Archive at the National Centre for Atmospheric Research (NCAR) website . The Bangui
upper-air station was used because it is located over a region (Central Africa) where
NCEP/NCAR and ERA40 re-analyses shows large discrepancies, yet it is important source of
moisture advection from Congo Basin which significantly affect rainfall variability in East
Africa. Another reason for the choice of Bangui was that the observed data has a common
time overlay with the Nairobi upper-air data yet it is outside the study area but within the

equatorial region.

3.1.4 Hadley centre sea surface temperature

Sea-Surface Temperatures (SSTs) play an important role in modulating rainfall variability.
Idealised SST anomalies have been used to force global and regional circulation models to
simulate rainfall variability and study the physical mechanisms behind the variability over
various regions, such as the Sahel (Moron et al., 2003), northwest Africa (Li et al., 2003),
Africa as a whole (Paeth and Friederichs, 2004), and southern Africa (Reason, 2002; Misra,
2003).

Many of these studies have suggested the importance of SST in modulating rainfall
variability, either indirectly such as an alteration in the position of the ITCZ (Biasutti ef al.,
2004) or by more direct ‘local’ mechanisms (Janowiak, 1988; Walker, 1990; Jury and
Pathack, 1993; Jury et al., 1993; Mason, 1995; Shinoda and Kawamura, 1996; Reason and
Lutjeharms, 1998). Over the Eastern Africa region, SSTs and SST-derived indices have
regularly been used for various studies including the seasonal rainfall prediction (Ogallo et
al., 1988; Nicholson and Kim, 1997; Mutai et al., 1998; Latif et al., 1999; Indeje et al., 2000;
Black et al., 2003; Mutemi, 2003; Owiti, 2005; Nyakwada, 2009).

The Hadley centre SSTs used in this study are gridded to a horizontal resolution of 1° latitude
by 1° longitude and covered 45° N/S latitude but spanned all longitudes (Rayner et al., 2003).
The monthly Hadley Centre SST covered a period of 40 years from January 1961 to
December 2000.

3.1.5 Other datasets used

" www.dss.ucar.edu/datasets/ds430.0



37

Several other datasets, in the form of climatic indices, were used in this study. These include
the Nifio indices which were downloaded from the Climate Prediction Centre (CPC)
website'", the TOD indices which have been documented by Owiti (2005) and the SST-
gradients developed by Nyakwada (2009). These indices are used over the Greater Horn of
Africa countries (of which the study region forms part of) for seasonal rainfall prediction by
IGAD Climate Prediction and Application Centre. These datasets are all at monthly timescale
and cover the period 1961 to 2000. The locations where the IOD index is derived from were
highlighted in sub-section 2.3.6.3. The locations where Nifio and SST-gradient indices are

derived are discussed next.

Figure 3.2 and Table 3.2 shows the locations used to compute different Nifio indices. The
Nifio indices have significant association with the seasonal rainfall over the eastern Africa
region especially during the short rainfall season (Ogallo, 1988; Ogallo et al., 1988; Indeje et
al., 2000; Mutemi, 2003).
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Figure 3.2: Graphical depiction of the four Nifio regions (source: CPC)

" www.cpc.noaa.gov/data/indices/sstoi.indices
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Table 3.2: The coordinates used to compute the various Nifio indices (source: CPC)

Longitudes (°) Latitudes (°)
NINO 1 80 - 90 W 5-10S
NINO 2 80-90 W 0-5S
NINO 1+2 80-90 W 0-10S
NINO 3 90 - 150 W 5N-58
NINO 4 150W - 160 E S5N-58
NINO 3.4 120-170 W S5N-58

Figure 3.3 gives the locations used to compute the zonal and meridional SST-gradient modes
with the highest relationships with seasonal rainfall over East Africa (Nyakwada, 2009). The
gradient modes are computed in the direction of the arrows from the SST anomalies
representing the grids as indicated in Table 3.3. Nyakwada (2009) undertook principal
component analysis of the SST for each ocean basin separately and for Atlantic-Indian
Oceans combined. The modes of variability that were highly correlated with the seasonal
rainfall totals over Eastern Africa were then identified and used as centre of action of the SST

gradients.
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Figure 3.3: The locations used to compute the sea surface temperature gradients (Source: Nyakwada, 2009, p. 127)
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Table 3.3: Computation of meridional and zonal sea surface temperature gradient
(Source: Nyakwada, 2009, p. 128)

Ocean Region | Longitude (°) | Latitude (°) | Gradient Gradient
Computation Name
Pacific A 120-90 W S5N-58
B 150-180E S5N-58S B-A ZPAC
Indian C 80—-100 E S5N-58S
D 40-60 E SN-58 D-C ZIND
I 50-75E 20—10N
H 35-70E 20-30S I-H MIB1
J 30-70E 30-40S I-J MIB3
Atlantic G 40 - 10 W 40-30N
K 20W-15E 20-30S G-K MAB3
F 20W-15E 10—-20S G-F MAB6
L 40-15W 10 —20 N L-F MAB4
Atlantic and D 40-60 E 5N-58
Indian E IOW-10E SN-58 E-D ZAF

3.2 Methodology

Three approaches can be adopted to undertake this research. These approaches are statistical,
dynamical and hybrid (combination of the statistical and dynamical approach). Statistical
approaches are relatively fast, are less computer-intensive and generally strive for concise
representation of physical features that control the region’s climate. Dynamical approaches
on the other hand are based on fundamental conservation laws for mass, energy and
momentum and thus contain more complete physics than statistical approaches. However, the
more complete physics evokes a significant computational cost that limits the use of

dynamical approaches. This study has opted for the statistical approach as a research design.

Initially, the missing data gaps were filled and the quality control measures undertaken to
ascertain the homogeneity of the data. Statistical analysis was performed to classify the study
region into few near-homogeneous sub-regions. This will ease the interpretation of the results

obtained as well as eliminate the local noise within the datasets.
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3.2.1 Missing data and Quality control

The biggest drawback in long-term meteorological time series analysis is that recorded data
available must be gap-filled and quality controlled to provide a reliable continuous
homogeneous reference series in which divergences are only caused by variations in weather
and climate (Lucio et al., 2006). Several interpolation methods can be used to approximate
the missing rainfall amounts. These include the correlation and regression methods, distance
weighted method (Inverse distance and Shepard methods), Schafer method, Thiessen polygon
method and Krigging method, among others (Ogallo, 1982, 1988; Basalirwa, 1991; Schafer,
1991; Lynch and Schulze, 1995).

In this study, missing data were estimated using the correlation and regression techniques.
The station that was highly correlated with the one with missing data was initially identified.
Regression equations were then derived for the two stations for the period during which both
stations have the data. The regression equation was later used to estimate the missing data.
Upon filling in the missing data gaps, the quality of the data was assessed before any analysis
was undertaken. It is worthy to mention that less than seven percent of the daily rainfall was
estimated. Continuous missing data were not estimated and such stations were excluded from

this study.

The double mass curve analysis was used to test the consistency of the rainfall data. The
method involves the comparison of the accumulated seasonal rainfall record at a station with
that of the accumulated seasonal rainfall of the nearby station. For homogeneous records, the

double mass curve appears as a single straight line.

