
HAL Id: tel-00737353
https://theses.hal.science/tel-00737353

Submitted on 5 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Developing fast machine learning techniques with
applications to steganalysis problems

Yoan Miche

To cite this version:
Yoan Miche. Developing fast machine learning techniques with applications to steganalysis problems.
Signal and Image processing. Institut National Polytechnique de Grenoble - INPG, 2010. English.
�NNT : �. �tel-00737353�

https://theses.hal.science/tel-00737353
https://hal.archives-ouvertes.fr

D E V E L O P I N G FA S T M A C H I N E L E A R N I N G
T E C H N I Q U E S W I T H A P P L I C AT I O N S T O

S T E G A N A LY S I S P R O B L E M S

yoan miche

G r e n o b l e ! " #

Dissertation for the obtention of the degree of Doctor of Science
(D.Sc.) in Technology.

Department of Information and Computer Science

Faculty of Natural Sciences

Aalto University School of Science and Technology

Gipsa-Lab

Ecole Doctorale EEATS

Institut National Polytechnique de Grenoble

October 2010

distribution:

Aalto University School of Science and Technology
Faculty of Information and Natural Sciences
Department of Information and Computer Science
P.O. Box 15400

00076 Aalto
FINLAND
URL : http://ics.tkk.fi
Tel: +358 9 470 01

Fax: +358 9 470 23369

Email: series@ics.tkk.fi

©Yoan Miche

isbn: 978-952-60-3427-0
isbn (online): 978-952-60-3428-7
issn: 1797-5050

issn (online): 1797-5069

url: http://lib.tkk.fi/Diss/2010/isbn9789526034287

Multiprint
Espoo 2010

http://ics.tkk.fi
http://lib.tkk.fi/Diss/2010/isbn9789526034287

Yoan Miche: Developing Fast Machine Learning Techniques with Applications to
Steganalysis Problems, Dissertation for the obtention of the degree of Doctor
of Science (D.Sc.) in Technology to be presented with due permission of
the Faculty of Information and Natural Sciences for public examination and
debate in Auditorium AS1, at the Aalto University School of Science and
Technology (Espoo, Finland) on the 2nd of November, 2010, at 12 noon, ©
October 2010

supervisors:
Olli Simula
Christian Jutten

instructors:
Amaury Lendasse
Patrick Bas

opponent:
Tapio Seppänen

pre-examiners:
Thomas Villmann
Andrew Ker

location:
Espoo

date:
October 2010

isbn:
978-952-60-3427-0
isbn (electronic version):
978-952-60-3428-7

With words,
priests and poets make into many

the hidden Reality which is but One.

— RigVeda, X, 114, 2 [1]

A B S T R A C T

In the history of human communication, the concept and need for secrecy
between the parties has always been present. One way of achieving it is
to modify the message so that it is readable only by the receiver, as in
cryptography for example. Hiding the message in an innocuous medium is
another, called steganography. And the counterpart to steganography, that
is, discovering whether a message is hidden in a specific medium, is called
steganalysis. Other concerns also fall within the broad scope of the term
steganalysis, such as estimating the message length for example (which is
quantitative steganalysis).

In this dissertation, the emphasis is put on classical steganalysis of images
first — the mere detection of a modified image — for which a practical
benchmark is proposed: the evaluation of a sufficient amount of samples
to perform the steganalysis in a statistically significant manner, followed
by feature selection for dimensionality reduction and interpretability. The
fact that most of the features used in the classical steganalysis task have
a physical meaning, regarding the image, lends itself to an introspection
and analysis of the selected features for understanding the functioning and
weaknesses of steganographic schemes.

This approach is computationally demanding, both because of the feature
selection and the size of the data in steganalysis problems. To address
this issue, a fast and efficient machine learning model is proposed, the
Optimally-Pruned Extreme Learning Machine (OP-ELM). It uses random
projections in the framework of an Artificial Neural Network (precisely, a
Single Layer Feedforward Network) along with a neuron selection strategy,
to obtain robustness regarding irrelevant features, and achieves state of the
art performances.

The OP-ELM is also used in a novel approach at quantitative steganalysis
(message length estimation). The re-embedding concept is proposed, which
embeds a new known message in a suspicious image. By repeating this
operation multiple times for varying sizes of the newly embedded message,
it is possible to estimate the original message size used by the sender, along
with a confidence interval on this value. An intrinsic property of the image,
the inner difficulty, is also revealed thanks to the confidence interval width;
this gives an important information about the reliability of the estimation on
the original message size.

keywords: Machine Learning, Steganography, Steganalysis, Extreme Learn-
ing Machine, Artificial Neural Networks, Feature Selection, Re-embedding.

vii

R É S U M É

Depuis que les Hommes communiquent, le besoin de dissimuler tout ou
partie de la communication existe. On peut citer au moins deux formes de
dissimulation d’un message au sein d’une communication: Dans le premier
cas, le message à envoyer peut lui même être modifié, de telle sorte que seul
le destinataire puisse le décoder. La cryptographie s’emploie par exemple
à cette tâche. Une autre forme est celle de la stéganographie, qui vise à
dissimuler le message au sein d’un document. Et de même que pour la
cryptographie dont le pendant est la cryptanalyse visant à décrypter le
message, la stéganalyse est à l’opposé de la stéganographie et se charge de
détecter l’existence d’un message. Le terme de stéganalyse peut également
désigner l’importante classe de problèmes liés à la détection de l’existence
du message mais aussi à l’estimation de sa taille (stéganalyse quantitative)
ou encore de son contenu.

Dans cette thèse, l’accent est tout d’abord mis sur le problème classique
de stéganalyse (détection de la présence du message). Une méthodologie
permettant d’obtenir des résultats statistiquement fiables dans ce contexte
est proposée. Il sagit tout d’abord d’estimer le nombre d’échantillons (ici
des images) suffisant à l’obtention de résultats pertinents, puis de réduire
la dimensionalité du problème par une approche basée sur la sélection de
variables. Dans le contexte de la stéganalyse, la plupart des variables obtenues
peuvent être interprétées physiquement, ce qui permet une interprétation
de la sélection de variables obtenue: les variables sélectionnées en premier
réagissent vraisemblablement de façon importante aux changements causés
par la présence du message. Leur analyse peut permettre de comprendre le
fonctionnement et les faiblesses de l’algorithme de stéganographie utilisé,
par exemple.

Cette méthodologie peut s’avérer complexe en termes de calculs et donc
nécessiter des temps d’éxecution importants. Pour pallier à ce problème, un
nouveau modèle pour le “Machine Learning” est proposé, l’OP-ELM. L’OP-
ELM est constitué d’un Réseau de Neurones au sein duquel des projections
aléatoires sont utilisées. Les neurones sont ensuite classés par pertinence vis
à vis du problème, et seuls les plus pertinents sont conservés. Cette structure
de modèle parvient à obtenir des performances similaires à celles de l’état
de l’art dans le domaine du “Machine Learning”.

Enfin, le modèle OP-ELM est utilisé dans le cadre de la stéganalyse quanti-
tative, cette fois (l’estimation de la taille du message). Une approche nouvelle
sur ce problème est utilisée, faisant appel à une technique de ré-insertion
d’un message au sein d’une image considérée comme suspecte. En répétant
ce processus de ré-insertion un certain nombre de fois, et pour des messages
connus de tailles différentes, il est possible d’estimer la taille du message
original utilisé par l’expéditeur. De plus, par l’utilisation de la largeur de
l’intervalle de confiance obtenu sur la taille du message original, une mesure
de la difficulté intrinsèque à l’image est présentée. Ceci permet d’estimer la
fiabilité de la prédiction obtenue pour la taille du message original.

viii

mot-clés: Machine Learning, Stéganographie, Stéganalyse, Extreme Learn-
ing Machine, Réseaux de Neurones, Sélection de caractéristiques, Ré-insertion.

ix

Chaque génération éprouve le désir
toujours renouvelé de se former
en s’opposant à l’air du temps,

à l’esprit du lieu,
et le désir de s’épanouir à l’ombre —

ou plutôt à la clarté —
d’un maître exemplaire.

— Daniel Pennac, Chagrin d’Ecole.

A C K N O W L E D G M E N T S

This dissertation is one of the end products of the research I have conducted
at both the Department of Information and Computer Science (at Aalto
University School of Science and Technology, Finland) and the Gipsa-Lab
(Institut National Polytechnique de Grenoble, France). This work has been
funded by both the INPG and the Aalto University, as well as the Helsinki
Graduate School in Computer Science and Engineering (Hecse). Hence,
many thanks to all the people behind the funding of this research, and more
specifically to Erkki Oja, Pekka Orponen and also to Greger Lindén for all
the work and dedication to the Hecse program.

I would like to thank again Erkki Oja and Pekka Orponen for providing
such nice facilities and work environment at the ICS department. It truly
helps a lot to have a good office and hardware to work with.

I am very grateful to my supervisors Christian Jutten and Olli Simula; first
for accepting me as one of their students — it is certainly a privilege and
honor to have you as supervisors — and second for providing comments
and suggestions on some questions and problems I had very often not even
thought of. You have been a great support and help in some key moments of
this dissertation.

Amaury Lendasse got me into Machine Learning during a course I was
not even supposed to take in the first place — and probably did not really
understand then. After a short interview with him and Patrick Bas, they
agreed to be my instructors even though I did not exactly give the best
impression during this course. I truly learned a lot during the last four years,
with your help and advising. And not only on the Machine Learning and
Steganography subjects.

Thank you Amaury for putting up with me, for the encouragement and
guidance during these years. And for bearing with my love of long, elaborate
and novel-like sentences in scientific publications. I have strayed, but I shall
redeem !

And thank you Patrick for interesting me with these security matters and
for the “very-last-second” reviews and comments that I asked from you
sometimes. Somehow, deadlines are always coming too quick. Thanks to
their patience and constant help, I think I have started to grasp a bit of both
subjects by now. Also, thank you both for being such good friends all along.
I truly had a lot of fun with both of you.

xi

I want to thank the EIML Group and all of its members, for their support,
their everyday good mood and for all the good laughs. It really has been
a pleasure to be around you and enjoy many good moments with you.
Especially, thanks to Antti Sorjamaa and Emil Eirola for always having some
advice, comments, ideas — including of course funny videos to watch — and
also helping so much with my Finnish-related issues.

It has been nice to work around the members of the whole ICS department,
and I would like to thank them all and especially Mari-Sanna Paukkeri for
her unalterable joy.

I thank Tapio Seppänen for the honor of having him as an opponent, and
also the members of the French jury — which contains the pre-examiners
Thomas Villmann and Andrew Ker. Thank you for insightful comments and
suggestions on the dissertation.

My family also deserves many thanks, for their support, believing in what
I do and the choices I have made, and most of all, for never asking the
dreaded question of doctoral students: “But when are you getting a real
job?”.

Finally, this dissertation would not have been the same — if at all —
without the help and support of Bénédicte during the intensive two weeks it
took to write it. Thank you so much, Ma Dame.

Yoan Miche,
Espoo, October 2010.

xii

C O N T E N T S

1 introduction 1

1.1 Scope of the dissertation 1

1.2 Scientific contributions of the dissertation 2

1.3 Publications presented and author’s contribution 2

1.4 Structure of the dissertation 4

i basics on steganography and steganalysis 7

2 steganography 9

2.1 What is Steganography 9

2.2 Historically 10

2.3 Nowadays 10

2.3.1 Some steganography examples 11

2.3.2 The two main parts of steganography 11

2.3.3 A future development: Batch Steganography 15

2.4 Current state of the art techniques 16

2.4.1 JPEG basics 16

2.4.2 A non-exhaustive overview of Stego algorithms 17

2.5 Conclusion 22

3 steganalysis 23

3.1 What is steganalysis 23

3.1.1 Kerckhoffs’ principle 24

3.1.2 A definition of security for steganography 24

3.1.3 Measuring security empirically: benchmarking 25

3.2 Different classes of steganalysis 27

3.2.1 Targeted steganalysis 28

3.2.2 Blind steganalysis 28

3.2.3 Quantitative steganalysis 28

3.2.4 Forensic steganalysis 28

3.3 Performing steganalysis: schemes 29

3.3.1 Visual detection 29

3.3.2 First-order statistics based steganalysis 30

3.3.3 RS steganalysis 33

3.3.4 Calibration-based steganalysis 34

3.3.5 Markov-based steganalysis 37

3.3.6 SPAM features 38

3.3.7 Undiscussed schemes 39

3.4 A pitfall in steganalysis 39

3.5 Conclusion 40

ii a fast, efficient and robust machine learning technique :
op-elm 41

4 a short review on machine learning 43

4.1 Learning problems 43

4.1.1 What is Machine Learning 43

4.1.2 Classes of learning problems 44

4.1.3 Structure of the supervised learning problem 46

xiii

xiv Contents

4.1.4 Building a model for the learning problem 47

4.2 Practical notes on data processing for model building 51

4.3 Some model classes for Machine Learning 52

4.3.1 Linear discrimination and regression 54

4.3.2 Artificial Neural Networks 56

4.3.3 k-Nearest Neighbors 58

4.3.4 Gaussian Processes 59

4.3.5 A global drawback 60

4.4 Conclusion 60

5 the optimally-pruned extreme learning machine 63

5.1 A need for speed (and efficiency) 63

5.2 Existing recent random projection based models 64

5.2.1 Reservoir Computing 65

5.2.2 ELM based 66

5.3 OP-ELM 67

5.3.1 Some possible limitations of the ELM 68

5.3.2 A methodology around ELM: OP-ELM 68

5.3.3 A possibly faster version: HQ criterion 71

5.4 Conclusion 72

iii using machine learning for steganalysis problems 73

6 a practical approach to benchmarking steganographic

schemes 75

6.1 Why is feature selection so important ? 75

6.1.1 Issues in high-dimensional spaces 76

6.1.2 More specifically: for steganalysis problems 78

6.1.3 Performing feature selection 78

6.2 Practical benchmarking of stego algorithms 80

6.2.1 Determining a sufficient number of points 80

6.2.2 Determining a sufficient number of features 82

6.3 Conclusion 83

7 a novel approach to quantitative steganalysis and im-
age reliability estimation 85

7.1 Re-embedding concept for quantitative steganalysis 85

7.2 Embedding rate and Confidence interval estimation 86

7.3 Inner image difficulty/ reliability estimation 87

7.3.1 A possible measure of the difficulty 87

7.3.2 A “conality” test 88

7.3.3 Inner image difficulty estimation 89

7.4 Conclusion 91

8 summary and conclusions 93

iv publications 109

a publication a 111

b publication b 117

c publication c 125

d publication d 135

e publication e 145

f publication f 159

L I S T O F S Y M B O L S

�·� A norm

�·�2 The Euclidean norm

·̂ The estimate of a quantity

A Number of non-zero AC coefficients

Ao The original number of non-zero AC coefficients

Acc The accuracy (defined with true positives/negatives)

B The number of JPEG sub-blocks in the image i

B1,B2 The first and second order blockiness of the image

b A bias

b The modified cover image bits (wet paper codes)

C Embedding capacity

C The co-occurrence matrix of neighboring DCT coefficients

CTot Total embedding capacity

D The inner image difficulty

D A pseudo-random binary matrix

D1,D2 Amounts of distortions caused to a medium

d A number of modifications (context of coding-based steganography)

E Number of embedding changes

E (·) The expectation

Eo The original number of embedding changes

Ej The number of re-embedding changes

EO
j The number of embedding changes for the first embeddings

f (·) A function

frisk (·, ·) A risk function

fMSE (·, ·) A Mean Square Error risk function

F A functional (context of feature extraction)

Fh,Fv,Fd,Fm The difference arrays of DCT coefficients for horizontal, vertical,
main diagonal and minor diagonal directions

xv

xvi list of symbols

FP,FN False positives, false negatives

FS,FSsub A feature set/ a subset of the feature set FS

G (i) The smoothness of the group of pixels i = (i1, . . . , in)
T

gx,y (Idh) The dual histogram of DCT value Idh at the (x,y) DCT coefficient

H(·) The entropy

H The global histogram H = (H(1), . . . ,H(R))T

H
j
c,Hj

s The histograms of pixel values j for cover and stego images Ic and Is

hx,y(r) The individual histogram of DCT value r for DCT coefficient (x,y)

I The sample space of the cover images for random variable Ic

I The identity matrix

I The DCT coefficients representation of the image i

Ic The random variable representing the cover images

Idh A DCT value

Is The random variable representing the stego images

I(x,y) The DCT coefficient at coordinates (x,y) in I

I(k)(x,y) The DCT coefficient at coordinates (x,y) in the JPEG sub-block k

Iα, Iβ The random variables corresponding to the parts of the image iα, iβ

Irow, Icol The vectors of sub-blocks indices while scanning the image i by
rows or columns, resp.

i An image

iα, iβ Parts of the image i

ij Chunks of the host image (Steghide algorithm)

im A part of the image i that holds the message m

K A stego-key

K A kernel function (SVM); a non-linear activation function (ANN)

k The number of Nearest Neighbors in the k-NN algorithm; also a
number of bits

M A model

M The total number of features, variables

Mf The dimensionality of the space

Mh, Mv, Md, Mm The Markov transition probability matrices for horizontal,
vertical, main diagonal and minor diagonal directions

list of symbols xvii

MI(·) The mutual information

M A model

m The message to embed

mj Bits of the message m to embed

N The ensemble of natural numbers

N The total number of images, samples

N00,N01,N11 Measures based on the co-occurrence matrix of DCT
coefficients

NP ,NN Number of total positive/negative instances

n A number of elements

P (·) A probability

P A projection matrix

PI A probability distribution of the random variable I (modeling the
images)

QFh Quality factor for JPEG compression (YASS algorithm)

Q(x,y) The (x,y) component of the quantization matrix Q

R The ensemble of real numbers

R(1),R(2) Embedding rates

Ro The original embedding rate (in the R(1) sense)

Rj The re-embedding rate (in the R(1) sense)

RO
j The embedding rate for the first embeddings

S(m) Length of the embedded message (in bits)

sj Bits of the image in which to embed the message bits mj

s(k) The Reservoir internal state at step k

SF (·) A scoring function (filtering approach for feature selection)

T A threshold

TP,TN Amount of true positive/negative

V The variation (context of calibrated DCT features)

w A hyperplane/ normal to a hyperplane (in LDA or SVM); the weights
of an ANN

x A matrix containing the input data

x(k) A time variant process input data at step k

xviii list of symbols

xl, xv, xt A matrix containing the learning/ validation/ test data

y A matrix containing the output data

y(k) A time variant process output data at step k

ŷ An estimation by a model of the output data

β = (β1, . . . ,βN)T The output layer weights in an ANN

χ2 A chi-square statistic

δ (·, ·) The Kullback-Leibler divergence

δ·,· The Kronecker symbol

ε,� An error

εFS,εFSsub
The error obtained using a feature set/ using a subset of the

feature set FS

εr,εc A regression/ classification error

εl,εv,εt A learning/ validation/ test error

Γ (·) The Gamma function Γ (y) =
�∞
0 ty−1e−tdt

φ The output layer function (usually linear) in an ANN

Σ A covariance matrix

σ,σ0 The standard deviation (context of multivariate Gaussian or RBF)

θj A model parameter

Θ A set of model parameters θj

ξj Slack variables in the Support Vector Machines formulation

A C R O N Y M S

AIC Akaike’s Information Criterion

ANN Artificial Neural Network

BIC Bayesian Information Criterion

BOWS2 Break Our Watermarking Scheme 2

BSS Blind Source Separation

CV Cross-Validation

DCT Discrete Cosine Transform

ELM Extreme Learning Machine

EM-ELM Error-Minimized Extreme Learning Machine

GLVQ Generalized Learning Vector Quantization

GP Gaussian Processes

GRLVQ Generalized Relevance LVQ

HQ Hannan-Quinn (criterion)

ICA Independent Component Analysis

J-L Johnson-Lindenstrauss

JPEG Joint Photographic Experts Group

JPHS JPEG Hide and Seek

KL Kullback-Leibler (divergence)

KNN k-Nearest Neighbors

LARS Least Angle Regression

LDA Linear Discriminant Analysis

LOO Leave-One-Out

LSB Least Significant Bit

LS-SVM Least-Squares Support Vector Machines

LVQ Learning Vector Quantization

MDS Multi-Dimensional Scaling

MLP Multi-Layer Perceptron

MMD Maximum Mean Discrepancy

xix

xx acronyms

MMx Modified Matrix Encoding

MRSR Multi-Response Sparse Regression

MSE Mean Square Error

NMSE Normalized Mean Square Error

OLS Ordinary Least Squares

OP-ELM Optimally-Pruned Extreme Learning Machine

OP-KNN Optimally-Pruned k Nearest Neighbors

PCA Principal Component Analysis

QIM Quantization Index Modulation

RBF Radial Basis Function

RBFN Radial Basis Function Network

RC Reservoir Computing

RGB Red Green Blue

RLVQ Relevance Learning Vector Quantization

ROC Receiver Operating Characteristic

SLFN Single-Layer Feedforward Network

SMO Sequential Minimization Optimization

SOM Self-Organizing Map

SPAM Substractive Pixel Adjacent Matrix

SVM Support Vector Machine

VQ Vector Quantization

YASS Yet Another Steganographic Scheme

L I S T O F F I G U R E S

Figure 1 A simple illustration of steganography for an image: a
message m is embedded in the cover image by the means
of a steganographic algorithm. The resulting image (con-
taining the message m), looking as similar as possible
to the original cover image, is called stego image. 10

Figure 2 Schematic concept of the Outguess algorithm. 18

Figure 3 An overview of the vertices creation process for the
Steghide algorithm. Sizes of chunk and modulo values
are parameters of the algorithm and are respectively
chosen as 3 and 4 in this example (arbitrary). 19

Figure 4 The MBSteg Algorithm. 21

Figure 5 The classical steganalysis process: a suspicious image is
processed by means of steganalysis to devise it genuine
or stego (tampered). 23

Figure 6 An example of ROC curve: the solid line represents the
performance obtained using a model in a steganalysis
benchmark for a stego algorithm S, while the dashed
line is equivalent to random guess. 27

Figure 7 An example of the visual detection using a filter specific
to the stego algorithm to reveal the modifications made
to the cover image. Left is the genuine cover image,
filtered and right is the same image with an embedded
message, also filtered. From [133]. 30

Figure 8 Example of the evolution of the p-value of a X2 statistic
for a LSB embedding stego scheme. Here the mes-
sage was obviously embedded in the beginning of the
“path”. Inspired from [30]. 32

Figure 9 The calibration process as proposed in [46]: the con-
sidered image is first decompressed to spatial domain,
cropped horizontally and vertically by 4 pixels, here,
and then re-compressed using the very same quantiza-
tion matrix and quality factor as that of the originally
considered image. 34

Figure 10 The over-fitting concept: the solid line depicts a model
approximating the underlying phenomenon behind the
data (black dots), while the dashed line just tries to fit
the data completely. 50

Figure 11 Example of 3-fold cross-validation: the whole data x

is divided into three parts. The first part is used for
validation (red) and the rest (white) for learning. Once
done, the second part is used for validation and the
first and third for learning. . . 51

xxi

xxii List of Figures

Figure 12 Proposed data processing scheme: a random permu-
tation of the original data set x is first divided into
two parts x

(h)
lv for learning and validation and x

(h)
t

for the test. The set x
(h)
lv is then divided according

to the k-fold (here k = 3) cross-validation approach
and the model M is first trained with parameters Θj

on xl1 (the (h) notation is dropped within the cross-
validation for simplicity). The trained model is vali-
dated on the validation set xv1

to obtain the validation
error εv1

�

Θj

�

. This process is repeated 3 times over-
all, for

�

xl1 , xv1

�

,
�

xl2 , xv2

�

and
�

xl3 , xv3

�

. And also re-
peated for different values of the hyper-parameters Θj.
The best set of parameters Θ∗ = arg minΘj

εv
�

Θj

�

is
then used to build the final model. It is used on the test
data x

(h)
t to determine the error ε

(h)
t . This procedure

is repeated h = H times to obtain the final cross-test
value εt = 1

H

�H
h=1 ε

(h)
t . 53

Figure 13 Classical structure of a Single Hidden Layer Feedfor-
ward Neural Network. 57

Figure 14 Illustration of the Reservoir Computing concept: a snap-
shot of the “pool” of interconnected neurons (in the
middle) is taken (noted s(k)) at step k and the output
layer Wout is devised from the state s(k). 65

Figure 15 Example of the perturbation of the ELM model by the
use of an additional irrelevant variable: ELM model
is depicted in light dots, and the data itself in dark
crosses. 68

Figure 16 The three steps of the OP-ELM methodology: construc-
tion of the SLFN using ELM; ranking of best neurons
using MRSR; use of LOO criterion to decide how many
neurons are kept. 69

Figure 17 Illustration of the concentration of distances effect for a
set of uniformly distributed samples: histogram of the
pairwise distances between uniformly drawn samples,
in dimension 2 (left) and 100 (right). 77

Figure 18 Standard deviation in percentage of the average clas-
sification result (relative variation) versus the number
of images used, for the four embedding rates for the
Outguess algorithm: black circles (�) for 20%, green
squares (�) for 15%, red crosses (×) for 10%, and blue
triangles (

�
) for 5%. Please that the embedding rates

are measured here using the R(2) definition from sec-
tion 2.3.2. 81

Figure 19 Accuracy versus number of features used, for the four
embedding rates for the Outguess algorithms: black
circles (�) for 20%, green squares (�) for 15%, red
crosses (×) for 10%, and blue triangles (

�
) for 5%. Not

all points are plotted for clarity. 82

Figure 20 Estimated embedding rate R̂j versus number of re-
embedding changes Ej. The slope of the linear regres-
sion gives the first order term 1

Ao
while the ordinate

when Ej −→ 0 gives the constant term Ro. 87

Figure 21 Plot of the original toy data with a distribution shaped
as a cone. 89

Figure 22 Results of the “conality” test: central red dots depict
the growing mean over the 30 nearest neighbors and
surrounding black dots the mean ±2 times the standard
deviation (also over the 30 nearest neighbors). 90

Figure 23 D (measure of inner image difficulty) versus width of
confidence interval for R̂o. The distribution of points is
not uniform and shaped like a cone. 90

L I S T O F TA B L E S

Table 1 Confusion matrix for a binary classification problem. 26

Table 2 The 23 DCT feature set [46]. 36

Table 3 Computational times (in seconds) for all five algorithms
on regression data sets. Results are the average of ten
bootstraps repetitions. 70

Table 4 Average Mean Square Error in bold (standard devia-
tion in plain) for all five algorithms for regression data
sets. Results are the average of ten bootstraps repeti-
tions. 70

Table 5 Accuracy (in percent) in boldface (standard deviation
in plain) for all five algorithms for classification data
sets (left) and associated computational times (in sec-
onds, right). Results are the average of ten bootstraps
repetitions. 70

xxiii

1I N T R O D U C T I O N

1.1 scope of the dissertation

A typical problem in Machine Learning relates to the growing amount of
data and the ways of handling it. In this dissertation, we explore this problem
from a particular point of view: the steganalysis problem.

In the same way that cryptanalysis is the counterpart of cryptography,
steganalysis attempts to uncover steganography. The primary goals are rather
different from the cryptography ones, though. The art of steganography
relates to information hiding: a pair of communicating parties, sender and
receiver, attempt to pass a message hidden in an innocuous medium. A usual
setup is to have a potential eavesdropper who has access to the transmission
channel on which the medium between sender and receiver is exchanged —
for example, access to the picture sharing website that sender and receiver
use to exchange pictures (Flickr, Picasa. . .). This eavesdropper is supposed
to be passive, in this dissertation, and only wishes to identify whether the
concerned medium has been tampered with or if it is genuine.

Steganalysis is then the work perpetrated by this eavesdropper, typically.
In the classical sense of steganalysis, the eavesdropper only identifies the
medium as tampered — for example to report it to authorities — but other
classes of steganalysis can go beyond a simple detection task: one may also
wish to gather information about the hidden message, such as its length,
how it has been hidden (i.e. by which steganography process). . .

In the unlikely event that the sender is being careless about the way of
hiding the message, the eavesdropper might even realize that the medium
has been modified by simply looking at it with his own eyes. With the coming
of digital age and more elaborate steganographic techniques, the task has
become much more challenging, though.

One way of performing steganalysis — and nowadays the most widely
used — is to extract some specific characteristics from the suspicious image,
known as features, and compare them to the ones obtained on other original
images. We can see here a supervised binary classification problem arise:
to compare the features of a suspicious image and of genuine images, it is
possible to use a machine learning model previously trained to recognize the
differences between genuine and tampered.

Due to the large number of features typically used in steganalysis (in the
order of magnitude of hundreds), the machine learning task is not straight-
forward and requires specific models able to deal with such dimensionality
of the data.

In this dissertation, we propose a new machine learning model, the OP-
ELM, based on random projections and neuron selection, to obtain a suffi-
ciently good performance/ speed ratio; it is then possible to conduct more
numerous and elaborate experiments related to steganalysis problems. We
then develop a methodology for steganalysis, to obtain a practical benchmark
for a steganographic algorithm in a reliable manner. Finally, we address the

1

2 introduction

problem of the estimation of the message length and its reliability in a novel
manner, by the use of an approach using re-embeddings.

1.2 scientific contributions of the dissertation

The present dissertation contains the following scientific contributions:

• A new machine learning model based on random projections and
Artificial Neural Networks is proposed, the Optimally-Pruned Extreme
Learning Machine. It is based on an existing scheme, the Extreme
Learning Machine, by Huang [69] and addresses one of its original
weaknesses: its sensitivity to irrelevant features in a data set. Using
a large number of neurons in the neural network built by the ELM,
ranking them using the MRSR algorithm [117] and selecting only the
most relevant ones by a Leave-One-Out criterion, the OP-ELM reduces
greatly the sensitivity of the original ELM, while retaining very low
computational times.

• The original version of the OP-ELM is modified in the place of the
neuron selection criterion. Instead of using the Leave-One-Out criterion,
we propose to use an information theoretic based one, the Hannan-
Quinn criterion [62]. This modification is also proposed for another
model using a structure similar to that of the OP-ELM, the OP-KNN
[136], and enables to increase the speed of the original OP-ELM by
three to four folds while retaining similar performances.

• Using the OP-ELM as a machine learning tool, a methodology for
reliable steganalysis is proposed, which aims at estimating a sufficient
number of images required for the results to be statistically significant.
This methodology illustrates that for all cases of steganographic algo-
rithms, an insufficient number of images to perform steganalysis gives
results with a large variance. Regarding the number of features this
time, the second part of the methodology for reliable steganalysis uses
feature selection to reduce the computational time and complexity of
the problem, while keeping the same performances. These selected
features can then be analyzed to reverse-engineer the steganographic
algorithm used.

• The problem of quantitative steganalysis is tackled by a novel approach
using the re-embedding concept. By embedding new messages in
multiple copies of the suspicious image, we propose to estimate the
original embedding rate with a confidence interval on the value. In
addition, the width of the obtained confidence interval is shown to be
an estimator of the inner image difficulty.

1.3 publications presented and author’s contribution

This dissertation consists in an introductory part, and the six following
peer-reviewed publications.

A — OP-ELM: Optimally-Pruned Extreme Learning Machine, Yoan Miche, Antti
Sorjamaa, Patrick Bas, Olli Simula, Christian Jutten and Amaury

1.3 publications presented and author’s contribution 3

Lendasse. In IEEE Transactions on Neural Networks, January 2010,
Number 1, pp. 158–162 , Volume 21.

In this publication, the Optimally-Pruned Extreme Learning Machine
(OP-ELM) is proposed. It is a methodology built around the original
Extreme Learning Machine [69] with the aim of having a fast, efficient
and more robust model (regarding the sensitivity of the original ELM
to irrelevant data). The OP-ELM adds new kernels to the original ELM
and uses a pruning of the neurons with the MRSR [117] algorithm
and a Leave-One-Out criterion to remove the most irrelevant ones. In
this work, the original idea was proposed by Amaury Lendasse and
developed by the author and Amaury Lendasse. The experiments and
writing of the publication have been carried out mainly by the author,
with the help of Antti Sorjamaa. The other authors have provided
useful suggestions and corrections to the original manuscript.

B — A Faster Model Selection Criterion for OP-ELM and OP-KNN: Hannan-
Quinn Criterion, Yoan Miche and Amaury Lendasse. In ESANN’09: Eu-
ropean Symposium on Artificial Neural Networks, April 2009, Michel
Verleysen ed., published by d-side publications. pp. 177–182.

In this conference publication, we sought to replace the originally used
Leave-One-Out criterion of the original OP-ELM by a faster one, and
decided to use an information criterion for this task. Writing of the
article and experiments using the OP-ELM and OP-KNN with the new
criterion were carried out by the author.

C — A Feature Selection Methodology for Steganalysis, Yoan Miche, Benoit
Roue, Patrick Bas and Amaury Lendasse. In MRCS’06, International
Workshop on Multimedia Content Representation, Classification and
Security, Istanbul (Turkey), B. Gunsel, A. K. Jain, A. M. Tekalp and
B. Sankur eds., Lecture Notes in Computer Science, Springer-Verlag,
2006. Volume 4105, pp. 49–56.

This publication is the very first one dealing with feature selection
for steganalysis and is the first publication of the author as a doctoral
student. The idea is an improvement from the Master’s thesis work
carried out in the months before the beginning of the doctoral stud-
ies. The idea is to prove that by using a reduced set of features in
steganalysis, one can obtain the same performances while reducing
the computational time and gaining interpretability (from the selected
features). The author conducted most of the experiments, helped by
Benoit Roue, Patrick Bas and Amaury Lendasse. The conference paper
was written by the author.

D — Advantages of Using Feature Selection Techniques on Steganalysis Schemes,
Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten and Olli
Simula. In IWANN’07: International Work-Conference on Artificial
Neural Networks, San Sebastian, Spain, June 2007, Francisco Sandoval
et al. eds., Lecture Notes in Computer Science, Springer Berlin /
Heidelberg. Volume 4507/2007, pp. 606–613.

While performing more experiments using the methodology from the
previous publication, the author realized that the statistical stability

4 introduction

of the results was affected by the number of samples used to perform
the experiments. In this spirit, another methodology was devised, to
infer a sufficient number of samples for the steganalysis task using
a specific set of features. The idea and experiments were carried out
by the author, as well as the writing. The advisors Patrick Bas and
Amaury Lendasse provided very useful advice and helped correcting
the original manuscript.

E — Reliable Steganalysis Using a Minimum Set of Samples and Features, Yoan
Miche, Patrick Bas, Amaury Lendasse, Christian Jutten and Olli Simula.
In EURASIP Journal on Information Security, March 2009. Hindawi
Publishing Corporation. Volume 2009, Article ID 901381, pp. 1–13.

This publication is the result of the combination of the two previous
ones, used on six different steganographic algorithms, for different
embedding rates and on a large publicly available database of images.
In addition, this version of the global methodology uses the OP-ELM
consistently everywhere, while the previous publications were using
k-Nearest Neighbors and Support Vector Machines at different stages,
for speed or performance. The author carried out the experiments and
wrote the article. Patrick Bas helped greatly with the interpretability of
the selected features and Amaury Lendasse on the Machine Learning
problems that arose. All authors have finally helped improving the
quality of the manuscript by providing essential remarks.

F — Using Multiple Re-embeddings for Quantitative Steganalysis and Image Re-
liability Estimation, Yoan Miche, Patrick Bas and Amaury Lendasse. In
TKK Reports in Information and Computer Science, June 2010, Espoo.
Number TKK-ICS-R34. ISBN 978-952-60-3249-8 (Print).

The last publication is related to very recent work on quantitative ste-
ganalysis. The use of a novel approach using re-embedding enables to
estimate more reliably the original message’s length and also provides
insights on the inner image difficulty. The use of re-embedding was
devised during a fruitful discussion between the author, Tomàš Pevnỳ
and Patrick Bas. The author carried out the experiments and the paper
writing, with the help of Amaury Lendasse and Patrick Bas, especially
on the concept of inner image difficulty.

In the rest of the dissertation, the included publications are referred by
the capital letter used above, i.e. “Publication A” for the publication entitled
“OP-ELM: Optimally-Pruned Extreme Learning Machine”, by Yoan Miche et al.,
January 2010.

1.4 structure of the dissertation

This dissertation is articulated in three main parts. The first one dwells
with the field of steganography and steganalysis and aims at giving a short
overview of the field in order to explicate the main results and contributions
of this thesis. The second chapter proposes a review of steganography and
its recent evolutions, toward digital media, and more specifically images.
Some of the most widely used steganography algorithms are presented

1.4 structure of the dissertation 5

and described, along with the main principles and important definitions.
This chapter lays the foundation and motivation for the following one, about
steganalysis. This third chapter describes the concept of steganalysis at length,
with the variants of the steganalysis problem (quantitative, forensic. . .).
A detailed presentation of the classical sets of features used to perform
feature-based steganalysis is given to illustrate one of the problems faced in
steganalysis today: the growing dimensionality of the data.

The second part of this dissertation proposes first a review of the machine
learning field, in the fourth chapter, followed by the presentation of a novel
machine learning method capable of handling large data sets in reasonable
computational times. The fifth chapter details this novel model and the class
of models it is built on, the random projections used in Artificial Neural
Networks framework.

The third part lays two methodologies aimed at two different problems
in steganalysis. The first one, in chapter six is directed toward obtaining
reliable results in classical steganalysis setups, by the determination of a
sufficient number of images required to perform the task, and then a study
on the required features, to perform the task. The seventh chapter then deals
with the quantitative steganalysis problem and uses a novel approach to
obtain an estimate of the embedded message’s length and estimate an inner
characteristic of a considered image: its difficulty for a steganalysis task.

The dissertation is finally concluded in chapter eight.

Part I

B A S I C S O N S T E G A N O G R A P H Y A N D
S T E G A N A LY S I S

2S T E G A N O G R A P H Y

This chapter first defines globally the concept of steganography, with some
historical examples. Some definitions in the steganography framework are
then given such as the capacity and embedding rate, followed by details about
the two main parts of steganography: the model-based and coding-based ste-
ganography. Finally, a non-exhaustive review of famous and widely used
steganography algorithms and techniques is given.

2.1 what is steganography

While the idea of steganography dates back to ancient times (from the
available records we have on it), it is only recently that the actual name
has been devised, by Johannes Trithemius (1462–1516), in Steganographia.
Steganographia is believed to be one of the very first works on cryptography
and steganography, in which various primitive cryptography and stegano-
graphy techniques are detailed. The steganography term itself was created
from the Greek “steganos” — covered — and “graphia” — writing. The third book of

Steganographia was
believed to be about
occultism and magic
until very recently
[124]. When it got
deciphered [109], it
revealed to be also
about steganography
and cryptography.

In steganography, only the existence of the message is secret: the commu-
nication channel is considered as open and the message itself is not usually
modified so as to resist an attacker by itself (although it can be encrypted,
e.g.). The main achievement is hence to hide the message as well as possible
in an innocuous content, so that any eavesdropper would have no suspicions.
Figure 1 illustrates a case of steganography (LSB replacement, see section
2.4.2) for which the hiding of the message is invisible to the human eye.

It is important to distinguish steganography from cryptography, first: crypto-
graphy aims at modifying the message so that it becomes impossible to read
to an eavesdropper. It is of no concern to cryptography that the encrypted
message might look suspicious. Steganography does not alter the message
but only hides it in a medium, so that it will not arise suspicions. Steganography is

different from
cryptography and
watermarking. . .

One also wants to make a difference between steganography and water-
marking. In the latter, one of the main concerns is to be robust, not hidden
(although it might be a secondary requirement). A watermark should resist
to various transformations of the original content so that it does not get
disrupted or destroyed. The simple example of a copyright mark placed in
an image, should be resistant to most image transformations such as resizing,
cropping, rotation or JPEG compression [78]. . . In a similar fashion, audio
watermarking attempts to resist various transformations of the audio signal,
for example MP3 compression [32].

Let us go through some historical examples of steganography. Trithemius
describes only text-based steganography (text is the medium for the stegano-
graphy) in his Steganographia, but in the history of human communications
there have been numerous examples of steganography, in many different
forms.

9

10 steganography

All work and no play makes Jack...
Alll work and no play makes Jac.....
All wrk and no play makes Jack......
Alll work and no play mkes Jack.....

Steganographic
Algorithm

Message m

Stego Image

Cover Image

Figure 1: A simple illustration of steganography for an image: a message m is em-
bedded in the cover image by the means of a steganographic algorithm. The
resulting image (containing the message m), looking as similar as possible
to the original cover image, is called stego image.

2.2 historically

Since communication exists, the need for secrecy in this communication has
been present, whether for benign privacy purposes or malicious ones. SomeHerodotus has many

steganography
examples: hiding a
message in a belt
buckle, earrings. . .

of the oldest known examples are related by Herodotus in his Histories [64]:
Histiaeus, willing to regain his position of tyrant of Miletus, sent a message
by means of steganography to his nephew Aristagoras, in order to instigate a
revolt in the Ionia. The message was conveyed by a slave of Histiaeus whose
head had been first shaved and tattooed with the content of the message.
Once the hair grew back sufficiently to cover the message, the slave could be
sent without any risk to Aristagoras, who only had to shave the head of the
slave to recover the message.

Another example from the same source involves the use of a wooden tablet
engraved with the message and then covered with wax. The recipients only
had to scrape the wax to obtain the message, while throughout the many
enemy hands the tablet passed, it only seemed like an innocuous wax tablet.

More recently, when reprints of internal British cabinet documents were
found repeatedly in the press, Margaret Thatcher allegedly had a small
message (different for each copy) embedded in the documents given to
each minister. The message was embedded in the spacing properties of theThe coded message

was also possibly
included in the word
processors of each
minister.

documents (word and line spacings) and enabled to identify a potential leak
in the government [7].

Unfortunately all these examples rely on “non-official” sources and there
are no concrete proofs of such steganography. Obviously, the best stegano-
graphy cases will possibly never come detected or known. . .

2.3 nowadays

In the last few years, the interest for steganography has been rising, as
shows for example the number of publications related to steganography and
watermarking subjects as reported by the IEEE [30].

2.3 nowadays 11

Both newspapers USA Today (USA) and Corriere della Sera (Italy) claimed
the use of steganographic means (using images as the medium) for Al Quaeda
communications. Unfortunately, no evidence or actual article proving the
allegations ever appeared. Steganography is

seldomly detected in
real life, but is most
likely used.

Nevertheless, research agencies and governments being apprehensive for

The possibility that it
is used and not being
detected worries
many securities
agencies. Especially
regarding terrorism
related
communications.

the use of steganography have had a growing interest in developing and
detecting it. The discovery of a section about steganography and covert
communication in the Technical Mujahid, a Training Manual for Jihadis, has
brought back these matters in the light of possible terrorism, which can
partly explain this interest.

In any case, the existence of steganography and the possibilities it opens
makes it an interesting security-related problem worth being investigated.

The growth in numbers of digital objects publicly available has made
digital steganography an easier task, in the sense that it has become difficult
for the authorities to monitor all of the digital content being exchanged.
Especially since this digital content can be of various nature. Indeed, one
can rather easily find steganographic algorithms for media such as text (the
British government example mentioned before being a simple but efficient
one), sounds and images.

2.3.1 Some steganography examples

The cases of images and sounds are particular, since they can be compressed
in a lossy way. This creates additional domains in which steganography can While not the most

popular form, audio
steganography
techniques exist.

be performed. For example, MP3 compression for sounds is lossy in that
it removes from the original recording the parts that are considered to be
beyond standard human auditory resolution. This loss in data makes data
hiding possible, for example by modifying slightly the MP3 compression
algorithm so that it embeds the message bits by changing pseudo-randomly
some parity bits in the compression process [95, 115]. Works on non-lossy
objects or algorithms also exist, for example on Wave files by Least-Significant
Bit modification [127].

In the following, and throughout the dissertation, the focus will be on
image steganography, and more precisely, on JPEG images, for which some
explanatory details are proposed in the next section 2.4. Image steganography We focus only on

image steganography
and algorithms for it.

seems to be the most popular kind of steganography, certainly because of
the large amount of available images, but also because the widely used JPEG
lossy compression algorithm gives many liberties for data hiding.

2.3.2 The two main parts of steganography

One can separate the
steganography ideas
into two categories:
Model-based and
Coding-based.

Before going into the details of some classical steganography techniques, it
is necessary to point out the two main parts of steganography (intertwined
for most of the algorithms): Model-based and Coding-based. In the following,
we will go through a few definitions of steganography concepts first, and
then present the Model and Coding based parts.

12 steganography

Definitions

In the following, we will refer to the medium as the image, and the message
to hide in it as the message. A genuine image will be called “cover” or cover
image, while an image containing a message — we say that the message has
been embedded in the image — will be named stego image. Moreover, the term
stego will be used in place of steganographic, for example in the terminology
stego algorithm for a steganographic algorithm.

the stego capacity Let us now define a widely used quantity: the
stego capacity. While it can be empirically described as “the maximumThe stego capacity is

a simple concept: how
much can be
embedded while
satisfying low
distortion
constraints?

amount of data that can be hidden in the cover [image] while satisfying a set
of constraints on the distortion”, the stego capacity remains a quantity that
is difficult to estimate.

In [27], an investigation of the general capacity definition for a system with
side information at the embedder (which is the case of steganography) is
proposed in the more specific case of steganalysis. A result from [57] states
that the capacity C can be expressed as

C = max
P(U,Is|Ic)

(MI (U, Is) −MI (U, Ic)) , (2.1)

Capacity can be
expressed using
Mutual Information
and Entropy.

where MI (·, ·) denotes the mutual information, U an auxiliary random
variable and Ic and Is the random variables corresponding to the cover
image (respectively stego). Using then the fact that

MI (U, Is) −MI (U, Ic) = H (Is) −H (Is|U) −MI (Ic,U) , (2.2)

where H(·) refers to the entropy, it appears that

MI (U, Is) −MI (U, Ic) � H (Ic) , (2.3)

under the perfect steganography constraint, that is, in terms of entropy

H (Ic) = H (Is) . (2.4)

Hence, under the assumption of a perfect stego algorithm, the upper bound
on the capacity C is the entropy of the cover image.

For the matter of an imperfect stego algorithm (ε-secure with ε > 0 for
example, see section 3.1 for the definition of the ε-security), Filler et al. in [42]
propose the Theorem of the Square Root Law of steganography for Markov
covers.

Under the assumptions that the cover images can be modeled by a first
order (stationary) Markov Chain, and that the embedding process can be
modeled as an independent substitution of one state to another (the LSB
embedding, nsF5, JSteg and MMx stego algorithms presented in 2.4.2 respect
this hypothesis), the capacity for an imperfect stego algorithm follows three
main propositions (the results are valid in the limit case n → ∞ , with n the
number of elements to embed in, and the reader is referred to the original
publication [42] for more thorough presentation of the problem and results):Under some

assumptions, the
stego capacity follows
a square root law
[42].

1. Using a capacity smaller than
√
n — the square root of the number of

elements that can be modified to embed the message — the embedding

2.3 nowadays 13

can be arbitrarily secure (in terms of ε-security, it can be up to ε-secure
with ε > 0), given enough elements n to embed the message in;

2. Using a capacity larger than
√
n leads to a non-secure situation where

the steganographer risks detection;

3. Using a capacity of the order of
√
n leads to a possibly secure embedding

(again, in terms of ε-security, this means that the embedding is ε-secure
with a fixed ε — no more arbitrarily small).

Hence, if the communication is to remain secure between the two parties, one
wants to be in the first proposition case and be careful about the embedding
rate that is used, vis a vis the secure capacity (in the sense of proposition 1).

the embedding rate This second definition concerns the widely used
quantity embedding rate. It is meant to measure a ratio between the amount Two possible

definitions for the
embedding rate.

of data embedded and the specifics of the cover image. Hence, it is highly
dependent on the image considered: for a given stego algorithm, some
images can contain more information than others, while remaining just as
undetectable.

There are many definitions for it, although one seems to prevail nowadays:
the embedding rate R(1) is defined as the ratio between the number of embed-
ding changes E and the number of non-zero AC coefficients (of the cover image)
A:

R(1) =
E

A
. (2.5)

Related to the
embedding changes
and non-zero AC
coefficients. . .

The concept of AC coefficients is inherent to the JPEG format (see section
2.4) and hence, this measure is mostly used for JPEG steganography matters.

Another possible definition of the embedding rate (used in one of the
publications related to this dissertation) is using the embedding capacity of
the algorithm. It is therefore also related to the stego algorithm directly. The
embedding rate R(2) using the capacity is defined as the ratio between the
size S(m) of the embedded message m (usually measured in bits) and the
total embedding capacity CTot (also measured in bits), defined previously:

R(2) =
S(m)

CTot
. (2.6)

. . . or to the message
size and capacity.Again, the first definition R(1) is mainly used nowadays. The second

definition R(2) can be most useful when the stego algorithm does not provide
information on the number of embedding changes, though.

