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INTRODUCTION 

 

Nowadays, Turbo and LDPC codes are two families of codes that are extensively used in current 

communication standards due to their excellent error correction capabilities. However, hardware design of 

coders and decoders for high data rate applications is not a straightforward process. For high data rates, 

decoders are implemented on parallel architectures in which more than one processing elements decode the 

received data. To achieve high memory bandwidth, the main memory is divided into smaller memory banks 

so that multiple data values can be fetched from or stored to memory concurrently. However, due to 

scrambling caused by interleaving law, this parallelization results in communication or memory access 

conflicts which occur when multiple data values are fetched from or stored in the same memory bank at the 

same time. This problem is called Memory conflict Problem. It increases latency of memory accesses due to 

the presence of conflict management mechanisms in communication network and unfortunately decreases 

system throughput while augmenting system cost. 

 

To tackle the memory conflict problems, three different types of approaches are used in literature. In 

first type of approaches, different algorithms to construct conflict free interleaving law are proposed. The 

main reason to develop these techniques is to construct “architecture friendly” codes with good error 

correction capabilities in order to reduce hardware cost. However, architectural constraints applied during 

code design may impede error correction performance of the codes. In a second type of approaches, different 

design innovations are introduced to tackle memory conflict problem. Flexible and scalable interconnection 

network with sufficient path diversity and additional storing elements are introduced to handle memory 

conflicts.  However, flexible networks require large silicon area and cost. In addition, delay introduced due 

to conflict management mechanisms degrades the maximum throughput and makes these approaches 

inefficient for high data rate and low power applications. In third type of approaches deals with algorithms 

that assign data in memory in such a manner that all the processing elements can access memory banks 

concurrently without any conflict. The benefit of this technique is that decoder implementation does not need 

any specific network and extra storage elements to support particular interleaving law. However, till now no 

algorithm exists that can solve memory mapping problem for both turbo and LDPC codes in polynomial 

time.  

 

The work presented in this thesis belongs to the last type of approaches. We propose several methods 

based on graph theory to solve memory mapping problem for both turbo and LDPC codes. Different formal 

models based on bipartite and tripartite graphs along with different algorithms to color the edges of these 

graphs are detailed. The complete path we followed before it is possible to solve mapping problem in 

polynomial time is hence presented. For the first two approaches, mapping problem is modeled as bipartite 

graph and then each graph is divided into different sub-graphs in order to facilitate the coloring of the edges. 

First approach deals with Turbo codes and uses transportation problem algorithms to divide and color the 

bipartite graph. It can find memory mapping that supports particular interconnection network if the 

interleaving rule of the application allows it. Second approach solves memory mapping problem for LDPC 

codes using two different complex algorithms to partition and color each partition. In the third algorithm, 

each time instance and edge is divided into two parts to model our problem as tripartite graph. Tripartite 
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graph is partitioned into different sub-graphs by using an algorithm based on divide and conquer strategy. 

Then each subgraph is colored individually by using a simple algorithm to find a conflict free memory 

mapping for both Turbo and LDPC codes. Finally, in the last approach tripartite graph is transformed into 

bipartite graph on which coloring algorithm based on Euler partitioning principle is applied to find memory 

mapping in polynomial time. 

 

Several experiments have been performed using interleaving laws coming from different 

communication standards to show the interest of the proposed mapping methods. All the experiments have 

been done by using a software tool we developed. This tool first finds conflict free memory mapping and 

then generates VHDL files that can be synthesized to design complete architecture i.e. network, memory 

banks and associated controllers. In first experiment, bit interleaver used in Ultra Wide Band (UWB) 

interleaver is considered and a barrel shifter is used as constraint to design the interconnection network. 

Results are compared regarding area and runtime with state of the art solutions. In second experiments, a 

turbo interleaving law defined in High Speed Packet Access (HSPA) standard is used as test case. Memory 

mapping problems have been solved and associated architectures have been generated for this interleaving 

law which is not conflict free for any type of parallelism used in turbo decoding. Results are compared with 

techniques used in state of the art in terms of runtime and area. Third experiment focuses on LDPC. First, 

last algorithm we proposed is used to find conflict free memory mapping for non-binary LDPC codes 

defined in the DaVinci Codes FP7 ICT European project. Then, conflict free memory mapping have also 

been found for partially parallel architecture of LDPC codes used in WiMAX and WiFi for different level of 

parallelism. It is shown that the proposed algorithm can be used to map data in memory banks for any 

structured codes used in current and future standards for partially parallel architecture. In last experiment, 

thanks to the proposed approach we explored the design space of Quadratic Permutation Polynomial (QPP) 

interleaver that is used in 3GPP-LTE standard. The QPP interleaver is maximum contention-free i.e., for 

every window size W which is a factor of the interleaver length N, the interleaver is contention free. 

However, when trellis and recursive units parallelism are also included in each SISO, QPP interleaver is no 

more contention-free. Results highlight tradeoffs between area and performances based on for different 

radixes, parallelisms, scheduling (replica versus butterfly)… 
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In this chapter, error correction coding techniques with particular emphasis on Turbo and LDPC 

codes are discussed. Error correction coding can be classified into two broad categories: 

convolutional codes and block codes. Chapter starts by presenting encoding and decoding related to 

convolution codes. Afterwards, brief description of turbo codes that are a subclass of convolutional 

codes are presented. In the later part of this chapter, block codes with particular emphasis on LDPC 

codes are explained. Finally, problems in implementing these algorithms on parallel architecture are 

introduced to highlight the importance of the work presented in this thesis. 
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1. Forward Error Correction (FEC) Coding 

 

Early developers of digital communication systems assumed that information could be 

transmitted through noisy channel with high reliability by increasing the signal to noise ratio. This can 

only be achieved at that time by increasing transmitted signal power enough to ensure that signal can 

reliably be transmitted to source. The revolutionary work of Shannon [SHA48] changed this view by 

proofing that it is possible to send digital data to receiver through noisy channel with high reliability 

by first encoding digital message with error correction code at transmitter and then subsequently 

decode it at receiver to generate original message. The function of the encoder is to map X digits 

message into C digits codeword where C > X. The code rate r = X/C defines the redundancy 

introduced by corresponding error correction code.  Encoded message passes through channel which 

corrupts the message by adding some noise into it. At receiver, error correction decoder uses this 

added redundancy to determine the original message despite the noise introduced by channel. Typical 

communication system is shown in Figure 1. 1. 

 

DecoderEncoder Channel
X C

Transmitter Receiver
C’ X’

 

Figure 1. 1. Communication System 

 

Different error correction codes are introduced in literature. They can be classified into two 

broad categories: Block codes and Convolutional codes. In block codes, original information sequence 

is divided into different message blocks and each message is independently encoded to generate 

codeword bits whereas in convolutional codes, encoder takes information sequence as a continuous 

stream and generates a continuous stream of codeword bits. Therefore in block codes, encoder must 

wait for the entire message block before it starts encoding whereas convolutional encoder can start 

encoding and transmitting codeword before it obtains the entire message. 

In current telecommunication standards, two error correcting codes, one from block codes 

(called Low Density Parity Check (LDPC) codes) and the other from convolutional codes (called 

Turbo codes) are extensively used due to their excellent error correcting capabilities. However, 

implementation of decoder for these two codes for high data rate applications is not straightforward. In 

this thesis, we restrict our attention to the implementation of both of these codes on parallel 

architecture.   

 

2. Convolutional Codes 

 

Convolutional codes perform like a finite state machine which converts continuous stream of 

X message bits into continuous stream of C coded bits (where X > C). Due to their simple structure and 

efficiently implementable iterative decoding algorithm, convolutional codes are increasingly used in 

different telecommunication standards. Currently, convolutional codes are part of standards for mobile 

communication (HSPA [HSP04], LTE [LTE08]) and   digital broadcasting (DVB-SH [DVBS08]). 
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2.1. Convolutional Encoder 

 

Convolutional encoder consists on modulo-2 adders and shift registers which acts as a 

memory for past inputs and acts as encoder state. Each shift register contains one or more register 

element and each register element introduces a delay of one time unit. Due to the presence of these 

shift registers, output coded bits depend not only on the present message bits but also on the states of 

encoder i.e., on the already coded message bits.  

 

Definition  Systematic Encoder 

 A convolutional encoder is called systematic if it maps all its input bits directly to the output bits, 

otherwise it is called non-systematic.  

 

In Figure 1. 2.b & d, input bit x is directly map to output bit c
(1)

. So, these encoders are example of a 

systematic encoder.   

 

Definition  Recursive Encoder 

 A convolutional encoder is called recursive if it’s state depends on its output, otherwise it is 

called non-recursive.  

 

Recursive Encoder are shown in Figure 1. 2.c & d. 

 

Depending on these definitions, there are four types of convolutional encoders exit: 

1. Non-systematic non-recursive convolutional encoder (Figure 1. 2.a) 

2. Systematic non-recursive convolutional encoder (Figure 1. 2.b) 

3. Non-systematic recursive convolutional encoder (Figure 1. 2.c) 

4. Systematic recursive convolutional encoder (Figure 1. 2.d) 

 

All these encoders are shown in Figure 1. 2. 
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+

+

c(1)

c(2)

x

 
+

c(1)

c(2)

x

 

(a) Non-Systematic Non-Recursive 

Convolutional Encoder 

(b)  Systematic Non-Recursive Convolutional 

Encoder 

+

c(1)

c(2)

x

+

+

 

+

c(1)

c(2)

x

+

+

+

 

(c) Non-Systematic Recursive Convolutional 

Encoder 
(d) Systematic Recursive Convolutional Encoder 

Figure 1. 2. Convolutional Encoder 

 

In all of these figures, shift register elements and modulo-2 adders are represented by square 

blocks and circles respectively. To explain the terminologies used in convolutional codes, we consider 

the encoder shown in Figure 1. 2.d. This encoder is a part of current 3GPP LTE standard to encode 

message bits. At time instance t, encoder takes one message bit xt and generates two coded bits ct
(1)

 & 

ct
(2)

 results into the code rate of  ½. Interleaving of coded bits results into the codeword c = [c1
(1)

 c1
(2)

, 

c2
(1)

 c2
(2)

, c3
(1)

 c3
(2)

,…………, ct
(1)

 ct
(2) 

]. 

For systematic codes, coded bits are further differentiated into systematic and parity bits. Input 

message bits are called systematic bits whereas extra output bits which are not systematic are called 

parity bits. So for the encoder of Figure 1. 2.d, coded bits ct
(1)

 are replaced by message bits x
(1)

 and 

coded bits ct
(2)

 by parity bits p
(1)

 to generate the codeword c.   

c = [x1
(1)

 p1
(1)

, x2
(1)

 p2
(1)

, x3
(1)

 p3
(1)

,………………, xt
(1)

 pt
(1) 

] 

 

2.2. Convolutional Code state and Trellis Diagram  

 

Convolutional encoder can be represented as finite-state machine in which the relationship 

between input, state and output can be explained through state transition table and state diagram. 

Encoder discussed in previous section consists of three register elements. So the state of encoder, 

represented by S = (s
(1)

, s
(2)

 ,s
(3)

) where s
(1)

, s
(2)

, s
(3)

 � {0,1}, is the contents of three register elements 

from left to right. If v is the number of elements then there are 2
v
 possible states in which encoder can 

be at any time instance. So, the eight possible states for encoder with three register elements are, S0 = 

(000),S1 = (001), S2 = (010), S3 = (011), S4 = (100), S5 = (101), S6 = (110), S7 = (111). 
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 For the encoder in discussion, state transition table is shown in Table 1. 1. In this table, Sc and 

Sn are the current and next states respectively and x represents the input message bit which causes this 

transition. Also the output coded bits generated as a result of transition from Sc and Sn are labeled as 

cc,n
(1)

 (systematic bit) and cc,n
(2)

 (parity bit).  

Table 1. 1: State Transition Table 

Current state Sc Inputxc,n NextState Sn Output cc,n

Sc Sn

S0 000 0 S0 000 0 0

S0 000 1 S4 100 1 1

S1 001 0 S4 100 0 0

S1 001 1 S0 000 1 1

S2 010 0 S5 101 0 1

S2 010 1 S1 001 1 0

S3 011 0 S1 001 0 1

S3 011 1 S5 101 1 0

S4 100 0 S2 010 0 1

S4 100 1 S6 110 1 0

S5 101 0 S6 110 0 1

S5 101 1 S2 010 1 0

S6 110 0 S7 111 0 0

S6 110 1 S3 011 1 1

S7 111 0 S3 011 0 0

S7 111 1 S7 111 1 1

(1) ( 2 ) ( 3)( )
c c c

s s s (1) ( 2 ) ( 3)( )
n n n

s s sx
(1)

,c n
c ( 2 )

,c n
c

 
 

State transition table is represented graphically as a state diagram in which node represents 

one of the eight states and directed edge represent the state transition between nodes as shown in 

Figure 1. 3. Label on each edge mentions the input bit that generates the state transition and output bits 

as input/output.  

The state diagram completely explains the relationship between state transitions and 

input/output bits but it does not provide any information about how this relationship evolved with 

time. Trellis diagram gives the required information by expanding state diagram at each time instance 

as shown in  

Figure 1. 4. Two copies of states are represented at time t and t+1 and directed edges are 

drawn from states at t to states at t+1 to show the state transitions. Due to trellis diagram, 

convolutional codes are decoded very efficiently by algorithms which operate on code trellis to find 

most likely codewor 

S0

S1 S4

S2 S5 S6

S3 S7

0/00

1/11
1/11

0/00

0/01

1/10

0/01

1/10

0/01 1/10

0/01
1/10

0/00

1/11

0/00

1/11

 

Figure 1. 3. State Diagram 
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S0

S1

S2

S3

S4

S5

S6

S7

S0

S1

S2

S3

S4

S5

S6

S7

0/00

1/11
1/11

0/00

1/10

0/01

0/01

1/10

0/01

1/10

1/10

0/01

0/00

1/11

1/11

0/00

t + 1t  

Figure 1. 4. Trellis Diagram 

 

2.3. Decoding Convolutional Codes 

 

As explained in previous section, each state transition from Sc to Sn or trellis edge corresponds 

to a particular input. So, decoder computes the probability of each state transition to find the maximum 

probability input bit. An efficient decoding algorithm based on trellis was first presented by Bahl, 

Cocke, Jelenik and Raviv [BAH74] and is called the BCJR algorithm. 

Algorithm is based on the concept that codeword bits ct sent at time t are influenced by the 

codeword bit ct
+

 sent before it. Thus, they may also affects the codeword bits ct
-
 sent after it. So in 

order to estimate the message bits, the algorithm makes two passes through the trellis: forward pass 

and backward pass. Forward Pass estimates the message bit xt at t based on ct
+

 whereas backward 

Pass uses ct
-
 to estimate xt. Suppose 

yt represents the symbols received for the codeword bits ct sent at time t.  

yt
+
 represents the symbols received for the codeword bits ct

+
 sent after time t and 

yt
-
 represents the symbols received for the codeword bits ct

-
 sent before t.  

Then, the probability of the state transition from state Sc at time t-1 to state Sn at time t is given by the 

following equation, 

                                                 �t (Sc, Sn) =  Αt-1(Sc) �t(Sc, Sn) Βt(Sn)                                                   1. 1 

The probability is a function of following three terms: 

(I)    Αt-1 represents the probability that the encoder is in state Sc at t-1 based on the information about 

symbols received before t i.e., yt
-
; 

(II)   Βt(Sn) represents the probability that the encoder is in state Sn at t based on the information about 

symbols received before after t i.e., yt
+
; 

(III)  �t(Sc, Sn) represents the probability of the state transition from Sc to Sn based on the information 

about symbols received at t i.e., yt; 

 The calculation of Α and Β values are respectively called the forward and backward recursion of the 

BCJR decoder and are calculated through following equations: 
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                                                     Αt-1(Sc) = �
−

=

12

0

v

i

Αt-2(Si) �t-1(Si, Sn)                                                      1. 2 

        Βt(Sn) = �
−

=

12

0

v

i

Βt+1 (Si) �t+1(Sc, Si)                                                     1. 3 

 From this equations it is clear that values of both Α and Β or path metrics can be calculated 

recursively and each step requires multiplication operations over real numbers which increases the 

decoder complexity in terms of area and cost when implementing in hardware. This problem is 

overcome by re-formation of original algorithm in the logarithmic domain. The benefit of representing 

path metrics as log metrics is that now we can replace multiplication with addition. If α,β and γ 

represents the log metrics of Α, Β and � then previous equations transform into the log domain as 

follows: 

                                              �t (Sc, Sn) =  αt-1(Sc) + γt(Sc, Sn) + βt(Sn)                                                   1. 4         

                                                    αt-1(Sc) = log �
i

e
αt-2(Si) + γt-1(Si, Sn)

                                                       1. 5         

                                                      βt(Sn) = log �
i

e
βt+1(Si) + γt-1(Sn, Si)

                                                      1. 6         

The derivation of these equations is out of the scope of this thesis. Interested reader can consult 

[JOH10] to understand the derivation and respected terms. 

 

2.4. Turbo Codes 

Excellent error correction capabilities of Turbo codes [BER93] make it integral part of current 

telecommunication standards such as [LTE08] [HSP04] [DVBS08]. Turbo code completely changes 

the way we perform error correction to reach near Shannon limit of channels capacity. Turbo codes are 

constructed through the parallel concatenation of two convolutional codes which during decoding 

share their information to achieve good error correction performance. This outstanding performance is 

also possible due to the presence of pseudo-random interleaver that scrambles data to break up 

neighborhood relations. Moreover, low-complexity iterative decoding algorithm makes its 

implementation feasible at the hardware level to be included in the current standards.  

2.4.1. Turbo Encoder 

  

Turbo encoder consists of two convolution encoder in which first component encodes the 

message x in natural (original) order to produce parity bits p
(1)

 whereas second one encodes the 

message in interleaved order (after passing the original message through interleaver ) to generate 

parity bits p
(2)

 as shown in Figure 1. 5. Since Turbo codes are systematic codes, so at the output, 

message and parallel concatenation of parity bits are all transmitted to construct turbo codeword. 

Normally, two component encoders used in Turbo codes are identical but it is also possible to use 

different components encoders. However, due to presence of interleaver, the parity bits output by two 

encoders are always different even if identical encoders are used in turbo codes. 
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Code 1

Encoder

Interleaver
Code 2

Encoder

x

c = {x, p(1), p(2)}

p(1)

p(2)

 

Figure 1. 5. Turbo Encoder 

 

2.4.2. Interleaver 

 

An interleaver is expressed through a permutation sequence � = {�1, �2, �3,……, �n }, where 

the sequence {�1, �2, �3,……, �n } represents the permutation of the integers from 1 to n. 

The function of the interleaver is to generate two completely different set of parity bits after 

passing through two constituent encoders in order to obtain capacity-approaching performance of 

turbo codes. This performance is normally achieved by using interleaver with a length of several 

thousand bits and that performs random permutation on the required length. 

 

2.4.3. Turbo Decoder 

 

In turbo decoding, the decoding of each individual convolutional code is carried out using BCJR 

algorithm with the following two modifications [BER93]: First of all, in turbo decoding, the two 

component codes share information about the message bits. This extra information is called extrinsic 

information. Each decoder fed this extrinsic information to other decoder in order to estimate the 

message bits. Secondly, in turbo decoding, extrinsic information is updated and shared between the 

decoders over many iterations. As a result, BCJR decoding algorithm is used by each decoder more 

than once to decode the message bits.  The block diagram for turbo decoder is shown in Figure 1. 6. 

The decoder receives input values Y
(u)

,  Y
(1)

, Y
(2)

 from the channel for x, p
(1)

, p
(2)

 respectively. 

One complete iteration of turbo decoder is carried out through two half iterations. In the first half 

iteration, Decoder 1 receives channel values for message bit Y
(u)

, first parity bit Y
(1)

 and deinterleaved 

extrinsic value from Decoder 2 to generate extrinsic value. However, for initial iteration, Decoder 1 

has no extrinsic value from Decoder 2, so it uses only Y
(u)

, Y
(1)

 to produce extrinsic value. During 

second half iteration, Decoder 2 creates extrinsic value from interleaved message bits, second parity 

bit Y
(2) 

and interleaved extrinsic value from Decoder 1.  After the fixed number of iterations, a final 

decision about the message bits is made based on the extrinsic values from two decoders and channel 

values for message bits. It is important to note that only extrinsic values are updated at each iteration, 

channel values for message bits always remain unchanged. 
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Code 1

Decoder

Interleaver (�)

DeInterleaver (�-1)

Interleaver

Code 2
Decoder

Y(1)

Y
(u)

Y
(2)

Extrinsic

Extrinsic

�-1
u

 
Figure 1. 6. Turbo Decoder 

 
 

2.4.4. Parallelism in Turbo Codes Decoding 
 

As explained in previous sections 2.3, to decode each component code, turbo decoder first 

calculates α-values (using forward recursion) and β-values (through backward recursion) in order to 

generate extrinsic values. This approach is called serial implementation of turbo decoder. Serial 

implementation can be represented through Forward Backward Scheme as shown in Figure 1. 7.a. 

Implementation of this scheme can best be explained through data access order shown in Figure 1. 7.b. 

for D = number of data elements used in a code = 8, T = time to decode a code = 2D = 16 and PE = 

number of processing elements = 1. For first T/2 = 8 time instances, decoder accesses data elements 

from extrinsic memory from D = 0 to D = 7, calculate α-values and store them into decoder inside 

decoder memory. For next T/2 time instances from 9 to 16, decoder calculates β and extrinsic values 

and writes updated extrinsic values into extrinsic memory to complete the decoding of component 

code. It is important to note that decoder can process only one data elements at each time instance in 

serial implementation.  

Serial implementation has following two drawbacks. 

1. The calculation of path metrics (α and β-values) requires that the whole transmitted data has 

to be received and stored which increases the decoder memory. 

2. The approach significantly increases the latency (i.e., time to compute extrinsic values) and 

make it unsuitable for high data rate application.  

To tackle these drawbacks, different parallelism approaches are proposed which are explained below. 

 

0

D-1

FRAME

0 T
2

T

Time

D
a

ta

          

PE1 0 1 2 3 4 5 6 7

PE1 7 6 5 4 3 2 1 0

From t1 to t7

From t8 to t16

Data Access order for Decoding

Generation of extrinsic values

                        

                    (a) Forward Backward Scheme                    (b) Data access order in Serial Implementation 

 Figure 1. 7. Serial Implementation of Turbo Decoder 
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2.4.4.1 Recursive Unit Parallelism 

 

The first type of parallelism [ZHA04] can be directly extracted from decoding algorithm by 

calculating in parallel α, β and extrinsic values used in BCJR algorithms. This approach can be best 

explained through Butterfly Scheme as shown in Figure 1. 8.a. In this scheme, decoder calculates path 

metrics (α and β-values) at the same time. As a result, butterfly scheme increases the parallelism level 

by treating two data elements at the same time and requires half the time to decode the component 

code. Data access order for D = 8, PE = 1 is shown in Figure 1. 8.b. 

This scheme parallelizes the forward and backward recursive units to double the parallelism 

degree without any increase in decoder memory. Also the increase in decoder throughput motivates 

the use of butterfly scheme at the cost of duplication of recursive units. 

 

0

D-1

FRAME

0

EXTRINSIC

2

T

D
a

ta

Time

 

PE1

0 1 2 3

7 6 5 4

From t1 to t7

Calculation of αααα, ββββ and extrinsic values

 

(a) Butterfly Scheme 
(b) Data access order for Recursive Unit 

Parallelism 

Figure 1. 8. Recursive Unit Parallelism 

 

2.4.4.2 Trellis Level Parallelism 

 

In this type of parallelism [WOO00], rather than calculating path matrices (α and β values) 

and extrinsic values for each trellis transition, these values are calculated for more than one trellis 

transition at the same time. Degree of parallelism for calculating these values are bounded by the total 

number of transitions in a trellis. Trellis parallelism is usually represented as radix-2
S
 where S is the 

number of trellis transitions parallelized in decoder computation. Forward Backward scheme 

(explained in section 2.4.4) is modified for Trellis level parallelism in Figure 1. 9.a for S = 2.   From 

data access order of this scheme, it is important to note that number of data elements processed by 

processing element at a given time instant is equal to S. Data access order for D = 8, S = 2, & PE = 1 

is shown in Figure 1. 9.b. 

This approach has low area overhead [ASG10] since only computational units need to be 

duplicated, however, decoder memory is reduced which compensates the increase in computation units 

area cost. The increase in decoder throughput with slight increase in decoder area motivates to 

implement higher radix implementation for current standards [ASG10]. 
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0
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      (a) Modified Forward Backward Scheme for      (b) Data access order for Trellis Level 

Trellis Level Parallelism                                                       Parallelism 

Figure 1. 9. Trellis Level Parallelism 

 
 

2.4.4.3 SISO Decoder Level Parallelism 
 

As explained at the start of the section 2.4.4, serial implementation of turbo decoder increases 

the decoder memory and latency for large amount of data. To tackle this problem, sliding window 

BCJR algorithm [BLA05] is proposed in which data block to be decoded is partitioned into number of 

segments or windows where each window is a subset of original block and has length Dw. Each 

window is then treated as separate data block and allocated to separate BCJR-SISO decoder. These 

SISO decoders then work in parallel so that α, β,  γ and extrinsic values for one window are calculated 

at the same time as these values are calculated for other windows. Since the window can start or end in 

the middle of overall data block, the BCJR decoding algorithm approximated the initial values needed 

to start the calculation of α and β values. To make sufficiently accurate estimates, on either side of the 

window, forward and backward recursion have been run on some extra bits of the adjacent windows. 

This is called acquisition. Alternately, message passing method is used to initialize path metrics by the 

values generated in the previous iteration by adjacent windows. Sliding window method with message 

passing technique is shown in Figure 1. 10.a. Number of data processed at a given time instance 

depends on the number of partitions and window. If one processing element process one window then 

data access order for D = 8, PE = 4, Dw = D/P = 2 is shown in Figure 1. 10.b. 

Approximated initial values for path metrics, calculated in sliding window technique, causes 

negligible loss in error correction performance of turbo decoder. In contrast, sliding window technique 

significantly increases throughput and reduces memory of turbo decoder.  
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          (a)  Sliding Window Method with Message                      (b) data access order for SISO Decoder        

                            Passing Technique                                                          Level Parallelism  

Figure 1. 10. SISO Decoder Level Parallelism 
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2.4.4.4 Conclusion 

 
To increase the throughput, any combinations of above described parallelisms can be used to 

implement turbo decoder. For example, we can use both trellis level parallelism and SISO level 

parallelism to implement turbo decoder. This technique will increase the throughput at the cost of 

increase in hardware cost. However, implementation of all these parallelisms causes memory access 

conflict problem (discussed in Section 4.1). With the increase of parallelism, this conflict problem also 

increases. In this thesis, we present algorithms that can resolve memory conflict problem for any 

combination of parallelism in polynomial time.   

 

3. Block Codes 

 

Block codes are second class of error correction codes that are used to transmit digital data 

reliably through unreliable communication channels in the presence of noise. Many types of block 

codes are used in different applications but among the classical block codes, Reed-Solomon [AHA] is 

the most popular due it widespread use in CD, DVD and hard disk drives. Other examples of classical 

block codes are Golay codes [GOL61] and Hamming codes [HAM50].  

 In block coding, long data stream is segmented into pieces of fixed length called a message 

block. Each message block, denoted by X, consist of x information bits that results in 2
x
 possible 

distinct messages. The function of the encoder is to transform each input message X into a binary c-

tuple C where c > x. This binary c-tuple C is called codeword of the message X. In block coding, there 

are 2
x
 codewords corresponds to the 2

x
 possible messages and this set of 2

x
 codewords is called block 

code. In order to use this block code for practical purposes, it is necessary that these 2
x
 codewords 

must be distinct and have one-to-one correspondence with 2
x
 messages. 

Encoding of block code with 2
x
 codewords with each codeword has length x is prohibitively 

complex since encoder has to store these 2
x
 codewords into memory. To reduce encoding complexity, 

linear block codes are used in practical application and can be defined as follows: 

 

Definition  Linear Block Codes 

 A linear block code is a class of block codes in which modulo-2 sum of two codewords is also a 

codeword. 

    

A generator matrix G is used to generate codewords in linear block codes. Generator matrix 

contains x linearly independent codewords with each codeword length c. Each message is multiplied 

by G to generate codeword corresponding to this message. Construction of (7, 4) linear code in which  

c = 7 and x = 4 is explained through an example. This example and the other information related to 

linear block codes are taken from [LIN04]. G for this example is shown below. 

 

1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1

G

� �
� �
� �=
� �
� �
� �
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If X = (1 1 0 1) is the message to be encoded then its corresponding codeword is obtained as follows: 

           C = X.G 

           C = 1(1 1 0 1 0 0 0) + 1(0 1 1 0 1 0 0) + 0(1 1 1 0 0 1 0) + 1(1 0 1 0 0 0 1) 

           C =   (1 1 0 1 0 0 0) +  (0 1 1 0 1 0 0) +   (1 0 1 0 0 0 1) 

           C = (0 0 0 1 1 0 1) 

From this example, it is clear that (c, x) linear block code is completely specified by G and encoder has 

to store x rows of G to generate codeword of length c for any input message. All the codeword for this 

(7, 4) code is shown in Table 1. 2. From this table, it is clear that modulo-2 sum of any two codewords 

is also a codeword. 

Table 1. 2: Linear block code with x = 4 and c = 7.  

Message Codewords

(0000) (0000000)

(1000) (1101000)

(0100) (0110100)

(1100) (1011100)

(0010) (1110010)

(1010) (0011010)

(0110) (1000110)

(1110) (0101110)

(0001) (1010001)

(1001) (0111001)

(0101 (1100101)

(1101) (0001101)

(0011) (0100011)

(1011) (1001011)

(0111) (0010111)

(1111) (1111111)
 

3.1. Encoding of Linear Block Codes 

 

As explained previously, encoder needs to store x rows of length c to encode any message in 

(c, x) linear block code. Another simplification in the implementation of encoder is carried out by 

introducing systematic structure during the construction of linear block codes. In this structure, 

codeword is divided into two parts namely message part and parity part as shown in Figure 1. 11. The 

message part contains x information (message) bits and the parity part contains c – k parity bits that are 

linear sum of message bits. A linear block with systematic structure is called linear systematic block 

code.  

Parity part of codeword Message part of codeword

c – x bits x bits
 

Figure 1. 11. Systematic format of a codeword 

 

The (7, 4) code, shown in  

Table 1. 2, is a linear systematic block code in which rightmost x bits of codeword are 

identical to the message. A liner systematic code is completely specified by its generator matrix G that 

can be divided in two matrices of order x * x and x * p where p = c – x and      x * x is an identity 

matrix. Generator matrix for (7, 4) linear systematic block code is expressed as follows.  
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                                                  p matrix        x * x identity matrix 

1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1

G

� �
� �
� �=
� �
� �
� �

�

�

�

�

 

 

To explain the simplicity introduced by linear systematic codes, let X = (x0, x1, x2, x3) is the message to 

be encoded and C = (c0, c1, c2, c3, c4, c5, c6) is the resultant codeword then, 

 

1 1 0 1 0 0 0

0 1 1 0 1 0 0
.

1 1 1 0 0 1 0

1 0 1 0 0 0 1

C X

� �
� �
� �=
� �
� �
� �

 

Using matrix multiplication, 

c6 = x3 

c5 = x2 

c4 = x1 

c2 = x1 + x2 + x3 

c1 = x0 + x1 + x2 

c0 = x0 + x2 + x3 

 

From these equations, it is possible to generate encoding circuit rather that storing rows of G [LIN04]. 

Encoding circuit for (7, 4) systematic linear code discussed in this section is shown in Figure 1. 12.  

 

x0 x1 x2 x3

+ + +

c0 c1 c2

To channel

Parity register

Message register

Input X

 

Figure 1. 12. Encoder circuit for the (7, 4) Systematic code  

 

3.2. Low Density Parity Check (LDPC) Codes 

 

Low density parity check Codes (LDPC) are a class of linear block codes with error correction 

capabilities very close to the channel capacity. Due to their excellent error correction performance, it 

has already included in several wireless communication standards such as DVB-S2 and DVB-T2 

[DVB08], WiFi (IEEE 802.11n) [WIF08] or WiMAX (IEEE 802.16e) [WIM06].  
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But first we explain how we represent code with parity check equations. Consider a codeword 

C = [c1 c2 c3 c4 c5 c6] which satisfies the following three parity check equations. 

 

c2 � c3 � c4  = 0, 

c1 � c2 � c4  = 0,                        

c1 � c3 � c4  = 0 

 
Codeword constraints or parity check equations are often expressed in matrix form as follows: 

   

 

1

2

3

4

0 1 1 1 0

1 1 0 1 0

1 0 1 1 0

c

c

c

c
H

� �
� � � �� �
� � � �� � =� � � �� �� � � �� �� � � �

� �

 

 
The above H matrix is an M * N binary matrix where each row Mi of H corresponds to a parity check 

equation whereas each column Nj associated with codeword bit. A nonzero entry at (i, j)th location 

means that the jth codeword bit is included in the ith parity check equation.  