The zonal and meridional components of the re-analysis wind at the closest grid points to the
two radiosonde stations were extracted. A simple correlation analysis between the time series
of zonal and meridional components of the radiosonde wind data at both Nairobi and Bangui
on one side and the closest grid points on the other hand was undertaken. The re-analysis
dataset which had the highest correlation coefficient over most of the upper air levels was
used. It has been observed that both NCEP/NCAR and ERA40 datasets are high-quality data
for application in climate related research. In the next section, the methodology used to

delineate the study area into near-homogeneous sub-regions is discussed.
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3.2.2 Regionalization of the study area into near-homogeneous sub-
regions

The classification of locations into spatial rainfall regimes with similar temporal rainfall

characteristics not only reduced the number of locations that are used in the study but also

reduced the local noise associated with observation from an individual location while

extracting spatially coherent signal. This in return made the interpretation of the results

easier. The principal component analysis (PCA) approach was used to attain this.

PCA analysis is one of the most efficient ways of compressing geophysical data both in space
and time, as well as separating noise from meaningful data. The technique aims at finding a
new set of variables that capture most of the observed variance from the data through linear
combinations of the original variables. PCA is in essence a non-model orientated tool, which
allows a time display and a space display of a space-time field such as temperature and

rainfall.

PCA is an orthogonal linear transformation that converts the data to a new coordinate system
such that the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on the second
coordinate, and so on. Each variable is transformed into a linear combination of orthogonal
(perpendicular) common components with decreasing variation. Each component carries
different information, which is not related with other components. PCA is used for
dimensionality reduction in a dataset while retaining those characteristics of the dataset that
contribute most to its variance, by keeping lower-order principal components and ignoring
higher-order ones. Such low-order components often contain the "most important" aspects of

the dataset.

PCA produces a visual representation of the relative positions of the data in a space/time of
reduced dimensions, thus indicating spatial/temporal relationships among the variables. The
position of each of the data points is defined by a series of axes, each of which represents

separate uncorrelated information.

The output is a covariance/correlation matrix denoting the transformation coefficients
(eigenvectors) listed in decreasing order of variation. The total variance accounted for by

each component is the eigenvalue.

The EOFs are generally plotted as contour or vector maps, from which one can assess which
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regions are closely related, inversely related or unrelated, as well as identify centres of
activity, regions of strong gradients among others. The relative importance of each mode is
determined by its associated eigenvalue, which is used to calculate the variance attributable to

that mode.

Let P be an m x n matrix of daily rainfall data, where m is the number of days and 7 is the
number of stations. This matrix can be decomposed into linear functions of m temporal and »

spatial vectors so that the rainfall observation P;; on day i at station j is

P,=2a.e,oP=ae (3.1)
k=1

where ajx 1s the element for day i in the kth time vector, and ey; is the element for station j in

the kth space vector.

The strength of the analysis is that often a large part of the spatial variability of the original
data can be reproduced using only a few of the space vectors. These may be interpreted in
relation to the underlying physical rainfall producing processes. The time vector may be seen
as a time series of weights, giving more or less weight to a particular space vector (spatial
rainfall pattern) each day. To recreate the original daily spatial rainfall pattern, the weighted

spatial patterns are superimposed.

The space vectors may be found using either the correlation or the covariance matrix of the
rainfall time series. The correlation matrix was used in this study. Svensson (1999) has
indicated that large scale rainfall patterns become less clear when the covariance matrix was
used over mountainous areas with the larger rainfall variances as compared to those on the
plain. The inhomogeneous terrains over the study region thus justify the use of the correlation

matrix.

Since the daily rainfall distribution at each station was skewed, the daily rainfall totals had to
be transformed. Two approaches of the transformation that can be used are the square-root
and logarithm transformations. Square-root transformation was used in this study since it is
easily applied unlike the logarithm one which gives some difficulties when zero rainfall
amounts are considered. The square-root transformed daily rainfall series works well over the
East Africa region (Birring, 1988; Camberlin and Okoola, 2003). Stephenson et al. (1999)

have indicated that square root transformation is the optimal variance stabilizing
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transformation for a Poisson process and thus is beneficial in stabilizing the variance of

sporadic rainfall time series.

The square-root transformed rainfall data P;, were standardized by subtracting the mean P s
of the time series for each station and then dividing by the standard deviation g;, so that the

new standardized rainfall A, is

:Plf/_]_)j
O

3.2)

4,

The symmetric n x n correlation matrix C, calculated with regard to the time series (i.e.

column-wise for the matrix A) is given by

AA
o

The correlation matrix can be decomposed into eigenvectors e, and associated eigenvalues A

(3.3)

(Svensson, 1999). The eigenvectors are the space vectors described by Equation 3.1, and the
corresponding eigenvalues are measures of the explained variance accounted for by each
eigenvector. The eigenvalues are obtained by solving Equation 3.4 while the eigenvectors

are obtained by solving Equation 3.5.
|IC-a1|=0 (3.4)

(C-al)e=0 (3.5)

Comprehensive details on the application of PCA in atmospheric science studies can be
found in von Storch and Zwiers (1999), Wilks (2006), Hannachi et al., (2007) and in Jolliffe
(2002) for the general application of EOF analysis.

There are at times some difficulties in interpretation of the obtained patterns (Ambaum et al.,
2001; 2002; Dommenget and Latif, 2002) because the physical modes are not necessarily
orthogonal. Spatial orthogonality and temporal uncorrelation of the PCs impose limits on
physical interpretability of loading patterns (Hannachi et al., 2007). This is because physical
processes are not independent and therefore physical modes are generally expected to be non-
orthogonal. Horel (1981) pointed out that if the first EOF has a constant sign over its domain,

then the second one will generally have both signs with the zero line going through the
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maxima of the first EOF.

The difficulties associated with interpreting PCAs have led to the development of more tools
to overcome this problem. The linear transformation of PCs, based on rotation is one such
tool which have been introduced and yielded the concept of Rotated Principle Component

Analysis (RPCA) as discussed by Richman (1986).

The main purposes of RPCA are to;

1) Alleviate the strong constraints of PCA mainly orthogonality/uncorrelation of
outputs and domain dependence of spatial patterns (Dommenget and Latif, 2002);
i) Obtain simple structures; and

i) Ease in the interpretation of the obtained patterns.

Rotation of the EOF patterns can systematically alter the structures of EOFs. Rotation of EOF
has the effect of redistributing the variance within the eigenvectors and therefore removing
the ambiguities while conserving the variance extracted by the selected subset of non-rotated
eigenvectors (Indeje, 2000). By constraining the rotation to maximise a simplicity criterion,

the REOF patterns can be made simple.

Given a p x m matrix, Uy, = (ul, u2, u3 ...., um) of the leading m PCA loadings, the rotation

is achieved by seeking an m x m rotation matrix R to construct the REOFs K according to;

K = UnB (3.6)
where £ is either R or (R")" depending on the type of rotation desired. The simplicity
criterion for choosing the rotation matrix for maximisation problem is expressed by;

max f (UnB) G.7

over a specified subset or class of m x m square rotation matrices R.

Various rotation criteria exist (Richman, 1986). However, they can be broadly classified into

two families (Jennrich, 2001; 2002) namely;-

1. Orthogonal in which the rotation matrix is chosen to be orthogonal and 5 =R.

2. Oblique in which the rotation matrix is chosen to be non-orthogonal and = (R")™.

Varimax orthogonal rotation was used in this study as oppose to the Quartimax oblique
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rotation for three reasons, namely:

1) The rotated PCA yield components that are easier to interpret physically.

i) Studies done over the East Africa region using this method have obtained
satisfactory results (Ogallo, 1980; Indeje, 2000; Ouma, 2000; Okoola and
Camberlin, 2003; Komutunga, 2006).

1ii) Thirdly and most important, by normalising the spatial eigenvectors to unity,
Varimax rotation produces uncorrelated components that satisfy the assumptions

of cluster analysis (Phillips and Denning, 2007).