In the specific case of LSB embedding [49] (or for steganography on raw
images, generally), the embedding rate can also be defined in bits per pixel
(bpp), which consists in dividing the total amount of bits embedded by the
number of pixels of the image.

Finally, it is worth noting that in the following, we will consider natural
images only, meaning that synthetic images (entirely produced by a 3D
rendering software or drawings, e.g.) are not part of this analysis. Natural
images are for example outdoor scenes snapshots taken by a camera.

14 steganography

Follows the description of the two main parts of a stego scheme: Model-
based and Coding-based steganography.

Model-based Steganography
Model-based aims at
modeling the
distribution of media
to find where to
embed to minimize
the distortion.

Model-based steganography as introduced by Sallee [111] makes use of (part
of) the knowledge of the medium’s instances distribution in order to hide a
message. If we consider that there exists a random variable I with probability
distribution PI modeling the images, and that we take a single realization
i of I (i is an image), we can separate i in two parts, iα and iβ (which are
instances of the random variables Iα and Iβ). The iα part will remain intact
while the iβ will be modified or totally replaced by the actual message im.
See Figure 4 for an illustration of the idea of Model-based steganography for
the stego algorithm MBSteg (section 2.4.2).

The inherent idea is that given the knowledge of PI (or a sufficiently good
approximation of it P̂I), it is possible to find iβ such that the composite
(iα, im) is correctly distributed vis a vis PI (or its approximation P̂I). Mean-
ing that we can estimate the distribution for multiple possible Iβ conditioned
on the current Iα: P̂Iα|Iβ(Iβ|Iα = iα). If a im that respects this distribution
is found, the composite image (iα, im) respects all the properties of a cover
image and cannot be distinguished in any sense from the other cover im-
ages (again, provided that our model approximation P̂I is good enough to
approximate cover images).

One obvious problem of this approach is to model PI. While it is clear that
modeling the ensemble of natural images is impossible, it remains possible
to have a simplified model of PI and cut i into iα and iβ such that modifying
iβ will satisfy a set of constraints (for example not being visible to the human
eye).

This part of steganography really aims at having sufficient information (or
a sufficiently good model) of the whole space of media (cover images here)
such that the way of tempering with a cover image will make sure that it still
follows the distribution of cover images.

Coding-based Steganography

The goal of the coding-based part of steganography is different, although
as said before, both approaches are used at the same time in most usable
stego algorithms. Here, the emphasis is on the way to code the information —Coding-based tries to

insert the message
using a special
encoding so as to
minimize the
distortion.

the message to embed — such that the tempering of the cover image will be
minimal. A famous example of coding-based scheme is the Matrix Embedding
(or Syndrome Coding) approach proposed by Crandall in [31].

We give a simple example of this idea for the insertion of k = 2 bits of
message, denoted as m1 and m2. Assume there are n = 3 bits available for
insertion in the cover image (these bits have been devised previously, for
example using Model-based steganography), denoted as s1, s2, s3. If one
wants to insert the k = 2 bits of information by changing only one bit among
s1, s2, s3, we have four possible cases to consider:

• m1 = s1 ⊕ s3,m2 = s2 ⊕ s3 =⇒ no changes

• m1 �= s1 ⊕ s3,m2 = s2 ⊕ s3 =⇒ change : s1

2.3 nowadays 15

• m1 = s1 ⊕ s3,m2 �= s2 ⊕ s3 =⇒ change : s2

• m1 �= s1 ⊕ s3,m2 �= s2 ⊕ s3 =⇒ change : s3

Therefore, when inserting two message bits in the host data, only one bit
will be modified. In the general case, matrix encoding enables to find a set of
n bits in the host data where k message bits can be embedded with less than
dmax actual modifications; this found solution is usually denoted by the
triplet (dmax,n, k). The F5 stego algorithm detailed in section 2.4.2 makes
use of the matrix embedding approach.

Another famous coding-based technique is the named Wet Paper codes
[52, 54], proposed by Fridrich et al. The concept is based on the exact solving Wet paper codes give

good secrecy and
allow to define areas
of the image where
not to embed the
message.

of the linear system

Db = m (2.7)

where D is a binary matrix shared by both sender and receiver, b represents
the modified cover image bits (to be determined) and m contains the message
bits. The difficulty of the problem lies in solving such a system exactly (or the
message bits from m would be altered). Provided that the system 2.7 has a
solution, though, this scheme is very secure since the binary matrix D (which
can be brought back to a single stego-key K initializing a pseudo-random
generator) is supposed to be known by sender and receiver only. More details
about the specifics of this scheme can be found in the original publication
[52] (this short presentation is overly simplified).

In this context of coding-based steganography, a widely used measure
of the efficiency of the scheme used (such as matrix embedding) is the
embedding efficiency, first defined in [132]. This quantity is measured by the
expected number of message bits (supposed to be random, i.e. not having
any dependence with the modified quantities in the cover image) embedded
per embedding change. The reader is refered to [55] for a thorough review
of the embedding efficiency for various types of matrix embedding schemes.

The concept of security for a steganographic scheme will be discussed in
the next chapter 3, once steganalysis has been introduced.

2.3.3 A future development: Batch Steganography

A possibly more
realistic setup for
steganography: many
images to embed the
message in.

In [76], Ker proposed to consider a point which is often left aside, in stega-
nography: the steganographer (sender) will most likely have access to more
than just one cover image, and he will try to use this as an advantage. Ker
poses the question and lays the foundation for what is called batch stega-
nography, that is, finding the best possible way of embedding a predefined
message in a set of cover images (possibly in a subset of them, actually).

Given a set of assumptions

• the number N of cover images is fixed beforehand;

• all cover objects have the same capacity;

• the sender chooses randomly the cover images in which to embed,

it is shown that the steganography is the most secure when the message m

is divided in a small number of portions (and hence, embedded in a small

16 steganography

number of images), which is a rather non-intuitive idea. One would a prioriTheoretical results on
batch stegano are
counter-intuitive. . .

think that the “safest” solution is to divide m into as many small parts as
possible, and make a very small number of embedding changes to many
images in the set.

This part of the steganography field is rather recent and has still not been
widely investigated. Most algorithms and techniques considered to be state
of the art are still working on single-image cases.

The following section proposes a non-exhaustive overview of the most
used steganography algorithms. They are all publicly available.

2.4 current state of the art techniques

In order to present some of the most used stego algorithms, we first introduce
some notations and definitions, especially about the JPEG image compression
algorithm.

2.4.1 JPEG basics

The 6 main steps of
the JPEG
compression.

The acronym JPEG stands for Joint Photographic Experts Group, a committee
which created the JPEG compression algorithm [28]. By extension, the JPEG
name is used for images using this compression method, but the original
name refers to the compression part only.

The JPEG algorithm is mostly known for its efficiency when used in a lossy
way, but depending on the compression rate, one can also use it for non-lossy
means (its performance in terms of compression is then outperformed by
other algorithms).

There are 6 main steps in the JPEG algorithm:
Divide the image into
blocks; 1. Block splitting: The original (raw) image is divided into square blocks,

typically of 64 pixels (8× 8, but it can be different). The following steps
are then applied to each block separately.

change the
color-space; 2. Changing color-space: The RGB original color-space is changed to a

YCbCr. The RGB color-space is coding for the three basis colors it uses:
Red, Green and Blue. The YCbCr color-space uses a luminance compo-
nent (Y) and only two chroma components (Cb for blue-difference and
Cr for red-difference).

sub-sample the colors;

3. Sub-sampling of chromas: The gain from the JPEG compression comes
in part from this step. Since the human eye is more sensitive to lumi-
nance than to chromas, the Y component is left untouched while the
sub-sampling is performed on the chromas.

DCT-transform the
coefficients; 4. Discrete Cosine Transform: Each component (Y, Cb and Cr) of each

block goes through a discrete cosine transform. For an 8× 8 block
denoted as {i(x,y)}1�x,y�8, the DCT coefficients {I(u, v)}1�u,v�8 are
computed as

I(u, v) =
1

4
C(u)C(v)





7�

x=0

7�

y=0

i(x,y) cos
(2x+ 1)uπ

16
cos

(2y+ 1)vπ

16



 ,

2.4 current state of the art techniques 17

(2.8)

with C(u) = C(v) = 1/
√
2 if u = v = 0 and C(u) = C(v) = 1 otherwise.

The main idea behind this transformation is to get a large number of
zero coefficients for the final coding.

quantize the
coefficients;5. Quantization: Using fixed quantization matrices (different for each

channel), the low frequencies are preserved, while the high frequencies
are getting close to zero (or are zeros). The rationale is again that the
human eye is more sensitive to low frequencies than high ones.

order and compress.

6. Zig-Zag ordering and final lossless compression: These steps only aim
at having an optimal way of compressing the remaining data (most of
the coefficients of each block are zero) so that the final size is minimal.

Note that in the rest of this dissertation, we will mostly ignore the last step
of this procedure, and consider that the JPEG image is a large array of DCT
coefficients placed at the exact same place than the part of the image they
are representing.

As discussed before, the lossy aspect of this algorithm makes it interesting
for hiding data. Indeed, since most of the DCT coefficients are zeros or very
small values, it seems likely that modifying the Least Significant Bit (LSB) of
some coefficients will be visually (to the human eye, that is) undetectable. By Modifying the LSB of

DCT coeffs is a
simple stego scheme
eventually detectable
visually.

modifying such bits (chosen pseudo-randomly thanks to a shared stego-key,
e.g.), one can embed a message and avoid visual detection. This is the basis
for LSB steganography. For large enough payloads, though, this becomes
very easily detectable by statistical means [49, 133].

Recent stego algorithms try to address not only the visual aspect of the
distortion created by the embedding, but also many statistical aspects of
the image (histograms of AC coefficients for example, that is, the low-value
coefficients of the DCT-transformed matrix of values).

2.4.2 A non-exhaustive overview of Stego algorithms

The proposed overview of stego algorithms contains most of the considered
state-of-the-art methods. It is by no means exhaustive and only aims at
presenting the concepts of these algorithms so that future discussions on
their behavior are made easier.

LSB replacement/ matching

As the name implies, the early schemes of LSB replacement [114] are em-
bedding the information by replacing the LSB of an image’s bytes directly
(first separating the RGB components of the image), either in a completely
sequential way, or by choosing the bytes to modify pseudo-randomly, thanks
to a stego-key, for example. LSB matching takes

advantage of the LSB
value.

The LSB matching (also called ±1 embedding) is working in the same
way, except that it compares the bit of the message to embed in a LSB and
modifies it — by a random ±1 modification on the LSB, except if it leads to
a zero value — only if necessary (i.e. the message bit to embed and the LSB
do not match).

18 steganography

User

of redundant bits

of each

and detectability

Message

Key algorithm

Stream

ciphering
generator

Pseudo
random

Embedding
Identi!cation

Figure 2: Schematic concept of the Outguess algorithm.

Outguess
Outguess tries to
avoid statistical
attacks by “canceling”
the changes caused by
the embedding.

Niels Provos in [106] proposes the Outguess algorithm, supposed to resist
especially well to statistical attacks. The process has two main parts, detailed
in the following and summarized on Figure 2.

• Identify the LSBs: these are chosen only among the LSB of DCT coeffi-
cients which are different from 0 and 1. This choice is made because
most of the coefficients have 0 and 1 values and modifying them would
result in a too visible change in the global histogram and be easily
detectable. As some image parts may contain more information than
the others, the LSBs are marked with their potential detectability. This
enables the algorithm not to use these for message embedding (if
possible).

• Select the LSBs to use. About half of them will be used to actually
embed the message information, while the remaining half will be used
to correct the statistical deviations created by the embedding.

First a stream cipher is initialized with a user key. A pseudo-random
number generator initialization (first seed) is derived from this cipher. TheOutguess embeds in

half the identified
LSBs and corrects the
distortions using the
other half.

algorithm hides another pseudo-random generator initialization state which
will enable to recover the location of the modified LSBs, and the size of the
embedded message.

After the seed and length of the message are embedded, the algorithm
hides the message itself. In this embedding process, the algorithm tries to
dispatch the message bits as much as possible in the image, by adapting the
random values to the size of the message and of the available size in the
embedding image.

During this process, a value of total detectability is incremented with
the value of detectability of each used LSB, determined by a heuristic. The
algorithm uses many try-outs and keeps the lowest possible total detectability
value.

A correcting transform is then applied on the remaining LSBs (the other
part of the redundant) to try to preserve as much as possible the statistics.

Retrieving of the message requires only the user key, to initialize the
pseudo-random number generator and then obtain the second seed and
length of the message from the image.

2.4 current state of the art techniques 19

2

2

1

3

1

0

1

3

0

2

1

3

2

0

1

2

Identical: Nothing happens

Identical: Nothing happens

Di!erent: Creation of a Vertex

Di!erent: Creation of a Vertex

Chunk 2

Chunk 1

Chunk n/3−1

Chunk n/3

Host Data Comparison
value

Message
value

1

0

0

2

Figure 3: An overview of the vertices creation process for the Steghide algorithm.
Sizes of chunk and modulo values are parameters of the algorithm and are
respectively chosen as 3 and 4 in this example (arbitrary).

Steghide
Steghide uses sample
flipping governed by
an informed graph.

In [65], Stefan Hetzl and Petra Mutzel describe a graph-based algorithm for
steganography which implementation is called Steghide. The embedding
process is in fact mostly a sample flipping process, governed by a graph
created while evaluating the samples of the host data and comparing them
to the message to embed.

The host data is first abstracted as a set of samples (pixels for the case of
images). Sets of samples will then be “evaluated” and compared to the data to
embed. From the need to modify a sample of the host data in order to embed
the message, a vertex is created. A similarity measure then enables to find
potential samples in the host data to be exchanged with the one considered
for embedding, and an edge is then created between these samples. An example of the

graph building in
Steghide on Fig. 3.

As shown on Figure 3, host data (cover image) is divided into chunks
of samples (ij with three samples per chunk, in this example) for which a
Comparison Value is calculated through addition modulo 4 in this case (these
values of three samples per chunk and addition modulo 4 are algorithm
parameters that are optimized for the considered embedding). The obtained
values are compared with the message values. If different, a vertex is created
for this pair host data chunk/message chunk. Parameters of the vertex are
obtained from simple calculations on the chunk values.

Then, edges are created between the vertices, based on the similarity of
the considered two vertices, for the actual embedding of the message is done
through flipping of vertices, as mentioned above.

F5
F5 takes a
permutation method
and the matrix
encoding scheme.

F5 has been proposed by Andreas Westfeld in [132] and claims to have an
increased robustness compared to its predecessors, F3 and F4, as well as a
much higher embedding rate.

It is based on two main ideas:

20 steganography

• A permutation method, allowing to scatter the embedded bits through
all of the image instead of having the changes only in the beginning;

• Matrix encoding, imagined by Ron Crandall [31], enables to increase
the embedding rate while minimizing the number of changes.

The F5 algorithm is largely based on matrix encoding; it uses dmax = 1 and
is looking for the best k in order to insert the whole message. A main point
about F5 is that it never directly modifies the LSB of DCT coefficients, but
only decreases their values (except the ones that are already zero), thanks
to the matrix encoding part. The so-called shrinkage effect happening in F5

is due to LSB decrease creating a zero value. Since the algorithm does not
read (and does not use) the zero DCT coefficients, the information has to be
embedded again in another LSB. This effect creates detectable changes in the
histograms of the DCT coefficients.

-F5, nsF5,. . .
-F5 and nsF5 try to
eliminate the
shrinkage effect
happening with F5.

The -F5 and nsF5 (for no-shrinkage F5) are derivations of the original F5

algorithm, which address some of its drawbacks. The shrinkage effect happens
in F5 when the modification of the LSB by F5 leads to a zero. In [56], Fridrich
et al. propose to alleviate this effect by increasing the value of the LSB, instead
of decreasing it. This is called the -F5 algorithm.

The nsF5 algorithm makes use of the wet paper codes previously discussed.
By doing so, it avoids putting LSBs of AC coefficients to zero without coding
any information (the decoding part does not look for information in the
zero LSBs), and hence, avoids the shrinkage effect. To describe this using the
notations from 2.3.2, assume that the message m to embed is k bits long, and
that there are n LSBs of AC coefficients (which have value either 0 or 1), out
of which nu are usable for modification (i.e. non-zero). The problem is then
to find the vector of modified LSBs b such that the system

Db = m, (2.9)

is satisfied, with D still being a pseudo-random binary matrix shared
by both sender and receiver (via a secret key initializing a pseudo-random
generator, for example).

MBSteg
MBSteg tries to
model statistics of the
image and keep them
intact.

Sallee in [111] proposed the Model Based steganography, already presented
in section 2.3.2. It tries to “adapt” the message to a part of the cover image, by
entropy decoding. Figure 4 inspired from the original publication, illustrates
the process for JPEG images.

The original cover image AC DCT coefficients are separated into iα and iβ.
iα will be kept intact and serves to model the histograms of the individual
AC DCT modes. The model P̂Iα|Iβ is fed to an entropy decoder along with
the encrypted/compressed message (so that it is close enough to random
data). The result of this step is im which respects the cover image structure
(thanks to the model) while embedding the message.

The interesting direct consequence from this scheme is that the histograms
of individual AC DCT modes should be well preserved, along with the

2.4 current state of the art techniques 21

model

Entropy
decoder

Encrypted
message

Cover image Stego image

Figure 4: The MBSteg Algorithm.

global histogram, due to the “adaptation” through entropy decoding, of the
message to embed.

MMx
MMx is a variation of
the matrix encoding.MMx — standing for Modified Matrix Encoding — is a variation of the

matrix encoding algorithm (implemented in F5 by Westfeld [132]) proposed
by Kim et al. in [79].

While F5 makes use of the triplet (d,n, k) with a fixed d = 1 for the
matrix encoding, MMx uses a (d �,n, k) triplet, with d � usually 2 or 3: this
change makes it possible to have more than one bit change per block since
d � modifications of the set of n bits (meant for embedding k message bits)
are allowed for the matrix encoding.

JPHS
JPHS concept is not
disclosed but seems to
use LSB flippings.

The JPHide&Seek (also denoted JPHS) algorithm by Latham [84] is available
on the web as binaries and source code, although its details have not been
published currently. From experiments performed in [56], it seems that it
mostly relies on LSBs flippings.

JSteg
JSteg is among the
first stegano
algorithms for JPEG.

JSteg by Upham [128] employs also LSB modifications, on quantized DCT
coefficients. It is among the very first steganography algorithms and simply
embeds the message bits directly into LSBs that are different from 0 and 1.
The LSBs used for changes were at first chosen in a sequential fashion, but
now use a pseudo-random path.

YASS
YASS uses a
de-synchronization
from the JPEG grid to
embed the message.

Yet Another Steganography Scheme (YASS) has been proposed recently by
Solanki et al. [119]. Its fame came from the fact that it was hardly detectable
by any known means, at the time. Since then, many papers have shown that

22 steganography

it is detectable, for example by adapting the features used for the detection
scheme (using un-calibrated features, see section 3.3.4). Let us describe
shortly the concept of YASS.

The global idea is to embed the data in the spatial domain (before the
actual JPEG compression) using error correction codes, to resist the JPEG
compression. The de-synchronization vis a vis the typical 8× 8 JPEG grid
helps in hiding the message also. Five main steps describe the YASS (from
the original paper [119]):

1. Coding of the message: using a repeat-accumulate code [35], to resist
the JPEG compression.

2. Division into blocks: the cover image is divided into blocks of size
B × B, with B > 8, if 8 is the size of the JPEG blocks. This is for
de-synchronizing the message embedding vis a vis the JPEG grid.

3. For each block (of size B × B), a sub-block of size 8 × 8 is chosen
(pseudo-randomly, with a secret key shared by the sender and receiver).

4. For each of the sub-blocks (of size 8× 8), the 2D DCT transform is
computed (as for the JPEG compression step 4 in 2.4) and divided by a
quantization matrix for a specific quality factor QFh. The actual mes-
sage (encoded) is embedded in a predetermined band of low frequency
AC coefficients with Quantization Index Modulation (QIM) [26].

5. The sub-blocks are then brought back to the spatial domain before the
full image (which contains the message now) is finally compressed to
JPEG.

2.5 conclusion

In this chapter, we have described some of the concepts and notations used
in the steganography field. Typically, stego algorithms use one of the two
approaches mentioned — and sometimes both for improved security: the
model-based steganography approach, in which one tries to estimate the global
distribution of the media (images in this dissertation) and attempts to embed
a message in a way that the resulting medium still belongs to the global
distribution; and the coding-based approach where the emphasis is put on the
manner of coding the message to embed such that the distortions caused to
the medium by embedding are minimal.

We have then shortly described a promising extension of the typical stega-
nography use: the batch steganography [76], in which one attempts to hide
the message within a set of images, instead of just one.

We reviewed then the basic concept of the currently most used algorithms,
in steganography, some of then used in the publications included in this
dissertation (see publications C, D, E and F). Currently, all of these algorithms
are well detected (for reasonable message sizes, at least) by the use of various
sets of features extracted from the stego images.

The process of detecting whether an image is genuine (cover) or stego is
called steganalysis and is described in more details in the next chapter.

3S T E G A N A LY S I S

Here we define the counterpart to steganography, steganalysis. We first discuss
the concept of security in steganography/ steganalysis, in a theoretical way
[23], which is unfortunately impossible to implement in reality at the moment.
The current framework in which steganalysis is inscribed, based on an
empirical estimation of the security through a specific setup, is discussed. We
finally present the different possible classes of steganalysis with some of the
classical steganalysis schemes used at the moment.

3.1 what is steganalysis

Before digital media appeared, the concept of steganalysis did not really exist.
For the steganography example (chapter 2) of the tattoo on the head of
Histiaeus’ slave, steganalysis would have consisted in looking at the slave
under all possible angles and try to guess (by the looks of it) whether there
could be a tattoo hidden on his scalp. Steganalaysis is not

like cryptanalysis:
only detection is at
stake here.

The concept of steganalysis is again very different from that of crypta-
nalysis (as steganography differs from cryptography): in cryptanalysis, the
aim is to “break the code” and then get the encoded message, simply put.
Steganalysis does not aim at obtaining the message hidden in the cover
medium, but only at detecting the mere presence of it. The original goal of
steganalysis was hence to give a binary answer to the question “Is there a
message hidden in this medium ?”. Figure 5 illustrates this simple idea.

Later on with the coming of digital media and the growing importance
of steganography, as discussed previously, the means of detecting stegano-
graphy have been developed along with other kinds of steganalysis. For
example one can cite the search for the stego-key used to embed the message,
which relates closely to cryptanalysis [51]. Before proceeding with some of
the different kinds of steganalysis that exist, let us remind why it is not an
obvious task at all.

Suspicious Image

Steganalysis
process

Genuine

Stego

Figure 5: The classical steganalysis process: a suspicious image is processed by means
of steganalysis to devise it genuine or stego (tampered).

23

24 steganalysis

3.1.1 Kerckhoffs’ principle

As for cryptography, the Kerckhoffs principle can be applied to stegano-
graphy. In [77], Kerckhoffs stipulates in substance, that a cryptographic
algorithm should be able to withstand its principle being made public. That
is, the only secret that can be considered acceptable is the secret key shared
between sender and receiver. This key acts as a parameter of the crypto-
graphic algorithm.Steganalysis works

on supposeably
known stego
algorithms.

The idea is the same for steganography: only the stego-key shared by
sender and receiver can be considered as secret. The idea lying behind such
a strong design principle is that a brute force attack — trying out all possible
stego-keys to find the good one — against the stego scheme (to determine
the presence of the message or not) would be infeasible in terms of time
spent. If the space of stego-keys is large enough (and the stego algorithm has
no obvious weaknesses), this attack has very low probability to succeed [51],
due to the complexity of the search problem.

In this setup of a perfect stego algorithm (no weaknesses) and a large
enough stego-key space, the stego algorithm would be considered as secure.
We detail this concept of security for a stego algorithm in the following, as it
is of the utmost interest when considering steganalysis.

3.1.2 A definition of security for steganography

In the previous chapter 2 introducing steganography, we have brushed
the problem of embedding a message in a cover image while minimizing
the amount of distortions caused to it (see the section 2.3.2 about model-
based and coding-based schemes, for example). The concept of securitySecurity in

steganography is
theoretically
defined. . .

in steganography/steganalysis is related to this matter of the amount of
distortions.

The following concept of security makes the assumption that the trans-
mission channel does not introduce any distortion to the communicated
content. This also means that a potential eavesdropper will not attempt to
modify the content he monitors on the channel. This assumption on the
eavesdropper is often refered to as passive warden (from the famous problem
of the communication between two parties, typically Bob and Alice, and the
warden or eavesdropper, Eve). The other approach consists in considering an
active warden, who has the ability to modify the transmission and therefore
send virtually any content to the other parties communicating. We do not
consider this possibility in the rest of this dissertation.

With this assumption, Cachin in [23] defines the security of a stego algo-
rithm as the amount of differences that exist between the distributions PIc
and PIs of the two random variables Ic and Is (respectively the random vari-
able corresponding to the cover image and to the stego image) for an instance i.
The sample space of the cover images for the random variable Ic is denoted. . . using a KL

divergence between
image
distributions. . .

I. The “difference” between the distributions PIc and PIs is measured using
a Kullback-Leibler (KL) divergence δ such that

δ(PIc ,PIs) =
�

i∈Ic

PIc(i) log
PIc(i)

PIs(i)
, (3.1)

3.1 what is steganalysis 25

which is a measure of the relative entropy between the two distribu-
tions. With this definition, Cachin defines a stego algorithm S as ε-secure if
δ(PIc ,PIs) � ε, with Is being the random variable corresponding to the stego
images from algorithm S. Therefore, the smaller the ε, the closer are the two
distributions PIc , PIs and the harder it is to distinguish the suspicious image
from a genuine one.

In the case where ε = 0, the stego-algorithm is said to be secure, since no
difference can be made between the suspicious image and the genuine ones.

This definition poses unfortunately many problems in practice. First, the . . . but that definition
is not practically
usable.

size of the set of cover images |I| (|I| denoting the cardinal of the sample
space of the variable Ic) is potentially infinite; it suffices to take a new picture
with a camera to make it larger. Therefore, computing the KL divergence
over the whole set of cover images is computationally infeasible.

Second, this definition requires estimating the distributions PIc and PIs ,
which is most likely impossible to perform, for example because of the nature
of Ic.

These problems can be alleviated by the use of a set of features extracted
from the images, which dramatically reduces the dimensionality of the
problem and makes the marginals PIc and PIs possible to model.

Third, as pointed out by Pevnỳ in [97], there are no sufficiently good
estimators of the KL divergence to perform the computations. Indeed, even
though the size of the space of cover images |I| can be reduced, the KL
divergence estimators (for example the Kraskov one based on k-Nearest
Neighbors [83]) work properly for problems with dimensionality below 5. MMD is a possible

alternative to the KL
divergence.

A possible solution is proposed in [101] by the use of the Maximum
Mean Discrepancy (MMD), which measures the differences between two
probability distributions by drawing samples from both and using a witness
function behaving differently for samples of each distribution. The MMD is
then obtained as the difference between the mean witness function values on
samples of each distribution. The main advantage over the KL divergence
being that the MMD behaves well in high-dimensional spaces (large number
of features).

In order to assess the security (and thus the “quality”) of a stego algorithm,
practical steganalysis benchmarks are devised, through the use of features,
for example. Some of the features used widely in steganalysis benchmarks
are presented in section 3.3.

3.1.3 Measuring security empirically: benchmarking

We need to have
practical
benchmarking to
assess the security of
stego algorithms.

Setting up a practical steganalysis benchmark requires many choices in
design, choices on which the benchmark will possibly highly depend, unfor-
tunately.

restricting the image space First, since it is impossible to cover the
set of all possible images, one has to restrict the space of cover images to a
finite set. The choice of this set (both in terms of content and size of the set) It is not possible to

have all the existing
images. . .

might influence highly the results of the steganalysis, as demonstrated for
example in chapter 6 and Publication E (section 4.2.1).

26 steganalysis

True Value

True Positive False Positive N �
P

(TP) (FP)

Prediction False Negative True Negative N �
N

(FN) (TN)

NP NN

Table 1: Confusion matrix for a binary classification problem.

extracting features Second, the choice of the characteristic features
(refered to as features in the following) extracted from each image. The goal. . . nor to model

images perfectly: we
use features.

of obtaining such features is to reduce the dimensionality of the space to
analyze. Although extracting features from an image i is a destructive process
(in that the projection from the image space to a lower dimensional feature
space is destructive in terms of information), one can hope that the extracted
features are descriptive enough that the most important information relevant
to steganalysis is preserved.

model A third parameter is the model chosen in order to discriminate
between stego and genuine, based on the previously devised features. In
most cases, a supervised machine learning model is used. Some of these
models are presented in the next chapter 4.

performance measure Finally, it is necessary to decide on what per-
formance to report. The most common measure of the security of a stego
algorithm is given by the ratio between the number Nident of correctly
identified images (as being either stego or cover) and the total number N

of images in the defined set. This is a particular measure known as theHow to measure the
security through the
benchmark?

accuracy, which can be derived from the confusion matrix obtained after a
binary classification problem (stego or cover). The classes of problems for
machine learning models are described in more details in chapter 4. Let us
describe the other possible practical measures of security in the framework
of a steganalysis benchmark, of which the Receiver Operating Characteristic
(ROC) curve is probably a good example.

The steganalysis problem can be assimilated to a binary classification,
for which the outcome stego is the positive class and the cover outcome the
negative class. Consider also that the set of N = NP +NN images contains
NP instances of the positive class (stego) and NN of the negative class (cover).

Denoting by N �
P and N �

N the number of positive instances (resp. negative)
as classified by the model, the confusion matrix from Table 1 summarizes
the results.

The accuracy is therefore defined as TP+TN
NP+NN

. Unfortunately, the accuracyThe accuracy is a
proper measure of the
performance. . .

does not account for the amount of false positives (or negatives) which can be
of great importance in the steganalysis framework: one might prefer catching
too many potential steganographers than missing them, for example.

The ROC curve plots the True Positive Rate TP
NP

versus the False Positive

Rate FP
NN

. Figure 6 gives an example of a ROC curve: the solid line indicates

3.2 different classes of steganalysis 27

100%

0

20

40

60

80

100%20 40 60 80

F
al

se
 p

o
si

ti
ve

 r
at

e

True positive rate

Figure 6: An example of ROC curve: the solid line represents the performance ob-
tained using a model in a steganalysis benchmark for a stego algorithm S,
while the dashed line is equivalent to random guess.

the evolution of the true positive rate when the false positive rate varies.
For some applications, it is preferable to sacrifice the False Positive rate to
obtain a better True Negative rate: it might be better for authorities to catch
too many potential steganographers than let some of them go, for example.
Some classification models allow this setting. . . . although the ROC

curve is more
informative.

While the ROC curve and/or the confusion matrix describe in much more
detail the outcome of the classification task in a steganalysis benchmark, the
accuracy remains the most commonly used measure, which we will use in
the following of the dissertation.

Now that the different parameters necessary for a typical steganalysis
benchmark have been presented, let us introduce the different variations
on steganalysis that currently exist. In the following, we will refer to a
steganalysis class to describe the general type of that steganalysis, and to a
steganalysis scheme for the practical way to perform the steganalysis (most of
the time, by extracting specific information in the form of features from the
suspicious image).

3.2 different classes of steganalysis

Although the primary steganalysis goal is to detect the mere presence of
a message in a suspicious medium, the field has evolved towards some
refinements, derived from the original idea. The original form (the binary The original problem

of steganalysis now
has subdivisions.

classification between cover and stego) could be qualified of qualitative ste-
ganalysis, although this terminology is not really used. Follow four other
types of steganalysis, which have rather different goals than the qualitative

28 steganalysis

steganalysis. The next section 3.3 describes the practical schemes that can be
applied to the following classes.

3.2.1 Targeted steganalysis

The hypothesis of the targeted steganalysis is a strong one: the stegano-
graphic algorithm S used in known. This information is an important insightHere, the used stego

scheme is known,
following Kerckhoff’s
principle. This is a
strong assumption.

about how the steganalysis process should be designed. As discussed in the
previous chapter, for example, simple stego algorithms changing directly the
LSBs of DCT coefficients to embed the message (such as JSteg) will affect
visibly the histograms of such coefficients (again, given that the message to
embed is of sufficient size).

Most steganalysis schemes actually derive from this class: once a stego
algorithm is known (assuming its functioning is made public also), a stega-
nalysis scheme can be derived from the way the information is embedded,
as for the example of the LSBs of DCT coefficients previously [48, 80].

3.2.2 Blind steganalysis

Also called universal steganalysis, it is the exact opposite concept to that of
targeted steganalysis. This steganalysis also called universal aims at detecting
any kind of steganographic algorithm. See for example [100] for a recent
detector of most JPEG steganography schemes.Blind steganalysis

tries to infer the stego
scheme used, only.

This concept was introduced in [9], and more recently, a specific stega-
nalysis scheme made blind steganalysis much easier [46]. This scheme is
described at length in 3.3. The work by Fridrich et al. in [98] uses this scheme
for the elaboration of a blind steganalyzer (meant for JPEG images only) with
high efficiency for the JPHide, F5, MBsteg and Outguess stego algorithms.

3.2.3 Quantitative steganalysis

The quantitative steganalysis approach differs again from the original qual-
itative steganalysis in that it predicts the length of the message that has
been hidden in the cover medium. This is a very different problem from theThis class of

steganalysis estimates
the length of the
message.

classical binary classification one (cover or stego). The differences in terms of
models used to perform quantitative steganalysis are detailed in chapter 4.

Quantitative steganalysis has been first introduced by Chandramouli [24],
but rather few works have actually followed on this concept. In [50] a his-
togram of DCT coefficients approach is used, while the specific scheme
meant for blind steganalysis [99] is used in [103] for this quantitative task
and performs very well.

In the last publication present in this dissertation, publication F, this very
same scheme is used through a particular methodology for quantitative
steganalysis (see chapter 7).

3.2.4 Forensic steganalysis

Finally, the forensic steganalysis [53, 30] goes beyond the detection step of
the classical steganalysis: obtaining the actual hidden message. There are

3.3 performing steganalysis: schemes 29

many possible reasons for which the eavesdropper would like to obtain the
message. The most obvious one is if such an eavesdropper has control over the The most wide

steganalysis class:
find out everything
about the message
(presence, length,
content. . .).

transmission channel and can decide of shutting it down if steganography has
been detected. Instead of arousing suspicions from both sender and receiver
by merely cutting the transmission channel, the eavesdropper might want
to obtain the hidden message so that he knows exactly what is exchanged,
without catching the attention of the communicating parties.

In this sense, forensic steganalysis is closer to cryptanalysis than stegana-
lysis is. This specific part of steganalysis is not covered here, since it is rather
different from the usual goals of steganalysis. Most likely, though, one of the
very first steps a forensic steganalyzer would take is universal steganalysis,
to determine which stego algorithm he is dealing with in the first place. If
the identification of the stego algorithm works, it becomes either a matter of
breaking the scheme by trying all possible stego-keys (if the stego algorithm
requires one, this is the brute force approach), or use a weakness of the
algorithm to obtain the message. Using quantitative steganalysis to have It possibly also relates

to cryptanalysis.information about the length of the hidden message also gives important
clues for obtaining it.

Overall, forensic steganalysis makes use of the many other aspects of
steganalysis, and possibly of some of the cryptanalysis ones.

3.3 performing steganalysis : schemes

In order to perform in any of the classes of steganalysis presented, there is a
need for a practical scheme on how to actually do it: visually, by analyzing
the inner structure of the image, the statistics of the JPEG DCT coefficients. . .
Follows a presentation of historical schemes along with some of the most
recent and relevant ones, for the tasks of targeted, blind and quantitative
steganalysis.

3.3.1 Visual detection

The title of this type of steganalysis is quite explicit: the human eye is here
the model for classification. An image having visible discrepancies making it Use the human eye as

a detector of
discrepancies.

look suspicious or tampered, will be classified as stego. This simple form of
steganalysis is still efficient for very simple stego algorithms, for example
embedding the message by modifying largely the LSB of the DCT coefficients,
for a JPEG image. The first version of JSteg (see 2.4.2) with a sufficiently large
message would most likely create artefacts in the image that are visible to
the human eye.

In order to make invisible changes — invisible to the human eye, that is
— appear, Westfeld in [133] proposes to first filter a suspicious image (with
filters specific to each stego algorithm). The resulting filtered image has a
more obvious structure and renders the changes created by the embedding
of the message visible. Figure 7 from [133] illustrates visually this concept.
The left part shows the cover image (no message) after the filter (specific
to the stego algorithm) and the right one the same image with a message
embedded, also filtered. The visual difference is clear.

30 steganalysis

Figure 7: An example of the visual detection using a filter specific to the stego
algorithm to reveal the modifications made to the cover image. Left is the
genuine cover image, filtered and right is the same image with an embedded
message, also filtered. From [133].

As mentioned in the previous chapter, though, most current algorithms
do not create any visual discrepancies and are thus impervious to visual
detection. Hence, one of the following statistics based steganalysis schemes
should be preferred in the general case, to the simple visual detection, in
order to obtain accurate detection. It should be noted, though, that careless
steganographers might cause visual distortions while using recent stegano-
graphy means, if the embedded message is too large, for example. In such
cases, visual detection can at least alert the steganalyzer.

3.3.2 First-order statistics based steganalysis

The problem of visual detection is that it relies on the human eye and on the
quality of the filter used, to identify steganography; as mentions Westfeld
in [133], this approach fails for elaborate enough schemes. In addition, for
cases not as obvious as the one in Figure 7, the reliability of the human
eye can be controversial. The need for clean, reliable statistics on which to
base the steganalysis decision initiated a trend in what is called feature-based
steganalysis.This scheme uses first

order statistics of the
image to
discriminate. . .

Feature-based steganalysis, of which all following schemes are instances,
relies on the extraction of certain characteristics of the suspicious image,
followed usually by a comparison with the characteristics of a base of cover
images. The base of cover images enables to obtain a “ground truth” about
the cover images, in terms of the characteristics considered. The point is not
to learn “what a cover image looks like”, but more precisely “what a cover
image looks like in terms of the characteristics chosen”.

This first scheme of steganalysis uses mainly histograms of pixel values,
and is therefore named Histogram attack. As described before, in the case of
LSB embedding, the LSBs are directly modified to embed the message. Con-. . . for example

histograms of pixel
values.

sider that the image is in grayscale format, i.e. the values of its pixels range
from 0 to 255 (8 bits to code the grayscale). In the case of LSB embedding,
the pixels with an odd value are decreased (or unmodified if it leads to a

3.3 performing steganalysis: schemes 31

zero) and the pixels with an even value are increased (or unmodified if it
leads to a 1).

In this setup, an even pixel value and the following odd pixel value
(2j, 2j+ 1) are flipped during the embedding of the message bits. Such a pair
is called Pair of Values (PoV) and the whole histogram attack relies on these.

Denote by Hc = (H0
c, . . . ,H255

c)T the histogram values for all pixel values
of the cover image Ic (which has N pixels), and by Hs the same histogram,
for stego image Is. Denote by k the number of bits of the message m that
was embedded in Is. Assuming that the message is composed of random
bits (which can be achieved, by compressing it e.g.), it is possible to compute

the expected number E
�

H
2j
s

�

of pixels with value 2j in Is,

E
�

H2j
s

�

= H2j
c −

1

2

k

N
H2j

c +
1

2

k

N
H2j+1

c , (3.2)

since on average k
2 bits already have the proper value vis a vis the message

m bits. The value for H2j+1
s is obtained in the same fashion In the case of

embedding at full
capacity, the
steganalysis test with
histograms is
straightforward. . .

E
�

H2j+1
s

�

= H2j+1
c −

1

2

k

N
H2j+1

c +
1

2

k

N
H2j

c . (3.3)

Then, in the obvious case where k = N, that is a message bit has been

embedded in each pixel value, we have E
�

H
2j
s

�

= E
�

H
2j+1
s

�

, which gives

2E
�

H
2j
s

�

= H
2j
s +H

2j+1
s from Equations 3.2 and 3.3 and it becomes easy in

this case to just test if H2j
s = H

2j+1
s to see if a message is embedded.

In less obvious cases (k �= N), the use of a χ2-test, for example Pearson’s,
permits by the computation of the p-value for the χ2-test to check whether
an image is stego or not, and to estimate the length of the message. By first
calculating the χ2 statistic X2 as

X2 =

d�

j=1

�

H
2j
s − E

�

H
2j
s

��2

E
�

H
2j
s

� , (3.4)

with d− 1 = 127 degrees of freedom (Hs =
�

H0
s , . . . ,H255

s

�T
). From the Otherwise the use of

a χ2-test permits to
perform it reliably.

previous analysis (k = N), the behaviour is here similar: a large value of
X2 means that the actual value of H2j

s does not follow the expected value

E
�

H
2j
s

�

and therefore, that there is no message embedded. The reciprocal

goes for a small value of X2. A threshold has to be set on X2 to make the
final decision on the image being stego or cover.

The length of the message can then be determined by analyzing the
statistical significance of X2, by its p-value. As pointed out in [30], this only This approach enables

to estimate the
message length, with
some assumptions.

works if the “path” used for modifying the LSBs (i.e. the order in which they
have been modified), is known. Since some algorithms were performing the
LSB modifications in a predefined order, the following analysis can work. If
the path is known only to the sender and receiver (by the use of a stego-key),
the use of the p-value for the determination of the message length is not
possible.

32 steganalysis

1

0

0 .2

0 .4

0 .6

0 .8

1 0 0 %2 0 4 0 6 0 8 0

p
-v

al
u

e

Amount of pixels visited along the path

Figure 8: Example of the evolution of the p-value of a X2 statistic for a LSB embedding
stego scheme. Here the message was obviously embedded in the beginning
of the “path”. Inspired from [30].

The p-value for the statitic X2 is computed as

p
�

X2
�

=

�

2
d−1
2 Γ

�

d− 1

2

��−1 �∞

X2
e−

t
2 t

d−1
2 −1dt, (3.5)

(with Γ denoting the gamma function Γ(y) =
�∞
0 ty−1e−tdt) which will be

of value 0 if there is no message in the considered pixel, and going towards
1 if there is a message. Hence, by monitoring the p-value along the path of
pixels, one gets the evolution depicted in Figure 8, for example (this is not
obtained from a real simulation).

The p-value starts to decrease dramatically once the pixels containing
message bits have been all visited, revealing hence the length of the original
message.

Again, this attack only works in the case where the path is either trivial
(the message is embedded into each LSB from the beginning of the image to
the end) or if one knows the non-trivial path. In practical cases, this does not
happen.This scheme is mostly

historical now. Stego
schemes are more
careful regarding the
first order statistics.

This simple histogram-based and χ2-test attack are only efficient for rather
simple stego schemes, or schemes for which the embedding path can be
devised — which is an important side-information. Recent stego schemes
escape such detection means by preserving as much as possible the first-order
statistics. The Outguess scheme, for example (see 2.4.2) tries to avoid this sort
of attacks by only embedding in half of the available LSBs. The remaining
half is meant to restore the distorted histograms of the DCT coefficients. As
for visual detection, such statistics can be considered as superseded by the

3.3 performing steganalysis: schemes 33

following other schemes. Higher-order statistics have then been devised to
address these new algorithms escaping first order statistics detection.

3.3.3 RS steganalysis

The concepts for RS steganalysis are presented in [48]. The name of RS is
related to that of the pixel groups that are defined in this idea: Regular and
Singular. Here we use spatial

dependencies between
pixels to identify
discrepancies.

The main idea is to extend the first-order statistics to spatial dependencies:
the relationships between pixels (their values) are taken into account. Since
the embedding process in the LSBs changes many values, it most likely
increases the noise in the areas where a message is embedded. The goal is
to measure the amount of noise created in the overall image, proceeding
by small areas. For this purpose, the smoothness G of a set of pixels i =

(i1, . . . , in)
T , with ij = i(xj,yj) (xj and yj describing the coordinates of the

pixel i(xj,yj) in the image i), is computed as

G (i) =

n�

j=1

�

�ij+1 − ij
�

� . (3.6)

Obviously, the larger gets G, the noisier is the set of pixels i and the more
likely it is to hold a hidden message. Then, the LSB flipping process is
described by three functions, F1, F−1 and F0 such that (with pixel values in
�0, 255�)






F1 : 0 ↔ 1, 2 ↔ 3, . . . , 254 ↔ 255

F0 : 0 ↔ 0, 1 ↔ 1, . . . , 255 ↔ 255

F−1 : −1 ↔ 0, 1 ↔ 2, . . . , 255 ↔ 256

. (3.7)

Using this notation, the potential pixel groups i are classified in three
groups

i is regular if G (F (i)) > G (i)

i is singular if G (F (i)) < G (i)

i is unchanged if G (F (i)) = G (i)

, (3.8)

from which it is clear that a regular group most likely has a message
embedded, compared to a singular group. Hence, after the embedding of
a message, the relative amount of regular groups (divided by the total
number of groups) R is larger than that of singular groups S. Estimates of
the evolution of these two amounts can be obtained from experiments for
varying amounts of LSB modifications. This approach can

also help estimating
the length of the
message, for
quantitative
steganalysis.

Comparing the R and S values obtained for a new suspicious image to
the curves obtained experimentally, enables to identify the image as stego
or cover (and have a message length estimate which is very accurate for
some stego algorithms, according to [48]). One can refer to [38] for a general
framework of RS steganalysis for LSB embedding.

34 steganalysis

JPEG version Spatial cropped versionSpatial Domain version

4 pixels

4 pixels

JPEG version (cropped)

Figure 9: The calibration process as proposed in [46]: the considered image is first
decompressed to spatial domain, cropped horizontally and vertically by
4 pixels, here, and then re-compressed using the very same quantization
matrix and quality factor as that of the originally considered image.

3.3.4 Calibration-based steganalysis

One of the most useful information the steganalyzer could wish to get, for the
steganalysis to be made easier, is the original cover image. From it, estimating
whether the image has been tampered with would be very easy. While this
never comes true in practice (except if the sender is not careful regarding
the choice of the images), the cover image behavior and characteristics can
be estimated, by the process of calibration, for example. In [46], Fridrich et al.The calibration

process (decompress.
crop the image and
recompress) gives an
estimate of the cover
image’s features.

crop the image by a certain number of pixels in both vertical and horizontal
directions. The goal is to possibly “break” the inherent stego message lying in
the image, and thus regain access to image characteristics that are close to that
of the cover one. Figure 9 illustrates the idea: the suspicious image JPEG_1 is
first decompressed to the spatial domain, and then cropped horizontally and
vertically by n = 4 pixels (n can be different from 4). The resulting cropped
image is then recompressed into JPEG_2 using the very same parameters
(quantization matrix, quality factor) as that of JPEG_1.

Once both images are available, it is possible to compute a specific char-
acteristic F (inherent to the image) on both of them, and compare the two
values for example with the L1 norm �F (JPEG_1) − F (JPEG_2)�L1

. With
the calibration in mind, most the previously existing features (first order
and higher order statistics, for example) are re-visited and deem significant
improvements when put together. In [46] is proposed a set of overall 23

functionals F to use with the calibration. This set of features is meant for
JPEG images exclusively, which are the only type of images considered in
this dissertation.

For the following, let us denote by I(k)(x,y) the quantized DCT coefficient
of coordinates (x,y) in the JPEG sub-block I(k) and the quantization matrix
for this image i (of which I is the DCT coefficients representation) by Q(x,y).
For the considered case, we have blocks of size 8× 8 and therefore 1 � x,y �

8. Let us finally denote by B the total number of sub-blocks I(k), 1 � k � B

and by H (r) the histogram for DCT value r.A set of first and
second order features
is devised, to use with
calibration.

The first feature of this 23 feature set is the global histogram of DCT values
H = (H (1) , . . . ,H (R))T , with R = maxI(r).

As discussed before, the histogram attack can be countered (at least par-
tially), for example by the Outguess approach, where the distortions caused
to the global histogram of the LSBs are canceled by modifying the remain-
ing LSBs (no message embedded in it, though). In order to try and detect

3.3 performing steganalysis: schemes 35

these modifications, individual histograms are used: the set of individual
histograms {hx,y(r)} for DCT coefficient (x,y) is added to the set. Only a
small number of these histograms is actually used, since only low frequency
DCT coefficients have zeros to embed message bits. In the end, the set
{hx,y(r), (x,y) ∈ {(1, 2) , (2, 1) , (2, 2) , (1, 3) , (3, 1)}} is used.