For a codeword x � C  to be valid, it must satisfy the equation: 

 

xH
t
 = 0, � x � C 

 

As the name explains, LDPC codes are block codes that contains only a small number of 1’s in 

comparison to the number of 0’s in parity check matrix H. This sparseness in H keeps the complexity 

of iterative decoding at reason limit and increases linearly with the code length. 

   

3.3. Tanner Graph Representation 
 

Due to the sparseness of H-matrix, LDPC codes can be graphically represented as a bipartite 

graph called Tanner Graph which depicts the association between code bit and parity check equation. 

The Tanner graph consists of two sets of vertices: variable node set (VNs) and check node set (CNs). 

A data vi ∈ VN represents one bit in the codeword (i.e. data to be processed) whereas cj ∈ CN 

represents a check equation used in generating parity check bits (i.e. operation to be done on the data). 

An edge eij connects the ith check node with jth variable node if jth variable node (VN) is checked by 

or included in ith check node (CN) which means that number of edges in the Tanner graph is the same 

as the number of 1s in the H matrix. Tanner graph is helpful in understanding the decoding process 

which functions by exchanging messages between CN and VN along the edges of these graphs. 

Tanner graph for the H-matrix in the previous section is shown in Figure 1. 13. In this figure, a 

message passed from CN to VN is called Mesc�v whereas a message going from VN to CN is 

represented by Mesv�c.  
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VN1 VN3VN2 VN4

CN1 CN2 CN3

Mesc�vMesv�c

 

 Figure 1. 13. Tanner Graph representation of H 

 

 

3.4. Decoding 

 

As explained in the previous sections, the algorithms to decode LDPC codes functions by 

exchanging messages along the edges of a Tanner graph. These algorithms are collectively called 

message-passing algorithms. Message passing algorithms are a type of iterative decoding algorithm in 

which CN and VN iteratively exchange massages forward and backward until decoding is completed 

(or stopping criteria is reached). These algorithms are named for the type of operations executed at the 

nodes such as belief-propagation or sum-product decoding [PEA88], min-sum decoding [FOS99] or 

normalized Min-Sum decoding [CHE02].  

Sum-Product algorithm is a message passing algorithm which accepts the probability for each 

received bit as input. These probabilities represent a level of belief regarding the value of codeword 

bits. Due to simplicity in computation, the probabilities are converted in logarithmic domains that are 

called Log likelihood Ratio (LLR). The LLRs are defined by the following equation:  

 

 
( 0)

log
( 1)

P v
LLR

P v

� �=
= � �

=� �
 

 
where P(v = i) is the probability that bit v is equal to i. 

The input LLRs are also called a-priori values because they are know in advance even before the 

decoding of LDPC codes is started. 

The decoding is carried out in four steps which are presented below. 

 

I-  Initialization   

 
 In this step, a-priori LLR values are assigned to all the outgoing edges of every VNs. The sign 

of LLR provides a hard decision on the transmitted bit whereas it magnitude |LLR| gives an indication 

on the reliability of this decision.  

 

II-  Check node Update 

 

 In this step, jth CN estimates the value of  ith VN based on the values received from other 

VNs connected to this CN which means that the decision about the ith VN value is made completely 
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independently from the value just received from it. The CN supposed to create extra, extrinsic, 

information about ith VN value. In check node Update, each CN updates all connected VNs through 

the extrinsic information calculated for each VN. Bayes law in the logarithmic domain is used to 

calculate the sign (Equation 1.7) and the absolute value (Equation 1.8) of the extrinsic message for 

each VN. 

 '

' /

( ) ( )
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c v v c

v v v

sign Mes sign Mes→ →
∈

= ∏  1.7 
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where vc represents the set of all the VNs connected with current CN and vc / v means all the 

VNs in vc except v. The function g(x) is represented through Equation 1.9 as below. 
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III- Variable node Update 

  

In this step, each VN updates its value based on the extrinsic information received from all the 

connected CNs. The soft output (SO) value also called A-Posteriori Probability (APP) is calculated 

using Equation 1.10, where LLR is the initial soft input or a-priori value. The SO value is used to 

calculate new VN to CN message Mesv�c and is give by Equation 1.11. 

 

 

v

v c v

c c

SO LLR Mes →
∈

= +�  1.10 

 

 v c v c vMes SO Mes→ →= −  1.11 

 

 
IV- Iterative Process 

 

The forth step is to repeat the check and variable node update processes for new APP values 

until all the parity-check equations are satisfied or until a maximum number of iterations has reached 

and the decoder halts. At the end of iterative process or decoding, a hard decision is made based on the 

signs of values of VNs to output the codeword.  
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3.5. Implementation of LDPC Decoder 

 

Analyzing the equations presented in LDPC decoding, it is clear that implementation of 

variable node update is quite simple and straight forward whereas the implementation of check node 

update is complex. The g(x) function used in check node update is highly non-linear and Look-Up 

Tables (LUTs) are required to directly map g(x) into hardware. However, to cope with finite precision 

issues, significantly large number of bits is required which results in large LUTs and significant 

increase in hardware cost. To reduce the computational complexity and hardware cost, different 

suboptimal algorithms are proposed [FOS99] [CHE02] to avoid the evaluation of the g(x) function. 

The Min-Sum algorithm approximates and hence simplifies the sum-product algorithm by replacing 

g(x) function with the most minimum incoming message. The approach eliminates the complexity of 

check node update and can be expressed as: 

 

 '
' /
min

c

new

c v v c
v v v

Mes Mes→ →
∈

≈  1.12 

 
Dramatic reduction in computational complexity through Min-Sum algorithm [FOS99] results 

in the degradation of decoding performance because the approximated magnitude is always 

overestimated. To avoid this overestimation, a normalization factor � is multiplied with the output 

obtained from equation 1.12. The resultant algorithm is called Normalized Min-Sum (NMS) [CHE02] 

and is given by following equation. 

 

                                                            '
' /
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c
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c v v c
v v v

Mes Mesµ→ →
∈

≈                                1.13 

 

where � is the normalization factor, 0 ��� �������

Despite simplifying the computations at the nodes of Tanner graph, the routing of the edges of 

Tanner graph is not a straight forward process and requires trade-off between hardware cost and 

throughput. To cope with routing of edges of the Tanner graph, following three implementations are 

presented in literature. 

Each implementation has its own merits and demerits with respect to routing complexity and 

latency that is presented in the next section. 

 

3.5.1. Fully Parallel Implementation 

 

In this architecture, dedicated computational circuitry and network architecture is constructed 

to directly map every Tanner graph node and edge in hardware. In this way all the check node and 

variable node update is processed in two steps [BLA02] [FAN06] [NAG04] [ZHO07]. This 

architecture results in an excellent decoding speed but at the cost of huge circuit size. For example, if 

we have ETan edges in Tanner graph and each message requires Nb bits to represent each message, then 

routing circuit of this tanner graph requires ETan * Nb wires to implement fully parallel architecture. 

This circuit size increases proportionally with the increase of code length since new check and variable 
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nodes along with wires are required for parallel implementation. Furthermore, hard-wiring of Tanner 

graph precludes the Flexible implementation of LDPC decoder. 

 

3.5.2. Fully Serial Implementation 

 

In this architecture, check and variable nodes updates are processed individually one at a time. 

This architecture results in lowering the hardware cost of decoder implementation but introduces huge 

latency in LDPC decoding. For example, if check node update requires Tch clock cycles per input edge 

and variable node update takes Tvar clock cycles per input edge then serial implementation requires 

ETan * Nb(Tch + Tvar) clock cycles to complete one iteration in LDPC decoding. Also, this delay 

increases proportionally with the increase of code length. Furthermore, significant amount of decoder 

memory is required to store all check to variable messages Mesc�v and variable to check messages 

Mesv�c. For example tanner graph in discussion requires 2ETan * Nb bits decoder memory to implement 

serial architecture. 

 

3.5.3. Partially Parallel Implementation 

 

Partially Parallel implementation [MAS07] [LEE08] is a trade-off between prohibitive 

hardware cost (resulted through parallel implementation) and low throughput (caused by serial 

implementation). In this architecture, several processing elements (PEs) are realized in hardware and 

are shared between groups of variable and check nodes. Proper numbers of PEs are used in this 

implementation to obtain required throughput. Memory is used to store different message generated 

during check and variable node update. These messages are written into and read out of the memory 

according to particular edge permutation of Tanner graph. This implementation requires decoder 

memory just like serial implementation. However, this architecture suffers from memory access 

collision problem where more than two processing elements want to access the same memory bank. 

Collision problem becomes a significant issue with the increase of code word and discussed in the next 

section. 

 

 

4. Memory conflict problem 
 

As explained in previous section of this chapter, parallel architecture is the only feasible 

tradeoff between hardware cost and throughput to implement decoder for turbo and LDPC codes. 

Typical architecture of parallel implementation is shown in Figure 1. 14. In this figure, P processing 

elements (PEs), used to process data elements, are connected to B memory banks, where P = B, 

through interconnection network. 

Memory conflict is a major source of concern in designing parallel architecture. The problem 

arises when more than two processing elements concurrently want to access two data elements that are 

stored in a same memory bank. Memory conflict problem is almost the same for both turbo and LDPC 

codes. However, due to difference in accessing the data in parallel, this section presents this problem 

separately for turbo and LDPC codes. 
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Figure 1. 14. Partially Parallel Architecture 
 

    

4.1. Memory conflict problem for Turbo Codes 
 

As explained in section 3.4.2, interleavers has been used to improve error correction 

performance of turbo codes by scrambling data so that parity bits generated by two constituent 

encoders are completely different. To implement parallelism presented in previous sections, 

interleaver needs to be parallelized in order to increase the communication bandwidth proportionally. 

To manage this bandwidth, memory is divided into smaller memory banks so that multiple data values 

can be fetched from memory concurrently in both natural and interleaved order. However,  due to 

scrambling caused by interleaver, this parallelism results in communication or memory access 

conflicts which occur when multiple data values are fetched from or stored in the same memory bank 

at the same time. 

The problem can best be explained through simple interleaver. In this interleaver, we first 

choose a matrix of particular order and then write data in this matrix row by row so that data is filled 

in this matrix. For D = 16 and matrix of order 4x4, first four data are placed in first row, next four data 

are placed in second row until matrix is filled with all the data as shown in Figure 1. 15.a. Afterwards, 

for natural order, we read this matrix row by row and for interleaved order we read this matrix column 

by column. We can represent both of these orders as: 

Natural order = Content of first row ,  Contents of 2
nd

 row , ……….., Contents of last row 

Interleaved order = Content of first column , Contents of 2
nd

 column , ……...., Contents of last column 

For our example, 

Natural order = (0,1,2,3) , (4,5,6,7) , (8,9,10,11) , (12,13,14,15) 

Natural order = 0,1,2,3, 4,5,6,7, 8, 9, 10, 11, 12,13,14,15 

Where as   

Interleaved order = (0,4,8,12) , (1,5,9,13) , (2,6,10,14) , (3,7,11,15) 

Interleaved order = 0,4,8,12, 1,5,9,13, 2,6,10,14 ,3,7,11,15 

 

For parallel processing using sliding window technique, this codeword is divided into four windows in 

both natural and interleaved order where each window is processed by one processing elements as 

shown in Figure 1. 15.b.     
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(a) Interleaving (b) Parallel Processing 

Figure 1. 15. Parallel Processing of Turbo Codes 
 

To increase memory bandwidths, four memory banks are used so that each processing element 

can concurrently get data elements in parallel. If data elements are stored in banks in such a manner 

that at each time instant in natural order, all the processing elements always access different memory 

banks as shown in Figure 1. 16.a. than in interleaved order all processing elements always access the 

same memory bank at each time instance as shown in Figure 1. 16.b. This results in Memory conflict 

Problem and increases latency in data fetching from memory due to the presence of conflict 

management mechanism in communication network. Furthermore, this problem reduces system 

throughput and increases system cost.  
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(a) Conflict free natural order Access (b) Conflict full Interleaved order Access 

Figure 1. 16. Memory Conflict Problem in Parallel Turbo Decoder 

 

4.2. Memory conflict problem for LDPC Codes 

 

As explained in previous section, computation at both check node and variable node is quite 

simple and the implementation issues mainly arise due to routing complexity between VNs and CNs. 

Partially parallel architecture proves to be only feasible solution to implement LDPC decoder but this 

architecture suffers from Memory Conflict Problem.   

To explain the problem, we introduce a mapping matrix in which we have P rows, related to 

the processing elements, and N columns, related to the time instances ti. Each column represents the 

data which need to be accessed in parallel by P processing elements at ti. Also, data in each row are 

processed by the processing element connected with this row. Figure 1. 17.a represents the mapping 

matrix in which we have D = 6, P = B = 3, M = 2 and N = 6 where D is the number of data elements, B 
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is the number of memory banks and M = D/B, is the size of each memory bank. If data elements stored 

in bank 1, bank 2 and bank 3 are (1,5), (2,6) and (3,4) respectively then at both time instances t4 and t5, 

more than one PEs want to access the same memory bank. Figure 1. 17.b shows the conflict at t4. This 

arises in memory conflict problem and results in increased system latency & hardware cost and 

reduced system throughput due to the presence of control structure to handle conflicts.  
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Figure 1. 17. Memory Conflict Problem in Partially Parallel LDPC Decoder 
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5. Conclusion 

 

The basic purpose of this chapter is to give a brief introduction to error correction coding. 

Error correction coding can be divided into two broad categories namely convolutional codes and 

block codes. Both of these codes are integral part of current telecommunication standards. Basic 

concepts related to encoding and decoding of convolutional codes have been first presented. These 

concepts have been used to explain turbo codes that are a subclass of convolutional codes with error 

correction capabilities near to channel capacity. Different techniques to speed up the decoding of turbo 

codes for high data rate applications have been explained. Then, brief description related to block 

codes with particular emphasis on LDPC codes has been given. Decoding approach related to LDPC 

codes and implementation of its decoder on different architectures has been explained. Finally, 

memory conflict problem related to the implementation of turbo and LDPC decoders on parallel 

architectures have been highlighted through simple examples. 

The main purpose of this thesis is to simplify the design of parallel interleavers. The target 

architecture is composed of several processing units connected to memory banks through 

interconnection network. State of the art approaches to design such hardware architectures are 

presented in next chapter. Existing approaches to find conflict free memory mappings are based on 

complex heuristics. Prime objective of this work is to propose new approaches based on bipartite 

graph and edge coloring algorithm that allow to find a solution in a polynomial time. 

�

�
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Chapter 2 

STATE OF THE ART 
 

 

Table of Contents 
�

1. Introduction -------------------------------------------------------------------------------------- 29�

2. Approaches to tackles memory conflict problem for turbo and LDPC codes ----- 29�

2.1. Conflict Free Interleaving laws --------------------------------------------------------- 30�

2.1.1. Architecture aware Turbo Codes ----------------------------------------------------- 30�

2.1.2. Structured LDPC Codes --------------------------------------------------------------- 32�

2.2. Run Time Conflict Resolution ---------------------------------------------------------- 33�

2.2.1. Run Time Conflict Resolution for Turbo Codes ----------------------------------- 33�

2.2.2. Run Time Conflict Resolution for LDPC Codes ----------------------------------- 37�

2.3. Design Time Conflict Resolution ------------------------------------------------------- 38�

2.3.1. Design Time Conflict Resolution for Turbo Codes -------------------------------- 38�

2.3.2. Design Time Conflict Resolution for LDPC Codes ------------------------------- 40�

2.4. Conclusion --------------------------------------------------------------------------------- 41�

3. Node and Edge Coloring of Graph ---------------------------------------------------------- 42�

3.1. Graph Theory ------------------------------------------------------------------------------ 42�

3.2. Conflict Graph ----------------------------------------------------------------------------- 44�

3.2.1. Conflict Graph for Turbo Codes ------------------------------------------------------ 44�

3.2.2. Conflict Graph for LDPC Codes ----------------------------------------------------- 45�

3.3. Bipartite Graph ---------------------------------------------------------------------------- 46�

3.3.1. Bipartite Edge Coloring ---------------------------------------------------------------- 47�

3.3.1.1�Vizing Method to color the edges of Bipartite Graph ---------------------------- 47�

3.3.1.2�Gabow Method to color the edges of Bipartite Graph ---------------------------- 48�

4. Transportation Problem ----------------------------------------------------------------------- 51�

5. Conclusion  ---------------------------------------------------------------------------------------- 53�
 

�

 

 

This chapter is divided into two parts. In the first part, different techniques to tackle the memory 

conflict problem on parallel architecture for turbo and LDPC codes are presented. Advantages and 

disadvantages of each technique and motivation to present our work are also explained in this part. In 

the second part, algorithms to color the edges of bipartite graph and methods to solve the 

transportation problem are explained through example so that algorithms proposed in this work can 

easily be comprehended. These algorithms are used in later chapter to solve memory mapping 

problem in polynomial time. 
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1. Introduction 

 

In the previous chapter of this thesis, we introduced different error correction techniques for 

reliable data transfer between transmitter and receiver. Different architectures for implementing 

decoders for these techniques are also presented in this chapter. It is clear from this discussion that 

partially parallel architectures provide the reasonable tradeoff between cost and throughput to be 

implemented in practical applications. However, this kind of architecture suffers from the memory 

conflict problem. In the first part of this chapter, different techniques to implement parallel 

architectures taking into account the conflict problem are discussed. The second part presents different 

techniques to solve bipartite edge coloring and transportation problem that are used in the approaches 

explained in next chapters to solve memory mapping problems.  

First part discuses different techniques to tackle memory conflict problem for turbo and LDPC 

codes. In first approach, different algorithms to construct conflict free interleaving law are discussed. 

For turbo codes, techniques to design conflict free interleaving law by taking into account different 

architecture constraints are presented whereas, for LDPC, structured codes are discussed in this 

section. The main reason to develop these techniques is to construct architecture friendly codes with 

good error correction capabilities in order to reduce hardware cost during implementation of these 

codes for practical applications. In second approach, different design innovations are introduced to 

tackle conflict problem. Flexible and scalable interconnection with sufficient path diversity and 

memory elements are introduced in this section to handle memory conflict. Third approach deals with 

algorithms that assign data in memory in such a manner that all the processing elements can access 

memory banks concurrently without any conflict.  

In the second part of this chapter, we first explain different graph definitions that are helpful in 

understanding algorithms based on graph theory presented in next chapters. Then, modeling based on 

conflict graph is presented to explain the complexity of mapping problem and why we need new 

algorithms to solve this problem. Edge coloring is the main technique used in our thesis, so we present 

different approaches to find edge coloring of bipartite graph from literature. In the final section, 

transportation problem is presented that is used to solve mapping problem related to turbo codes in 

next chapter. This section first explains how we model our bipartite graph as transportation matrix and 

then present an algorithm to find optimal solution for transportation problem. 

    

2. Approaches to tackle the memory conflict problem for turbo 

and LDPC codes 

 

As explained in the previous chapter, turbo and LDPC codes are part of current 

telecommunication standards due to their excellent error correction capabilities. For high data rate 

applications, turbo decoders are implemented with parallel architecture whereas LDPC decoders are 

realized with partially parallel architectures in practical cases. Both of these architectures result in 

memory conflict problems and different approaches have been used to solve this problem in literature. 

These approaches can be classified in three broad categories. In this section, we try to present the state 
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of the art related to each category along with their advantages and disadvantages and explains which 

factors motivate us to present current polynomial time algorithm to solve memory mapping problem.   

 

2.1. Conflict Free Interleaving laws 
 

In the first category, code developers take into account memory conflict problem during code 

construction for both turbo and LDPC codes. Due to difference in the code construction procedure, 

approaches to construct architecture-aware codes for both turbo and LDPC codes with good 

performance are presented separately in this section. 

 

2.1.1. Architecture aware Turbo Codes 
 

For turbo codes, the main reason for conflicts in parallel architecture is the presence of 

interleaver. So, the code developers put all their attention in the development of conflict free 

interleaving law with good error correction performance. Conflict free interleaving law provides 

parallel concurrent accesses to each memory bank without any conflict.  

In [GNA03], spatial and temporal permutations are introduced to construct conflict free 

interleaver with random interleaver like properties. The approach can best be explained through 

example. Consider a block length of 12 data arranged row by row into a matrix Morg as shown in 

Figure 2. 1.a.  Interleaver function is the sum of both temporal and spatial permutations. In the second 

step, temporal permutation is obtained by changing the positions of the column in Morg to obtain Mtemp 

as shown in Figure 2. 1.b. After wards, spatial permutation is performed by applying different circular 

permutations to different columns to obtain the interleaved matrix Mspa as shown in Figure 2. 1.c. Each 

row is processed by each processing elements and the memory size is represented by the number of 

columns as shown in Figure 2. 1.d. The benefit of this approach is that we can use barrel shifter 

interconnection network to realize turbo decoder for this interleaving law in practical applications. 

However, the approach is not standard compliant and cannot be used for other interleaving laws. 
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Figure 2. 1. Temporal and Spatial Permutation for interleaver construction 
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Similar techniques are used in [GIU02] and [KWA02]for designing conflict free interleaver, 

however, the principal purpose of designing interleaver is to construct good performance error 

correcting turbo codes that supports different block lengths. It is necessary that each 

telecommunication standard supports different block lengths in order to fulfill different user 

requirements and channel conditions. Prunable and deterministic interleaver is one of such interleaver 

that can easily realize different block lengths in practical implementation.  

 

Definition  Prunable Interleaver 

 Prunable interleaver is the one which can be modified to obtain the interleaver of shorter length 

that keeps the error correction capabilities of the original larger interleaver. 

 

Prunable interleaver provides flexibility in codeword or interleaver length to meet the 

changing user requirements and channel conditions. In order to obtain the interleavers of different 

lengths, prunable interleaver is stored and interleavers of shorter lengths are obtained by modifying it. 

 

Definition  Deterministic Interleaver 

 Deterministic Interleaver uses some algorithm to generate address of interleaved data on the fly. 

 

Deterministic interleaver is easy to implement as compared to random interleaver which 

randomly generates interleaved addresses and requires interleaver table or memory to store interleaver 

values. In applications or standards (such as DVB or LTE) where the frame size is large or different 

interleavers are used, storing each interleaver for both encoding and decoding is not a feasible solution 

from implementation perspectives  

One of the deterministic interleaver is Quadratic permutation polynomial (QPP) interleaver 

[SUN05]. For long frame size, decoding performance of QPP interleaver is near to random interleaver 

whereas for short frame size, QPP interleaver performs better than random interleaver. QPP interleaver 

is a part of current 3GPP LTE standard [LTE08] and for block size N, it is represented by following 

equation. 

�(x) = (f1x
2
 + f2x) mod N 

where x and �(x) represents the original and interleaved address respectively and integers f1, f2 are 

different for different block lengths and can be found in the standard. 

Also it is shown in [TAK06] that QPP interleaver is maximum contention-free i.e., for every 

window size W which is a factor of the interleaver length N, the interleaver is contention free. This is 

true for SISO decoder level parallelism. However, for higher data rate applications when trellis and 

recursive units parallelism are also included in each SISO, QPP interleaver is not contention-free and 

requires a router and buffer mechanism to solve memory conflicts. 

The above mentioned conflict free interleavers are deterministic but they have the following 

two problems: first of all, architectural constraints apply during interleaver design impede the error 

correction performance of the turbo codes. Secondly, conflict free interleavers are regenerated 

interleaving pattern for particular parallel level M which makes it difficult to optimize code 

performance of interleaving pattern for different parallel levels M. The approach results in 

performance difference for different parallel levels M when applied to same turbo decoder which is not 

a desirable trade off in order to design conflict free parallel interleaver. 
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2.1.2. Structured LDPC Codes 

 

From the introduction of the LDPC codes presented in previous chapter, it is clear that this 

code is completely specified by its H matrix and proper construction of this matrix is necessary to 

obtain excellent error correction capabilities of LDPC. Different constraints can be added during the 

construction of H matrix either to achieve significant coding gains or to simplify the decoder 

architecture.  

So, in the first king of approach, H matrix is constructed is such a way that data transfer 

between check nodes (CNs) and variable nodes (VNs) can be made without any conflict for partially 

parallel architecture. To tackle memory conflict problem, H matrix is divided into different blocks of 

sub-matrices where each sub-matrix is obtained by permuting rows of the identity matrix [ZHA01] 

[MAN03]. The codes obtained by adding this regularity during construction of codes is called 

structured codes. Structured codes removes memory conflict problem because transfer of messages 

between (CNs) and (VNs) are carried out through simple rules (like indices permutation). Also, 

structured codes simplified the decoder architecture since interconnection network can be 

implemented through simple network (like barrel shifter) by exploiting the regularity introduced 

during code construction.  

Due to simplicity in construction, structured codes are part of current telecommunication 

standards such as IEEE 802.11n (WiFi) [WIF08] and IEEE 802.16e (WiMAX) [WIM06]. In each of 

these standards, structured codes are constructed by dividing original matrix into different sub-

matrices as shown in Figure 2. 2.a. This matrix has X row and Y columns. To construct structured 

codes, each entry �x,y is replaced by Z*Z permutation matrix where each matrix is either a all-zero 

matrix or rotation of the identity matrix. Rotation of 3*3 identity matrix by 2 is shown in Figure 2. 2.b.  

Representing H matrix using identity matrix is a difficult and cumbersome task. Since each sub-matrix 

is either a null matrix or a permutation of the identity matrix, H matrix can be represented in a 

compact form by placing value of permutation rotation for non zero sub-matrix and by placing -1 for 

null sub-matrix as shown in Figure 2. 3. This compact form of H matrix is called a HBase matrix.   

Figure 2. 3 represents HBase matrix for WiMAX standard with  

X = number of rows = 12, Y = number of columns = 24,  

Z = 24, codeword size = Y * Z = 576 and code rate = Y - X / Y = ½.  

 

H = 

�0,0 �0,1 ……. �0,Y

�1,0 �1,1 .….. �1,Y

.

.

.

.

.

.

.

.

.

.

.

.

�X,0 �X,1 .….. �X,Y
 

I = 

0 0 1

1 0 0

0 1 0
 

(a) Division of H matrix into different sub-matrices (b)  Rotation of identity Matrix 

Figure 2. 2. H matrix Representation 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 -1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1 7 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 27 -1 -1 -1 22 79 9 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

3 -1 -1 -1 24 22 81 -1 33 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

4 61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1

5 -1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

7 -1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1

8 -1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1

9 12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

10 -1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1

11 -1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0

12 43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
 

Figure 2. 3. HBase Matrix for WiMax Standard of code word size = 576, Z = 24 and r = 1/2 

  

Although it is proved in [MAN03] that performance of structured codes is very close to 

random codes, adding constraints to construct structured codes may degrade the code’s decoding 

performance. Therefore, special attention should be taken while selecting constraints to develop 

structured codes to keep remarkable error correction capabilities of LDPC. Also, structured codes only 

support one class of LDPC codes and to handle diverse existing and future classes of LDPC codes 

(such as non-binary LDPC codes), a general approach to handle the memory mapping problem is 

required which is discussed in this thesis.    

 

2.2. Run Time Conflict Resolution 
 

In a second family of approaches, data are mapped into memory in such a manner that there is 

no conflict in accessing data in natural order whereas for accessing data in interleaved order optimized 

interconnection network and extra memory elements are used to tackle memory conflict problems. 

This approach supports any type of turbo and LDPC codes because interconnections networks are used 

to manage the conflict at run time.  

 

2.2.1. Run Time Conflict Resolution for Turbo Codes 
 

The approach for turbo codes works in two steps. In the first step, interconnection network is 

built which is optimized to general or particular interleaver to reduce memory conflicts, then in the 

second step, extra memory elements are introduced which stores the remaining conflicts.  

In [THU02], single LLR distributor (interconnection network)  is connected with all the P 

processing elements on one side and all memory banks on the other side. This LLR distributor 

received all the P incoming data and their addresses information to determine target RAM. A tree like 

structure called Tree Interleaver Bottleneck Breaker (TIBB) (see Figure 2. 4.a) is proposed in which 

LLR distributor is served as root and the buffers associated with target RAMs are acted as leaves. 

Every buffer must have access to all incoming data in order to determine which data needs to be stored 

in its local RAM. Furthermore, each buffer has P connection with LLR distributor in order to store 

multiple inputs in one cycle. Therefore, complexity of interconnection network increases exponentially 

with increase in number of P. The optimization based on two stages of buffer is proposed which 

reduces the number of inputs per buffer but still LLR distributor spans the whole chip which makes 
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this solution inefficient in terms of area and cost. In [THU02a], another structure called Ring 

Interleaver Bottleneck Breaker (RIBB) (see Figure 2. 4.b) is proposed in which each processing 

element has its own local LLR distributor which results in less complex architecture as compared to 

single LLR distributor in TIBB structure. Each LLR distributor has to decide whether to store the 

incoming data into the local memory or to send the data to left or right distributor. The direction of 

non-local data is determined based on shortest distance to the target RAM. As several data can have 

the same target RAM, buffer that can store more than one data per cycle is needed. The size of the 

buffer can be determined by performing automated profiling for targeted interleaver. RIBB reduces the 

control and network complexity as compared to TIBB but introduces latency in order to transfer data to 

targeted RAM when comparing with TIBB.  

 

SISO 

Decoders

Address 

Generator

To Memory 
Banks

                  

SISO 

Decoders

Address 

Generator

To Memory 

Banks

LLR Distributors

 

                (a) TIBB Architecture                                             (b) RIBB Architecture 

Figure 2. 4. LLR Distributor Architecture 

 

To improve the latency, new structure named General Interleaver Bottleneck Breaker (GIBB) 

is introduced in [THU03]. In RIBB, each local LLR distributor is connected to two neighboring LLR 

distributors but, in GIBB, it can be connected to any number of distributors. The approach increases 

the network capacity and hence throughput of the decoder. The topology of GIBB is represented as 

directed graph with associated routing information which uses shortest path routing to transfer data 

between different nodes or LLR distributor. The approach suffers from the problem that determining 

shortest path in general graphs is NP-complete and no optimum algorithm exists to find shorted path 

routing. Moreover, as the parallelism degree increases, hardware complexity of LLR distributor and 

increased buffer size makes above mentioned approaches prohibitive in terms of area and latency. 

 

To reduce the high wiring and bad buffer sizing scalability, packet switched Network-on-Chip 

network topologies have been proposed in order to resolve the conflicts on run time. In [NEE05], 

mesh, torus and cube networks have been proposed in which packets contains the information about 

target processing unit in header and target memory unit & decoder data in payload. Sufficient numbers 

of nodes per dimension have been used to guarantee required network bandwidth suitable to cope with 

high volume of interleaving traffic during turbo decoding. Different dead-lock free routing algorithms 

based on an input-queued (IQ) and an output queued (OQ) packet switch router architecture have been 

investigated. For low to moderate throughput applications, input queuing scheme is used with 

reasonable implementation cost whereas high throughput can be achieved through output queuing 

strategy at the cost of high silicon area. However, all these topologies suffer from reduced scalability 

and available bandwidth necessary to construct high throughput flexible on-chip communication 
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network. Also, router complexity and cost increases significantly with the increase of parallelism due 

to complex buffer management architecture to store conflicting data.  

 

To increase the scalability and to meet higher throughput requirement on flexible 

communication network, two heterogeneous multistage networks are investigated in [MOU07]. The 

Butterfly is a multistage on-chip communication network with unidirectional links and 2 input, 2 

output routers (see Figure 2. 5.a). Butterfly network has following two advantages over the previously 

presented network:First of all, the network exhibits huge scalability because a network of diameter of 

D can be constructed from two networks of diameter D-1. Secondly, the packet routing algorithm is 

very simple that uses destination address bits for selecting output port of router at each stage of the 

network. This network consists of routers and Network Interfaces. Routers stores conflicting packets 

(through FIFO queue) and the network Interface includes interleaving (or deinterleaving) information 

into the header of the packet coming from processing element. However, Butterfly network provides 

unique path between each source and each destination and lacks in path diversity. This requires 

complex buffering architecture to manage conflicting packets and increased the silicon area and cost 

of the network.  

 

The Benes network is the second multistage network studied in this article [MOU07]. It is 

constructed by putting two Butterflies back-to-back. The Benes network provides path diversity and 

all possible permutation between its inputs and outputs which is necessary to construct flexible 

network capable of supporting any type of turbo interleaver. However, this network avoids conflicts 

between packets if and only if all the packets have different destinations that are not the case in turbo 

decoding. To optimize Benes network for turbo decoding, a modified topology (see Figure 2. 5.b) and 

routing algorithm is presented. In this topology, number of routers in first stage is 2N where as number 

of routers in second stage is reduced to N where N is the number of inputs and outputs of the network.  