Different authors have suggested different methods that can be used to determine the number
of principal components that should be retained for rotation (Kaiser, 1959; Anderson, 1963;
Castell, 1966; North ef al., 1982; Overland and Preisendorfer 1982). The method used in this
study to determine the number of the principal components to be retained and rotated is the

Monte Carlo simulation method.

The Monte Carlo method is used to simulate a statistical model under the assumption that a
given null hypothesis H, is true (von Storch and Zwiers, 1999). A matrix of random values of
the size of the observed data is generated, in which the temporal auto-correlation found in the
observed times-series is reserved. PCA is computed on this matrix, and the eigenvalues
stored. This procedure was repeated 500 times. All the eigenvalues are ranked and the 95t
percentile considered as the 95% confidence threshold, to which the actual eigenvalues of the
observed data set are compared. All eigenvalues higher than the threshold are judged

significant.

Rotated Empirical Orthogonal Function (REOF) and simple correlation analyses were used to
delineate the near-homogeneous rainfall sub-regions in East Africa using the quality-
controlled daily gauge rainfall. The approach used in this analysis is similar to the one
employed by Indeje (2000). Each Rotated Principal Component (RPC) time series obtained
from REOF analysis was correlated with the stations’ rainfall data and stations with
significant correlation coefficient identified. Delineation of a near-homogeneous sub-region
was accomplished by identifying the stations with the largest correlation with the RPC time

series associated with the eigenvector of the daily rainfall in a season.
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3.2.3 Baseline information of wet and dry spells

In order to successfully achieve the first specific objective of this study as outlined in section
1.3, several intraseasonal statistics (ISS) on the wet/dry spells were defined and computed at
both local (station) and sub-regional (near-homogeneous) levels as described in Table 3.4.
This provides the baseline information on the various aspects of daily rainfall performance as

supplied by the alternating wet and dry spells.

Initially, a threshold for separation of wet and dry days and the definition of wet and dry
spells was adopted. The frequency distribution of the wet and dry spells is determined, from
which the various intraseasonal statistics of wet and dry spells are computed. Simple
correlation analysis was undertaken to determine the association between the seasonal rainfall
totals and the various intraseasonal statistics of the wet and dry spells. The variation of the
seasonal rainfall totals and intraseasonal statistics of wet and dry spells with time was finally
assessed using the non-parametric Spearman rank correlation analysis. These steps are

elaborated in the subsequent sections.

3.2.3.1 Threshold used and definition of wet and dry spells

The occurrence of a wet or dry day is a mutually exclusive event (Chapman, 1998; Dobi-
Wantuch et al., 2000). A threshold for delineating wet and dry days is required when
analysing spells of rainfall since the frequency distribution of the length of the wet/dry spells
is highly skewed and depends on the selected threshold (Bérring et al., 2006).

Different authors have used different thresholds based on the aspect of the spells that they
need to consider. Dobi-Wantuch ef al. (2000) have indicated that the standard observational
threshold of 0.1 mm provides a good representation of precipitation conditions for some
observational records. Moon et al. (1994) and Matrin-Vide and Gomez (1999) have used 0.1
mm since it is the usual precision of rain-gauges. Frei et al. (2003) have used a higher
threshold of 1.0 mm since it is more resistant to measurement errors related to light rainfall.
Douguedroit (1987) and Lazaro et al. (2001) employed a threshold of 1.0 mm and argued that

rainfall less than this amount evaporated off directly.

Perzyna (1994) used a threshold of 2.0 mm in order to remove any events featuring less
rainfall and with very little significance in the river flow due to losses by interception and
evaporation. Ceballos et al. (2004) have used a threshold of 10 mm since rainfall below this

amount have only small effect on the soil water-content at a depth greater than Scm from the
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surface (Ceballos et al., 2002). Such rainfall remains at the surface of the soil or on its plant

cover, from where it readily returns to the atmosphere through evapo-transpiration.

Recent studies have mainly used more than one threshold for delineating the dry/wet days in
observational records. Gitau et al. (2008) have used 1, 3 and 5 mm thresholds based on the
average evapo-transpiration at the different locations in Kenya. Ambenje et al. (2001) have
used five thresholds of 1, 12.5, 25.4, 50.8 and 100 mm to study the frequency distribution of
days with precipitation above these thresholds over 19 countries in eastern and southern
Africa for the four standard seasons. Ceballos ef al. (2004) have used two thresholds of 0.1

and 10 mm to study dry spells on Duero basin in Spain.

In this study, a threshold of 1.0mm was used to delineate wet days from dry days. This was
mainly because of two reasons. First lower thresholds (less than 1.0mm) are more vulnerable
to measurement errors associated with light rainfall and readily evaporate given the higher
evapo-transpiration rate at the study region. Secondly, higher thresholds (more than 1.0mm)
substantially reduce the sample size of the data to be used for further analysis since they
greatly reduce the number of wet days. Other studies over East Africa that have used a

threshold of 1.0 mm include the work of Mungai (1984) and Ogallo and Chillambo (1982).

A dry day was therefore defined as any day that received rainfall less than 1.0 mm, while a

wet day was any day that received rain equal to or in excess of 1.0 mm.

Once the threshold for wet days was fixed, the next aspect was the definition of wet and dry
spells. Different authors have considered different definitions of the wet/dry spells. Two main
examples of such definitions are given here. Pefia and Douglas (2002) defined wet (dry)
spells as days when 75% or more (35% or less) of the stations along the Pacific side of

Nicaragua, Costa Rica, and Panama records rainfall.

However, most authors define wet and dry spells locally. Ogallo and Chillambo (1982) have
defined a wet (dry) spell of length i as a sequence of i wet (dry) days preceded and followed
by a dry (wet) day. It is this definition that was used in this study.

The intraseasonal statistics of wet and dry spells (ISS) can be defined at station (local), sub-
regional (near-homogeneous zone) or regional (the whole of study area) levels. This study
considers the former two levels and yields the concept of local intraseasonal statistics of wet

and dry spells (LISS) at station level and sub-regional intraseasonal statistics of wet and dry
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spells (SRISS) at near-homogeneous zone level. The 1.0mm threshold value was used to

derive both the LISS and SRISS.

3.2.3.2 Local intraseasonal statistics of wet and dry spells

Based on the threshold value and definition of wet and dry spells discussed above, the wet
and dry spells of varying lengths at local (station) level were tallied and organised into a
frequency distribution table as described in Gitau (2005), Tilya (2006) and Bamanya (2007).
From the frequency distribution tables, various intraseasonal statistics of the wet and dry
spells were computed. Table 3.4 gives a description of the various intraseasonal statistics that
were computed from the frequency distribution table for each year and at each station. In
addition, the seasonal rainfall totals was computed by summing up the daily rainfall

observations for each individual season.