A last feature of the first order type is included, the “dual histograms”
gx,y(Idh), which are defined in [46] as the number of occurrences of the
DCT value Idh at the (x,y) DCT coefficient (for a fixed (x,y)) among all
sub-blocks of the DCT array I,

gx,y(Idh) =

B�

k=1

δIdh,I(k)(x,y), (3.9)

where δa,b is the Kronecker symbol such that δa,b = 1 iff a = b and 0

otherwise.
Again, these dual histograms are only computed for certain DCT values,

namely −5 � Idh � 5.
These first-order features by definition only capture the dependencies

within each of the sub-blocks. The goal of the introduced second-order
features is to capture the dependencies between the sub-blocks of the image,
with the rationale that the stego algorithm has probably distorted them, even
if it managed to keep the inner sub-blocks dependencies rather similar to the
cover.

For that matter, the variation V , two types of blockiness B1 and B2 and three
measures N00,N01 and N11 based on the co-occurrence matrix of neighboring
DCT coefficients, are the final six features of the set. The variation

measures the
dependencies between
JPEG blocks.

The variation V capturing the dependency between neighboring sub-blocks
is

V =
1

|Irow|+ |Icol|





8�

x,y=1

|Irow|−1�

k=1

�

�

�I(Irow(k))(x,y) − I(Irow(k+1))(x,y)
�

�

�

+

8�

x,y=1

|Icol|−1�

k=1

�

�

�I(Icol(k))(x,y) − I(Icol(k+1))(x,y)
�

�

�



,

(3.10)

with Irow and Icol being the vectors of sub-blocks indices while scanning
the image i by rows and columns, respectively. The blockiness

measures the inter
JPEG block
dependency over the
whole image.

Following are the two blockiness measures, B1 and B2. Bj is defined on
the decompressed (supposed gray-scale) JPEG image as

Bj =
1

N �(M− 1) /8�+M �(N− 1) /8�





M�

y=1

�(N−1)/8��

x=1

|i (8x,y) − i (8x+ 1,y)|

+

N�

x=1

�(M−1)/8��

y=1

|i (x, 8y) − i (x, 8y+ 1)|j



 ,

(3.11)

36 steganalysis

Global Histogram H/ �H�
Individual histograms h1,2

�h1,2� , h2,1

�h2,1� , h2,2

�h2,2� , h1,3

�h1,3� , h3,1

�h3,1�
Dual histograms g(−5)

�g(−5)� , g(−4)
�g(−4)� ,. . . , g(4)

�g(4)� , g(5)
�g(5)�

Variation V

Blockinesses B1,B2

Co-occurrences N00,N01,N11

Table 2: The 23 DCT feature set [46].

where i(x,y) denotes the gray-scale value (not a DCT value) of pixel (x,y)
for the image i of dimensions N×M.

Finally, the three last featuresN00,N01 and N11 are computed out of the
co-occurrence matrix C of neighboring DCT coefficients, of which element
(u, v) is given by

C(u, v)=
1

|Irow|+ |Icol|





|Irow|−1�

k=1

8�

x,y=1

δu,I(Irow(k))(x,y)δv,I(Irow(k+1))(x,y)

+

|Icol|−1�

k=1

8�

x,y=1

δ
u,I(Icol(k))(x,y)δv,I(Icol(k+1))(x,y)



.

(3.12)

The three features are then computed from C asThese measure the
spreading of the
values of the
co-occurrence matrix. N00 = CJPEG_1(0, 0) − CJPEG_2(0, 0)

N01 = CJPEG_1(0, 1) − CJPEG_2(0, 1)

+CJPEG_1(1, 0) − CJPEG_2(1, 0)

+CJPEG_1(−1, 0) − CJPEG_2(−1, 0)

+CJPEG_1(0,−1) − CJPEG_2(0,−1)

N11 = CJPEG_1(1, 1) − CJPEG_2(1, 1)

+CJPEG_1(1,−1) − CJPEG_2(1,−1)

+CJPEG_1(−1, 1) − CJPEG_2(−1, 1)

+CJPEG_1(−1,−1) − CJPEG_2(−1,−1)

(3.13)

with CJPEG_1 being the co-occurrence matrix of image JPEG_1 and simi-
larly for JPEG_2.

This finally gives a set of 23 features, summarized in Table 2. Note that the
histograms features are normalized.

Using such a set, most of the existing stego algorithms are detected. Thanks
to the use of first and second order statistics and most of all, to the calibration
process, this steganalysis is very successful.

Later on, in [99], the set is extended (by removing the normalization and
taking all the values from the co-occurrence matrix C) to a much larger 193
DCT features set.

3.3 performing steganalysis: schemes 37

This extended set is widely used in the presented publications in this
dissertation. First, because the DCT features actually have a direct meaning,
that is, they are not the result of a projection or transformation that would
destroy the original physical sense. In this respect, they are interpretable,
subject to feature selection, for example, as demonstrated in publications
C (sections 5.3 and 5.4), D (sections 4.2 and 4.3) and E (sections 4.3 and
4.4). And second, because the large number of its features makes it a good
candidate to such feature selection, which is important in steganalysis (see
chapter 6 for details).

It is worth noting, finally, that a recent stego algorithm, the YASS, is not
being properly detected by the DCT features if using the calibration process
[80]. Using the un-calibrated version of the features though, provides better
results (the calibration is called Cartesian calibration in [80], since it uses
the Cartesian product of the features for JPEG_1 and JPEG_2). Overall, the
calibration process is working especially well for stego algorithms which
tend to respect the JPEG block structure. The calibration process “breaks” the
original structure of the image and therefore the stego structure embedded.
Algorithms such as YASS, for example, using de-synchronization regarding
the JPEG blocks are not directly affected by the calibration process.

3.3.5 Markov-based steganalysis

The so-called Markov-based features are derived in [116] by the use of a Markov
process to model the dependencies between the differences of the JPEG
DCT values. From the original publication, this scheme clearly outperforms
the previously presented calibrated DCT features. From the principle that
many experts are better than just one, to make a decision, both approaches
have recently been combined, into a large 324 features set, using both DCT
and Markov-based calibrated features. The results outlined in [99] again
outperform previous schemes. The dependencies

between pixels are
modeled as Markov
processes.

Let us present quickly the concept of the Markov-based features. In the
original publication [116], the authors state and show empirically that there
is a high correlation between the absolute values of DCT coefficients along
the horizontal, vertical and diagonal directions. The goal of the Markov
process is to model these dependencies and use the values of the transition
probability matrix as features (actually a reduced subset of the transition
probability matrix).

Denoting again I(x,y) the value of the DCT coefficient (and therefore
|I(x,y)| its absolute value) at position (x,y) in the image i with N rows and
M columns (i.e. 1 � x � N and 1 � y � M), the so-called difference arrays
of DCT coefficients for horizontal direction Fh, vertical direction Fv, main
diagonal direction Fd and minor diagonal direction Fm are obtained as

Fh(x,y) = |I(x,y)|− |I(x+ 1,y)| ,

Fv(x,y) = |I(x,y)|− |I(x,y+ 1)| ,

Fd(x,y) = |I(x,y)|− |I(x+ 1,y+ 1)| ,

Fm(x,y) = |I(x+ 1,y)|− |I(x,y+ 1)| ,

(3.14)

38 steganalysis

from which the actual transition probability matrices Mh, Mv, Md and
Mm for the four directions are

Mh(j, k) =

�N−2
x=1

�M
y=1 δFh(x,y),jδFh(x+1,y),k

�N−1
x=1

�M
y=1 δFh(x,y),j

,

Mv(j, k) =

�N
x=1

�M−2
y=1 δFv(x,y),jδFv(x,y+1),k

�N
x=1

�M−1
y=1 δFv(x,y),j

,

Md(j, k) =

�N−2
x=1

�M−2
y=1 δFd(x,y),jδFd(x+1,y+1),k

�N−1
x=1

�M−1
y=1 δFd(x,y),j

,

Mm(j, k) =

�N−2
x=1

�M−2
y=1 δFm(x+1,y),jδFm(x,y+1),k

�N−1
x=1

�M−1
y=1 δFm(x,y),j

,

(3.15)

of which only the central 9× 9 part of each matrix is taken (since taking the
full sized matrix would yield a too large number of features). The resulting
set has hence 4× (9× 9) = 324 features. As said, in [99], Fridrich proposes to
apply the calibration procedure to these features, resulting in an improvement
of the performances.

The Markov approach is rather successfull for classical stego algorithms,
but would again most likely fail for the YASS case. In [86], Bin et al. indicate
that Markov-based features would probably work on the original version
of YASS for the location of the embedding blocks is not truly random and
hence altered dependencies between DCT coeffcients could be detected. A
version of YASS using truly random location for the blocks would on the
contrary probably not be detectable by the Markov approach.

3.3.6 SPAM features

The last discussed steganalysis scheme is proposed by Tomàš Pevnỳ in
[102] and named SPAM features, for Substractive Pixel Adjacency Matrix. The
SPAM features are meant in the first place for the steganalysis of the YASS
stego algorithm and globally for LSB embedding based schemes. The ideaMarkov processes are

also used to model
more directions in the
image.

is closely related to that of the previously described scheme: modeling the
difference arrays (this time in the spatial domain, though) with Markov
processes, of first and second order. The main difference here is that the
difference arrays are computed along “both” directions for horizontal (left
and right), vertical (up and down), main diagonal and minor diagonal. As in
the original publication, we denote by arrows each of these eight directions
{←,→, ↑, ↓,�,�,�,�}.

Using the same notation as in the previous section, denote by F→(x,y) =
I(x,y) − I(x,y+ 1) the difference array for the first direction (the remain-
ing seven are defined in the same fashion). Again, the first order Markov
transition probability matrix is given by

M→(j, k) = P (F→(x,y+ 1) = j|F→(x,y) = k) , (3.16)

with the same sort of restriction on the values of j and k (restricted to a set
�−T , T�, with T = 4 for these first order in the original publication).Markov transition

probability matrices
are computed for first
and second order
transitions.

3.4 a pitfall in steganalysis 39

The second order one is then

M→(j, k, l) = P (F→(x,y+ 2) = j|F→(x,y+ 1) = k, F→(x,y) = l) , (3.17)

also with j, k and l restricted to �−3, 3� for these second order features. This
restriction is again meant to reduce the dimensionality of the feature set
(which is already 686 features for the second order case).

The final features sets of first order F(1) and of second order F(2) are
obtained through

F(j) =

�

1

4

�

M→ + M← + M↓ + M↑

�

;
1

4

�

M� + M� + M� + M�

�

�

,

(3.18)

being the concatenation of the vectors of features. The first (resp. second)
order term lies inside the M notation, for simplicity of notations here (as
depicted in Equations 3.16 and 3.17). The final feature set

is a concatenation of
direct directions and
diagonal ones.

As pointed out by Pevnỳ in [102], the order of the Markov process and
the threshold T control the extent of the space of features (the complexity of
the Markov model). If one has a good classification model to discriminate
by using such large number of features (and sufficient computational power,
along with a very large database of images), it would be possible to go
beyond the thresholds proposed here. These problems are presented in
the next chapter 4 and experimentally illustrated in chapter 6 (referring to
publications C, D and E).

3.3.7 Undiscussed schemes

As for the review of stego algorithms in the previous chapter, this presented
list of steganalysis schemes is by no means exhaustive. It only attempts to
cover some the most widely recognized and used steganalysis schemes, for
their meaningfulness and innovative aspects. A more thorough covering of
steganalysis schemes can for example be found in [47].

3.4 a pitfall in steganalysis

In the previous discussion, we have dealt with features sets of growing size:
only the histogram of DCT values, for the histogram attack, then followed
by the 23 features of the original calibrated DCT set, expanded to 193 later
on; the merging of the Markov-based set of 324 features, with the 193 ones
from the DCT set into a 517 features set (brought down to 274), and finally
the SPAM ones, which lead to potentially very large feature sets (686 for a
“restricted” second order Markov process).

All these feature sets are clearly getting larger, and the evolution is likely
to be on the growing slope in the future: one wants to capture as many char-
acteristics of the images in order to model them better and better, and thus
make a “cleaner” difference between stego and cover — a better steganalysis.
The recent trend — giving very promising results in terms of performances
for the steganalysis — seems to be in combining the sets of features, in order

40 steganalysis

to better cover the different domains in which the image characteristics are
expressed. This will also lead to larger and larger feature sets to analyze.The growing size of

feature sets can be a
problem in Machine
Learning. . .

Although this issue will be discussed more lengthily in the next chapter 4,
the number of samples has to grow along with the number of features used.
This problem is one of the famous Curse of Dimensionality and is not the only
one related to the growth of the feature space.

Intuitively, we need to have larger number of features and larger number
of samples, to accommodate the Curse. Therefore, the overall data set —
the matrix holding in each column a different feature and in each row a
different image — is growing exponentially (see section 6.1.1 for more details
on high-dimensionality related problems).

One obvious problem is then to have a classification or regression model
that can accommodate such large data sets in reasonable computational time:
no one wants to wait weeks to extract the features out of a base of images,
and then train a model to finally be able to predict on a few images, whether
steganography has been performed.

3.5 conclusion

The concept of security in steganography/ steganalysis is classicaly defined in
an information-theoretic sense, by measuring the “differences” between the
cover image (original) and the stego one (with an embedded message). Since
this theoretical definition contains quantities too difficult to estimate, the
typical steganalysis framework reverts to an approximation for the estimation
of the security. This estimation is most often based on the use of a certain
amount of characteristics descriptive of the image considered, the features.

Using these features with a machine learning model enables to obtain an
estimation whether an image is cover or stego. The drawback of the feature-
based steganalysis is similar to the commonly encountered problem in
Machine Learning: the growing dimensionality (corresponding to the number
of features) — and therefore the global size of the data.

The next part (chapters 4 and 5) of this dissertation first presents a short
state of the art in Machine Learning (mostly directed towards regression and
classification problems, which are of interest for the steganalysis problem) in
chapter 4, followed by the presentation of a new model for which training
is fast enough to manage the large data sets coming from steganalysis, for
example: the Optimally-Pruned Extreme Learning Machine (chapter 5 and
publications A and B).

Part II

A FA S T, E F F I C I E N T A N D R O B U S T M A C H I N E
L E A R N I N G T E C H N I Q U E : O P - E L M

4A S H O RT R E V I E W O N M A C H I N E L E A R N I N G

In an attempt to summarize the vast field of Machine Learning into a few
key concepts most relevant to the steganalysis and steganography related
problems, we propose in this chapter to first define precisely the steganalysis
classes of problems in machine learning terminology. We refine the overview
proposed in this chapter to supervised binary classication and supervised regres-
sion, which are the two very specific cases of machine learning problems at
interest in this dissertation.

We also propose an established “procedure” to properly train, validate,
build and test a machine learning model, on the general case. Finally, the
machine learning models used in the publications of this dissertation are
presented, with references to other famous related models.

4.1 learning problems

4.1.1 What is Machine Learning

It takes a new born between 6 and 24 months on average [91] to say its first
(intelligible) words. The whole process of learning pronunciation, language
structure, word construction and so on, takes even longer than this and
is potentially a lifetime training and evolution. If we think about it, the
amount of data to process for a baby’s brain is tremendous. Only for the
language part of the learning, it requires the processing of the mouth muscle
movements (imitation of the surrounding people), remembering sequences
of phonemes to create words, and associating these words with a context
and content. Machines probably

lack the
computational power
— yet — to process
enough data to be able
to imitate the brain.

A human brain can apparently do this. At the time of this dissertation,
a machine cannot. Although advances in voice synthesis and language
modeling have enabled the creation of systems that seem to be human when
asked questions, we are still very far from creating an actual structure able
to learn a whole human-type language by itself.

The idea of mimicking human abilities such as the language, by machines is
globally named Artificial Intelligence, of which Machine Learning is a sub-class.
Machine Learning only aims at learning, that is to say, observe examples of a
specific phenomenon in order to model its underlying process. If a sufficiently
good model for this phenomenon is found, new examples can be used, either
to make the model learn new insights on the phenomenon, or predict what
happens for these specific examples.

The example given in the introductory part of [6] is interesting because
it covers most of the aspects of the machine learning problem. Consider
an important supermarket chain, having many shops throughout many
countries. In order to advertise the right kind of products at the right time
and to the right customer, they need to know what customers buy, when and
possibly why. The cashiers’ terminals are recording all this information about

43

44 a short review on machine learning

what is bought, when and by which customer, and in the case of millions of
customers everyday, this can create terabytes of data in a day or so.Machine learning

tries to extract an
underlying
generating process
from the data.

In all this data, only a small amount of information is actually relevant and
useful, for example for advertising purposes. The aim of machine learning
(precisely data mining, in this case) is then to identify a pattern, an underlying
process in the data: most likely indeed, customers are not buying the products
at random. While it is obviously a very hard task (if possible at all) to
model completely a customer’s behavior based on this data, a good enough
approximation of the behavior is sufficient already. And once we know that
Mr. Muumipeikko buys chocolate-based products during the dark days of
winter and beer and sausages when the first days of summer approach,
it becomes easier to target the advertising and the offers for that specific
customer.

In the steganalysis framework, the idea is to obtain a model of what
an image looks like, in terms of the data we extract from it (the features).
Provided that the model can learn the difference between a cover image and
a stego image, in the classical qualitative steganalysis case, we can identify
suspicious images as being stego properly.

4.1.2 Classes of learning problems

In this dissertation, we consider that a problem is described by a data set,
which takes the form of a matrix x, called inputs (or input data). Other meansA problem is reduced

to the data acquired
from it, with samples
and variables/
features.

of structuring the input data such as tensors or databases are not considered
here. The typical formulation uses the rows of x as samples (examples of the
observed phenomenon, being images in the steganalysis case), and columns
as variables (or features, to refer to the steganalysis terminology). The data
set is usually acquired from a specific source, either by measuring directly
some quantities (steganalysis is in this case), or obtained from a supposeably
reliable source.

Reliable and relevant data

In the following, we consider the data to be reliable. This means that we do
not consider the possibility that part of the data is wrong (in the sense that
it would describe the phenomenon improperly), or missing (some values
missing for some samples).

The concept of missing values in machine learning is by itself a whole
branch of the field and will not be discussed in this dissertation. One can
refer for example to [89, 121, 90, 120] for a bibliography and insights on that
specific problem.The data is supposed

to be reliable but not
necessarily relevant.

The problem of having “wrong” data is difficult to define, but let us clarify
the assumption made here. By “wrong”, it is meant that the considered part
of the data is trying to mislead voluntarily the model. For example, if two
sensors are measuring the same phenomenon, but one of them has an in-
verted polarity compared to the other, we would try to model a phenomenon
based on its behavior (first correct sensor) and the opposite of it (second
inverted sensor).

Data that is irrelevant to the task (for example some random noise or the
outdoor temperature for a steganalysis problem) is not considered as “wrong”

4.1 learning problems 45

data. The problem of determining if data is relevant is brushed in section 6

about dimensionality reduction, which is a means of discarding such data
from the original data set.

It is a reasonable assumption to suppose that we do not have “wrong” data
in the steganalysis framework: the samples (the images) have to be properly
selected so that they are natural images and not some pure random noise or
some other digital object disguised as an image; and the features presented
in chapter 3 are clearly sensible (although there might be redundancy in
them, e.g.).

Given this setup, one can define two main classes of learning problems, in
machine learning, the unsupervised and the supervised ones.

Unsupervised learning

This specific class of learning makes the assumption that only the data x is
available, and tries to infer an underlying structure/behavior in this data. Unsupervised

learning aims at
finding a structure in
the data without any
output information.

A classical example of this class is the problem of Blind Source Separation
(BSS) [73], of which the so-called cocktail party problem is an instance. Imag-
ine a cocktail hall where a party is being held, with many invitees speaking
together at the same time. In the resulting “noise” from the simultaneous
talking, separating each of the voices seems a very hard task (although it
seems that humans can identify two voices simultaneously and separate
them clearly from the rest [118]). In this case, the rows of the data matrix x

are the recorded signals in the cocktail hall, while the columns correspond to
the sampling of the sound recorded. The Independant Component Analysis
(ICA) [73, 29] algorithm enables to isolate the sources s such that x = w · s

(with w being the mixing matrix, in the linear noiseless ICA case), provided
that there are enough recorded signals.

Another use of unsupervised learning is clustering. This class of learning
problem aims at separating the data as best as possible, so as to create clus-
ters. In the previously mentioned example of the supermarket selling goods
across many countries, it might be of interest to find groups of customers
with specific behaviors to analyze: some “expected” groups with identified
similar behaviors will be easier to target in terms of selling strategies, while
unexpected groups formed in the clustering process may reveal the unex-
pected behaviour of a part of the population. Which this time would lead to
a new, more adapted and specific selling strategy.

Supervised learning

This second class of learning problem is the one considered in the rest of this
dissertation. Supervised learning

assumes the existence
of a teacher.

In this case, the presence of a teacher (supervisor) is assumed, in addition
to the data x, so that the model can be trained using a reference for each of
the samples in x. This teacher usually takes the form of another matrix, of
outputs denoted by y.

For the context of qualitative steganalysis, for example, y is a vector consti-
tuted by elements depicting two classes: the first one coding for the image
state “stego” and the second one for “cover”. For quantitative steganalysis, it
is a vector of positive real values, each representing the message size for each

46 a short review on machine learning

sample (image). The difference between these two problems is discussed in
the following subsection 4.1.3.

4.1.3 Structure of the supervised learning problem

With the assumption of a supervised learning problem, we can define two
types of supervised learning, each of them with a different type and size of
the output matrix y.

The first type of supervised learning is called regression. In this case, the
output y is a vector of generally real values, to be predicted. This means that
the model M predicts values in R:

M : R
N×M −→ R, (4.1)

with N the number of samples and M the number of features (variables).
This type is the one of quantitative steganalysis, for example. The problem isThe classical problem

formulation in terms
of approximation for
regression.

usually formulated as

y = f (x) +N (0,Σ) , (4.2)

with Σ the covariance matrix for the zero-mean noise N (0,Σ) and f

the “process” underlying in the data x. The model M hence tries to best
approximate f.

The second one is classification, already mentioned in chapter 3 for the
qualitative steganalysis problem. This time, the outputs y are categorical and
can be of two different types: nominal or ordinal. Nominal outputs have no
sense of order between them. For example, coding blue as 1, red as 2 and
green as 3, one cannot sort the values 1, 2, 3 with some standard ordering
operation. The numerical attribute to code the meaning is here purely a
commodity for manipulating the data.There are two types of

classification data:
ordinal and nominal.

The ordinal outputs have a sense of order; for example, the age of a person,
expressed in full years. In the end, both classification outputs (ordinal and
nominal) y can be expressed as being in N. In this dissertation, we only
consider nominal outputs for the classification problem (qualitative steganalysis).
Moreover, we restrict the nominal type to being only a binary classification
output. The case of a multi-class classification problem can be rather complex
and is not discussed here, although it is used in the blind steganalysis
approach (see section 3.2). Eventually, it can be brought back to a binary
classification problem using multi-outputs: consider a problem with classes
in �1, 3� , one can code each of the classes as following, using the binary
choice of classes �0, 1�:

1 −→ [0 0 1]

2 −→ [0 1 0]

3 −→ [1 0 0]

(4.3)

It can be argued that predicting a single value (single output problem) in
the �1, 3� range is different from predicting an output like [0 0 1] for example
(multi-output problem), since one predicts three outputs at once then. The
possibilities of multi-output problems — y being a matrix and no longer a

4.1 learning problems 47

vector — are not discussed in this dissertation and the previous example is
merely meant to illustrate a possibility of dealing with multi-classes problem.
Only binary classification ones are in the scope of this dissertation. One We only consider

binary classification
here.

can refer to [104] and [5] for recent improvements in dealing with multi-
class problems and to [6] for a state of the art and modifications of classical
machine learning models for the multi-class case.

4.1.4 Building a model for the learning problem

With the learning problem fixed (regression or classification) it is possible to
build a model and train it on that particular data. The process of building a Four steps to build a

model.model requires at least four steps: selecting the model class, the model structure,
build the model and finally validate these choices. An additional fifth step (if
the data is available for it) can be used, to further ensure about the quality of
the model on unused data; this is the test part. Each step is detailed in the
following.

Choosing the model class

The model class selection is the first step and is primarily an informated
choice on the user side: some models are meant for unsupervised learning
and will obviously not be appropriate here; some other models are known
to have strong limitations regarding irrelevant or correlated data (e.g., in
the case where two or more features are describing the same part of the
phenomenon in the very same fashion); and some models are known to
be better than others on some specific problems for which they have been
designed in the first place (see chapter 5 and Reservoir Computing for
time-variant processes, for example). An informated a

priori decision is
required to select the
model class.

In the end, the user has to decide a priori which model M to use among
the large choice that exists. Section 4.3 gives a few examples of some famous
model classes, and therefore, often used, especially in the framework of
steganalysis.

Model structure selection and error criterion

Choosing the model structure is intimately related with the next step, the
model validation.

A model has usually a certain number of hyper-parameters, which relate to
the model structure design choices (for example the order of a polynomial
curve to fit to the data) and parameters which have to be determined using
the data itself (the coefficients of the polynomial curve of fixed order). We need to find the

right
hyper-parameters for
the model. . .

The parameters of a model M are therefore part of the building of the model
and their determination requires to use the data.

The goal of this step is to find a possible optimal set of l hyper-parameters
Θ = (θ1, . . . , θl) such that the model M (x,Θ) makes the smallest error on
the data x, regarding the output y. The error εr in regression can be defined
by a risk function frisk which will quantify how far the model’s estimation
ŷ = M (x,Θ) for a specific fixed set of hyper-parameters Θ is from the real
value y

εr = frisk (ŷ, y) = frisk (M (x,Θ) , y) . (4.4)

48 a short review on machine learning

For the case of a regression learning problem (single output), the function
f is typically a Mean Squared Error (MSE) risk function, that is

frisk (ŷ, y) = fMSE (ŷ, y) =
1

N

N�

j=1

�

ŷj − yj
�2 , (4.5)

where ŷj is the j-th component of the vector ŷ = (ŷ1, . . . , ŷN)T , the model’s
estimation and similarly for y. For the following of the dissertation, we also. . . and for that we

need a criterion to
evaluate the model
performance.

define the Normalized Mean Square Error (NMSE) [58] as the MSE normalized
by the variance of the output y,

fNMSE(ŷ, y) =
fMSE(ŷ, y)

var (y)
. (4.6)

Note that in the case where the prediction ŷ is the mean of y, the NMSE is
1 meaning that the prediction is poor (note also that a NMSE can be larger
than 1, for models giving a worse prediction than the mean of y. . .).

In the same spirit, one can define an error for the binary classification
problem, assuming that we are interested in having the highest accuracy, as
defined in 3.1, by the ratio

Acc =
TP+ TP

NP +NN
, (4.7)

with TP and TN the amounts of true positive and negative, respectively,
and NP (and NN) the total numbers of positive (respectively negative) in-
stances. The error εc in classification can then be defined as

εc = 1−Acc, (4.8)

which can be expressed in percentage, and corresponds to the “percentage
of incorrect classification” intuitively. Note that the problem of minimizing
ε is very different for the regression and classification cases presented here.
Actually, most models will preferably minimize the MSE εr, even for the
classification case, and eventually report the classification error εc obtained
using the same hyper-parameters Θ = Θr that minimize the MSE. This can
for example be due to historical reasons where the original model’s algorithm
was meant only for regression problems, minimizing the MSE and has later
on been adapted to classification problems.

It is not a real issue to minimize the MSE for a binary classification problem,
since there are only two classes in y. Minimization of the MSE leads anyway
to minimizing the discrepancies between ŷ and y.

Building the model

This step is usually straightforward on the user side. With a fixed model
class and set of hyper-parameters, the model can be built on the data x and
is then ready to be used on other data: the model parameters are determined
in this step, through the model’s internal structure.

An important part of the model building requires to separate the original
data set x so that building the model and validating it happen on two different

4.1 learning problems 49

subsets of the original data. One could say that the hyper-parameters (“exter-
nal” to the model) are optimized to minimize the validation error, while the
parameters (“internal” to the model) are devised to minimize the training
error, computed during the model building.

Validation of the model

Now that we have defined a way to measure the error (and hence, a criterion
to obtain an optimal set of hyper-parameters for the model), let us have a
practical approach on how to manage the data to evaluate the error ε for
different sets of hyper-parameters Θ.

Originally, we can assume that we have a unique data set x containing all
the available data about the phenomenon: in steganalysis, we have N rows,
each containing the features (in the M columns) of the N images of the base
of images. The model should be

validated on data not
used for training
then.

In order to estimate the model M for a fixed set of hyper-parameters Θ, we
need learning data xl, which will be a subset of the whole data x. The model
is built on xl and the learning error εl is computed εl = M (xl,Θ). For most
classes of models in machine learning, it is possible to have εl > 0 as small
as possible, given enough time to find the correct set of hyper-parameters
Θ = Θl that minimizes sufficiently εl. The problem is then that the model
has also learned the noise that is present in the data: real data, that is obtained
from actual phenomena, always has noise in it — a part that should not
be modeled. The over-fitting effect occurs, then. Figure 10 illustrates this
problem: the model depicted by the solid line approximates the “idea” of the
data, the global behavior of it, while the one represented by the dashed line
only tries to fit to all the points, thereby losing the sense of the data itself.

This issue can be overcame by the use of a validation set. Instead of eval-
uating the performance of the model M on the learning data itself only, a
different part of the data is used to validate the model, that is, evaluate its
error on different data than that used for training.

Going back to our full data set x, we need to divide it beforehand into two
different sets xl (of cardinal Nl = |xl|) for the learning part of the model,
and xv (of cardinal Nv = |xv|) to validate the model. The use of new data
(i.e., never seen by the model during the training) helps in estimating the
error of the model with such hyper-parameters Θ properly: an over-fitting
of the model on the training data creates inevitably (if the validation data
is different from the training one) a large error on the validation set. Hence,
the set of hyper-parameters has to be modified so that the model generalizes
well on the new data.

This approach has a strong drawback: it requires dividing the original data
set into two subsets. Whenever the data is either scarce or costful to acquire,
this can be a serious problem. In such cases, cross-validation can be used, to For example, using

k-fold
cross-validation, the
model is validated on
unused data.

replace the standard validation.
Cross-validation is usually performed in a k-fold way, where k determines

the number of parts into which the data will be divided. Figure 11 presents a
case of 3-fold cross validation scheme. The whole data x is divided into three
equal sets, of which the first third (colored in the Figure) will be used as
validation data xv, and the remaining two thirds for learning xl. The process
is repeated k = 3 times, for this example, and the average error on the three

50 a short review on machine learning

1

0

0.2

0.4

0.6

0.8

10.2 0.4 0.6 0.8

Figure 10: The over-fitting concept: the solid line depicts a model approximating the
underlying phenomenon behind the data (black dots), while the dashed
line just tries to fit the data completely.

runs is reported. Obviously, the number of times one needs to repeat the
learning and the validation is equal to k which can be problematic for models
that require large computational time.Leave-One-Out is the

limit case k = N

and gives a good
estimate of the
validation error.

In the limit case k = N where the number of folds is the number of samples
available in x, the k-fold is called Leave-One-Out (LOO) cross-validation.
Using this scheme enables to have a very good idea of the validation error
that would be achieved on different data, since each point is in turn taken
out of the learning set xl and evaluated in validation. This is also the most
costly approach to cross-validation, although in some cases, a closed form
formula for the LOO error [94] can be devised and permits a fast evaluation
(compared to running k = N times the learning and validation).

Model test

Finally, the model M for which the best set of hyper-parameters Θv has
been obtained (regarding the error criterion in validation) can be tested. It
should be noted that the test data is again different from the learning and
the validation data, and should be taken separately in the first place.In the end, it is good

to test the final model
on totally unused
data.

This test data can be taken from the original data set x, to check if the model
behaves well on totally new data (unseen before, both for validation and
learning), or be data that has been acquired/obtained since. The test error εt
is the proper error to be reported, if one refers to the performance of a model
on some data set x. Training and validation errors cannot be considered as
a proper measure of performance of the model M, even though the LOO

4.2 practical notes on data processing for model building 51

Figure 11: Example of 3-fold cross-validation: the whole data x is divided into three
parts. The first part is used for validation (red) and the rest (white) for
learning. Once done, the second part is used for validation and the first
and third for learning. . .

error in validation can be considered to be a rough approximation of the
real validation error — which would be obtained given an infinite validation
set — if the data set is large enough (N −→ ∞). In [110, 33, 34] this claim is
proved theoretically for some specific models (see [74] for a more thorough
review and a broader view of the matter). Bootstrapping is a

concept similar to
cross-validation.

Overall, the cross-validation idea is rather close to that of bootstrapping
in statistics [39], where the properties of an estimator are estimated through
multiple sampling from an approximated distribution. Usually a random
subset (with replacements) of the original data set is taken, on which the
estimator is devised. Multiple repetitions of this process (assuming the
number of samples available in the first place is large enough) permit to have
a mean value for the estimator. Please refer to [39] for a full reference on the
matter of boostrapping.

In the same fashion as for the cross-validation, one can consider the
possibilty of cross-test, in case the data set x is again small. Doing so is
discussed in the following.

4.2 practical notes on data processing for model building

These are practical
notes giving one way
to pre-process the
data for building a
model.

Here are compiled a few notes on taking care of the data before building
a model and searching for an optimal set of hyper-parameters. They are
mentioned to explain the procedure through which data has been handled,
for the proposed publications, in this dissertation.

• It is a good idea to make a random permutation of the data set (inputs
and outputs in the same way) before starting anything. The original Take a random

permutation of the
original data.

data set might have been sorted for some reason and the following
division of the data set would lead to learning and validating on non-
homogeneous data. In the steganalysis framework, for example, if all
natural images depicting trees are in the beginning and sky shots in
the end, we encounter the risk of having a model too specialized in one
type of images, which will behave incorrectly on other types.

52 a short review on machine learning

• One also wants to normalize the data, for some models (zero mean
and unit standard deviation, for example). By normalizing, it is meantNormalize the data

using the learning
normalization factors.

for each of the columns of x, the features, separately. A simple illus-
tration is for a model based on the Euclidean distance (for example a
k-Nearest Neighbors, see 4.3): if one of the features is valued in a large
range compared to the other ones, the absence of normalization will
distort the Euclidean distance and make the other features meaning-
less (since they will play a too small part in the distance evaluation).
Normalization should also be done properly: for example, it is unfair
to normalize the whole x and then divide it into learning and testing,
since the normalization will have made use of data that is not supposed
to be available (the test data), to compute the normalization factors (i.e.,
mean and standard deviation).

• As mentioned before, in the best case, we want to have a large learning
set xl, a large validation set xv and a large test set xt. With mostDivide the data

carefully into
learning, validation
and test (see Fig. 12).

available data sets, it is just not possible to have all three, and we can
revert to using cross-validation and cross-test. A typical methodology
is thus to divide the original data set x (randomly permuted) into
xlv and xt (respectively of cardinals Nlv = |xlv| and Nt = |xt|), with
proportions to be decided. The xlv set is then divided into k folds, and
the cross-validation is performed (with normalization factors using
only the learning part). The model is finally tested on the remaining test
set xt which has been also normalized using the learning normalization
factors. Eventually, another random permutation of x is devised, and
the whole process is repeated, to have a more reliable estimate of the
test error. The main advantage of performing cross-test as described is
that it enables to have a good estimation of the generalization error of
the built model, meaning the error one would obtain were he to use
this specific model on data unseen until now.

Figure 12 illustrates the previously described approach to processing data
for a proper model training, validation and testing for the case of a 3-fold
cross-validation process. The cross-test is depicted by the loop on the h

parameter.
Now that the building of a model (for the supervised class of learning

problems) has been detailed, let us review some of the most used machine
learning models, in order to explicit some notations and important concepts
in machine learning.

4.3 some model classes for machine learning

In the following are presented six different model classes for machine learn-
ing. This review is very limited, but mainly wishes to present the algorithms
used for comparisons and benchmarks in some of the publications of this
dissertation (see publications A and E, for example). A whole class of models
is not presented in this chapter but in the next, the Random Projections
based models, since they are the foundation of the proposed new model, the
OP-ELM (chapter 5).

Random permutation

Full dataset

Test Error

Build

Validate on :{
Build

Validate on :{
Build

Validate on :{

3-fold cross-validation

Build

Test Error

Random permutation

Learning set Test set

Figure 12: Proposed data processing scheme: a random permutation of the original

data set x is first divided into two parts x
(h)
lv for learning and validation

and x
(h)
t for the test. The set x

(h)
lv is then divided according to the k-fold

(here k = 3) cross-validation approach and the model M is first trained
with parameters Θj on xl1 (the (h) notation is dropped within the cross-
validation for simplicity). The trained model is validated on the validation
set xv1

to obtain the validation error εv1

�

Θj

�

. This process is repeated 3

times overall, for
�

xl1 , xv1

�

,
�

xl2 , xv2

�

and
�

xl3 , xv3

�

. And also repeated
for different values of the hyper-parameters Θj. The best set of parameters
Θ∗ = arg minΘj

εv
�

Θj

�

is then used to build the final model. It is used on

the test data x
(h)
t to determine the error ε

(h)
t . This procedure is repeated

h = H times to obtain the final cross-test value εt = 1
H

�H
h=1 ε

(h)
t .

53

54 a short review on machine learning

4.3.1 Linear discrimination and regression

The concept of linear regression/discrimination in machine learning is possi-
bly the simplest of all since it uses a linear model to regress/ classify the data.
Let us start by linear regression, and then present two models widely used
in steganalysis, the Linear Discriminant Analysis and the Support Vector
Machines.

Linear regression
Linear regression is
very simple, but
efficient on problems
with a linear
component.

In the regression learning problem case, the linear regression aims at finding
a matrix w such that, for the input x

ŷ = [1 x] · w, (4.9)

where [1 x] denotes the matrix composed by the concatenation of a column
of ones in the first colum and x, to introduce a constant term (bias); the
Equation 4.9 is usually solved under the constraint of minimizing the Squared
Error between ŷ and the real output y

ε = �[1 x] · w − y�22 , (4.10)

where �·�2 is the Euclidean norm. This solution, named Least Squares regres-
sion solution (also called Ordinary Least Squares solution (OLS)) is given by

w =
�

[1 x]T · [1 x]
�−1

[1 x]T · y. (4.11)

The classical
regression can also
use a regularization
parameter for
ill-conditioned cases.

In the case where the matrix x is ill-conditioned, the Ridge regression (or
Tikhonov regularization [126, 15]) can be used, which introduces a regular-
ization term in the Squared Error (training error)

εTikh = �[1 x] · w − y�22 + �T · w�22 . (4.12)

Usually, T is chosen to be αI, with I the identity matrix and α a scalar. From
Equation 4.12 it is clear that the larger is the regularization term, the larger
the training error will be, which reduces the risks of over-fitting.

This approach, although very simple and basic, usually deems decent
results, even compared with more elaborate models [103].

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is widely used in the steganalysis field
([48, 87, 3]) for its good capacity at discriminating between two classes and
its rather low computational requirements.

In LDA, the data is projected onto a hyperplane w (to determine) and a
separating discriminant hyperplane is then found.

4.3 some model classes for machine learning 55

LDA makes the assumption that the probability density functions P (x|y = c1)

and P (x|y = c2) for the two classes c1 and c2 (we consider only a binary
classification problem) are normally distributed such that

P (x|y = c1) ∼ N(µ1,Σ1),

P (x|y = c2) ∼ N(µ2,Σ2),
(4.13)

with µj the mean and Σj the covariance for each of the classes (computed
from x). With the additional assumption that both covariance matrices Σ1 LDA uses

probabilistic
assumptions on the
distribution of the
classes.

and Σ2 are identical (homoscedasticity assumption) and full rank, we have
that the maximum separation between the two classes occurs for

w = Σ−1 (µ2 −µ1) , (4.14)

where w is the normal to the discriminant hyperplane.
In practice, x is first projected onto w and then the threshold T such that

x · w < T — defining the position of the hyperplane orthogonal to w, and
hence the position of the actual discriminant — is optimized. The following
Support Vector Machine uses a similar idea of discriminating hyperplane but
uses kernels to make the data more separable, with no particular assumption
on the probability density function of the classes.

Support Vector Machine

The Support Vector Machine was originally proposed for the classification
problem in [19] (the earlier version of [129] does not use kernels, which are
contributing largely to the efficiency of the SVM), and was later extended to
regression problems [37].

In the following, we denote x = (x1, . . . , xN)T with xj ∈ R
M the inputs

and similarly for y = (y1, . . . ,yN)T , yj ∈ R, the outputs.
The goal of SVM for classification (considering we use a kernel function K)

is to separate the two classes c1 and c2 in the so-called feature space defined
by the kernel K, using a hyperplane w. The use of a kernel is meant to make
the data x more separable in the feature space (induced by the kernel) than
it is in the original space. In this feature space, one tries to find the optimal SVM looks for the

best separating
hyperplane in the
induced kernel space.

hyperplane w to separate the two classes, which comes down to solving the
optimization problem

min
w,b,ξ

�w�22 +C

N�

j=1

ξ2j

s.t.






yj
�

wT ·ψ
�

xj
�

+ b
�

� 1− ξj, j ∈ �1,N�
ξj � 0, j ∈ �1,N�

(4.15)

with K
�

xj, xk
�

= ψ
�

xj
�T

ψ (xk), C the complexity of the model and ξj
the slack variables which allow to solve the problem even if the two classes
are not fully separable in the induced kernel space. This specific case of the
SVM is called soft margin SVM classifier (due to the slack variables ξj) and the
formulation in Equation 4.15 assumes that the two classes are coded in y as

56 a short review on machine learning

+1 and −1. The parameter C controls the trade-off between the classification
error and the complexity of the model.

There are very efficient ways to solve this optimization problem, for ex-
ample the Sequential Minimization Optimization (SMO) algorithm [43], but
the fact remains that for the classification problem considered here, there
are already at least two hyper-parameters to select in this model: the hyper-
parameters for the kernel function K (usually a Gaussian one, with only the
width of the Gaussian σ to determine) and C. Using SVM for regression adds
an additional hyper-parameter to optimize, making the computational load
rather important for the learning of this model.

The Least-Squares Support Vector Machine [122] (LS-SVM) approach
makes the optimization problem a little simpler as Equation 4.15 is replaced
by a similar minimization problem, with an equality constraintLS-SVM has a

simpler formulation
than the standard
soft-margin SVM. min

w,b,e
�w�22 + γ

N�

j=1

e2j

s.t. yj
�

wTψ(xj) + b
�

= 1− ej, j ∈ �1,N�

(4.16)

which can be solved in a computationally more efficient way than the
previous one in Equation 4.15, in a Least Square sense. The ej are error
variables which allow for some misclassification as for the slack variables ξj
of the SVM.

Thanks to the use of a kernel, the discriminant hyperplane of the SVM
model is very efficient for many problems (see publication A, section III.B
for a comparison of SVM with other models on various classification and
regression data sets), but the computational time for the learning and valida-
tion usually suffers from the complexity and number of hyper-parameters of
it. Some of the proposed recent improvements both in the SMO algorithm
[75] and for approximating the hyperplane [22] could make the optimization
of the parameters faster.

4.3.2 Artificial Neural Networks

ANNs are built to
work similarly to
biological neural
networks.

The development of Artificial Neural Networks (ANN) was inspired by
biological systems [63]. In this dissertation, we will limit ourselves to the case
of Single-Layer Feedforward Neural Network (SLFN) for simplicity. Since
ANNs can have a rather complicated structure (more than one hidden layer,
recurrence, feedback, . . .), with many hyper-parameters to optimize, they are
often used in various applicative domains, such as air quality management
[125] and finance [135], for example.

A notable point is that the SLFN (one hidden layer, feedforward strucutre)
is an universal function approximator, meaning that given an error � > 0, there
exists a set of hyper-parameters Θ for the SLFN such that

∀xj ∈ x,
�

�SLFN
�

Θ, xj
�

− f
�

xj
��

� < �, (4.17)

with f being the function to approximate (continuous) [66, 63].

4.3 some model classes for machine learning 57

BiasBias

Figure 13: Classical structure of a Single Hidden Layer Feedforward Neural Network.

Figure 13 illustrates the case of a SLFN, with the input layer being the
xj, the hidden layer containing a non-linear function K, and the output layer
calculated through a function φ, which we will consider as linear. We consider the

specific case of the
SLFN here.

Overall, the estimated output ŷv for sample xv in a SLFN with L neurons
is computed as

ŷv =

L�

j=1

βjK
�

wjxv + bj
�

, (4.18)

with bj being the biases and provided that the output layer is composed of
a linear function φ (typical for regression and classification problems [123]).
A typical choice for the K function is that of hyperbolic tangent tanh,

tanh (x) =
e2x − 1

e2x + 1
. (4.19)

The parameters of this model are numerous: the output weights β =
�

β1, . . . ,βNl

�T , the biases b =
�

b1, . . . ,bNl

�T and the input weights W =
�

w1, . . . , wNl

�T . The optimization problem resulting from the search of the
parameters can be solved in various ways of which the most notable ones
are probably back-propagation [63], Levenberg-Marquardt [14] or the scale
conjugate gradient approach [93]. SLFN (and ANN in

general) have many
parameters to
determine.

Given that the non-linear function K is determined, this class of model has
only one hyper-parameter: the number of neurons L to use.

A notable specific architecture of ANN is the Radial Basis Function Net-
work (RBFN) [105], which is a SLFN with a Radial Basis Function (RBF) as
the activation non-linear function K (Radial Basis Functions are a class of
functions such that K (x) = K (�x�), with �·� a norm). This specific structure

58 a short review on machine learning

can be trained in two parts : an unsupervised part, to determine the input
weights W and a linear supervised part, where the output weights β are
devised (no bias is considered in this model). Some heuristics and fast algo-
rithms can be used to determine all the parameters of the model efficiently
[12].

Again, one drawback to the efficiency of such models is the computational
time required to search for the optimal parameters (hoping that the searching
algorithm has not hit a local minima).

4.3.3 k-Nearest Neighbors

The k-Nearest Neighbors (KNN) is one of the simplest possible models,
based on ranking of distances between samples.

In the case of binary classification, it consists in finding the set of k nearest
neighbors (k is odd)

xkNN (xv) = (xNN1 (xv) , . . . , xNNk (xv))
T , (4.20)

for the point xv; that is, for the first neighbor xNN1,

xNN1 = min
xj∈x

d
�

xv, xj
�

, (4.21)

where d (·, ·) is a distance (typically the Euclidean one). The following
nearest neighbors are found similarly. The estimated class for xv is then
obtained by a majority vote over the set of its k nearest neighbors xkNN (xv).k-NN is a

distance-based
technique, with
ranking of the points.

The approach is similar for the regression problem, except that an average
of the values of the nearest neighbors is used to predict the output ŷv,

ŷv =
1

k

k�

j=1

yNNj, (4.22)

with yNNj the outputs corresponding to the nearest neighbors xNNj.
An advantage of the KNN is its simplicity: it only has one parameter to

optimize, being the number of neighbors k which is clearly bounded. Also,
although it relies on distances (and hence, can be subject to the problems
arising in high-dimensional spaces), it only uses them for ranking purposes,
which makes it a fast and reasonably efficient model in such spaces [13].

The Learning Vector Quantization model (LVQ) [82] lies somewhere between
the k-NN approach and the ANN one. It uses so-called codebook vectors (whichLVQ uses prototypes

(codebooks) to cluster
and sort data.

are prototypes of a certain class or cluster of data) which are updated accord-
ing to their matching the class of the nearest neighbors (for a classification
problem): if the nearest neighbor of a codebook has the right class, then it is
likely that this codebook is in the proper “cluster” of points for this class and
should be driven toward the “center” of the cluster. If not, it should be driven
outward of the current cluster. Various update rules and extensions have
been proposed for the original LVQ algorithm, of which the Generalized LVQ
(GLVQ) [112], the Relevance LVQ (RLVQ) [17] and the one combining both
improvements, the Generalized Relevance LVQ (GRLVQ) [60, 61] are possibly

4.3 some model classes for machine learning 59

the most used. A review of the state of the art can be found in [60], along
with references to most of the recent developments on LVQ. SOM also relies on

prototypes and
updates the array
nodes according to
the data.

Also, the Self-Organizing Maps (SOM) [81, 82] for regression problems
[85] are quite similar to the Vector Quantization (VQ) concept (original
unsupervised version of the LVQ), in the sense that the nodes of the array
of the SOM are updated in a similar fashion to that of the codebook vectors
of the VQ. The SOM provides, thanks to this nodes array structure, a two-
dimensional map of much higher dimensional data. Please refer to [82] for a
reference on the SOM.

Finally, a variant of the k-NN using a weighted sum in Equation 4.22 is
proposed in [135, 136]: the OP-KNN. The approach is similar to that of the
Optimally-Pruned Extreme Learning Machine (OP-ELM) presented in the
next chapter 5, section 5.3, with the use of k-NN “neurons”.