Routing algorithm is based on the rule that packets which are intended for different router at each 

cycle are transmitted at the same time. To achieve this rule, some preprocessing is required to schedule 

all the packets by allocating each one a certain time slot. Packet format is the same as in Butterfly 

network and FIFO is replaced by registers in router. Also, two down counters are introduced in 

Network Interface in order to schedule packet transmission.   
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Figure 2. 5. Heterogeneous Multistage Network 
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Butterfly network suffers from buffer management architecture that significantly increases its 

area whereas Benes network requires pre-computation of routing paths and packet scheduling that is 

not a feasible solution for implementing different standards on the flexible decoder architecture. Also, 

path diversity provided by these networks is not sufficient to manage packet conflicts for 

communication intensive architecture such as turbo decoder. To tackle these limitations, Binary de 

Bruijn Interconnection Network is presented in [MOU08] that is scalable and allows any permutation 

to be routed efficiently. The network is best expressed through Binary de Brujin graph [BRU46]. A de 

Brujin graph of 16 nodes is shown in Figure 2. 6. to describe the path diversity between different 

nodes.  Due to this path diversity, communication conflicts are managed by deflecting the conflicting 

packets appropriately until they reach the target processor rather than blocking or buffering them. To 

manage packet deflection efficiently, a modified shortest path routing algorithm is presented and based 

on the following rule: “If the two packets are intended for the same output port of the router, then the 

“youngest” of the two conflicting packets is deflected”.   

 

8 12 14
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3

4 13

2 11

1 7

9 60 15

 

Figure 2. 6. Binary de Bruijn graph with 16 nodes 

 

The flexible networks presented above suffer from large silicon area and cost due to increased 

buffer control architecture necessary to manage conflicting packets. Also, delay introduced due to 

conflict management mechanisms degrades the maximum throughput and makes these approaches 

inefficient for high data rate and low power applications.  

Recently, some low cost optimized interconnection networks and buffer management schemes 

are proposed for interleavers used in current telecommunication standards. In [WON10], multistage 

network based on the barrel shifter is proposed for 3GPP LTE System for parallel decoder 

architecture. Due to the permutation characteristics of QPP interleaver used in LTE, the connection 

between each memory module and its corresponding SISO is established by shifting each sub block by 

a certain offset. The resultant interconnection network has short path delay and simplified routing 

control mechanism which results immediate transfer of data between SISO and memory. Most 

importantly, for high data rate and low power applications, the proposed network can significantly 

reduce the decoder hardware cost. However, the proposed network, can only apply to QPP interleaver 

where the number of SISOs are power of 2 and the approach does not work for any other interleaving 

law. 
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2.2.2. Run Time Conflict Resolution for LDPC Codes 

 

As stated in Chapter 1, computational complexity at both VN and CN is reduced using 

suboptimal algorithm. Consequently, a real source of concern for designing LDPC decoder is a 

transfer of massages between CN and VN based on the routing of edges of Tanner graph. To solve this 

message routing problem, different scalable and flexible interconnection networks have been proposed 

in literature to solve the memory conflict at run time. This increases the flexibility and scalability in 

implementing different LDPC codes at the cost of increased latency and hardware cost.  

In [THE05], an approach based on Network on Chip (NoC) is presented in which VN and CN 

act as processing elements (PEs) and uses on chip network based on 2-D mesh topology to 

communicate with each other. Based on the H matrix of a given LDPC code, the approach generates 

the configuration data which contains the information regarding the number of nodes (either VN or 

CN) allocated to particular PE and the connectivity information between different PE based on the 

communication pattern of different nodes. Each PE has a dedicated memory to store this configuration 

data. Packet sent by each PE contains information about data and the address of sender and receiver 

for routing data on the network. To minimize routing overhead, intelligent mapping algorithm is used 

to map Tanner graph on the physical network to reduce the distance packet must travel across the 

network to reach the destination. Similarly, in [KIE03] another heterogeneous network called message 

distribution network (MDN), whose topology is based on randomly generated graph, is used to resolve 

memory conflict at run-time. Exchange of data between VN and CN is carried out by adding 

destination header onto produced message. Different memories are use to store data, addresses, 

produced messages and received channel values. Due to conflict management mechanism, achievable 

throughput is low which increases the decoder latency. Also, implementation of LDPC decoder using 

MDN requires many resources which increase the area and power consumption of the overall system. 

However, on-chip networks presented above offer little support for scalability and flexibility 

in designing decoder architecture. The resultant overhead such as low latency and large area and 

power consumption makes their implementation difficult for practical application. To provide 

scalability at reasonable latency and area overhead in [MOU08], binary de-bruin network (see Figure 

2. 7) based on Binary de Bruijn graph [BRU46] is presented to handle communication between VNs 

and CNs. Due to path diversity depicted through Figure 2. 6, de bruijn network provides flexible 

interconnection network to map routing of edges of Tanner graph. Allocation of VNs and CNs to each 

processor depends on the code rate, node degrees and size of extrinsic memories. Furthermore, since 

the sum of all the VNs degrees is equal to the sum to all the CNs degrees, so half the processors can be 

use for CN computation and half for VN computation. To map the edges of Tanner graph, header of 

each packet contains information about targeted processor along with destination memory write 

address. For packets routing, modified shortest path algorithm is used in which one of the two packets 

that are destined for the same output is deflected rather than blocking or buffering it in order to reduce 

the size of router. The criterion for deflecting packet is based on “round-robin” arbitration that deflects 

“youngest” of the two conflicting packets.      
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Figure 2. 7. 8-Processor de Bruijn network with processors, routers and network interfaces 

 

2.3. Design Time Conflict Resolution 
 

In a third kind of approaches, different algorithms are proposed to provide conflict free 

parallel concurrent access to all Processing Elements (PEs) through some pre-processing to determine 

the memory locations for each data element used in the computation. The benefit of these approaches 

is that decoder implementation does not need any specific network and extra memory elements to 

support particular interleaving law. Rather any network which supports all the permutation patterns 

between inputs and outputs can be used to implement any interleaving law. However, the approach 

requires some preprocessing to map data in different memory banks for different block lengths and 

parallelism degree.  

 

 

2.3.1. Design Time Conflict Resolution for Turbo Codes 
 

First algorithm to resolve conflict problem for turbo codes at design time is presented in 

[TAR04] using simulated annealing metaheuristic. Mathematical model and mapping constraints 

related to the problem can be found in [TAR04]. The main emphasis is to present the method in this 

section so that one can better understand the algorithm. As explained in the previous chapter ( section 

4.1), turbo codes can be represented through two matrices: one related to the natural and the other 

related to the interleaved order of access. Data elements in each column of both natural and interleaved 

matrices are needed to be accessed in parallel. For example in Figure 2. 8.a, data 1, 6, 11, 16, 21 are 

need to be accessed in parallel. For this algorithm, each column in interleaved matrix is called tile and 

is given the alphabetical names as shown in the last row of interleaved matrix of Figure 2. 8.b. This 

tiling information is placed in natural matrix to prepare tiling matrix as shown in Figure 2. 8.c. For 

example, data elements 1 and 2 is in tile E, so in tiling matrix we place E at the positions where both 1 

and 2 exists in natural matrix. Now for conflict free memory mapping, all the banks assigned to the 

data elements in each tile of tiling matrix and each column of natural matrix should be different.  
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Natural order Matrix Tiling Matrix

E E D C C

D C C E B

B A B A A

D E B D E

B C D A A

P1 25 10 22 3 1

P2 14 11 5 6 2

P3 15 13 7 16 20

P4 24 18 8 19 17

P5 12 21 4 23 9

Tile A B C D E

Interleaved order Matrix

P1 1 2 3 4 5

P2 6 7 8 9 10

P3 11 12 13 14 15

P4 16 17 18 19 20

P5 21 22 23 24 25

 
                        (a)                                                (b)                                            (c) 

Figure 2. 8. Matrices used in [TAR04] 

 

Algorithm presented in [TAR04] is divided in two steps which are described below, 

First step : “Any step that produces a preliminary mapping matrix with the following properties: 

every column and every tile contains at most one element equal to every symbol in {1,…,P}”. The 

construction of this preliminary matrix is further improved through greedy initialization of mapping 

matrix which is presented in [TAR05] as, “For i = 1,…, P, read the i-th row of the mapping matrix 

from left to right and set the value of the current element to i, provided that it does not collide with the 

other elements on the same row. Otherwise, keep it blank”.  

Second step: In this step, the algorithm apply simulated annealing algorithm on the preliminary 

mapping matrix to fill all blanks present in it. For this, the algorithm injects a collision, i.e, either in 

one column or in one tile, more than one data contains the same symbol, and solve this collision at 

each step by possible introducing another one. 

  The problem with this algorithm starts from second step because one does not know how long 

the algorithm takes to determine conflict free memory mapping by iteratively injecting and solving the 

collisions. Though the proof is given in [TAR04] that algorithm is always able to find memory 

mapping but computational complexity of the problem inhibits the addition of other constraints such 

as architecture oriented memory mapping into the algorithm. 

In [LIN10], optimized memory address remapping (OPMM) is presented in which certain 

Collision-Free Exchange rules are defined to complete the simulated annealing procedure much faster 

than that achieved in traditional method presented in [TAR04]. OPMM accelerates the annealing 

procedure in two ways: First it selects pairs of data elements which need to exchange their bank in 

order to perform number of OPMM steps in one iteration. Secondly, during future iterations, selected 

data exchange pairs interchange their bank information so that exchanged data elements can only be 

varied between two banks instead of P memory banks. As a result, number of iterations to complete 

the annealing procedure is much smaller than [TAR04] when annealing randomly select exchange data 

element pairs. 

Experiments show that OPMM procedure finds conflict free memory mapping in much 

smaller CPU time but still the method is based on metaheuristic and complexity or time of completion 

of the algorithm is unknown. This results in lower CPU time for particular interleaver pattern and 

longer CPU time for others depending on the choice of data exchange pairs. Also the complexity of 

the algorithm makes it difficult to add additional constraints for finding architecture or network 

oriented memory mapping. 
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In [CHA10a], new simplified approach called Static Address Generation Easing SAGE is 

presented that takes additional constraints to determine architecture oriented memory mapping. In this 

approach, two empty matrices called SAGE Mapping Matrices are used to store banks information 

during algorithm execution. These matrices (MAPNat, MAPInt) have the same order as the natural or 

interleaved order matrices as shown in Figure 2. 9. To find architecture oriented memory mapping, 

two constraints are defined to be respected during algorithm execution. First, each column of the 

mapping matrices should contain different memory banks and second, if interleaving law allows, each 

column should respect the rules of the steering network component. Algorithm initializes by assigning 

memory banks to the first column of MAPNat. Next, algorithm updates the entries corresponding to the 

data in MAPInt with this mapping information. After that, at each iteration, the algorithms select the 

most constraint column (column which has minimum number of filled entries), fills that column with 

mapping information respecting the constrains and update that mapping information into other matrix 

until all the columns of the mapping matrices are filled with mapping information. 

 

Natural order Matrix

0 1 2 3

4 5 6 7

8 9 10 11

t1 t2 t3 t4

Interleaved order Matrix

3 7 4 2

1 0 10 9

11 6 5 8

t5 t6 t7 t8

MAPNat

- - - -

- - - -

- - - -

MAPInt

- - - -

- - - -

- - - -
 

Figure 2. 9. Matrices used in SAGE 

 

In this thesis, we present different approaches based on bipartite graph to tackle mapping 

problem and explore the design space exploration for interleavers used in current telecommunication 

standards.  

 

2.3.2. Design Time Conflict Resolution for LDPC Codes 
 

To provide flexibility at reasonable hardware cost, algorithm innovation is introduced at 

design time to map edges of the tanner graph in such a manner that all VNs and CNs communicate 

their messages without any conflict in partially parallel architecture. There are two benefits in using 

this approach: First, algorithms proposed for conflict resolution can be applied to any current and 

future classes of LDPC codes and second the approach does not require any specific network or extra 

memory elements to manage message communication. Rather any network which supports all the 

permutation patterns between inputs and outputs can be used to route any Tanner Graph. 

Although it is claimed in [TAR04] and [LIN10] that approaches presented in these articles can 

be used for LDPC but as it is shown in next section through conflict graph that single memory 

mapping is not always possible for every class of LDPC codes and double memory mapping is the 
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only solution to map any LDPC Tanner graph. Furthermore, algorithms presented in [TAR04] and 

[LIN10] are based on a metaheuristic called simulated annealing and the time of completion of 

algorithm is not known. Memory mapping algorithm in [TAR04] is implemented in [QUA06] that 

requires two crossbar or Benes networks to manage scrambling of data between different processors. 

One crossbar is used to transfer messages to VN processors and other to CN processors. Traditional 

Belief Propagation algorithm is modified into Low-Traffic Belief Propagation Algorithm (LTBPA) to 

use only one interconnection network but the LTBPA is not the standard algorithm used in current 

decoder implementations.  

In [CHA10], a technique based on multiple read, multiple write approach is presented. In this 

technique, each data di has two mapping, one from where approach reads the data and the second in 

which the approach writes the data. To accommodate this mapping approach, two additional cells 

called mapping cells are associated with each di. MAP matrix used in this technique is shown in  

Figure 2. 10. 

For functional correctness, if data is accessed several times, then i
th
 read access of di is the 

same as the (i-1)
th
 write access of di. Two additional mapping constraints are added in this approach to 

find conflict free memory mapping: First is that in any column all the memory banks are different and 

second is that first read and last write of di should be performed in same bank.  

 

1 3 6 5 4 2

2 5 1 6 3 1

3 6 4 2 5 4

 

Figure 2. 10. MAP matrix for Multiple Read Multiple write (MRMW) approach 

 

Algorithm initializes by assigning read and write memory banks to the first column of the 

MAP matrix. Algorithm then continues assigning read and write mapping to the data in the next 

columns respecting mapping constraints until some conflicts occur in read or write mapping at some 

column. In that case, the algorithm performs recursion to go to the nearest occurrence of the conflicted 

data in order to change the mapping and remove the conflict. This process continues until MAP matrix 

is filled with mapping respecting the mapping constraints. The algorithm presents novel idea to solve 

computationally hard problem through multiple read and multiple write technique but it is based on 

recursive approach and the time of completion is unknown. 

 

2.4. Conclusion 
  

Three techniques presented in this section have their own merits and demerits. The code 

developed using first technique results in low area overhead and easy implementation. But this 

technique is not always standard compliant and codes developed using this technique do not always 

gives good error correction performance. Flexible and scalable interconnections networks developed 

during second technique can handle memory conflict for any type of interleaver. However, they suffer 



State of the Art 

 - 42 - 

from large silicon area and increased latency due to conflict management mechanism developed in 

these networks. As a result, these networks are not a suitable solution for high data rate and low power 

applications. A modification in above mentioned approaches can be made by finding conflict free 

memory mapping that respects routing structure of particular interconnection network. This removes 

the need for designing complex router and buffer control architecture and reduces the silicon area and 

cost to design flexible interconnection network. Third approach deals with this idea to allocate data in 

memory banks in such a manner to avoid memory conflict problem either using particular network or 

the network that supports all the permutations at the cost of some preprocessing.  

In this thesis, we present polynomial time algorithm to solve mapping problem for any 

type of interleaver using novel modeling approaches based on graph theory in Chapter 3 and 4. 

  

3. Node and Edge Coloring of Graph 
 

Graphs are among the most widely used models of both human and natural-made structures. 

They can be used to model many types of relations and process dynamics in physics, chemistry, 

biology, computer science, sociology and network analysis. Many problems of practical interest can be 

modeled as graphs.  

In this section, the definitions and algorithms related to graph theory are presented which are 

helpful to understand the approaches presented in the next chapters for designing conflict free parallel 

interleaver. Also the previous techniques to model memory mapping problem as node and edge 

coloring are also presented in this portion and explained why these techniques do not give optimal 

solution in designing parallel interleaver architecture. Finally, bipartite edge coloring algorithms are 

presented to understand the memory mapping algorithms proposed in this thesis.  

 

3.1. Graph Theory 
 

Definition  Graph 

 A graph G = (V, E) is a set of nodes V, and a set of edges E. If v,w ∈ V then an edge (v,w) ∈  E is 

incident to v and to w, and vertices v and w are said adjacent. A subgraph of G is a graph whose 

vertices and edges are in G. (see Figure 2. 11.a)  

 

Definition  Deletion of edge from Graph 

 Deletion of edge (v,w) from G means to form the subgraph G – (v,w), consisting of all vertices of 

G and all edges of G except (v,w).  

 

Definition  Edge Coloring of Graph 

 An edge coloring of G is an assignment of a color to each edge in G. An edge chromatic number, 

χ`(G), is the fewest number of colors necessary to color each edge of a graph so that no two 

edges incident to the same vertex have the same color.  

 

Definition  Degree of Graph 

 The degree of vertex v is the number of edges incident to v. A graph is deg-regular if all vertices 

have the same degree deg. A graph is semi regular, if all the vertices in any of its vertex set have 

the same degree.  
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Definition  Path in a graph 

 A path P is a sequence of edges (v1, v2), (v2, v3),..., (vn-1, vn). The ends of P are vertices v1 and vn. 

If v1 ≠ vn, P is open; otherwise P is closed. A cycle or circuit is a closed path, with no repeated 

vertices other than the starting and ending vertices. If the number of edges in a circuit is even 

then it is called even circuit otherwise it is called odd circuit. 

 

Definition  Eulerian Circuit and Connected Graph 

 An Eulerian circuit is a closed path which uses all edges precisely once. A graph G is connected 

if there is a path between any two distinct vertices otherwise G is disconnected. 

 

Definition  Matching and Perfect Matching 

 A matching M in a graph is a set of edges without common vertices. A perfect matching Mp is a 

matching which matches all vertices of the graph i.e., every vertex of the graph is incident to 

exactly one edge of the matching. (see Figure 2. 11.b) 
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(a) Simple Graph  (b)  Perfect Matching with bold lines 

Figure 2. 11. Graph Representation 
 

Definition  2-matching and 2-Factor of Graph 

 A 2-matching H of a graph G = (V, E) is a subset of E such that every node of G is incident with 

at most two edges of H. The 2-matching H of G is called 2-factor if every node of G is incident 

with exactly two edges of H [HAR06]. 

 

The following two theorems [GRO03] define the necessary and sufficient condition for the graph to 

contain 2-factor. 

 

Theorem  2.1 

 Every 2k-regular graph contains a 2-factor, where k is integer. 

 

Theorem  2.2 

 Every 2-edge-connected (2k + 1)-regular graph contains a 2-factor. 

 

These theorems result into the following two corollaries [GRO03]: 

Corollary  2.1 

 Every 2k-regular graph contains k 2-factors. 

 

Corollary  2.2 

 Every (2k + 1)-regular graph contains k 2-factors and one 1-factor. 
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3.2. Conflict Graph 

 

In [KEY01], memory mapping problem is modeled as conflict graph. In conflict graph all the 

data elements are modeled as nodes and edge is incident between two data nodes if the corresponding 

data elements need to be accessed in parallel. 

 

Definition  Conflict Graph 

 The Conflict Graph G(N,E) is a graph with node set N = {n1,n2, . . . , nn}  and is defined as 

follows: 

(a) ni � N,  node ni corresponds to the data element used in the computation, where i = {1,2,…,n} 

(b) eij � E,  edge eij is incident between node ni and node nj if data elements i and j are accessed 

concurrently by system. 

 

After the construction of conflict graph, the mapping problem is converted into famous node coloring 

problem which is defined as: 

 

Problem  Node Coloring Problem 

 Given a graph G, can the nodes of G be colored with n colors, provided that the nodes connected 

with same edge must be given a different color? where n is the minimum number of colors 

required to color the nodes of G.   

 

If we consider n colors as n memory banks which can be accessed in parallel then the problem 

of assigning data elements in memory banks in such a way that no conflict occurs during execution of 

parallel architecture is essentially the problem of node coloring. Since [KOZ92] proves node coloring 

as NP-complete, modeling memory mapping problem as conflict graph does not give any approach 

that solves mapping problem in polynomial time. In this thesis, mapping problem is modeled as 

bipartite graph and different algorithms are presented to solve the problem in polynomial time.  

 

3.2.1. Conflict Graph for Turbo Codes 

 

To show the complexity of memory mapping problem for turbo codes, a conflict graph based 

on natural and interleaved order of turbo codes (see Figure 2. 12.a) is presented in Figure 2. 12.b. In 

conflict graph, the number of nodes is equal to the number of data elements used in the computation. 

Data in each column of natural and interleaved order matrices are needed to be accessed in parallel and 

connected through edges in conflict graph. For example, data 0, 4, 8 , required to be accessed in 

parallel at t1 are connected through edges in conflict graph. Although in [TAR04] and [LIN10], 

authors proves that it is always possible to find conflict free memory mapping for any type of 

interleaver used in turbo codes, the proposed heuristics are unable to provide polynomial time 

algorithms to solve the problem.  The proposed architecture for turbo decoder after finding conflict 

free memory mapping is shown in Figure 2. 13. In this thesis, we not only prove that conflict free 

memory mapping always exist for every type of  interleaver but also present polynomial time 

algorithm to solve this problem by modeling it as bipartite graph. 
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(a) Data Access Matrices  (b)  Conflict Graph 

Figure 2. 12. Conflict Graph for Turbo Decoder 
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Figure 2. 13. Resultant architecture 

 

3.2.2. Conflict Graph for LDPC Codes 
 

A conflict graph for LDPC based on access order of Figure 2. 14.a is depicted in Figure 2. 

14.b. It is impossible to determine optimal node coloring for the conflict graph of LDPC because the 

resultant graph G itself depicts that we need more than P colors or memory banks, where P = Number 

of processing elements in the system, in order to color the nodes of the G. This results in an 

architecture in which more than P memory banks are used to provide conflict free concurrent parallel 

access to P processing elements. After finding node coloring, the resultant architecture for conflict 

graph of Figure 2. 14.b. is shown in Figure 2. 15. in which 5 memory banks are needed to store 6 data 

elements whereas three processors are used to process the data. This result in following two 

disadvantages for the modeling based on conflict graph. 

1. There is no known algorithm which can find minimum node coloring for the conflict graph of 

 LDPC because the problem in NP. Also the algorithms of [TAR04] and [LIN10] are not 

 applicable in LDPC. 

2. If one can be able to find some heuristic like [TAR04] and [LIN10], then still the resultant 

 architecture increases the cost and complexity of the system since we require more memory banks 

 than needed to store the data. 

 To find memory mapping with optimal number of memory banks, we introduce in this thesis a 

concept called “Double Memory Mapping” in which a memory mapping of each data element is 

divided into two memory mapping: First mapping called read mapping represents read access to that 

data element whereas second mapping called write mapping expresses write access of that data 

element. In this thesis, we not only model Double Memory Mapping as bipartite or tripartite graph but 
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also propose polynomial time algorithm to find this mapping in which resultant number of memory 

banks are equal to the number of processing elements to reduce the complexity of the system.  
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(a) Data Access Matrix  (b)  Conflict Graph 

Figure 2. 14. Conflict Graph for LDPC Decoder 
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Figure 2. 15. Resultant Architecture 
 

3.3. Bipartite Graph 

 

Computational complexity of node coloring motivates us to model our problem in a class of 

graphs in which polynomial time algorithms exists. Bipartite graph belongs to this category in which 

polynomial time algorithms exit for different graph problems. In this section, we present some 

definitions and algorithms related to the bipartite graph which are used in the next chapters to model 

and solve  memory mapping problems.    

  

Definition  Bipartite Graph 

 A graph G = (V1 ∪ V2, E) is bipartite, if V1 and V2 divide the vertices set so that each edge is 

incident to a vertex in V1 and a vertex in V2 i.e. V1 ∩ V2 = ∅ (as shown in Figure 2. 16.a).  A 

bipartite graph is called multi-graph  if any two of its vertices may be connected through more 

than one edge. 

 

As explained previously, a circuit is even if there are even number of edges in its respective closed 

path. It is important to note that a circuit is always even in bipartite graph.  

 

Definition  Semi Regular Bipartite Graph 

 A bipartite graph is semi regular, if all the vertices in any of its vertex set V1 or V2 have the same 

degree. 
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Definition  semi 2-factor in Bipartite Graph 

 A semi 2-factor in bipartite graph G is defined as a 2-regular subgraph in G with 2Y vertices 

where every node is incident with exactly two edges and where Y = Min (|V1|, |V2|). 

 

Definition  Tripartite  Graph 

 A graph G = (V1 ∪ V2 ∪ V3, E) is tripartite, if a set of graph vertices decomposed into three 

disjoint sets such that no two graph vertices within the same set are adjacent i.e. V1∩ V2∩ V3=∅ 

(as shown in Figure 2. 16.b). 
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(a) Bipartite Graph  (b)  Tripartite Graph 

Figure 2. 16. Graph Representation 

 

3.3.1. Bipartite Edge Coloring 

 

Bipartite edge coloring is the procedure to color the edges of bipartite graph and can 

be presented as follows: 

 
Lemma 2.1  Bipartite Edge Coloring 

  If the maximum vertex degree of a bipartite graph G is � then, χ`(G) = � or the edges of G can 

be colored with exactly � colors. Proof of this algorithm can be found in [KON16]. 

 

After the presentation of Lemma 2.1, different algorithms have been proposed to color the edges of 

bipartite graph with � colors. In this regard, Vizing [ORE67] first proposed an algorithm to color the 

edges in O(VE) by repeatedly creating altering paths until all the edges are colored. This algorithm is 

improved by Gabow [GAB76] which introduces the concept of Euler partition to equally divide each 

graph of � degree into two subgraphs of �/2 degree. By recursively applying Euler partition, the 

algorithm can find edge coloring in O( V E log �) time. Both of these algorithms are presented next. 

 

3.3.1.1 Vizing Method to color the edges of Bipartite Graph 

 

 The algorithm to find bipartite edge coloring is first presented by Vizing [ORE67] which uses 

alternating path to color the edges of the graph and has a complexity of O(VE) where V is total number 

of vertices and E is the total number of edges in the graph. 

The algorithm starts by assigning one of � possible colors to all the edges of the graph G. 

After the initial assignment, uncolored edge (a,b) is colored as follows: 
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Suppose a color x is missing on vertex a and a color y is missing at vertex b. Construct an “alternating 

(x,y) path p” starting at b. The path begins with an edge incident to b and have a color x. Path p is 

constructed by alternately choosing x and y colored edges until path reaches at the vertex c where the 

next color is missing. It is clear that if the graph is bipartite then c � a & c � b.    

After the construction of p, colors are interchanged along p by switching x to y and y to x. This makes 

color x missing at both a and b and edge (a,b) can now be colored with color x.    

To explain the algorithm, we present a simple example. Initial coloring of Graph G with  � = 3 colors 

namely bold, dotted and gray as shown in Figure 2. 17.a. Gray color is missing at vertex 4 whereas 

dotted color is missing at vertex F. So, algorithm constructs (gray, dotted) alternating path starting 

from F until the path reaches at vertex A where gray color is missing as shown in Figure 2. 17.b. 

Alternating path is shown through long dotted lines in this figure. After the construction of alternating 

path, the algorithm interchanges the color on the path (as shown in Figure 2. 17.c) so that gray color 

becomes missing on both vertices F and 4. Edge (F,4) is now assigned with gray color to complete the 

edge coloring as shown in Figure 2. 17.d. 
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Figure 2. 17. Vizing Algorithm 

 

3.3.1.2 Gabow Method to color the edges of Bipartite Graph 
 

First breakthrough algorithm to reduce the complexity of bipartite edge coloring algorithm is 

presented by Gabow in [GAB76]. The algorithm uses Euler partition to divide original graph G of 

maximum vertex degree � into subgraphs G1 and G2 where maximum vertex degree of each subgraph 

is �/2. By recursively applying Euler partition, the algorithm colors edges of G in O( V E log �) 

time. But first we explain algorithm to find Euler partition because all the presented algorithms use 

this algorithm to reduce the complexity of coloring the edges of bipartite graph. 

 

Euler Partition  

 

An Euler partition is a technique that partitions the edges of graph into open and closed paths. 

Each vertex of odd degree is the end vertex of one open path where as each vertex of even degree is 

not the end vertex of any open path. An Euler partition is constructed as follows: 
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Choose any vertex of odd degree, if no vertex of odd degree exists then choose any vertex of even, 

nonzero degree. Start traversing a graph from one vertex to another by including a traversed edge into 

the path p and removing that edge from the graph until a vertex with zero degree is reached. This 

completes p in the partition. Then start constructing another path p’ by choosing another start vertex. 

Repeat this process until no vertex of nonzero degree remains. The algorithm finds euler partition in  

G = (V1 ∪ V2, E) in O(E) time. Procedure to find Euler Partition is presented in [GAB76].  

 

Edge Coloring Algorithm used by Gabow in [GAB76] 

 

After the construction of Euler partition, a bipartite graph G splits into two bipartite graphs G1= 

(V, E1) and G2= (V, E2) by traversing each path of the partition and alternately placing one edge into 

G1 and one edge into G2. Every even degree vertex of G will have the same degree in both G1 and G2 

but every odd degree vertex of G will have degree in G1 and G2 differing by one. This implies that if � 

is even in G then maximum vertex degree in both G1 and G2 is �/2 but if the � is odd then maximum 

vertex degree in both G1 and G2 is � �/ 2∆  or �+1 which results in a coloring of G with �+1 colors 

which is not minimal. 

To avoid this, if � is odd, then the algorithm first finds matching M that covers all the vertices of 

degree �, give one color to the edges of M and delete these edges from G. Now � is even, so the Euler 

partitioning method can be applied to G-M. The complete edge Coloring algorithm is presented below. 

 

1 edgeColor (G, � )  

2   if (� is odd) then 

3               if (� = 1) then 

4                    M = G 

5                    assignOneColour(M ) 

6               else   

7              M = Matching(G) 

8              assignOneColour(M ) 

9               edgeColour(G- M, �-1) 

10              end if 

11       end if 

12   if (� is even) then 

13           Ceuler = eulerCircuit(G) 

14               G1, G2 = split(G, Ceuler) 

15            edgeColour(G1, �/2) 

16            edgeColour(G2, �/2) 

17      end if 

 

Edge Coloring algorithm used in this thesis with modified euler partitioning method and pedagogical 

example is presented in Chapter 4. 

The algorithm to find matching ( see section 3.1) that covers all the vertices of degree � takes 

O( V E) time and the complete algorithm to find bipartite edge coloring takes O( V E log �) time. 

This implies that in the algorithm most of the time is consumed in constructing the matching because 

Euler partitioning is completed in O(E) time. Therefore, after the work of Gabow, all the future 

algorithms tried to reduce the complexity of finding matching in bipartite graph. It has been found that 

the algorithm to find perfect matching in regular bipartite graph is more efficient than the algorithm to 
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find matching in irregular bipartite graph which covers all the vertices of degree �. So, the current 

algorithms first convert irregular bipartite graph of maximum vertex degree � into �-regular bipartite 

graph through a simple method which is presented below.   

 

Converting irregular graph into �-regular graph 

 

Initially the bipartite graph G consists of two sets of vertices called V1 ∪ V2. The procedure 

[COL82] to construct �-regular graph is completed in two steps. 

 

Merge Step 

 

In the first step, vertices of degree < � are merged, if possible. To do this, both sets of vertices 

are sorted out by their degree. Then, for each vertex set, the procedure starts merging the vertices until 

at most one vertex of degree < ½ � remains in each vertex set. 

If the resultant graph is �-regular, then we apply our bipartite edge coloring algorithm, otherwise 

second step is executed to construct �-regular bipartite graph. 

 

Copy Step 

 

 In the second step, procedure makes a copy G’ of G and put the two graphs together by 

placing vertex set V1’ of G’ into vertex set V2 of G and vertex set V2’ of G’ into vertex set V1 of G. The 

new graph G’’ has the same number of vertices in both V1’’ and V2’’ and for each vertex v in G, its 

copy v’ is in the opposite vertex set in G’’. Both vertices v and v’ have the same degree deg, so 

procedure joins them with � – deg edges to construct �-regular graph G’’’. Edge coloring algorithm is 

then applied on G’’’ and G is extracted from G’’’ after coloring. It is important to note that edge 

coloring is still applicable on G after we retrieve it from G’’’.  

The procedure is explained in Figure 2. 18. Vertices D and E are merged in merge step (see 

Figure 2. 18.b) whereas in copy step we make a copy of merged graph and place the two graphs 

together in such a way that the vertices of one set is placed along with the vertices of the other set (see 

Figure 2. 18.c). Vertices B & B’ and C & C’ have equal degree i.e., 3, so we join B & B’ and C & C’ 

by two edges to construct �-regular graph as shown with dotted lines in Figure 2. 18.d.  

Fortunately, in our modeling of mapping problem as bipartite graph, the degree of vertices 

depends on the degree of parallelism that is always constant in hardware architecture. So bipartite 

graph for mapping problem is always �-regular graph where � is the number of processing elements.  
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Figure 2. 18. Constructing �-regular graph 

 

4. Transportation Problem 

 

One of the key problem in the current manufacturing and in service organization is how to 

allocate scarce resources between various projects. In terms of resource allocations, Linear 

Programming (LP) is a method for allocating limited resources in order to reduce the cost of the 

project. In LP, limited resources are called decision variables, the criterion for selecting the best 

values of the decision variables are called objective function whereas limitations on resource 

availability are known as constraint set.  

Transportation Problem [BAZ97] is a class of problem of LP which deals with the physical 

distribution of resources between producers and consumers. The transportation problem is to minimize 

the cost of shipping item from producers to consumers so that each consumer fulfills its demand and 

every producer operates within its capacity. 