It is worth clarifying at this point that in order to determine the above intraseasonal statistics
of the wet and dry spells, the dry periods before the first and after the last rainfall/wet spells
were excluded. This was in order to avoid the long dry spells that occur at the beginning and
at the end of the rainfall period, and which belongs to the preceeding and following dry
seasons respectively. To accomplish this and since the date of onset and cessation of the
rainfall period were not predetermined, the dry spells before (after) the first (last) wet spells

for each rainfall season were excluded from the dry spell analysis.
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Table 3.4: The various intraseasonal statistics of wet and dry spells computed

Statistic | Descriptive Name Definition Units
SR |Seasonal rainfall Total amount of rainfall received in a season mm
NW | Wet days number of wet days in a season days
ND |Dry days number of dry days in a season days
MW  |Mean length of wet |average duration of consecutive wet days days
MD |Mean length of dry |average duration of consecutive dry days days
LW |Longest wet maximum number of consecutive wet days
LD |Longest dry maximum number of consecutive dry days
3W |3 or more wet days |mean frequency of wet spells of 3 days or more
5D |5 ormore dry days |mean frequency of dry spells of 5 days or more
MI  |Mean intensity average rainfall on a wet day mm/day
3.2.3.2.1 Association with seasonal rainfall totals

The Simple/Pearson correlation analysis was used to assess whether there exist any
significant linear relationship between the derived local intraseasonal statistics of wet and dry
spells (LISS) and the seasonal rainfall totals. Since both the concurrent and lagged correlation
analysis were undertaken in other sections of the study, the equation for calculating the

simple correlation coefficient (Pearson) for both is given by Equation 3.8.

Sy -xly.-7)
P \/{Z(X -XH{Zl-7f]

Where o is the Pearson correlation coefficient between dependent variable X and
XV

(3.8)

independent variable Y at time lag K. X' and Y, are the dependent and independent

variables at time t while X and Y are the arithmetic means of X, and Y, at time t. N is

the length of the variable records. The simultaneous simple correlation coefficient is obtained

by setting k to zero in Equation 3.8.
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The significance of the calculated Pearson correlation coefficient was tested by computing
the ¢ statistic given by Equation 3.9. The computed ¢ statistic obtained was compared against

the tabulated critical values and appropriate conclusions drawn.

(3.9)

where the symbols have the same meanings as in Equation 3.8.

3.2.3.2.2 Trend analysis

The time series of meteorological parameters are often generated by a complex interaction of
a number of weather/climate systems. The temporal behaviour of such weather/climate
systems, in terms of trends and modes of variability is therefore of paramount importance for

understanding of climate and the assessment of its potential impacts.

The interannual variation of the local intraseasonal statistics of wet and dry spells (LISS) was
assessed for any significant trend using the Spearman rank correlation analysis. This is a non-
parametric approach based on ranks and is used here since there are very few underlying
assumptions about the structure of the data. This method produces robust results especially
when the observations are thought not to satisfy the normal distribution (Helsel and Hirsch,
1992). In addition, the use of ranks rather than actual values makes it insensitive to outliers

and missing values.

The sample {(X, Y,) fori =1, 2, 3 ---- n} is replaced by the corresponding sample of ranks
{(Rxi, Ryj) for i = 1, 2, 3 ---- n} where Ry; is the rank of X; amongst the Xs and Ry; is
similarly defined. The differences d between the ranks of each observation on the two
variables are then calculated. If there are ties, the tied observations are assigned the
corresponding average rank. The dependence between X and Y is then estimated with the

Spearman rank correlation coefficient p which is given by Equation 3.10;

6% d?

p=1- m (3.10)

where:
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d; = the difference between each rank of corresponding values of X and Y, and n = the
number of pairs of values. The significance of the computed spearman rank

correlation coefficient was tested by computing the statistic ¢ given by Equation 3.9.

3.2.3.3 Sub-regional intraseasonal statistics of wet and dry spells

Different methods can be used to calculate the sub-regional intraseasonal statistics (SRISS)
based on daily rainfall from several locations. At sub-regional level, the local noise
associated with observations from individual locations is minimized. The extraction of a
spatial coherent signal (if any) is an important step towards the assessment of the

predictability potential of a given climate variable.

Figure 3.4 shows a schematic diagram of three different approaches that can be used to
compute the SRISS. The first method involves computing the local intraseasonal statistics of
wet and dry spells (LISS) at individual locations, which are then averaged for a specific near-
homogeneous zone to obtain the SRISS. In the second method, the observed daily rainfall
amounts for several stations constituting a given sub-region (near-homogeneous zone) are
first averaged and the SRISS derived from the sub-regional areal-average rainfall. The final
method involves using the Principal Component Analysis (PCA) scores as obtained from
regionalization for each sub-region (near-homogeneous zone). In the case of the Principal
Component (PC) score, the threshold that could correspond to the 1.0 mm threshold which
was used at the station level was chosen. The daily rainfall data for all the n stations
constituting a near-homogeneous sub-region are grouped together into a single column and
sorted in ascending order (starting with the smallest). The percentile p, corresponding to the
value of 1.0 mm was then obtained. The Principal Component (PC) score was also sorted in
ascending order and the position (p/n) obtained. The PC score threshold used is the value that
corresponds to the p/n position rounded off upwards. This PC score value corresponds to 1.0

mm threshold used for station data.

Out of the three approaches available for computing the SRISS (Figure 3.4), the box-plot of
the correlation coefficients between the LISS and the SRISS was used to determine the best
approach for deriving SRISS. A comparative assessment carried out with SRISS obtained
using the three approaches shown that the second approach gives results that are inconsistent

with the other two.

The SRISS obtained were assessed for their association with seasonal rainfall totals at sub-



53

region level as well as their variation with time in a similar manner to those of the local
intraseasonal statistics of wet and dry spells (LISS). This completed the analyses necessary to

achieve the first specific objective of this study.

The second specific objective as outlined in section 1.3 was investigating the linkages
between the various sub-regional intraseasonal statistics of the wet and dry spells (SRISS)
including seasonal rainfall totals and dominant large scale climate fields that drive the global
climate during specific seasons. Initially the spatial coherence of the various intraseasonal
statistics of the wet and dry spells was assessed by undertaking inter-station correlation
analysis. This provides an indirect measure of potential predictability. The indices of Nifio,
IOD and SST gradients were used as the predefined predictor indices. Total and partial
correlation analyses were then used to quantify the relationship between various SRISS and
large scale climate fields. This enabled the identification of locations from which additional
potential predictor indices were extracted. Plausible physical/dynamical explanation and
comparative location assessment helped to reduce the number of the additional potential
predictor indices. The various steps which were undertaken are discussed in details in the

following sections.
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Quality controlled daily rainfall from several locations

1(a) (b) 1(c)
v
Compute intraseasonal Compute the sub-regional Compute the sub-regional
statistics at local level areal-average rainfall Principal component
(L1SS) r :
Compute the sub-regional Compute ISS based on sub- Compute ISS based
average of these LISS regional areal rainfall average on PCA scores

Sub-regional intraseasonal statistics (SRISS)

Figure 3.4: Schematic diagram on different approaches of calculating sub-regional intraseasonal statistics of wet and dry spells
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3.2.4 Spatial coherence and potential predictability

Precipitation is the most difficult climate component for models to forecast, because it
involves both microscopic and macroscopic physical processes, it is closely related not only
to the large scale weather situation but also to the small scale weather systems, and is
influenced by the atmospheric thermodynamics and local topography. The fact that there is
no high-variance principal component (unrotated or rotated) or any significant component
with high loadings over a large part of the study region implies that there is only limited
coherence in the intraseasonal statistics (Haylock and McBride, 2001). It therefore means that
no single predictor (such as IOD, SST-derived indices) is likely to explain a high proportion
of the intraseasonal statistics of the wet and dry spells over the entire study region. Higher

spatial coherence implying fewer predictors would explain most of the variance.