4.3.4 Gaussian Processes

The underlying idea in Gaussian Processes (GP) [108] is to make the assump-
tion that the output y can be modeled by a multivariate Gaussian distribution
(N-variate, in this case). Therefore, since “Gaussian processes generate data
located throughout some domain such that any finite subset of the range fol-
lows a multivariate Gaussian distribution” (from [108]), it becomes possible
to make y the result of a GP. In a rather general formulation, the output y is
considered to be the result of a function f applied on the input x plus some
zero-mean noise (as in Equation 4.2)

y = f (x) +N
�

0,σ2I
�

, (4.23)

where N
�

0,σ2I
�

denotes the zero-mean noise and f the underlying process
in data x. Now in the case of predicting the value yv for a point xv of x, the
covariance matrix K is first computed from the covariance function K

�

xj, xk
�

defined here as (classically a Radial Basis Function (RBF))

K
�

xj, xk
�

= σ2
0 exp

�

−
1

2λ

�

�xj − xk
�

�

2
�

. (4.24)

Note that for this type of covariance function, there are two hyper-parameters
to optimize, λ and σ0, which can be optimized using Bayesian inference —
maximization of a marginal likelihood — if the required computations are
feasible (requires matrix inversions), or by cross-validation. A probabilistic

framework is also
used for the Gaussian
Processes.

The joint marginal likelihood is then

P (y,yv) = N
�

0, KNl+v + σ2I
�

, (4.25)

with

KNl+v =

�

KNl
KT

vNl

KvNl
Kv

�

, (4.26)

60 a short review on machine learning

and denoting

KNl
=









K (x1, x1) · · · K
�

x1, xNl

�

...
. . .

...

K
�

xNl
, x1

�

· · · K
�

xNl
, xNl

�









, (4.27)

KvNl
=

�

K (xv, x1) , . . . ,K
�

xv, xNl

��

and Kv = [K (xv, xv)]. From which
we can get the predicted output value ŷv as

ŷv = P (yv|y) = N (µv,Σv) , (4.28)
The prediction is
obtained from a
Gaussian distribution
with specific
parameters.

with

µv = KvNl

�

KNl
+ σ2I

�−1
y

Σv = Kv − KvNl

�

KNl
+ σ2I

�−1
KT

vNl
+ σ2I

. (4.29)

As can be seen from Equation 4.29 this requires matrix inversions, which
can be very costly when working with large number of samples. Overall, as
the experiments in publication A (section III.B) illustrate, the GP model is
very efficient (often the best performances for the benchmark in A, Table IV)
although costly, computationally speaking.

4.3.5 A global drawback

As we have noted in the description of these models, there are many hyper-
parameters (and parameters) to optimize (putting aside the LDA and the
linear regression). For models such as the ANN, where the overall direct
computations of the model are simple, the amount of parameters (internal
and hyper-) makes the learning and validation phase about as long as that
of models with less parameters but larger direct computational times (the
GP, for example).The problem of most

methods is the
computational time:
many parameters
(and
hyper-parameters) or
costly training.

The linear regression and LDA are outliers in this reasoning, for they
have virtually no hyper-parameters (the threshold for the LDA can be found
quickly and does not need to compute again the inverse of the covariance
matrix), given a relevant set of variables. Their learning and validation phase
are thus very fast, compared to other models, but in the end, they do not
give the best possible performance on non-linear problems.

In the end, there seems to be a tradeoff in choosing the model, between
the computational difficulty of it and the number of parameters and hyper-
parameters to optimize. One has to decide beforehand whether the model
should be trained very quickly — and have suboptimal performances in case
of non-linearity in the data — or if the training time does not matter as long
as the performances are here.

4.4 conclusion

The Machine Learning field aims at learning from the data it is being presented.
In this dissertation, we consider the more specific case of supervised learning,

4.4 conclusion 61

in which the model is presented with the input data and an output — ob-
tained from a specific phenomenon — from which it can learn a relationship
between input and output, and hopefully predict the future behavior of the
underlying phenomenon.

The matter of training, validating and testing a model properly is a non-
trivial issue, as seen in this chapter. Obtaining the optimal set of hyper-
parameters for a chosen class of model requires many iterations, on a data set
pre-processed in order to avoid the problem of over-fitting, for example (see
Figure 12 for the proposed example of data processing and model training/
testing).

This procedure, while having the advantage of giving reliable estimates
for the validation and test error of a model on a data set, usually requires an
important computational time, especially for models having many hyper-
parameters.

In the following chapter 5, we present a class of models based on random
projections which have the advantage of being very fast and simple to train,
while keeping performances similar to that of state of the art algorithms.
We claim that this class of models offers a very good (if not the best) ratio
between performances and computational time and illustrate it throughout a
set of experiments.

5T H E O P T I M A L LY- P R U N E D E X T R E M E L E A R N I N G
M A C H I N E

In this chapter, we propose a new machine learning model (from publications
A and B) which intends to have a high performance/ speed ratio. We first
motivate more precisely this requirement of speed for machine learning
models, and then present the concept of random projections, which is used
in the proposed Optimally-Pruned Extreme Learning Machine (OP-ELM).
We finally detail the different steps of the OP-ELM model methodology and
provide a speed improvement originally described in publication B.

5.1 a need for speed (and efficiency)

As will be illustrated in more details in the next chapter 6, a large number
of features requires a large number of samples: in theory, the number of
samples grows exponentially with the number of features. If we consider
the current typical amount of features (in the order of hundreds) used for
steganalysis, the theoretical requirements concerning the number of samples
are simply unachievable. The best that can be done is to use as many samples
as possible, and estimate the reliability of the results, statistically. Data sets can be large

and models too slow
for them.

Taking the examples provided by Guang-Bin Huang on [67], the training
time (with a fixed set of hyper-parameters) for a data set consisting of 54
features and 100, 000 samples (the Forest Type prediction, a classification
problem) is of 694 minutes for a SVM — using the LIBSVM implementation
[25]. In the case of steganalysis, if using the DCT feature set from [99], we
have 194 features, which would probably lead to much larger computational
times, for the SVM (assuming the amount of samples is sufficient vis a vis
the dimensionality).

The bottom line is that models with multiple hyper-parameters or large
computational times are not practical when dealing with very large data sets.
Optimizing the parameters for some models is sometimes barely feasible
within days, let alone train many of them, for cross-validation or feature
selection for example. For the example of the SVM on the Forest data, running
a search for the hyper-parameters on a 20× 20 grid (each hyper-parameter is
tested on 20 different values) with such computational time is impossible.

The concept of feature selection and its importance are detailed more
widely in section 6.1, but in most cases, performing it requires multiple
trainings of the models, on different subsets of the whole feature set, to
evaluate the performance for a specific choice of features. This, combined
with the cross-validation and cross-test approaches makes the use of some
models totally impractical: it would take many weeks to perform feature
selection (whatever the scheme) on a set of N = 10, 000 samples with M = 194

features using a classical SVM (even in classification, with only two hyper-
parameters).

In some cases, one could consider that “infinite” computational power
is available, and that the time required for the training of a model is an

63

64 the optimally-pruned extreme learning machine

irrelevant issue. For the example of a government agency willing to perform
qualitative steganalysis, this can be a reasonable assumption: if the quality of
the model and the set of features have already been asserted, there is no need
to perform feature selection or cross-validation, and the only task remaining
is training the model with the right parameters (which might already be
known). In such a case, the learning time has indeed no relevance; once the
model is trained, it can be used ad libitum to detect steganography, without
any costs in computational time (or negligible one, the test phase always
being very fast).The infinite

computational power
assumption is
problematic.

One detail to remember, though, is that the determination of the set of
features (which will also be referred to as variables in the following) and of
the model class and parameters has to be done, at some point. While this
concern is eventually of minor importance to the government agency, it still
is a major issue to the researcher performing this search.

In the end, the computational time (related to the complexity of the model)
is a very important characteristic of a model, and should be taken into
consideration when performing classification or regression.

In the following, we first present a class of models related to random
projections, which offer a very good ratio performance/ speed, and then the
Optimally-Pruned Extreme Learning Machine, an improvement of a classical
method — the Extreme Learning Machine — which provides additional
robustness.

5.2 existing recent random projection based models

One reason for the concern about the speed of the models is that of the
number of features, as mentioned before. An obvious solution to this problem
is to reduce the dimensionality of the space before training the model.
Although the idea is simple, the realization is not: optimizing the whole
projection matrix P such that the projected data xP = P · x gives an optimal
result for the considered model M is computationally very expensive.

Random projections are a fast alternative to this. For the matter of project-The J-L theorem
states that a lower
dimensional space
can be found without
losing too much
information.

ing to a lower dimensional space, Johnson and Lindenstrauss in [72] have
shown that for a set of N points in M-dimensional space (considering the
distance measure as an Euclidean norm), there exists a linear transformation
of the data toward a Mf-dimensional space, with

Mf � O
�

�−2 logN
�

, (5.1)

which preserves the distances to a 1+� factor. The topology of the data might
also be preserved through this projection, such that the relevant information
is not “lost”. In [2], Achlioptas extends this result and proposes an algorithm
to devise a very simple projection matrix that preserves the distances to the
same factor than the J-L theorem mentions. This unfortunately comes at the
expense of a probability on the distance conservation.

More recently, Fradkin in [44] showed that simple random projections
obtained by one the methods proposed by Achlioptas in [2], deem decent
results on data sets obtained from the UCI Machine Learning repository [8],
yet behind the ones obtained using a simple Principal Component Analysis

5.2 existing recent random projection based models 65

Figure 14: Illustration of the Reservoir Computing concept: a snapshot of the “pool”
of interconnected neurons (in the middle) is taken (noted s(k)) at step k

and the output layer Wout is devised from the state s(k).

(PCA) [96]. The article concludes by stating that random projections are an
interesting possibility if one is especially interested in obtaining results in a
short time frame, but remains a suboptimal approach.

In this dissertation, we focus mostly on two frameworks based on ran-
dom projections: the Reservoir Computing (RC) and the Extreme Learning
Machine (ELM) [92]. For a wider presentation of random projection based
models, one can refer to [130].

5.2.1 Reservoir Computing

The terminology Reservoir Computing (RC) — and the underlying framework
[131] — is proposed to unify a panel of models such as Liquid-State Machines
(LSM) [88] or Echo State Networks (ESN) [70, 71, 21], to name only these.
The concept behind the RC approach (which is similar to that of the ELM
presented below) is to randomly initialize a neural network (with recurrences
and feedback, here), and only “train” the output weights, that is, determine
them directly from the state of the network.

The training of the model is therefore very fast, since all the internal
weights are initialized randomly and do not need to be determined. Reservoir Computing

aims at time-varying
processes.

Reservoir Computing has been specifically meant for time-varying pro-
cesses and data. In this sense, let us denote by x(k) the input data x at
time step k and by y(k) the output data y at step k. The RC model uses a
multi-layer (no longer a SLFN) ANN with recurrence in the hidden layers,
and a possible feedback from the output. The inner layers of the ANN,
interconnected, are typically referred to as a pool of neurons.

Figure 14 depicts the global structure of the most general case of Reservoir.
Suppose we have the input data x(k) = (x1(k), . . . , xN(k))T and outputs
y(k) = (y1(k), . . . ,yN(k))T for time step k, the estimated output value ŷ(k+

1) for the next step input x(k+ 1) is then obtained by taking an image s(k) of
the pool of neurons, weighting it by the randomly initialized matrix W, added

66 the optimally-pruned extreme learning machine

to the feedback from y(k) and the current weighted input fin
�

Win · x(k+ 1)
�

as

ŷ(k+ 1) = fout
�

Wout ·
�

x(k+ 1), fin
�

Win · x(k+ 1)

+W · s(k) + Wback · y(k)
�

, y(k)
��

,
(5.2)

with Wout,Win, W and Wback the output weight matrix, input weight
matrix, internal weight matrix and back-projection of output to internal net-
work weight matrix respectively (random), fin and fout the internal network
activation function (usually sigmoid) and readout function respectively and
finally s denoting the internal network state.It uses ANN with

recurrence and
feedback to model the
output.

With certain restrictions and specificities on some weight matrices and
functions, one can again find from this global definition, the ESN and LSM
models, for example. One can refer to [131] for more details on these models.

As it stands out from the definition of the Reservoir Computing approach,
this solution is especially meant for time-variant problems, and although it
can be applied to classical regression and classification problem, the following
Extreme Learning Machine is more straightforward to use in such a setup.

5.2.2 ELM based

The idea for the Extreme Learning Machine (ELM) by Guang-Bin Huang
[69] is in substance similar to that of the Reservoir Computing: since the
optimization of an ANN is very time-consuming, initialize the internal
weights of the network randomly and only “train” the output layer of the
network.ELM is similar to

RC: random
initialization and
output layer
determination.

The main difference in the ELM concept is that the ANN is a SLFN, that is,
there is no recurrence and only one hidden layer in the ANN. The structure
is thus the same as that presented in section 4.3.2, on Figure 13.

Using the same notations, we have the inputs x = (x1, . . . , xN)T , the
outputs y = (y1, . . . ,yN)T , the output layer β = (β1, . . . ,βN)T , a linear
output function φ, the input weight matrix W and the non-linear activation
function K; the estimated output ŷv is then obtained for point xv as

ŷv =

N�

j=1

βjK
�

wj · xv + bj
�

. (5.3)

In the best possible case were yv = ŷv (the SLFN makes a perfect approxi-
mation) for all possible xv ∈ x, we can express the Equation 5.3 as the matrix
product

y = H ·β, (5.4)

5.3 op-elm 67

with

H =









K (w1 · x1 + b1) · · · K (wN · x1 + bN)
...

. . .
...

K (w1 · xN + b1) · · · K (wN · xN + bN)









. (5.5)

Using these notations, Huang in [69] demonstrates the following theorem,
stating that given an activation function K infinitely differentiable, it is
possible to find the output weights β of the SLFN with random input
weights W such that it approximates as well as possible (ε > 0) the output y.

Theorem. Given any ε > 0 and an activation function K : R �→ R infinitely
differentiable in any interval, there exists n < N such that for N distinct samples
(xi,yi) , xi ∈ R

M,yi ∈ R, for any weights wi ∈ R
M and biases bi ∈ R,

�

�

�H[N×n]β[n×1] − y[N×1]

�

�

� < ε.

The solution to Equation 5.4 in terms of Least Squares can then be obtained
by a Moore-Penrose pseudo-inverse [107]. ELM is also an

universal
approximator.

It was later proved in [68] that the ELM, as the SLFN, is an universal
approximator of functions.

Recently, improvements to the original ELM have been proposed, such as
the Error Minimized Extreme Learning Machine (EM-ELM) [41]; it proposes
to add random neurons (one-by-one or group-by-group) to the original
ELM model once the training has been performed. The authors prove that
this EM-ELM actually converges. One of the most interesting points of this
development is in the fact that the computational time is minimal while
adding new random neurons to the ELM: the whole pseudo-inverse matrix
does not need to be recomputed, but weights only have to be updated using
fast update rules derived in the paper. It becomes not so important to have
a good (sufficient) number of neurons in the first training phase, since they
can anyway be added to the ELM without long computations afterwards.

The proposed Optimally-Pruned Extreme Learning Machine (OP-ELM,
publications A and B) in the following section 5.3 uses a different approach
than that of the EM-ELM: instead of adding neurons to the original model
until the performances are satisfying enough, the idea is to take a large
number of them in the first place, and prune out the most irrelevant ones,
using a selection criterion.

5.3 op-elm

In this section, we present shortly the Optimally-Pruned Extreme Learning
Machine (OP-ELM) model. For more details and especially experiments and
benchmarks of this new method against state of the art ones (on publicly
available data sets from UCI repository [8]), please refer to the publications
included in this dissertation, A and B.

68 the optimally-pruned extreme learning machine

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

−2

0

2

x

Su
m

 o
f

T
w

o
 S

in
es

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

−2

0

2

x

S
u

m
 o

f
T

w
o

 S
in

e
s

Figure 15: Example of the perturbation of the ELM model by the use of an additional
irrelevant variable: ELM model is depicted in light dots, and the data itself
in dark crosses.

5.3.1 Some possible limitations of the ELM

The elaboration of this model started as the realization that the original ELM
model was sometimes behaving poorly on data sets containing irrelevant
variables: the simple addition of a feature containing pure Gaussian noise was
enough to perturbate the model and yield highly suboptimal performances.

A toy example from publication A (Figure 2) illustrates this clearly on a one-
dimensional example. Figure 15 is extracted from the original publication.ELM can be sensitive

to irrelevant data. The top plot on Figure 15 illustrates an ELM model trained on a sum of
sines, without any other variable. The fit is good. When adding a noise vari-
able to the data (not plotted for clarity), the ELM model on the bottom plot
becomes pertubated, although the variable does not contain any information.

It appears that the ELM needs a step of feature selection, in order to remove
such irrelevant variables. This can be performed by pruning the irrelevant
neurons of the hidden layer.

5.3.2 A methodology around ELM: OP-ELM

The OP-ELM can be described as a methodology surrounding ELM. It uses
three main steps which can be summarized as (see Figure 16):

1. Building a SLFN with a large number of neurons, using the ELM
approach (i.e., randomized weight matrix);

The OP-ELM is a
methodology around
ELM to address its
weaknesses.

2. Ranking the neurons by the use of the Multi-Response Sparse Regres-
sion algorithm, which provides an exact ranking of the neurons in this
case;

5.3 op-elm 69

Data
SLFN construction

using ELM
Ranking of best neurons

using MRSR

Selection of optimal
number of neurons

by LOO

Figure 16: The three steps of the OP-ELM methodology: construction of the SLFN
using ELM; ranking of best neurons using MRSR; use of LOO criterion to
decide how many neurons are kept.

3. Use a Leave-One-Out error estimation to choose how many of the
hidden neurons should remain in the final model.

The Multi-Response Sparse regression (MRSR) [117] is a computationally
efficient extension of the famous Least Angle Regression (LARS) [40] to
the multi-output case. The original LARS algorithm is a greedy variable
selection scheme which selects variables one by one (according to a Least
Squares criteria) and has the advantage of giving the best possible ranking of
variables, in the specific case where the problem considered is linear. This is Using MRSR to rank

neurons and LOO to
decide which ones to
keep.

the case in the OP-ELM architecture, since the output is a linear combination
of the hidden layer neurons. Hence, it provides the best possible ranking of
the hidden neurons and makes the last step of thresholding easier.

In the third step, the performance of the SLFN with an increasing number
of neurons (previously ranked) is devised, using a LOO error criterion. Again,
since the problem is linear in this part of the SLFN, it is possible to use a fast
estimation of the LOO error thanks to a closed form formula [94, 18]. The
final structure of the OP-ELM is then obtained.

It should be noted also that the OP-ELM proposes to use also linear
kernels, in addition to the classical Gaussian and sigmoid ones proposed in
the original ELM.

In the end, the OP-ELM can be seen as a projection into a high dimensional
space (hidden layer of the SLFN), followed by a linear model (output layer of
the SLFN) on which variable selection is performed, by the MRSR. Variable
selection techniques are detailed more widely in section 6.1.

Some of the results presented in publication A (Tables II, III, IV and
V, especially) are reproduced here: Tables 3 and 5 (left) give the average
computational times performed by five state of the art machine learning
algorithms while Tables 4 and 5 (right) give the Mean Square Error and
accuracy obtained on regression and classification data sets, respectively.
Results are the average of ten bootstrap rounds, as detailed in publication A
(section III.B).

In addition to the results of publication A, the OP-ELM and the SVM
are compared here over two classical steganalysis problems: a regression
one over the estimation of the embedding rate (initially between 0 and
30%, in the R(1) sense, see 2.3.2) and a classification one. The images used
for this experiment are the whole 10000 from the BOWS2 [10] database,
with two thirds used for training and one third for testing, using the same
bootstrapping approach as in publication A. Proportions of half stego and
half cover have been respected for the classification problem. Features used
for both problems are the extended DCT features from [99].

Abalone Elevators Servo Bank Stocks Boston Steg.

SVM 6.6e+4 5.8e+2 1.3e+2 1.6e+3 2.3e+3 8.5e+2 1.7e+5

MLP 2.1e+3 3.5e+3 5.2e+2 2.7e+3 1.2e+3 8.2e+2

GP 9.5e+2 6.5e+3 2.2 1.7e+3 4.1e+1 8.5

OP-ELM 5.7 29.8 2.1e-1 8.03 1.54 7.0e-1 2.4e+2

ELM 4.0e-1 1.6 3.9e-2 4.7e-1 1.1e-1 7.4e-2

Table 3: Computational times (in seconds) for all five algorithms on regression data
sets. Results are the average of ten bootstraps repetitions.

Abalone Elevators Servo Bank Stocks Boston Steg.

SVM 4.5 6.2e-6 6.9e-1 2.7e-2 5.1e-1 3.4e+1 2.5e-4

2.7e-1 6.8e-7 3.3e-1 8.0e-4 9.0e-2 3.1e+1 1.0e-5

MLP 4.6 2.6e-6 2.2e-1 9.1e-4 8.8e-1 2.2e+1

5.8e-1 9.0e-8 8.1e-2 4.2e-5 2.1e-1 8.8

GP 4.5 2.0e-6 4.8e-1 8.7e-4 4.4e-1 1.1e+1

2.4e-1 5.0e-8 3.5e-1 5.1e-5 5.0e-2 3.5

OP-ELM 4.9 2.0e-6 8.0e-1 1.1e-3 9.8e-1 1.9e+1 1.6e-4

6.6e-1 5.4e-8 3.3e-1 1.0e-6 1.1e-1 2.9 1.4e-5

ELM 8.3 2.2e-6 7.1 6.7e-3 3.4e+1 1.2e+2

7.5e-1 7.0e-8 P5.5 7.0e-4 9.35 2.1e+1

Table 4: Average Mean Square Error in bold (standard deviation in plain) for all five
algorithms for regression data sets. Results are the average of ten bootstraps
repetitions.

Iris Wine Stegano

SVM 95.4 95.8 89.7

1.9 2.9 0.95

MLP 94.8 96.0

3.8 2.4

GP 95.6 96.1

2.3 2.1

OP-ELM 95.0 90.7 90.1

2.1 4.9 1.03

ELM 72.2 81.8

1.01 6.2

Iris Wine Stegano

SVM 2.3e+2 3.8e+2 8.9e+5

MLP 7.6e+2 1.2e+3

GP 7.6e-1 1.9

OP-ELM 7.4e-2 4.4e-1 2.6e+2

ELM 2.4e-2 2.7e-2

Table 5: Accuracy (in percent) in boldface (standard deviation in plain) for all five
algorithms for classification data sets (left) and associated computational
times (in seconds, right). Results are the average of ten bootstraps repetitions.

70

5.3 op-elm 71

It can be seen that although the ELM is about one order of magnitude faster
than the OP-ELM, its performances can be unstable and are almost always
outperformed by the OP-ELM (both in terms of standard deviation of the
results and accuracy/Mean square error). Compared to the other machine
learning algorithms used here, the OP-ELM is a very good compromise
between speed and accuracy: it remains in the range of performance of the
other state of the art methods such as GP or SVM, but is several orders of
magnitude faster than them.

One potential issue — realized recently — with the use of the PRESS
Leave-One-Out criterion lies in the matrix computations performed which
require matrix inversions. If the LOO error is not performed properly because
of numerical instabilities (some data sets have shown such instabilities, even
if minor), the following pruning by the MRSR is most likely suboptimal. An
improvement of the OP-ELM would for example lie in the use of another
criterion than the LOO for selecting the model complexity, or to solve the
potential numerical problems of the LOO.

The following section introduces a different complexity selection criterion
than the Leave-One-Out, for increased speed of the model training.

5.3.3 A possibly faster version: HQ criterion

In the OP-ELM, the model complexity is decided by the results from the
Leave-One-Out criterion: if the LOO error starts to increase while adding
more neurons (in the order for which they have been ranked by the MRSR),
the remaining neurons are dropped and only the ones kept until then are
retained for the final model architecture.

While the LOO can be expressed in a closed form for this specific case,
it remains that the formula requires matrix inversions (see publication B
(section 2) for more details), which are still costly.

In B, we propose to replace the LOO criterion of the OP-ELM by an
information criterion, the Hannan-Quinn (HQ) one [62]. The HQ criterion can

increase the
computational speed.

The choice of the Hannan-Quinn (HQ) criterion over some more classical
information criteria such as the Bayesian Information Criterion (BIC) [113]
or Akaike’s Information Criterion (AIC) [4] was mostly done experimentally
(such experiments are not present in the original publication B).

Over several data sets from the UCI Machine Learning Repository [8]
it was deemed that the penalty term 2k log logN (with k the number of
parameters of the model and N the number of samples) grows much more
slowly, thanks to the double log, than its counterpart for the BIC and AIC, as
in Equation 5.6, below.

HQ = N× log (εMSE) + 2k× log logN

BIC = N× log (εMSE) + k× logN

AIC = N× log (N× εMSE) + 2k

(5.6)

From the benchmarking experiments conducted in publication B (section
4), this choice enables to divide the computational time (compared to the
LOO-based OP-ELM) by four to five folds on the tested data sets (regression

72 the optimally-pruned extreme learning machine

problems, from UCI also [8]). The gain in speed for another model of a
similar kind, the OP-KNN [136], is even greater (up to 24 fold).

It can be noted, though, that for the OP-ELM case the number of selected
neurons is globally increased, when using this information criterion instead
of the LOO one. While the LOO one has potential numerical instabilities
issues, it still yields a more compact model in terms of neurons. The need
for speed has to be evaluated before choosing one criterion or the other, if
one cares about the number of neurons selected.

5.4 conclusion

The double problem of large data set in steganalysis and important training
time for the model is addressed in this chapter, by the use of a random
projection based model, the OP-ELM. Using a Single Layer Feedforward Network
(SLFN) with random weights in the first layer, and linear output layer,
it is possible to obtain an universal function approximator (under some
assumptions). This is known as the Extreme Learning Machine (ELM). The
OP-ELM is based on this structure and adds a neuron selection step based
on the MRSR ranking algorithm, which is used to rank the relevance of the
neurons in the SLFN, according to a Leave-One-Out criterion.

We proposed finally the use of a different criterion for the neurons ranking:
the Hannan-Quinn criterion, with the advantage of a three to four fold speed
increase over the whole OP-ELM methodology.

The next two chapters present the results obtained for two specific stega-
nalysis problems, using the presented OP-ELM for the methodologies and
experiments.

Part III

U S I N G M A C H I N E L E A R N I N G F O R
S T E G A N A LY S I S P R O B L E M S

6A P R A C T I C A L A P P R O A C H T O B E N C H M A R K I N G
S T E G A N O G R A P H I C S C H E M E S

Here we propose to address the methodologies and experiments from publi-
cations C, D and E, specifically. We start by motivating the need for feature
selection, based on some well-established facts about the Curse of Dimensional-
ity, followed by a refinement of these problems in the steganalysis framework.
The three different classes of features selection schemes — filtering, wrapper
and embedded methods — are shortly described and the global methodology
presented through publications C, D and E is described in two major steps.
Please note that a majority of the results is kept in the publications, and only
an introduction to these results and to some of the conclusions from the
publications, are given here. Hence, the reader is refered to C, D and E for
more details.

6.1 why is feature selection so important ?

We have presented in the previous chapter 4, in section 5.2 the possibility of
using random projections to reduce the dimensionality of the input space. As
stated, there is currently no algorithm capable of reducing the dimensionality
in a very short time frame, for non-linear problems, without losing some
information about the data in the process. The optimization of the projec-
tion matrix P regarding the validation criterion is a highly time-consuming
process, when the problem has a large number of variables. Feature selection can

improve
performances, reduce
dimensionality and
increase
interpretability.

A different approach to that of the projection is the feature selection (which
can be considered as a special case of projection). Denoting the data matrix
x by columns instead of the usual rows notation, x =

�

xT1 , . . . , xTM
�

with
xTj ∈ R

N, a feature selection process finds a subset FSsub of the original
full set of features FS = {1, . . . ,M} such that |FSsub| < |FS| and that the error
criterion is satisfied.

The search for a subset of features can have three different goals:

1. Improve the performances: obtain a subset FSsub of features of FS such
that the performances are better using FSsub than FS;

2. Reduce the dimensionality while keeping similar performances: obtain
a subset FSsub of features of FS such that the performances using
FSsub are within a certain range of the ones using FS;

3. Interpretability: in the case where the features have a physical — or
interpretable — meaning, find a ranking of the features which high-
lights their importance regarding the problem at stake. The order in
which the features are ranked gives hints about the structure of the
underlying problem.

The only main difference between the first two goals is about the number of
features to finally select: the first approach will be more aggressive in terms of

75

76 a practical approach to benchmarking steganographic schemes

performances at the expense of a subset possibly still of high dimensionality;
the second approach is more oriented toward the dimensionality reduction
while performances are only a constraint. The third one can be combined
with the first two goals, and used as an additional step once the primary
performance or dimensionality goal has been achieved.

Using the same notations as in chapter 4, a typical requirement on the
error criterion for the second approach is that the difference between the
error

εFSsub
= frisk (M (Θ, x (FSsub)) , y) , (6.1)

of the model using the reduced set of features FSsub and the one using theCriterion can be
devised depending on
the goal of feature
selection.

original set of features εFS (defined in the same way), is less than a certain
threshold T

εFSsub
− εFS < T . (6.2)

This criterion is merely an example and is restrictive to the case of variable
subset selection, as detailed in 6.1.3.

The criterion for the second approach is more oriented toward perfor-
mances and can be expressed as find a subset FSsub of FS such that

εFSsub
< εFS. (6.3)

With these notations, let us describe some of the problems that arise due
to the high-dimensionality of the space (large number of features), in general
first, and for the specific case of the steganalysis setup afterwards.

6.1.1 Issues in high-dimensional spaces

Although the set of problems caused by high-dimensional spaces is usually
designated by the terminology Curse of Dimensionality, the original meaning
intended by Bellman in [11] was about the exponential increase of the number
of function evaluations with the dimensionality: optimizing a function of M
binary variables with an exhaustive search over the input data requires 2M

function evaluations.
In the following, we will review three typical issues related to the high

dimensionality of a problem. For a more thorough review of the Curse of
dimensionality and more generally high dimensional data analysis, one can
refer to [45] for example.

A “need” for samples

The need for samples and the empty space phenomenon are two sides of the same
problem, related to the lack of samples to fill sufficiently the space.In high dimensional

space, there are never
enough samples.

Consider a M-dimensional space (M variables) with a Cartesian grid of
step � defined in it. If one wants to have at least a sample in each “sub-cube”
of side � of the whole grid, the amount of samples required is of the order of

O
�

(1/�)M
�

, which grows exponentially fast with M. Therefore, in a M = 10

dimensional space, with a step � = 1/10, one already needs 1010 samples to

6.1 why is feature selection so important ? 77

0 0.5 1 1.5
0

500

1000

1500

2000

2500

3000

Distance

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

Distance

Figure 17: Illustration of the concentration of distances effect for a set of uniformly dis-
tributed samples: histogram of the pairwise distances between uniformly
drawn samples, in dimension 2 (left) and 100 (right).

fill correctly the whole space, which is impossible to handle at the moment
(both in terms of storage and processing).

The empty space phenomenon describes the same problem, from the
opposite point of view: suppose we already have N samples in the M-
dimensional space. Using the same grid to define a hypercube that spans
the whole space, there will be a certain amount of samples in each sub-cube.
With the increase of M (and keeping the same N), most of the sub-cubes will
end up empty. Not enough samples

means a learning
space not filled and
thus a model which
will extrapolate.

One might wonder, though, why the space need be filled with samples
uniformly, as in the cases of the grid described. If a model M is trained on
samples which do not span correctly the whole space in which it is supposed
to be able to provide estimations, it might extrapolate for test points that
lie outside of its “learning space”. The correct behavior for a model is to
interpolate, on new data, and extrapolation might be hazardous, regarding
the quality of the estimation.

In practice, as shown in publications D (section 4.1) and E (section 4.2.1),
the requirements on a sufficient number of samples (regarding statistically
relevant results) are very much below the theoretical expectations, fortunately.

The concentration of distances

As seen in the previous part of this dissertation, some models are based on
distances between samples, the k Nearest Neighbors, for example.

A problem in such spaces is that distances concentrate: the range of possible
distances is not fully spanned anymore, and most of the samples are at large
distances from each other. Figure 17 illustrates this situation for a set of
points drawn from a uniform distribution, in a two-dimensional space on the
left and 100-dimensional space on the right. For the two-dimensional case,

distances exist in the whole possible range
�

0,
√
2
�

, while in dimension 100,
only a very small part of the histogram is filled, mostly with large distances. Distances tend to be

all similar and large.The bottomline of these two problems (empty space and distance concen-
tration) is that there are never enough points in high-dimensional spaces,
and they all tend to be far away from each other, rendering the relevance of
distance-based models questionable [13].

78 a practical approach to benchmarking steganographic schemes

Complexity of models

We have seen that models can suffer from irrelevant (or not relevant enough)
variables, as in the case of the ELM, for example. Although it is often claimed
that the SVM is not so sensitive to high-dimensional spaces and irrelevant
variables, it is shown practically in [134] that on the contrary, SVM as most
other models benefits from a most relevant set of variables.

Once truly irrelevant variables have been pruned out, going further into
feature selection becomes a matter of performance or computational speed.The model complexity

is always related to
the dimensionality
(directly or not).

Indeed, all machine learning have a complexity either related to the di-
mensionality M or to the number of samples N (sometimes both), linear
in the best cases, and most of the time at least quadratic with one of them.
Therefore, lowering the number of variables helps in reducing the amount of
samples required to fill the space and thus the computational time for the
model training (and validation).

6.1.2 More specifically: for steganalysis problems

In the steganalysis framework, the need for samples can be adressed rather
easily (compared to some specific fields where acquiring an additional sample
has important costs), even though the storage of the images can become a
problem for a very large base. Also, the computational and data processing
time issues — since one has to extract the features from each image — are
not negligible and both are in favour of dimensionality reduction.The possibility of

interpreting the
variables in
steganalysis
motivates the feature
selection.

More specific to steganalysis is the interpretability of the variables selected:
if a certain variable is retained in the dimensionality reduction process, then it
must relate specifically to the output; for the case of qualitative steganalysis
for example, it means that this variable enables to have a more reliable
detection of the stego image over the cover one. Which implies that the stego
algorithm alters the cover image in the meaning related to this variable.

This leaves room for interpretation and possibly securing the stego al-
gorithm, if it is known. If not known, it makes possible a sort of “reverse-
engineering” on the stego algorithm, highlighting some of its weaknesses
and therefore revealing partially its functioning.

Also, steganalysis is about performances. Whether it is in regression or
classification, the goal is usually to perform as best as possible. In this sense,
and even with the best possible set of features, an insufficient amount of
samples might cripple the model and lead to suboptimal performances; or
on the contrary, surprisingly (unreliable) good performances if the model
is not validated and tested as described for example in 4.2: the variance of
the results might be very large and make the results statistically insignificant.
Publication E (see e.g., Figure 5) addresses this issue practically.

6.1.3 Performing feature selection

On the general level, it is possible to identify three main classes of feature
selection: wrapper, filter and embedded methods. In the following, we give a
few example of feature selection schemes belonging to each class, with an
emphasis on wrapper methods, since it is the class used in the publications

6.1 why is feature selection so important ? 79

included in this dissertation. A more detailed review of feature selection
techniques for machine learning can be found for example in [59].

Filtering

Filtering methods can be seen as a pre-processing step on the data x. In this

class, no model is considered, but a scoring function SF
�

xTj , y
�

is typically
used: the score computed between the variable j of the data set x and the
output y permits to decide whether this variable j should be retained. Thus, Filtering methods use

each variable
separately in relation
to the output.

variables are considered separately and one at a time, in this method. One
of the main advantages over wrapper and embedded schemes is the low
computational time it requires (for M variables, only M evaluations of the
scoring function SF have to be computed). Examples of scoring functions
include Pearson’s correlation coefficient (used for example in [102]) and
mutual information, among others [59]. While Pearson’s coefficient is easy to
compute, it only reveals linear dependencies between the considered variable
and the output. Mutual information suffers from the difficulty we have to
estimate it practically.

The following wrapper and embedded schemes do not consider each
variable separately regarding the output, but by subsets or sequential adding/
removing.

Wrapper and embedded methods

These classes of feature selection techniques require the use of a model.
Instead of the previous scoring function, the model is here used to verify the
relevance of the selected subset of variables. One advantage of these methods
lies in the fact that various combinations of variables can be considered,
regarding the output, and not only one, as in the filtering approach. Embedded methods

are a bit specific:
selection is inside the
model.

The embedded methods are using a process of feature selection inside the
machine learning model itself. Decision trees are an instance of this type of
methods [20].

The wrapper methods are popular since they allow the use of any model
as the decision criterion on whether a variable should be kept or not: in this
scheme, the machine learning model acts as a black box. Let us cite two greedy
methods as wrappers: the forward selection and the backward elimination. The
adjective greedy comes from the fact that once a variable as been added/
removed, it is never considered again. The forward and backward methods
are actually variable ranking methods: the selection of the subset remains a
decision of the user in the end. Wrapper methods

such as the forward
are often used for
they are easy to
implement and can
use any model.

The forward selection starts with an empty set of selected variables S and
a full set of remaining variables R. Each of the variables in R is added in turn
to S, and performance is evaluated for each set S containing one variable. The
variable deeming the best results is put in S definitely and removed from R.
The algorithm iterates M(M− 1)/2 times (with M the number of variables),
considering sets of the first selected variable and one of the remaining in
R, and finishes once R is empty. The algorithm is put in a more formal
algorithmic way in publication E (section 3.3.1), for example.

The backward elimination works in the same way, except that the initial set
of selected variables is full and the remaining one is empty. The algorithm

80 a practical approach to benchmarking steganographic schemes

processes this time by eliminating the variable contributing the less to the
performance, until none is left.

At the end, one obtains a ranking of the variables, which enables to select
a sufficient amount of variables regarding the performances of the model.

The forward selection is used in the following description of a practical
benchmarking for stego algorithms, to select the steganalysis features that
are most relevant.

6.2 practical benchmarking of stego algorithms

Chronologically, publication C is the first one to propose the use of feature
selection for steganalysis problems. The set of features used is the original
23 DCT features set of Fridrich [46], and the paper shows through a method-
ology using the forward selection scheme, that it is possible for the stego
algorithms Outguess, F5 and Steghide, to reduce the set of 23 features to
a subset of 13 (different for each stego algorithm) while retaining similar
performances. This early work gave the basis for the methodology that is to
be presented quickly in the following, and published in E.A possible practical

benchmark for
steganography: find
how many images
should be used and
perform feature
selection.

One problem which arose while experimenting was that of the relation
between the number of samples (images here) and the reliability of the
results. We realized when using a larger feature set, that results were no
longer statistically stable, with large deviations on different permutations of
the data set.

Publication D deals mainly with this problem, when using the extended
version of the DCT feature set, containing 193 features. Using a similar
methodology to that of C, the variance of the results is estimated when the
number of samples varies.

Finally, a global critique on the methodology used until then was on the
use of a different machine learning model for the variable selection (a k-NN)
and for the final evaluation of the performances (a SVM). It was argued that
variables selected using one machine learning method might not be the most
appropriate for another model, and hence, that the selection of variables was
possibly sub-optimal for a SVM.

It should be noted that in all three publications, the terminology “con-
fidence interval” is used to designate the interval based on the standard
deviation of the results around the computed mean value.

Even though the forward selection approach has a rather limited number
of iterations (compared to an exhaustive search, for example) it remains
computationally intractable to perform it on a large data set using the SVM.
In this regard, the OP-ELM was proposed and used, in E, to obtain a global
practical benchmark for stego algorithms. The following presents shortly the
two main parts of this benchmark approach, and the reader is refered to
the original publications C, D and E for the full set of results and a wider
analysis.

6.2.1 Determining a sufficient number of points

As described at more length in publication E, the determination of a sufficient
number of points is using a bootstrap approach [39] to obtain statistically

6.2 practical benchmarking of stego algorithms 81

500 1000 1500 2000 2500 3000 3500

0.5

1

1.5

2

2.5

3

3.5

4

Number of samples

St
an

d
ar

d
 d

ev
ia

ti
o

n
 (

in
 %

)

Figure 18: Standard deviation in percentage of the average classification result (rela-
tive variation) versus the number of images used, for the four embedding
rates for the Outguess algorithm: black circles (�) for 20%, green squares
(�) for 15%, red crosses (×) for 10%, and blue triangles (

�
) for 5%. Please

that the embedding rates are measured here using the R(2) definition from
section 2.3.2.

relevant results for varying sizes of the subset drawn randomly from the
original data set. The 100 runs of the bootstrap over large data sets are
feasible, computationally speaking, with the OP-ELM as the machine learning
model. Again, the reader is refered to publication E for more details on the
methodology. First find how many

images are required
for the task. . .

As a mere illustration of the effect of the size of the data set over the
relevance of the results, let us take the example of the Outguess stego
algorithm, for the following. Publication E gives results for five other stego
algorithms: F5, MM3, JPHS, MBSteg and Steghide.

Figure 18 plots the standard deviation of the results (in percentage of
the average accuracy) versus the number of samples used (images), for the
OP-ELM model on a boostrap with 100 repetitions. Note that the embedding
rates are computed as in the R(2) definition from section 2.3.2. Two main
points can be made:

1. the larger is the embedding rate, the lower is the standard deviation
of the results: a large embedding rate yields more statistically stable
results;

2. the more images are used to train the model and perform the stegana-
lysis, the more relevant are the results (statistically speaking).

82 a practical approach to benchmarking steganographic schemes

0 2 0 40 60 80 100 120 140 160 180 200
60

65

70

75

80

85

90

95

100

Number of Features

A
cc

u
ra

cy

Figure 19: Accuracy versus number of features used, for the four embedding rates for
the Outguess algorithms: black circles (�) for 20%, green squares (�) for
15%, red crosses (×) for 10%, and blue triangles (

�
) for 5%. Not all points

are plotted for clarity.

The plots for all six stego algorithms behave in a similar way to that for the
Outguess one.

In publication E, a sufficient number of images is chosen based on a
threshold arbitrarily set on the relative standard deviation of the results. The
1% figure was deemed sufficient for the rest of the methodology, but could
be taken to be any other non-zero value, if the steganalysis system is reliable.
This is basically a user-defined value, depending on the desired maximum
variance of the results.

The outcome of this step is a number of images sufficient to obtain statisti-
cally relevant results, number which is used in the rest of the experiments
regarding the feature selection.

6.2.2 Determining a sufficient number of features

The second step of the methodology is to determine a sufficient number of
features for each stego algorithm. Again, let us overview the results for the
Outguess algorithm.And then select the

features and interpret
the selection.

In Figure 19, it can be seen that for this specific stego algorithm, only
a fraction (less than 50 seems enough) of the full 193 DCT feature set is
sufficient to obtain a good accuracy, similar to the best possible result, within
the noise of the results. This means that the dimensionality of the data set
can be reduced by at least a factor four, for the Outguess.

6.3 conclusion 83

The decision over the number of features to keep is again a user-defined
tradeoff between accuracy and desired number of features. To be precise,
it could be defined by taking the numerical derivative of the accuracy plot
(versus number of features), and a threshold (user-defined) on this derivative
would give the number of features beyond which the accuracy increase is
not important enough anymore.

This conclusion for the Outguess cannot be generalized to the other stego
algorithms, as noted in publication E: even though the shape of the plot is
similar, the size of the feature set required can be very different (and vary
largely between the embedding rates, interestingly).

Also, the selected features are different, for each stego algorithm, which
enables the previously mentioned analysis on the possible weaknesses of the
algorithm.

We refer the reader to the publication for more details on this study, along
with a list of the selected variables and their importance.

6.3 conclusion

Feature selection (or variable selection) is an important concept in machine
learning. Even in the hypothetical case where infinite amount of samples, in-
finite computational power and perfect models would exist, feature selection
would not be useless. Not only does it provide lower dimensional spaces
making the task easier in terms of model and amount of samples required,
but it also gives interpretability to the selected features. This reveals addi-
tional information about the problem and the phenomenon underlying in the
data. In the specific case of steganalysis, and given that the features used can
be interpreted in a practical sense, the selected features give practical insight
over the stego algorithm used and some of its weaknesses (preservation of
the AC histograms, for example).

Throughout publications C, D and E, we have developed a methodol-
ogy to address the problems of high-dimensional spaces in the steganalysis
framework: first, making sure that the amount of samples to perform any
experiment is sufficient regarding the number of features used (dimensional-
ity of the space); second, determining a sufficient number of features for a
particular problem, enabling a deeper analysis of the selected features for a
possible reverse-engineering of the stego scheme used.

The problem of the sufficient number of images regarding the accuracy
of the results is especially important for low embedding rates and for some
algorithms; for example MBSteg with a 5% embedding rate yields up to
7% of relative standard deviation of the average result. Too frequently, the
amount of samples sufficient for a proper model training is overlooked and
the results presented tend to have high variance, and are hence unreliable.

Again, the presentation of these steps is described shortly here to intro-
duce the publications and the results. More details are available from the
publications in this dissertation (C, D and E for this specific chapter).

While this chapter is mostly focused on classification problems (qualitative
steganalysis), the following proposes to address the quantitative steganalysis
case, with a novel practical approach on the matter.

7A N O V E L A P P R O A C H T O Q U A N T I TAT I V E
S T E G A N A LY S I S A N D I M A G E R E L I A B I L I T Y
E S T I M AT I O N

This chapter aims at presenting the recent novel results from publication F
about the quantitative steganalysis problem. The methodology and approach
presented in publication F are the first steps in this direction for quantitative
steganalysis and image reliability estimation, presented for one stego algo-
rithm (nsF5). As for the previous chapter, the concepts from publication F
are described here, along with some results and possible clarifications. The
reader is invited to refer to publication F for the full details and experiments
on this new approach to quantitative steganalysis.

7.1 re-embedding concept for quantitative steganalysis

In the following — and in publication F — we place ourselves in a specific
case of quantitative steganalysis, with certain assumptions: Assumptions for the

re-embedding
concept.• we know the stego algorithm used by the sender (this can be identified

by blind steganalysis, for example);

• we have a model M that can predict accurately the embedding rate (we
use the R(1) definition,here; see section 2.3.2);

• the message embedded by the sender does not span the whole capacity
of the image. This is a reasonable assumption if the sender does not
want to be too easily caught.

In this setup of quantitative steganalysis, we want to know how large is the
message (quantitative steganalysis setup) that has been embedded by the
sender in a suspicious image i. The direct use of a feature set — for example
the full calibrated DCT one, see section 3.3.4 — on the image i with the
model M should give proper results in quantitative steganalysis, as in [103]
with an OLS for the model. We try to improve the quality of the results, and
also find additional information — the number of embedding changes and
the number of original non-zero AC coefficients — by interpolation using
the re-embedding concept. Re-embedding adds

an additional message
in a suspicious image.

In order to both improve the estimation of the original embedding rate
and give a confidence interval of this estimation, we use a re-embedding
technique. The idea is here depicted for one single image i (experiments in
publication F are performed on 700 images from the BOWS2 database [10]),
for simplicity of notations. The 193 calibrated DCT features from [99] are
used.

Suppose we have intercepted the image io coming from a suspicious
sender and we want to estimate the number of embedding changes Eo made
to that image (in relation with the definition of the embedding rate R(1)). For
this, we make in a copy ij of image io, and perform Ej embedding changes
on it (Ej being uniformly drawn in a certain range).

85

86 a novel approach to quantitative steganalysis and image reliability estimation

This process of re-embedding is repeated N times, giving a set of im-
ages

�
ij, 1 � j � N

�
, containing the original embedding changes and the

additional ones.We approximate the
final embedding rate
Rj as in Eq. 7.1.

We propose to approximate the embedding rate Rj for the re-embedded
images ij (in the same sense as for the definition of R(1)) as

Rj =
Eo + Ej

Ao
= Ro +

1

Ao
Ej, (7.1)

where Ao is the number of non-zero AC coefficients in the original image
(before a message was embedded and it became io). This approximation is
shown to be sensible in publication F, under the assumptions mentioned
previously — careful steganographer, i.e. embedding rate rather small. The
idea is then to have many Ej to be able to estimate the constant term Ro and
the first order coefficient 1

Ao
from a set of equations as Equation 7.1.

Indeed, using the model M which is supposed to be able to estimate
embedding rates of the R(1) form, we can estimate the Rj from the ij and
obtain the R̂j such that

R̂j = Ro +
1

Ao
Ej + εj, (7.2)

with εj the error made by M for image ij. The approximation made in
Equation 7.1 regarding the total embedding rate is investigated in publication
F (see e.g. Figure 3) and proved to be reasonable for low Eo + Ej.The approximation is

reasonable for low
Eo +Ej, see
publication F.

By using this approach, we aim at obtaining a better estimation of the
original embedding rate, as well as a confidence interval on that value
indicating how reliable is the estimation.