To understand the problem, consider a set of I producers where producer i has a supply of ai 

units of a particular item. In addition, there are J consumers where consumer j requires zj units of item. 

We assume that ai, zj > 0. For each link from producer i to consumer j, lij, let oij be the cost to transport 

a single item on lij. Transportation problem can be modeled in two ways: First in network model and 

second in matrix model. In network model, transportation problem is represented as bipartite graph, as 

shown in Figure 2. 19, where first node set contains all the producers and second node set contains all 

the consumers. An edge is connected between a producer i and consumer j if a route lij exits between 

them. Also the cost to transport one item on each route is mentioned on the corresponding edge. 

Supply of all the producers and demand of all the consumers are also mentioned on the corresponding 

node of the bipartite graph. In matrix model, transportation problem is represented as matrix, as shown 

in Figure 2. 20, in which rows contain all the producers and columns represent all the consumers. Each 

cell Mij, corresponding to the producer i and consumer j, contains oij of the route lij.  
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Figure 2. 19. Network Model of Transportation Problem for 3 producers and 3 consumers 

Consumer 
Producer            J1 J2 J3 Supply

I1 o11 o12 o13 a1

I2 o21 o22 o23 a2

I3 o31 o32 o33 a3

Demand z1 z2 z3
 

Figure 2. 20. Matrix Model of Transportation Problem for 3 producers and 3 consumers 

 

Transportation problem can be expressed in linear programming as follows: 

Objective Function is to reduce the cost of transporting items from each producer to each consumer. 

 If xij is the number of items transported on lij then this objective function can be expressed 

mathematically as: 

 MIN ( o11x11 + o12x12 + …………………. + oi (j-1)xi (j-1) + oijxij )  

whereas the constraints for transportation problem are represented as: 

 

                           x11 + x12 …………………+ x1j  � a1           Supply of Producer I1 

                           x21 + x22 …………………+ x2j  � a2           Supply of producer I2 
. 
. 

                           xi1 + xi2 …………………+ xij  � ai             Supply of Producer Ii 

                           x11 + x21 …………………+ xi1  � z1           Demand of Consumer JI 

                           x12 + x22 …………………+ xi2  � z2           Demand of Consumer J2 
. 
. 

                           x1j + x2j …………………+ xij  � zj              Demand of Consumer Jj 

 

 An example to explain transportation problem is presented in Annexure.  
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5. Conclusion 

 

In this chapter, different techniques that were already presented in literature to handle memory 

mapping problem for turbo and LDPC codes have been explained. The easiest solution is to develop 

an interleaving law taking into account architectural constraints. This results in a code that supports 

the implementation of decoder on parallel architecture. However, codes developed using conflict free 

interleaving law do not always present good error correction capabilities and this is not a desirable 

tradeoff to simplify decoder implementation. To add flexibility in decoder implementation, different 

architectures based on System on Chip (SoC) that supported any type of interleaving law have been 

presented in literature as a second technique to tackle memory mapping problem. However, large 

hardware cost and latency in implementing this architecture limit its use in practical system. Third 

technique is to develop algorithms that can map data in memory banks in such a manner that all 

processing elements can access their required data concurrently from memory without any conflict. 

This technique solves memory mapping problem for any type of interleaving law and provided 

medium complexity in decoder implementation. 

Afterwards, two algorithms have been explained through examples: first algorithm is related to 

the coloring of the edges of bipartite graph and second one is related to the solving of transportation 

problem. Bipartite edge coloring can be solved in polynomial time. Different techniques and 

approaches to solve this problem efficiently have been presented with simple examples in this chapter. 

Transportation Problem is a class of linear programming problem that deals with optimal distribution 

of resources between producer and consumers. This is another problem that could be solved efficiently 

in linear time. In this chapter, Modeling of bipartite graph as transportation problem has been 

discussed and an efficient algorithm has been presented to find optimal allocation of resources 

between producer and consumer.  

In this thesis work, different algorithms are presented to tackle memory mapping problem for 

turbo and LDPC codes. Two last algorithms presented in this chapter have been used to propose 

several approaches that allow designing parallel hardware architecture. This work allowed to define 

finally a method that find in polynomial time a solution to the memory mapping problem. Next two 

chapters present related algorithms and highlight their behaviors on pedagogical examples. Proposed 

methods are compared with state of the art solutions in the last chapter and interests are discussed 

through experiments. 
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Chapter 3 

METHODS BASED ON BIPARTITE GRAPH 

FOR SOLVING MEMORY MAPPING 

PROBLEMS 
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In this chapter, first two approaches that are developed during this thesis work to tackle memory 

mapping problem, are presented. In both of these approaches, the mapping problem is modeled as 

bipartite graph and then each graph is divided into different subgraphs in order to facilitate the 

coloring of the edges. First approach deals with turbo-like codes and uses transportation problem 

algorithms to divide the bipartite graph. The approach can also find memory mapping that supports 

particular interconnection network if interleaver of the application allows doing it. Second approach 

solves memory mapping problem for LDPC codes and uses double memory mapping technique to 

store data in optimal memory banks.  
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1. Introduction 

 
As explained in Chapter 2, all the approaches to model memory mapping problem as a conflict 

graph proves to be inefficient because of the unavailability of polynomial time algorithm to find node 

coloring. This seems to be consistent with the already developed NP-Complete Theory which states 

that node coloring of the conflict Graph is NP-complete Problem. Heuristics proposed for node 

coloring are efficient for some particular applications but fails to give optimum solution in other 

domains. Also it is difficult to add other constraints in these heuristics to find architecture-oriented 

memory mapping that is necessary to reduce cost and area of the system. 

The basic purpose of this thesis is to transform our memory mapping problem into the class of 

problems in which polynomial time algorithms already exists. Bipartite Edge Coloring is one of such 

problems in which polynomial time algorithms exits to find color of the edges of the bipartite graph.  

In this chapter, we propose two approaches which are based on bipartite graph model to solve memory 

mapping problem. These methods are the first two approaches used to solve memory mapping 

problem in this thesis work. 

The first approach is applied on slightly simple mapping problem for turbo-like codes. In this 

approach, mapping problem is transformed into transportation problem and then linear programming 

approach is used to find conflict free memory mapping. In the second approach, memory mapping 

problem for double memory mapping is tackled. Time instances and data elements represent two sets 

of nodes of bipartite graph. Edge is connected between time node and data node to represent the access 

order at that time instance. To simplify edge coloring, each graph is partitioned into different 

subgraphs and each subgraph is colored independently to find conflict free memory mapping.  

 

2. A Methodology based on Transportation Problem Modeling for 

Designing Parallel Interleaver Architecture 

 

In this section, we present an algorithm for special cases in which data is accessed only two 

times such as in turbo codes and non-binary LDPC. Simple data access pattern of this problem allows 

us to find “Single Memory Mapping” or “in place Memory Mapping” in which data is read and write 

from the same memory bank. This simplicity motivates us to model the problem as “Transportation 

Problem” and then uses linear programming approach to solve it. This work has been presented in 

36th International Conference on Acoustics, Speech and Signal Processing, 2011 [SAN11a].   

However, before presenting algorithm to solve mapping problem, it is necessary to formulate our 

problem and constraints so that one can easily understand the algorithms presented next. Memory 

mapping problem is same for both turbo and LDPC that we want to access data elements concurrently 

without any conflict in both read and write accesses. However, depending on the pattern of access of 

data elements, LDPC (excluding non-binary LDPC) memory mapping problem is more complex than 

turbo mapping problem as explained in Chapter 2. Therefore, we formulate these problems separately. 

 In this section, memory mapping problem is formulated for turbo codes whereas in the next 

section the problem is formulated for LDPC. 
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The section starts by formulating memory mapping problem for turbo codes. Afterward, we 

model our problem as bipartite graph along with some proves to show that it is possible to partition 

this graph into different subgraphs of equal sizes. Next we transform this graph into transportation 

Problem and apply linear programming approach to find each subgraph separately along with memory 

mapping. The approach also tries to simplify the interconnection network if interleaver of the 

application allows doing it.    

 

2.1. Problem Formulation for Memory Mapping Problem of 

Turbo codes 

 

To explain the problem, consider a set of D data elements {d1, d2,…, dD} and a set of P 

processing elements {PE1, PE2,…, PEP} which process these D data elements first in natural order and 

then in interleaved order in T time instances {t1, t2,…, tT}, where T = 2D/P. 

In order to store these D data elements and to achieve parallel processing of data for high throughput, a 

set of B memory banks {b1, b2,…, bB}, where B = P, is used. All the memory banks have the same size 

R which is equal to R = D/P.  

 

Mapping problem  

Store D data elements in B memory banks in such a manner that P processing elements can access 

B memory banks in parallel in both natural and interleaved order time instance without any conflict. 

Mapping problem can easily be explained using two matrices: one is related to natural order access 

and the other is to interleaved order access. These matrices together are called data access matrices. 

Each matrix has P rows, related to the processing elements, and T/2 columns, related to the time 

instances. Data elements in each row are processed by the processing element connected with this row. 

Similarly, the P data elements in each column need to be accessed in parallel by P processing elements 

for parallel decoding architecture. Figure 3. 1. depicts two access matrices in which we have D = 12,  

P = B = 3, R = 4 and T = 8. 

 

PE1 0 1 2 3

PE2 4 5 6 7

PE3 8 9 10 11
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PE1 3 7 4 2

PE2 1 0 10 9

PE3 11 6 5 8
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(a) Natural Order Matrix  (b)  Interleaved Order Matrix 

Figure 3. 1: Data Access Matrices for Turbo Codes 
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Memory Mapping Constraints and architecture objectives 

To successfully map the data (i.e. to allow conflict free parallel memory accesses) in a given 

number of memory banks, the two following mapping constraints must be fulfilled:  

 - At each time instance, all the memory banks have to be used one and only one time,  

 - Each data must be mapped in one and only one memory bank. 

To optimize interconnection network, the following architectural objective must be fulfilled if 

the interleaving allows doing it: 

- Resultant memory mapping must follow targeted steering rule (e.g., a barrel shifter). 

2.2. Modeling 
 

In this section, we model our mapping problem as transportation problem. This transformation 

is carried out in two steps. In the first step, mapping problem is modeled as bipartite graph and 

different proves have been provided in order to explain that it is always possible to divide this bipartite 

graph into different subgraphs of equal sizes. Afterwards, this bipartite graph is transformed into 

transformation matrix on which any algorithm to solve transformation problem can be applied to find 

memory mapping. 

2.2.1. Construction of Bipartite Graph 
 

The first step is to construct a bipartite graph G = (T∪ D, E) in which vertex set T represents 

all the time instances and vertex set D represents all the data elements used in the computation. An 

edge (t, d) is incident to the data element vertex d and to the time instance vertex t if d needs to be 

processed at t (i.e. data d will be read and next written at time t). This bipartite graph is called turbo 

bipartite graph (TBG) due to following distinct properties. 

1- The number of accesses to data or processing elements at any time instance is always identical 

(the number of PEs is equal to the number of memory banks) which implies that corresponding 

bipartite graph is always semi regular and each time node has same degree ft = P. 

2- Each data element is accessed only two times: one in natural order access and the other in 

interleaved order access. This implies that all the data nodes in the bipartite graph have the same 

degree, fd = 2. 
 

TBG for data access matrices of Figure 3. 1 is shown in Figure 3. 2.a. 
 

t1

t2

t3

t4

t5

t6

t7

t8

0

1

2

3

4

5

6

7

8

9

10

11
 

t1

t2

t3

t4

t5

t6

t7

t8

0

1

2

3

4

5

6

7

8

9

10

11
 

(a) Turbo bipartite graph for Figure 3. 1 (b)  Graph without data nodes 

Figure 3. 2: Bipartite Graph representation 



Methodologies based on Bipartite Graph for solving Memory Mapping Problem 

 - 60 - 

As explained in previous chapter, every 2k or (2k + 1)-regular graph contains k 2-factors that 

results in following corollary. 

  

Corollary   3.1 

 Every Turbo Bipartite Graph with ft = 2k or ft = 2k + 1, where k is an integer, contains k disjoint 

semi 2-factors. 

 

Proof: we first join the two edges connected with each data node and then remove all the data nodes to 

form regular graph G1 = (T, E1) as shown in Figure 3. 2.b. In this graph, |E1| = |D| i.e., each edge in G1 

corresponds to two edges or a data node in G. Since G1 is regular, theorem 2.1 and 2.2 give us the 

proof that 2-factor always exists in G1 which implies that semi 2-factor of 2Y vertices where |T| = Y 

always exists in G.   �
 

Every 2-factor is a collection of cycles that spans all vertices of the graph going from 1 cycle 

with 2Y vertices up to Y cycles of 2 vertices. 

Additionally, each cycle ci in G1 is even which means ci contains even number of edges or 

time nodes because vertex set T is divided into two partitions i.e. natural or interleaved orders.  

Edges of every even cycle can be assigned with two colors which implies that edges in ci and every 2-

factor in G1 can be colored with two colors. This results in the following lemma. 

 

Lemma   3.3 

 All the data nodes in semi 2-factors of a turbo bipartite graph can be assigned with two memory 

banks. 

 

2.2.2. Transformation of bipartite graph into Transportation 

Matrix 

 

The second step is to divide TBG into k semi 2-factors and to give two colors to the edges of 

each semi 2-factor. To find semi 2-factor, we transform our mapping problem for turbo codes as 

transportation problem by considering all the data nodes as producers and all the time nodes as 

consumers. The route lij exists between data node di and time node tj if data di is accessed at tj. One 

additional constraint must be considered while modeling our problem as transportation problem: the 

capacity of each route is fixed in our mapping problem. The reason is that each route represents a 

connection between processor and memory banks whose size is always fixed. In our case, the capacity 

xij of lij is kept 1 since only one data can be accessed at a given time instant tj. 

In order to find semi 2-factor: (1) the demand of each consumer is kept to 2 and (2) each producer 

either provides 2 items (i.e. one item for the natural access and one item for the interleaved access) or 

is not included in the current semi 2-factor (i.e. each producer must work at its full capacity). The cost 

oij of lij is kept 1 since the cost is not taken into account in the current version. It is only  used when we 

will consider the complexity of the network architecture. The matrix model for the bipartite graph of 

Figure 3. 2.a is shown in Figure 3. 3.a. In this matrix, if the route lij does not exist between producer i 

and consumer j, then the corresponding cell Mij is kept empty 
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To facilitate the construction of semi 2-factor respecting a particular interconnection network, 

the processor Pc which accesses the data di at time tj is placed in Mij. Since all the routes lij have the 

same capacity and cost, we remove all the xij and oij values from matrix representation and only keep 

the processors which access data. The concise representation of the Transportation matrix is shown in 

Figure 3. 3.b. 

 

t1 t2 t3 t4 t5 t6 t7 t8

0 1(1) P1 1(1) P2 2

1 1(1) P1 1(1) P2 2

2 1(1) P1 1(1) P1 2

3 1(1) P1 1(1) P1 2

4 1(1) P2 1(1) P1 2

5 1(1) P2 1(1) P3 2

6 1(1) P2 1(1) P3 2

7 1(1) P2 1(1) P1 2

8 1(1) P3 1(1) P3 2

9 1(1) P3 1(1) P2 2

10 1(1) P3 1(1) P2 2

11 1(1) P3 1(1) P3 2

2 2 2 2 2 2 2 2

t1 t2 t3 t4 t5 t6 t7 t8

0 P1 P2 2

1 P1 P2 2

2 P1 P1 2

3 P1 P1 2

4 P2 P1 2

5 P2 P3 2

6 P2 P3 2

7 P2 P1 2

8 P3 P3 2

9 P3 P2 2

10 P3 P2 2

11 P3 P3 2

2 2 2 2 2 2 2 2

(a) Matrix model of Figure 3. 2.a (b)  Concise matrix model of Figure 3. 2.a 

Figure 3. 3: Matrix Model for Transportation Problem of Figure 3. 2.a 

 
After construction of transportation matrix, any algorithm to solve transportation problem can 

be used to find semi-2 factor. The complete algorithm to solve mapping using transportation problem 

is explained in the next section. 

2.3. Algorithm to find semi 2-factors in Turbo Bipartite Graph 

 

In this section, an algorithm to solve the memory mapping problem is presented that traverse 

within the transportation matrix to construct semi 2-factors. Our algorithm starts by first calculating 

the number of semi 2-factors k by using the degree of each time node ft of TBG as explained in 

corollary 3.1. After that, it starts constructing the cycle c1 of current semi 2-factor sfcur by choosing a 

first route li1 connected with consumer t1 (see Figure 3. 3). Flow diagram of our partitioning algorithm 

is shown in Figure 3. 4. The selection of the route li1 decreases the demand of t1 and the supply of di to 

1. Bank ba is also assigned to the route to facilitate the construction of interconnection network 

respecting target steering rule. Algorithm then selects the route connected with t1 whose processor 

identification Pc respects the particular steering rule, if it is possible, otherwise algorithm chooses any 

route lk1 and assigns it with bank ba+1. The selection of lk1 completes the demand of t1, so all the 

producers connected with t1 are completely removed from sfcur because now they are unable to provide 

2 items in sfcur or they cannot work at their full capacity. The other route lkm connected with dk is 

assigned the same bank ba+1 to reach to the consumer tm. This completes the supply of dk. Algorithm 

repeats the same process and selects the route whose processor identification respects target steering 

rule, decreases the supply of producer and demand of consumer and alternately assigns banks to the 

route until c1 is completed i.e., no producer with supply of 1 and no consumer with demand of 1 

remains in the transportation matrix.   
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At this point, the algorithm tests whether all the consumers fulfill their demands. If not, the 

algorithm starts constructing another cycle c2. For this, our algorithm selects consumer whose demand 

is still unfulfilled and which has at least one deleted route. Using this deleted route, the algorithms 

selects the route whose selection respects the targeted steering rule (if it is possible) and assigns a 

bank ba to this route (selection procedure for steering rule based on barrel shifter is presented in 

section 2.4). After the assignment of ba, the algorithm repeats the same process used for the 

construction of c1 to complete c2. When the algorithm finds that demands of all the consumers are 

fulfilled then it declares that sfcur is constructed. In that case, the algorithm tests whether k semi 2-

factors are constructed. If not, the algorithm removes sfcur from transportation matrix, initializes all 

consumers with demand of 2 and starts constructing sfnext from remaining matrix using the process 

described above until k semi 2-factors are constructed. Partitioning algorithm is explained through a 

pedagogical example in next section. 

Algorithm needs to traverse ft edges at each time instance to select two accesses that can be 

included in sfcur. To construct a partition sfcur, algorithm needs to select a couple of accesses for each 

time nodes (number of time nodes: |T|). So, the number edges to be traversed for one partition is in the 

worst case: ft * |T|. Since there are k = ft/2 semi-2 factors (see definition), so in order to construct all the 

partitions, overall complexity of the partitioning algorithm is O (ft/2 * (ft |T|) ) = O ( ft 
2

*
 
|T|/2). This is 

the complexity of finding a mapping that respects single barrel shifter that can be used for both natural 

and interleaved order.  

However, in order to test whether two barrel shifters (one for natural order and other for 

interleaved order) are possible or not, algorithm has to test all possible permutation combinations of 

two barrel shifters. It traverses 2(ft!) times the graph to confirm whether a “two barrel shifters” based 

architecture is possible or not, and the overall complexity of the algorithm is O ( ft 
2

*
 
|T|/2)( 2(ft!) )        

= O ( ( ft 
2

*
 
|T|)( ft! ) ). 

 

Apply process of traversal and 

elimination alternately on Graph. 

Path is completed

Proper Partition is completed

Graph is traversed

Yes

Yes

Yes

No

Remove the Proper partition.

No

No

 

Figure 3. 4: partitioning algorithm 
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2.4. Pedagogical Example to explain algorithm  

 

Let us present an example based on the natural and interleaved order access matrices presented 

in Figure 3. 1. The first step is to constructs the bipartite graph which is depicted in Figure 3. 2.a. This 

semi regular bipartite graph has time vertex with degree ft is 3. Following corollary 3, we will have 

one semi 2-factor after applying partitioning algorithm. The target architecture is a barrel-shifter based 

interconnection network. The second step first transforms the bipartite graph into matrix model of the 

transportation problem which is depicted in Figure 3. 3.b. As already explained all the routes lij, have 

the same cost and capacity i.e. 1. Our algorithm starts constructing the cycle c1 from the first route l01 

(i.e. from producer d0 to consumer t1) and assigns the memory bank b0 to l01. Since one route of 

capacity 1 is occupied, the algorithm reduces the supply of d0 and demand of t1 to 1 in the matrix as 

shown in Figure 3. 5.a. Our algorithm then fulfills the demand of t1 by choosing a processor which 

follows the targeted steering rule which is barrel shifter in our case. The algorithm selects a route l41, 

which connects a processor next to P1 i.e. P2 and assigns l41 another memory bank b1. Now the demand 

of t1 is completely fulfilled and the remaining producers connected with t1 (d8 in this case) is 

completely removed because these producers are unable to work at their full capacity. The second 

route connected with producer d4, l47, is also assigned the same bank b1. All this process is shown in 

Figure 3. 5.b.  

 

t1 t2 t3 t4 t5 t6 t7 t8

0 P1(b0) P2 1

1 P1 P2 2

2 P1 P1 2

3 P1 P1 2

4 P2 P1 2

5 P2 P3 2

6 P2 P3 2

7 P2 P1 2

8 P3 P3 2

9 P3 P2 2

10 P3 P2 2

11 P3 P3 2

1 2 2 2 2 2 2 2
 

t1 t2 t3 t4 t5 t6 t7 t8

0 P1(b0) P2 1

1 P1 P2 2

2 P1 P1 2

3 P1 P1 2

4 P2(b1) P1(b1) X

5 P2 P3 2

6 P2 P3 2

7 P2 P1 2

8 P3 P3 2

9 P3 P2 2

10 P3 P2 2

11 P3 P3 2

X 2 2 2 2 2 1 2
 

(a) Construction of c1 (b)  Construction of c1 

Figure 3. 5: Assignment of memory banks in Transportation matrix 

 

At this point, the algorithm selects the route based on the bank and processor suitable for 

supporting barrel shifter rule. Since the current bank and processor is b1 and P1 respectively, the 

algorithm searches the route (i.e. the cell) which contains the processor just before the P1 i.e. P3 to 

assign the bank b0. Cell M57 contains the processor P3, so the route l57 is assigned the bank b0. The 

assignment completes the demand of t7 and the other producer connected with t7 (d10 in this case) is 

removed from the matrix. The other route connected with d5, l52, is also assigned the same bank b0 as 

shown in Figure 3. 6.a. Now the current bank and processor is b0 and P2 respectively and the algorithm 

searches the cell containing the processor just after the P2 i.e., P3. The algorithm finds P3 in M92 and 

assigns the route l92 bank b1. The same bank b1 is assigned to other route connected with d9 i.e., l98. All 

this process is shown in Figure 3. 6.b. 
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t1 t2 t3 t4 t5 t6 t7 t8

0 P1(b0) P2 1

1 P1 P2 2

2 P1 P1 2

3 P1 P1 2

4 P2(b1) P1(b1) X

5 P2(b0) P3(b0) X

6 P2 P3 2

7 P2 P1 2

8 P3 P3 2

9 P3 P2 2

10 P3 P2 2

11 P3 P3 2

X 1 2 2 2 2 X 2
 

t1 t2 t3 t4 t5 t6 t7 t8

0 P1(b0) P2 1

1 P1 P2 2

2 P1 P1 2

3 P1 P1 2

4 P2(b1) P1(b1) X

5 P2(b0) P3(b0) X

6 P2 P3 2

7 P2 P1 2

8 P3 P3 2

9 P3(b1) P2(b1) X

10 P3 P2 2

11 P3 P3 2

X X 2 2 2 2 X 1
 

(a) Construction of c1 (b)  Construction of c1 

Figure 3. 6: Assignment of memory banks in Transportation matrix 

 

The algorithm fulfils the supply and demand of producers and consumers respectively by 

taking into account the barrel shifter rule (if it is possible) until c1 is completed i.e., the algorithm do 

not contain any producer with supply of 1 and any consumer with demand of 1 in the transportation 

matrix as shown in Figure 3. 7.a. At this point, the algorithm searches for unassigned consumer which 

is connected with at least one deleted producer in order to starts assigning banks to the remaining 

routes respecting the targeted steering rule. The algorithm selects consumer t4 which is connected with 

deleted producer d7. The other producer connected with d7 is t6. So the algorithm searches the route 

which has bank assignment b0 in t6. The route l06 has bank assignment of b0 and processor assignment 

of P2 whereas the processor assignment of l76 (deleted route) is P1 (one processor before the P2). The 

algorithm finds that deleted route l74 has processor assignment P2. Respecting the barrel shifter rule, 

the route l11,4 which has processor assignment P3 (one processor after P2) should assign the bank b0. 

After the assignment of first bank, the algorithms continues to find cycle c2 using the same approach 

used in construction of c1 until the cycle c2 is completed as shown with gray highlighted cells in Figure 

3. 7.b.    

 

t1 t2 t3 t4 t5 t6 t7 t8

0 P1(b0) P2(b0) X

1 P1 P2 2

2 P1(b0) P1(b0) X

3 P1 P1 2

4 P2(b1) P1(b1) X

5 P2(b0) P3(b0) X

6 P2(b1) P3(b1) X

7 P2 P1 2

8 P3 P3 2

9 P3(b1) P2(b1) X

10 P3 P2 2

11 P3 P3 2

X X X 2 2 X X X
 

t1 t2 t3 t4 t5 t6 t7 t8

0 P1(b0) P2(b0) X

1 P1 P2 2

2 P1(b0) P1(b0) X

3 P1(b1)P1(b1) X

4 P2(b1) P1(b1) X

5 P2(b0) P3(b0) X

6 P2(b1) P3(b1) X

7 P2 P1 2

8 P3 P3 2

9 P3(b1) P2(b1) X

10 P3 P2 2

11 P3(b0)P3(b0) X

X X X X X X X X
 

(a) Cycle c1 (b)  Cycle c2 in gray cells 

Figure 3. 7: Assignment of memory banks in Transportation matrix 
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After the traversal, the algorithm finds that all the consumers fulfil this needs and the current 

selected producers and consumers construct a semi-2 factor. Since at the start, the algorithm 

determines that only one semi-2 factor can be constructed, the algorithm assigns all the deleted 

producers with bank assignment b2 to complete the assignment as shown in Figure 3. 8.a.  The 

resultant mapping which respects the barrel-shifter network is shown in Figure 3. 8.b. 

 

t1 t2 t3 t4 t5 t6 t7 t8

0 P1(b0) P2(b0) X

1 P1(b3) P2(b3) X

2 P1(b0) P1(b0) X

3 P1(b1)P1(b1) X

4 P2(b1) P1(b1) X

5 P2(b0) P3(b0) X

6 P2(b1) P3(b1) X

7 P2(b3) P1(b3) X

8 P3(b3) P3(b3) X

9 P3(b1) P2(b1) X

10 P3(b3) P2(b3) X

11 P3(b0)P3(b0) X

X X X X X X X X
 

b0 (0,2,5,11)P1
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(a) Complete Mapping (b)  Mapping respecting BS network 

Figure 3. 8: Resultant Memory Mapping 

 

 

3. Methodologies Based on Bipartite Graph to find conflict Free 

Memory Mapping for LDPC 

 

In this section, we present an algorithm to solve memory mapping problem for LDPC. 

Modeling of problem as bipartite graph is similar to the previous section but in this case each edge 

represents current read and previous write access in order to accommodate “Double Memory 

Mapping” whereas in previous approach each edge represent current read and write access where 

mapping problem can be solved with “Single Memory Mapping” approach. This work has been 

presented in 17
th
 IEEE International conference on Electronics, Circuits and Systems, 2010 [SAN10].   

The section starts by formulating memory mapping problem for LDPC codes. The algorithm 

used in this section is divided into two parts. In the first part, approach models our data access matrix 

as bipartite graph and then, in the second part, we apply our mapping algorithms to color the edges of 

this bipartite graph. To facilitate the coloring of the edges of graph, mapping algorithm is further 

divided into two portions: Bipartite graph is first partitioned into different subgraphs and then each 

subgraph is colored individually to complete the mapping of data access matrix. 
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3.1. Problem Formulation for Memory Mapping Problem of 

LDPC codes 

 

Memory mapping problem for LDPC differs from turbo due to its pattern of access of data 

elements in following way: 

In turbo codes, each data element is accessed only two times i.e., first in natural order and the 

second in interleaved order by processing elements whereas, in LDPC, it can be accessed more than 

two times depending on the degree of variable node. Also, it is possible that, in LDPC,  some data 

elements can be accessed by more than one time whereas some others still remains unprocessed.    

Taking into account the above pattern of access which increases the complexity of mapping 

problem, in this thesis, a new concept of “Double Memory mapping” is introduced in chapter 2. This 

slightly modifies the mapping problem for LDPC and can be explained as follows: 

Consider a set of D data elements {d1, d2,…, dD} and a set of P processing elements {PE1, PE2,…, PEP} 

which process these D data elements in T time instances {t1, t2,…, tT}. In order to store these D data 

elements and to achieve parallel iterative processing of data for high throughput, a set of B memory 

banks {b1, b2,…, bB}, where B = P, is used.  

 

Mapping problem  

Store D data in B memory banks in such a manner that P processing elements can, at each 

time instance, access B memory banks in parallel for first reading P data and then writing back these 

P data without any conflict. 

Mapping problem can easily be explained using a matrix called data access matrix as shown in 

Figure 3. 9.a. This matrix has P rows, related to the processing elements, and N columns, related to the 

time instances ti. To accommodate the “Double Memory Mapping” concept, each column is further 

divided into three sub-columns. First sub-column shows the data which need to be accessed in parallel 

by P processing elements at ti whereas second sub-column contains the memory banks from where 

data are read and third sub-column represents the memory banks in which these data are written at ti. 

Also, data in each row are processed by the processing element connected with this row. Figure 3. 9.b. 

represents the mapping matrix in which we have D = 6, P = B = 3, R = 2 and T = 6. Each data is 

processed by 3 times which shows the iterative nature of the data access. However, data accesses are 

interleaved in time and there is no regularity in processing the data; e.g., data 3 is successively 

processed in time instances t1 and t2 whereas the first access to the data 4 occurs at time instance t3.  

 

. 

PE1 1 3 6 5 4 2

PE2 2 5 1 6 3 1

PE3 3 6 4 2 5 4

t1 t2 t3 t4 t5 t6
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RW RW RW RW RW RW

PE1 1 3 6 5 4 2

PE2 2 5 1 6 3 1

PE3 3 6 4 2 5 4

t1 t2 t3 t4 t5 t6
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Time  

(a) Data Access Matrix  (b)  Mapping Matrix 

Figure 3. 9: Data Access Matrices for LDPC Codes 
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Memory Mapping Constraints 

To successfully map the data (i.e. to allow conflict free parallel memory access) (1) in a given 

number of memory banks and (2) to tackle the iterative nature of data access in error correction 

coding, the mapping matrix must fulfill the following two constraints: 

1- At each time instance, all the memory banks have to be used one and only one time.  

2- The bank of the last write access to a data must be the same as the bank of its first read access. 

  Architectural objectives for LDPC memory mapping problem is not discussed in this thesis 

but could be included in current algorithms for future works. 

3.2. Modeling 

  

 In first part, a bipartite graph G = (T∪ D, E) based on data access matrix of Figure 3. 9.a. is 

prepared and is shown in Figure 3. 10. In G, vertex set T represents all the time instances and vertex 

set D represents all the data elements used in the computation. An edge (t, d) is incident to the data 

element vertex d and to the time instance vertex t if d needs to be processed at t (i.e. data d will be first 

read and next written at time t). Moreover, different data accesses are represented based on the relative 

position i of edges at the data vertex i.e. first edge at d represents the first read and write access and so 

on (see Figure 3. 11.a).   

 

Property  Placement Property 

 For finding memory mapping which is valid for both read and write accesses, the following 

placement property is considered while searching the edges during execution of partitioning and 

coloring algorithms. (see Figure 3. 11.b.) 

ith write access     =    modulodegree d (i + 1) read access 

Definition  Direct Edge and Induced Edge 

 An edge that represents the jth read access will be next referred in this algorithm as a direct edge 

and the edge corresponding to the associated write access as the induced edge. 
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Figure 3. 10: Bipartite Representation of Data Access Matrix of Figure 3. 9.a 
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1st Read/Write Access

2nd Read/Write Access

Last Read/Write Access  

ith Write Access

(i+1)th read Access

 

(a) Representation of edges on data d  (b)  Placement Property 

Figure 3. 11: Representation of edges on data node d 

 

Property Mapping Graph 

 One interesting property of LDPC decoding is that the number of accesses to data at any time 

instance is always the same which implies that corresponding bipartite graph is always semi 

regular. This implies that all the time nodes in the bipartite graph have the same degree ft. The 

graph with this property is called mapping graph in our algorithm. 