Before any relationship between the derived intraseasonal statistics of wet and dry spells and
the large scale atmospheric fields was evaluated, it was necessary to assess the spatial
coherence of these statistics (Equation 3.8). Potential predictability may be inferred from the
spatial coherence analysis of sub-regional scale anomalies based on the hypothesis that any
large scale climate forcing such as the Sea Surface Temperature would tend to give a rather
spatially uniform signal (Haylock and McBride, 2001). Low spatial coherence of any of the
intraseasonal statistics indicates that the signal is localized and thus the sub-regional potential
predictability is reduced, since any large scale forcing may be masked by stronger local

effects.

The intraseasonal statistics derived at local level were used. The inter-station correlation
(same as spatial correlation) coefficient of a given statistic was computed for all the locations
constituting a given sub-region. The results obtained are represented as box-plot. This was
done for the six sub-regions during the long and short rainfall seasons. A box-plot provides a
convenient way of graphical depicting groups of numerical data through the five-number
summaries (the smallest observation, lower quartile (Q1), median (Q2), upper quartile (Q3)
and the largest observation). Figure 3.5 shows an illustration of the statistical summaries

provided by the box-plot.

To derive the spatial coherence of each intraseasonal statistic for the whole study region, the
inter-station correlation coefficients of a given intraseasonal statistic for all the near-
homogeneous sub-regions were also plotted as a single box-plot. A smaller box-length would

indicate that the intraseasonal statistic in question at local levels is highly correlated. A higher
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median correlation would imply higher potential predictability of the rainfall component.

The total local variance of each intraseasonal statistics that is accounted for by the sub-
regional areal-average ones was also evaluated. This was achieved by computing the simple
inter-station correlation coefficient between the sub-regional intraseasonal statistics and the
individual local indices. The correlation coefficients obtained over all the near-homogeneous
sub-regions were averaged. The single simple correlation coefficient that was obtained relates
the sub-regional intraseasonal statistics and the individual local ones. The total local variance

explained will be the square of this single simple correlation coefficient.

. — EXtreme value — greater than 3 box lengths above the box

8} <4 Qutliers — greater than 1.5 box lengths above the box

/ Largest observed value within 1.5 box lengths above the box
G \Wiisker
4 Upper Quartile

4 Median

Box length

4 L Ower Quartile

\ Whisker

Smallest observed value within 1.5 box lengths below the box

0 &— Outliers — greater than 1.5 box lengths below the box

. — EXxtreme value — greater than 3 box lengths below the box

Figure 3.5: Diagram showing the box-plot statistical summaries
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3.2.5 Linkages with large scale climate fields

The selection of suitable predictors for each of the sub-regional intraseasonal statistics of wet
and dry spells (the predictands) was carried out in three successive steps:
(1) Identification of potential predictors within previously defined indices known
to affect East African climate that is the ENSO, IOD and SST-gradients
documented by Nyakwada (2009);
(i) Identification of additional potential predictors based on large scale oceanic
and atmospheric fields; and

(iii)  Actual predictor selection within the pool of potential predictors.

Because of the limited spatial coherence of most predictands, the analysis was done at sub-

regional scale. The details of the above steps are discussed in the following sections.

3.2.5.1 Predefined / already documented predictors

Previous studies have documented strong relationship between the interannual variability of
East Africa rainfall and SST over the global oceans. Ogallo (1988), Ogallo et al., (1988),
Goddard and Graham (1999), Indeje et al. (2000) and Mutemi (2003) among others have
shown that the tropical part of the Pacific Ocean influence the equatorial East Africa through
ENSO teleconnections. The Nifio indices which describe the oceanic component of the
ENSO were used in this study. The atmospheric component of the ENSO was found to be

less strongly correlated with the rainfall totals and intraseasonal statistics and hence not used.

The influence of the Indian Ocean on the interannual variability of East Africa rainfall is now
well understood and indices have been developed to quantify this relationship (Goddard and
Graham, 1999; Saji et al. 1999; Reason, 2001; Black et al. 2003; Clark et al. 2003; Owiti,
2005; Hastenrath, 2007). The Indian Ocean Dipole (IOD) index is one such index and was
used in the current study. Though the relationship between the Atlantic Ocean and eastern
Africa rainfall remained not well understood, Nyakwada (2009) has recently documented
Atlantic-Indian Ocean Dipole index that suggests useful linkage with seasonal rainfall totals

over the eastern Africa region.

The Nifio, IOD and SST gradient indices documented in Nyakwada (2009) constituted the
lists of the predefined predictors used in this study. These predictors are already being used
over the study region by IGAD Climate Prediction and Applications Centre (ICPAC) for

operational purposes in monitoring of rainfall performance and seasonal rainfall prediction.
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The concurrent and lagged simple correlation analysis between the sub-regional intraseasonal
statistics of wet and dry spells (SRISS) and predefined predictor indices was first determined
and the predictor index retained if the coefficient was significant at 95% confidence level.
Previous studies have shown significant association of these indices with rainfall totals
especially during the short rainfall season over the Eastern Africa region (Ogallo, 1988;
Mutemi, 2003; Black et al., 2003; Black, 2005; Owiti et al., 2008, Nyakwada, 2009). It is
proposed here that these predefined predictor indices may also have some predictive potential

for the intraseasonal statistics of wet and dry spells defined in this study.

3.2.5.2 Search, identification and extraction of additional potential

predictors

Additional potential predictors were searched from both the oceanic and atmospheric fields.
Sea Surface Temperature constitutes the oceanic field while the atmospheric variables
considered are the zonal and meridional components of the wind vector, the geopotential
height and the specific humidity. The atmospheric variables were restricted to three levels
namely 925mb, 700mb and 200mb representing the lower, middle and upper levels

respectively.

Two approaches can be used to search and identify predictor (both oceanic and atmospheric)
indices. The first approach involves plotting correlation maps with the predictand and
extracting an index over a region showing high correlations. The predictor index is a time
series obtained by computing the spatial average of several grid-points that have significant
association with the predictant. This uses the full resolution of the predictand field. The
second approach uses pre-defined possible predictors either as regional indices computed
from gridded data, or derived from a Principal Component Analysis. A stepwise procedure is

then used to select indices which relate to the predictand.

In this study, a modified version of the first approach was used to search and identify oceanic
predictors. The oceanic field was initially nested. Grids at 3° by 3°, covering the region
(50°W - 120°E, 30S - 30°N) were used for the oceans adjacent to Africa (Figure 3.6) while
coarser grids at 9° by 9° covered the region (180°W — 180°E, 45°S — 45°N), excluding the
inner region. The rationale behind the nesting was that SST anomalies with large spatial
extent at far distance may be expected to influence the East Africa climate just like SST

anomalies with small spatial extent at close distance.
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The three atmospheric variables were not nested as such. However, the predictor search was
confined to region (80°W — 120°E, 45°S — 45°N). The choice of this region was based on the
fact that it includes the sub-tropical anticyclones which control moisture fluxes towards East
Africa. It also enables the depiction of the wind features which directly affect East African
climate, such as the Indian Ocean monsoon, the Indian and Atlantic Ocean Walker-type
circulation cells, the Tropical Easterly Jet, the Subtropical Westerly Jets among others. It is
worthy to mention that there was an assumption that higher latitude (latitudes beyond 45°N or
45°S) oceanic and atmospheric systems, at seasonal scale do not influence the rainfall

characteristics over equatorial eastern Africa.
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Figure 3.6: Map showing the nesting of the SST grid points. Red plus (+) are the fine
grid resolution while the black plus (+) are for the coarse grid resolution.

