Skip to Main content Skip to Navigation
Theses

Suivi de fronts par des méthodes de raffinement de maillage adaptatif et application à la simulation du procédé de récupération Steam Assited Gravity Drainage

Abstract : Steam Assisted Gravity Drainage (SAGD) is an enhanced oil recovery process for heavy oils and bitumens. Numerical simulations of this thermal process allow us to estimate the retrievable volume of oil and to evaluate the benefits of the project. As there exists a thin flow-interface (compared to the reservoir dimensions), SAGD simulations are sensitive to the grid size. Thus, to obtain precise forecasts of oil production, very small-sized cells have to be used, which leads to prohibitive CPU times. To reduce these computation times, one can use an adaptive mesh refinement technique, which will only refine the grid in the interface area and use coarser cells outside. To this end, in this work we introduce new refinement criteria, which are based on the work achieved by Kröner and Ohlberger on a posteriori error estimators for finite-volume schemes for hyperbolic equations. Through numerical experiments we show that they enable us to decrease in a significant way the number of cells (and then CPU times) while maintaining a good accuracy in the results.
Document type :
Theses
Complete list of metadatas

Cited literature [42 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00740906
Contributor : Camille Meyer <>
Submitted on : Thursday, October 11, 2012 - 12:29:21 PM
Last modification on : Thursday, January 11, 2018 - 6:20:33 AM
Long-term archiving on: : Friday, December 16, 2016 - 11:38:13 PM

Identifiers

  • HAL Id : tel-00740906, version 1

Citation

Magnolia Mamaghani. Suivi de fronts par des méthodes de raffinement de maillage adaptatif et application à la simulation du procédé de récupération Steam Assited Gravity Drainage. Optimisation et contrôle [math.OC]. Université Blaise Pascal - Clermont-Ferrand II, 2010. Français. ⟨NNT : 2010CLF22014⟩. ⟨tel-00740906⟩

Share

Metrics

Record views

277

Files downloads

241