 

 Based on this property of mapping graph, the following definitions and lemma resulted: 

Definition  Partition 

 Partition in mapping graph is defined as a sub graph containing all time vertices. 

 

Lemma 3.1 

 When the degree ft of the time vertex in a mapping graph is even then we have ft/2 partitions in 

which each time vertex’s degree ft’ is 2. 

 

Lemma 3.2 

 
When the degree ft of the time vertex in a mapping graph is odd then we have 2ft� �� � partitions in 

which each time vertex’s degree ft’ is 2 and one partition in which ft’ is 1. 

 

Definition  Proper Partition 

 Partition which respects either Lemma 1 or Lemma 2 in mapping graph is called proper 

partition. 

 

3.3. Algorithm 

 

After modeling the mapping problem as bipartite graph, the next step is to color the edges of 

the graph respecting the “memory mapping constraints” (presented in section 3.1). To make coloring 

easy, the algorithm first divides the graph into different proper partitions and then color the edges of 

each proper partition independently depending on its degree. 
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3.3.1. Partition the Bipartite Graph 

In this step, bipartite graph G is divided into proper partitions. In order to simplify the 

coloring algorithm presented next, one constraint named partitioning constraint must be respected 

during constructions of proper partitions. 

 

Constraint  Partitioning Constraint 

 No more than 2 read or write accesses have to be done at each time instance in a proper 

partition. Following this constraint always allows constructing proper partitions.  

 

In this algorithm, two processes called Process of traversal and Process of elimination are 

worked side by side and applied at each time and data vertex in order to construct proper partitions. 

  

Definition  Process of traversal 

 This process randomly selects one edge available at current data or time node and records its 

induced edge.  

Definition  Process of elimination  

 This process removes all the edges (either direct or indirect) from the current partition which 

contradict the partitioning constraint. 

 

Hence if ft’ selected direct edges (i.e. read accesses) appear in a time node then the remaining 

(i.e. non-selected) available edges at that time instance are eliminated. Also, if ft’ recorded induced 

edges (i.e. write accesses) appear in a time node then the direct edges associated to the remaining (i.e. 

non-recorded) induced edges of that time node are eliminated. 

Each proper partition is constructed using the partitioning algorithm in Figure 3. 12. 

 

Apply process of traversal and elimination 
alternately on Graph. 

Path is completed

Proper Partition is completed

Graph is traversed

Yes

Yes

Yes

No

Remove the Proper partition.

No

No

 

Figure 3. 12: Partitioning Algorithm 
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The algorithm starts constructing a path pcur by choosing any data vertex dcur and then by 

applying process of traversal which selects randomly an edge (dcur, tcur) to reach at the time vertex tcur. 

Process of elimination is then applied to remove all the edges which contradict the partitioning 

constraint. At tcur, the process of traversal is again applied to choose another edge (tcur, dnext) to reach at 

the data vertex dnext. Again the process of elimination is applied to remove all the edges which 

contradict the partitioning constraint. At that time  pcur = {(dcur, tcur), (tcur, dnext)}. The algorithm 

continues until pcur is completed, i.e. the process of traversal does not find any valid edge to be 

included in pcur. The path is added in the current subgraph sgcur. The algorithm tests if the sgcur is a 

partition (i.e. all the time node has been traversed). Once a partition has been extracted the algorithm 

stops. Otherwise, the algorithm starts constructing another path pnext by using the remaining edges of G 

(that have not been removed by the process of elimination). Once sgcur becomes a partition, the 

algorithm starts constructing another partition on the remaining graph G = G-sgcur. Partitioning is 

explained through a pedagogical example at the end of this section.  

Algorithm needs to traverse in the worst case 2*ft edges at each time instance to find two 

accesses (read and write) that can be included in sgcur. To construct a partition sgcur, algorithm needs to 

traverse all the time nodes, i.e. in the worst case: 2*ft *|T| edges. The complexity of constructing one 

partition, in terms of total number of edges to be traversed, is O (2*ft *|T|). In order to construct all the 

partitions, overall complexity of the partitioning algorithm is O (ft/2 * (2*ft *|T|) ) = O ( ft 
2

*|T|).   

 

3.3.2. Coloring edges of Bipartite Graph 

Thanks to the construction of proper partitions respecting the partitioning constraint, our 

coloring algorithm whose flow chart is shown in Figure 3. 13, colors each partition with at most two 

colors. For this it uses a strategy to color each edge in each partition independently so that there is no 

conflict in the read and write access at each time node.  

For each uncolored partition sgcur, the algorithm starts by removing the read conflict accesses 

by assigning different color to each edge (di, tcur) of tcur. After that, following the placement property 

(see section 3.2)  the algorithm searches in G for each edge (di, tcur) of tcur for the induced edge (tpred, 

di). Since only two write accesses are possible at each time node (by respecting partitioning 

constraint), the algorithm searches in G for the direct edge (dm, tk) of the induced edge (tpred, dm) that  

belongs to sgcur. The algorithm then colors (dm, tk) differently from (di, tcur) and continues until it 

reaches the starting node whose both direct edges are already colored. While the partition is not 

completely colored the algorithm selects another time node tcur and repeats. It should be noticed that 

simply giving different colors to both the direct edges at each time node in each partition without 

taking into account the write access memory conflicts makes the algorithm recursive.  
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Each partition is colored with 2 colors. 
Alternately remove the read and write access 

conflict for each edge.

Partition is completely colored

Graph is completely colored

No

No

Yes

Yes

 

Figure 3. 13: Coloring Algorithm 

 
 Algorithm needs to traverse 2*|T| edges (read and write) to color both read and write accesses 

of each time nodes in partition sgcur. So in order to color all the edges of the graph, algorithm has to 

traverse all the edges two times, so the complexity of coloring algorithm is O (2*ft *|T|).    

After calculating complexities of both partitioning and coloring algorithm, the resulting 

complexity to find memory mapping using this approach is O ( ft 
2

*
 
|T|  +  2*ft *|T|). 

 

3.4. Pedagogical Example to explain algorithm 

 

In this section we present an example based on the data access matrix of Figure 3. 9.a. The 

first step is the construction of bipartite graph which is already depicted in Figure 3. 10. The degree of 

every time vertex of this semi regular graph is ft = 3. Following Lemma 2, after applying partitioning 

algorithm, we will have one partition in which each time vertex’s degree ft’ is 2 and one partition in 

which ft’ is 1.  

The algorithm starts constructing the path p1 by using the first available edge of data 1 which 

is (1, t1), leading to p1 = {(1, t1)}. The selected edge (1, t1) and its corresponding recorded induced 

edge (1, t6) appears respectively as bold and dotted line in Figure 3. 14.a. Using placement property, 

the write access of the edge (1, t1) indeed appears on the edge (1, t6). The process of elimination is 

applied and no edge is removed since number of direct edges at t1 and induced edges at t6 are less than 

ft’ = 2. The process of traversal continues and adds the edge (t1, 3) into path p1 = {(1, t1), (t1, 3)} as 

shown in Figure 3. 14.b.  According to the partitioning constraint only two read accesses are possible 

at each time node. Since two read accesses are completed at t1 therefore process of elimination deletes 

all the remaining edges at t1: (t1, 2) in that case. Deleted edges are simply removed from the graph in 

Figure 3. 14.c. Edge (3, t5) is then selected and added in the path. Since this edge is both a recorded 

induced edge and a direct selected edge, it thus appears in bold and dotted line in this figure.  
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The process continues until we traverse the path p1 = {(1, t1), (t1, 3), (3, t5), (t5, 5), (5, t4)} and reach at 

the time node t4. At this point, recorded induced edges at t2 increase to two and the process of 

elimination deletes all the direct edges associated to the remaining (i.e. non-recorded) induced edges at 

t2. All this process is shown in Figure 3. 14.d.  
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(c)  (d) 

Figure 3. 14: Path construction through Partitioning Algorithm 

 

The traversal continues until the path extends to p1 = {(1, t1), (t1, 3), (3, t5), (t5, 5), (5, t4), (t4, 

6), (6, t2), (t2, 3)} as shown in Figure 3. 15.a. No more edge can be added in the current path. We thus 

obtain a subgraph sg1 = p1. However, the current subgraph sg1 is not a partition because the time nodes 

t3 and t6 are not included in p1. Using the process of traversal, the path p2 is obtained:  p2 = {(1, t3), (t3, 

4), (4, t6), (t6, 1)} (see Figure 3. 15.b). The partition sg1 is the union of all the traversed paths, sg1 = p1 

+ p2 (see Figure 3. 15.c) 

Unfortunately, the graph is not completely traversed so the algorithm removes sg1 to obtain the 

graph G’ = G - sg1 and applies again the processes on the remaining graph to obtain the following 

paths,   

p’1 = {(2 , t1)},  p’2 = {(2 , t4)},  p’3 = {(2 , t6)},  p’4 = {(4 , t5)}, p’5 = {(5 , t2)}, p’6 = {(6 , t3)}. 

Similarly partition sg2 is the sum of all the traversed paths as given below,  sg2 =  p’1 + p’2 + p’3 + p’4 

+ p’5 + p’6 (see Figure 3. 15.d). 

 

After the construction of sg2, the algorithm finds that the graph is completely traversed and stops. 
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(c) partition sg1 (d) partition sg2 

Figure 3. 15: Path construction through Partitioning Algorithm 

 

After the generation of the partitions, each partition is colored depending on the degree ft’ of 

its time node. For example, the sg1 is colored with, ft’ = 2, colors and the sg2 is colored with, ft’ = 1, 

color. To better understand and explain the coloring algorithm, entries in the mapping matrix of  

Figure 3. 9.b is also filled along with coloring the edges of the graph. 

To color the partition sg1, we apply already presented coloring algorithm. We start by coloring 

the edges connected with t1 with different colors b0 and b1 to avoid a conflict access. Edge (t1, 1) = b0 

and edge (t1, 3) = b1 as shown in Figure 3. 16.a. In this figure, bold grey straight line represents color 

b0 and bold grey dotted line represents color b1. The corresponding mapping matrix is also shown in 

Figure 3. 16.b.  

After that we search in G for the induced edges of these previously colored edges. Induced 

edge of (t1, 1) is (1, t6) so we search for the other direct edges that belong to sg1 and which have an 

induced edge at t6 in G. Edge (t3, 4) must be colored with different color of (t1, 1) in order to remove 

the write access conflict at t6. So we color (t3, 4) = b1 (see Figure 3. 16.c). The write access of (t1, 2) 

also occurs at t6. However (t1, 2) does not belong to sg1, it is not colored at that time. The 

corresponding mapping matrix is shown in Figure 3. 16.d.  
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(c) Second step of sg1 coloring (d) Mapping matrix: second step of sg1 coloring 

Figure 3. 16: Conflict free edge coloring of sg1 
 

This process continues until the partition is completely colored . The complete coloring of sg1 

is shown in Figure 3. 17.a. The corresponding mapping matrix is presented in Figure 3. 17.b. 
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(a) Coloring of sg1 (b)  Complete coloring of sg1 

Figure 3. 17: Conflict free edge coloring of sg1 
 

The coloring of sg2 is easier: all edges are colored with one single color b2 since the degree of 

every time vertex in this partition is ft’ = 1. Complete coloring of G is shown in Figure 3. 18.a. The 

corresponding mapping matrix is presented in Figure 3. 18.b. 
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(a) Data Access Matrix  (b)  Bipartite Graph of a 

Figure 3. 18: Conflict free edge coloring of G and corresponding mapping 
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4. Conclusion 

 
In this chapter, two approaches based on bipartite graph to tackle memory mapping problem 

for turbo and LDPC codes have been presented. Memory mapping problems for turbo and LDPC 

codes have first been formulated as data access and mapping matrices next used to construct graphs. 

Based on these formal models, a first algorithm, based on method to solve transportation problem, has 

been presented to tackle mapping problem. A second approach to solve mapping problem using 

Double Memory mapping technique has then been introduced. 

In next chapter, two more approaches to tackle memory mapping problem are presented. The 

novelty in these approaches is that they are modeled as tripartite graph whereas in this chapter each 

approach is modeled as bipartite graph. In first section of next chapter, LDPC memory mapping 

problem is tackled and different terms are defined to understand the modeling and 2-step coloring 

algorithm. This approach uses the same mapping matrix formulated in a current chapter for LDPC 

codes and followed the mapping constraints developed during mapping problem formulation. The 

approach is explained through pedagogical example at the end of this section. 

The approach that is presented in the second part of next chapter uses the same algorithm to 

solve both memory mapping problems. In this approach, both mapping problems are modeled as 

tripartite graph and then this tripartite is converted into bipartite graph. The conversion is carried out 

by using distinct data access properties for both turbo and LDPC processing elements. After the 

conversion, bipartite edge coloring algorithm that is already presented and proved in literature is 

applied on the graph to color the its edges. One efficient algorithm to color the edges of the graph is 

presented and explained through pedagogical example in this section to describe the approach.  

Using bipartite edge coloring algorithm validates the algorithms presented in this thesis work by 

proving that it is always possible to find memory mapping using Single and Double Memory Mapping 

techniques and the algorithm finishes in polynomial time. 
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In this chapter, two more approaches that model memory mapping problem as tripartite graph are 

presented. Due to “Double Memory mapping” technique introduced during this thesis work, each time 

instance is divided into read and write time instances and mapping matrix is modeled as tripartite 

graph in this chapter. In the first approach introduced in this chapter, each tripartite graph 

constructed from mapping matrix is partitioned into different subgraphs and then each subgraph is 

colored individually to find “Double Memory mapping”. In the second approach, both Single and 

Double Memory Mapping techniques are modeled as tripartite graph and then this graph transforms 

into bipartite graph on which any bipartite edge coloring algorithm is applied to color the edges of the 

graph and to find memory mapping.   
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1. Introduction 

 

The second approach presented in previous chapter models our mapping problem as bipartite 

graph and then finds conflict free memory mapping using edge coloring. Since each edge represents 

current read and previous write access, applying existing edge coloring algorithms which are already 

presented in literature is difficult to color the edges of our bipartite graph. This drawback motivated us 

to present our own algorithm based on “divide on conquer” approach to color the edges respecting the 

mapping constraints. However, due to double meaning of edge, it seemed pertinent to represent our 

mapping matrix as tripartite graph in which each time vertex is divided into two time vertices: one 

vertex is used to represent read access and the other to write access at that time instant. Afterwards, we 

correlated two edges (one that is connected with read access vertex and other with write access vertex) 

that follow our mapping constraints to develop a new algorithm based on tripartite edge coloring to 

find memory mapping. The advantage of this modeling is that we can transform this tripartite graph 

into bipartite graph on which any bipartite edge coloring algorithm can be applied. This technique 

provides a modeling on which current and future bipartite edge coloring algorithms can be applied. 

This approach also validates our double memory mapping approach by proving that it is always 

possible to provide conflict free concurrent accesses to all the processing elements for any type of 

memory mapping problem using double memory mapping approach in polynomial time.  

 The chapter starts by modeling our mapping matrix as tripartite graph that contains three sets 

of vertices: read access time vertex, data nodes and write access time vertex. Edges related to current 

read and previous write access are correlated using mapping constraints and then this tripartite graph is 

partitioned into different subgraphs of equal sizes. Each subgraph is then colored separately to 

generate memory mapping. In the second part of this chapter, the correlated edges of tripartite graph 

are joined and data nodes are removed to generate bipartite graph that respects mapping constraints 

and on which any bipartite edge coloring algorithm can be applied to find conflict free mapping. One 

efficient bipartite edge coloring algorithm is also presented in this section. Both algorithms are 

explained through pedagogical examples in this thesis.  

 

2. Methodology Based on Tripartite Graph to find conflict Free 

Memory Mapping for LDPC 

 

In the first approach, we transform our mapping matrix into tripartite graph and then 

successively partition our graph into several subgraphs of equal size. The concept of related edges are 

introduced in this approach in which current read and previous write access are associated during 

partitioning process. Also, different constraints are imposed during partitioning process so that 

algorithm can color the edges of each subgraph without any recursion. Finally, edges of each subgraph 

are colored separately, with the help of related edges, to find conflict free memory mapping using 

Double memory mapping approach. This work was presented in IEEE International Symposium on 

Circuits and Systems, 2011 [SAN11].  
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2.1. Modeling 

 

A Tripartite graph G = (TR ∪  TW ∪ D, E) is constructed based on mapping matrix of Figure 

3.9.b. as shown in Figure 4. 1. Vertex sets TR and TW represent all the time instances at which data are 

read and written respectively. Vertex set D represents all the data used in the computation. An edge (d, 

taR) is incident to the data vertex d and to the read access time instance vertex taR if d needs to be read 

at taR . Similarly, an edge (tcW, d) is incident to d and to the write access time instance vertex tcW if d 

needs to be written at tcW. Moreover, at each data vertex d, edges (d, taR) and (tcW, d) are placed on two 

different sides of d as shown in Figure 4. 2.a.  

 

T
im

e

t1W

t2W

t3W

t4W

t5W

t6W

Read Access Data Elements Write Access

1

2

3

4

5

6

t1R

t2R

t3R

t4R

t5R

t6R

 

Figure 4. 1: Tripartite graph for mapping matrix of Figure 3.9 

 

In order to follow the mapping constraint and for functional correctness of data accesses, the 

memory bank from which data is read from its current access must be the same as the memory bank in 

which the data has been previously written. If i is the access order of data d and n is the total number 

of times the data d is accessed, then i = {1, 2,……, n}.  

 

Definition  Related Edges 

 Two edges (d, taR) and (tcW, d) are called related edges if 

i = j - 1 for i > 1 

n      for i = 1 

where i = Order(d, taR),  j = Order(tcW, d) and where Order(d, taR) and Order(tcw, d) are 

respectively the read and the write access order of data d. 

 

If colors of edges represent memory banks (as shown in section 2.2), then at each data vertex d, 

related edges must have the same color. Related edges representation of data node d for i = 3 is shown 

in Figure 4. 2.b. Related edges are connected with dotted line. 
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(a) Data Node d Representation (b)  Related edges representation for i = 3 of d 

Figure 4. 2: Single Node Representation on Tripartite graph 

 

Definition  Semi Regular Tripartite Graph 

 A tripartite graph is semi regular, if all the vertices in any of its vertex set have the same degree. 

 

Definition  Partition 

 If Si is the vertex set whose all the vertices have the same degree in a semi regular tripartite graph 

G = (S1 ∪ S2 ∪ S3, E) then partition in G is defined as a subgraph containing all the elements of  

Si (i.e. S1, S2 or S3).  

 

Lemma  4.1 

 When the degree ft of a vertex of Si in a semi regular graph is even then we have ft /2 partitions in 

which each vertex’s degree ft’ is 2. 

 

Lemma  4.2 

 When the degree ft of a vertex of Si in a semi regular graph is odd then we have 2
t

f� �� �  partitions 

in which each vertex’s degree ft’ is 2 and one subgraph in which ft’ is 1. 

 

Definition  Regular Partition 

 A regular partition in semi regular tripartite graph is a partition that respects either Lemma 4.1 or 

Lemma 4.2.  

 

Property   

 One interesting property of parallel LDPC decoding architecture is that the number of accesses 

to data or processing elements at any time instance is always equal which implies that 

corresponding tripartite graph is always semi regular at vertex set TR and TW. This implies that 

all the time nodes (either for read or write accesses) in the tripartite graph have the same degree 

ft=P. 

 Since vertex set TR and TW are always semi regular, the regular partitions contain all the vertices 

of both TR and TW with the degree requirement mentioned in Lemma 1 and 2. 
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2.2. 2-Step Coloring Approach 

 

As the name suggest, algorithm colors the edges of tripartite graph in two steps. In the first 

step, the algorithm divides tripartite graph into different regular partitions and then in the second step, 

each partition is colored independently to generate conflict free memory mapping. This 2-step 

approach is necessary because constraints imposed during construction of regular partition in first step 

avoid the recursion during coloring the edges of graph in second step.     

2.2.1. Step 1: Partitioning Algorithm 
 

The flow chart for the partitioning algorithm is presented in Figure 4. 3. Some definitions that 

need to be explained to understand the flow of algorithm are presented below.    

 

Definition  Valid and Invalid Edges 

 An edge is invalid if its selection decreases the number of edges at any read or write access 

vertex to less than ft’ (where ft’ = 2) . Otherwise, it is a valid edge. 

 

Definition  Process of addition & Process of deletion 

 Process of addition includes valid and its related edge in the current regular partition whereas 

process of deletion removes invalid and its related edge from the current regular partition.  

 

The algorithm begins constructing a path pcurr by selecting a data vertex dcurr. Process of 

addition is then invoked to add a valid edge (dcurr, taR) into pcurr and its related edge (tcW, dcurr) into the 

current set of related edges Relpcurr. If number of selected edges at any read or write time instance 

reaches to ft’ then Process of deletion removes all other unselected and their related edges from that 

time node. The purpose of these processes is to converge into the construction of regular partition. 

Process of addition is again invoked at tcurr,R to add another valid edge (taR, dnext) into pcurr and 

to reach at dnext. The related edge of (taR, dnext) is included in Relpcurr. Process of deletion is then 

applied. At that point pcurr = {(dcurr, taR), (taR, dnext)}. The algorithm continues by alternating applying 

process of addition and process of deletion until pcurr is completed, i.e. the process of addition does not 

find any valid edge to be included in pcurr. At that point, pcurr and Relpcurr are included in the current 

partition Parcurr. 

While the partition is not regular (i.e. degree of valid edges at each read and write access time 

nodes is exactly dt’), the algorithm starts constructing another path by using the remaining edges of 

Gtmp. The algorithm starts constructing another partition on the remaining graph Gtmp = G - Parcur until 

Gtmp is not empty. 

The proposed algorithm needs to traverse ft edges at each time instance to find two read and 

writes accesses that can be included in Parcur. In order to construct a partition Parcur, algorithm needs 

to traverse in the worst case 2*ft *|T| edges. The resulting exploration complexity to construct one 

partition is O ( 2*ft *|T| ). In order to construct all the partitions, overall complexity of the partitioning 

algorithm is O ((ft/2) * (2*ft *|T|) ) = O ( ft 
2

*
 
|T| ).   
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Figure 4. 3: Partitioning Algorithm 

 

2.2.2. Step II: Coloring Algorithm 
 

As explained in previous section, in each regular partition, degree ft of any vertex is either 1 or 

2. For  ft = 1, we do not need any algorithm because we can give one color to all the edges in the 

partition and its related edges. For ft = 2, algorithm gives two color to the edges of regular partition 

using the algorithm whose flow chart is shown in Figure 4. 4. As described previously, the algorithm 

is recursion free due to constraints imposed during construction of regular partition in step I.  

For each partition Parcurr of ft = 2, the algorithm starts by choosing any read access time vertex tinit,R 

whose edges are still not colored. First color is given to edge (tinit,R, d) and its related edge (d, tcurr,W). 

Since at most two edges exist at each time vertex thanks to the construction of regular partitions, the 

algorithm gives a second color to (tcurr,W, dnext) and its related edge (dnext, tcurr,R). After reaching at tcurr,R, 

the algorithm tests whether tcurr,R = tinit,R. If not, then algorithm gives first color to the 2
nd

 edge at tcurr,R 

and its related edge until algorithm reaches at tinit,R. In case algorithm reaches tinit,R, it tests whether 

partition is completely colored. If not, then algorithm chooses another node as tinit,R and repeats the 

same process until Parcurr is completely colored.  

The coloring algorithm needs to traverse 2*|T| edges to color both read and write accesses in 

partition Parcur. So in order to color all the edges of the graph, algorithm traverses 2*ft *|T| edges in the 

worst case, then the coloring algorithm (in terms of number of edges to be explored) is O (2*ft *|T|).    

After calculating complexities of both partitioning and coloring algorithm, the resulting 

algorithm complexity to find memory mapping using bipartite edge coloring approach is O ( ft 
2 

|T|  +  

2ft |T| ). 

Partitioning and coloring algorithms are explained through a pedagogical example in the next section.   
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conflict at each time vertex.

Partition is completely colored

Graph is completely colored

No
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Yes

Yes

 

Figure 4. 4: Coloring Algorithm 

 

2.3. Pedagogical Example to explain algorithm 

 

Let us present an example based on the mapping matrix in Figure 3.9.b. The first step is the 

construction of tripartite graph which is already depicted in Figure 4. 1. This semi regular tripartite 

graph has each time vertex with degree ft = 3. Following Lemma 2, we will have after applying the 

partitioning algorithm two partitions: one partition in which each time vertex’s degree ft’ is 2 and one 

partition in which ft’ is 1.  

The algorithm starts by selecting data 1 and then invokes the process of addition which adds the first 

available edge (1, t1R) into the path p1, leading to p1 = {(1, t1R)}. The related edge of (1, t1R) that is (1, 

t6w) is also included in the current set Relp1. The selected read access edges and their related edges are 

represented by bold lines in Figure 4. 5.a. The process of deletion is invoked but no invalid edge is 

found to be deleted. The process of addition continues by adding the edge (t1R, 2) into the path p1 and 

its related edge (2, t6W) into Relp1. We have now p1 = {(1, t1R), (t1R, 2)} and Relp1 = {(1, t6w), (2, t6W)}. 

At this point, the number of access at t1R and t6W increases to 2 and the other unselected edges at t1R 

and t6W becomes invalid edges. So the process of deletion removes the invalid edge (4, t6W) and its 

related edge (4, t3R) as shown in Figure 4. 5.b. The algorithm continues by alternately invoking the two 

processes until the path p1 reaches at t6R. We have at that point p1 = {(1, t1R), (t1R, 2), (2, t4R), (t4R, 6), 

(6, t3R), (t3R, 1), (1, t6R)} and Relp1 = {(1, t6w), (2, t6W), (2, t1W), (6, t3W), (6, t2W), (1, t1w), (1, t3w)}. The 

edges of p1 and Relp1 are shown in Figure 4. 5.c. At this point, the process of addition can choose 

either (t6R, 2) or (t6R, 4) to augment p1. But choosing (t6R, 2) makes (t6R, 4) and its related edge (4, t5W) 

invalid because the number of edges at t5W becomes less than 2. So the process adds (t6R, 4) (the only 

available valid edge) into p1, (4, t5W) into Relp1 and declares (t6R, 2) and its related edge (2, t4W) as 

invalid as shown in Figure 4. 5.d.  
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Figure 4. 5: Path construction through Partitioning Algorithm 

 

At this stage, the algorithm finds that no more valid edges are available at data vertex 4 to be 

added in p1 = {(1, t1R), (t1R, 2), (2, t4R), (t4R, 6),(6, t3R), (t3R, 1), (1, t6R), (t6R, 4)} and Relp1 = {(1, t6w), (2, 

t6W), (2, t1W), (6, t3W), (6, t2W), (1, t1w), (1, t3w), (4, t5W)} as shown in Figure 4. 6.a. The algorithm adds p1 

and Relp1 into Par1 but Par1 does not form a regular partition because t2R and t5R are not included in p1. 

So the algorithm starts to construct a new path p2 by again invoking the process of addition and 

deletion. The resultant path p2 = {(3, t5R), (t5R, 5), (5, t2R), (t2R, 6)} is shown in Figure 4. 6.b. Now the 

partition Par1 is the union of all the paths and their related edge sets, Par1 = p1 +  p2 + Relp1 + Relp2. 

Again the algorithm tests whether Par1 constitutes a regular partition. This time the test is successful 

and the Par1 is declared as regular partition (see Figure 4. 6.c). 

After the construction of Par1, the algorithm finds that the graph is not completely traversed. So the 

algorithm deletes Par1 to obtain the graph Gtmp = G - Par1 and applies again the processes on Gtmp to 

obtain the paths, p’1 = {(2, t6R)}, p’2 = {(3, t1R)}, p’3 = {(3, t2R)}, p’4 = {(4, t3R)}, p’5 = {(4, t5R)}, p’6 = 

{(5, t4R)}. 

Similarly partition Par2 is the sum of all the traversed paths and their related edges as given below,  

 Par2 =  p’1 + p’2 + p’3 + p’4 + p’5 + p’6 + Relp’1 + Relp’2 + Relp’3 + Relp’4 + Relp’5 + Relp’6  (see 

Figure 4. 6.d). 

After the construction of Par2, the partitioning algorithm finds that the graph is completely traversed 

and is terminated. 
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(a) Path p1 and its related edges (b) Path p2 and its related edges 
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(c) Regular partition Par1 (d) Regular partition Par2 

Figure 4. 6: Path construction through Partitioning Algorithm 
 

After the generation of the partitions, each partition is colored depending on the degree dt’ of 

its time node. For example, the Par1 is colored with, dt’ = 2, colors and the Par2 is colored with, dt’ = 

1, color. To color the partition Par1, the algorithm starts from any read access time vertex whose edges 

are still not colored. In this example, the algorithm begins from t1R and gives one color b0 to (t1R , 1) 

and its related edge (1, t6W) to reach at t6W. At t6W, the algorithm then gives different color b1 to the 

other edge (t6W, 2) and its related edge (t1R , 2) to reach at t1R as shown in Figure 4. 7.a. In this figure, 

grey straight line represents color b0 and grey dotted line represents color b1.  

The algorithm finds that t1R is completely colored so it chooses another uncolored read access 

time vertex t2R and gives color b0 to (t2R , 5) and its related edge (5, t5W) to reach at t5W. At t5W, the 

algorithm gives different color b1 to the other edge (t5W , 4) and its related edge (t6R, 4) to reach at t6R as 

shown in Figure 4. 7.b.  
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Figure 4. 7: Conflict Free Edge Coloring of Par1 
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The algorithm continues until the partition is completely colored. The complete coloring of 

Par1 is shown in Figure 4. 8.a. The coloring of Par2 is easier: all the edges are colored with one single 

color b2 represented by black lines in Figure 4. 8.b because dt’ = 1 as already mentioned.  

The complete coloring of G is shown in Figure 4. 9.a. The corresponding mapping matrix is 

presented in Figure 4. 9.b. 
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Figure 4. 8: Conflict Free Edge Coloring of Par1 and Par2 
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Figure 4. 9: Conflict free edge coloring of G and corresponding mapping matrix 

 

3. Constructing Bipartite Graph for Turbo and LDPC Codes 

 

As explained in introduction, the basic idea is to transform our mapping problem for both 

turbo and LDPC codes into a problem for which polynomial time algorithm can be applied. The 

approach also validates our Double memory mapping method by proving that it is always possible to 

provide conflict free concurrent access to all the processing elements for any type of memory mapping 

problem using Double memory mapping approach in polynomial time.  

Bipartite Edge coloring is one of such problem. So in this section, we model data access 

matrices for turbo codes and mapping matrices for LDPC as bipartite graphs on which any bipartite 

edge coloring which is already proved in literature is implemented. Since mapping problem for both 

Turbo and LDPC is slightly different, we model both of these problems separately in this section so 

that one can easily understand the transformation from matrix to graph. 
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3.1. Construction of Bipartite Graph for Mapping Problem of Turbo 

Codes  

  

To construct bipartite graph, we first construct a tripartite graph G’ = (TNAT ∪ TINT ∪ D, E) and 

then convert this tripartite graph into bipartite graph due to specific pattern of access of turbo codes. 

The tripartite graph G’, that is constructed using natural and interleaved order data access matrices of 

Figure 3.1, is shown in Figure 4. 10.a. In G’, vertex sets TNAT and TINT represent all the time instances 

used in natural order access and interleaved order access respectively whereas vertex set D represents 

all the data elements used in the computation. An edge (ti ,d) is incident to the data vertex d and to the 

natural order time vertex ti if d needs to be processed at ti (i.e. data d will be read and next written at 

time ti) where ti ∈ TNAT. Similarly, an edge (tj ,d) is incident to the data vertex d and to the interleaved 

order time vertex tj if d needs to be processed at tj where tj ∈ TINT.  

  

Turbo codes have the following two distinct properties: 

1- The number of accesses to data P (i.e., number of data required to access concurrently) at any 

time instance is always the same (the number of accesses is equal to the number of memory 

banks). This property imply that in G’, each time node has same degree, ft = P. 

2- Each data element is accessed only two times: one time in natural order and the other time in 

interleaved order. This property imply that in G’, all the data nodes have the same degree, fd = 2. 

  

Thanks to the property 2, the tripartite graph G’ is converted into bipartite graph G by first joining 

two edges at each data vertex and then removing all the data vertices from G’ as shown in Figure 4. 

10.b. Thanks to property 1, G is regular with the degree of each time node, ft = P.  
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Figure 4. 10: Bipartite Graph representation 
 

 

One point to remember that each edge in G now corresponds to a data node in G’, so the 

coloring of edges in G actually means coloring of data nodes in G’. Also, according to minimum edge 

coloring algorithm for bipartite graph [KON16], edges of k-regular bipartite graph are colored with k = 

P colors (i.e. the number of concurrent data accesses) and the colors of edges at each time node are 

different. 

 If a color corresponds to a memory bank then the above observations results in the following 

Lemma, 
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Lemma  4.3 

 All the data elements used in turbo codes can be stored in B memory banks where B = P so that 

P processors concurrently access B memory bank in parallel without any conflict in both natural 

and interleaved order time instance. 