The partial correlation between the predictands (rainfall totals as well as intraseasonal
statistics) and the Hadley centre SSTs, atmospheric variables of zonal and meridional winds,
specific humidity and geopotential height were then calculated while controlling the
influence of the predefined predictor indices (in section 3.2.5.1) that were significant at 95%
confidence level. This provided a list of additional potential predictors for the rainfall totals
and the different intraseasonal statistics. The rationale behind the partial correlation analysis
was that many large scale climate fields are influenced by major modes of variability such as
ENSO (already described by the indices used in step 1) hence full correlation with East
Africa rainfall may at times only reflect co-variations induced by the common forcing rather

than a physical relationship.

Partial correlation z- ~ allows us to determine what the correlation between any two
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variables say X and Y would be, if the third variable W is held constant. This ensures that no
variance predictable from W enters the relationship between Y and X. In z-score form, we
can predict both X and Y from W, then subtract those predictions leaving only information in

X and Y that is independent of W, as follows.

éX:rXWZW and EYZI/'YWZW G.11)

where 7 and 7, are the predicted z-scores for X and Y respectively. Subtracting these
predicted scores, we obtain
ZX(res):ZX_éX:ZX_rXWZW (3.12)

with variance (] — I”;W) and

ZY(re:):ZY_éYZZY_rYWzW (313)

with variance (] — I"iw) , where 7 (res) and 7, (res) ATC the residual information in X and Y

controlling W. The partial correlation, in the form of a covariance divided by the two

standard deviations, then equals
Z ZX(res) ZY(reS)
2 2
N A =ro)1 =)

Substituting Equations 3.12 and 3.13 into the numerator of Equation 3.14, we get

View = (3.14)

_ Z(ZX_I"XWZW)(ZY_I"YWZW)

N A7) 75

(3.15)

Vyxw

which gives

- _ Z(ZXZY)/N _rYWZ(ZXZW)/N _’/'XWZ(ZYZW)-i_rXWrYWZZiV/N
o Va4 =) -7

(3.16)

But Equation 3.8 in z-score form becomesrXY:z(ZXZY)/N . Thus Equation 3.16

reduces to

Vxy VwwlVsw  Vxwlow T VoxwVyw
Vyxw — > >
\/(1 _VXW)(I _I"YW)

(3.17)

which finally becomes
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_ Vxy " VywV xw
Vyxw = 2 2
JA =7 =73

(3.18)

This is the equation for a partial correlation that was used to search and identify predictors
from the oceanic and atmospheric variables. The partial correlation approach has been
successfully used by Behera et al. (2005) in determining the effect of IOD (ENSO) on short
rainfall over Eastern Africa while the effect of ENSO (IOD) is removed.

Partial correlation maps were then produced. It was from these maps that the highly
correlated regions were identified and used to compute the new indices. It is worthy to
mention that the correlation box identified were at least 5° by 5° for the atmospheric variables
and 6° by 6° for the oceanic variable. This means that at least four grid points were averaged
for the atmospheric variable predictors (since they are gridded at 2.5° by 2.5°) and oceanic
variable predictors (fine grid nested at 3° by 3°). This was to ensure that the predictors have
less noise, remain stable and do not vary too fast from the time the forecast is made until the
time the observations are made. Mutai et al. (1998) have combined the UK Met. Office SST
version 4 (MOHSST4) which are initially at 1° by 1° to form a 10° by 10° grid boxes to
improve data coverage and reduce noise. Gong et al. (2003) have further demonstrated that

spatial aggregation increases the skill of seasonal total precipitation forecasts.

At times, none of the predefined indices were significantly correlated with the rainfall totals
and intraseasonal statistics. In such situations, concurrent and lagged simple correlation
analyses were first undertaken with Hadley Centre SSTs. The significant SST predictors
identified were then used to undertake partial correlation with the atmospheric variables.
There were also cases where two or more predefined predictors were significantly related to
the same intraseasonal statistics but highly dependent on each other. The predictor that was
most frequently picked was used. In case both predictors are equally frequently occurring, the
predictor with the highest correlation coefficient was retained. In case two or more predefined
predictors which are not significant related to each other were identified, there were all

retained.

3.2.5.3 Selection of robust potential predictors

The foregoing procedure yielded quite a large number of oceanic and atmospheric predictors.
There was therefore the need to reduce the high number of predictors. In this study, apart

from the use of standard statistical methods, the selection of the potential predictors was also
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based on the physical interpretation of the relationship with East Africa rainfall. Only those
predictors with a plausible physical/dynamical relationship were retained and later used to
generate the regression model. The interpretation of the lag-relationship was based on the
persistence of the predictor within its geographical location or its modulation on other climate

variables especially the Sea Surface Temperature (for atmospheric variables).

Similarly, upon identification of the several predictors for the different intraseasonal
statistics, comparative analysis was undertaken to identify the predictors that were more or
less located at the same position with a shift of a few degrees of latitude or longitude. This
not only reduced the number of predictors further but also ensured that only robust predictors
were retained. The number of predictors had to be reduced since we need to include only
those predictors that have significant association with our predictants. Robust predictors are
those predictors with strong and consistent association with the predictants and are further
supported by logical physical or dynamical linkage with the majority of the predictants. Small
shifts in the location of the predictors from one predictand to the next are likely to reflect
sampling errors rather than real climatic features. The main misgiving with these steps was
that the variance explained by the regression models developed from these few predictors
was likely to be slightly reduced. However as observed in Philippon (2002), it is desirable

that physical consistency outweighs statistical skill in empirical climate prediction.

3.2.6 Development of regression models

The final specific objective as outlined in section 1.3 was predictability assessment of the
various intraseasonal rainfall variables through statistical models based on the linkages
already identified, for the improvement of early warning systems. Forward stepwise
multivariate linear regression (MLR) analysis was used to develop empirical statistical
prediction models with sufficient lead time. The concept of the adjusted correlation
coefficient was used to determine the number of predictors to be retained in the model. The
cross validation method and calculation of the Linear Error in Probability Space (LEPS) skill
score were used to assess the performance of developed MLR models. The residuals from the
models developed were finally evaluated using the Durbin-Watson statistics and
Kolmogorov-Smirnov test. The intraseasonal statistics with correlation coefficient of less
than 0.5 between the observed and the cross-validated model output time series were

classified as unpredictable.
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3.2.6.1 Multivariate Linear Regression

The multivariate linear regression (MLR) approach is a common method in seasonal climate
prediction. It is the most frequently used method over the East Africa region and has provided
seasonal forecasts with useful skills (Mutai et al., 1998; Camberlin and Philippon, 2002;
Korecha and Barnston, 2007; Nyakwada, 2009). Statistical relationships between various
wet/dry spells statistics and oceanic/atmospheric predictors were developed using forward

stepwise MLR approach at sub-regional scale.

In the forward stepwise MLR approach, each predictor variable is entered into the regression
model in an order determined by the strength of their correlation with the predictand. The
effect of adding each predictor is assessed and the predictor retained if it contributes
significantly to the variance explained by the model. This procedure is repeated until all the
predictors that contribute to the variance of the model are retained. Those predictors that do

not significantly contribute to the explained variance of the model are thus left out.

A MLR model which expresses intraseasonal statistics at any specific time t (¥;) as a function
of atmospheric and oceanic predictors at time lag k (X;.1x) may be expressed in Equation

3.19;

Yt:a +b1X1t+k+b2X2t+k+ """"" +anm+k (3'19)

For zero lagged relationship, Equation 3.19 becomes;

Y=a+b X.,th, Xt +b. X (3.20)

where a is the regression constant and b; are regression coefficients. Both the regression

constant and coefficients were estimated from available records.