7.2 embedding rate and confidence interval estimation

Using a set of N equations (each equation coming from one re-embedding),
the linear system

Ro +
1

Ao
E = R̂ (7.3)

is obtained, in which E is the vector of all the Ej and R̂ is the vector of all
the Rj. As described at more length in publication F, the constant coefficientMultiple repetitions

of the re-embedding
allow for the
embedding rate
estimation by linear
regression.

found from the solution of the system (solved in a Least-Squares sense) is the
estimation of the original embedding rate used by the sender and the first
order coefficient is the estimation of the inverse of the number of non-zero
AC coefficients. From these two, it is possible to obtain the estimation of the
number of original embedding changes Eo.

In addition, it is possible to compute a confidence interval on the estimated
values for Ro and 1

Ao
(the value Ao permits the calculation of the original

number of embedding changes, from Ro). In publication F, it is done using
the Matlab® function regress, which uses a Student’s t score, as described
in [36].

Figure 20 illustrates the idea (figure from publication F) for the image set
used in the publication. The value at the ordinate for abscissa zero gives

7.3 inner image difficulty/ reliability estimation 87

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.2

0.25

0.3

0.35

0.4

Number of Embedding Changes

E
st

im
at

ed
 E

m
b

ed
d

in
g

R
at

e

Figure 20: Estimated embedding rate R̂j versus number of re-embedding changes Ej.
The slope of the linear regression gives the first order term 1

Ao
while the

ordinate when Ej −→ 0 gives the constant term Ro.

the estimate of the original embedding rate Ro, while the slope of the linear
regression gives 1

Ao
. The confidence interval on both values is also computed

for that specific image io.
The width of this confidence interval is then used to obtain an estimation

of the image difficulty and thus of the reliability of the estimate.

7.3 inner image difficulty/ reliability estimation

An original work of Böhme and Ker on quantitative steganalysis [16] ana-
lyzed a quantity similar to that of the inner image difficulty discussed here
and in publication F, the within-image error. By defining a two error model of
the estimation of the payload size, the authors analyze the within-image error
which takes into account the errors caused by the possible dependencies
between the cover image and the message embedded in it. We propose a
similar idea to measure the inner difficulty of the image and show that it can
be estimated for a stego image thanks to the re-embedding approach.

7.3.1 A possible measure of the difficulty

Defining the inner difficulty of an image is problematic: the inner difficulty
should be an universal value in the sense that it should not depend on
the model used or the set of features. In the best scenario, one wants a
number explaining the inner difficulty for any steganalysis setup. This value
should summarize how often the image considered is misclassified for the
qualitative steganalysis problem for example, or be related to the error
(Mean Square Error, for example) that steganalysis systems make in the
framework of quantitative steganalysis. Hence, this number (or possibly a
set of numbers, for both quantitative and qualitative steganalysis) reflects

88 a novel approach to quantitative steganalysis and image reliability estimation

how “dangerous” an image potentially is, for the false positive or false
negative rates (respectively the mean square error on the embedding rate)
tend to deviate from the average behavior of the steganalysis system. In this
prospect, it is sensible to use a measure based on the standard deviation of
the error performed for that image, compared to the average situation for
other images.We define a measure

of the image difficulty,
given the genuine
image.

In this analysis, we use the 193 DCT calibrated feature set and propose
to estimate this inner difficulty D by the variation of the predictions for a
given original embedding rate Eo when the embedding stego-key, or the
embedded message varies.

To measure it, we propose to use the real original image (before a message
was embedded in it) i, which is obviously not available in a real case. This
“theoretical” analysis is merely to demonstrate that the estimated confidence
interval on Ro can be used as a measure of the inner difficulty.

We propose to make L embeddings to L copies of i, with varying number
of embedding changes EO

j , leading to an embedding rate RO
j , 1 � j � L (in

publication F, L = 100). The model M is used to obtain an estimate R̂O
j of the

embedding rate RO
j .The measure D uses

the steganalysis error
for first embeddings
with different
stego-keys/ payloads.

The inner difficulty D for image i can then be estimated over the set of L
realizations by

D(i) = std
�

R̂O
j − RO

j

�

. (7.4)

This measure is used in the following to illustrate the relevance of the
width of the confidence interval on the estimated value of Ro as an estimator
of the inner image difficulty. We do not claim that this measure is absolute
and universal for the inner difficulty of an image, but only that the value D(i)

should react positively when the image is difficult for the stego algorithm
and feature set used.

Later work focused on the estimation of this inner image difficulty should
compare the behavior of this proposed measure when the feature set, the
stego algorithm and the embedding rates range, vary. Most likely, some more
elaborate measure could generalize this early concept to a wider range of
stego algorithms and steganalysis systems.

Before we present some of the results from publication F, let us first review
a specific test which could be called “conality test”.

7.3.2 A “conality” test

The results concerning the estimation of the inner difficulty D of an image
revealed a “cone-shaped” distribution (see results section 3 of publication F),
with a non-uniform repartition of the samples.This test permits to

check that the data
follows a “cone”
distribution.

We want to quantify how this distribution of points grows on average, and
also how the variance of the distribution grows: for a data set which lies
inside a cone, as on Figure 21, the ordinate y of the points grows on average
with the abscissa x, and so does the variance. This toy example is to illustrate
how this test is based on locality functions.

In order to measure and plot the evolution of this variance and mean of
the distribution, we use a k-NN approach:

7.3 inner image difficulty/ reliability estimation 89

0 1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

Figure 21: Plot of the original toy data with a distribution shaped as a cone.

1. For each point in the distribution, find the k nearest neighbors (pairwise
distance is measured only using the abscissa x of the points);

2. Compute for each point the mean and variance over the k nearest
neighbors (mean and variance computed using the ordinate y).

The result for the toy data of Figure 21 is depicted on Figure 22. The red
central points are the means over the 30 nearest neighbors for each point, and
the black surrounding points are the means plus/ minus twice the standard
deviation (again, computed over the 30 nearest neighbors). The distribution of

points grows in mean
and variance, as for a

“flat cone”.

It can be seen that the mean is constantly growing with the abscissa, and
that the width of the cone (the “variance for each point”) is also increasing.
This characterizes the “conality” of the data: the ordinate value y increases
on average and the spreading of the points grows with it.

7.3.3 Inner image difficulty estimation

Using the width of the confidence interval obtained on R̂o, we first check
against the difficulty D value. Figure 23 (from publication F) represents all
the 700 images used, each with N = 1500 repetitions. We estimate the inner

image difficulty D by
the width of the
confidence interval.

Although the distribution of the points in the plot is less obvious than for
the toy example previously mentioned, the “cone” shape is still present. We
propose to highlight this shape by using the conality test presented, and find
that the “mean for each point” — for its 30 nearest neighbors — grows in a
linear fashion (see F for the plots). The variance behaves similarly.

Overall this correlation between the width of the confidence interval for
the estimated R̂o and the proposed inner image difficulty measure D proves
that the re-embedding approach for this estimation is justified.

As stated in F, it is noteworthy that the variance also increases with respect
to the width of the confidence interval. This basically means that the larger

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

Figure 22: Results of the “conality” test: central red dots depict the growing mean
over the 30 nearest neighbors and surrounding black dots the mean ±2

times the standard deviation (also over the 30 nearest neighbors).

1.5 2 2.5 3 3.5 4 4.5

x 10
-3

0.005

0.01

0.015

0.02

0.025

Width of Con!dence Interval for

St
d

 o
f

E
rr

o
r

fo
r

o
ri

gi
n

al
 E

m
b

ed
d

in
gs

Figure 23: D (measure of inner image difficulty) versus width of confidence interval
for R̂o. The distribution of points is not uniform and shaped like a cone.

90

7.4 conclusion 91

is the obtained confidence interval, the harder it is to obtain an accurate
estimation of the difficulty.

7.4 conclusion

We have reviewed a methodology using the concept of re-embedding for
quantitative steganalysis. Using this concept, we derive a simple estimation
of the original embedding rate used by the sender, Ro along with a confidence
interval on it. We further verify that the width of this confidence interval
can be used to measure the inner image difficulty, by comparing to quantity
measured with the use of the original genuine image.

While the results from publication F are rather new and novel, they pos-
sibly need deeper research and tests on a larger range of images and stego
algorithms, since the concept is only tested on one stego method here, nsF5.
We would like to point out on a problem which is eluded in publication F —
since it does not belong to the presented concept — the amount of data to
process. Originally, the experiments were carried out on about 2000 images
from the BOWS2 set [10], and not 700. Handling of the 1500 repetitions
over 2000 images became a problem, in terms of memory and calculations,
and we reverted to 700 images for the moment. Fortunately, the use of the
OP-ELM made the computations tractable even on such large data set. In the
future, we would like to validate these results on a larger set of images —
for example to obtain a more uniform distribution of points on Figure 23 —
and test the methodology for other stego algorithms to verify if the behavior
is similar or if the difficulty of the steganalysis task (using this same set of
features) influences the results on the confidence interval and inner image
difficulty estimation.

8S U M M A RY A N D C O N C L U S I O N S

In this dissertation, we have addressed two different sides of the global
steganalysis problem: the classical steganalysis one (using classification) and
the quantitative steganalysis one (regression).

For the classical “qualitative” steganalysis, we have proposed a two-step
methodology which originates from publications C and D. The first step of
this methodology attempts at estimating the relevance of the results — in a
statistical significance way — and helps devising a sufficient number of sam-
ples required for the experiments. By measuring the variance of the results
over multiple bootstrap iterations, for different amounts of samples, it is pos-
sible to find a threshold above which the results of a specific model become
statistically significant (i.e. the variance of the results is small enough).

The second step aims at performing feature selection on the set of features
used for the steganalysis task. Since these sets tend to be large (in the
magnitude of hundreds of features), the associated data is becoming more
challenging to process and interpret. By reducing the dimensionality using
Forward feature selection, the computational time required for the model
to be trained is notably decreased (several orders of magnitude): for some
of the tested stego algorithms, a reduction of the feature set by a factor of
approximately 10 yields similar results for all the tested embedding rates
(in the example of Outguess). In the last part of this step, the selection of
features allows for interpretation and the analysis of the ranking of features
by the Forward gives information on what reacts the most vividly to the
embedding of a message. This can give precious information on the potential
weaknesses of the stego algorithm studied, and eventually reveal parts of its
functioning.

In order to conduct this methodology on a larger scale than in publications
C and D, a fast and efficient machine learning model, which could be kept
throughout the whole methodology, was needed. Indeed, in order to reduce
the variations in the methodology, it is better to use the same model for
determining the sufficient number of samples and then select the features.
The OP-ELM (publication A) is proposed in this spirit and uses the original
ELM [69] to which is added a neuron pruning strategy. A Single Layer Feed
forward Neural Network is built using random projections in the first layer
(weights randomly initialized), following the ELM original structure. A large
number of neurons is used in the first place and the irrelevant ones are
finally pruned using a neuron-ranking algorithm, the MRSR [117], with a
Leave-One-Out decision criterion.

This model achieves state of the art performances, while having computa-
tional times reduced by orders of magnitude (compared, for example, with a
SVM). We claim that it is among the best performance/ speed ratio.

In publication B, the Leave-One-Out decision criterion of the OP-ELM is
proposed to be replaced by an information criterion, the Hannan-Quinn one.
This has the effect of reducing by three to four folds (for the datasets tested)
the computational time of the OP-ELM, while retaining similar performances.

93

94 summary and conclusions

The OP-ELM is used in the methodology presented in publication E, which
enables to perform the estimation of a sufficient number of samples and of
a reduced feature set for a large database of images (the BOWS2 challenge
base [10]) and for six popular stego algorithms.

Quantitative steganalysis is then addressed, with the aim of estimating a
confidence interval for the estimation of the original embedding rate (related
to the message size embedded by the sender). A novel approach is used in
this sense: Re-embedding. The idea is to embed a new message of known size
in the suspicious image (which might already contain one). By performing
this operation many times (on different copies of the suspicious image each
time) for varying sizes of the newly embedded message, we propose to
estimate the original embedding rate used by the sender. This is done by a
simple linear regression. A confidence interval is also devised by this method,
for the estimated original embedding rate.

This approach gives better results (for the one stego algorithm tested) than
a “standard” quantitative steganalysis using directly the feature set on the
suspicious image.

In addition, we propose to estimate the inner image difficulty (in the sense
that it is behaving in an “unusual way” for steganalysis tasks), with the
width of the estimated confidence interval. By measuring the inner difficulty
of the image using the genuine version of it, we show that the width of the
confidence interval is correlated with it.

In conclusion, the machine learning setup in the steganalysis framework
is not a usual one for two main reasons. First, new data to train and test
the model used is easy and rather costless to acquire: taking new pictures
of outdoor or family scenes and using them with stego algorithms does
not yield heavy processing costs as for other domains where acquiring a
new sample uses complicated equipment and costs large amounts of money.
Second, a goal in steganalysis (and steganography) is to have as good as
possible a model of the image considered; we have seen that this can be
approximated by the use of features, which are nowadays numerous, to
always model better the image and its characteristics. The machine learning
problem becomes high-dimensional, and the data grows exponentially larger
with the new features devised, leading to a problems harder to solve, in terms
of machine learning models. There is hence a need in steganalysis, for fast
and efficient machine learning models, and as importantly methodologies to
obtain reliable and relevant results.

If the work achieved was to be pursued, there are several directions to
explore, to possibly improve the results and performances but also to widen
the view and approach.

First of, the work on the quantitative steganalysis and inner image difficulty
estimation is recent and it could be extended in the future to more stego
algorithms and a larger database of images, to proof this approach on other
similar problems.

Second, the OP-ELM might be improved, in terms of “stability” — since
the OP-ELM uses random projections and is not deterministic. Indeed, the
only hyper-parameter of the OP-ELM, the number of neurons, can be crucial
for some problems, and its determination is mostly heuristic. Hence, an
inappropriate choice made by the user on this hyper-parameter can lead
to unstable results — which are spotted quickly in validation. The idea of

summary and conclusions 95

the OP-ELM (pruning irrelevant neurons) and of the EM-ELM (adding new
neurons to an existing structure) could be combined, in a possibly slightly
slower method, but providing more stability in terms of the results obtained.

Third, the mentioned reverse-engineering infered from the selected features
in the classical steganalysis methodology should be put to use. By identifying
the most sensitive features for a specific scheme, it must be possible to
improve its original scheme and perform a better steganography. Although
we mention which features are selected for which stego algorithm, this
study has never gone any further. The author believes that even if such
improvements will not render a very insecure stego system suddenly secure,
it should improve it nonetheless; which might in turn raise a new interest
for it in the steganalysis community.

Finally, as Andrew Ker stated it in a talk given at Telecom ParisTech school,
the field of steganography has still some important, although barely explored,
areas such as the Batch Steganography and Pooled Steganalysis problem
[76]. The matter of hiding a message in multiple images is very different
from hiding into just one — the approach is probably more statistical and
less “hands-on” than with typical JPEG stego algorithms — and has not yet
received an important attention from the researchers of the community. This
is rather surprising though, since the most realistic case of a “smart and evil”
steganographer would very likely involve the use of multiple images. . .

B I B L I O G R A P H Y

[1] The RigVeda. est. 1700-1100 BC. (Cited on page v.)

[2] Dimitris Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671–687,
2003. ISSN 0022-0000. doi: 10.1016/S0022-0000(03)00025-4. (Cited on
page 64.)

[3] Sos S. Agaian and Hong Cai. Color wavelet based universal blind
steganalysis. In IEEE International Workshop on Spectral Methods and
Multirate Signal Processing, volume 7, pages 3710–3713, Vienna, Austria,
2004. (Cited on page 54.)

[4] Hirotsugu Akaike. A new look at the statistical model identification.
IEEE Transactions on Automatic Control, 19(6):716–723, December 1974.
(Cited on page 71.)

[5] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing
multiclass to binary: a unifying approach for margin classifiers. Journal
of Machine Learning Research, 1:113–141, 2001. ISSN 1532-4435. doi:
10.1162/15324430152733133. (Cited on page 47.)

[6] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press,
Cambridge, Massachusetts, 2004. (Cited on pages 43 and 47.)

[7] Ross J. Anderson. Information Hiding, volume 1174 of Lecture Notes in
Computer Science. Springer-Verlag, 1996. (Cited on page 10.)

[8] Arthur Asuncion and David J. Newman. UCI machine learning reposi-
tory, 2007. URL http://www.ics.uci.edu/mlearn/. (Cited on pages 64,
67, 71, and 72.)

[9] Ismail Avcibas, Nasir Memon, and Bulent Sankur. Steganalysis using
image quality metrics. Image Processing, IEEE Transactions on, 12(2):221–
229, feb 2003. ISSN 1057-7149. doi: 10.1109/TIP.2002.807363. (Cited on
page 28.)

[10] Patrick Bas and Teddy Furon. BOWS2 Challenge: Break Our Water-
marking Scheme: http://bows2.gipsa-lab.inpg.fr/, ECRYPT European
Network of Excellence. (Cited on pages 69, 85, 91, and 94.)

[11] Richard E. Bellman. Adaptive Control Processes: a Guided Tour. Princeton
University Press, Princeton, NJ, 1961. (Cited on page 76.)

[12] Nabil Benoudjit, Cédric Archambeau, Amaury Lendasse, John A. Lee,
and Michel Verleysen. Width optimization of the gaussian kernels in ra-
dial basis function networks. In M. Verleysen, editor, ESANN 2002, Eu-
ropean Symposium on Artificial Neural Networks, Bruges (Belgium), pages
425–432. d-side publ. (Evere, Belgium), April 2002. (Cited on page 58.)

97

http://www.ics.uci.edu/mlearn/

98 bibliography

[13] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri
Shaft. When is “nearest neighbor” meaningful? In Database Theory —
ICDT’99, volume 1540/1999 of Lecture Notes in Computer Science, pages
217–235. Springer-Verlag, 1999. (Cited on pages 58 and 77.)

[14] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, USA, 1996. (Cited on page 57.)

[15] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2007. (Cited on page 54.)

[16] Rainer Böhme and Andrew D. Ker. A two-factor error model for
quantitative steganalysis. In Edward J. Delp III and Ping Wah Wong,
editors, Proceedings of SPIE, volume 6072, page 607206. SPIE, 2006. doi:
10.1117/12.643701. (Cited on page 87.)

[17] Thorsten Bojer, Barbara Hammer, Daniel Schunk, and Katharina Tluk
von Toschanowitz. Relevance determination in learning vector quanti-
zation. In Michel Verleysen, editor, Proceedings of European Symposium
on Artificial Neural Networks (ESANN’01), pages 271–276, Brussels, Bel-
gium, 2001. D-facto publications. (Cited on page 58.)

[18] Gianluca Bontempi, Mauro Birattari, and Hugues Bersini. Recursive
lazy learning for modeling and control. In European Conference on
Machine Learning, pages 292–303, 1998. (Cited on page 69.)

[19] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A
training algorithm for optimal margin classifiers. In COLT ’92: Proceed-
ings of the fifth annual workshop on Computational learning theory, pages
144–152, New York, NY, USA, 1992. ACM. ISBN 0-89791-497-X. doi:
10.1145/130385.130401. (Cited on page 55.)

[20] Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Ol-
shen. Classification and Regression Trees. Chapman and Hall/CRC, 1984.
(Cited on page 79.)

[21] Michael Buehner and Peter Young. A tighter bound for the echo state
property. IEEE Transactions on Neural Networks, 17(3):820–824, 2006.
(Cited on page 65.)

[22] Chris J.C. Burges and Bernhard Schölkopf. Improving the accuracy
and speed of support vector machines. In Advances in Neural Informa-
tion Processing Systems 9, pages 375–381. MIT Press, 1997. (Cited on
page 56.)

[23] Christian Cachin. An information-theoretic model for steganography.
In Information Hiding, volume 1525/1998 of Lecture Notes in Computer
Science, pages 306–318. Springer Berlin / Heidelberg, January 1998.
(Cited on pages 23 and 24.)

[24] Rajarathnam Chandramouli and Nasir D. Memon. A distribution
detection framework for watermark analysis. In Proc. of the ACM
Multimedia Workshop on Multimedia and Security, pages 123–126, New
York, NY, USA, 2000. (Cited on page 28.)

bibliography 99

[25] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support
vector machines, 2001. Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm. (Cited on page 63.)

[26] Brian Chen and Gregory W. Wornell. Quantization index modulation:
A class of provably good methods for digital watermarking and in-
formation embedding. IEEE Trans. on Information Theory, 47:1423–1443,
1999. (Cited on page 22.)

[27] Pedro Comesaña and Fernando Pérez-González. On the capacity
of stegosystems. In MM& Sec ’07: Proceedings of the 9th workshop on
Multimedia & security, pages 15–24, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-857-2. doi: 10.1145/1288869.1288873. (Cited on
page 12.)

[28] JPEG Comittee. URL http://www.jpeg.com. (Cited on page 16.)

[29] Pierre Comon. Independent component analysis - a new concept?
Signal Processing, 36:287–314, 1994. (Cited on page 45.)

[30] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton
Kalke. Digital Watermarking and Steganography. Morgan Kaufmann,
2008. (Cited on pages xxi, 10, 28, 31, and 32.)

[31] Ron Crandall. Some notes on steganography. Posted on Steganography
Mailing List, 1998. URL http://os.inf.tu-dresden.de/~westfeld/

crandall.pdf. (Cited on pages 14 and 20.)

[32] Nedeljko Cvejic, Anja Keskinarkaus, and Tapio Seppänen. Audio water-
marking using m-sequences and temporal masking. In IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics, pages 227–
230, New Paltz, New York, October 21-24 2001. (Cited on page 9.)

[33] Luc P. Devroye and Terry J. Wagner. Distribution-free inequalities
for the deleted and holdout error estimates. IEEE Transactions on
Information Theory, 25(2):202–207, 1979. (Cited on page 51.)

[34] Luc P. Devroye and Terry J. Wagner. Distribution-free performance
bounds for potential function rules. IEEE Trans. on Information Theory,
25(5):601–604, 1979. (Cited on page 51.)

[35] Dariush Divsalar, Hui Jin, and Robert J. McEliece. Coding theorems
for “turbo-like” codes. In 36th Allerton Conference on Communications,
Control and Computing, pages 201–210, 1998. (Cited on page 22.)

[36] Norman R. Draper and Harry Smith. Applied Regression Analysis, 3rd
edition. Wiley-Interscience, 1998. (Cited on page 86.)

[37] Harris Drucker, Chris J.C. Burges, Linda Kaufman, Alexander Smola,
and Vladimir N. Vapnik. Support vector regression machines. In
Advances in Neural Information Processing Systems 9, NIPS, pages 155–
161. The MIT Press, 1996. (Cited on page 55.)

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.jpeg.com
http://os.inf.tu-dresden.de/~westfeld/crandall.pdf
http://os.inf.tu-dresden.de/~westfeld/crandall.pdf

100 bibliography

[38] Sorina Dumitrescu and Xiaolin Wu. A new framework of lsb ste-
ganalysis of digital media. IEEE Transactions on Signal Processing, 53:
3936–3947, October 2005. doi: 10.1109/TSP.2005.855078. (Cited on
page 33.)

[39] Bradley Efron and Robert J. Tibshirani. An Introduction to the Boostrap.
Chapman and Hall/CRC, 1994. (Cited on pages 51 and 80.)

[40] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani.
Least angle regression. In Annals of Statistics, volume 32, pages 407–499.
2004. (Cited on page 69.)

[41] Guorui Feng, Guang-Bin Huang, Qingping Lin, and Robert Gay. Error
minimized extreme learning machine with growth of hidden nodes
and incremental learning. IEEE Transactions on Neural Networks, 20

(8):1352–1357, 2009. ISSN 1045-9227. doi: 10.1109/TNN.2009.2024147.
(Cited on page 67.)

[42] Tomas Filler, Andrew D. Ker, and Jessica Fridrich. The square root law
of steganographic capacity for markov covers. In Edward J. Delp III,
Jana Dittmann, Nasir D. Memon, and Ping Wah Wong, editors, Media
Forensics and Security, volume 7254, pages 801–811. SPIE, 2009. doi:
10.1117/12.805911. (Cited on page 12.)

[43] Gary William Flake and Steve Lawrence. Efficient svm regression
training with smo. Machine Learning, 46(1-3):271–290, 2002. ISSN 0885-
6125. doi: 10.1023/A:1012474916001. (Cited on page 56.)

[44] Dmitriy Fradkin and David Madigan. Experiments with random
projections for machine learning. In KDD ’03: Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 517–522, New York, NY, USA, 2003. ACM. ISBN 1-58113-
737-0. doi: 10.1145/956750.956812. (Cited on page 64.)

[45] Damien François. High-dimensional Data Analysis: From Optimal Metrics
to Feature Selection. VDM Verlag, 2008. (Cited on page 76.)

[46] Jessica Fridrich. Feature-based steganalysis for jpeg images and its im-
plications for future design of steganographic schemes. In Information
Hiding, volume 3200 of Lecture Notes in Computer Science, pages 67–81,
2004. (Cited on pages xxi, xxiii, 28, 34, 35, 36, and 80.)

[47] Jessica Fridrich. Steganography in Digital Media: Principles, Algorithms,
and Applications. Cambridge University Press, December 2009. (Cited
on page 39.)

[48] Jessica Fridrich and Miroslav Goljan. Practical steganalysis-state of the
art. In Proc. SPIE Photonics West, volume 4675, pages 1–13, California,
USA, January 2002. (Cited on pages 28, 33, and 54.)

[49] Jessica Fridrich, Miroslav Goljan, and Rui Du. Reliable detection of
lsb steganography in grayscale and color images. In Proc. of the ACM
Workshop on Multimedia and Security, pages 27–30, Ottawa, Canada,
October 2001. (Cited on pages 13 and 17.)

bibliography 101

[50] Jessica Fridrich, Miroslav Goljan, Dorin Hogea, and David Soukal.
Quantitative steganalysis of digital images: Estimating the secret mes-
sage length. ACM Multimedia Systems Journal, Special issue on Multime-
dia Security, 9(3):288–302, 2003. (Cited on page 28.)

[51] Jessica Fridrich, Miroslav Goljan, and David Soukal. Searching for
the stego key. In Proceedings of SPIE, Electronic Imaging, Security, Ste-
ganography, and Watermarking of Multimedia Contents VI, volume 5306,
pages 70–82, San Jose, CA, USA, 2004. (Cited on pages 23 and 24.)

[52] Jessica Fridrich, Miroslav Goljan, Petr Lisonek, and David Soukal.
Writing on wet paper. Signal Processing, IEEE Transactions on, 53(10):
3923–3935, October 2005. ISSN 1053-587X. doi: 10.1109/TSP.2005.
855393. (Cited on page 15.)

[53] Jessica Fridrich, Miroslav Goljan, David Soukal, and Taras Holotyak.
Forensic steganalysis: Determining the stego key in spatial domain
steganography. In Proceedings of SPIE, Electronic Imaging, Security, Ste-
ganography, and Watermarking of Multimedia Contents VII, volume 5681,
pages 631–642, San Jose, CA, USA, January 16–20 2005. (Cited on
page 28.)

[54] Jessica Fridrich, Miroslav Goljan, and David Soukal. Wet paper codes
with improved embedding efficiency. Information Forensics and Security,
IEEE Transactions on, 1(1):102–110, March 2006. ISSN 1556-6013. doi:
10.1109/TIFS.2005.863487. (Cited on page 15.)

[55] Jessica Fridrich, Petr Lisoněk, and David Soukal. On steganographic
embedding efficiency. In Information Hiding 2006, volume 4437/2007

of Lecture Notes in Computer Science, pages 282–296, 2007. (Cited on
page 15.)

[56] Jessica Fridrich, Tomáš Pevný, and Jan Kodovský. Statistically unde-
tectable jpeg steganography: dead ends challenges, and opportunities.
In MMSec’07: Proceedings of the 9th workshop on Multimedia & security,
pages 3–14, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-857-2.
doi: 10.1145/1288869.1288872. (Cited on pages 20 and 21.)

[57] S. I. Gel’fand and Mark S. Pinsker. Coding for channel with random
parameters. Problems of Control Theory, 9(1):19–31, 1980. (Cited on
page 12.)

[58] Neil A. Gershenfeld and Andreas S. Weigend. The future of time series:
Learning and understanding. Working Papers 93-08-053, Santa Fe
Institute, August 1993. URL http://ideas.repec.org/p/wop/safiwp/

93-08-053.html. (Cited on page 48.)

[59] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research, 3:1157–1182,
2003. (Cited on page 79.)

[60] Barbara Hammer and Thomas Villmann. Generalized relevance learn-
ing vector quantization. Neural Networks, 15(8-9):1059–1068, 2002. ISSN
0893-6080. doi: 10.1016/S0893-6080(02)00079-5. (Cited on pages 58

and 59.)

http://ideas.repec.org/p/wop/safiwp/93-08-053.html
http://ideas.repec.org/p/wop/safiwp/93-08-053.html

102 bibliography

[61] Barbara Hammer, Marc Strickert, and Thomas Villmann. On the gen-
eralization ability of grlvq networks. Neural Processing Letters, 21(2):
109–120, April 2005. (Cited on page 58.)

[62] Edward J. Hannan and Barry G. Quinn. The determination of the
order of an autoregression. Journal of the Royal Statistical Society, B, 41:
190–195, 1979. (Cited on pages 2 and 71.)

[63] Simon Haykin. Neural Networks: A Comprehensive Foundation (2nd Edi-
tion). Prentice Hall, 2nd edition edition, July 1998. ISBN 0132733501.
(Cited on pages 56 and 57.)

[64] Herodotus. The Histories. Herodotus, 440 BC. (Cited on page 10.)

[65] Stefan Hetzl and Petra Mutzel. A graph-theoretic approach to ste-
ganography. In Dittmann J., Katzenbeisser S., and Uhl A., editors,
CMS 2005, Lecture Notes in Computer Science 3677, pages 119–128.
Springer-Verlag, 2005. (Cited on page 19.)

[66] Kurt Hornik. Approximation capabilities of multilayer feedforward
networks. Neural Networks, 4(2):251–257, 1991. ISSN 0893-6080. doi:
10.1016/0893-6080(91)90009-T. (Cited on page 56.)

[67] Guang-Bin Huang. Elm benchmarking, 2010. URL http://www3.ntu.

edu.sg/home/egbhuang/ELM_Benchmarking.htm. (Cited on page 63.)

[68] Guang-Bin Huang, Chen Lei, and Chee-Kheong Siew. Universal ap-
proximation using incremental constructive feedforward networks
with random hidden nodes. IEEE transactions on neural networks, 17(4):
879–892, 2006. (Cited on page 67.)

[69] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme
learning machine: Theory and applications. Neurocomputing, 70:489–
501, 2006. (Cited on pages 2, 3, 66, 67, and 93.)

[70] Herbert Jaeger. The "echo state" approach to analysing and training
recurrent neural networks, gmd report 148. Technical report, German
National Research Institute for Computer Science, 2001. (Cited on
page 65.)

[71] Herbert Jaeger. Adaptive nonlinear system identification with echo
state networks. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 593–600.
MIT Press, Cambridge, MA, 2003. (Cited on page 65.)

[72] William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz
mappings into a hilbert space. In American Mathematical Society,
editor, Conference in modern analysis and probability, volume 26, pages
189–206, New Haven, Connecticut, 1982. (Cited on page 64.)

[73] Christian Jutten and Jeanny Herault. Blind separation of sources, part
1: an adaptive algorithm based on neuromimetic architecture. Signal
Processing, 24(1):1–10, 1991. ISSN 0165-1684. doi: 10.1016/0165-1684(91)
90079-X. (Cited on page 45.)

http://www3.ntu.edu.sg/home/egbhuang/ELM_Benchmarking.htm
http://www3.ntu.edu.sg/home/egbhuang/ELM_Benchmarking.htm

bibliography 103

[74] Michael Kearns and Dana Ron. Algorithmic stability and sanity-check
bounds for leave-one-out cross-validation. Neural Computation, 11(6):
1427–1453, 1999. ISSN 0899-7667. doi: 10.1162/089976699300016304.
(Cited on page 51.)

[75] S. Sathiya Keerthi, Shirish K. Shevade, Chiranjib Bhattacharyya, and
K. R. Krishna Murthy. Improvements to platt’s smo algorithm for
svm classifier design. Neural Computation, 13(3):637–649, 2001. ISSN
0899-7667. doi: 10.1162/089976601300014493. (Cited on page 56.)

[76] Andrew D. Ker. Batch steganography and pooled steganalysis. In Infor-
mation Hiding, volume 4437/2007 of Lecture Notes in Computer Science,
pages 265–281. Springer-Verlag, September 2007. (Cited on pages 15,
22, and 95.)

[77] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences
militaires, 9:5–38, January 1883. (Cited on page 24.)

[78] Anja Keskinarkaus, Anu Pramila, Tapio Seppänen, and Jaakko Sauvola.
Wavelet domain print-scan and jpeg resilient data hiding method. In
Digital Watermarking, volume 4283/2006 of Lecture Notes in Computer
Science, pages 82–95, November 2006. (Cited on page 9.)

[79] Younhee Kim, Zoran Duric, and Dana Richards. Modified matrix
encoding technique for minimal distortion steganography. In Informa-
tion Hiding 2007, volume 4437/2007, pages 314–327, 2007. (Cited on
page 21.)

[80] Jan Kodovský, Tomáš Pevný, and Jessica Fridrich. Modern steganalysis
can detect yass. In Proceedings of SPIE, Electronic Imaging, Media Foren-
sics and Security XII, pages 02–01–02–11, San Jose, CA, USA, January
17—21 2010. (Cited on pages 28 and 37.)

[81] Teuvo Kohonen. Self-organized formation of topologically correct
feature maps. pages 509–521, 1988. (Cited on page 59.)

[82] Teuvo Kohonen. Self-Organizing Maps, 3rd edition. Springer, 2001.
(Cited on pages 58 and 59.)

[83] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Esti-
mating mutual information. Phys. Rev. E, 69(6):66–138, June 2004. doi:
10.1103/PhysRevE.69.066138. (Cited on page 25.)

[84] Allan Latham. Jphide&seek, August 1999. URL http://linux01.gwdg.

de/~alatham/stego.html. (Cited on page 21.)

[85] Amaury Lendasse, John A. Lee, Vincent Wertz, and Michel Verleysen.
Forecasting electricity consumption using nonlinear projection and
self-organizing maps. Neurocomputing, 48(1-4):299–311, October 2002.
(Cited on page 59.)

[86] Bin Li, Yun Q. Shi, and Jiwu Huang. Steganalysis of yass. In MM&Sec
’08: Proceedings of the 10th ACM workshop on Multimedia and security,
pages 139–148, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
058-6. doi: 10.1145/1411328.1411354. (Cited on page 38.)

http://linux01.gwdg.de/~alatham/stego.html
http://linux01.gwdg.de/~alatham/stego.html

104 bibliography

[87] Qingzhong Liu, Andrew H. Sung, and Bernardete M. Ribeiro. Statistical
correlations and machine learning for steganalysis. In Adaptive and
Natural Computing Algorithms, pages 437–440, Coimbra, Portugal, 2005.
(Cited on page 54.)

[88] Wolfgang Maass, Robert A. Legenstein, and Henry Markram. A new
approach towards vision suggested by biologically realistic neural mi-
crocircuit models. In BMCV ’02: Proceedings of the Second International
Workshop on Biologically Motivated Computer Vision, pages 282–293, Lon-
don, UK, 2002. Springer-Verlag. ISBN 3-540-00174-3. (Cited on page 65.)

[89] Benjamin M. Marlin. Missing Data Problems in Machine Learning. PhD
thesis, University of Toronto, 2008. (Cited on page 44.)

[90] Paul Merlin, Antti Sorjamaa, Bertrand Maillet, and Amaury Lendasse.
X-SOM and l-SOM: A double classification approach for missing value
imputation. Neurocomputing, to appear. (Cited on page 44.)

[91] Michael K. Meyerhoff. A timetable for talking. Pediatrics for Parents,
June 2007. (Cited on page 43.)

[92] Yoan Miche, Benjamin Schrauwen, and Amaury Lendasse. Machine
learning techniques based on random projections. In Michel Verleysen,
editor, ESANN2010: 18th European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning, pages 295–302,
Bruges, Belgium, April 28–30 2010. d-side Publications. (Cited on
page 65.)

[93] Martin F. Møller. A scaled conjugate gradient algorithm for fast super-
vised learning. Neural Networks, 6(4):525–533, 1993. (Cited on page 57.)

[94] Raymond H. Myers. Classical and Modern Regression with Applications,
2nd edition. Duxbury, Pacific Grove, CA, USA, 1990. (Cited on pages 50

and 69.)

[95] Mark Noto. Mp3stego: Hiding text in mp3 files. September 2001. URL
http://www.tulane.edu/~park/courses/ElectronicMusicHistory/

papers/Mp3Stego-DataHidingInMP3.pdf. (Cited on page 11.)

[96] Karl Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2(6):559–572, 1901. (Cited on page 65.)

[97] Tomáš Pevný. Kernel Methods in Steganalysis. PhD thesis, Binghamton
University, SUNY, May 2008. (Cited on page 25.)

[98] Tomáš Pevný and Jessica Fridrich. Towards multi-class blind stega-
nalyzer for jpeg images. In Digital Watermarking, volume 3710/2005

of Lecture Notes in Computer Science, pages 39–53. Springer Berlin /
Heidelberg, 2005. (Cited on page 28.)

[99] Tomáš Pevný and Jessica Fridrich. Merging markov and dct features
for multi-class jpeg steganalysis. In Edward J. Delp III and Ping Wah
Wong, editors, Proc. SPIE Electronic Imaging, Photonics West, volume
6505, pages 03–04. SPIE, January 2007. (Cited on pages 28, 36, 37, 38,
63, 69, and 85.)

http://www.tulane.edu/~park/courses/ElectronicMusicHistory/papers/Mp3Stego-DataHidingInMP3.pdf
http://www.tulane.edu/~park/courses/ElectronicMusicHistory/papers/Mp3Stego-DataHidingInMP3.pdf

bibliography 105

[100] Tomáš Pevný and Jessica Fridrich. Novelty detection in blind stegana-
lysis. In Proceedings of the 10th workshop on Multimedia & security, pages
167–176, Oxford, UK, UK, September 22–23 2008. ACM, New York,
USA. (Cited on page 28.)

[101] Tomáš Pevný and Jessica Fridrich. Benchmarking for steganography.
In K. Solanki, editor, Information Hiding, 10th International Workshop,
Lecture Notes in Computer Science, pages 251–267, Santa Barbara, CA,
May 19–21, 2008. Springer-Verlag, New York. (Cited on page 25.)

[102] Tomáš Pevný, Patrick Bas, and Jessica Fridrich. Steganalysis by sub-
stractive pixel adjacency matrix. In Proceedings of the 11th workshop on
Multimedia & security, Princeton, NJ, USA, September 7–8, pages 75–84.
ACM, New York, USA, 2009. (Cited on pages 38, 39, and 79.)

[103] Tomáš Pevný, Jessica Fridrich, and Andrew D. Ker. From blind to
quantitative steganalysis. In Edward J. Delp III, Jana Dittmann, Nasir D.
Memon, and Ping Wah Wong, editors, Proc. SPIE, Electronic Imaging,
Media Forensics and Security XI, volume 7254, pages 0C1–0C14, San Jose,
CA, USA, January 18–22 2009. SPIE. (Cited on pages 28, 54, and 85.)

[104] John C. Platt, Nello Cristianini, and John Shawe-taylor. Large margin
dags for multiclass classification. In Advances in Neural Information
Processing Systems, pages 547–553. MIT Press, 2000. (Cited on page 47.)

[105] Tomaso Poggio and Federico Girosi. A theory of networks for ap-
proximation and learning. Technical report, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1989. (Cited on page 57.)

[106] Niels Provos. Defending against statistical steganalysis. In 10th
USENIX Security Symposium, pages 323–335, 13-17 April 2001. (Cited
on page 18.)

[107] C. Radhakrishna Rao and Sujit Kumar Mitra. Generalized Inverse of
Matrices and Its Applications. John Wiley & Sons Inc, January 1972.
(Cited on page 67.)

[108] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press, 2006. (Cited on page 59.)

[109] Jim Reeds. Solved: the ciphers in book iii of trithemius’ steganographia.
Cryptologia, 22(4):291–318, October 1998. (Cited on page 9.)

[110] William H. Rogers and Terry J. Wagner. A finite sample distribution-
free performance bound for local discrimination rules. The Annals of
Statistics, 6(3):506–514, May 1978. (Cited on page 51.)

[111] Phil Sallee. Model-based steganography. In Digital Watermarking, vol-
ume 2939/2004 of Lecture Notes in Computer Science, pages 154–167.
Springer Berlin / Heidelberg, 2004. (Cited on pages 14 and 20.)

[112] Atsushi Sato and Keiji Yamada. Generalized learning vector quanti-
zation. In Advances in Neural Information Processing Systems, volume 8,
pages 423–429. The MIT Press, 1996. (Cited on page 58.)

106 bibliography

[113] Gideon Schwarz. Estimating the dimension of a model. Annals of
Statistics, 6:461–464, 1978. (Cited on page 71.)

[114] Toby Sharp. An implementation of key-based digital signal stega-
nography. In IHW ’01: Proceedings of the 4th International Workshop on
Information Hiding, pages 13–26, London, UK, 2001. Springer-Verlag.
ISBN 3-540-42733-3. (Cited on page 17.)

[115] John Shaver. Implemenation of steganography via mp3 and rsa. Plenary
Talk in BOISECRYPT’09, November 2009. (Cited on page 11.)

[116] Yun Q. Shi, Chunhua Chen, and Wen Chen. A markov process based
approach to effective attacking jpeg steganography. In Information
Hiding, volume 4437/2007 of Lecture Notes in Computer Science, pages
249–264, September 2007. (Cited on page 37.)

[117] Timo Similä and Jarkko Tikka. Multiresponse sparse regression with
application to multidimensional scaling. In Artificial Neural Networks:
Formal Models and Their Applications - ICANN 2005, volume 3697/2005,
pages 97–102. Springer, Warsaw, Poland, September 11-15 2005. (Cited
on pages 2, 3, 69, and 93.)

[118] Harald Slatky. Algorithms for direction specific Processing of Sound Sig-
nals - the Realisation of a binaural Cocktail-Party-Processor-System. PhD
thesis, Department of Electrical Engineering, Ruhr-University Bochum,
Germany, 1992. (Cited on page 45.)

[119] Kaushal Solanki, Anindya Sarkar, and B. S. Manjunath. Yass: Yet
another steganographic scheme that resists blind steganalysis. In Infor-
mation Hiding, volume 4567/2007 of Lecture Notes in Computer Science,
pages 16–31. Springer Berlin / Heidelberg, 2007. (Cited on pages 21

and 22.)

[120] Antti Sorjamaa, Paul Merlin, Bertrand Maillet, and Amaury Lendasse.
A non-linear approach for completing missing values in temporal
databases. European Journal of Economic and Social Systems, 22(1):99–
117, November 2009. doi: 10.3166/EJESS.22.99-117. (Cited on page 44.)

[121] Antti Sorjamaa, Amaury Lendasse, Yves Cornet, and Eric Deleersnijder.
An improved methodology for filling missing values in spatiotemporal
climate data set. Computational Geosciences, 14:55–64, January 2010. doi:
10.1007/s10596-009-9132-3. (Cited on page 44.)

[122] Johan A.K. Suykens, Tony Van Gestel, Jos De Brabanter, Bart De Moor,
and Joos Vandewalle. Least squares support vector machines. In World
Scientific, Singapore, 2002. (Cited on page 56.)

[123] Robert Tibshirani, Trevor Hastie, and Jerome Friedman. The Elements
of Statistical Learning. Springer, 2003. (Cited on page 57.)

[124] Johannes Trithemius. Steganographia: Ars per occultam Scripturam animi
sui voluntatem absentibus aperiendi certu. Johannes Trithemius, 1500.
(Cited on page 9.)

bibliography 107

[125] Stefania Tronci, Francesco Corona, Massiomiliano Grosso, Roberto Ca-
lento, and Francesca Murena. Comparing neural networks and regres-
sion models for air quality management. In Proceedings of EANN 2005

International Conference on Engineering Applications of Neural Networks,
Lille (France), pages 93–100, August 24-26 2005. (Cited on page 56.)

[126] Andrey Nikolayevich Tychonoff. Solution of incorrectly formulated
problems and the regularization method. Soviet Mathematics, 4:1035—-
1038, 1963. (Cited on page 54.)

[127] A.J. Umbarkar, A.P. Joshi, A.A. Jadhav, and A.R. Buchade. Wave stega-
nography approach by modified lsb. In Emerging Trends in Engineering
and Technology (ICETET), 2009 2nd International Conference on, pages
862–865, December 16-18 2009. doi: 10.1109/ICETET.2009.230. (Cited
on page 11.)

[128] Derek Upham. Jsteg. URL http://zooid.org/~paul/crypto/jsteg/.
(Cited on page 21.)

[129] Vladimir N. Vapnik and Alexander Lerner. Pattern recognition using
generalized portrait method. Automation and Remote Control, 24(6):
774–780, 1963. (Cited on page 55.)

[130] Santosh S. Vempala. The Random Projection Method. American Mathe-
matical Society, February 2005. (Cited on page 65.)

[131] David Verstraeten, Benjamin Schrauwen, Michel D’Haene, and Dirk
Stroobandt. An experimental unification of reservoir computing meth-
ods. Neural Networks, 20(3):391–403, Jan 2007. doi: 10.1016/j.neunet.
2007.04.003. (Cited on pages 65 and 66.)

[132] Andreas Westfeld. F5-a steganographic algorithm. In Information
Hiding: 4th International Workshop, volume 2137, pages 289–302, 25-27

Avril 2001. (Cited on pages 15, 19, and 21.)

[133] Andreas Westfeld and Andreas Pfitzmann. Attacks on steganographic
systems. In IH ’99: Proceedings of the Third International Workshop on
Information Hiding, pages 61–76, London, UK, 2000. Springer-Verlag.
ISBN 3-540-67182-X. (Cited on pages xxi, 17, 29, and 30.)

[134] Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil,
Tomaso Poggio, and Vladimir N. Vapnik. Feature selection for svms.
In Advances in Neural Information Processing Systems 13, pages 668–674.
MIT Press, 2000. (Cited on page 78.)

[135] Qi Yu, Antti Sorjamaa, Yoan Miche, and Eric Séverin. A methodology
for time series prediction in finance. In Amaury Lendasse, editor,
ESTSP, European Symposium on Time Series Prediction, pages 285–293,
Porvoo, Finland, September 17-19 2008. Multiprint Oy / Otamedia ,
Espoo, Finland. (Cited on pages 56 and 59.)

[136] Qi Yu, Yoan Miche, Antti Sorjamaa, Alberto Guillén, Amaury Lendasse,
and Eric Séverin. OP-KNN: Method and applications. Advances in
Artificial Neural Systems, 2010(597373):6 pages, February 2010. doi:
10.1155/2010/597373. (Cited on pages 2, 59, and 72.)

http://zooid.org/~paul/crypto/jsteg/

Part IV

P U B L I C AT I O N S

AP U B L I C AT I O N A

title:
OP-ELM: Optimally-Pruned Extreme Learning Machine

authors:
Yoan Miche, Antti Sorjamaa, Patrick Bas, Olli Simula, Christian Jutten and
Amaury Lendasse

published in:
IEEE Transactions on Neural Networks, January 2010,

Number 1, pp. 158–162 , Volume 21

doi:
http://dx.doi.org/10.1109/TNN.2009.2036259

© IEEE Publishing Group. Reprinted with permission.

111

http://dx.doi.org/10.1109/TNN.2009.2036259

158 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 1, JANUARY 2010

Brief Papers

OP-ELM: Optimally Pruned Extreme Learning Machine

Yoan Miche, Antti Sorjamaa, Patrick Bas, Olli Simula,

Christian Jutten, and Amaury Lendasse

Abstract—In this brief, the optimally pruned extreme learning machine
(OP-ELM) methodology is presented. It is based on the original extreme

learning machine (ELM) algorithm with additional steps to make it more
robust and generic. The whole methodology is presented in detail and then

applied to several regression and classification problems. Results for both
computational time and accuracy (mean square error) are compared to the

original ELM and to three other widely used methodologies: multilayer
perceptron (MLP), support vector machine (SVM), and Gaussian process
(GP). As the experiments for both regression and classification illustrate,

the proposed OP-ELM methodology performs several orders of magnitude
faster than the other algorithms used in this brief, except the original ELM.

Despite the simplicity and fast performance, the OP-ELM is still able to
maintain an accuracy that is comparable to the performance of the SVM.

A toolbox for the OP-ELM is publicly available online.

Index Terms—Classification, extreme learning machine (ELM), least

angle regression (LARS), optimally pruned extreme learning machine
(OP-ELM), regression, variable selection.