 

3.2. Construction of Bipartite Graph for Mapping Problem of LDPC 

Codes  

 

The same approach is used to construct bipartite graph for LDPC codes as presented for turbo 

codes. First we construct tripartite graph based on mapping matrix and then convert this tripartite 

graph into bipartite graph. A Tripartite graph G’ = (TR ∪  TW ∪ D, E) is constructed based on mapping 

matrix of Figure 3.9.b. as  shown in Figure 4. 11. Vertex sets TR and TW represent all the time instances 

at which data are read and written respectively. Vertex set D represents all the data used in the 

computation. An edge (d, taR) is incident to the data vertex d and to the read access time instance 

vertex taR if d needs to be read at taR . Similarly, an edge (tcW, d) is incident to d and to the write access 

time instance vertex tcW if d needs to be written at tcW.  
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Figure 4. 11: Tripartite graph for mapping matrix of Figure 3.9 

 

In order to follow the mapping constraint and for functional correctness of data accesses, the 

memory bank from which data is read from its current access must be the same as the memory bank in 

which the data has been previously written. If i is the access order of data d and n is the total number 

of times the data d is accessed, then i = {1, 2,……, n}.  

 

Definition  Related Edges 

 Two edges (d, taR) and (tcW, d) are called related edges if 

i = j - 1 for i > 1 

n      for i = 1 

where i = Order(d, taR),  j = Order(tcW, d) and where Order(d, taR) and Order(tcw, d) are 

respectively the read and the write access order of data d. 
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To convert this tripartite graph into bipartite graph G, we first join related edges on each data 

node and then remove data node to construct bipartite graph as shown in Figure 4. 12. 
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Figure 4. 12: Bipartite graph for mapping matrix of Figure 3.2.b 
 

LDPC codes have following distinct property: 

       The number of accesses to data P at any time instance (i.e., number of data required to access 

concurrently) is always the same (the number of accesses is equal to the number of memory banks). 

This property implies that in G: 

      Each time node (either read or write) has same degree ft = P which means G is always regular. 
 

It is important to note that implementation of bipartite edge coloring fulfills the two 

constraints which is necessary to follow to find conflict free memory mapping. First of all, at each 

time instance during both read and write operation, all the memory banks have been used one and 

only one time. Secondly, current read and previous write accesses are connected in this bipartite 

graph, so these two accesses should always be taken from the same memory bank and results in 

fulfilling the constraint that bank of the last write access to a data must be the same as the bank of its 

first read access in this bipartite graph. The above observations give us the proof that “Double 

Memory Mapping” is always possible for every type of LDPC codes and results in the following 

Lemma, 

 

Lemma  4.4 

 All the data elements used in LDPC codes can be stored in B memory banks where B = P so that 

P processors concurrently access B memory bank in parallel for first reading P data and then 

writing back these P data without any conflict. 
 

3.3. Bipartite Edge Coloring Algorithm 

 

After constructing bipartite graph, the next step is to apply bipartite edge coloring algorithm to 

color the edges of that graph in polynomial time. As explained in chapter 2, current edge coloring 

algorithms first convert irregular bipartite graph into regular graph. Fortunately in our case, our 

bipartite graph is always regular so we can directly apply edge coloring algorithm on our graphs. To 

find minimum edge coloring efficiently, following divide and conquer approach is used on regular 

bipartite graph: 
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Find an Euler partitioning Ceuler ( see section 3.3.1.2 of chapter 2 for explanation). Then, take 

every other edge along Ceuler to obtain two (f/2)-regular subgraphs and reduce the problem to two (f/2)-

regular graphs. However, to divide a regular graph into two regular subgaphs of equal degree, it is 

necessary that f is even. If f is odd, then algorithm first finds perfect matching Mp in G, assign one 

color to the edges of Mp, remove Mp from G and reduce the problem to (f−1)-regular graph where 

(f−1) is even.  

Complete bipartite edge coloring algorithm is shown in Table 4. 1. 

Table 4. 1: Edge Coloring Algorithm 

1   edgeColor (G, f)  

2    if (f is odd) then 

3                 if (f = 1) then 

4                              Mp = G 

5                              assignOneColour(Mp ) 

6                    else   

7               Mp = perfectMatching(G) 

8               assignOneColour(Mp ) 

9                edgeColour(G- Mp, f-1) 

10                                 end if   

11                     else 

12              Ceuler = eulerPartition(G) 

13                             {G1, G2} = split(G, Ceuler) 

14               edgeColour(G1, f/2) 

15               edgeColour(G2, f/2) 

16      end if 
 

Perfect Matching Algorithm 

In this algorithm, it is important to find perfect matching Mp in G efficiently. The algorithm 

[SCH98] finds a perfect matching in a ft-regular bipartite graph in O(fD) time where f = P as explained 

in Table 4. 2. 

At each point in the algorithm, the sum of the weights of the edges adjacent to a given vertex 

is always ft. When the algorithm terminates, edges have either weight f or weight 0. The edges that 

have weight ft form a perfect matching [SCH98]. 

Table 4. 2: Perfect Matching Algorithm from [SCH98] 

I. Initially, assign a weight w(e) = 1 to each edge e.  

II. Find a circuit C in E
*
 using depth first search (DFS) tree by starting at the vertex of TNAT where 

E
*
 is the set of edges with w(e) > 0 and w(C) := �

���
 w(e). 

III.  Since the number of edges in C in bipartite graph is always even (this is the intrinsic property of  

bipartite graph), divide C into two matching M and N by assigning alternate edges to M and N 

such that w(M) > w(N).  

IV. Update the weights of the edges in C as follows:  

If edge e � M, then w(e) = w(e) + 1 



Methodologies based on Tripartite Graph for solving Memory Mapping Problem 

 - 92 - 

If edge e � N, then w(e)  = w(e) – 1 

V. Go to II and repeat until no more circuits can be found. Note that if the graph is disconnected, 

algorithm will need to start a DFS tree at each vertex in TNAT to find all circuits. 

Euler Partitioning 

Procedure to find Euler partitioning is taken from [GAB76] . This algorithm is modified form 

the original version because in our case, the graph on which this procedure is applied is always regular 

and each vertex has even degree. The procedure can be stated as below: 

Choose any vertex of even nonzero degree. Start traversing a graph from one vertex to another by 

including a traversed edge into the path p and removing that edge from the graph until a vertex with 

zero degree is reached. This completes p in the partition. Then start constructing another path p’ by 

choosing another start vertex. Repeat this process until no vertex of nonzero degree remains. 

Complete Euler partitioning algorithm is shown in Table 4. 3. 

 

Table 4. 3: Euler Partitioning Algorithm from [GAB76] 

1  eulerPartition (G)  

2                    P is an empty list; 

3    Qeuler is an empty queue: 

4   store all vertecies of nonzero even degree in Qeuler.   

5                   while Qeuler is not empty loop 

6                        let q be the first vertex in Qeuler 

7                        delete q from Qeuler 

8                        if vertex q has nonzero degree then 

9                              construct a new empty path p; 

10                              vinit  =  q; 

11                              while vertex vinit has nonzero degree loop 

12                                    select an edge (vinit, vend) in G; 

13                                    delete (vinit, vend) from G; 

14                                    put (vinit, vend) in p; 

15                                    vend  =  vinit ; 

16                               end while 

17                              put path p in P 

18                        end if 

19                    end while    

20                    return P;  

 

If the graph is bipartite and 2q-regular where q is a positive integer, then it is possible to split 

the edges into 2 groups of equal sizes. After the construction of Euler circuit, the edges are oriented 

according to the path construction. The 2q-regular graph can be split into two q-regular graphs by 

putting the edges oriented from TNAT to TINT in one graph and the edges oriented from TINT to TNAT in 

the other.   
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Bipartite edge coloring presented in [SCH98] takes O (�m) time where � = degree of each 

node and m = number of edges in a graph. In our bipartite graph of turbo codes, degree of each time 

node is ft and number of edges in a graph is ft *|T|. This means that overall complexity of finding 

memory mapping using bipartite edge coloring for turbo codes is O ( ft 
2

*
 
|T|). In bipartite graph of 

LDPC codes, each time node is partitioned into read and write access nodes. This means that overall 

complexity of finding memory mapping using bipartite edge coloring for LDPC codes is O ( 2*ft 
2

*
 
|T|).  

 

3.4. Pedagogical Example to explain algorithm 

 

Let us present an example based on the natural and interleaved order access matrices presented 

in Figure 3.1. Bipartite graph for these data access matrices is depicted in Figure 4. 10.b. This 

bipartite graph is f-regular where f = 3. As explained previously, edge coloring algorithm first finds the 

perfect matching because f is odd. To find the perfect matching, the algorithm assigns each edge a 

weight 1 as shown in Figure 4. 13.a. Using DFS tree, the algorithm finds a circuit, C={(t1, t6), (t6, t3), 

(t3, t8), (t8, t1)} as shown in Figure 4. 13.b. Since all the edges have the weight 1, the algorithm 

arbitrary assigns alternate edges to the matching M and N. In this case, algorithm assigns M ={(t1, t6), 

(t3, t8)} and N={(t6, t3), (t8, t1)}. Also, the algorithm increases the weight of the edges in M by 1 and 

decreases the weight of the edges in N by 1 as shown in Figure 4. 14.a. The edges in circuit C with 

weight modification are represented with bold lines in this figure. After weight modification, edges 

with degree 0 or 3 are not used in determining the circuit in next iteration. Graph used in next iteration 

is shown in Figure 4. 14.b. 
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Figure 4. 13: Matching Algorithm 
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Figure 4. 14: Matching Algorithm 
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However, the algorithm is only terminated when all the edges have either weight 3 or 0. Since 

at the termination of previous iteration, some edges have weight 1 or 2, so the algorithm continues by 

constructing another circuit C = {(t1, t6), (t6, t4), (t4, t5), (t5, t2), (t2, t7), (t7, t1)} as shown in Figure 4. 

15.a. Taking alternate edges, the algorithm finds that first set of edges s1 ={(t1, t6), (t4, t5), (t2, t7)} have 

total weight 4 whereas the second set of edges s2 ={(t6, t4), (t5, t2), (t7, t1)} have total weight 3. So the 

algorithm assigns edges in s1 to matching M and edges in s2 to matching N. Also, the algorithm 

increases the weights of edges in M by 1 and decreases the weights of edges in N by 1 as shown in 

Figure 4. 15.b. The algorithm continues finding circuits and increases and decreases the weights of 

alternate edges until all the edges have either weight 3 or 0 as shown in Figure 4. 15.c. In this figure, 

the edges with weight 3 give us a perfect matching. 
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(c) Perfect Matching 

Figure 4. 15: Matching Algorithm 

 

After finding perfect matching Mp, the algorithm assigns a color to the edges of Mp, remove 

Mp from the graph G to construct graph  G-Mp as shown in Figure 4. 16.a. Now the graph transforms 

into 2-regular graph, so edge coloring algorithm applied eulerPartition procedure to find Euler 

partition    Ceuler ={(t1, t7), (t7, t3), (t3, t6), (t6, t4), (t4, t5), (t5, t2), (t2, t8), (t8, t1)} on graph G-Mp.  The 

edges in Ceuler are also given orientation with edges from vertex in TNAT to vertex in TINT are given 

clockwise orientation whereas the edges from vertex in TINT to vertex in TNAT are given anti-clockwise 

orientation as shown in Figure 4. 16.b. After giving orientations, 2-regular graph is split into two 1-

regular graphs by putting the edges oriented clockwise in G1 ={(t1, t7), (t3, t6), (t4, t5), (t2, t8)} and the 

edges oriented anticlockwise in G2 = {(t7, t3),  (t6, t4), (t5, t2), (t8, t1)} as shown in Figure 4. 16.c. and 
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Figure 4. 16.d. Since both G1 and G2 are now 1-regular, algorithms terminates by assigning one color 

each to the edges of G1 and G2.  
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Figure 4. 16: Euler Partitioning 

 

The complete edge coloring of G’ after attaching data vertices in G is shown in Figure 4. 17.  

In this figure, the three colors of the edges which correspond to three memory banks are represented 

with gray bold, gray narrow and gray dotted lines. The resultant memory mapping is, Bank A = 

{0,2,3,5}, Bank B = {1,7,8,10} and Bank C = {4,6,9,11}. 
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Figure 4. 17: Edge Coloring of Bipartite Graph 
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4.  Complexity comparison of Different algorithms 

 

In this section, the proposed memory mapping algorithms are compared in terms of internal 

representation model complexity and algorithm complexity. The complexities of different algorithms 

are compared in terms of different parameters used to develop and execute these algorithms. This 

comparison is shown in Table 4. 4. Internal model complexity of approaches using tripartite graph and 

bipartite edge coloring is low whereas algorithm implementation is easier for Transportation problem 

and Bipartite edge coloring approach. Runtime complexity of all these approaches is compared in 

terms of number edges to be explored in order to find a conflict free memory mapping. To do so, we 

uses the degree of each time node ft and number of time nodes in the graph |T|. In this regard, runtime 

complexity of bipartite edge coloring is the lowest one for both Turbo and LDPC codes as compared 

to other approaches presented in this thesis.  

 

Table 4. 4: Complexity Comparison of approaches used in this thesis 

Algorithm 

Name

Modeling 

Used

Algorithm 

Used

Modeling 

complexity

Algorithm 

complexity
Complexity

Application 

Used

Algorithm 1
Transportation

Problem

Northwest

Corner
High High O ( ( ft 

2 |T|)( ft! ) ) Turbo

Algorithm 2
Bipartite 

Graph

Sub graph 

Partitioning 
High High O ( ft 

2 |T|  +  2ft |T|) LDPC

Algorithm 3
Tripartite 

Graph

Sub graph 

Partitioning 
Low High O ( ft 

2 |T|  +  2ft |T|) LDPC

Algorithm 4
Bipartite 

Graph

Euler

Partitioning
Low Low ***O ( kft

2 |T|)
Turbo +

LDPC
 

 

*** k = 1 for turbo and k = 2 for LDPC  
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5. Conclusion 

 

In this chapter, two more approaches to tackle memory mapping problem are explained. The 

novelty in these approaches is that they are modeled as tripartite graph whereas in the previous 

chapter each approach is modeled as bipartite graph. The advantage of this modeling is that this 

tripartite graph can now be converted into bipartite graph on which any bipartite edge coloring 

algorithm already presented and proved in the literature is applied to find conflict free memory 

mapping. This validates our approaches by proving that it is always possible to find memory 

mapping using Single and Double Memory Mapping techniques and the algorithm finishes in 

polynomial time. 

 This chapter completes the algorithmic work performed during this thesis. At this point, one 

question rises in the mind that why we need lot of algorithms to solve the same problem and why 

algorithm based on bipartite edge coloring algorithm is presented directly? Also it can be asked that 

why algorithm based on bipartite edge coloring is better than other algorithms? There are lots of 

reasons to present all these algorithms in this work. The first reason is that we want to show the 

complete path through which we reach last algorithm. It is not possible that we can develop last 

algorithm without developing initial algorithms. First algorithm models problem as bipartite graph in 

which time instances and data forms two sets of nodes. This approach works well for turbo codes in 

which each data node is accessed only two times. However, both the edges connected with each data 

node should have same color so that we can apply Single memory mapping approach on turbo codes 

which is not possible using bipartite edge coloring algorithm. Similarly for LDPC codes, each edge 

in bipartite graph contains information about both read and write accesses in order to accommodate 

Double memory mapping approach. So again bipartite edge coloring algorithm cannot be applies on 

this graph. This gave us the idea that since each edge represents two accesses then why not we 

divide each time instance and edge so that each edge represents one access. This approach results in 

modeling our problem as tripartite graph but still no algorithm exists in literature to color the edges 

of tripartite graph. To use the algorithm proved in literature, it is necessary to transform this 

tripartite graph into bipartite graph. So we remove data nodes from this tripartite graph and construct 

a bipartite graph on which bipartite edge coloring algorithm can be applied. The thesis presents the 

quest to model mapping problem into class of problems in which polynomial time algorithm exists.     

 The second reason is that we want to model the mapping problem for both turbo and LDPC in 

such a manner that same algorithm can be used to find memory mapping. In this thesis, we present 

different algorithms for solving both turbo and LDPC mapping problems. However, at the end, both 

mapping problems can be solved using single bipartite edge coloring algorithm. 

 Third reason is that algorithm to color the edges of bipartite graph is an active domain of 

research in graph theory. Bipartite edge coloring is efficiently used in other scientific domains to 

solve problems. So either we can use the results of the other domain or use our work to solve 

problems in other domain. Also, in future, any improvement in computation time for coloring the 

edges of bipartite graph can directly be applied to improve the computation time for solving memory 

mapping problem.   
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 Forth reason is that simplification in coloring the edges of bipartite graph motivates future 

works to add more constraints into the current mapping problem. Solving the mapping problem 

using polynomial time algorithm opens challenge to develop new algorithms that generate memory 

mapping in order to simplify network and addressing logic.  

In next chapter, different experiments have been performed for generating control and network 

architecture for different applications and different types of parallelisms. For this purpose, a tool has 

been developed during this thesis work that takes access order of data for turbo and LDPC codes. 

Afterwards,  it finds conflict free memory mapping for required number of parallelism and generates 

VHDL files for memory banks, network and control logic that can be synthesized on FPGA or 

ASIC.  
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In this chapter, different experiments have been performed to validate the theoretical work presented 

in this thesis. Chapter starts with brief presentation of the design flow utilized to perform experiments. 

Afterwards, parallel architecture for bit interleaver used in UWB communication system is designed to 

show the importance of memory mapping that supports particular interconnection network. In second 

experiment, first conflict free memory mapping is found for Turbo interleaver used in HSPA for 

different types of parallelism and then parallel hardware architecture is designed for each of these 

parallelism. In next two experiments, Double memory mapping approach is applied to find conflict 

free memory mapping for partially parallel implementation of structured LDPC codes and serial and 

partially parallel implementation of non-binary LDPC codes. Parallel hardware architecture is also 

designed for both of these approaches in this thesis. In last experiment, a study to design conflict free 

parallel architecture for QPP interleaver used in LTE is presented along with comparison of different 

configurations to design high speed LTE decoder.  
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1. Introduction 

 

This chapter explores the design space for different types of interleavers used in current 

telecommunication standards. The biggest hurdle in designing parallel architecturew for interleaving 

law is that either this law is not conflict free or it is not conflict free for particular parallelism degree. 

Algorithms presented in this thesis can be used to find conflict free memory mapping for every type 

of interleaver and for every parallelism. This is demonstrated through experimental results in this 

chapter. In the next section, brief description of the design flow that has been to perform 

experiments is given. 

First experiment is used to design parallel architecture for bit interleaver. Bit interleaver is a 

part of different telecommunication standards to tackle burst errors. Bit interleaver that is part of 

UWB communication system is taken as test case in this experiment. Algorithm used in this 

experiment is also able to find memory mapping that supports particular interconnection network. In 

second experiment, turbo interleavers used in different telecommunication standards for enhancing 

forward error correction capabilities of turbo codes are tackled. Different experiments have been 

performed to design parallel interleaver architectures used in HSPA Evolution. This interleaver is 

not conflict free for every type of turbo decoder parallelism. Conflict free memory mapping is found 

and hardware architecture is proposed for different decoder parallelisms in this experiment. Single 

memory mapping approach is utilized to find conflict free memory mapping in these experiment and 

both runtime of the algorithm and area of the resultant architecture are compared with the state of 

the art approaches. 

In third experiment, partially parallel architecture is designed for structured LDPC codes. 

Structured LDPC codes are increasingly used in different telecommunication standards. However, 

allocating block of data in different memory banks results in a memory conflict problem. In this 

experiment, double memory mapping approach is utilized to solve memory conflict problem and 

different experiments have been performed to design parallel interleaver architecture for different 

parallelism and block sizes. In forth experiment, a parallel interleaver architecture is designed for 

non-binary LDPC (NB-LDPC). NB-LDPC is developed to enhance the performance of binary 

LDPC. However, interleaving law used in NB-LDPC is not conflict free even for serial 

implementation of NB-LDPC decoder. In this experiment, parallel interleaver architecture is 

designed for both serial and partially parallel implementation of NB-LDPC decoder. In both of these 

experiments, double memory mapping approach is utilized to find conflict free memory mapping. 

Both runtime and resultant architecture are compared with state of the art solutions. 

In final experiment, both single and double memory mapping approaches are used to design 

parallel architecture for QPP interleaver of LTE. The goal of the experiment is to compare different 

configurations in order to design high speed LTE decoder. These configurations differ in their 

modes (shuffled or non-shuffled), schemes (butterfly or replica), radices and whether internal 

memory inside SISO decoder is used or not. Hardware cost and latency are calculated for each of 

these configurations and results are detailed to show the tradeoff between area and throughput to 

design LTE decoder.     
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2. Design Flow for performing experiments 

 

In this section, the design flow for performing the experiments is presented. This design flow 

consists of three parts as shown in Figure 5. 1. In the first part, input constraint file is prepared that 

can be used in the next step to generate conflict free memory mapping. The different interleavers 

used in different standards are implemented in software, in order to automatically generate the 

corresponding constraint files. In second step, bipartite edge coloring algorithm for Single and 

Double memory mapping approaches are implemented in software. The software takes these input 

constraint files and generates conflict free memory mapping. The third step generates VHDL files 

based on the memory mapping found in the previous step. These files that can be synthesized to 

design complete architecture i.e. network, memory banks and associated controllers.   
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Figure 5. 1. Design Flow for performing experiments  

 

Target Architecture 

In all these experiments, Target architecture using single port memory bank is shown in Figure 

5. 2. This architecture consists of processing elements, memory banks (RAM) and controller. Two 

extra ROMs are used to control network and to generate addresses for memory banks. Controller is 

designed to address these ROM and to generate R/W signal for memory banks.  

In all these experiments, B = Number of memory banks, P = Total number of processing 

elements, T = Total number of accesses to the memory and R = Number of data in each bank. So, the 

size of each addressing ROM = T * 2
log ( )R� �� � 

 such that each ROM contains T words and each word has 

a size of 2
log ( )R� �� � bits. Similarly, if the network is crossbar then the size of network ROM = T * 

(P* 2
log ( )P� �� �). Also the size of bus from network ROM to network is P* 2

log ( )P� �� �  bits and the size of 

each bus from addressing ROM to bank is 2
log ( )R� �� � bits. In all these experiments, it is considered that 

each data has a size of 8-bits.     
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Figure 5. 2. Resultant generated architecture  

 

Execution Platform and Targeted Technology 

 

 Results obtained in these experiments are presented in term of CPU time and area. In all these 

experiments, CPU time of the proposed approaches are compared with existing approaches using 

DELL Core i7 M 620 (2,67 Ghz) machine with 4G RAM. Also, 90 nm technology from 

STMicroelectronics is used in these experiments to calculate area of different components of resultant 

architecture. These area are given in NAND-gate equivalent to respect non-disclosure agreement with 

STMicroelectronics.  

 

3. Ultra Wide Band Communication System 
 

Ultra Wide Band (UWB) provides a promising solution for indoor and home networking due 

to its large bandwidth (>500 MHz). It can accommodate multiple high data rate terminals and 

becomes an attractive candidate for future indoor networks. The principal advantage of UWB [SIR08] 

[KAI05] is its potential to satisfy high data rate requirements at very low hardware cost and power 

consumption. Also, it provides accurate location tracking capabilities at low-rate transmission. Due to 

these advantages, UWB can significantly be used for high data-rate Wireless Personal Area Network 

(WPAN) and sensor identification networks.  

 

3.1. Bit Interleaver used in WPAN IEEE 802.15.3a Physical Layer 

 

WPAN Network 

 A network is called high data-rate WPAN network if it contains medium density of active 

devices (5 to 10) that transmit data at a rate ranging from 100 to 500Mbps within a distance of 20m. 

 

The IEEE 802.15.3 standard task group has constituted the 805.15.3a study group to 

standardized UWB wireless communication for WPAN transmission. The goal of this group is to 

develop high-speed physical layer for applications that require imaging and multimedia. 
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The physical layer proposed by this group for multiband OFDM (Orthogonal Frequency 

Division Multiplexing) system is shown in Figure 5. 3, Figure 5. 3.a and Figure 5. 3.b shows the block 

diagrams for transmitter and receiver respectively used in this system. The details of all of these 

components can be found in [SIR08].  
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Figure 5. 3. Multiband OFDM System [BAT04] (Copyright @ 2004 IEEE)  

 

In this section, we only discuss bit interleaver that is used to provide robustness against burst 

errors. Bit interleaving is performed in two stages namely symbol interleaving and tone interleaving. 

In symbol interleaving, the bits across OFDM symbols are interleaved whereas in tone interleaving 

bits within an OFDM symbol are interleaved to take advantage of frequency diversity. The input-

output relationships for both of these interleaving laws are as follows [BAT04]: 
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Where X(i) is the input to the symbol interleaver, Y(i) is the output from symbol interleaver 

and input to the tone interleaver, Z(i) is the output from tone interleaver, i = 0, 1, ………, 3NCBPC – 1, 

Floor(.) and Mod(.) represents the floor and modulo functions respectively. NCBPC is the number of bits 

per OFDM symbol and NTint = NCBPC/10.  

The function of interleaver can best be explained through small example. Consider an example 

in which i = 0, 1, ……., 29, NCBPC = 10, NTint = 1. Thirty bits, equivalent to 3 OFDM symbols, are 

input to the bit interleaver that produces output after performing both symbol and tone interleaving. 

This interleaved output is: 

Π(i) = 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 10, 13, 16, 19, 22, 28, 1, 4, 7, 20, 23, 26, 29, 2, 5, 8, 11, 14, 17  
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To interleave all 3 OFDM symbols in parallel, 3 bits arrived at each time instance from each 

OFDM symbol. To shown the parallelism, the input and interleaved bits are arranged in matrix with 

number of columns equal to NCBPC and number of rows equal to the number of OFDM symbol i.e., 3 as 

shown in Figure 5. 4 a and b.  

 

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29
  

0 3 6 9 12 15 18 21 24 27

10 13 16 19 22 25 28 1 4 7

20 23 26 29 2 5 8 11 14 17
 

                                    (a) Input order                                    (b) Interleaved order 

Figure 5. 4. Input and Interleaved order for 30 bits 

 

Two implementations are possible to perform bit interleaving: Serial implementation or 

parallel implementation. In serial implementation, single bit is arrived at each time instance whereas in 

parallel implementation 3 bits are needed to be interleaved at each time instance. Serial 

implementation is quite simple and straightforward because we just need one buffer or memory to 

store these bits. Afterwards, these bits are read out from the memory in interleaved order to be 

transmitted to the next module in the system. Serial implementation is shown in Figure 5. 5.a. In 

parallel implementation (as shown in Figure 5. 5.b), main memory is divided into three memory banks 

to achieve high memory bandwidth and to accommodate bits that arrive in parallel. Interconnection 

network is required to permute bits that arrive in parallel. 

The problem is to store data in memory banks in such a manner that data required in 

interleaved order in parallel can be accessed from each memory bank without any conflict. Another 

objective is to design interleaving architecture using minimal hardware.   
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Figure 5. 5. Implementation of Bit Interleaver 
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3.2. Experiments and Results 

 

In this section, experiments have been performed for different codeword length and different 

parallelisms. The goal of this experiment is to show the interest and limits of the algorithm originally 

developed to tackle transportation problem. We also wanted to determine whether targeted codeword 

and parallelism supports single barrel shifter based architecture, for both natural and interleaved 

orders. The experiments have been performed for codeword lengths of 300, 600, 1200 and for 

parallelism of 2, 3, 4 as shown in Table 5. 1.  

 

Table 5. 1. CPU time (second) for various Memory Mapping Approaches 

Total Data Parallelism
Single BS 
possible

Bipartite Edge 
Coloring 
Algorithm

Algorithms 
based on 

Transportation 
Problem

[CHA10a]

300 2 Yes 0,016 0,031 0,031

300 3 Yes 0,016 0,016 0,03

300 4 No 0,015 NA 0,031

600 2 Yes 0,015 0,062 0,062

600 3 No 0,016 NA 0,078

600 4 No 0,015 NA 0,109

1200 2 Yes 0,031 0,202 0,202

1200 3 No 0,109 NA 0,405

1200 4 No 0,031 NA 0,265

 
 

The “transportation algorithm” is compared with [CHA10a] and bipartite edge coloring 

approach. When barrel shifter is possible, then the runtime of algorithm inspired from transportation 

problem domain is same as [CHA10a] since the length of codeword is not quite large. However, our 

approach stops as soon as it detects barrel shifter cannot be used while [CHA10a] continues searching 

and exits when a conflict free memory mapping has been found. Afterwards, bipartite edged coloring 

takes less time than the other approaches ([CHA10a] is 354 % slower on average) to determine 

memory mapping for bit interleaver. However, this approach is not able to generate a memory 

mapping with respect to a user defined interconnection network, because it does not support any 

design constraint. This requires to use a complete network which supports any permutations (e.g. 

crossbar, Benes…). 

Resultant architecture is generated after finding mapping for bit interleaver. VHDL files are 

generated for memory banks, barrel shifter or crossbar, addressing ROMs (address controller) and 

network ROM (NW controller) for parallel architecture. The resultant area for K = 300 and B = 3 with 

barrel shifter and cross bar network using targeted technology is shown in Table 5. 2   
  

Table 5. 2. Resultant area of different components for parallel implementation of bit interleaver 

K = 300 NW Cost
NW (BS)

Controller

Extrinsic 
Memory

Address

Controller

Total

Area

Barrel Shifter 256 14350 172200 150675 337481

Crossbar 384 43050 172200 150675 366309
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From this table, it is clear that total area of the generated architecture using a crossbar network 

is greater than barrel shifter based architecture. This mainly comes from the interconnection network 

and its associated controller. This shows the interest of the approach that finds a conflict free memory 

mapping that respects a targeted interconnection network.  
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a. Single barrel shifter based architecture b. Double barrel shifter based architecture 

Figure 5. 6. Comparison of two different architectures 

 

Moreover, the “transportation algorithm”, i.e. our proposed method inspired from the 

transportation problem domain, only supports single barrel shifter based memory mapping. This is due 

to its internal representation which formalizes both natural and interleaved access orders in a single 

matrix (see Figure 5.6.a). However, [CHA10a] has been supported memory mapping for double barrel 

shifter architecture (natural and interleaved access, see Figure 5.6.b) because it is based on a double 

matrices internal model. In the future, additional constraints and improvements could be added in the 

current “transportation algorithm” to support such architecture model.  
 

4. Designing Parallel Interleaver Architecture for Turbo Decoder 
 

Currently turbo codes are used in different standards. However, all of these interleavers are not 

conflict free for every type of parallelism used in turbo decoding. The proposed approach can be able 

to find conflict free memory mapping for any type of interleaver and for any type of parallelism. 

However, for experimental purpose, we implemented interleavers used in two of the most widely used 

standards: HSPA Evolution [HSP08] and UMTS LTE [LTE08]. Both of these standards are used in 

wireless communication for handheld devices. In this section, parallel implementation of interleaver 

used in HSPA Evolution is discussed  
 

4.1. Interleaver used in HSPA Evolution 

 

After the release of initial draft by 3GPP-WCDMA, series of specification have been released 

from time to time for high speed packet access (HSPA). With the use of more channels and addition of 

modulation scheme, Release 5 [HSP04] has upgraded the HSPA to high speed downlink packet access 

(HSDPA) to support high data rate applications. It increased the data throughput up to 14Mbps. With 
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the addition of MIMO and 64 QAM, HSPA is evolved into HSPA+ in Release 8 [HSP08] with the 

throughput requirement of up to 43.2Mbps. To obtain high throughput, it is necessary to perform turbo 

decoding on parallel architecture. However, the interleaver used in HSPA+ is not conflict free to 

support parallel implementation of turbo decoder. Also it is necessary to design interleaver 

architecture that support wide range of block sizes used in HSPA+ i.e. from 40 to 5114.  
 

4.1.1. Algorithm for HSPA Interleaver 

 

The interleaving algorithm for HSPA+ defined in [HSP04] is mentioned below: 

K Number of bits input to Turbo code internal interleaver 

R Number of rows of rectangular matrix described in standard 

C Number of columns of rectangular matrix described in standard 

p Prime number described in standard 

v Primitive root describe in standard 

• Determine R of the rectangular matrix, such that 

5, (40 159)

10, ((160 200) (481 530))

20, ( any other value)

if K

R if K or K

if K

≤ ≤� �
B B

= ≤ ≤ ≤ ≤� �
B B

=	 A

 

 

• Determine value of p and C, such that 

if (481 ≤ K ≤ 530 ) then 

 p = 53 and C = p  

else 

 Find p from Table 5. 3 such that 

  K ≤ R*(p + 1),  

and determine C of matrix such that, 

C = p – 1;    if ( K ≤ R * (p-1) ) 

C = p;         if ( R*(p-1) < N ≤ R * p) ) 

C = p + 1;  if ( R*p < N ) 

 

Table 5. 3. List of prime number p and associated primitive root v 

p v p v p v p v p v
7 9 47 5 101 2 157 5 223 3

11 2 53 2 103 5 163 2 227 2

13 2 59 2 107 2 167 5 229 6

17 3 61 2 109 6 173 2 233 3

19 2 67 2 113 3 179 2 239 7

23 5 71 7 127 3 181 2 241 7

29 2 73 5 131 2 191 19 251 6

31 3 79 3 137 3 193 5 257 3

37 2 83 2 139 2 197 2

41 6 89 3 149 2 199 3

43 3 97 5 151 6 211 2
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• Write the input bit sequence into the rectangular matrix row by row and if R*C > K, the dummy 

bits are padded to fill the matrix. 