The strong inter-correlation between the predictors leads to multi-collinearity which means
that the predictors are non-orthogonal. This results to lacks of the model’s accuracy and may
lead to unclear interpretation of the regression coefficients as measures of original effects
(Mc Cuen, 1985). It further imposes the problem of redundancy and unnecessary loss of
degrees of freedom especially when large numbers of correlated predictors are used (Krishna
Kumar et al., 1995). To increase the reliability of regression models while using the multi-
collinearity predictors, the variance inflation factor, VIF (Fox, 1991) should first be

determined. The VIF measures how much the variance of the estimated regression
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coefficients are inflated by multi-collinear predictors compared to when the independent
variables are uncorrelated. In the current study, only independent variables that are
uncorrelated were used to generate the regression model since the variance inflation factor

was not calculated.

The cross validation method was used to test the developed MLR models for the various sub-
regional intraseasonal statistics of the wet and dry spells (SRISS). This method involves
temporarily discarding observations from the dataset and then estimating the discarded
observations. The estimated values are then compared with the discarded value (Isaaks and
Srivastaka, 1989). In this study, three values were left out each time and regression models
developed with the remaining values. The regression model developed was then used to
estimate the discarded values. The method was used since the available time series of SRISS
was not long enough to enable the subdivision of the time series into training and verification
periods. More details of cross validation method can be obtained from Issaks and Srivastaka

(1989), Barnston et al. (1996) and Wilks (2006).

3.2.6.2 Number of predictors to be retained

A popular measure of the strength of association in linear regression between the observation
and the model output is the coefficient of determination R, defined as the proportion of
variability in the outcome variable explained by the model. However, a serious problem with
this measure is that it can substantially overestimate the strength of association when the
number of predictors p, is not small relative to the number of observations n. It can attain its
maximum value of 1 for any saturated model even when the predictors and outcome are
independent of each other. The adjusted coefficient of determination overcomes this problem
(Liao and McGee, 2003). The adjusted coefficient of determination, in the forward stepwise
MLR analysis, discourages incorporating additional predictors that will make little marginal
changes in the unexplained variance. The adjusted R accounts for the number of the
predictors in the model and only increases if the new predictor improves the model more than
would be expected by chance. The number of predictors to be retained in the final MLR
model was thus determined from the adjusted R* of the cross-validated model. When the
addition of a new predictor results in a decrease of the adjusted R” or remains unchanged, the

new predictor was excluded and the model was developed with the previous predictors only.
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The adjusted R? is defined as

R =1- n—_l (1 — RZ) (3.21)
n—p-1

where p is the number of predictors, n is the number of observations and R is the correlation

coefficient.

Equation 3.21 means that the adjusted R’ incorporates only the unexplained (from the
denominator term) and total variance (from the numerator term). Delsole and Shukla (2002)
and Nyakwada (2009) have observed that fewer predictors tend to produce better models than

those developed using large numbers of predictors.

In addition to the adjusted R’, the Analysis of Variance (ANOVA) was used to test the
statistical significance of the regression constants, together with the variance accounted for
by oceanic and atmospheric predictors. Details of ANOVA test and other regression
principles can be obtained from Kendall and Stuart (1961), Kendall (1976), and Wilks (2006)

among other authors.

3.2.6.3 Assessment of the model performance

Several methods can be used to assess the performance/skill of prediction models. Zhang and
Casey (2000) have broadly grouped them into four categories and highlighted their
advantages and disadvantages using the Australian winter and summer seasonal rainfall
forecast model hindcasts for a period of 96 years. The Linear Error in Probability Space
(LEPS) score that was developed by Ward and Folland (1991) and later refined by Potts et al.
(1996) was used in this study.

LEPS is defined as the mean absolute difference between the cumulative frequency of the
model forecast and the cumulative frequency of the observations (Jolliffe and Stephenson,
2003). It evaluates the model skill by penalizing errors in terms of the distance between
forecasts and observations in cumulative probability space. It gives relatively more penalty
when forecasting events around average values but gives relatively higher scores and less

penalty for forecasts of extreme events (Zhang and Casey, 2000).
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The normalized linear error in probability space score is given by

+ P.—P-+Po,—P,)—1 (.22

S”:3(1_|PF_PO

Where P, is the cumulative probability distribution of the observations and P, is the

cumulative probability distribution of the regression model forecasts. A maximum score of 2

is achieved when P,= P,=0 or P,= P,.=1 while a minimum score of -1 is attained

when P,=0 and P,=1 or P,=1 and P,=0. It is often desirable to have a measure of

overall skill over a range of -100% to 100%. For a sufficiently large ensemble of forecast
being assessed together, a method has been developed. To achieve the skill range from -100%
to 100%, the average skill (SK) for continuous, categorical and probability forecasts is

defined by equation 3.23.

51008

SK = :
28,

(3.23)

where the summation is over all pairs of forecasts and observations. The definition of

S . depends on whether the number is positive or negative. If positive, S ,, 1s the sum of the

maximum possible scores given by the observations. If the numerator is negative, Sm is the

sum of the modulli of the worst possible scores given the observations. That in short means
that negative values of SK score indicate that the models developed are worse off than
climatology while positive values indicate that the models are better off than climatology. A
value of zero means that the model is as good as the climatology. More details of its
derivation can be found in Potts et al. (1996). Camberlin and Philippon (2002) have

previously used this skill score measure over Eastern Africa.

3.2.6.4 Residual analysis from the regression models

A good multivariate linear regression model requires that the residuals (the difference
between the actual observations and the forecasted values) are independent and have a
normal distribution (Nayagam et al., 2008). The Durbin—Watson statistic checks the
significance of the assumption that the residuals for successive observations are uncorrelated

/ independent. Its value ranges from zero to four. Values more than two indicate that there



67

exists some negative autocorrelation and values less than two, a positive autocorrelation. The

Durbin—Watson (DW) statistic is defined as

i (ET - ET—l )2
DWW =2 (3.24)

> E;

where N is the number of residuals, Er is the residual at the time 7 and

Et. is the residual at time7-1.

The values of the Durbin-Watson statistic are compared with the critical values tabulated by
Farebrother (1980) since the regression models generated did not have the constant term. If
there exists any kind of significant lag one autocorrelation, then the assumption of
independence of residuals is violated and the model can be improved further (Makridakis et

al., 1998).

One sample Kolmogorov-Smirnov test was used to ascertain that the residuals were normally
distributed. Kolmogorov-Smirnov test determines whether an underlying probability
distribution from a finite sample differs from a hypothesized distribution by comparing the
empirical distribution function with the cumulative distribution function specified by the null
hypothesis. Minor improvements made by Lilliefors leads to the Lilliefors test (Lilliefors,

1967).

The null hypothesis is that the residuals from the multivariate linear regression (MLR)
models are normally distributed. The alternative hypothesis is that the residuals have a

distribution different from the normal distribution function.

3.3 Limitations and assumptions of the study

In the scientific studies including climatology and meteorology, there are limitations that one
comes across and assumptions that have to be made in order for the study to move forward.

The current study was not an exception.

The first major limitation was that the many rainfall stations that were established in the
colonial period have been stopped due to the high cost of operations. Only a few stations
established in the colonial period still exist today which means that stations/locations with
long time series of the daily rainfall series are limited. This had an effect on the network of

the stations used. Another limitation was the slow pace of data digitization especially for the
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non-synoptic stations. This has an effect of reducing the length of the data records for the

stations used.

Based on the foregoing limitations, several assumptions were made. The first assumption
made was that the station network and study period used in this study is representative of the
study region based on availability of long uninterrupted time series of daily rainfall series.
The results obtained and conclusions made may therefore have slight differences with similar
studies made over the study region at a different time especially in the context of the climate

change aspect.