I. INTRODUCTION

Since the data can be collected automatically from various and nu-

merous sources, the global amount of information tends to grow rapidly

in many fields of science. Although these data most likely improve the

precision and details about the considered phenomena, they are also

raising many new challenges. Storing of large data sets can get diffi-

cult, while actual processing of it can only be automated and by using

very fast algorithms. “Manual” analysis is clearly impossible and the

computational complexity of the used methodologies have to be kept

as low as possible to be able to process even more data.

Among the most famous algorithms used for data processing

through machine learning techniques lie feedforward neural networks

[1]. While multilayer feedforward neural networks have been proven

to be universal approximators [2], they tend not to be widely used

when processing important data sets. Hence, linear models are often

preferred for industrial applications, because they are much faster to

build compared to the computational complexity required for a neural

network, or most nonlinear models in general.

Manuscript received December 05, 2008; accepted October 29, 2009. First
published December 08, 2009; current version published January 04, 2010. This
work was supported in part by the Academy of Finland Centre of Excellence, by
the Adaptive Informatics Research Centre, and by the Finnish Funding Agency
for Technology and Innovation under the NoTeS project.

Y. Miche is with the Gipsa-Lab, INPG/CNRS, Grenoble 38402, France and
also with the Department of Information and Computer Science, Helsinki Uni-
versity of Technology, Espoo 02015, Finland (e-mail: yoan.miche@tkk.fi).

A. Sorjamaa, O. Simula, and A. Lendasse are with the Department of
Information and Computer Science, Helsinki University of Technology,
Espoo 02015, Finland (e-mail: antti.sorjamaa@tkk.fi; olli.simula@tkk.fi;
lendasse@tkk.fi).

P. Bas and C. Jutten are with the Gipsa-Lab, INPG/CNRS, Grenoble, France
(e-mail: patrick.bas@inpg.fr; christian.jutten@inpg.fr).

Color versions of one or more of the figures in this brief are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2009.2036259

The slow building of these neural networks comes from a few facts

that remain inherent to the various existing training algorithms. Usu-

ally many parameters are required for a proper selection of the model

structure and afterwards, the training. Moreover, these parameters are

selected and tuned via slow algorithms and the whole model structure

and training has to be repeated many times to make sure the model is

fitting the data sufficiently well.

Recently, in [3], Huang et al. proposed an original algorithm called

extreme learning machine (ELM). This method makes the selection of

the weights of the hidden neurons very fast in the case of single-layer

feedforward neural network (SLFN). Hence, the overall computational

time for model structure selection and actual training of the model is

often reduced even by hundreds, compared to some classical methods

[2], [4]–[6]. Furthermore, the algorithm remains rather simple, which

makes its implementation easy.

It is believed though that the ELM algorithm can have some is-

sues when encountering irrelevant or correlated data. For this reason, a

methodology named optimally pruned extreme learning machine (OP-

ELM), based on the original ELM algorithm, is proposed in this brief.

The OP-ELM extends the original ELM algorithm and wraps this ex-

tended algorithm within a methodology using a pruning of the neurons,

leading to a more robust overall algorithm. Pruning of neurons in a net-

work built using ELM has been proposed recently by Rong et al. in

[7], for classification purposes, and using statistical tests as a measure

of relevance of the neurons regarding the output. The OP-ELM pre-

sented here applies to both classification and regression problems and

uses a leave-one-out (LOO) criterion for the selection of an appropriate

number of neurons.

In the next section, the actual OP-ELM and the whole wrapping

methodology are presented, along with the original ELM. Section III

presents the data sets used for the experiments as well as results con-

cerning computational speed and accuracy for the OP-ELM, ELM,

multilayer perceptron network (MLP), Gaussian process (GP), and sup-

port vector machines (SVMs).

II. THE METHODOLOGY

The OP-ELM methodology is based on the original ELM algorithm

from which it borrows the original SLFN construction. In the fol-

lowing, the main concepts and theory of the ELM algorithm are shortly

reviewed, with an example on the possible problems encountered by

the ELM on data sets with irrelevant variables.

The OP-ELM algorithm is introduced as a more robust methodology

regarding irrelevant variables situation. The steps of the algorithm are

detailed and the network pruning algorithm, multiresponse sparse re-

gression (MRSR), is described, along with the validation method LOO.

There is a Matlab toolbox available online for performing the

OP-ELM methodology [8], along with a detailed user’s manual.1 A

version of the toolbox translated to C language is coming soon.

A. ELM and OP-ELM

1) Extreme Learning Machine: The ELM algorithm was originally

proposed by Huang et al. in [3] and it makes use of the SLFN. The main

concept behind the ELM lies in the random initialization of the SLFN

weights and biases. Then, using Theorem 1 and under the conditions

of the theorem, the input weights and biases do not need to be adjusted

1Available at: http://www.cis.hut.fi/projects/tsp/index.php?page=OPELM

1045-9227/$26.00 © 2009 IEEE

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on January 12, 2010 at 07:05 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 1, JANUARY 2010 159

and it is possible to calculate implicitly the hidden-layer output matrix

and hence the output weights. The network is obtained with very few

steps and very low computational cost.

Consider a set of distinct samples with and

; then, an SLFN with hidden neurons is modeled as the

following sum:

(1)

with being the activation function, the input weights, the biases,

and the output weights.

In the case where the SLFN perfectly approximates the data, the

errors between the estimated outputs and the actual outputs are

zero and the relation is

(2)

which writes compactly as , with

...
. . .

... (3)

and and .

With these notations, Theorem 1 is proposed in [3], which is the

pillar of the ELM idea. The theorem states that with randomly ini-

tialized input weights and biases for the SLFN, and under the con-

dition that the activation function is infinitely differentiable, then the

hidden-layer output matrix can be determined and will provide an ap-

proximation of the target values as good as wished (nonzero).

Theorem 1: Given any and an activation function

infinitely differentiable in any interval, there exists such that for

distinct samples , for any

and , .

The way to calculate the output weights from the knowledge of the

hidden-layer output matrix and target values is proposed with the use

of a Moore–Penrose generalized inverse of the matrix , denoted as

[9]. Overall, the ELM algorithm is summarized as follows.

Algorithm 1: ELM

Given a training set , an activation

function , and the number of hidden nodes :

1: Randomly assign input weights and biases , ;

2: Calculate the hidden-layer output matrix ;

3: Calculate output weights matrix .

The proposed solution to the equation in the ELM algo-

rithm, as has three main properties making it an appealing

solution.

1) It is one of the least squares solutions of the mentioned equation,

hence the minimum training error can be reached with this solu-

tion.

2) It is the solution with the smallest norm among the least squares

solutions.

3) The smallest norm solution among the least squares solutions is

unique and it is .

Fig. 1. Example of a training result using ELM, on a sum of two sines. Dots
represent the ELM model fitting the data points (crosses).

Fig. 2. Example using the same sum of sine as in Fig. 1 and an additional noisy
variable (not represented here) for training. The obtained ELM model is much
more spread and approximate, due to the irrelevant variable included.

Theoretical proofs and a more thorough presentation of the ELM

algorithm are detailed in the original paper [3]. In Huang et al.’s later

work, it has been proved that the ELM is able to perform universal

function approximation [10].

2) The Problem of ELM With Irrelevant Variables: As already men-

tioned, the ELM models tend to have problems when irrelevant or cor-

related variables are present in the training data set. As an illustration

of this, a toy example with two cases, without and with an irrelevant

variable, are tested and compared.

Fig. 1 shows the ELM model obtained by training on the sum of sines

example. In this case, the ELM model fits very well to the training data,

with no apparent perturbation or distortion.

In Fig. 2, an additional variable containing a pure Gaussian noise,

totally unrelated to the actual data, is also used as an input. The addi-

tional noise variable is not shown in the figure. The ELM model on top

of the data is much more spread and approximate than in the previous

case. Overall, the global fitting of the ELM model to the actual data is

not as good as before.

For this reason, it is proposed in the OP-ELM methodology, to per-

form a pruning of the irrelevant variables, via pruning of the related

neurons of the SLFN built by the ELM.

3) Optimally Pruned ELM: The OP-ELM is made of three main

steps summarized in Fig. 3.

The very first step of the OP-ELM methodology is the actual con-

struction of the SLFN using the original ELM algorithm with a lot of

neurons.

Second and third steps are presented in more details in Sections II-A4

and II-A5 and are meant for an effective pruning of the possibly un-

useful neurons of the SLFN: MRSR algorithm enables to obtain a

ranking of the neurons according to their usefulness, while the actual

pruning is performed using the results of the LOO validation.

The OP-ELM algorithm uses a combination of three different types

of kernels, for robustness and more generality, where the original ELM

proposed to use only sigmoid kernels. The used types are linear, sig-

moid, and Gaussian kernels. Having the linear kernels included in the

network helps when the problem is linear or nearly linear.

The Gaussian kernels have their centers taken randomly from the

data points, similarly as in [11], and widths randomly drawn between

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on January 12, 2010 at 07:05 from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 1, JANUARY 2010

Fig. 3. Three steps of the OP-ELM algorithm.

percentile 20% and percentile 80% of the distance distribution of the

input space, as suggested in [12].

The sigmoid weights are drawn randomly from a uniform distribu-

tion in the interval in order to cover the whole zero mean and

unit variance data range.

The OP-ELM methodology can also handle multiple-output—mul-

tiple-class problems in both regression and classification using multiple

inputs.

4) Multiresponse Sparse Regression: In order to get rid of the un-

useful neurons of the hidden layer, the MRSR, proposed by Similä and

Tikka [13], is used.

The main idea of the algorithm is as follows. Denote by

the regressor matrix. MRSR adds each

column of the regressor matrix one by one to the model ,

where is the target approximation of the model. The

weight matrix has nonzero rows at th step of the MRSR. With

each new step, a new nonzero row and a new column of the regressor

matrix are added to the model.

More specific details of the MRSR algorithm can be found from the

original paper [13].

It can be noted that the MRSR is mainly an extension of the least

angle regression (LARS) algorithm [14] and hence, it is actually a vari-

able ranking technique, rather than a selection one. An important de-

tail shared by the MRSR and the LARS is that the ranking obtained is

exact, if the problem is linear. In fact, this is the case with the OP-ELM,

since the neural network built in the previous step is linear between the

hidden layer and the output. Therefore, the MRSR provides an exact

ranking of the neurons for our problem. Because of the exact ranking

provided by the MRSR, it is used to rank the kernels of the model. The

target is the actual output , while the “variables” considered by the

MRSR are the outputs of the kernels , the columns of

.

5) Leave-One-Out: Since the MRSR only provides a ranking of

the kernels, the decision over the actual best number of neurons for the

model is taken using an LOO validation method.

One problem with the LOO error is that it can be very time con-

suming, if the data set has a high number of samples. Fortunately, the

PREdiction Sum of Squares (PRESS) statistics provide a direct and

exact formula for the calculation of the LOO error for linear models

(see [15] and [16] for details of this formula and its implementations)

(4)

where is defined as and is the hidden-layer

output matrix.

The final decision over the appropriate number of neurons for the

model can then be taken by evaluating the LOO error versus the number

of neurons used. Here, the neurons are already ranked by the MRSR.

In order to give an overview of the usefulness of the ranking step

performed by the MRSR algorithm, the final model structure selection

for the OP-ELM model using the Ailerons data set (see Section III) is

shown in Fig. 4.

It can be seen from Fig. 4 that the OP-ELM benefits greatly from

the MRSR ranking step. The convergence is faster, because the LOO

error gets to the minimum faster when the MRSR is used than when

it is not. Also, the number of neurons is far fewer in the LOO error

Fig. 4. Comparison of LOO error with and without the MRSR ranking. The
solid line represents the LOO error without and the dashed line with the MRSR
ranking.

TABLE I
INFORMATION ABOUT THE SELECTED DATA SETS. NUMBER OF VARIABLES

AND NUMBER OF SAMPLES FOR BOTH TRAINING AND TESTING, TWO

THIRDS OF THE WHOLE SET FOR TRAINING AND ONE THIRD

FOR TEST. FOR CLASSIFICATION PROBLEMS, THE VARIABLES

COLUMN ALSO INCLUDES THE NUMBER OF

CLASSES IN THE DATA SET

minimum point when using the MRSR ranking, thus leading to more

sparse network with the same performance.

In the end, an SLFN possibly using a mix of linear, sigmoid, and

Gaussian kernels is obtained, with a highly reduced number of neurons,

all within a small computational time.

III. EXPERIMENTS

In the following, five methodologies are compared using several re-

gression and classification tasks. The compared methods are GP, SVM,

MLP, the original ELM, and the proposed OP-ELM.

A. Data Sets

Fifteen different data sets have been chosen for the experiments, 11

for regression and four for classification problems. The data sets are

collected from the University of California at Irvine (UCI) Machine

Learning Repository [17] and they have been chosen by the overall

heterogeneity in terms of number of samples, variables, and classes for

classification problems.

Table I summarizes the different attributes for the 15 data sets. All

data sets have been preprocessed in the same way. Ten different random

permutations of the whole data set are taken without replacement, and

two thirds are used to create the training set and the remaining third is

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on January 12, 2010 at 07:05 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 1, JANUARY 2010 161

TABLE II
COMPUTATIONAL TIMES (IN SECONDS) FOR ALL FIVE METHODOLOGIES ON THE REGRESSION DATA SETS. ALGORITHMS HAVE BEEN SORTED BY COMPUTATIONAL

TIME. “AUTO P.” STANDS FOR AUTO PRICE DATA SET AND “BREAST C.” FOR BREAST CANCER DATA SET

used for the test set. Then, the training set is normalized, zero mean, and

unit variance, and the test set is also normalized using the same mean

and variance used for the training set. Because the test set is normalized

using the same normalization parameters as for the training, it is most

likely not exactly zero mean and unit variance.

It should also be noted that the proportions of the classes, for the

classifications cases, have been kept balanced: each class is represented

in an equal proportion, in both training and test sets. This is important

in order to have relevant test results.

B. Experiments

Experiments have been conducted using the online versions of the

methodologies, unaltered. All experiments have been run on the same

x86_64 Linux machine with at least 4 GB of memory (no swapping

for any of the experiments) and GHz processor. It should be noted

that even though some methodologies are using parallelization of the

tasks, the computational times are reported considering single-threaded

execution on one single core, for the sake of comparisons.

The hyperparameters for the SVM and the MLP are selected using a

tenfold cross validation.

The SVM is performed using the SVM toolbox [6] with the default

settings for the hyperparameters and the grid search: the grid is log-

arithmic between and for each hyperparameter; nu-SVC has

been used for classification and epsilon-SVR for regression, with radial

basis function kernel. The original grid search has been replaced by a

parallelization process, which distributes parts of the grid over different

machines.

The MLP [4] is performed using a neural network toolbox, which is

part of the Matlab© software from the MathWorks, Inc. (Natick, MA).

The training of the MLP is performed using the Levenberg–Marquardt

backpropagation.

In order to decrease the possibility of local minima with the MLP,

the training is repeated ten times for each fold and the best network

according to the training error is selected for validation. For example,

in order to validate the MLP network using 12 hidden neurons, we

have to train a total of 100 MLP networks with 12 hidden neurons to

evaluate the validation error. This procedure is done for each number

of hidden nodes from 1 to 20 and the appropriate number according to

the validation MSE is selected.

The GP is performed using a GPML toolbox for Matlab from Ras-

mussen and Williams [5]. The GP is performed using the default set-

tings taken from the examples of usage of the toolbox.

Finally, the OP-ELM was used with all possible kernels, linear, sig-

moid, and Gaussian, using a maximum number of 100 neurons.

1) Computational Times: Computational times are first reviewed

for all five methodologies. Tables II and III give the computational

times for training and test steps (sum of both), for each methodology.

It can be noted that for all five methodologies, the computational times

for the test steps are negligible compared to the training times; this is

especially clear for large training times, like the SVM or MLP ones.

According to Tables II and III, the ELM is the fastest algorithm by

several orders of magnitude compared, for example, to the SVM. This

is in line with the claims of the ELM authors. The proposed OP-ELM

is between one and three orders of magnitude slower than the original

TABLE III
COMPUTATIONAL TIMES (IN SECONDS) COMPARED FOR ALL FIVE

METHODOLOGIES FOR CLASSIFICATION DATA SETS. “WISC. B.C.”
FOR WISCONSIN BREAST CANCER DATA SET AND “PIMA I.D.”

FOR PIMA INDIANS DIABETES DATA SET

ELM, but still much faster than the rest of the compared methods in all

data sets.

However, the ranking of the SVM, MLP, and GP regarding the com-

putational times is not exactly the same in all data sets, but in every

case they are clearly slower than the ELM and OP-ELM.

The main reason why the OP-ELM has been designed in the first

place is to add more robustness to the very simple and fast ELM

algorithm. Experimental results for this robustness are presented in

Section III-B2 through test results.

2) Test Errors: Because the validation results, while providing a

good measure of the model fit to the data, do not measure the actual

interpolation properties of the model, only the test results for the five

models are presented in Tables IV and V.

According to the test results, the SVM is very reliable on average.

Meanwhile, as mentioned earlier, the ELM can have good results with

respect to its computational speed, but also it can have very high mean

square errors (MSEs) on some test sets, for example, in Auto price and

central processing unit (CPU) data sets.

In this regard, the OP-ELM manages to keep a good MSE, when

comparing to other algorithms, and even rather close to the perfor-

mance of the SVM (and of the GP) on many data sets used in the experi-

ments. This comforts the earlier claims that the OP-ELM keeps a part of

the speed of the ELM and, therefore, is much faster than most common

algorithms, while remaining robust and accurate and providing good

interpolation models.

Finally, in order to give an overview of the pruning result for the

OP-ELM, Table VI lists the selected neurons for two data sets, one for

regression and one for classification, namely, Ailerons and Iris.

One can see that the total number of kept neurons is fairly stable,

and so is the number of linear neurons. It is interesting to note that the

amount of neurons for each type is more stable for classification data

sets than for regression one. On average, the situation depicted here is

globally similar for other data sets.

Whether the stability of the number of neurons is a consequence of

the size of the data set or the type of the problem, warrants further

investigation.

IV. CONCLUSION

In this brief, the OP-ELM methodology has been detailed through

the presentation of the three steps: the plain original ELM as the first

step to build the SLFN, followed by a ranking of the neurons by the

MRSR algorithm, and finally, the selection of the neurons that will re-

main in the final model through LOO validation.

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on January 12, 2010 at 07:05 from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 1, JANUARY 2010

TABLE IV
MEAN SQUARE ERROR RESULTS IN BOLDFACE (AND STANDARD DEVIATIONS IN REGULAR) FOR ALL FIVE METHODOLOGIES FOR THE REGRESSION DATA SETS.

“AUTO P.” STANDS FOR AUTO PRICE DATA SET AND “BREAST C.” FOR BREAST CANCER DATA SET

TABLE V
CORRECT CLASSIFICATION RATES IN BOLDFACE (AND STANDARD DEVIATIONS

IN REGULAR) FOR ALL FIVE METHODOLOGIES FOR CLASSIFICATION DATA

SETS. “WISC. B.C.” FOR WISCONSIN BREAST CANCER DATA SET

AND “PIMA I.D.” FOR PIMA INDIANS DIABETES DATA SET

TABLE VI
DETAILS OF NUMBERS OF SELECTED NEURONS IN OP-ELM FOR THE DELTA

AILERONS AND IRIS DATA SETS. “L” STANDS FOR LINEAR NEURONS,
“S” FOR SIGMOID ONES, AND “G” FOR GAUSSIAN ONES

By the use of these steps, the speed and accuracy of the OP-ELM

methodology has been demonstrated, through experiments using 12

different data sets for both regression and classification problems, all

very different in terms of number of samples, variables, and outputs.

The OP-ELM achieves roughly the same level of accuracy than the

other well-known methods such as SVM, MLP, or GP. Even though the

original ELM is much faster than the OP-ELM based on it, the accu-

racy of the ELM can be problematic in many cases, while the OP-ELM

remains robust to all tested data sets.

The main goal in this brief was not to show that the OP-ELM is

either the best in terms of MSE or the computational time. The main

goal is to prove that it is a very good compromise between the speed of

the ELM and the accuracy and robustness of much slower and compli-

cated methods. Indeed, very accurate results, close to the SVM accu-

racy, can be obtained in a very small computational time. This makes

the OP-ELM a valuable tool for the applications in need for a small

response time with a good accuracy.

REFERENCES

[1] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1998.

[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5, pp.
359–366, 1989.

[3] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp.
489–501, Dec. 2006.

[4] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford,
U.K.: Oxford Univ. Press, 1995.

[5] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-

chine Learning. Cambridge, MA: MIT Press, 2006.
[6] C. C. Chang and C. J. Lin, LIBSVM: A Library for Support Vector

Machines, 2001 [Online]. Available: http://www.csie.ntu.edu.tw/ cjlin/
libsvm

[7] H. jun Rong, Y.-S. Ong, A.-W. Tan, and Z. Zhu, “A fast pruned-ex-
treme learning machine for classification problem,” Neurocomputing,
vol. 72, no. 1–3, pp. 359–366, 2008.

[8] A. Lendasse, A. Sorjamaa, and Y. Miche, OP-ELM Toolbox,
2008 [Online]. Available: http://www.cis.hut.fi/projects/tsp/index.
php?page=OPELM

[9] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its

Applications. New York: Wiley, 1972.
[10] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation

using incremental constructive feedforward networks with random
hidden nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892,
Jul. 2006.

[11] T. Poggio and F. Girosi, A Theory of Networks for Approximation and

Learning. Cambridge, MA: MIT Press, 1989, vol. 1140.
[12] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond (Adaptive Com-

putation and Machine Learning). Cambridge, MA: MIT Press, Dec.
2001, 0262194759.

[13] T. Similä and J. Tikka, “Multiresponse sparse regression with appli-
cation to multidimensional scaling,” in Proc. Int. Conf. Artif. Neural

Netw., 2005, vol. 3697/2005, pp. 97–102.
[14] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle re-

gression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.
[15] R. Myers, Classical and Modern Regression With Applications, 2nd

ed. Pacific Grove, CA: Duxbury, 1990.
[16] G. Bontempi, M. Birattari, and H. Bersini, “Recursive lazy learning

for modeling and control,” in Proc. Eur. Conf. Mach. Learn., 1998, pp.
292–303.

[17] A. Asuncion and D. Newman, UCI Machine Learning Reposi-
tory, Univ. California Irvine, Irvine, CA, 2007 [Online]. Available:
http://archive.ics.uci.edu/ml/

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on January 12, 2010 at 07:05 from IEEE Xplore. Restrictions apply.

BP U B L I C AT I O N B

title:
A Faster Model Selection Criterion for OP-ELM and OP-KNN: Hannan-
Quinn Criterion

authors:
Yoan Miche and Amaury Lendasse

published in:
ESANN’09: European Symposium on Artificial Neural Networks, April 2009,
Michel Verleysen ed., published by d-side publications.

pp. 177–182

url:
http://www.cis.hut.fi/projects/tsp/Publications/Publication119.pdf

© d-side Publications. Reprinted with permission.

117

http://www.cis.hut.fi/projects/tsp/Publications/Publication119.pdf

A faster model selection criterion for OP-ELM

and OP-KNN: Hannan-Quinn criterion

Yoan Miche1,2 and Amaury Lendasse1

1- Helsinki University of Technology - ICS Lab.
Konemiehentie 2, 02015 TKK - Finland

2- INPG Grenoble - Gipsa-Lab, UMR 5216
961 rue de la Houille Blanche, Domaine Universitaire, 38402 GRENOBLE - France

Abstract. The Optimally Pruned Extreme Learning Machine (OP-
ELM) and Optimally Pruned K-Nearest Neighbors (OP-KNN) algorithms
use the a similar methodology based on random initialization (OP-ELM)
or KNN initialization (OP-KNN) of a Feedforward Neural Network fol-
lowed by ranking of the neurons; ranking is used to determine the best
combination to retain. This is achieved by Leave-One-Out (LOO) cross-
validation. In this article is proposed to use the Hannan-Quinn (HQ)
Criterion as a model selection criterion, instead of LOO. It proved to be
efficient and as good as the LOO one for both OP-ELM and OP-KNN,
while decreasing computations by factors of four to five for OP-ELM and
up to 24 for OP-KNN.

1 Introduction

Since data can be collected automatically from various and numerous sources,
the global amount of information grows rapidly in most fields of science. Al-
though this data most likely improves precision and details, it also raises many
new challenges such as storage and processing. Among the most famous algo-
rithms used for data processing through machine learning techniques, lies Feed-
forward neural networks. While multilayer feedforward neural networks have
been proved to be universal approximators [1], they tend not to be used widely
when processing important datasets because of the computational time it takes
to actually train and build them: many parameters are required for a proper
selection of the model structure and afterwards, the training.

In order to make model training and selection of single hidden layer feedfor-
ward neural networks faster, OP-ELM [2] (based on ELM [3]) and OP-KNN [4]
have been proposed recently. In this paper, is proposed a different model struc-
ture selection criterion (inside the OP-ELM/KNN algorithm) to replace the pre-
viously used Leave-One-Out; it is just as efficient and faster for large datasets.
The next section presents the OP-ELM/KNN shortly, while section 3 details the
Hannan-Quinn criterion used for complexity selection. Experiments and results
using this improved methodology are presented in section 4.

2 OP-ELM and OP-KNN

The Otimally Pruned Extreme Learning Machine [2] (OP-ELM, based on orig-
inal ELM [3]) and Optimally Pruned KNN [4] (OP-KNN) are based on similar

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational

Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

first steps which Figure 1 summarizes.

Variable

selection
Data

Ranking of best

neurons by L.A.R.S.

Selection of the

appropriate number of

neurons with criterion

Model

MLP Construction

using ELM/KNN

Fig. 1: OP-ELM/KNN methodology: first steps are similar. Last step of se-
lection of neurons is performed using a criterion: Leave-One-Out (LOO) in the
original algorithms.

A priori variable selection is first performed on the data. Then, the Mul-
tiLayer Perceptron (MLP), which is actually a single hidden layer feedforward
network, is initialized, either by ELM (for OP-ELM) or by KNN (for OP-KNN).
In the OP-ELM case, by a random initialization of the weights and biases of the
MLP, while for OP-KNN, deterministic initialization using K-NN is used.

Neurons are then ranked using a MRSR [5] technique, which main idea is:
Denote by X = {x1, . . . ,xM} the N × M matrix of inputs, the MRSR adds

each column of the regressor matrix one by one to the model Ŷk = XWk where
Ŷk = [ŷk

1 , . . . , ŷ
k
p] is the target approximation of the model. The Wk weight

matrix has k nonzero rows at k-th step of the MRSR. With each new step a new
nonzero row and a new column of the regressor matrix is added to the model.
An important fact is that the obtained ranking by MRSR is exact in the case of
a linear problem, as here since the neural network is linear between the hidden
layer and output.

Finally, a criterion is used to decide which number of neurons will be retained
(ranked neurons, so only the best ones are kept). This criterion is a Leave-One-
Out, for the original OP-ELM/KNN.

The Leave-One-out (LOO) is usually a costly way of estimating a model’s
fit to the data, since it requires to go through all points of the data separately
to estimate the model’s output for each. In order to keep the OP-ELM/KNN
fast, the PRESS Statistics [6] formula is used in order to compute this validation
error, as in Eq. 1.

�
PRESS
i =

yi − xib

1− xiPx�

i

, (1)

where P = (X�X)−1, and b are the output weights of the MLP. While
this formula makes it possible to evaluate the LOO error with simple matrix
calculations, it still requires a matrix inversion and various matrix products,
which can still be long. The goal of this paper is to present another criterion
for the complexity selection (by the selection of the number of neurons to keep)
which is much faster for it does not requires these matrix operations.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational

Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

3 The Hannan-Quinn criterion

In order to perform complexity selection (by selecting the neurons to retain in
the OP-ELM/KNN model), the classical LOO was used in the original versions
of the two algorithms OP-ELM/KNN.

There are many possible criteria for complexity selection in machine learning.
Typical examples are Akaike’s information criterion (AIC) [7] or the Bayesian
Information Criterion (BIC) [8]. Their expression is based on the residual sum of
squares (Res) of the considered model (first term of the criterion) plus a penalty
term (second term). Differences between criteria mostly occur on the penalty
term. AIC penalizes only with the number of parameters p of the model (so that
not too many free parameters are used to obtain a good fit by the model), Eq. 3;
BIC takes into account the number of samples N used for the model training,
in Eq. 2.

BIC = N × log

�

Res

N

�

+ p× logN (2)

AIC = N ×

�

log

�

2πRes

N

�

+ 1

�

+ 2× p (3)

The AIC is known to have consistency problems: while minimizing AIC, it is
not guaranteed that complexity selection will converge toward an optima if the
number of samples goes to infinity [9]. The main problem using such criteria is
in trying to balance underfitting and overfitting knowing that convergence might
never be achieved. One solution is through the penalty term, for example, by
having a logN term in the penalty (with N the number of samples), which the
BIC has. Unfortunately, for the experiments conducted in this paper, the BIC
criterion did not give proper complexity selection (most likely due to the too
fast increase of the penalty term with the number of samples).

The Hannan-Quinn Information Criterion [10] is close to these other criteria,
as can be seen from the expressions of the AIC and BIC below (Eq. 2 and Eq. 3).
The idea behind the design of this criterion is to provide a consistent criterion
(regarding for example AIC which is not consistent in its standard definition) in
which the second term (the penalty) 2× p× log logN grows but at a very slow
rate, regarding the number of samples.

HQ = N × log

�

Res

N

�

+ 2× p× log logN (4)

From Figure 2, it can be seen that both criteria have very similar convergence
regarding the number of neurons used for building the model. In this particular
case, the HQ criterion is consistent since it enables a stable convergence. Hence,
and from the following experiments, it can be considered that the HQ criterion
is as good as the original LOO.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational

Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

Number of Neurons

A
rb

it
ra

ry
 S

c
a
le

Fig. 2: Plot of the criterion value for both LOO and HQ versions of the OP-ELM
(for the Bank dataset from UCI [11]): red squares for HQ and blue circles for
LOO. Plots have been scaled to fit on same scale (HQ and LOO criteria have
very different values). Convergence is very similar.

4 Experiments and results

Experiments for testing the effect of the HQ criterion on both OP-ELM and OP-
KNN, have been conducted using seven different data sets from UCI machine
learning repository [11]. The choice of these datasets has been made so that
their variety in terms of number of samples and variables, covers usual ”real
life” datasets. Table 1 summarizes the characteristics of theses datasets.

Samples

Regression # of Variables Train Test

Ailerons (D.A.) 5 4752 2377

Elevators (D.E.) 6 6344 3173

Auto price (A.P.) 15 106 53

Servo 4 111 56

Breast Cancer (B.C.) 32 129 65

Bank 8 2999 1500

Stocks 9 633 317

Table 1: Selected datasets: Number of variables and number of samples for
training and testing (two thirds and one third respectively).

The datasets have been divided in two parts: training and test sets. Two
thirds of the whole dataset for training and the remaining third for testing.

The original OP-ELM/KNN and their HQ modified versions have both been
tested on these datasets, and results for test mean square errors and computa-
tional times are presented in Tables 2 and 3. It can be seen from Table 2 that the
HQ version of the algorithms perform just as good, on average, as the original
LOO-based version (or even slightly better). Results are within close range with
SVM values (from LS-SVM [12]).

Computational times are highly reduced, when using the HQ criterion in-
stead of the LOO, as expected (Table 3). A factor of four to five between the
computational times, can be observed for OP-ELM, and up to 24 for the OP-

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational

Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

A.P. Bank B.C. D.A. D.E. Servo Stocks

SVM 3.8E+06 2.2E-03 8.9E+02 2.6E-08 2.8E-06 4.2E-01 2.2E-01

OP-ELM 4.5E+06 1.1E-03 6.7E+02 2.7E-08 1.9E-06 5.8E-1 6.1E-1

OP-ELM-HQ 1.4E+06 1.1E-03 9.2E+02 2.6E-08 1.9E-06 5.7E-1 5.8E-1

Neur. (HQ) 20 (50) 98 (98) 8 (4) 55 (95) 36 (26) 39 (100) 99 (99)

OP-KNN 2.7E+06 1.3E-03 1.1E+03 3.4E-08 2.5E-06 4.0E-01 4.8E-01

OP-KNN-HQ 3.1E+06 1.3E-03 1.1E+03 3.4E-08 2.4E-06 3.8E-01 4.8E-01

Neur. (HQ) 46 (100) 45 (15) 2 (6) 23 (20) 17 (17) 59 (59) 11 (11)

Table 2: Test Mean Square errors comparisons for OP-ELM/KNN and HQ
criterion version. Number of neurons for each are given: standard version in
plain and HQ in parenthesis. 100 neurons used for OP-ELM and maximum 100-
nearest neighbours for OP-KNN. SVM values for reference (using LS-SVM [12]).

KNN. It can also be seen that this difference is mostly noticeable when using
large datasets (Ailerons, Elevators, Bank, here). While the difference is smaller
for smaller datasets, it remains important enough to be considered when the OP-
ELM/KNN is used many times, for variable selection with a Forward-Backward
algorithm, for example. In these case, the small difference in computational time
makes a clear difference on the many iterations.

A.P. Bank B.C. D.A. D.E. Servo Stocks

SVM 492 6.5E+05 645 8.7E+04 7.7E+05 863 2188

OP-ELM 0.14 5.37 0.29 18.99 21.89 0.42 1.33

OP-ELM-HQ 0.13 1.88 0.24 4.59 5.42 0.40 0.84

Ratio 1.08 2.86 1.21 4.14 4.04 1.05 1.58

OP-KNN 1.6 17.7 0.09 43.16 67.04 0.08 0.91

OP-KNN-HQ 0.09 1.02 0.06 1.78 2.47 0.05 0.19

Ratio 17.78 17.35 1.5 24.25 27.14 1.6 4.79

Table 3: Computational times (seconds) when using OP-ELM/KNN and the
HQ criterion version. Ratios between standard and HQ versions are given. Im-
provement with HQ criterion is visible when working with large datasets (matrix
products for classical PRESS LOO need to be consequent for the HQ based ver-
sion to take advantage). SVM values for reference (using LS-SVM [12]).

5 Conclusion

This paper presents a modification of the original OP-ELM/KNN algorithms in
the place of the model structure selection criterion. The classical Leave-One-Out
criterion is replaced by the Hannan-Quinn (HQ) criterion, which performances
match the ones of the LOO (or perform actually slightly better, on average).
The main advantage of this other criterion over the LOO one is to decrease the

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational

Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

computational times by a factor of four to five for OP-ELM and up to 24 for OP-
KNN, for the conducted experiments. It seems very likely that for much larger
datasets than the ones used for the experiments, the gain in computational time
could be even higher.

References

[1] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

[2] Y. Miche, P. Bas, C. Jutten, O. Simula, and A. Lendasse. A methodology for
building regression models using extreme learning machine: OP-ELM. In
ESANN 2008, European Symposium on Artificial Neural Networks, Bruges,

Belgium, April 23-25 2008.

[3] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: The-
ory and applications. Neurocomputing, 70(1–3):489–501, December 2006.

[4] Q. Yu, A. Sorjamaa, Y. Miche, A. Lendasse, A. Guillén, E. Séverin, and
F. Mateo. Optimal pruned k-nearest neighbors: OP-KNN - application to
financial modeling. In HIS 2008, 8th International Conference on Hybrid

Intelligent Systems, September 10-12 2008.

[5] T. Similä and J. Tikka. Multiresponse sparse regression with application
to multidimensional scaling. In Artificial Neural Networks: Formal Models

and Their Applications - ICANN 2005, volume 3697/2005, pages 97–102.
2005.

[6] R.H. Myers. Classical and Modern Regression with Applications, 2nd edi-

tion. Duxbury, Pacific Grove, CA, USA, 1990.

[7] H. Akaike. A new look at the statistical model identification. IEEE Trans-

actions on Automatic Control, 19(6):716–723, December 1974.

[8] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6:461–464, 1978.

[9] R. J. Bhansali and D. Y. Downham. Some properties of the order of an
autoregressive model selected by a generalization of akaike’s epf criterion.
Biometrika, 64(3):547–551, 1977.

[10] E. J. Hannan and B. G. Quinn. The determination of the order of an
autoregression. Journal of the Royal Statistical Society, B, 41:190–195, 1979.

[11] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

[12] Suykens J.A.K., Van Gestel T., De Brabanter J., B. De Moor B., and
Vandewalle J. Least Squares Support Vector Machines. World Scientific,
Singapore, 2002.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational

Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

CP U B L I C AT I O N C

title:
A Feature Selection Methodology for Steganalysis

authors:
Yoan Miche, Benoit Roue, Patrick Bas and Amaury Lendasse

published in:
MRCS’06, International Workshop on Multimedia Content Representation,
Classification and Security, Istanbul (Turkey), B. Gunsel, A. K. Jain, A. M.
Tekalp and B. Sankur eds., Lecture Notes in Computer Science, Springer-
Verlag, 2006.

Volume 4105, pp. 49–56

doi:
http://dx.doi.org/10.1007/11848035_9

© Springer-Verlag. Reprinted with permission.

125

http://dx.doi.org/10.1007/11848035_9

A Feature Selection Methodology for

Steganalysis

Yoan Miche1, Benoit Roue2, Amaury Lendasse1, and Patrick Bas1,2

1 Laboratory of Computer and Information Science
Helsinki University of Technology

P.O. Box 5400 FI-02015 Hut Finland
2 Laboratoire des Images et des Signaux de Grenoble
961 rue de la Houille Blanche Domaine universitaire
B.P. 46 38402 Saint Martin d’Hères cedex France

Abstract. This paper presents a methodology to select features before
training a classifier based on Support Vector Machines (SVM). In this
study 23 features presented in [1] are analysed. A feature ranking is per-
formed using a fast classifier called K-Nearest-Neighbours combined with
a forward selection. The result of the feature selection is afterward tested
on SVM to select the optimal number of features. This method is tested
with the Outguess steganographic software and 14 features are selected
while keeping the same classification performances. Results confirm that
the selected features are efficient for a wide variety of embedding rates.
The same methodology is also applied for Steghide and F5 to see if fea-
ture selection is possible on these schemes.

1 Introduction

The goal of steganographic analysis, also called steganalysis, is to bring out
drawbacks of steganographic schemes by proving that an hidden information is
embedded in a content. A lot of steganographic techniques have been developed
in the past years, they can be divided in two classes: ad hoc schemes (schemes
that are devoted to a specific steganographic scheme) [1,2,3] and schemes that
are generic and that use classifiers to differentiate original and stego images[4,5].
The last ones work in two steps, generic feature vectors (high pass components,
prediction of error...) are extracted and then a classifier is trained to separate
stego images from original images. Classifier based schemes have been more
studied recently, and lead to efficient steganalysis. Thus we focus on this class
in this paper.

1.1 Advantages of Feature Selection for Steganalysis

Performing feature selection in the context of steganalysis offers several advan-
tages.

– it enables to have a more rational approach for classifier-based steganalysis:
feature selection prunes features that are meaningless for the classifier;

B. Gunsel et al. (Eds.): MRCS 2006, LNCS 4105, pp. 49–56, 2006.
c� Springer-Verlag Berlin Heidelberg 2006

50 Y. Miche et al.

– feature selection may also be used to improve the classification performance
of a classifier (in [6] it is shown that the addition of meaningless features
decreases the performance of a SVM-based classifier);

– another advantage of performing feature selection while training a classifier is
that the selected features can help to point out the features that are sensitive
to a given steganographic scheme and consequently to bring a highlight on
its weaknesses.

– The last advantage of performing feature selection is the reduction of com-
plexity for both generating the features and training the classifier. If we select
a set ofN features from a set ofM , the training time will be divided byM/N
(this is due to the linear complexity of classifiers regarding the dimension).
The same complexity reduction can also be obtained for feature generation
if we assume that the complexity to generate each feature is equivalent.

2 Fridrich’s Features

The features used in this study were proposed by Fridrich et al [1]. All features
are computed in the same way: a vector functional F is applied to the stego

JPEG image J1 and to the virtual clean JPEG image J2 obtained by cropping
J1 with a translation of 4× 4 pixels. The feature is finally computed taking the
L1 of the difference of the two functionals :

f = ||F (J1)− F (J2)||L1. (1)

The functionals used in this paper are described in the Table 1.

Table 1. List of the 23 used features

Functional/Feature name Functional F

Global histogram H/||H||

Individual histogram for h21/||h21||,h12/||h12||,h13/||h13||,
5 DCT Modes h22/||h22||,h31/||h31||

Dual histogram for 11 g−5/||g−5||,g−4/||g−4||,g−3/||g−3||,g−2/||g−2||,g−1/||g−1||,
DCT values (−5, . . . , 5) g0/||g0||,g1/||g1||,g2/||g2||,g3/||g3||,g4/||g4||,g5/||g5||

Variation V

L1 and L2 blockiness B1, B2

Co-occurrence N00, N01, N11

3 Classifiers for Steganalysis

This section presents two classifiers that differ in term of complexity and a
method to estimate the mean and variance of the classification accuracy obtained
by any classifier.

- K-Nearest Neighbours: the K-NN classifiers use an algorithm based on a
majority vote: using a norm (usually Euclidean), the K nearest points from the

A Feature Selection Methodology for Steganalysis 51

one to classify are determined. The classification is then based on the class that
belongs to the most numerous closest points, as shown on the figure (Fig 1). The
choice of the K value is dependent on the data, and the best value is found using
using a leave-one-out cross-validation procedure [7]. Note that if K-NN classifiers
are usually less accurate than SVM classifiers, nevertheless, the computational
time for training a K-NN is around 10 times smaller than for training a SVM.

- Support Vector Machines: SVM classification uses supervised learning
systems to map in a non-linear way the features space into a higher dimensional
feature space [8]. A hyper-plane can then be found in this high-dimensional space,
which is at the maximum distance from the nearest data points of the two classes
so that points to be classified can benefit from this optimal separation.

- Bootstrapping for noise estimation: the bootstrap algorithm enables to
have a confidence interval for the performances [7]. A random mix with repeti-
tions of the test set is created, and then used with the SVM model computed
before with a fixed train set. This process is repeated R times and thus gives by
averaging a correct noise estimation when N is large enough.

?
Class 1

Class 2

Fig. 1. Illustration of the K-NN algorithm. Here, K = 7: The Euclidean distance
between the new point (?) and the 7 nearest neighbours is depicted by a line. In this
case we have the majority for the light grey (4 nearest neighbours): the new point is
said to be of class 2.

4 Feature Selection Methods

This section presents two different feature selection methods.

- Exhaustive search: in this case, we use a full scan of all possible features
combinations and keep the one giving the best result. If you consider N features,
the computational time to perform the exhaustive search equals the time to
train/test one classifier multiplied by 2N − 1. Consequently this method can
only be used with fast classification algorithms.

- The “forward” selection algorithm: The forward approach proposes a
suboptimal but efficient way to incrementally select the best features [9]. The
following steps illustrate this algorithm:

1. try the αi,i∈�1,N� features one by one;
2. keep the feature αi1 with the best results;
3. try all couples with αi1 and one feature among the remaining N − 1;
4. keep the couple (αi1, αi2) giving the best results;

52 Y. Miche et al.

5. try all triplets with (αi1, αi2) and one feature among the remaining N − 2;
6. . . . iterate until none remains.

The result is an array containing the N the features ranked by minimum error.
The computational time is equal to N × (N +1)/2 multiplied by the time spent
to train/test one classifier.

4.1 Applying Feature Selection to SVMs

Using the forward algorithm directly on SVM is too time-consuming. Conse-
quently we propose to perform the feature selection for SVMs in three steps
depicted on Figure 2.

1. Forward using K-NN: in this step, we use the explained forward algorithm
with a K-NN classification method to rank features vectors. Since the K-NN
is fast enough, it is possible to run this step in a reasonable time.

2. SVM and Bootstrapping: using the ranked features list found by the K-NN
forward algorithm, we run 23 SVMs using the 23 different feature vectors,
and a bootstrap on the test set, with approximately 5000 iterations.

3. Features selection: in the end, the curve from the bootstrap data shows that
within the noise estimation, we can reduce the number of features, based on
the fact that the addition of some features degrades the classification result.
Within the noise range, the first L < N selected features present the best
compromise for a same classification performance.

Forward

K−NN SVM

BootStrap

23

(2)(1) (3)

Features selection

performance
maximum

on
23

features

Ranked Classification

accuracy

Selected

features
Data

Fig. 2. Feature selection steps: features are first ranked by importance by the K-NN
forward algorithm (1), SVMs give then improvement and an accuracy estimation thanks
to a bootstrap (2). Features are in the end taken from the best SVM result (3).

5 Experimental Results

The experiments have been performed using a set of 5075 images from 5 different
digital cameras (all over 4 megapixels). A mix of these images has then been
made, and half of them have been watermarked using Outguess 0.2 [10], with
and embedding rate of 10% of non zero quantised DCT coefficients. Each image
has been scaled and cropped to 512×512, converted in grey levels and compressed
using a JPEG quality factor of 80%. The extracted features from the 5075 images
have then been divided in a training (1500 samples) and test set (3575 samples).
The SVM library used is the libSVMtl [11].

A Feature Selection Methodology for Steganalysis 53

5.1 Accuracy of KNN with Feature Selection

We present here (Fig 3) the classification accuracy of the forward algorithm using
the K-NN method. In our case, the decision on whether to keep or leave out a
feature has been made only on the results of the leave-one-out (i.e. using only
the training set). As one can see from the curves, it finds the best set of features
with only 6 of them (Leave-one-out classification rate around 0.705). Adding
more features only results here in a degradation of the classification result.

But tryouts using only those 6 features have proven that it is not the best
solution for SVM. Consequently, we choose to use this step of the process only
to obtain a ranking of the features.

0 5 10 15 20 25

0.64

0.66

0.68

0.7

Number of features

E
rr

o
r

p
e
rc

e
n
ta

g
e

Leave−One−Out Classification rate

Test Classification rate

Fig. 3. The K-NN accuracy using the forward algorithm

0 5 10 15 20 25
0.62

0.64

0.66

0.68

0.7

0.72

0.74

Number of features

G
o

o
d

 c
la

s
s
if
ic

a
ti
o

n
 p

e
rc

e
n

ta
g

e

10−fold Cross−Validation rate
Test Classification rate
KNN on random 14 features sets

Fig. 4. The SVM accuracy using the result of the K-NN forward. The vertical segments
show the noise estimation obtained using the bootstrap technique. Crosses present the
results of K-NN on 10 sets of 14 features randomly selected.

5.2 Accuracy of SVM with Feature Selection

Since the 6 forward K-NN selected features are not enough, this process step
uses all features, but according to the ranking order given by the forward K-NN.
The SVM is thus used (RBF-type kernel), with the same training and test sets.
As mentioned before, we use here a bootstrap technique to have a more robust
result and an estimation of the noise. As it can be seen (cf Figure 4), the best
accuracy is obtained using 14 features, achieving 72% of correct classification
(10-fold cross-validation). In this case, the test error curve stays close to the 10-
fold one. For comparison purposes we have also plotted the performance of the

54 Y. Miche et al.

K-NN on sets of 14 features taken randomly from the original ones. As illustrated
on figure 3, it never achieves more than 68% in correct classification (training).
This proves that the selected features using the forward technique are relevant
enough.

5.3 Selected Features

Table 2 presents the set of features that have been selected. For sake of simplicity
the cardinal part for each feature has been skipped. Table 3 presents the final
results from the explained method. It can be seen that the selected 14 features
set is giving better results (within the noise estimation) than with all 23 features.
Note that even-though the result is always superior using only 14 features, the
noise is still to take into account (Fig 4).

Table 2. List of the selected features done by the forward algorithm using K-NN.
Feature are ordered according to the forward algorithm.

N11 g−1 g−2 g−3 g1 H g4 g0 h21 g−4 N01 B2 h13 h12

Table 3. The test error (in plain) and 10-fold cross-validation error (bracketed) for 14
and 23 features at different embedding rates

Embedding rate 14 features 23 features

10% 72.0% (71.9%) 71.9% (72.3%)

25% 88.0% (92.9%) 87.2% (93.1%)

50% 97.8% (99.3%) 97.0% (99.2%)

75% 99.2% (99.7%) 98.0% (99.8%)

5.4 Weaknesses of Outguess

Feature selection enables to link the nature of the selected features with Outguess
v0.2, the steganographic software that has been used [10] and then to outline its
weaknesses. We recall that Outguess embeds information by modifying the least
significant bits of the quantised DCT coefficients of a JPEG coded image. In
order to prevent easy detection, the algorithm does not embed information into
coefficients equal to 0 and 1. Outguess also preserves the global histogram of the
DCT coefficients between the original and stego image by correcting statistical
deviations.

The selected features presented in Table 2 present strong links with the way
the embedding scheme performs:

- The feature N11 is the first feature selected by the forward algorithm and
describes the difference between co-occurrence values for coefficients equal to 1
or -1 on neighbouring blocks. This feature seems to react mainly to the flipping
between coefficients -1 and -2 during the embedding. Note also that coefficients
-2 and 2 are, after 0 and 1, the most probable DCT coefficients in a given image.