• Construct the base sequence S(j) for intra-row permutation as: 

S(j) = [ v * S(j-1) ] % p;  where  j = 1,2, ……., p-2  

• Determine the least prime integer sequence q(i)  for i = 1, 2, ……., R-1 , by assigning 

q(0) = 1, such that gcd(q(i), p-1) = 1 and q(i) > 6 and q(i) > q(i-1). 

• Permute the sequence q(i) to construct the sequence r(i) such that 

rT(i) = q(i)   where  i = 0, 1, …., R-1 and T(i) is the inter-row permutation defined in the standard. 

• Perform the intra row permutation Ui(j), such that 

for i = 0, 1,….., R-1 and j = 0,1, ……, p-2; 

If ( C = p) then 

    Ui(j) = S[ (j*r(i) ) mod (p-1)] and Ui(p-1) = 0; 

If ( C = p+1) then 

    Ui(j) = S[ (j*r(i) ) mod (p-1)] and Ui(p-1) = 0 and Ui(p) = p 

   and if (K = R*C) then exchange UR-1(p) with UR-1(0) 

if ( C = p-1) then 

   Ui(j) = S[ (j*r(i) ) mod (p-1)] – 1 

• Perform the inter row permutation of the matrix based on the pattern T(i) where T(i) is the 

original row position of the i-th permuted row and defined in the standard. 

• Read the bits column by column from the rectangular matrix by deleting the dummy bits padded 

to the input bits sequence. 

 

The algorithm can be explained best through a small example of K = 44. Different parameters 

obtained from the specifications explained previously are: 

R = 5, C = 10, p = 11, v = 2 

Next step is to put 44 data into matrix of order 5*10 (R*W) starting from row 0. Since there are 

50 cells in the matrix, so the last 6 cells are filled with dummy bits represented by -1 in the last row as 

shown in Figure 5. 7. 
 

� � � � � � � � 	 A

�� �� �� �� �� �� �� �� �	 �A

�� �� �� �� �� �� �� �� �	 �A

�� �� �� �� �� �� �� �� �	 �A

�� �� �� �� B� B� B� B� B� B�  

Figure 5. 7. Arrangement of K = 44 data into 5*10 matrix 
 

Afterward, values for sequences s, q, r, u are calculated based on the rules defined in the standard. 

These values are: 

 S = 1  2  4  8  5  10  9  7  3  6       where number of values in S is (p-1) = 10 

 q =  1  7  11  13  17                      where number of values in q is  R = 5 

r =  17  13  11  7  1                      where number of values in q is  R = 5 

Value of U                                                

  0  6  4  1  2  9  3  5  8  7 

  0  7  8  5  3  9  2  1  4  6 
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  0  1  3  7  4  9  8  6  2  5 

  0  6  4  1  2  9  3  5  8  7 

  0  1  3  7  4  9  8  6  2  5 

where number of values in U is R*C = 5*10 = 50 

The values in U are used to perform intra-row permutation. First row of U values are used to 

permute values in first row of matrix. For the values calculated for this example, first value remain at 

the first place, second value is permuted to sixth value, third value is permuted to forth value and so 

on. The matrix after intra-row permutation is shown in Figure 5. 8.  

 

� � � � � � � A 	 �

�� �� �� �� �	 �� �A �� �� ��

�� �� �	 �� �� �A �� �� �� ��

�� �� �� �� �� �� �� �A �	 ��

�� �� B� �� B� B� B� �� B� B�  

Figure 5. 8. Matrix after Intra-row Permutation 

 

In the last step, inter-row permutation is performed on rectangular matrix using the 

permutation pattern defined in the standard. For this example, inter-row permutation pattern is: 

T = 4, 3, 2, 1, 0       where number of values in T is R = 5 

The matrix after inter-row permutation is shown in Figure 5. 9. 

 

�� �� B� �� B� B� B� �� B� B�

�� �� �� �� �� �� �� �A �	 ��

�� �� �	 �� �� �A �� �� �� ��

�� �� �� �� �	 �� �A �� �� ��

� � � � � � � A 	 �  

Figure 5. 9. Matrix after Inter-row Permutation 

 

Afterwards, the values in the matrix are read out column by column after pruning dummy bits 

to construct interleaved order of data values. An interleaved order for K = 44 is: 

Interleaved order  =  Π  =  40  30  20  10   0  41  33  21  17   3  34  28  16   4  42  36  22  14   6  32  24  

18   2  37  29  13   7  31  27  19   1  43  39  23  11   9  38  26  12   8  35  25  15   5 

 

4.1.2. Experiments and Results 

 

The HSPA interleaving law has been used in this second set of experiments to show the 

performance of bipartite edge coloring algorithm for finding Single Memory Mapping. Table 5. 4. 

shows the CPU time in seconds for proposed approach and the existing approaches [CHA10a] and 

[TAR04] for K = 5120 and P = 4, and for different types of parallelism (see chapter 1) used in turbo 

decoding.  
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Table 5. 4. CPU time (seconds) for various Memory Mapping Approaches 

CDED����FD�DED�
����

��������
�������� � �!���

"��#���$�%&#��� '�((��� �F�� ��F� �F�

$)**��+�,D'�((��� �F�	� ��FA �F�

$)**��+�,DD#�*-D!���.D�D'�((��� �F��� "����� �F�

"��#���$�%&#���D#�*-D!���.D�D'�((��� �F�	� "����� �F�
 

 

The table indicates that the computational time of edge coloring approach is up to 70 times less 

than the existing approaches. Also, as the length of the frame size increases, the time to calculate a 

memory mapping using edge coloring approach remains nearly constant compared to [CHA10a] and 

[TAR04]. Moreover, heuristic presented in [CHA10a] fails to find memory mapping for Butterfly with 

Radix 4 and Forward backward with Radix 4 parallelisms. These experiments clearly indicate a great 

advantage of polynomial time algorithm (designed for every type of parallelism) in terms of 

computational time compared to [CHA10a] and [TAR04]. The comparison is depicted graphically in 

Figure 5. 10.     
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Figure 5. 10. Comparison of CPU time for various Mapping Approaches 

 

Targeted architecture (see Figure 5. 2) is generated after finding the conflict free memory 

mapping. It contains 4 memory banks for forward backward parallelism, 8 memory banks for Butterfly 

and Forward Backward with Radix 4 parallelism and 16 memory banks for Butterfly with Radix 4 

parallelism. VHDL files have been generated for memory banks, crossbar network, addressing ROMs 

(address controllers) and network ROM (NW controller) for each type of parallelism. The resultant 

area using targeted technology is shown in Table 5. 5.    
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Table 5. 5. Resultant area (in number of NAND-gates) of different components for different types  

of Turbo decoder parallelism 

CDED����FD�DED�
NW

Cost

NW 

Controller

Extrinsic 
Memory

Address

Controller

Total

Area

"��#��� $�%&#��� ���������02 96 10240 40960 56320 107616

$)**��+�,D���������02 448 15360 40960 51200 107968

"��#��� $�%&#���D#�*-D!���.D�D

���������02
448 15360 40960 51200 107968

$)**��+�,DD#�*-D!���.D�D���������02 1920 20480 40960 46080 109440

 

 

 From this table, it is clear that NW controller and Address Controller are the two components 

that occupy the most area in designing resultant architecture for Turbo decoder. To reduce total area of 

the architecture, optimization is required to reduce the size of the ROMs that store addressing and 

network control information. This could also be interesting in implementing different codewords or 

parallelism on same chip. This point will be developed in the perspectives. 

 

5. Designing Partially Parallel Architecture for LDPC Decoder 

 

Low density parity check Codes (LDPC) has error correction capabilities very close to the 

channel capacity and it has already included in several wireless communication standards to reliably 

transfer data between source and destination. However, for high data rate application, implementation 

of LDPC Decoder on partially parallel architecture suffers from memory conflict problem (explained 

in Chapter 1 section 4.2). In this section, bipartite edge coloring algorithm is applied to solve memory 

mapping problem for structured LDPC codes and non-binary LDPC.  
 

5.1. Partially Parallel Architecture for structured LDPC codes 

 

Structured LDPC codes are part of current telecommunication standards [WIF08] [WIM06] 

for performing forward error correction. To achieve high data rate, these codes are implemented using 

partially parallel architecture. However, partially parallel architecture suffers from memory conflict 

problem as discussed in chapter 1 section 4. To tackle this memory mapping problem, in this thesis, 

we use bipartite edge coloring algorithm to solve this problem using Double Memory Mapping in 

polynomial time.  
 

5.1.1. Description of Partially Parallel Architecture 

 

In partially parallel architecture, there are P processing elements that are equal to the number 

of check nodes (CN) to be processed in parallel. To achieve high memory bandwidth, main memory is 

divided into B number of memory banks. Each P has B number of connections in order to access all 

the memory banks in one cycle. The problem is to allocate each Z matrix in a memory bank in such a 
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manner that there is no conflict in accessing the data concurrently in parallel at each time instance. The 

architecture can be explained best through a small example taking from WiMAX standard. Figure 5. 

11 represents HBase matrix for WiMAX standard with following characteristics: 

W = number of rows = 12, Y= number of columns = 24, dc,max = maximum check node degree = 7  

Z = 32, codeword size = Y *  Z = 768 and code rate = Y - W / Y = ½.  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 -1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1 7 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 27 -1 -1 -1 22 79 9 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

3 -1 -1 -1 24 22 81 -1 33 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

4 61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1

5 -1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

7 -1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1

8 -1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1

9 12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

10 -1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1

11 -1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0

12 43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
 

Figure 5. 11. HBase Matrix for WiMAX Standard of code word size = 576, Z = 24 and r = 1/2 

 For this example, proposed partially parallel architecture is shown in Figure 5. 12. In 

this architecture, B = dc,max = 7, so that at all time instances, we can access all check nodes in one 

cycle. Also for this example, P = Z = 32 so that one Z matrix can be processed in one cycle. However, 

any combination of B and P can be used to find conflict free memory mapping in order to fulfill the 

throughput requirement of targeted application.  

 

Mem0 Mem1 Mem2 Mem3 Mem4 Mem5 Mem6

BS BS BS BS BS BS BS

P P P P P P P

P P P P P P P

a[1:P] b[1:P] c[1:P] d[1:P] e[1:P] f[1:P] g[1:P]

A B C D E F G

A=a[y]
B=b[y]
C=c[y]
D=d[y]
E=e[y]

F= f[y]
G=g[y]

A B C D E F G

PEy
y = 0

A B C D E F G

PEy
y = 1

PEy
y = P  

Figure 5. 12. Partially parallel architecture for ½ Rate  WiMAX standtard  

 

The first step is to prepare data access matrix (explained in chapter 3 section 3.1). This data 

access matrix contains all the Z-matrix that need to be accessed in parallel. Data access matrix for this 

example is shown in Figure 5. 13. From this figure, it is clear that at cycle 1, Z matrices 2, 3, 9, 10, 13, 

14 are needed to be accessed in parallel. It means that these Z matrices should be stored in different 

memory bank in order to access them concurrently in parallel without any conflict.   
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2 2 4 1 3 5 3 2 1 6 3 1

3 6 5 3 7 6 4 3 5 8 4 6

9 7 6 9 10 8 10 7 6 11 9 8

10 8 8 10 11 12 11 10 8 12 10 12

13 12 12 16 17 13 19 20 12 22 23 13

14 14 15 17 18 18 20 21 21 23 24 24
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Figure 5. 13. Data Access Matrix for ½ Rate WiMAX standtard 

 

In order to support Double Memory Mapping, this access matrix is converted into mapping 

matrix (explained in chapter 3 section 3.1) with the addition of two more columns at each time 

instance. First column stores all the banks from where processing elements fetched data for processing 

and the second column stores all the banks from where these processed data need to be written back. 

Afterwards, this mapping matrix is converted into bipartite graph (explained in chapter 4 section 3.2) 

and bipartite edge coloring algorithm is used to find memory mapping. Resultant memory mapping 

along with mapping matrix is shown in Figure 5. 14.  

 

 

R W R W R W R W R W R W R W R W R W R W R W R W

2 b0 b0 2 b0 b0 4 b0 b2 1 b0 b4 3 b0 b0 5 b0 b0 3 b0 b4 2 b0 b0 1 b4 b5 6 b0 b0 3 b4 b1 1 b5 b0

3 b1 b4 6 b1 b4 5 b1 b0 3 b4 b0 7 b1 b1 6 b4 b2 4 b2 b0 3 b4 b4 5 b0 b1 8 b2 b1 4 b0 b0 6 b0 b1

9 b4 b1 7 b2 b1 6 b4 b4 9 b1 b1 10 b2 b4 8 b1 b6 10 b4 b2 7 b1 b2 6 b2 b0 11 b1 b4 9 b1 b4 8 b1 b4

10 b2 b5 8 b4 b2 8 b2 b1 10 b5 b2 11 b4 b5 12 b5 b3 11 b5 b1 10 b2 b5 8 b6 b2 12 b4 b2 10 b5 b2 12 b2 b5

13 b3 b2 12 b5 b6 12 b6 b5 16 b3 b5 17 b3 b2 13 b2 b4 19 b1 b6 20 b3 b3 12 b3 b4 22 b3 b5 23 b3 b5 13 b4 b3

14 b5 b3 14 b3 b5 15 b3 b6 17 b2 b3 18 b5 b3 18 b3 b5 20 b3 b3 21 b6 b1 21 b1 b6 23 b5 b3 24 b2 b3 24 b3 b2

15 b6 b3 16 b5 b3 19 b6 b1 22 b5 b3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Time
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 Figure 5. 14. Resultant Mapping for data access matrix of Figure 5. 13  

 

5.1.2. Experimental Results 

 

In this section, different experiments have been performed to expose the interest of bipartite 

edge coloring in order to find conflict free memory mapping for structured LDPC codes on partially 

parallel architectures. Table 5. 6. shows the CPU time (in seconds) for proposed approach and the 

existing approaches [CHA10] [CHA10a]. Test case: WiMAX ½ using Z = P = 32, B =7 and for 

WiMAX ¾ using Z = P = 32, B =10 for partially parallel architecture of structured LDPC code.  

The table shows that the runtime of the proposed approach and [CHA10] the algorithms are 

almost same. However, this is mainly due to the reason that we are mapping Z matrices, not the data in 
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the standard. Due to limited number of Z matrices in current standards, runtime is almost is the same 

for both the algorithms. As explained in previous experiment, the difference in polynomial time 

algorithm and heuristic becomes clear as the size of data to be mapped increased. The method 

proposed in [CHA10a] does not work in this experiment because it has been designed to find Single 

Memory Mapping. This gives another advantage to our method that works for both Single and Double 

Memory Mapping approaches whereas other works present different heuristics for both mapping 

approaches. The comparison is depicted graphically in Figure 5. 15.     

 

Table 5. 6. CPU time (seconds) for various Memory Mapping Approaches 
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Figure 5. 15. Comparison of CPU time for various Mapping Approaches 

 

Resultant architecture is generated after finding mapping for Z matrices. VHDL files are 

generated for memory banks, crossbar network, addressing ROMs (address controller) and network 

ROM (NW controller) for WiMAX ½ and WiMAX ¾. The resultant area for each component of this 

architecture is shown in Table 5. 7.    

 

Table 5. 7. Resultant area of different components for structured LDPC Decoder Architecture 

 

 NW(BS) 

 Cost 

NW  

Controller 

Extrinsic 

Memory 

Address 

Controller 

Total 

Area 

WiMAX ½  71680 30135 440832 18081 560728 

WiMAX ¾   102400 28700 440832 22960 594892 

 

 

 Once again, NW controller and Address controller occupies most of the area in resultant 

architecture of structured LDPC codes.  To reduce the chip area and also to support implementation of 
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multiple code rates, it is necessary to reduce the size of control and addressing ROM. This needs to 

add some additional constraints in current algorithms to support optimization of addressing and 

network control logic. These optimizations are explored in the PhD thesis of Aroua Briki, under the 

direction of E. Martin. 

5.2. Decoder Architecture for Non-Binary LDPC codes 

 

An extension of binary LDPC codes has been developed to further reduce the gap of 

performance with Shannon limit. This new class of codes is known as non-binary LDPC (NB-LDPC) 

codes [DAV]. These codes improve the performance of binary LDPC codes for small and moderate 

codeword lengths. However, increase in decoder complexity for NB-LDPC motivates to develop 

decoding algorithms that are easily implementable. Also, unlike structured codes, routing of the edges 

of tanner graph is not regular and even implementing NB-LDPC on serial architecture suffers from 

memory conflict problem. In this experiment, conflict free memory mapping for both serial and 

partially parallel architecture is found using Double Memory Mapping in polynomial time 

5.2.1. Decoder Architecture for Non-Binary LDPC codes 

 

The DAVINCI project [DAV], funded by the European Commission under the seventh 

framework (FP7) of collaborative research, designs the novel NB-LDPC codes and related link level 

technologies. The purpose of this project is to construct codes that are suitable for implementation and 

outperform the state of the art techniques to design NB-LDPC codes. 

Typical serial decoder architecture [DAV] for NB-LDPC codes developed in DAVINCI 

project is shown in Figure 5. 16.a. This decoder is used to decode NB-LDPC codes with check node 

degree = dc = 6 and variable node degree = dv = 2. The decoder consists on one CN processor and six 

VN processors. The decoder is designed based on serial implementation to process one check node at 

each cycle. To achieve high memory bandwidth, main memory is divided into dc number of memory 

banks to simultaneously receive dc messages from memory. The interleaver and deinterleaver are 

designed to transfer data between CN processor, VN processors and memory banks.  

For partially parallel architecture, two check nodes are processed in parallel at the same time 

as shown in Figure 5. 16.b. The main memory is divided into 2*dc number of memory banks to 

concurrently fetch 2*dc messages from memory.  
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                (a) Serial Architecture                                   (b) Partially Parallel Architecture 

Figure 5. 16. Architecture for NB-LDPC 

 

The problem is to allocate messages into memory banks in such a manner that at each cycle 

CN processor can fetch dc number of messages from dc number of memory banks concurrently without 

any conflict. 

The first step is to prepare data access matrix (explained in chapter 3 section 3.1) for both the 

architectures. Data access Matrices for serial architecture and partially parallel architecture is shown in 

Figure 5. 17 and Figure 5. 18. For serial architecture, at each cycle, six data elements are needed to be 

accessed in parallel whereas for partially parallel architecture 12 data elements are needed to be 

accessed in parallel. To find conflict free memory mapping, all data should be stored in each memory 

bank in such a manner that there is no conflict in accessing them in each cycle.  

 
 

2 48 10 19 62 53 23 42 59 51 29 47 33 46 26 7 25 58 16 28 17 5 63 6 36 1 21 50 15 44 11 35

3 49 11 20 63 54 24 43 60 52 30 48 34 47 27 8 26 59 17 29 18 6 64 7 37 2 22 51 16 45 12 36

149 146 139 104 159 112 67 79 156 113 97 85 142 81 130 84 115 184 83 70 155 167 65 101 78 136 132 108 181 87 116 102

122 100 123 94 84 90 114 154 133 183 110 72 70 164 119 146 181 142 127 159 109 130 106 155 184 139 98 71 68 112 96 174

90 88 86 160 126 137 178 129 73 148 191 177 172 166 80 103 153 89 128 111 152 118 176 93 157 92 171 141 107 131 140 77

157 153 179 177 182 172 158 151 124 89 141 147 88 107 148 168 66 95 143 170 75 86 131 173 103 111 126 175 144 186 178 150

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32  
 

18 61 9 20 38 56 34 37 40 54 31 14 3 45 12 55 41 8 32 57 39 27 13 49 30 52 22 64 43 4 60 24

19 62 10 21 39 57 35 38 41 55 32 15 4 46 13 56 42 9 33 58 40 28 14 50 31 53 23 1 44 5 61 25

96 119 174 68 109 164 98 154 106 121 125 133 183 71 91 100 117 114 169 120 123 127 74 122 190 72 189 135 162 185 110 94

156 149 83 97 85 116 190 121 169 132 78 102 91 101 115 162 81 74 67 171 134 87 108 79 117 125 136 104 167 65 189 185

175 180 99 134 170 69 82 165 161 179 188 186 138 192 173 143 168 187 144 151 95 163 145 158 66 182 75 76 105 124 147 150

105 69 129 187 145 191 138 80 77 73 135 92 128 165 161 76 163 137 118 93 180 160 188 176 152 140 113 192 82 166 99 120

t33 t34 t35 t36 t37 t38 t39 t40 t41 t42 t43 t44 t45 t46 t47 t48 t49 t50 t51 t52 t53 t54 t55 t56 t57 t58 t59 t60 t61 t62 t63 t64  

Figure 5. 17. Data Access Matrix for D = 192 and dc = 6 using Serial Architecture 
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2 10 62 23 59 29 33 26 25 16 17 63 36 21 15 11 18 9 38 34 40 31 3 12 41 32 39 13 30 22 43 60

3 11 63 24 60 30 34 27 26 17 18 64 37 22 16 12 19 10 39 35 41 32 4 13 42 33 40 14 31 23 44 61

149 139 159 67 156 97 142 130 115 83 155 65 78 132 181 116 96 174 109 98 106 125 183 91 117 169 123 74 190 189 162 110

122 123 84 114 133 110 70 119 181 127 109  10 6 184 98 68 96 156 83 85 190 169 78 91 115 81 67 134 108 117 136 167 189

90 86 126 178 73 191 172 80 153 128 152 176 157 171 107 140 175 99 170 82 161 188 138 173 168 144 95 145 66 75 105 147

157 179 182 158 124 141 88 148 66 143 75 131 103 126 144 178 105 129 145 138 77 135 128 161 163 118 180 188 152 113 82 99

48 19 53 42 51 47 46 7 58 28 5 6 1 50 44 35 61 20 56 37 54 14 45 55 8 57 27 49 52 64 4 24

49 20 54 43 52 48 47 8 59 29 6 7 2 51 45 36 62 21 57 38 55 15 46 56 9 58 28 50 53 1 5 25

146 104 112 79 113 85 81 84 184 70 167 101 136 108 87 102 119 68 164 154 121 133 71 100 114 120 127 122 72 135 185 94

100 94 90 154 183 72 164 146 142 159 130 155 139 71 112 174 149 97 116 121 132 102 101 162 74 171 87 79 125 104 65 185

88 160 137 129 148 177 166 103 89 111 118 93 92 141 131 77 180 134 69 165 179 186 192 143 187 151 163 158 182 76 124 150

153 177 172 151 89 147 107 168 95 170 86 173 111 175 186 15 69 187 191 80 73 92 165 76 137 93 160 176 140 192 166 120

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32  

 Figure 5. 18.Data Access Matrix for D = 192 and dc = 6 using Partially Parallel Architecture 

 
 

To find memory mapping using Double Memory Mapping approach, data access matrix is 

converted to mapping matrix (explained in chapter 3 section 3.1) to store read and write accessed to 

the data at each time instance. Afterwards, this mapping matrix is converted into bipartite graph 

(explained in chapter 4 section 3.2) and bipartite edge coloring algorithm is used to find memory 

mapping. Resultant memory mapping along with mapping matrix explained in Annexure. 
 

 

 

 

5.2.2. Experimental Results 

 

Some experiments have been performed with NB-LDPC codes on serial and partially parallel 

architecture.  Since [CHA10a] is not able to deal with Double Memory Mapping, as shown in 

previous experiment, we do not use this approach for the current experience. Table 5. 8 shows the 

CPU time (in seconds) for proposed approach and the existed approaches [CHA10] for NB-LDPC 

using P = 6, B = 6, K = 192 and using P = 12, B = 12, K = 192 

 

Table 5. 8. CPU time for various Memory Mapping Approaches 

����

��������
�������� �������

6$B9:�� ;(���� ED�< �F��� 6�*D#��&�� �F����

6$B9:�� ;(���� ED��< �F��� 6�*D#��&�� "�����
 

The table shows the runtime of both the algorithms are almost the same in serial architecture.  

However, this is mainly due to the small size of codeword in the standard. Also for partially parallel 

architecture, heuristic fails to find memory mapping. The comparison is depicted graphically in Figure 

5. 19.   
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Figure 5. 19. Comparison of CPU time for various Mapping Approaches 

 

The VHDL architecture has been generated after finding mapping for NB-LDPC. The 

resultant area for each component of this architecture is shown in Table 5. 9 

 

Table 5. 9. Resultant area of different components for NB-LDPC Decoder Architecture 

 

 NW 

 Cost 

NW  

Controller 

Extrinsic 

Memory 

Address 

Controller 

Total 

Area 

Serial Architecture 1920 144 110208 137760 250032 

Partially Parallel 

Architecture 
8448 384 110208 110208 229248 

 

 

NW controller and Address controller still take most of the area in the resultant architecture of          

NB-LDPC codes, about 50%, as depicted in Table 5. 9. As it has been previously shown, the 

optimization of these parts of the design requires to improve our current approach by adding some 

additional constraints in our models. 

 

6. Case Study: Designing Parallel architecture for Quadratic 

Permutation Polynomial Interleaver 

 

Quadratic Permutation Polynomial (QPP) interleaver used in LTE [LTE08] (discussed in 

chapter 2, section 2.1.1) is maximum contention-free i.e., for every window size W which is a factor of 

the interleaver length N, the interleaver is contention free. This means that for SISO decoder level, this 

interleaver is mostly conflict free. However, for higher data rate applications when trellis and recursive 

units parallelism are also  included in each SISO, QPP interleaver is not contention-free and requires a 

router and buffer mechanism to solve memory conflicts. For block size N, QPP interleaver is 

represented by following equation. 

�(x) = (f1x
2
 + f2x) mod N 
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where x and �(x) represents the original and interleaved address respectively and integers f1, f2 are 

different for different block lengths and can be found in the standard. 

 

6.1. Configurations used in this study 

 

In this section, a study has been presented for implementing turbo decoder for different types 

of parallelism for QPP interleaver used in LTE. This study is performed in collaboration with ENST 

Bretagne for developing high speed turbo decoder. This work has been done in collaboration with O. 

Sanchez-Gonzalez, who is a PhD student under the direction of M. Jezequel. In this study, conflict free 

memory mapping has not only been found for the parallelisms that we discussed in chapter 1 but also 

for a scheduling called Replica shuffled decoding. In shuffled decoding, both natural and interleaved 

orders are decoded at the same time. However, in non-shuffled decoding (as discussed in Chapter 1 

section 2.4.4) first natural order and then interleaved order are processed to decode the codeword. The 

implementation of non-shuffled and shuffled decoding architectures is shown in Figure 5. 20.a & b 

respectively. In shuffled decoding two sets of processing elements and interconnection networks are 

used whereas in non-shuffled decoding only one set of processing elements and interconnection 

network is used to decode the codeword.  
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     (a) non-shuffled decoding Architecture                   (b) shuffled decoding Architecture 

Figure 5. 20. Decoding Architecture for Turbo Decoders 

From this diagram, it is clear that decoding time is reduced to half for shuffled decoding at the 

cost of doubling the interconnection network and processing elements.  However, QPP interleaver is 

no more conflict free for shuffled decoding and bipartite edge coloring algorithm is used to map the 

data in different memory banks in order to reduce the cost of interconnection network and increase the 

throughput of the system.  Scheduling of K = 40, P = 4 for non-shuffled decoding using butterfly 

scheme and shuffled decoding using replica scheme is shown in Figure 5. 21.a & b respectively.   

For non-shuffled decoding, Single memory mapping approach is used whereas for shuffled decoding, 

Double memory Mapping approach is used to map the data and design interconnection network. 
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             (a) Scheduling for non-shuffled decoding         (b) Scheduling for shuffled decoding 

Figure 5. 21. Scheduling for Turbo Decoding 
 

In this study, nine different configurations are studied to explore the design space for turbo 

decoding for both non-shuffled and shuffled decoding using QPP interleaver. All these configurations 

are shown in Table 5. 10. In this table, second column shows whether decoding is non-shuffled or 

shuffled whereas the third column contains the scheme that is used in this configuration. Two addition 

constraints are added in this study to widen the design space exploration for designing turbo decoders. 

First constraint is the radix and the second is whether we use internal memory in the decoder or not.  

or non-shuffled mode, design is explored for radix-2 to radix-16 whereas for shuffled mode only 

radix-2 and radix-4 is used to design decoder. Use of internal memory reduces the number of accesses 

to the memory and hence increases the throughput of the system at the cost of increased hardware cost. 

Number of accessed to the memory is also studied to determine the latency of the system.  
    

Table 5. 10. Different configuration to explore the design space for turbo decoding 

Mode Scheduling Radix
Internal 

Memory

Config. 1 Non-Shuffled Butterfly 2 YES

Config. 2 Non-Shuffled Butterfly 4 YES

Config. 3 Non-Shuffled Butterfly 16 YES

Config. 4 Non-Shuffled Butterfly 2 No

Config. 5 Non-Shuffled Butterfly 4 No

Config. 6 Shuffled Replica 2 No

Config. 7 Shuffled Replica 2 YES

Config. 8 Shuffled Replica 4 No

Config. 9 Shuffled Replica 4 YES

 

6.2. Experiments and Results 

 

This study is performed using K = 2048 (with size of each data is 10 bits) for QPP interleaver 

used in LTE. However, for non-shuffled mode P = 32 and for shuffled mode P=64. We suppose that 

the latency of processing element and network is one cycle in all these configurations. Number of 

banks in each configuration can be found using the below formula:  

                                              B = P * 2 * log2(R)                   where R = radix used in decoding 
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 To show the impact of internal memory, a comparison between configuration 1 and 4 is 

presented in Table 5. 11.  Configuration 1 uses internal memory whereas configuration 4 works 

without internal memory. Hence, configuration 4 needs P = 32 more memory accesses to decode the 

codeword.  

Table 5. 11. Comparison of Configuration 1 and 4 for latency 

Configuration

Memory Accesses for 

Natural order

Memory Accesses for 

Interleaved order Total Memory 

Accesses 
Read             Write Read             Write

1 32 32 32 32 128

4 64 32 64 32 192

 

  

The complete comparison for hardware cost and latency for all the configurations is given in 

Table 5. 12. In this table, NS stands for non-shuffled and S for shuffled, Rs means radix-s decoding is 

performed in this configuration, mem means decoder has internal memory and No.mem represents that 

decoder functions without internal memory. Values in NW column stands for input x output Benes 

network and NW cost represents number of MUX for 10 bit data used in this network. Values in NW 

controller and Memory controller represents number of control bits required to control network and 

generating addresses for memory for decoding codeword in one complete iteration.  

 

  Table 5. 12. Comparison of all the configurations for hardware cost and latency 

Total 

Memory 
Accesses

NW
NW 

Latency
NW Cost

NW 

Controller

Memory 

Controller

Extrinsic 

Memory

Config. 1

NS_R2_mem
128 64x64 11 704 45056 40960 20480

Config. 2

NS_R4_mem
64 128x128 13 1664 53248 32768 20480

Config. 3

NS_R16_mem
32 256x256 15 3840 61440 24576 20480

Config. 4

NS_R2_No.mem
192 64x64 11 704 67584 61440 20480

Config. 5

NS_R4_No.mem
96 128x128 13 1664 79872 49152 20480

Config. 6

S_R2_No.mem
128 128x128 13 1664 106496 114688 33280

Config. 7

S_R2_mem
128 128x128 13 1664 106496 114688 33280

Config. 8

S_R4_No.mem
64 256x256 15 3840 122880 98304 35840

Config. 9

S_R4_mem
64 256x256 15 3840 122880 98304 35840

 

VHDL files are generated for memory banks, crossbar network, addressing ROMs (address 

controller) and network ROM (NW controller) for each configuration. The resultant area for each 

component of this architecture using targeted technology for each configuration is shown in         

Table 5. 13.   

 

 

 

 

 

 

NW 
Stages 



Experiments 

 - 123 - 

Table 5. 13. Resultant area for different configurations used in case study 

Total 

Memory  

Accesses

NW
NW 

Latency
NW Cost NW Control

Memory  

Controller

Extrinsic 

Memory
Total

Config. 1

NS_R2_mem
128 64x64 11 61,248 3232,768 2938,880 1469,440 7702,336

Config. 2

NS_R4_mem
64 128x128 13 144,768 3820,544 2351,104 1469,440 7785,856

Config. 3

NS_R16_mem
32 256x256 15 334,080 4408,320 1763,328 1469,440 7975,168

Config. 4

NS_R2_No.mem
192 64x64 11 61,248 4849,152 4408,320 1469,440 10788,160

Config. 5

NS_R4_No.mem
96 128x128 13 144,768 5730,816 3526,656 1469,440 1087,1680

Config. 6

S_R2_No.mem
128 128x128 13 144,768 7641,088 8228,864 2387,840 18402,560

Config. 7

S_R2_mem
128 128x128 13 144,768 7641,088 8228,864 2387,840 18402,560

Config. 8

S_R4_No.mem
64 256x256 15 334,080 8816,640 7053,312 2571,520 18775,552

Config. 9

S_R4_mem
64 256x256 15 334,080 8816,640 7053,312 2571,520 18775,552

 

 

 In order to ease the analysis, information about latency and architectural cost for all the 

configurations is shown graphically in Figure 5. 22. From this comparison, it appears that 

configuration 3, 2, 1 are pareto optimal (i.e. lowest architectural cost, and lower latency, which means 

higher throughput).  