Another assumption made was that higher latitude (latitudes beyond 45°N or 45°S) oceanic
and atmospheric systems, at seasonal scale, do not distinctly influence the rainfall
characteristics over the equatorial eastern Africa. The search of the linkages between the
intraseasonal statistics of the wet and dry spells was therefore confined to the equatorial,

tropical and mid-latitudes regions.

The nesting of the oceanic field was based on the assumption that SST fields with large
spatial extent at far distance may be expected to influence the East Africa climate just like
SST fields with small spatial extent at close distance. For atmospheric fields, the lower,
middle and upper atmospheric levels can be adequately represented by the 925mb, 700mb
and 200mb. The search for linkages with atmospheric variables from re-analysis was
therefore restricted to these levels with the exception of the specific humidity which excluded

the upper atmospheric level.

Small shifts in the location of the predictors from one predictand to the next were assumed to
reflect sampling errors rather than real climatic features. This tends to slightly reduce the
variance explained by the multivariate linear regression models developed from these few
predictors. Philippon (2002) has indicated that it is desirable that physical consistency

outweighs statistical skill in empirical climate prediction.

The identification of linkages between the large—scale climate fields and interannual
variability of the sub-regional intraseasonal statistics of the wet and dry spells (SRISS) was
done by total and partial linear correlation analysis. The multivariate linear regression
models that are developed to predict the SRISS were also linear. These two assumptions were
made despite the fact that climatic processes are non-linear. Under certain circumstances, the

predictive part may therefore be underestimated.
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The results obtained and conclusions derived in the next chapter are thus based on these

major assumptions, taking into account the limitations already stated.
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CHAPTER FOUR
RESULTS AND DISCUSSIONS

4.0 Introduction

This chapter presents the results obtained from various methods that were used to achieve the
overall and specific objectives of the study. The results from data quality control analysis are
however presented first since the quality of the data used in any study form fundamental basis
upon which the information is derived and conclusions drawn. The methods used to estimate

the missing data and the quality control checks were presented in section 3.2.1.

4.1 Data management

4.1.1 Double mass curve homogeneity test

Results from the double mass curve analysis of the gap-filled daily rainfall data indicated that
a single straight line could be fitted to the cumulative seasonal rainfall totals for any two
chosen stations. These results were similar to those obtained by Gitau (2005) and Komutunga
(2006) among others. Figures 4.1 and 4.2 show typical examples of the double mass curve

that were obtained for the long and short rainfall season respectively.
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Figure 4.1: Double mass curve for Mwanza and Musoma during the long rainfall season
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Figure 4.2: Double mass curve for Kabale and Bushenyi during the short rainfall season

4.1.2 Comparison of radiosonde with re-analysis data

The correlation coefficients between monthly radiosonde observations and re-analysis zonal
wind component for both NCEP/NCAR and ERA with the seasonal cycle not removed are
given in Table 4.1. From this table, it was quite clear that the correlation coefficients between
radiosonde observations and ERA40 and NCEP/NCAR re-analysis at most standard pressure
levels are high with Nairobi data, but relatively low for Bangui. For Bangui, both re-analysis
records accounted for 8% to 33% of the variance of the radiosonde zonal wind observations
at the various standard pressure levels considered. Deseasonalised data for both the reanalysis
and radiosonde observations gave similar results hence are not discussed. The ERA40
accounts for slightly higher variance of the radiosonde data observations for both Nairobi and

Bangui at most standard pressure levels considered compared to NCEP/NCAR re-analysis.
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Table 4.1: Correlation coefficient between radiosonde observations at Bangui and
Nairobi and monthly re-analysis data from the nearest grid-point

850mb | 700mb | 500mb | 200mb | 150mb

Nairobi Radiosonde | ERA40 - 0.837 0.788 0.877 0.847

U-component NCEP - 0.794 0810 0.809  0.823

Bangui Radiosonde | ERA40 | 0.508  0.510 0.290 0.574 -

U-component NCEP | 0416 0368 0287  0.543 -

Several evaluations have indicated superior performance by ERA40 over NCEP/NCAR on
some facets of the re-analyses. A comparison of the re-analyses of moisture budgets by
Stendel and Arpe (1997) concluded that the ERA40 precipitation fields were superior in the
extra-tropics to those of other re-analyses when compared with Global Precipitation
Climatology Project (GPCP) observational data. Annamalai et al. (1999) found the ERA40 to
be better in describing the summer Asian monsoon. Engelen et al. (1998) confirmed the
ECMWEF re-analysis water vapor fields in the lower and upper troposphere were superior.
Newman et al. (2000) evaluation of the NCEP, National Aeronautics and Space
Administration (NASA), and ERA40 which focused especially on the warm pool area of the
Pacific from the standpoint of outgoing longwave radiation, precipitation and 200-mb
divergence, found substantial problems with all re-analyses, although ERA40 gave the best

estimates of the 200-mb divergence.

A study by Camberlin et al. (2001) over Africa, south of Sahara using split moving-windows
dissimilarity analysis (Cornelius and Reynolds, 1991; Kemp ef al., 1994) has shown that
major discontinuities exist in the time series of five NCEP/NCAR variables considered prior
to 1968 at nearly all levels but more widespread for the lower troposphere. The five variables
that were considered are the zonal (u) and meridional (v) components of the wind,

geopotential height (), air temperature (T) and specific humidity (H).

The observed differences in the re-analysis datasets are due to the different observational
databases, different analysis systems that may run at different resolutions, and different
model dynamics and physics. In the tropics, the constraint of geostrophy on the divergent
circulation is weak and thus there is considerable sensitivity to the diabatic heating field
particularly that associated with moist processes (Annamalai et al., 1999). In data sparse

areas, the analysis heavily depends on the first guess supplied by the forecast model which in
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return will be sensitive to the diabatic heating distribution produced by the physical

parameterizations used in the model.

The consistency of the ERA40 in replicating the radiosonde observations at the two locations
indicates the degree to which it represents the truth and hence its reliability when used for
model development and validation. It was therefore used in the subsequent analysis in this

study.

For the data management, the study concluded that the daily rainfall observations were of
good quality and ERA40 re-analysis was most representative of the radiosonde observations.
They could therefore be subjected to further analyses in order to attain the overall and
specific objectives of the current study. These quality controlled data formed the foundation
of all the analyses that were undertaken in this study. The results of zoning the study domain

into few near-homogeneous sub-regions are discussed in the next section.

4.2 Near-homogeneous sub-regions for the study area

Most of the zoning of rainfall network into near-homogeneous rainfall sub-regions over the
East Africa has been based on the Rotated Principal Component Analysis (RPCA). These
include the studies by Ogallo (1980), Basalirwa (1991), Indeje et al. (2000) and Komutunga
(2006) among others. However, none of these studies have zoned the Eastern Africa region
into near-homogeneous rainfall sub-regions based on the observed gauged daily rainfall. The
results obtained from this study were nevertheless compared with those of other studies that

used observed gauged rainfall data at other timescales.

Application of the Rotated Empirical Orthogonal Functions (REOF) and simple correlation
analysis to the gap-filled quality controlled daily rainfall data yielded 6 near-homogenous
rainfall sub-regions for both the long and the short rainfall seasons as shown by Figures 4.3
and 4.4 respectively. This simply means that only 6 Principal Components were found to be
significant at 95% confidence level according to Monte Carlo testing. It should be stressed
that REOF produces patterns of rainfall variability rather than patterns of actual rainfall since
the data after square-root transforma