A Feature Selection Methodology for Steganalysis 55

- The second and third selected features are g−1 and g−2. They represent the
dual histogram of coefficients respectively equal to −1 and −2 with respect to
their coordinates. Once again, these features concern the same coefficients than
previously but only on the first order (histogram).

- We can notice that nearly half of features related to the dual histogram have
been selected. Due to symmetry one might think that features g−5, g−4, g−3,
g−2 carry respectively the same information than g5, g4, g3, g2, consequently it
is not surprising that only one in each set has been chosen (with the exception
of g−4 and g4).

- Note that it can seem first curious that features g0 and g1 have been selected
as meaningful features for the classifier because they are not modified by the
embedding algorithm. However, these features can have been affected on the
stego and cropped image: coefficients equal to 2 or 3 on the stego image can
be reduced to 1 or 2 on the cropped image. Another reason can be that feature
g1 can be selected in association with feature g−1 because it has a different
behaviour for watermarked images but a similar behaviour for original images.

5.5 Obtained Results for Other Steganographic Schemes

This feature selection method has also been tested for two other popular stegano-
graphic schemes called F5 and Steghide. Our test confirms that it is also possible
to use K-NN-based feature selection on Steghide and to select 13 features which
provide similar performances. The list of the 13 selected features is given on
table 4 and the performances for different embedding rates is given on table 5.
However, we have noticed that for the F5 algorithm performing feature selection
is not efficient if the ratio of selected features is below 80%. Forward feature
selection for F5 selects still 15 features and backward feature selection selects
22 features. The high number of selected features means that nearly each of the
initial feature for F5 is significant for the detection process. Such a considera-
tion is not surprising because F5 is the most undetectable of the three analysed
steganographic schemes.

Table 4. List of the 13 selected features done by the forward algorithm using K-NN
for Steghide. Features are ordered according to the forward algorithm.

N00 g2 h22 H g5 N01 g−2 g−1 h13 g−5 g1 g5 V

Table 5. The test error (in plain) and 10-fold cross-validation error (bracketed) for 13
and 23 features at different embedding rates for Steghide algorithm

Embedding rate 13 features 23 features

10% 67.28% (69.39%) 68.73% (68.79%)

25% 75.21% (77.90%) 77.81% (81.03%)

50% 91.66% (90.77%) 93.25% (93.79%)

75% 97.84% (97.93%) 98.37% (98.88%)

56 Y. Miche et al.

6 Conclusions and Future Works

This paper proposes a methodology to select meaningful features for a given
steganographic scheme. Such a selection enables both to increase the knowledge
on the weakness of a steganographic algorithm and to reduce its complexity
while keeping the classification performances. Our future works will consist in
combining input selection techniques with feature scaling in order to increase
the performance of the classifiers.

References

1. J.Fridrich. (In: 6th Information Hiding Workshop, LNCS, vol. 3200)
2. S.Dumitrescu, X.Wu, Z.Wang: Detection of LSB steganography via sample pair

analysis. In: IEEE transactions on Signal Processing. (2003) 1995–2007
3. B.Roue, P.Bas, J-M.Chassery: Improving lsb steganalysis using marginal and joint

probabilistic distributions. In: Multimedia and Security Workshop, Magdeburg
(2004)

4. S.Lyu, H.Farid: Detecting hidden message using higher-order statistics and support
vector machine. In: 5th International Workshop on Information Hiding, Nether-
lands (2002)

5. T.Pevny, J.Fridrich: Toward multi-class blind steganalyser for jpeg images. In:
International Workshop on Digital Watermarking, LNCS vol. 3710. (2005) 39–53

6. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature
selection for SVMs. In Leen, T.K., Dietterich, T.G., Tresp, V., eds.: NIPS, MIT
Press (2000) 668–674

7. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman and Hall,
London (1993)

8. Zhang, T.: An introduction to support vector machines and other kernel-based
learning methods. AI Magazine (2001) 103–104

9. Rossi, F., Lendasse, A., François, D., Wertz, V., Verleysen, M.: Mutual informa-
tion for the selection of relevant variables in spectrometric nonlinear modelling.
Chemometrics and Intelligent Laboratory Systems, vol 80 (2006) 215–226

10. Provos, N.: Defending against statistical steganalysis. In USENIX, ed.: Proceedings
of the Tenth USENIX Security Symposium, August 13–17, 2001, Washington, DC,
USA, USENIX (2001)

11. Ronneberger, O.: Libsvmtl extensions to libsvm. http://lmb.informatik.uni-
freiburg.de/lmbsoft/libsvmtl/ (2004)

DP U B L I C AT I O N D

title:
Advantages of Using Feature Selection Techniques on Steganalysis Schemes

authors:
Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten and Olli Simula

published in:
IWANN’07: International Work-Conference on Artificial Neural Networks,
San Sebastian, Spain, June 2007, Francisco Sandoval et al. eds., Lecture Notes
in Computer Science, Springer Berlin / Heidelberg.

Volume 4507/2007, pp. 606–613

doi:
http://dx.doi.org/10.1007/978-3-540-73007-1_73

© Springer Berlin/Heidelberg. Reprinted with permission.

135

http://dx.doi.org/10.1007/978-3-540-73007-1_73

Advantages of Using Feature Selection

Techniques on Steganalysis Schemes

Yoan Miche1,2, Patrick Bas1,2, Amaury Lendasse1,
Christian Jutten2, and Olli Simula1

1 Helsinki University of Technology - Laboratory of Computer and Information
Science

P.O. Box 5400, FI-02015 HUT, Finland
2 INPG - Laboratoire des Images et des Signaux,

INPG, 46 avenue Félix Viallet, 38031 Grenoble cedex, France

Abstract. Steganalysis consists in classifying documents as steganogra-
phied or genuine. This paper presents a methodology for steganalysis
based on a set of 193 features with two main goals: determine a suffi-
cient number of images for effective training of a classifier in the obtained
high-dimensional space, and use feature selection to select most relevant
features for the desired classification. Dimensionality reduction is per-
formed using a forward selection and reduces the original 193 features
set by a factor of 13, with overall same performance.

1 Introduction

Steganography has been known and used for a very long time, as a way to
exchange information in an unnoticeable manner between parties, by embedding
it in another, apparently innocuous, document. For example, during the 80’s,
Margaret Thatcher decided to have each word processor of the government’s
administration members changed with an unique word spacing for each, giving
a sort of “invisible signature” [7] to documents. This was done to prevent the
continuation of sensitive government information leaks.

Nowadays steganographic techniques are also used on digital contents. The
online newspaper, Wired News, reported in one of its articles [4] on steganogra-
phy that several steganographic contents have been found on websites with very
large image database such as eBay.

Most of the time research about steganography is not as much to hide infor-
mation, but more to detect that there is hidden information. This “reverse” part
of the steganography is called steganalysis and is specifically aimed at making
the difference between genuine documents, and steganographied – called stego
– ones. Consequently, steganalysis can be seen as a classification problem where
the goal is to build a classifier able to distinguish these two sorts of documents.

During the steganographic process, a message is embedded in an image so
that it is as undetectable as possible. Basically, it uses several heuristics in order
to guarantee that the statistics of the stego content are as close as possible to
the statistics of the original one. Afterwards, steganalysis techniques classically

F. Sandoval et al. (Eds.): IWANN 2007, LNCS 4507, pp. 606–613, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

Advantages of Using Feature Selection Techniques on Steganalysis Schemes 607

use features extracted from the analysed image and an appropriately trained
classifier to decide whether the image is genuine or not.

In this paper the Outguess algorithm proposed by Niels Provos in [9] is anal-
ysed. This algorithm, according to its author, is supposed to resist especially
well to statistical attacks by work on Least Significant Bits of quantized DCT
coefficients of JPEG compressed images. In practice, it is often used as a ref-
erence steganographic algorithm for performance comparison, eventhough it is
highly detectable, as shown for example in [6,14].

In this work, the 193 image features proposed by Pevni and Fridrich in [12]
have been used. Theses features consider statistics of JPEG compressed images
such as histograms of DCT coefficients for different frequencies, histograms of
DCT coefficients for different values, global histograms, blockiness measures and
co-occurrence measures. They are an extension of an original set of 23 features [6].

Fridrich proposes afterwards to train a classifier according to the extracted
features. Consequently a set of 193 features for each image of the database is
obtained, giving an especially high dimensionality space for classifiers to work
on. Earlier research about these high dimensionality spaces has shown that a lot
of issues come out when the number of features is as high as the one we use.

2 Drawbacks of Performing Steganalysis in

High-Dimensional Spaces with a Constrained Data-Set

The common term “curse of dimensionality” [2] refers to a wide range of problems
related to a high number of features. Some details are given below about three
inherent issues that occur in the framework of steganalysis, namely the need for
data points (images), the increase of complexity and the lack of interpretability.

The need for data points: In the general case, in order for any tool to be
able to analyze and find an underlying structure within the data, the number
of needed points is growing exponentially with the dimension. Indeed, consider
a d-dimensional unit side hypercube, the number of points needed to fill the
Cartesian grid of step � inside of it, is growing as O((1/�)d). Thus, using a
common grid of step 1/10 and a dimension of 10, it requires 1010 points to fill
the grid. In practice, steganalysis work makes often use of at least 10 to 20
dimensions, implying a “needed” number of images impossible to achieve. As
a consequence, the feature space may be not correctly filled with data points,
which can give wrong models when building classifiers, having to extrapolate
for the missing images: thus, an estimation of the required minimum number of
images has to be obtained, in order to have a reliable training of the selected
model.

Increase of complexity: Computational time is another main reason. Nearest
neighbours methods are usually implemented with a O(d) dimension relation-
ship, as for SVMs. Clearly, reducing the dimensionality by a significant order of
magnitude gives much more achievable computational times. As a consequence,
one can use more images and lower this “missing images” effect. Meanwhile, the

608 Y. Miche et al.

finally chosen number of images should still remain within a reasonable range
defined by these computational times. The best compromise between the number
of images and the future reliability of our model has to be found.

Lack of interpretability: Eventhough the nearest neighbours classifiers keep
good performance in high dimensions [3,8], other obvious problems of high di-
mensionality motivate the idea of feature selection. The interpretability is an
important one: high performance can indeed be reached using the whole 193 fea-
tures set for classification. Meanwhile, if looking for the weaknesses and reasons
why these features react vividly to a specific algorithm, it seems rather impossi-
ble on this important set. Reducing the required number of features to a small
amount through feature selection enables to understand better why a stegano-
graphic model is weak on these particular details, highlighted by the selected
features. Indeed, steganalysis can tend to make the whole process aimed only
at performance without possible interpretations, while having knowledge about
the selected features gives interesting insights on the steganographic algorithm.

3 Methodology and Techniques Used

3.1 Classifiers and Appropriate Number of Images

The “appropriate” number of images (or at least the minimum required for
the dimensionality of our data) should be determined. For this matter, a KNN
classifier is used with a Monte-Carlo technique [11]. This enables to estimate the
noise and give a confidence interval for our results. We randomly draw (without
repetitions) a subset of the whole data set, and use the obtained classifier on it.

For our experiments, two different types of classifiers have mainly been used:
the first one, KNN, for its overall good performance even in high dimensional
spaces, but most of all, because it is computationally very fast. SVM was also
chosen because it is among the classifiers giving the best results. Major drawback
is of course the computational time. KNN classifier is a supervised distance-based
classifier, proposed by Devijver and Kittler in [1], usually using the euclidean
metric. It is based on a majority vote among the k nearest neighbours classes
to assign the class of the new considered point. The SVM has been created
by Vapnik [10] in 1963 and then improved more recently (1992,1995) by Boser,
Guyon and Vapnik [5]. The original idea was to separate data using a hyperplane:
this was a linear classifier. The extension of this method adds a non-linear part
by the use of kernel functions.

3.2 Feature Selection Technique: Forward Selection

The forward selection algorithm is a greedy algorithm proposed in [13]; the
algorithm selects one by one the dimensions, trying to find the one that combines
best with the already selected ones. Even if its capacity to isolate efficient features
is obvious, the forward technique has some drawbacks: in the case where two
features would have a high dependency and be “unefficient” when alone but

Advantages of Using Feature Selection Techniques on Steganalysis Schemes 609

very good when put together, forward might not take these into account soon
enough in the selection process. Nevertheless, the feature selection using forward
has been showing very good results and seems to perform well on our feature
set; this is presented in the next section.

3.3 Our Methodology

The three main points of the proposed methodology are detailed in the following.
Fig. 1 illustrates the process. First is seeked a possibly good candidate for the

Selection

Feature

(2)

Forward

estimation of best achievable value
Correct number of points and

with

KNN

(3)

combination

on best

SVM

Improvement

performance
of

Best features combination
according to forward technique

Data

(1)

Monte−Carlo

Determination of number of

points required

Fig. 1. Schematic view of the proposed methodology: (1) An appropriate number of
data points to work with is determined using a Monte-Carlo method for statistical
stability; (2) The forward selection is performed using a KNN classifier; (3) A good
feature set is selected and performance is improved using SVM.

number of images to use for training with the prepared database. Using a Monte-
Carlo method on low numbers of images with both SVM and KNN, averaged
plots are obtained. From it, a correct idea of a sufficient number of images for
the later study can be obtained, as shown in the following experiments.

Since KNN is the fastest classifier between the two presented, it is used for the
next step with forward technique. This produces a ranking of the features showing
howmuch each new feature contributes to the correct classification rate. The best
features combination is selected. A SVM is finally used on this combination, to
improve the performance and obtain the final best classification rate achieved.

4 Experiments, Results and Analysis

Our image base was constituted of 13 000 images of natural scenes, coming from
5 different digital cameras. Images are then all reduced to a size of 800 × 600
(multiples of 8) to avoid some possible block effects and artifacts due to JPEG
recompression on another grid. At the same time, they are changed from their
original colorspace to grayscale colorspace (256 gray levels).

A cropping operation to 512 × 512 follows, since our implementation of the
extractor of Fridrich’s 193 features works on 512× 512 image blocks (powers of
2). In the end, the whole set of images is separated into two equal parts: one is

610 Y. Miche et al.

kept genuine while the other one is steganographied with the Outguess algorithm
at an embedding rate of 25%.

This choice of half steganographied and half genuine can be discussed as it
does not reflects a real world situation. Meanwhile, the whole steganalysis process
presented is designed to be used on one image at a time, determining whether it
is genuine or not. Furthermore, this choice has been done to be able to compare
performances with the steganalysis community current research.

For classification and test purposes, the training set has been made with at
most 8000 images. Test set is composed of the remaining, that is 5000 images.
The 193 features proposed by Fridrich are used as in [12].

4.1 Determination of Sufficient Number of Images

Presented first is the result of the evaluation of a sufficient number of images,
as explained in the methodology. The Monte-Carlo is used on randomly taken
subsets of 200 up to 2000 images with 10 iterations. Each model built – using
KNN and SVM – is also evaluated on the test set of 5000 images.

A single point is evaluated with a randomly chosen set of 4000 images, since
computational time becomes very important with such number of images. In
practice, on Fig. 2 presenting the results of this study, the two cross-validation
results (SVM and KNN) should not be strictly compared since they do not use
the same number of images to validate the model: SVM uses a 10-fold cross-
validation, while a Leave-One-Out (LOO) method is used for KNN. Test results
are, on the other hand, comparable.

500 1000 1500 2000 2500 3000 3500 4000

0.75

0.8

0.85

0.9

0.95

Number of points

C
o

rr
e

c
t

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

Fig. 2. Correct classification rate for SVM (circles, top curve) and KNN (squares,
bottom curve) with associated variance

One can really see on these plots that an apparently sufficient number of images
is over 2000, since the classification rate seems to increase exponentially slowly over
this value. For the experiments, a bigger set of 4000 images has been chosen.

4.2 Forward Selection and Optimisation by SVM

Here, the results of the forward selection are presented shortly. As can be seen
from Fig. 3, the whole process of forward selection is not fully achieved – for

Advantages of Using Feature Selection Techniques on Steganalysis Schemes 611

computational time reasons – since we do not go over 21 features. Meanwhile, as
will be more detailled in the analysis part of these results, good performance is
already performed before this value. Since the goal is to have the smallest possible
feature set, while keeping average same performances, the forward selection could
be stopped at this point.

Test and 10-fold cross-validation remain in a much thinner interval than for
our only-KNN tryouts. Moreover, the performance gain with SVM is significative
as expected and reaches up to 2% in the frame of these plots.

2 4 6 8 10 12 14 16 18 20

0.75

0.8

0.85

0.9

0.95

Number of features

C
o

rr
e

c
t

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

Fig. 3. Plot of the correct classification rate for SVM: 10-fold cross-validation (circles,
top curve) and test (squares, bottom curve). Crosses are for performance for random
sets of 14 features with a KNN classifier.

Table 1 presents the main values obtained using 193 features set. Our feature
selection gives interesting results on this set. Indeed, using as few as 14 features,
we are less than 1.9% behind the value obtained with all features for 10-fold
cross-validation. Test values are following the exact same pattern.

Table 1. Results of the different classifiers for cross-validation and test

LOO / 10-fold Test Comp. time

KNN 193 86.65% 85.89% 4.5min
KNN 193→14 93.20% 89.02% 60s
SVM 193 96.92% 96.76% 49h
SVM 193→14 95.08% 94.86% 4.5h

4.3 Analysis

From machine learning point of view, a major achievement was obtained: reduc-
ing the dimensionality by more than 13 and keeping roughly the same perfor-
mance, in the variance interval. This result is interesting for different reasons:
First, the computational time is drastically reduced, since the classifiers com-
plexity relationships to dimensionality are linear. Second, because computational
time is decreased by 11, it allows future new analyses and experiments previously
not possible.

612 Y. Miche et al.

From steganalysis point of view, the obtained results are of course behind the
actual best values, obtained for the Outguess algorithm in [12]. Nevertheless, the
two advantages coming out of these results – namely the decrease of computa-
tional time and the gain in interpretability – can counterbalance this opinion.
In the end, this set of features describes in a more precise way the functionning
and problems of the Outguess algorithm. Taking these into account might help
improve the steganographic scheme and make it less detectable: the first (and
thus most “efficient”) features selected by the forward algorithm show that the
Outguess algorithm is especially weak when the analysis is made on features
using −1 and −2 DCT coefficients, leading to already more than 90% of correct
classification with the SVM classifier.

5 Conclusions and Future Work

This paper has presented a new methodology for dimensionality reduction by
feature selection in the framework of steganalysis.

The issues of dimensionality have been adressed and the first step of our
methodology proves that the theoretically required number of images for correct
training is far from being needed. By the use of a Monte-Carlo technique on up
to 4000 images, it has been shown that such numbers of images are sufficient for
stable results. A set of 193 features extracted from all images serves the clas-
sification process, preceded by the dimensionality reduction step. This part of
our methodology is achieved using a forward selection with a KNN classifier. It
enables to reduce the number of required features to 14, while keeping roughly
the same classification results. Computational time is thus greatly improved, di-
vided by about 11. Further analysis becomes again possible with this low number
of features: conclusions and precisions about the steganographic scheme can be
infered from the obtained feature set. The last step using SVM for improvement
over the previous KNN results achieves high classification results for so small
a feature set, proving that many features among the full 193 set might not be
relevant enough to be kept for classification purposes.

A comparisonbetween the obtained reduced sets of features for various stegano-
graphic algorithms might reveal some common sensitive features. An analysis of
these common points could help design a more generic steganalysis method using
a “low” number of features.

Acknowledgements

Part of the work of YoanMiche, Patrick Bas and Christian Jutten is supported by
the French national funding under the project RIAM Estivale (ANR-05-RIAM-
O1903). Part of the work of Yoan Miche, Olli Simula and Amaury Lendasse is
supported by the project of New Information Processing Principles, 44886, of
the Academy of Finland.

Advantages of Using Feature Selection Techniques on Steganalysis Schemes 613

References

1. Devijver, P.A., Kittler, J.: Pattern recognition: a statistical approach. Prentice
Hall, New York (1982)

2. Bellman, R.: Adaptive control processes: a guided tour. Princeton University Press,
Princeton (1961)

3. François, D.: High-dimensional data analysis: optimal metrics and feature selection.
PhD thesis, Université catholique de Louvain (September 2006)

4. McCullagh, D.: Secret messages come in .wavs. Online Newspaper: Wired
News(February 2001) http://www.wired.com/news/politics/0,1283,41861,00.html

5. Boser, B. E., Guyon, I. M., Vapnik, V. N.: A training algorithm for optimal margin
classifiers. In: Fifth Annual Workshop on Computational Learning Theory, pp. 144–
152 (27-29 Juillet 1992)

6. Fridrich, J.: Feature-based steganalysis for jpeg images and its implications for
future design of steganographic schemes. In: Information Hiding: 6th International
Workshop, May 23-25, LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)

7. Maxemchuck, J.M.: Electronic document distribution. AT and T Technical Jour-
nal 73(5), 73–80 (1994)

8. Verleysen, M., François, D.: The curse of dimensionality in data mining and time
series prediction. In: IWANN’05 : 8th International Work-Conference on Artificial
Neural Network, Lecture Notes in Computer Science, vol. 3512, pp. 758–770 (8-10
Juin, 2005)

9. Provos, N.: Defending against statistical steganalysis. In: 10th USENIX Security
Symposium, pp. 323–335 (April 13-17, 2001)

10. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)
11. Christian, P.R., Casella, G.: Monte Carlo statistical methods. Springer, Heidelberg

(1999) ISBN:038798707X.
12. Pevny, T., Fridrich, J.: Merging markov and dct features for multi-class jpeg ste-

ganalysis. In: IS and T/SPIE EI 2007, Lecture Notes in Computer Science, vol.
6505, January 29th - February 1st (2007)

13. Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE
Transactions on Computers C-20, 1100–1103 (1971)

14. Miche, Y., Roue, B., Lendasse, A., Bas, P.: A feature selection methodology for
steganalysis. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds.) MRCS
2006. LNCS, vol. 4105, pp. 49–56. Springer, Heidelberg (2006)

EP U B L I C AT I O N E

title:
Reliable Steganalysis Using a Minimum Set of Samples and Features

authors:
Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten and Olli Simula

published in:
EURASIP Journal on Information Security, March 2009. Hindawi Publishing
Corporation.

Volume 2009, Article ID 901381, pp. 1–13

doi:
http://dx.doi.org/10.1155/2009/901381

©Yoan Miche (Open-Access Journal).

145

http://dx.doi.org/10.1155/2009/901381

Hindawi Publishing Corporation
EURASIP Journal on Information Security
Volume 2009, Article ID 901381, 13 pages
doi:10.1155/2009/901381

Research Article

Reliable Steganalysis Using a Minimum Set of
Samples and Features

Yoan Miche,1, 2 Patrick Bas,2 Amaury Lendasse,1 Christian Jutten (EURASIP Member),2

and Olli Simula1

1 Laboratory of Information and Computer Science, Helsinki University of Technology, P.O. Box 5400, FI-02015 HUT, Finland
2 GIPSA-Lab, 961 rue de la Houille Blanche, BP 46, F-38402 Grenoble Cedex, France

Correspondence should be addressed to Yoan Miche, ymiche@cc.hut.fi

Received 1 August 2008; Revised 14 November 2008; Accepted 13 March 2009

Recommended by Miroslav Goljan

This paper proposes to determine a sufficient number of images for reliable classification and to use feature selection to select most
relevant features for achieving reliable steganalysis. First dimensionality issues in the context of classification are outlined, and the
impact of the different parameters of a steganalysis scheme (the number of samples, the number of features, the steganography
method, and the embedding rate) is studied. On one hand, it is shown that, using Bootstrap simulations, the standard deviation
of the classification results can be very important if too small training sets are used; moreover a minimum of 5000 images is
needed in order to perform reliable steganalysis. On the other hand, we show how the feature selection process using the OP-ELM
classifier enables both to reduce the dimensionality of the data and to highlight weaknesses and advantages of the six most popular
steganographic algorithms.

Copyright © 2009 Yoan Miche et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Steganography has been known and used for a very long
time, as a way to exchange information in an unnoticeable
manner between parties, by embedding it in another,
apparently innocuous, document.

Nowadays steganographic techniques are mostly used
on digital content. The online newspaper Wired News
reported in one of its articles [1] on steganography
that several steganographic contents have been found on
web sites with very large image database such as eBay.
Provos and Honeyman [2] have somewhat refuted these
facts by analyzing and classifying two million images from
eBay and one million from USENet network and not finding
any steganographic content embedded in these images.
This could be due to many reasons, such as very low
payloads, making the steganographic images less detectable
to steganalysis and hence more secure.

In practice the concept of security for steganography is
difficult to define, but Cachin in [3] mentions a theoretic way
to do so, based on the Kullback-Leibler divergence. A stego
process is thus defined as ε-secure if the Kullback-Leibler

divergence δ between the probability density functions of the
cover document pcover and those of this very same content
embedding a message pstego (i.e., stego) is less than ε:

δ
(

pcover, pstego

)

≤ ε. (1)

The process is called secure if ε = 0, and in this case the
steganography is perfect, creating no statistical differences by
the embedding of the message. Steganalysis would then be
impossible.

Fortunately, such high performance for a steganographic
algorithm is hardly achievable when the payload (the
embedded information) is of nonnegligible size; also, several
schemes have weaknesses.

One way of measuring the payload is the embedding rate,
defined as follows.

Let A be a steganographic algorithm, and let C be a cover
medium. A, by its design, claims that it can embed at most
TMax information bits within C; TMax is called the capacity
of the medium and highly depends on the steganographic
(stego) algorithm as well as the cover medium itself. The

2 EURASIP Journal on Information Security

Analyzed images

Feature
extraction

Feature
selection

Determination of
variance and sufficient

number of samples
Classification

Genuine

Stego

Figure 1: Overview of the typical global processing for an analyzed image: features are first extracted from the image and then processed
through a classifier to decide whether the image is cover or stego. In the proposed processing is added an extra step aimed at reducing the
features number and having an additional interpretability of the steganalysis results, by doing a feature selection.

embedding rate T is then defined as the part of TMax used
by the information to embed.

ForTi bits to embed in the cover medium, the embedding
rate is then T = Ti/TMax, usually expressed as percentage.
There are other ways to measure the payload and the
relationship between the amount of information embedded
and the cover medium, such as the number of bits per nonzero
coefficient. Meanwhile, the embedding rate has the advantage
of taking into account the stego algorithm properties and
is not directly based on the cover medium properties—
since it uses the stego algorithm estimation of the maximum
capacity. Hence the embedding rate has been chosen for this
analysis of stego schemes.

This paper is focused onto feature-based steganalysis.
Such steganalysis typically uses a certain amount of images
for training a classifier: features are extracted from the
images and fed to a binary classifier (usually Support Vector
Machines) for training. The output of this classifier is “stego”
(modified using a steganographic algorithm) or “cover”
(genuine). This process is illustrated on Figure 1 for the part
without parenthesis.

The emphasis in this paper is more specifically on the
issues related to the increasing number of features, which are
linked to the universal steganalyzers. Indeed, the very first
examples of LSB-based steganalysis made use of less than
ten features, with an adapted and specific methodology for
each stego algorithm. The idea of “universal steganalyzers”
then became popular. In 1999, Westfeld proposes a χ2-based
method, on the LSB of DCT coefficients [4]. Five years
after, Fridrich in [5] uses a set of 23 features obtained by
normalizations of a much larger set, whilst Lyu and Farid
already proposed in 2002 a set of 72 features [6]. Some
feature sets [7] also have variable size depending on the DCT
block sizes. Since then, an increasing number of research
works use supervised learning-based classifiers in very high-
dimensional spaces. The recent work of Shi et al. [8] is an
example of an efficient result by using 324 features based on
JPEG blocks differences modeled by Markov processes.

These new feature sets usually do achieve better and
better performance in terms of detection rate and enable
to detect most stego algorithm for most embedding rates.
Meanwhile, there are some side-effects to this growing
number of features. It has been shown, for example, in [9]
that the feature space dimensionality in which the considered
classifier is trained can have a significant impact on its
performances: a too small amount of images regarding

dimensionality (the number of features) might lead to an
improper training of the classifier and thus to results with
a possibly high statistical variance.

In this paper is addressed the idea of a practical way
of comparing steganalysis schemes in terms of performance
reliability. Ker proposed [10] such comparison by focusing
on the pdf of one output of the classifier. Here are studied
multiple parameters that can influence this performance:

(1) the number of images used during the training of
the classifier: how to determine a sufficient number
of images for an efficient and reliable classification
(meaning that final results have acceptable variance)?

(2) the number of features used: what are the sufficient
and most relevant features for the actual classification
problem?

(3) the steganographic method: is there an important
influence of the stego algorithm on the general
methodology?

(4) the embedding rate used: does the embedding rate
used for the steganography modify the variance of
the results and the retained best features (by feature
selection)?

It can also be noted that images of higher sizes would
lead to a smaller secure steganographic embedding rate
(following a root-square law), but this phenomenon has
already been studied by Filler et al. [11].

The next section details some of the problems related
to the number of features used (dimensionality issues) and
commonly encountered in steganalysis: (1) the empty space
and the distance concentration phenomena, (2) the large
variance of the results obtained by the classifier whenever
the number of images used for training is not sufficient
regarding the number of features, and finally, (3) the lack of
interpretability of the results because of the high number of
features. In order to address these issues, the methodology
sketched on Figure 1 is used and more thoroughly detailed: a
sufficient number of images regarding the number of features
is first established so that the classifier’s training is “reliable”
in terms of variance of its results; then, using feature selection
the interpretability of the results is improved.

The methodology is finally tested in Section 4 with
six different stego algorithms, each using four different
embedding rates. Results are finally interpreted thanks to
the most relevant selected features for each stego algorithm.

EURASIP Journal on Information Security 3

A quantitative study of selected features combinations is then
provided.

2. Dimensionality Issues and Methodology

The common term “curse of dimensionality” [12] refers to a
wide range of problems related to a high number of features.
Some of these dimensionality problems are considered in
the following, in relation with the number of images and
features.

2.1. Issues Related to the Number of Images

2.1.1. The Need for Data Samples. In order to illustrate this
problem in a low-dimensional case, one can consider four
samples in a two-dimensional space (corresponding to four
images out of which two features have been extracted); the
underlying structure leading to the distribution of these four
samples seems impossible to infer, and so is the creation of a
model for it. Any model claiming it can properly explain the
distribution of these samples will behave erratically (because
it will extrapolate) when a new sample is introduced. On
the contrary, with hundreds to thousands of samples it
becomes possible to see clusters and relationships between
dimensions.

More generally, in order for any tool to be able to analyze
and find a structure within the data, the number of needed
samples is growing exponentially with the dimensionality.
Indeed, consider a d-dimensional unit side hypercube; the
number of samples needed to fill the Cartesian grid of step

ε inside of it is growing as O((1/ε)d). Thus using a common
grid of step 1/10 in dimension 10, it requires 1010 samples to
fill the grid.

Fortunately, for a model to be built over some high-
dimensional data, that data does not have to fill the whole
space in the sense of the Cartesian grid. The required space
to fill highly depends on the density to be estimated.

In practice, most data sets in steganalysis use at least 10
to 20 dimensions, implying a “needed” number of samples
impossible to achieve: storing and processing such number of
images is currently impossible. As a consequence, the feature
space is not filled with enough data samples to estimate
the density with reliable accuracy, which can give wrong
or high variance models while building classifiers, having
to extrapolate for the missing samples: obtained results can
have rather high confidence interval and hence be statistically
irrelevant. A claim of performance improvement of 2% using
a specific classifier/steganalyzer/steganographic scheme with
a variance of 2% is rather meaningless.

2.1.2. The Increasing Variance of the Results. The construc-
tion of a proper and reliable model for steganalysis is
also related to the variance of the results it obtains. Only
experimental results are provided to support this claim: with
a low number of images regarding the number of features
(e.g., a few hundreds of images for 200 features), the variance
of the classifier’s results can be very important (i.e., the
variance of the detection probability).

When the number of images increases, this variance
decreases toward low enough values for feature-based ste-
ganalysis and performances comparisons. These claims are
verified in the next section with the experiments.

2.1.3. Proposed Solution to the Lack of Images. Overall, these
two problems lead to the same conclusion: the number
of images has to be important regarding dimensionality.
Theory states that this number is exponential with the
number of features, which is impossible to reach for feature-
based steganalysis. Hence, the first step of the proposed
methodology is to find a “sufficient” number of images for
the number of features used, according to a criterion on the
variance of the results.

A Bootstrap [13] is proposed for that task: the number
of images used for the training of the classifier is increased,
and for each different number of images, the variance of the
results of the classifier is assessed. Once the variance of the
classifier is below a certain threshold, a sufficient number
of images have been found (regarding the classifier and the
feature set used).

2.2. Issues Related to the Number of Features

2.2.1. The Empty Space Phenomenon. This phenomenon that
was first introduced by Scott and Thompson [14] can be
explained with the following example: draw samples from
a normal distribution (zero mean and unit variance) in
dimension d, and consider the probability to have a sample
at distance r from the mean of the distribution (zero). It is
given by the probability density function:

f (r,d) =
rd−1

2d/2−1
·
e−r

2/2

Γ(d/2)
(2)

having its maximum at r =
√
d − 1. Thus, when dimension

increases, samples are getting farther from the mean of
the distribution. A direct consequence of this is that, for
the previously mentioned hypercube in dimension d, the
“center” of it will tend to be empty, since samples are getting
concentrated in the borders and corners of the cube.

Therefore, whatever model is used in such a feature space
will be trained on scattered samples which are not filling the
feature space at all. The model will then not be proper for
any sample falling in an area of the space where the classifier
had no information about during the training. It will have to
extrapolate its behavior for these empty areas and will have
unstable performances.

2.2.2. Lack of Interpretability for Possible “Reverse Engineer-
ing”. The interpretability (and its applications) is an impor-
tant motivation for feature selection and dimensionality
reduction: high performances can indeed be reached using
the whole 193 features set used in this paper for classification.
Meanwhile, if we are looking for the weaknesses and reasons
why these features react vividly to a specific algorithm, it
seems rather impossible on this important set.

Reducing the required number of features to a small
amount through feature selection enables to understand

4 EURASIP Journal on Information Security

Feature
selection

Analysis/
reverse engineering

Figure 2: Scheme of the possible reverse engineering on an
unknown stego algorithm, by using feature selection for identifi-
cation of the specific weaknesses.

better why a steganographic model is weak on these par-
ticular details, highlighted by the selected features. Such
analysis is performed in Section 4.3 for all six steganographic
algorithms.

Through the analysis of these selected features, one can
consider a “reverse engineering” of the stego algorithm as
illustrated on Figure 2. By the identification of the most
relevant features, the main characteristics of the embedding
method can be inferred, and the steganographic algorithm
can be identified if known, or simply understood.

2.2.3. Proposed Solution to the High Number of Features.
These two issues motivate the feature selection process: if
one can reduce the number of features (and hence the
dimensionality), the empty space phenomena will have a
reduced impact on the classifier used. Also, the set of features
obtained by the feature selection process will give insights on
the stego scheme and its possible weaknesses.

For this matter, a classical feature selection technique has
been used as the second step of the proposed methodology.

The following methodology is different from the one
presented previously in [15, 16]. Indeed, in this article, the
goal is set toward statistically reliable results. Also, feature
selection has the advantage of reducing the dimensionality
of the data (the number of features), making the classifier’s
training much easier. The interpretation of the selected
features is also an important advantage (compared to having
only the classifier’s performance) in that it gives insights on
the weaknesses of the stego algorithm.

3. Methodology for Benchmarking of
Steganographic Schemes

Addressed Problems. The number of data points to be used
for building a model and classification is clearly an issue, and
in the practical case, how many points are needed in order to
obtain accurate results—meaning results with small standard
deviation.

Reduction of complexity is another main addressed
concern in this framework. Then for the selected number
of points to be used for classification and also the initial
dimensionality given by the features set, two main steps
remain.

(i) Choosing the feature selection technique. Since anal-
ysis and computation can hardly be done on the
whole set of features, the technique used to reduce
the dimensionality has to be selected.

(ii) Building a classifier. This implies choosing it, select-
ing its parameters, training, and validating the chosen
model.

The following paragraphs presents the solutions for these
two major issues, leading to a methodology combining them,
presented on Figure 3.

3.1. Presentation of the Classifier Used: OP-ELM. The Opti-
mally-Pruned Extreme Learning Machine (OP-ELM [17,
18]) is a classifier based on the original Extreme Learning
Machine (ELM) of Huang et al. [19] (available at: http://
www.cis.hut.fi/projects/tsp/index.php?page=OPELM). This
classifier makes use of single hidden layer feedforward neural
networks (SLFNs) for which the weights and biases are
randomly initialized. The goal of the ELM is to reduce
the length of the learning process for the neural network,
usually very long (e.g., if using classical back-propagation
algorithms). The two main theorems on which ELM is based
will not be discussed here but can be found in [19]. Figure 4
illustrates the typical structure of an SLFN (simplified to a
few neurons in here).

Supposing the neural network is approximating the
output Y = (y1, . . . , yN) perfectly, we would have

M
∑

i=1

βi f
(

wix j + bi
)

= y j , j ∈ �1,N�, (3)

where N is the number of inputs X = (x1, . . . , xN) (number
of images in our case), and M is the number of neurons in the
hidden layer. In the case of steganalysis as performed in this
article, xi denotes the feature vector corresponding to image
i, while yi is the corresponding class of the image (i.e., stego
or cover).

As said, the novelty introduced by the ELM is to
initialize the weights W and biases B randomly. OP-ELM,
in comparison to ELM, brings a greater robustness to data
with possibly dependent/correlated features. Also, the use
of other functions f (activation functions of the neural
network) makes it possible to use OP-ELM for the case where
linear components have an important contribution in the
classifier’s model, for example.

The validation step of this classifier is performed using
classical Leave-One-Out cross-validation, much more precise
than a k-fold cross-validation and hence not requiring any
test step [13]. It has been shown on many experiments
[17, 18] that the OP-ELM classifier has results very close to
the ones of a Support Vector Machine (SVM) while having
computational times much smaller (usually from 10 to 100
times).

3.2. Determination of a Sufficient Number of Images. A proper
number of images, regarding the number of features, has to
be determined. Since theoretical values for that number are
not reachable, a sufficient number regarding a low enough
value of the variance of the results is taken instead (standard
deviation will be used instead of variance, in the following).

The OP-ELM classifier is hence used along with a
Bootstrap algorithm [13] over 100 repetitions; a subset of the

EURASIP Journal on Information Security 5

Data set
(full feature set)

Bootstrap

(with OP-ELM)

Forward feature
selection

(with OP-ELM)

Analysis/

reverse engineering/

classification

Sufficient number
of points, estimation of the

best achievable value and of
standard deviation of results

Best feature sets
according to forward

Figure 3: Schematic view of the proposed methodology. (1) An appropriate number of data samples to work with are determined using
a Bootstrap method for statistical stability. (2) The Forward selection is performed using an OP-ELM classifier to find a good features set,
from which follows a possible interpretation of the features or the typical classification for steganalysis.

W β
x1

x2

xN

y1

y2

yN

.

.

.
.
.
.

f

f

f

Figure 4: Structure of a classical Single Layer Feedforward Neural
Network (SLFN). The input values (the data) X = (x1, . . . , xN) are
weighted by the W coefficients. A possible bias B (not on the figure)
can be added to the weighted inputs wixi. An activation function f
taking this weighted inputs (plus bias) as input is finally weighted
by output coefficients β to obtain the output Y = (y1, . . . , yN).

complete data set (10000 images, 193 features) is randomly
drawn (with possible repetitions). The classifier is trained
with that specific subset. This process is repeated 100 times
(100 random drawings of the subset) to obtain a statistically
reliable estimation of the standard deviation of the results.
The size of the subset drawn from the complete data set is
then increased, and the 100 iterations are repeated for this
new subset size.

The criterion to stop this process is a threshold on the
value of the standard deviation of the results. Once the
standard deviation of the results gets lower than 1%, it is
decided that the subset size S, is sufficient. S is then used for
the rest of the experiments as a sufficient number of images
regarding the number of features in the feature set.

3.3. Dimensionality Reduction: Feature Selection by Forward
with OP-ELM. Given the sufficient number of images for
reliable training of the classifier, S, feature selection can be
performed. The second step of the methodology, a Forward
algorithm with OP-ELM (Figure 3), is used.

3.3.1. The Forward Algorithm. The forward selection algo-
rithm is a greedy algorithm [20]; it selects one by one
the dimensions, trying to find the one that combines best
with the already selected ones. The algorithm is detailed in
Algorithm 1 (with xi denoting the ith dimension of the data
set).

Algorithm 1 requires d(d−1)/2 instances to terminate (to
be compared to the 2d−1 instances for an exhaustive search),
which might reach the computational limits, depending

R = {xi, i ∈ �1,d�}
S =∅
while R /=∅ do

for x j ∈ R do
Evaluate performance with S∪ x j

end for
Set S = S∪ {xk}, R = R− xk with xk the dimension
giving the best result in the loop

end while

Algorithm 1: Forward.

Table 1: Performances for OP-ELM LOO for the best features
set along with the size of the reduced feature set (number).
Performances using the reduced set are within the 1% range of
standard deviation of the best results. The size of the set has been
determined to be the smallest possible one giving this performance.

5% Number 10% Number

F5 73.3 46 83.9 38

JPHS 90.7 41 92.1 21

MBSteg 63.3 57 70.9 93

MM3 78.00 81 86.2 49

OutGuess 81.2 65 93.2 49

Steghide 82.3 149 91.2 89

15% Number 20% Number

F5 90.5 33 96.3 15

JPHS 93.7 41 97.3 25

MBSteg 83.5 73 88.5 69

MM3 86.6 57 86.6 73

OutGuess 98.8 33 100.0 29

Steghide 96.4 73 99 73

on the number of dimensions and time to evaluate the
performance with one set. With the OP-ELM as a classifier,
computational times for the Forward selection are not much
of an issue.

Even if its capacity to isolate efficient features is clear, the
Forward technique has some drawbacks. First, if two features
present good results when they are put together but poor
results if only one of them is selected, Forward might not take
these into account in the selection process.

6 EURASIP Journal on Information Security
St

an
d

ar
d

d
ev

ia
ti

o
n

(%
)

0

0.5

1

1.5

2

2.5

3

3.5

Number of images

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(a) F5

St
an

d
ar

d
d

ev
ia

ti
o

n
(%

)

0

0.5

1

1.5

2

2.5

3

3.5

Number of images

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(b) JPHS

St
an

d
ar

d
d

ev
ia

ti
o

n
(%

)

0

1

2

3

4

5

6

7

Number of images

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(c) MBSTEG

St
an

d
ar

d
d

ev
ia

ti
o

n
(%

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of images

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(d) MM3

St
an

d
ar

d
d

ev
ia

ti
o

n
(%

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of images

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(e) OutGuess

St
an

d
ar

d
d

ev
ia

ti
o

n
(%

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of images

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(f) StegHide

Figure 5: Standard deviation in percentage of the average classification result versus the number of images, for all six steganographic
algorithms, for the four embedding rates: black circles () for 20%, green squares () for 15%, red crosses () for 10%, and blue triangles
() for 5%. These estimations have been performed with the Bootstrap runs (100 iterations). Plots do not have the same scale, vertically.

EURASIP Journal on Information Security 7
G

o
o

d
cl

as
si

fi
ca

ti
o

n
ra

te
(%

)

60

65

70

75

80

85

90

95

100

Number of features

0 20 40 60 80 100 120 140 160 180 200

(a) F5

G
o

o
d

cl
as

si
fi

ca
ti

o
n

ra
te

(%
)

82

84

86

88

90

92

94

96

98

Number of features

0 20 40 60 80 100 120 140 160 180 200

(b) JPHS

G
o

o
d

cl
as

si
fi

ca
ti

o
n

ra
te

(%
)

55

60

65

70

75

80

85

90

Number of features

0 20 40 60 80 100 120 140 160 180 200

(c) MBSTEG

G
o

o
d

cl
as

si
fi

ca
ti

o
n

ra
te

(%
)

60

65

70

75

80

85

90

Number of features

0 20 40 60 80 100 120 140 160 180 200

(d) MM3

G
o

o
d

cl
as

si
fi

ca
ti

o
n

ra
te

(%
)

60

65

70

75

80

85

90

95

100

Number of features

0 20 40 60 80 100 120 140 160 180 200

(e) OutGuess

G
o

o
d

cl
as

si
fi

ca
ti

o
n

ra
te

(%
)

55

60

65

70

75

80

85

90

95

100

Number of features

0 20 40 60 80 100 120 140 160 180 200

(f) StegHide

Figure 6: Performance in detection for all six stego algorithms versus the number of features, for the four embedding rates: black circles ()
for 20%, green squares () for 15%, red crosses () for 10%, and blue triangles () for 5%. Features are ranked using the Forward selection
algorithm. These plots are the result of a single run of the Forward algorithm. Plots do not have the same scale, vertically.

8 EURASIP Journal on Information Security

Table 2: The 23 features previously detailed.

Functional/Feature Functional F

Global histogram H/‖H‖
Individual histogram for 5
DCT Modes

h21/‖h21‖, h12/‖h12‖, h13/‖h13‖,
h22/‖h22‖, h31/‖h31‖

Dual histogram for 11 DCT
values

g−5/‖g−5‖, g−4/‖g−4‖, . . .,
g4/‖g4‖, g5/‖g5‖

Variation V

L1 and L2 blockiness B1, B2

Cooccurrence N00, N01, N11

Second, it does not allow to “go back” in the process,
meaning that if performances are decreasing along the selec-
tion process, and that the addition of another feature makes
performances increase again, combinations of previously
selected features with this last one are not possible anymore.

The Forward selection is probably not the best possible
feature selection technique, and recent contribution to these
techniques such as Sequential Floating Forward Selection
(SFFS) [21] and improvements of it [22] has shown that
the number of computations required for feature selection
can be reduced drastically. Nevertheless, the feature selection
using Forward has been showing very good results and
seems to perform well on the feature set used in this
paper. It is not used here in the goal of obtaining the best
possible combination of features but more to reduce the
dimensionality and obtain some meaning out of the selected
features. Improvements of this methodology could make use
of such more efficient techniques of feature selection.

3.4. General Methodology. To summarize the general meth-
odology on Figure 3 uses first a Bootstrap with 100 iterations
on varying subsets sizes, to obtain a sufficient subset size
and statistically reliable classifiers’ results regarding the
number of features used. With this number of images feature
selection is performed using a Forward selection algorithm;
this enables to highlight possible weaknesses of the stego
algorithm.

This methodology has been applied to six popular stego
algorithms for testing. Experiments and results as well as a
discussion on the analysis of the selected features are given in
the next section.

4. Experiments and Results

4.1. Experiments Setup

4.1.1. Steganographic Algorithms Used. Six different stegano-
graphic algorithms have been used: F5 [23], Model-Based
(MBSteg) [24], MMx [25] (in these experiments, MM3 has
been used), JP Hide and Seek [26], OutGuess [27], and
StegHide [28]; all of them with four different embedding
rates: 5%, 10%, 15%, and 20%.

4.1.2. Generation of Image Database. The image base was
constituted of 10 000 images from the BOWS2 Challenge

[29] database (hosted by Westfeld [30]). These images are
512× 512 PGM greyscale (also available in color).

The steganographic algorithms and the proposed
methodology for dimensionality reduction and steganalysis
are only performed on these 512 × 512 images. It can also
be noted that depending on image complexity, as studied
in [31], local discrepancies might be observed (a classically
trained steganalyzer might have troubles for such images),
but on a large enough base of images, this behavior will not
be visible.

4.1.3. Extraction of the Features. In the end, the whole set
of images is separated in two equal parts: one is kept as
untouched cover while the other one is stego with the six
steganographic algorithms at four different embedding rates:
5%, 10%, 15%, and 20%. Fridrich’s 193 DCT features [32]
have been used for the steganalysis.

4.2. Results. Results are presented following the method-
ology steps. A discussion over the selected features and
the possible interpretability of it are developed afterward.
In the following, the term “detection rate” stands for the
performance of the classifier on a scale from 0% to 100% of
classification rate. It is a measure of the performance instead
of a measure of error.

4.2.1. Determination of Sufficient Number of Samples. Pre-
sented first is the result of the evaluation of a sufficient num-
ber of images, as explained in the previous methodology, in
Figure 5. The Bootstrap (100 rounds) is used on randomly
taken subsets of 200 up to 9000 images out of the whole
10 000 from the BOWS2 challenge.

It can be seen on Figure 5 that the standard deviation
behaves as expected when increasing the number of images
for the cases of JPHS, MBSteg, MMx, OutGuess, and
StegHide: its value decreases and tends to be below 1% of
the best performance when the number of images is 5000
(even if for MBSteg with embedding rate of 5% it is a bit
above 1%). This sufficient number of samples is kept as the
reference and sufficient number. Another important point is
that with very low number of images (100 in these cases),
the standard deviation is between 1% and about 6.5% of
the average classifier’s performance; meaning that results
computed with small number of images have at most a
±6.5% confidence interval. While the plots decrease very
quickly when increasing the number of images, values of the
standard deviation remain very high until 2000 images; these
results have to take into account the embedding rate, which
tends to make the standard deviation higher as it decreases.