 

 

Figure 5. 22. Latency and cost Analysis for all configurations 

 

 

NW 
Stages 
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7. Conclusion 

 

The experiments performed in this chapter can be divided into three categories based on the 

type of memory mapping approach applied. First two experiments have been used single memory 

mapping approach, next two experiments have been used double memory mapping approach and 

the last experiment has been used both single and double memory mapping approaches to find the 

conflict free memory mapping.  

First experiment has been found memory mapping using targeted interconnection network. 

The generated architecture based on barrel shifter has been occupied less area than the architecture 

which has been generated using memory mapping without considering targeted interconnection 

network. This experiment shows the interest of the approach that finds architecture oriented 

mapping. Second experiment finds memory mapping for every type of turbo decoder parallelism in 

lesser time than existing approaches. Actually, the gain is up to 70 time faster for longer codewords 

used in turbo decoding. Moreover, heuristics based approaches fails to find mapping for some 

parallelism types whereas our algorithm is always able to find one.   

Third experiment has successfully able to map Z matrices for structured LDPC codes. Due to 

small number of Z matrices, gain in computation time from the existing approaches in not very 

much. However, as the size of data increased, gain in computation time also increases. The 

advantage of polynomial time algorithm has clearly depicted in forth experiment. Polynomial time 

algorithm is always able to find mapping for every type of parallelism whereas heuristic fails to 

find mapping for certain parallelism degree.  

Last experiment uses the same algorithm to find single and double memory mapping to design 

high speed turbo decoding. This experiment compares different configurations to generate cost 

effective high speed turbo decoder.   
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CONCLUSION AND FUTURE 

PERSPECTIVES 
 

 

 

Turbo and LDPC due to their excellent error correction capabilities are part of current 

telecommunication standards. However, implementation of these codes introduces new challenges 

mainly due to support the high data rate applications. For high data rate applications, more than one 

processing elements are used to decode the received data. However, single memory proves to be the 

bottleneck in accessing multiple data concurrently. For achieving high memory bandwidth, the main 

memory is partitioned into smaller memory banks and multiple data values are accessed in parallel 

through memory to acquire required throughput. However, implementation issues never ends with this 

technique since scrambling of data caused by interleaving law results in Memory Conflict Problem. 

The conflict management mechanism used to tackle this problem increases latency of memory 

accesses and decreases system throughput and is not a desirable solution for high data rate 

applications.    

Different approaches have been proposed in literature to tackle this problem. These 

approaches can be divided into three broad categories. In first category of approaches, different 

algorithms have been proposed that designed interleaving law taking into account memory conflict 

problem. The interleaving law has been designed in such a manner that conflict problem never occurs 

for parallel implementation of decoder. Other purpose of designing interleaving law is to simplify 

interconnection and addressing logic of the system. However, these interleaving laws have never 

always been able to construct codes with good error correction capabilities. In second category of 

approaches, different flexible interconnections networks with sufficient path diversity and additional 

storing elements have been proposed to handle memory conflict problem. These networks have been 

designed to handle any interleaving law. However, these networks have been suffered from large 

silicon area and latency which make them inefficient for high data rate applications.  Third approach 

has dealt with the idea to allocate data in memory banks in such a manner to avoid memory conflict 

problem either using particular network or the network that supports all the permutations at the cost of 

some preprocessing. However, till now no algorithm has been existed that can solve memory mapping 

problem for both turbo and LDPC codes in polynomial time. 

In this thesis, different methods have been proposed to allocate data in different memory banks 

so that different processing elements can access them concurrently without any conflict. All these 

methods are based on graph theory and can be divided into two parts. In the first part, mapping 

problem is modeled as bipartite or tripartite graph based on the access order of data. In the second part, 

different algorithms are proposed to color the edges of these graphs and to map the data into different 

memory banks. In this thesis, we present complete path that we followed before it becomes possible to 

solve mapping problem in polynomial time. In this regard, first two approaches model mapping 

problem as bipartite graph and then in order to facilitate the coloring of the edges each graph is 

divided into different sub-graphs. First approach tackle memory conflict problem for turbo codes and 

uses transportation problem algorithms to partition and color the edges of bipartite graph. The 
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approach can also be able to find memory mapping that supports particular interconnection network if 

interleaving law of the application allows it. Second approach solves memory mapping problem for 

LDPC codes using two different complex algorithms based on path traversal. First algorithm partitions 

the graph into different sub-graphs using some constrains where as second algorithm color the edges 

of each sub-graph. In the third approach, bipartite graph modeled in first approach is converted into 

tripartite graph by dividing each time instance and edge into two. Using an algorithm based on divide 

and conquer strategy, each tripartite graph is partitioned into different sub-graphs by using a complex 

algorithm. Afterwards, each sub-graph is colored individually by using simple algorithm to find 

conflict free memory mapping for both turbo and LDPC codes. In the last approach, further 

optimization in modeling is performed by converting tripartite graph into bipartite graph on which 

coloring algorithm based on Euler partition principle is applied to find memory mapping in 

polynomial time.  

To show the interest of the proposed mapping methods, several experiments have been 

performed using interleaving laws coming from different communication standards. All the 

experiments have been done by using a software tool we developed. This tool first finds conflict free 

memory mapping and then generates VHDL files that can be synthesized to design complete 

architecture i.e. network, memory banks and associated controllers. First experiment has been used to 

design parallel architecture for bit interleaver used in different standards to tackle burst errors. In this 

experiment parallel architecture for bit interleaver used in UWB communications system is designed. 

Algorithm used in this experiment has also been able to find memory mapping that supports targeted 

interconnection network. In second experiment, turbo interleavers used in different telecommunication 

standards for enhancing forward error correction capabilities of turbo codes are tackled. Different 

experiments have been performed to design parallel interleaver architectures used in HSPA Evolution. 

This interleaver is not conflict free for every type of turbo decoder parallelism. Conflict free memory 

mapping is found and hardware architecture is proposed for different decoder parallelisms in this 

experiment. Single memory mapping approach has been used to find conflict free memory mapping in 

these experiments and both runtime of the algorithm and area of the resultant architecture are 

compared with the state of the art approaches. In third experiment, partially parallel architecture is 

designed for structured LDPC codes. Structured LDPC codes are increasingly used in different 

telecommunication standards. In this experiment, double memory mapping approach is used to solve 

memory conflict problem and different experiments have been performed to design parallel interleaver 

architecture for different parallelism and block sizes. In forth experiment, parallel interleaver 

architecture is designed for non-binary LDPC (NB-LDPC). NB-LDPC is developed to enhance the 

performance of binary LDPC. However, interleaving law used in NB-LDPC is not conflict free even 

for serial implementation of NB-LDPC decoder. In this experiment, parallel interleaver architecture is 

designed for both serial and partially parallel implementation of NB-LDPC decoder. In both of these 

experiments, double memory mapping approach is used to find conflict free memory mapping. Both 

runtime and resultant architecture are compared with state of the art solutions. In final experiment, 

both single and double memory mapping approach is used to design parallel architecture for QPP 

interleaver used in LTE. The goal of the experiment is to compare different configurations to design 

high speed LTE decoder. These configurations differ in their modes (shuffled or non-shuffled), 

schemes (butterfly or replica), radices and whether internal memory inside SISO decoder is used or 
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not. Hardware cost and latency are calculated for each of these configurations and results are detailed 

to shown the tradeoff between area and throughput to design LTE decoder in this experiment. 

 

Perspectives 

 

In all resultant architectures we generate, ROM is used to control interconnection network and 

to generate addresses for different memory banks. This approach may be sufficient to design parallel 

architecture that supports single codeword or applications. However, to design optimized hardware 

architecture that supports complete standard or different applications, several enhancements are 

required.  

First, ROM based approach results in important hardware cost and area. To reduce hardware 

cost, optimizations are required to use as less ROMs as possible to support different applications. This 

problem is explored in the PhD thesis of Aroua Briki under the direction of E. Martin. In this work, the 

goal is to find a conflict free memory mapping which both memory addressing and network control 

sequences are as constant/regular as possible.  

Second, in order to reduce the cost of the network, additional constraints can be added in 

current algorithms. This will allow the designer to define the network he wants to target. Algorithm 

could also be modified in order to generate an optimized interconnection network, i.e. composed of 

several basic components such as barrel-shifters, butterflies... 

Finally, in order to support several codewords or applications, the current approach requires 

the architecture to include several ROMs i.e. one set of ROMs per codeword. Further information on 

that topic cannot currently be disclosed because key concepts are patent pending. 
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ANNEXURE 

 

1.  Pedagogical Example to solve Transportation Problem 

 

We present a simple example in this section to solve transportation problem. Consider a 

matrix model of transportation problem with 3 sources and 3 destinations with the cost to transport a 

unit item from source to destination is placed in the corresponding cell as shown in Figure A. 1.a. 

 

Objective Function 

MIN ( 90x11 + 100x12 + 150x13 + 120x21 + 140x22 + 100x23 + 120x31 + 80x32 + 80x33 ) 

 

Constraints 

                                   x11 + x12  + x13  � 20            Supply of Producer I1 

                                   x21 + x22  + x23  � 15            Supply of Producer I2 

                                                       x31 + x32  + x33  � 10            Supply of Producer I3 

                                                       x11 + x21  + x31  � 5              Demand of Consumer J1 

                                                       x12 + x22  + x23  � 20            Demand of Consumer J2 

                                                       x13 + x23  + x33  � 20            Demand of Consumer J3 

 

 Two more constraints are needed to be fulfilled in order to solve the transportation problem: 

First constraint: Total Supply must be greater than equal to total Demand i.e., 

a1 + a2 + a3 � z1 + z2 + z3 

For our example,    20 + 15 + 10 =  5+ 20 + 20 = 45 

 

Second Constrain:   

 

Number of constraints must be equal to the number of rows +  number of columns 

For our example:   3 (rows) + 3 (columns) = 6 (number of constraints) 

To solve the transportation problem, first we find initial basic feasible solution using simple 

methods and then check using duality to determine whether the basic solution is optimal or not. If the 

solution is not optimal then further iterations are performed to find the optimal solution.  

To find basic feasible solution (i.e., non optimal solution), there are number of methods but in 

our example we use northwest corner method that is easy to use and requires simple calculation to get 

results. The method starts by making an allocation to the northwest corner or upper left cell of the 

matrix i.e., M11. The allocated items are either all the supply for the row or all the demand for the 

column, connected with that cell, whichever is smaller. From an example, it is clear that demand of J1 

is smaller than supply of I1, so the method allocated 5 to M11. This completes the demand of J1 and 

eliminates the column JI from further consideration in this method as shown in Figure A. 1.b.  
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Consumer 
Producer            J1 J2 J3 Supply

I1
90 100 150

20

I2
120 140 100

15

I3
120 80 80

10

Demand 5 20 20 45
            

Consumer 
Producer            J1 J2 J3 Supply

I1
90

5

100 150

20

I2
120 140 100

15

I3
120 80 80

10

Demand 5 20 20 45
 

             (a) Transportation Problem Matrix                         (b) Items Allocation 

Figure A. 1. Northwest Corner Method to solve Transportation Problem 

The next step is to move horizontally since, vertically demand of J1 is completed. Since the remaining 

supply of I1 (15) is less than demand of J2 (20), so algorithm assigns 15 to M12 using criteria explained 

previously. This completes the supply of I1 as shown in Figure A. 2.a. The method continues until 

supply of all the producers and demand of all the consumers are fulfilled. The complete allocation of 

items is shown in Figure A. 2.b. Initial basic feasible solution for this problem is: 

90(5) + 100(15) + 140(5) + 100(10) + 80(10) = 4450. 

 

Consumer 
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I3
120 80 80

10 10

Demand 5 20 20 45
 

                            (a) Items Allocation                                         (b)  Complete Allocation 

Figure A. 2. Northwest Corner Method to solve Transportation Problem 

 

The next step is to apply optimally test to determine whether the basic solution is optimal or not. To 

perform test, duality theory is used and two variables ui and vj are introduced where   

 ui = dual variable corresponding to row i                                                                                                  

vj = dual variable corresponding to row j                                                                                            

From duality theory: 

oij = ui + vj                                 (1) 

Values of ui and vj can be calculated from initial matrix using equation 1 as follows: 

 

o11 = u1 + v1 = 90 

o12 = u1 + v2 = 100 

o22 = u2 + v2 = 140 

o23 = u2 + v3 = 100 

o33 = u3 + v3 = 80 
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Since there are (U + V) unknowns for (U + V – 1) equations, where U and V are number of 

dual variable for row and columns respectively, arbitrary value can be assigned to one of the unknown. 

A common approach is to choose the row with largest number of allocations. I1 and I2 both have two 

allocations each so we arbitrary choose row 1 and assign u1 = 0. Now other values can be calculate 

during substitution as follows:   

 

o11 = u1 + v1 = 90               0 + v1 = 90                  v1 = 90 

o12 = u1 + v2 = 100             0 + v2 = 100                v2 = 100 

o22 = u2 + v2 = 140             u2 + 100 = 140            u2 = 40 

o23 = u2 + v3 = 100             40 + v3 = 100              v3 = 60 

o33 = u3 + v3 = 80               u3 + 60 = 80                u3 = 20 

 

Two columns corresponding to ui and vj are added in the allocated matrix to facilitate the future 

calculations as shown in Figure A. 3.a. 

The cells which have allocations in the matrix are called basic cells otherwise they are called nonbasic 

cells. To recognize whether the solution is optimal or not, the equation 2 must be fulfilled for all the 

nonbasic cells. 

oij - ui - vj  � 0                                (2) 

If the equation is false for any of the nonbasic cell then the solution is not optimal. 

 

For cell M13:   130 - 0 - 60 � 0 is true 

For cell M21:   100 - 40 - 90 � 0 is false 

For cell M31:   100 - 20 - 90 � 0 is false 

For cell M32:   80 - 20 - 100 � 0 is false 

 

Since equation 2 is not fulfilled so the initial solution is not optimal. The cells with false condition or 

where the resultant value is negative are the locations where we need to assign values in order to 

reduce our shipping costs. These negative values are put in the matrix as shown in Figure A. 3.b.. 

For further iterations, we prepare closed loop path in which certain cells exchange their status. A 

current basic cell becomes nonbasic and empty nonbasic cell turns into basic. The new basic or 

nonempty cell is called entering cell and cell with which it exchanges is called the exiting cell. To 

construct closed loop path, some rules need to be followed: 

First rule is there cannot be more than one increasing or decreasing cell in any row or column. 

Second rule is except for the entering cell all changes occur in basic cells. 
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                               (a) duality                                                       (b) items Allocation 

Figure A. 3. Procedure to check the optimal solution for Transportation Problem 



Annexure 

 - 138 - 

For minimization problem, the method chooses the cell with largest negative number as the 

entering cell to construct closed loop. In our example, M32 has the largest negative value so the method 

selects this cell as entering cell and place “+” in this cell to indicate that the method want to increase 

the value in this cell as much as possible. Since all the other cells in the loop should be basic so the 

method selects M22 as the next cell to be included in the loop and place “-“ in this cell to keep 

everything in equilibrium and indicate that the method reduces the assigned value from this cell. 

Complete closed loop is shown in Figure A. 4.a. 

Few things need to be considered while constructing a loop. First of all, the procedure must 

start and end at the new entering cell in order to construct a complete circuit. A junction is made at 

each cell where “+” or “-“ is entered to indicate that at these cells we can either move from vertical to 

horizontal or from horizontal to vertical. Sometime this results in stepping over basic or nonbasic cells 

to construct closed loop. Secondly, If the procedure reaches at a cell from where it cannot turn 

(because all other cells in its column or row are nonbasic) then the procedure must backtrack to the 

last junction cell to find a basic cell. 

After the construction of closed loop, the next step is the shifting of values in the junction 

cells. The smallest quantity in the losing (-) cell is the amount that is shifted in the current loop. In our 

example the smallest quantity is 5 in M22, so the procedure assigns 5 to M32, increases the assignment 

by 5 in M23 and reduces the assignment by 5 in cells M22 and M33 as shown in Figure A. 4.b. 
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 (a) closed Loop Construction                           (b) Exchange of Values 

Figure A. 4. Procedure to obtain optimal Solution 

The new solution for this problem is: 

90(5) + 100(15) + 100(15) + 80(5) + 80(5) = 4250 

This means that the procedure improves the solution by 200. 

Again the procedure determines whether the new solution is optimal as done previously using 

equations 1 & 2.  

From Equation 1: 

u1 = 0 

o11 = u1 + v1 = 90               0 + v1 = 90                   v1 = 90 

o12 = u1 + v2 = 100            0 + v2 = 100                  v2 = 100 

o32 = u3 + v2 = 80              u3 + 100 = 80                u3 = -20 

o33 = u3 + v3 = 80              -20 + v3 = 80                 v3 = 100 

o23 = u2 + v3 = 100            u2 + 100 = 100               u2 = 0 

 
The new values for ui and vj are shown in Figure A. 5.a. 
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From Equation 2: 

For cell M13:   130 - 0 - 100 � 0 is true 

For cell M21:   100 - 0 - 90 � 0 is true 

For cell M22:   140 - 0 - 100 � 0 is true 

For cell M31:   80 – (-20) - 90 � 0 is true 

 
Since all statements are true, the procedure concludes that 4250 is the lowest cost and optimal solution 

for our example and is shown in .Figure A. 5.b. 
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(a) duality   (b)  Optimal Solution 

Figure A. 5. Procedure to check the optimal solution for Transportation Problem 

 

Algorithm tests after each solution whether it is optimal or not. If the solution is optimal then 

algorithm terminates otherwise algorithm continues to search the optimal solution.  
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2. Memory Mapping for Non-Binary LDPC 

 

Data in each row need to be accessed in parallel.  

 

R W R W R W R W R W R W R W R W R W R W R W R W

2  bo b6 3 b7 b3 149 b1 b11 122 b4 b10 9 b2 b9 157 b8  bo 48 b5 b8 49 b6 b5 146 b3 b7 1 b9 b2 88 b10 b4 153 b11 b1

1 b3 b8 11 b6 b1 139 b2 b10 123 b11 b3 86 b4 b7 179  bo b11 19 b9  bo 2 b7 b4 14 b1 b9 94 b10 b5 16 b5 b6 177 b8 b2

62 b5 b9 63 b10 b3 159 b1 b8 84  bo b10 126 b7 b1 182 b2 b11 53 b3 b7 54 b11 b4 112 b6 b5 9 b9 b2 137 b4 b6 172 b8  bo

23 b2 b10 24 b1 b8 67 b5 b11 114 b3 b7 178 b7 b3 158  bo b9 42 b10  bo 43 b9 b2 79 b8 b4 154 b4 b6 129 b6 b5 151 b11 b1

59  bo b9 6 b9  bo 156 b2 b7 133 b4 b6 73 b1 b10 124 b3 b11 51 b5 b8 52 b6 b4 113 b7 b2 183 b11 b5 148 b8 b1 89 b10 b3

29  bo b10 3 b10  bo 97 b4 b7 11 b7 b4 191 b1 b9 141 b3 b11 47 b5 b6 48 b8 b5 85 b6 b2 72 b9 b3 177 b2 b8 147 b11 b1

33 b1 b6 34 b10  bo 142 b5 b11 7 b3 b9 172  bo b8 88 b4 b10 46 b2 b7 47 b6 b5 81 b7 b3 164 b9 b1 166 b8 b4 17 b11 b2

26 b6 b5 27 b3 b7 13 b2 b9 119  bo b10 8 b5 b11 148 b1 b8 7 b4 b6 8 b8 b4 84 b10  bo 146 b7 b3 13 b11 b2 168 b9 b1

25 b2 b9 26 b5 b6 115 b4 b7 181 b7 b3 153 b1 b11 66 b8 b2 58  bo b8 59 b9  bo 184 b6 b4 142 b11 b5 89 b3 b10 95 b10 b1

16  bo b11 17 b6 b2 83 b5 b6 127 b1 b9 128 b4 b10 143 b2 b8 28 b7 b5 29 b10  bo 7 b9 b3 159 b8 b1 111 b3 b7 17 b11 b4

17 b2 b6 18 b11 b3 155 b1 b11 19 b8 b5 152 b5 b10 75 b3 b8 5 b4 b7 6  bo b9 167 b6 b1 13 b9 b2 118 b10  bo 86 b7 b4

63 b3 b10 64  bo b11 65 b1 b6 16 b7 b3 176 b2 b7 131 b5 b8 6 b9  bo 7 b6 b4 11 b8 b2 155 b11 b1 93 b4 b9 173 b10 b5

36 b1 b10 37 b3 b9 78 b11 b4 184 b4 b6 157  bo b8 13 b2 b11 1 b8 b5 2 b6  bo 136 b9 b1 139 b10 b2 92 b5 b7 111 b7 b3

21  bo b11 22 b10  bo 132 b4 b8 98 b7 b4 171 b2 b10 126 b1 b7 5 b5 b6 51 b8 b5 18 b9 b2 71 b3 b9 141 b11 b3 175 b6 b1

15  bo b9 16 b11  bo 181 b3 b7 68 b1 b10 17 b2 b11 144 b6 b4 44 b7 b3 45 b9 b1 87 b4 b8 112 b5 b6 131 b8 b5 186 b10 b2

11 b1 b6 12  bo b9 116 b5 b11 96 b7 b4 14 b4 b8 178 b3 b7 35 b6 b3 36 b10 b1 12 b2 b10 174 b11  bo 77 b9 b5 15 b8 b2

18 b3 b11 19  bo b9 96 b4 b7 156 b7 b2 175 b1 b6 15 b5 b8 61 b6 b3 62 b9 b5 119 b10  bo 149 b11 b1 18 b8 b4 69 b2 b10

9 b1 b8 1 b8 b3 174  bo b11 83 b6 b5 99 b3 b10 129 b5 b6 2 b4 b7 21 b11  bo 68 b10 b1 97 b7 b4 134 b9 b2 187 b2 b9

38  bo b10 39 b6  bo  1 9 b5 b8 85 b2 b6 17 b4 b11 145 b7 b3 56 b8 b4 57 b3 b7 164 b1 b9 116 b11 b5 69 b10 b2 191 b9 b1

34  bo b10 35 b3 b6 98 b4 b7 19 b7 b1 82 b2 b9 138 b5 b8 37 b9 b3 38 b10  bo 154 b6 b4 121 b8 b2 165 b1 b11 8 b11 b5

4  bo b10 41 b6 b5 16 b3 b7 169 b9 b2 161 b1 b6 77 b5 b9 54 b4 b11 55 b7 b3 121 b2 b8 132 b8 b4 179 b11  bo 73 b10 b1

31  bo b6 32 b8 b3 125 b1 b9 78 b4 b11 188 b3 b8 135 b5 b7 14 b11 b1 15 b9  bo 133 b6 b4 12 b10 b2 186 b2 b10 92 b7 b5

3 b3 b7 4  bo b10 183 b5 b11 91 b6  bo 138 b8 b5 128 b10 b4 45 b1 b9 46 b7 b2 71 b9 b3 11 b2 b8 192 b4 b6 165 b11 b1

12 b9  bo 13 b1 b11 91  bo b6 115 b7 b4 173 b5 b10 161 b6 b1 55 b3 b7 56 b4 b8 1 b2 b9 162 b10 b5 143 b8 b2 76 b11 b3

41 b5 b6 42  bo b10 117 b11 b5 81 b3 b7 168 b1 b9 163 b2 b11 8 b4 b8 9 b8 b1 114 b7 b3 74 b10  bo 187 b9 b2 137 b6 b4

32 b3 b8 33 b6 b1 169 b2 b9 67 b11 b5 144 b4 b6 118  bo b10 57 b7 b3 58 b8  bo 12 b5 b7 171 b10 b2 151 b1 b11 93 b9 b4

39  bo b6 4 b10  bo 123 b3 b11 134 b2 b9 95 b1 b10 18 b4 b8 27 b7 b3 28 b5 b7 127 b9 b1 87 b8 b4 163 b11 b2 16 b6 b5

13 b11 b1 14 b1 b11 74  bo b10 18 b2 b9 145 b3 b7 188 b8 b3 49 b5 b6 5 b6 b5 122 b10 b4 79 b4 b8 158 b9  bo 176 b7 b2

3  bo b10 31 b6  bo 19 b1 b7 117 b5 b11 66 b2 b8 152 b10 b5 52 b4 b6 53 b7 b3 72 b3 b9 125 b9 b1 182 b11 b2 14 b8 b4

22  bo b10 23 b10 b2 189 b4 b6 136 b1 b9 75 b8 b3 113 b2 b7 64 b11  bo 1 b5 b8 135 b7 b5 14 b9 b1 76 b3 b11 192 b6 b4

43 b2 b9 44 b3 b7 162 b5 b10 167 b1 b6 15 b8 b5 82 b9 b2 4 b10  bo 5 b7 b4 185  bo b11 65 b6 b1 124 b11 b3 166 b4 b8

6  bo b9 61 b3 b6 11 b4 b7 189 b6 b4 147 b1 b11 99 b10 b3 24 b8 b1 25 b9 b2 94 b5 b10 185 b11  bo 15 b2 b8 12 b7 b5  

Memory Mapping for K = 192 & P = 12 

 



Annexure 

 - 141 - 

R W R W R W R W R W R W

2  bo b3 3 b3  bo 149 b1 b4 122 b4 b1 90 b2 b5 157 b5 b2

48  bo b3 49 b3  bo 146 b2 b5 100 b5 b2 88 b1 b4 153 b4 b1

10  bo b3 11 b3  bo 139 b2 b5 123 b5 b2 86 b1 b4 179 b4 b1

19  bo b3 20 b3  bo 104 b2 b5 94 b5 b2 160 b1 b4 177 b4 b1

62  bo b3 63 b3  bo 159 b2 b5 84 b4 b1 126 b1 b4 182 b5 b2

53  bo b3 54 b3  bo 112 b2 b5 90 b5 b2 137 b1 b4 172 b4 b1

23  bo b3 24 b3  bo 67 b2 b5 114 b4 b1 178 b1 b4 158 b5 b2

42  bo b3 43 b3  bo 79 b2 b5 154 b4 b1 129 b1 b4 151 b5 b2

59  bo b3 60 b3  bo 156 b2 b5 133 b5 b2 73 b1 b4 124 b4 b1

51  bo b3 52 b3  bo 113 b1 b4 183 b4 b1 148 b2 b5 89 b5 b2

29  bo b3 30 b3  bo 97 b1 b4 110 b4 b1 191 b2 b5 141 b5 b2

47  bo b3 48 b3  bo 85 b2 b5 72 b4 b1 177 b1 b4 147 b5 b2

33  bo b3 34 b3  bo 142 b2 b5 70 b5 b2 172 b1 b4 88 b4 b1

46  bo b3 47 b3  bo 81 b2 b5 164 b4 b1 166 b1 b4 107 b5 b2

26  bo b3 27 b3  bo 130 b2 b5 119 b4 b1 80 b1 b4 148 b5 b2

7  bo b3 8 b3  bo 84 b1 b4 146 b5 b2 103 b2 b5 168 b4 b1

25  bo b3 26 b3  bo 115 b2 b5 181 b4 b1 153 b1 b4 66 b5 b2

58  bo b3 59 b3  bo 184 b1 b4 142 b5 b2 89 b2 b5 95 b4 b1

16  bo b3 17 b3  bo 83 b2 b5 127 b5 b2 128 b1 b4 143 b4 b1

28  bo b3 29 b3  bo 70 b2 b5 159 b5 b2 111 b1 b4 170 b4 b1

17  bo b3 18 b3  bo 155 b2 b5 109 b5 b2 152 b1 b4 75 b4 b1

5  bo b3 6 b3  bo 167 b2 b5 130 b5 b2 118 b1 b4 86 b4 b1

63  bo b3 64 b3  bo 65 b2 b5 106 b5 b2 176 b1 b4 131 b4 b1

6  bo b3 7 b3  bo 101 b1 b4 155 b5 b2 93 b2 b5 173 b4 b1

36  bo b3 37 b3  bo 78 b1 b4 184 b4 b1 157 b2 b5 103 b5 b2

1  bo b3 2 b3  bo 136 b2 b5 139 b5 b2 92 b1 b4 111 b4 b1

21  bo b3 22 b3  bo 132 b2 b5 98 b5 b2 171 b1 b4 126 b4 b1

50  bo b3 51 b3  bo 108 b1 b4 71 b5 b2 141 b2 b5 175 b4 b1

15  bo b3 16 b3  bo 181 b1 b4 68 b5 b2 107 b2 b5 144 b4 b1

44  bo b3 45 b3  bo 87 b2 b5 112 b5 b2 131 b1 b4 186 b4 b1

11  bo b3 12 b3  bo 116 b1 b4 96 b5 b2 140 b2 b5 178 b4 b1

35  bo b3 36 b3  bo 102 b2 b5 174 b5 b2 77 b1 b4 150 b4 b1

18  bo b3 19 b3  bo 96 b2 b5 156 b5 b2 175 b1 b4 105 b4 b1

61  bo b3 62 b3  bo 119 b1 b4 149 b4 b1 180 b2 b5 69 b5 b2

9  bo b3 10 b3  bo 174 b2 b5 83 b5 b2 99 b1 b4 129 b4 b1

20  bo b3 21 b3  bo 68 b2 b5 97 b4 b1 134 b1 b4 187 b5 b2

38  bo b3 39 b3  bo 109 b2 b5 85 b5 b2 170 b1 b4 145 b4 b1

56  bo b3 57 b3  bo 164 b1 b4 116 b4 b1 69 b2 b5 191 b5 b2

34  bo b3 35 b3  bo 98 b2 b5 190 b4 b1 82 b1 b4 138 b5 b2

37  bo b3 38 b3  bo 154 b1 b4 121 b5 b2 165 b2 b5 80 b4 b1

40  bo b3 41 b3  bo 106 b2 b5 169 b5 b2 161 b1 b4 77 b4 b1

54  bo b3 55 b3  bo 121 b2 b5 132 b5 b2 179 b1 b4 73 b4 b1

31  bo b3 32 b3  bo 125 b1 b4 78 b4 b1 188 b2 b5 135 b5 b2

14  bo b3 15 b3  bo 133 b2 b5 102 b5 b2 186 b1 b4 92 b4 b1

3  bo b3 4 b3  bo 183 b1 b4 91 b5 b2 138 b2 b5 128 b4 b1

45  bo b3 46 b3  bo 71 b2 b5 101 b4 b1 192 b1 b4 165 b5 b2

12  bo b3 13 b3  bo 91 b2 b5 115 b5 b2 173 b1 b4 161 b4 b1

55  bo b3 56 b3  bo 100 b2 b5 162 b5 b2 143 b1 b4 76 b4 b1

41  bo b3 42 b3  bo 117 b2 b5 81 b5 b2 168 b1 b4 163 b4 b1

8  bo b3 9 b3  bo 114 b1 b4 74 b5 b2 187 b2 b5 137 b4 b1

32  bo b3 33 b3  bo 169 b2 b5 67 b5 b2 144 b1 b4 118 b4 b1

57  bo b3 58 b3  bo 120 b1 b4 171 b4 b1 151 b2 b5 93 b5 b2

39  bo b3 40 b3  bo 123 b2 b5 134 b4 b1 95 b1 b4 180 b5 b2

27  bo b3 28 b3  bo 127 b2 b5 87 b5 b2 163 b1 b4 160 b4 b1

13  bo b3 14 b3  bo 74 b2 b5 108 b4 b1 145 b1 b4 188 b5 b2

49  bo b3 50 b3  bo 122 b1 b4 79 b5 b2 158 b2 b5 176 b4 b1

30  bo b3 31 b3  bo 190 b1 b4 117 b5 b2 66 b2 b5 152 b4 b1

52  bo b3 53 b3  bo 72 b1 b4 125 b4 b1 182 b2 b5 140 b5 b2

22  bo b3 23 b3  bo 189 b2 b5 136 b5 b2 75 b1 b4 113 b4 b1

64  bo b3 1 b3  bo 135 b2 b5 104 b5 b2 76 b1 b4 192 b4 b1

43  bo b3 44 b3  bo 162 b2 b5 167 b5 b2 105 b1 b4 82 b4 b1

4  bo b3 5 b3  bo 185 b2 b5 65 b5 b2 124 b1 b4 166 b4 b1

60  bo b3 61 b3  bo 110 b1 b4 189 b5 b2 147 b2 b5 99 b4 b1

24  bo b3 25 b3  bo 94 b2 b5 185 b5 b2 150 b1 b4 120 b4 b1  

Memory Mapping for K = 192 & P = 6 