Indeed, while differences between 15% and 20% embed-
ding rates are not very important on the four previously
mentioned stego algorithms, there is a gap between the
5%–10% plots and the 20% ones. This is expected when
looking at the performances of the steganalysis process:
low embedding rates tend to be harder to detect, leading
to a range of possible performances wider than with high
embedding rates. Figure 6 illustrates this idea on all six cases
(F5, JPHS, MMx, MBSteg, StegHide, and OutGuess).

EURASIP Journal on Information Security 9

The final “sufficient” number of samples retained for
the second step of the methodology—the feature selection—
is 5000, for two reasons: first, the computational times are
acceptable for the following computations (feature selection
step with training of classifier for each step); second, the
standard deviation is small enough to consider that the final
classification results are given with at most 1% of standard
deviation (in the case of MBSteg at 5% of embedding rate).

4.2.2. Forward Feature Selection. Features have first been
ranked, using the Forward feature selection algorithm, and
detection rates are plotted with increasing number of features
(using the ranking provided by the Forward selection) on
Figure 6.

The six analyzed stego algorithms give rather different
results.

(i) F5 reaches very quickly the maximum performance
for all embedding rates: only few features contribute
to the overall detection rate.

(ii) JPHS reaches a plateau in performance (within the
standard deviation of 1%) for all embedding rates
with 41 features and remains around that perfor-
mance.

(iii) OutGuess has this same plateau at 25 features,
and performances are not increasing anymore above
that number of features (still within the standard
deviation of the results).

(iv) StegHide can be considered to have reached the
maximum result (within the standard deviation
interval) at 60 features.

(v) In the MM3 case, performances for embedding rates
10%, 15%, and 20% are very similar as are selected
features. Performances stable at 40 features. The
difference for the 5% case is most likely due to matrix
embedding which makes detection harder when the
payload is small.

(vi) Performances for MBSteg are stable using 70 fea-
tures for embedding rates 15% and 20%. Only 30
are enough for embedding rate 5%. The case of
embedding rate 10% has the classifier’s performances
increasing with the addition of features.

Interestingly, the features retained by the Forward selec-
tion for each embedding rate differ slightly within one
steganographic algorithm. Details about the features ranked
as first by the Forward algorithm are discussed afterward.

4.3. Discussion. First, the global performances, when using
the reduced and sufficient feature sets mentioned in the
results section above, are assessed. Note that feature selection
for performing reverse engineering of a steganographic
algorithm is theoretically efficient only if the features are
carrying different information (if two features represent the
same information, the feature selection will select only one
of them).

4.3.1. Reduced Features Sets. Based on the ranking of the
features obtained by the Forward algorithm, it has been
decided that once performances were within 1% of the best
performance obtained (among all Forward tryouts for all
different sets of features), the number of features obtained
was retained as a “sufficient” feature set. Performances
using reduced feature sets (proper to each algorithm and
embedding rate) are first compared in Table 1. It can be
seen that, globally, the required size of the set of features for
remaining within 1% of the best performance decreases.

It should be noted that since the aim of the feature
selection is to reduce as much as possible the feature set while
keeping overall same performance, it is expected that within
the standard deviation interval the performance with the
lowest possible number of features is behind the “maximum”
one.

It remains possible, for the studied algorithms, as
Figure 6 shows, to find a higher number of features for which
the performance is closer or equal to the maximum one—
even though this is very disputable, considering the maximal
1% standard deviation interval when using 5000 images.
But this is not the goal of the feature selection step of the
methodology.

4.4. Feature Sets Analysis for Reverse Engineering. Common
feature sets have been selected according to the following
rule: take the first common ten features (in the order ranked
by the Forward algorithm) to each feature set obtained for
each embedding rate (within one algorithm). It is hoped that
through this selection the obtained features will be generic
regarding the embedding rate.

We recall first the meaning of the different features used
in this steganalysis scheme. Notations for the feature set used
[32] are given for the original 23 features set, in Table 2.

This set of 23 features is expanded up to a set of 193,
by removing the L1 norm used previously and keeping all
the values of the matrices and vectors. This results in the
following 193 features set.

(i) A global histogram of 11 dimensions H(i), i =

�−5, 5�.

(ii) 5 low frequency DCT histograms each of 11 dimen-
sions h21(i) · · ·h31(i), i = �−5, 5�.

(iii) 11 dual histograms each of 9 dimensions
g−5(i) · · · g5(i), i = �1, 9�.

(iv) Variation between blocks, of dimension 1 V .

(v) 2 blockinesses of dimension 1 B1, B2.

(vi) Cooccurrence matrix of dimensions 5 × 5 Ci, j , i =
�−2, 2�, j = �−2, 2�.

The following is a discussion on the selected features for
each steganographic algorithm.

Tables of selected feature sets are presented in Tables
3–8, with an analysis for each algorithm. Fridrich’s DCT
features are not the only ones having a possible physical
interpretation. They have been chosen here because it is
believed that most of the features can be interpreted. The

10 EURASIP Journal on Information Security

Table 3: Common feature set for F5 with average rank for each
feature.

B1 C−1,−1 C−2,0 H(0) B2

(4) (8) (12) (13) (19)

V g0(1) h22(−3) h12(3) h13(−3)

(21) (22) (26) (31) (55)

Table 4: Common feature set for MM3 with average rank for each
feature.

C−1,1 C−2,0 h13(−1) H(−1) h21(−3)

(1) (3) (7) (22) (22)

g−5(1) C1,0 h22(−3) h31(−2) H(−3)

(35) (40) (41) (42) (49)

Table 5: Common feature set for JPHS with average rank for each
feature.

g0(4) B1 h21(−3) h21(−1) H(−5)

(1) (25) (26) (30) (30)

h13(3) h31(3) g0(5) g3(7) g−3(1)

(34) (52) (61) (61) (65)

Table 6: Common feature set for MBSteg with average rank for each
feature.

C2,−2 C2,2 C−2,2 C2,0 g−2(3)

(4) (6) (10) (10) (24)

g0(4) H(−2) C−1,−2 H(1) H(2)

(27) (31) (32) (36) (50)

Table 7: Common feature set for OutGuess with average rank for
each feature.

C−2,0 H(−2) C−2,−2 C0,−2 h13(0)

(3) (3) (7) (8) (12)

H(−3) C−1,0 h22(1) H(0) g−4(8)

(14) (23) (31) (41) (45)

Table 8: Common feature set for StegHide with average rank for
each feature.

C2,0 C−2,2 C−2,0 B1 B2

(6) (22) (22) (25) (27)

g1(1) h13(5) h21(−3) C−2,−1 g−1(4)

(28) (45) (46) (47) (54)

proposed short analysis of the weaknesses of stego algorithms
is using this interpretation.

4.4.1. F5I . F5 (Table 3) is rather sensitive to both blockiness
detections and, interestingly, is the only of the six tested
algorithms to be sensitive to the variation V. As for other
algorithms, cooccurrence coefficients are triggered.

4.4.2. MM3. MM3 (Table 4) tends to be sensitive to global
histogram features as well as DCT histograms, which are not
preserved.

4.4.3. JPHS. JPHS (Table 5) seems not to preserve the
DCT coefficients histograms. Also the dual histograms react
vividly for center values and extremes ones (−3 and 3).

4.4.4. MBSteg. The features used (Table 6) include global
histograms with values 1, −2, and 2, which happens only
because of the calibration in the feature extraction process.
MBSteg preserves the coefficients’ histograms but does
not take into account a possible calibration. Hence, the
unpreserved histograms are due to the calibration process
in the feature extraction. Information leaks through the
calibration process. Also cooccurrence values are used, which
is a sign that MBSteg does not preserve low and high
frequencies.

4.4.5. OutGuess. Cooccurrence values are mostly used (val-
ues −2, −1) in the feature set for OutGuess (Table 7) and
a clear weak point. The calibration process has also been of
importance since the global histograms of extreme values−3
and −2 have been taken into account.

4.4.6. StegHide. For StegHide (Table 8), blockiness and cooc-
currence values are mostly used, again for low and high
frequencies.

From a general point of view, it can be seen that most
of the analyzed algorithms are sensitive to statistics of
lowpass-calibrated DCT coefficients, represented by features
h13 and h21. This is not surprising since these coefficients
contain a large part of the information of a natural image;
their associated densities are likely to be modified by the
embedding process.

5. Conclusions

This paper has presented a methodology for the estimation
of a sufficient number of images for a specific feature set
using the standard deviation of the detection rate obtained
by the classifier as a criterion (a Bootstrap technique is used
for that purpose); the general methodology presented can
nonetheless be extended and applied to other feature sets.
The second step of the methodology aims at reducing the
dimensionality of the data set, by selecting the most relevant
features, according to a Forward selection algorithm; along
with the positive effects of a lower dimensionality, analysis
of the selected features is possible and gives insights on the
steganographic algorithm studied.

Three conclusions can be drawn from the methodology
and experiments in this paper.

(i) Results on standard deviation for almost all studied
steganographic algorithms have proved that the
feature-based steganalysis is reliable and accurate
only if a sufficient number of images is used for the
actual training of the classifier used. Indeed, from
most of the results obtained concerning standard
deviation values (and therefore statistical stability of
the results), it is rather irrelevant to possibly increase
detection performance by 2% while working with a
standard deviation for these same results of 2%.

EURASIP Journal on Information Security 11

Table 9: The 40 first features ranked by the Forward algorithm for the F5 algorithm at 5% embedding rate.

h13(0) H(0) B1 V C0,0 g0(2) h31(−1) C2,1 g0(7) C2,−1

g−2(7) g−3(4) B2 h12(−5) g−1(9) g4(5) g5(3) g−4(5) g−4(9) g3(5)

h31(3) h13(1) g−1(6) g−2(1) h13(2) h12(5) g3(6) C1,−2 h13(−5) h22(5)

g−4(1) g4(9) C2,−2 g−3(6) g−5(9) h12(3) h31(0) h21(−4) g2(9) g0(9)

Table 10: The 40 first features ranked by the Forward algorithm for the JPHS algorithm at 5% embedding rate.

g0(4) h22(0) C1,0 B1 H(1) h21(0) g1(4) g0(8) g−2(9) g−2(5)

g4(5) g0(5) g1(9) g−1(2) B2 g2(8) C0,0 h31(5) g0(9) h22(1)

g−2(2) g−1(7) g−3(8) g0(1) h31(−3) h21(−1) h22(−1) g−4(6) C−1,−2 g5(7)

h12(−5) g−5(8) h21(2) g0(7) h12(−2) h22(−4) h31(0) C0,2 H(2) g5(5)

Table 11: The 40 first features ranked by the Forward algorithm for the MBSteg algorithm at 5% embedding rate.

g−2(1) H(2) g−4(7) h13(1) h22(1) C2,−2 C−1,−1 h31(1) g4(7) g−2(4)

h21(0) h31(−4) h21(−4) C0,2 C1,2 h31(−1) H(0) h21(3) g−5(6) h22(−3)

h13(−1) C2,0 C1,2 g5(6) C−2,−1 g−3(6) g5(4) g−2(7) g−1(7) g−4(8)

h22(−1) g2(1) g0(8) h22(−5) H(−2) h12(−4) g5(5) h12(−2) g2(4) h21(−3)

Table 12: The 40 first features ranked by the Forward algorithm for the MM3 algorithm at 5% embedding rate.

C−1,−1 h13(−1) C0,−2 C1,1 g0(9) C2,0 h21(−1) h13(1) g−3(2) C1,0

H(−2) g4(4) g2(2) C−2,0 C0,−1 C−1,−2 g−2(3) h22(−3) g2(3) h13(3)

h31(−1) g−1(9) g−2(8) g0(7) h21(−5) h21(3) C−1,1 g−1(3) g5(3) h31(1)

g0(3) B1 C−2,1 B2 g−4(6) C0,2 H(−1) g2(5) h13(0) g2(7)

Table 13: The 40 first features ranked by the Forward algorithm for the Outguess algorithm at 5% embedding rate.

h13(0) C0,−1 C−2,0 H(−2) B1 C0,−2 g0(7) h31(−3) C−2,−1 g0(2)

B2 H(−1) g−2(2) h13(−1) h22(−1) h22(0) h12(−3) g−2(5) g1(8) h21(−2)

g−2(9) g1(1) H(5) H(4) g2(1) g0(1) g−3(5) g0(9) g−3(8) g−3(3)

g−5(4) g−5(5) C−2,−2 g−1(6) g−2(6) g4(3) C−1,−1 C−1,0 g−2(7) C−1,1

Table 14: The 40 first features ranked by the Forward algorithm for the Steghide algorithm at 5% embedding rate.

C0,−1 g0(2) C0,2 C2,−2 B1 B2 C1,1 C0,−2 C−2,2 h13(−1)

g−5(3) h21(−3) C0,1 h13(0) C1,−1 h31(−1) g−3(3) g3(6) h31(−2) g1(3)

h22(1) C−2,−2 g−4(4) h13(1) C−2,0 g1(4) C2,1 H(−1) C2,2 h22(5)

g2(5) C−1,−1 g1(9) C2,0 g2(7) g−1(1) h31(5) H(−2) h21(1) g−2(9)

(ii) Through the second step of the methodology, the
required number of features for steganalysis can
be decreased. This with three main advantages: (a)
performances remain the same if the reduced feature
set is properly constructed; (b) the selected features
from the reduced set are relevant and meaningful
(the selected set can possibly vary, according to the
feature selection technique used) and make reverse-
engineering possible; (c) the weaknesses of the stego
algorithm also appear from the selection; this can
lead, for example, to improvements of the stego
algorithm.

(iii) The analysis on the reduced common feature sets
obtained between embedding rates of the same stego
algorithm shows that the algorithms are sensitive to
roughly the same features, as a basis. Meanwhile,
when embedding rates get as low as 5%, or for
very efficient algorithms, some very specific features
appear.

Hence, the first step of the methodology is a requirement
for not only any new stego algorithm but also new feature
sets/steganalyzers, willing to present its performances: a
sufficient number of images for the stego algorithm and the

12 EURASIP Journal on Information Security

steganalyzer used to test it have to be assessed in order to have
stable results (i.e., with a small enough standard deviation of
its results to make the comparison with current state of the
art techniques meaningful).

Also, from the second step of the methodology, the most
relevant features can be obtained and make possible a further
analysis of the stego algorithm considered, additionally to the
detection rate obtained by the steganalyzer.

Appendix

Features Ranked by the Forward Algorithm

In appendix are given the first 40 features obtained by
the Forward ranking for each stego algorithm with 5%
embedding rate (Tables 9–14). Only one embedding rate
result is given for space reasons. 5% embedding rate results
have been chosen since they tend to be different (in terms
of ranked features by the Forward algorithm) from the other
embedding rates and also because 5% embedding rate is a
difficult challenge in terms of steganalysis; these features are
meaningful for this kind of difficult steganalysis with these
six algorithms.

Acknowledgments

The authors would like to thank Jan Kodovsky and Jessica
Fridrich for their implementation of the DCT Feature
Extraction software. Also many thanks to Tomás Pevný for
his helpful comments and suggestions on this article. The
work in this paper was supported (in part) by the French
national funding under the project RIAM Estivale (ANR-
05-RIAM-O1903), ANR projects Nebbiano (ANR-06-SETI-
009), and TSAR French Project (ANR SSIA 2006-2008).

References

[1] D. McCullagh, “Secret Messages Come in .Wavs. Wired
News,” February 2001, http://www.wired.com/news/politics/
0,1283,41861,00.html.

[2] N. Provos and P. Honeyman, “Detecting steganographic
content on the internet,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS ’02), San Diego,
Calif, USA, February 2002.

[3] C. Cachin, “An information-theoretic model for steganog-
raphy,” in Proceedings of the 2nd International Workshop on
Information Hiding (IH ’98), vol. 1525 of Lecture Notes in
Computer Science, pp. 306–318, Portland, Ore, USA, April
1998.

[4] A. Westfeld and A. Pfitzmann, “Attacks on steganographic
systems,” in Proceedings of the 3rd International Workshop on
Information Hiding (IH ’99), vol. 1768 of Lecture Notes in
Computer Science, pp. 61–76, Springer, Dresden, Germany,
September-October 2000.

[5] J. Fridrich, “Feature-based steganalysis for JPEG images and
its implications for future design of steganographic schemes,”
in Proceedings of the 6th International Workshop on Information
Hiding (IH ’04), vol. 3200 of Lecture Notes in Computer Science,
pp. 67–81, Toronto, Canada, May 2004.

[6] S. Lyu and H. Farid, “Detecting hidden messages using higher-
order statistics and support vector machines,” in Proceedings of
the 5th International Workshop on Information Hiding (IH ’02),
vol. 2578 of Lecture Notes in Computer Science, pp. 340–354,
Noordwijkerhout, The Netherlands, October 2003.

[7] S. S. Agaian and H. Cai, “New multilevel dct, feature vectors,
and universal blind steganalysis,” in Security, Steganography,
and Watermarking of Multimedia Contents VII, vol. 5681 of
Proceedings of SPIE, pp. 653–663, San Jose, Calif, USA, January
2005.

[8] Y. Q. Shi, C. Chen, and W. Chen, “A Markov process
based approach to effective attacking JPEG steganography,” in
Proceedings of the 8th International Workshop on Information
Hiding (IH ’06), vol. 4437 of Lecture Notes in Computer Science,
pp. 249–264, Alexandria, Va, USA, July 2007.

[9] D. François, High-dimensional data analysis: optimal metrics
and feature selection, Ph.D. thesis, Université Catholique de
Louvain, Louvain, Belgium, September 2006.

[10] A. D. Ker, “The ultimate steganalysis benchmark?” in
Proceedings of the 9th Multimedia and Security Workshop
(MM/Sec ’07), pp. 141–148, Dallas, Tex, USA, September 2007.

[11] T. Filler, A. D. Ker, and J. Fridrich, “The square root law
of steganographic capacity for Markov covers,” in Media
Forensics and Security, E. J. Delp III, J. Dittmann, N. D.
Memon, and P. W. Wong, Eds., vol. 7254 of Proceedings of
SPIE, pp. 1–11, San Jose, Calif, USA, January 2009.

[12] R. Bellman, Adaptive Control Processes: A Guided Tour,
Princeton University Press, Princeton, NJ, USA, 1961.

[13] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap,
Chapman & Hall/CRC, Londres, Argentina, 1994.

[14] D. W. Scott and J. R. Thompson, “Probability density
estimation in higher dimensions,” in Computer Science and
Statistics: Proceedings of the 15th Symposium on the Interface, S.
R. Douglas, Ed., pp. 173–179, North-Holland, Houston, Tex,
USA, March 1983.

[15] Y. Miche, P. Bas, A. Lendasse, C. Jutten, and O. Simula,
“Extracting relevant features of steganographic schemes by
feature selection techniques,” in Proceedings of the 3rd Wavilla
Challenge (Wacha ’07), pp. 1–15, St. Malo, France, June 2007.

[16] Y. Miche, B. Roue, A. Lendasse, and P. Bas, “A feature
selection methodology for steganalysis,” in Proceedings of the
International Workshop on Multimedia Content Representation,
Classification and Security (MRCS ’06), vol. 4105 of Lecture
Notes in Computer Science, pp. 49–56, Istanbul, Turkey,
September 2006.

[17] Y. Miche, P. Bas, C. Jutten, O. Simula, and A. Lendasse, “A
methodology for building regression models using extreme
learning machine: OP-ELM,” in Proceedings of the 16th
European Symposium on Artificial Neural Networks (ESANN
’08), pp. 1–6, Bruges, Belgium, April 2008.

[18] A. Sorjamaa, Y. Miche, R. Weiss, and A. Lendasse, “Long-term
prediction of time series using NNE-based projection and OP-
ELM,” in Proceedings of the International Joint Conference on
Neural Networks (IJCNN ’08), pp. 2674–2680, Hong Kong,
June 2008.

[19] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: theory and applications,” Neurocomputing, vol. 70,
no. 1–3, pp. 489–501, 2006.

[20] F. Rossi, A. Lendasse, D. François, V. Wertz, and M. Verleysen,
“Mutual information for the selection of relevant variables
in spectrometric nonlinear modelling,” Chemometrics and
Intelligent Laboratory Systems, vol. 80, no. 2, pp. 215–226,
2006.

EURASIP Journal on Information Security 13

[21] D. Ververidis and C. Kotropoulos, “Fast and accurate sequen-
tial floating forward feature selection with the Bayes classifier
applied to speech emotion recognition,” Signal Processing, vol.
88, no. 12, pp. 2956–2970, 2008.

[22] D. Ververidis and C. Kotropoulos, “Fast sequential floating
forward selection applied to emotional speech features esti-
mated on des and susas data collections,” in Proceeding of the
14th European Signal Processing Conference (EUSIPCO ’06),
EURASIP, Ed., pp. 1–5, Florence, Italy, September 2006.

[23] A. Westfeld, “F5—a steganographic algorithm,” in Proceedings
of the 4th International Workshop on Information Hiding
(IH ’01), vol. 2137 of Lecture Notes in Computer Science, pp.
289–302, Pittsburgh, Pa, USA, April 2001.

[24] P. Sallee, “Model-based steganography,” in Proceedings
of the 2nd International Workshop Digital Watermarking
(IWDW ’03), vol. 2939 of Lecture Notes in Computer Science,
pp. 254–260, Seoul, Korea, October 2004.

[25] Y. Kim, Z. Duric, and D. Richards, “Modified matrix encoding
technique for minimal distortion steganography,” in Proceed-
ings of the 8th International Workshop on Information Hiding
(IH ’06), vol. 4437 of Lecture Notes in Computer Science, pp.
314–327, Alexandria, Va, USA, July 2007.

[26] A. Latham, “Jphide & seek,” August 1999, http://linux01
.gwdg.de/∼alatham/stego.html.

[27] N. Provos, “Defending against statistical steganalysis,” in
Proceedings of the 10th USENIX Security Symposium, p. 24,
Washington, DC, USA, August 2001.

[28] S. Hetzl and P. Mutzel, “A graph-theoretic approach to
steganography,” in Proceedings of the 9th IFIP TC-6 TC-11
International Conference on Communications and Multimedia
Security (CMS ’05), vol. 3677 of Lecture Notes in Computer
Science, pp. 119–128, Springer, Salzburg, Austria, September
2005.

[29] “Watermarking Virtual Laboratory (Wavila) of the European
Network of Excellence ECRYPT,” The 2nd bows contest (break
our watermarking system), 2007.

[30] A. Westfeld, “Reproducible signal processing (bows2 challenge
image database, public)”.

[31] Q. Liu, A. H. Sung, B. Ribeiro, M. Wei, Z. Chen, and J. Xu,
“Image complexity and feature mining for steganalysis of least
significant bit matching steganography,” Information Sciences,
vol. 178, no. 1, pp. 21–36, 2008.

[32] T. Pevny and J. Fridrich, “Merging Markov and DCT features
for multi-class JPEG steganalysis,” in Security, Steganography,
and Watermarking of Multimedia Contents IX, vol. 6505 of
Proceedings of SPIE, pp. 1–13, San Jose, Calif, USA, January
2007.

FP U B L I C AT I O N F

title:
Using Multiple Re-embeddings for Quantitative Steganalysis and Image
Reliability Estimation

authors:
Yoan Miche, Patrick Bas and Amaury Lendasse

published in:
TKK Reports in Information and Computer Science, June 2010, Espoo.

Number TKK-ICS-R34.

isbn:
978-952-60-3249-8 (Print)
isbn:
978-952-60-3250-4 (Online)
url:
http://lib.tkk.fi/Reports/2010/isbn9789526032504

© Yoan Miche, Patrick Bas and Amaury Lendasse.

159

http://lib.tkk.fi/Reports/2010/isbn9789526032504

TKK Reports in Information and Computer Science

Espoo 2010 TKK-ICS-R34

USING MULTIPLE RE-EMBEDDINGS FOR QUANTITATIVE

STEGANALYSIS AND IMAGE RELIABILITY ESTIMATION

Yoan Miche, Patrick Bas and Amaury Lendasse

TKK Reports in Information and Computer Science

Espoo 2010 TKK-ICS-R34

USING MULTIPLE RE-EMBEDDINGS FOR QUANTITATIVE

STEGANALYSIS AND IMAGE RELIABILITY ESTIMATION

Yoan Miche, Patrick Bas and Amaury Lendasse

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Aalto-yliopiston teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

PO Box 15400

FI-00076 AALTO

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 470 01

Fax +358 9 470 23369

E-mail: series@ics.tkk.fi

�c Yoan Miche, Patrick Bas and Amaury Lendasse

ISBN 978-952-60-3249-8 (Print)

ISBN 978-952-60-3250-4 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2010/isbn9789526032504.pdf

TKK ICS

Espoo 2010

ABSTRACT: The quantitative steganalysis problem aims at estimating the
amount of payload embedded inside a document. In this paper, JPEG im-
ages are considered, and by the use of a re-embedding based methodology, it
is possible to estimate the number of original embedding changes performed
on the image by a stego source and to slightly improve the estimation regard-
ing classical quantitative steganalysis methods. The major advance of this
methodology is that it also enables to obtain a confidence interval on this
estimated payload. This confidence interval then permits to evaluate the dif-
ficulty of an image, in terms of steganalysis by estimating the reliability of the
output. The regression technique comes from the OP-ELM and the reliabil-
ity is estimated using linear approximation. The methodology is applied with
publicly available stego algorithms, regression model and large databases of
images. The methodology is generic and can be used for any quantitative
steganalysis problem of this class.

KEYWORDS: Steganography, Steganalysis, OP-ELM, Quantitative Steganal-
ysis, Re-embedding, Inner Image Difficulty

CONTENTS

1 Introduction 7

2 Methodology 8
2.1 Re-embedding concept . 9
2.2 Confidence interval estimation 12
2.3 Estimation of the inner image difficulty 12

3 Results 13
3.1 Technical difficulties . 13
3.2 Experimental setup . 13

3.3 Estimation of the original embedding rate R̂o 14
3.4 On the use of the width of the confidence interval 16

4 Conclusion 18

References 18

CONTENTS 5

1 INTRODUCTION

The classical goal of steganalysis is to detect whether a document (considered
to be images, here) has been tampered with or not. While this detection is
important, one can wish to obtain more information about the actual payload
present in the image. This problem is addressed by quantitative steganalysis:
it estimates the embedded payload, usually by estimating directly the number
of embedding changes that have been made to the image in the first place.
An initial approach to this has been proposed in [6, 15]. Such a problem has
been addressed recently for example by the use of classical blind steganaly-
sis features such as [5]: the knowledge of the stego algorithm is supposed to
be given, following Kerckhoff’s principles [9] — or inferred by some usual
means of blind steganalysis [13, 14] for example —, and the problem of pay-
load estimation comes down to a regression problem, with the output being
the payload to predict and inputs being the blind steganalysis features. In a
recent paper, this regression has been achieved through the use of Ordinary
Least Squares (OLS) and Support Vector Regression (SVR) [15].

In such a setup, it is assumed that one can use the identified stego al-
gorithm in order to train an OLS or SVR model, for example on a known
dataset. Such a model can then be used on new unknown images (the in-
tercepted images on a specific channel) to estimate a possible embedded
payload.

Although this usually leads to a good estimation, it is interesting to also
have a confidence interval on such estimation, which gives information on
the quality of the estimation as well as the possible “difficulty” of the consid-
ered image (reliability), i.e. the reliability of the output.

This problem of image reliability is important for future steganography.
Indeed, in the case where a specific image is known to be “difficult”, a
steganographer will prefer using it, knowing that it is more likely to be mis-
classified or have a payload estimation that is unreliable. In [16], the authors
propose to estimate the embedding capacity of the image beforehand, in or-
der to embed the payload into the possibly most appropriate images. Such
an approach, combined with reliability estimation can lead to more secure
steganography. For example, the estimation of the difficulty of the image
could be a starting point to perform batch steganography by embedding a
payload function of the difficulty of the image.

This idea of image difficulty was first related to the error in steganaly-
sis in the work of Böhme [2]. In this paper, the authors define a two-error
model for the quantitative steganalysis setup, with a within-image error and
a between-image one. The between-image error relates to the possible inac-
curate assumptions made on the cover image and is thus related to images as
a whole.

The within-image error is highly related to the concept of difficulty used in
this paper and attempts to take into account the errors caused by the possible
dependencies between a cover image and the message embedded in it.

In the original paper, the authors illustrate through the use of numerous
types of steganalysis on a LSB replacement steganography scheme that the
between-image error and the within-image error are quite different in nature:
the between-image error follows rather closely that of a Student’s t distribu-

1 INTRODUCTION 7

tion, while the within-image error is similar to a Gaussian one. It also seems
that some of the steganalysis schemes tested by the authors are more prone
to one type of error than the other.

The within-image error is related in [2] to a measure of the local variance
of the image, introduced in the paper and computed over the original im-
age. The concept of difficulty and the measure for it proposed in section 2
are tightly related to the within-image error and uses multiple repetitions of
steganography with different messages on the same image. One main differ-
ence here is that a blind approach is used to determine it, i.e. it is assumed
that the original image is not available and it is only possible to rely on the
intercepted suspicious image.

In this paper, a methodology applicable to any stego algorithm is proposed
in order to devise a confidence interval on the provided estimation of the
original embedding rate, by using re-embeddings on the considered image.
Using this methodology, it is possible to obtain:

A better estimate of the original embedding rate used on an intercepted
suspicious image which is tantamount to the number of embedding
changes or the initial number of non-zero AC coefficients;

An estimate of the original number of non-zero AC coefficients of the
genuine image (and hence, from the embedding rate and this, the
number of embedding changes);

An estimated confidence interval on the embedding rate and on the
number of non-zero AC coefficients;

Using the confidence interval, a measure of the “difficulty” of the im-
age.

Follows a description of the methodology, in section 2, and a set of exper-
iments on the BOWS2 [1] and BOSS [12] images sets (respectively 10000
and 9074 images) in section 3.

2 METHODOLOGY

The following methodology is described for a single image, for the sake of
simplicity of notations.

In the following, the embedding rate is defined as the ratio R between
the number of embedding changes E and the number of non-zero AC coef-
ficients A: R = E

A
.

Assume that we have intercepted an image Io coming from a suspicious
source, as in Figure 2, with a payload embedded Po, which will be in the
following assimilated to the number of embedding changes Eo performed on
Io.

8 2 METHODOLOGY

Suspicious Image

Multiple
re-embeddings
methodology

Inner Image Di!culty

Original Embedding Rate

Figure 1: Suspicious image Io with unknown payload Po, assimilated to the
number of embedding changes made in the image Eo, by a stego algorithm
S. The proposed methodology gives an estimate of Eo and of the inner image
difficulty.

According to Kerckhoffs’ principle [9], the stego algorithm S can be con-
sidered known; if not, it can be devised by the means of blind steganalysis,
using multi-class classifiers [5], for example.

A model M that estimates the embedding rates R is first trained on a
given training set for which the embedding rates are known. This model is
supposed to be available in the following.

2.1 Re-embedding concept

In this paper we propose to use the re-embedding idea to embed again some
information inside the considered image Io. The rationale here is to assume
that the reliability of the estimation of the initial embedding rate is function
of the reliability after multiple re-embeddings. Multiple such re-embedding
with different sizes provide images with a larger embedding rate, of which a
part is known. The global idea of the re-embedding and its use in this paper
is illustrated in Figure 2.

Features Estimates
Emb. RateUnknown

Embedding
Rate

Model

Model

Model

Figure 2: The Re-embedding concept: the original image Io supposedly hav-
ing a payload with embedding rate Ro is duplicated N times (N = 3 here)
and payloads with number of embedding changes Ei are embedded in it.
Features are extracted from each duplicate image (with additional embed-
ding changes) and the previously built model M is used on these features to

devise the final embedding rate R̂i.

Consider the intercepted image Io; the idea is to make a known amount Ei

of new embedding changes to Io. This process is repeated N times {Ei, 1 ≤
i ≤ N} on the image Io, in order to obtain a set of images {Ii, 1 ≤ i ≤ N}
for each of which Ei re-embedding changes are performed.

2 METHODOLOGY 9

After this re-embedding procedure, the actual embedding rate for image
Ii is approximated as

Ri =
Eo + Ei

Ao

= Ro +
1

Ao

Ei, (1)

with Eo and Ao the number of embedding changes and the number of non-
zero AC coefficients in the considered image Io, respectively (the sender of
the suspicious image Io has caused Eo embedding changes). It is assumed in
this context that the number of non-zero AC coefficients A might vary due
to an embedding. Some stego algorithms attempt to not modify this quantity,
though.

In order to illustrate that Eq. 1 is a good approximation for low Eo and
Ei, let us introduce two additional notations: the total number of pixels in
the image I , Npix(I) and the real total number of embedding changes E tot

i ,
measured between the original “clean” image I and the image Ii for which
re-embedding with Ei embedding changes has been performed.

If the stego algorithm S is assumed to modify directly LSBs of pixels for
each embedding change to perform (no matrix encoding, for example), it is
possible to estimate the probability Ppix of a pixel to be modified by both the
first embedding (by the sender) and the re-embedding. Using these notations,
it is straightforward,

Ppix =
Eo

Npix(I)
×

Ei

Npix(I)
. (2)

Figure 3 illustrates the validity of the approximation made by Eq. 1, for
small Eo+Ei (the experiment uses the nsF5 algorithm [17, 7] and Fridrich’s
extended DCT calibrated features [5]). Note that the plot of Eo + Ei −
Ppix (Eo + Ei) would be barely distinguishable from that of Eo + Ei here,
due to Ppix � 1. This is the case when the assumptions on Eo and the
range of Ei made in this paper are met: "low" Eo (compared to Npix) and a
controlled small range for Ei. In the event of a careless steganographer (Eo

exceptionally large) for example, this result might not hold as well as here.
In addition, the absolute error made by the approximation of Eq. 1 versus

the number of re-embedding changes Ei is depicted on Figure 4 for one
image (the behavior is the same for all images used in this paper, for both
stego algorithms). Consequently, the larger Ei, the more probable it is that
some “overlap” happens, between the initial embedding changes Eo and the
re-embeddings Ei, which is expected from Eq. 2.

The rationale in this paper is that the sender is not careless about the
embedding rate used and that the number of re-embedding changes Ei are
controlled in a certain range. With these assumptions, Eq. 1 is a reasonable
approximation.

Then, in the very same way as that of the quantitative steganalysis, it is pos-
sible to obtain an estimation of the Ri, using a previously trained regression
model M. Denoting Xi = (x1

i , . . . , x
d
i) the d-dimensional feature vector

extracted for image Ii, one gets the predicted embedding rate R̂i = M(Xi).
From Eq. 1 comes

R̂i = Ro +
1

Ao

Ei + εi, (3)

10 2 METHODOLOGY

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Real Number of Embedding Changes

A
p

p
ro

x.
 N

u
m

. o
f

E
m

b.
 C

h
an

ge
s

Figure 3: Approximated number of total embedding changes by Eq. 1, Eo +
Ei, versus the real total number of embedding changes Etot. The solid line
denotes the case where (Eo + Ei) = Etot exactly. The plot of Eo+Ei−Ppix×
Npix is not distinguishable from that of Eo+Ei and is not depicted here. This
experiment uses the nsF5 stego algorithm [17, 7]. Eo = 4122 for this graph.

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

Number of Re-embedding changes

E
rr

o
r

o
n

 T
o

ta
l N

u
m

. o
f

E
m

b.
 C

h
an

ge
s

Figure 4: Error on the total number of embedding changes (Eo + Ei)−(Etot)
versus the number of re-embedding changes Ei. Eo = 4122 for this graph.

2 METHODOLOGY 11

with εi the error made in the estimation of Ri. It is assumed in the fol-
lowing that the εi are independent from each other and from the Ei, for
simplicity.

2.2 Confidence interval estimation

Since both quantities R̂i and Ei are known, the confidence interval and the

estimation of the original embedding rate R̂o can then be obtained by solving
the linear system

Eo

Ao

+
1

Ao

E = R̂, (4)

with R̂ = (R̂1, . . . , R̂N)
T the vector holding the estimations made by model

M and E = (E1, . . . , EN)
T the vector of the embedding changes performed.

This system is solved in a Least Squares sense, by minimizing ||ε||2, where
ε = (ε1, . . . , εN)

T , which comes down to the problem

min
α,β

�

�

�
α + β · E− R̂

�

�

�

2

, (5)

with α = Eo

Ao

and β = 1

Ao

. This is solved by a classical pseudo-inverse
formulation.

The constant term in the minimization problem is the original rate Ro

for which we will obtain “an estimate” R̂o , along with a confidence interval

on the value R̂o, denoted
�

R̂INF
o , R̂SUP

o

�

. This confidence interval is obtained

using the Matlab function , which uses a Student’s t score, as de-

scribed in [4]: R̂INF
o is obtained by

R̂INF
o = R̂o − tα/2,ν σ̂

�

R̂o

�

, (6)

where tα/2,ν is the t score (inverse Student t cdf) with parameter α/2 (for a
100(1−α)% confidence interval) with ν degrees of freedom (here ν = N−2),

and σ̂(R̂o) is the estimated standard deviation of R̂o. The upper bound R̂SUP
o

is computed similarly, and the confidence interval for the first order term also
(please refer to [4] for the derivations). One can also obtain the number of
non-zero AC coefficients Ao when solving the system, and hence recover the
original number of embedding changes Eo.

This is illustrated on two sets of images in the experiments section 3.

2.3 Estimation of the inner image difficulty

The inner difficulty of the image can be represented as the variation of the
predictions for a given original embedding rate Eo when the embedding key,
or the embedded message fluctuates (similarly to [2]). Note that this variation
is solely due to the characteristics of the cover image. Consequently our
rationale is to measure the image difficulty as the standard deviation of the
error performed for various embeddings on this image (no re-embeddings).

12 2 METHODOLOGY

That is, for a genuine image I , L different embeddings are performed
with different number of embedding changes {EO

i , 1 ≤ i ≤ L}. The error

εOi between the estimated value of the embedding rate R̂O
i (by model M)

and the true value RO
i is then defined as εOi = RO

i − R̂O
i .

The standard deviation of this quantity over the L different realizations is
the proposed measure of the inner image difficulty D for image I :

DI = std
�

εO
�

, (7)

with εO =
�

εO
1
, . . . , εOL

�T
.

In order to show that the estimated confidence interval gives information
on the inner image difficulty, through the re-embeddings, the quantity DI in-
herent to each image I , is compared to the width of the estimated confidence

interval for R̂o.
A dependence between the two proves the width of the estimated confi-

dence interval can be used as an indicator of the image difficulty measured
by DI .

Note that the calculation of DI for an image requires the use of the gen-
uine image, which is not accessible in practice. In the following, these L
embeddings on the cover image are referred to as “original embeddings”.

The following section presents results for this methodology with publicly
available algorithms and images.

3 RESULTS

3.1 Technical difficulties

It should be noted that the following experiments are non trivial in terms of
amounts of data to process and store. Indeed, let us assume, as follows in the
experimental setup, L = 200 repetitions for the image difficulty estimation
and N = 500 repetitions for the re-embeddings, with an image database of
10000 images such as that of BOWS2 [1]. For the estimation of the image
difficulty, this amounts to 10000×L = 2×106 image files to process (that is,
store and extract features from), while the re-embedding methodology pro-
posed leads to 10000 × N = 5 × 106 images to process. Given that the
images have an average size of about 50 kB, such an experiment amounts
to 350GB of data, not counting the size of the extracted features from each
of the images (in the range of 50GB for this experiment only). Needless to
say, the data containing the features on which is performed the proposed
methodology is challenging to handle.

3.2 Experimental setup

For the following experiments, the 10000 images from the BOWS2 database
have been used [1], as well as the 9074 from the BOSS [12] contest, with
L = 200 repetitions for the estimation of the image difficulty DI and N =
500 repetitions for the re-embeddings. Experiments are carried out on two
different large image databases in order to assess the importance of the im-
ages on the results. From the following, it is clear that the choice of the

3 RESULTS 13

database of images does not really matter (as long as it contains an important
number of images). The choice of the stego algorithm leads to more variation
in the results, though, as shown below.

For each image, initial embedding rates (supposed to be the embedding
rate in the intercepted suspicious image) uniformly selected between 0 and
30% are used.

Re-embeddings follow the same range of rates, leading to final embedding
rates Ri between 0 and about 50% for the Ii. Two different stego algorithms
are used in the experiments: nsF5 [17, 7] and steghide [8]. The outcome of
the methodology varies slightly between the two algorithms tested, although
only in the range of the errors estimated. The global behavior remains the
same.

In this paper, the model M used for the regression is an OP-ELM [11]
(the toolbox from was used), which
is a feedforward neural network using random projections. It has the advan-
tage of performing very well (with similar performances to state of the art Ma-
chine Learning techniques such as Support Vector Machines) while keeping
a rather low computational time. The OP-ELM optimizes the Mean Square
Error. Default parameters (Linear, Sigmoid and Gaussian kernels, 300 max-
imum number of kernels) have been used for the experiments.

The OP-ELM model M is used on the 274 DCT-based features extracted
from image Io [5] augmented by the number of non-zero DCT coefficients
of the image Io.

3.3 Estimation of the original embedding rate R̂o

First, Figure 5 illustrates the solution of Eq. 5 for one image only (the behav-
ior is the same for all images for both stego algorithms and image databases):
by solving the linear system in a Least Squares sense, the values of β = 1

Ao

(the slope) and α = Eo

Ao

(estimated embedding rate for Ei −→ 0) are devised.
Here, all N = 500 values obtained for each re-embedding are plotted.

In order to show that the minimization problem is correctly solved for the
whole range of embedding rates and for all images, Figure 6 represents the es-

timated value of the original embedding rate R̂o versus the real value Ro. The
actual Normalized Mean Square Error (NMSE) for the 10000 images in this
figure (BOWS2, Steghide) using the re-embeddings is 0.0586, while using
the same model M directly on each image (classical quantitative steganaly-
sis, no re-embedding) leads to a 0.0676 NMSE in this case. Performances are
similar for nsF5, and over the BOSS images set as well.

Hence, using this methodology on the 10000 images yields on average an
improvement of 13% of the NMSE for quantitative steganalysis.

It can be noted that the OP-ELM already performs very well [10] and the
nsF5 and Steghide stego problems are "easy enough", hence the difficulty to
improve “radically” the performances obtained in the first place. While an
improvement of 13% is not very important, it is sufficient to illustrate that
this methodology yields on average at least as good results as the classical
quantitative steganalysis with no re-embeddings.

To investigate the influence of the number of re-embeddings N , a variable
number of re-embeddings has been used to establish Figure 7. It illustrates

14 3 RESULTS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.2

0.25

0.3

0.35

0.4

Number of Embedding Changes

E
st

im
at

ed
 E

m
b

ed
d

in
g

R
at

e

Figure 5: Plot of the estimated embedding rate R̂i versus the number of
embedding changes Ei, for one image, for nsF5 (behavior is identical for
Steghide). From Eq. 5, the slope gives the β = 1

Ao

term while the value for

Ei −→ 0 gives the α = Eo

Ao

term.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18-0.05

0

0.05

0.1

0.15

0.2

Real Original Embedding Rate

E
st

im
at

ed
 O

ri
gi

n
al

 E
m

b
ed

d
in

g
R

at
e

0.04 0.08 0.12 0.16 0.2

0

0.05

0.1

0.15

0.2

0.25

Real Original Embedding Rate

E
st

im
at

ed
 O

ri
gi

n
al

 E
m

b
ed

d
in

g
R

at
e

Figure 6: Plot of the estimated original embedding Rate R̂o through the re-
embeddings versus the original Ro, for all 10000 images of BOWS2. Left is
for nsF5 and right for Steghide.

3 RESULTS 15

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Re-Embeddings

N
o

rm
al

iz
ed

 M
SE

Figure 7: Plot of the Normalized Mean Square Error (NMSE) made on R̂o

versus the number of re-embeddings performed. The solid straight line gives
the NMSE using the OP-ELM for classical quantitative steganalysis (no re-
embedding), and the straight dashed line the NMSE for an OLS model. This
is for nsF5 on a BOSS image.

the evolution of the NMSE using the re-embedding approach, with a varying
number of re-embeddings N . It is interesting to note that the error decreases
dramatically with the number of re-embeddings N and stabilizes once a cer-
tain amount of re-embeddings is used. In most cases (i.e. on most images),
the re-embedding approach yields better results than the OLS and OP-ELM
used without re-embeddings.

As Figure 8 illustrates, though, it happens for some images that the num-
ber of re-embeddings N is insufficient to beat the classical OLS or OP-ELM
approach. Globally, the N = 500 is in more than 95% of the cases (for both
nsF5 and Steghide for BOSS and BOWS2 sets) sufficient to perform better
than the OLS or OP-ELM in the classical way.

In fact, once there are enough samples (equations) in the system to solve
Eq. 4, new re-embeddings (and hence, new equations in the system) do not
provide sufficient additional information for the regression problem. Hence
the rather small improvement when the number of re-embeddings N is be-
yond a certain threshold.

3.4 On the use of the width of the confidence interval

The confidence interval for the experiments has been set to 95% [3], and
calculated using the Matlab function [4].

Following results make use of the width of the confidence interval on the

estimation of R̂o. The goal of this experiment is to establish a dependence

between the estimated confidence interval
�

R̂INF
o , R̂SUP

o

�

for the embedding

rate R̂o and the inner difficulty DI of the image I considered, in the first

16 3 RESULTS

0 50 100 150 200 250 300 350 400 450

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-4

Number of Re-Embeddings

N
o

rm
al

iz
ed

 M
SE

Figure 8: Plot of the Normalized Mean Square Error (NMSE) made on R̂o

versus the number of re-embeddings performed. The solid straight line gives
the NMSE using the OP-ELM for classical quantitative steganalysis (no re-
embedding), and the straight dashed line the NMSE for an OLS model. This
is for Steghide on a BOWS2 image.

place.
Figure 9 is a graph of the standard deviation of the error made on the

“original embeddings” DI = std
�

εO
�

versus R̂SUP
o − R̂INF

o (again, results are
so similar over BOSS and BOWS2 images that both plots are shown here).

There appears to be a dependence between the “difficulty” (as estimated
by the original embeddings), and the width of the confidence interval esti-
mated by the re-embedding approach. Indeed, one can say that the larger

is the estimated confidence interval for R̂o, the larger the probability of the
error and therefore the more probable the image is a difficult one.

The high correlation between the difficulty and the confidence interval is
not very easy to notice on Figure 9 because of the non-uniform distribution

1.6 1.8 2 2.2 2.4 2.6 2.8 3
x 10

-3

0.006

0.008

0.01

0.012

0.014

0.016

Width of Con!dence Interval for

St
d

 o
f

E
rr

o
r

fo
r

F
ir

st
 E

m
b

ed
d

in
gs

2 3 4 5 6 7 8 9
x 10

-3

0.005

0.01

0.015

0.02

0.025

Width of Con!dence Interval for

St
d

 o
f

E
rr

o
rs

 f
o

r
F

ir
st

 E
m

b
ed

d
in

gs

Figure 9: Plot of DI , the standard deviation of the error made on the L “origi-
nal embeddings” DI = std

�

εO
�

versus the width of the estimated confidence

interval R̂SUP
o −R̂INF

o . Left is nsF5 on BOWS2 and right is Steghide on BOSS.

3 RESULTS 17

of the samples along the abscissa. In order to overcome this visualisation
drawback, a local average using the 30 nearest neighbors regarding the x-
coordinate is computed, the y coordinate being computed by the average
of y-coordinates the corresponding points. The result is depicted on Figure
10 where the relation between the estimated confidence interval and the
difficulty of the images is straightforward.

Figure 10 shows the evolution of this average versus the width of the es-
timated confidence interval. In fact, if one considers the cloud of points of
Figure 9 as a “flat cone”, Figure 10 plots the evolution of the center of the
cone. It is then obvious that the larger the estimated confidence interval, the
more difficult is the image to handle in steganalysis, in terms of the criterion
DI (inner difficulty).

Finally, Figure 11 shows the evolution of the variance of DI for the 30
nearest neighbors for each image. The growth shows that the larger the con-
fidence interval, the more difficult it is to have an accurate estimation of the
difficulty. From Figures 10 and 11, we can conclude that the probability
to get a large DI is increasing with respect to the width of the calculated
confidence interval.

4 CONCLUSION

In this paper, an approach based on multiple re-embeddings is used to esti-
mate in terms of quantitative steganalysis, the original embedding rate (and
the number of embedding changes) in an intercepted image. The proposed
methodology makes it possible to obtain a reliable estimation of this embed-
ding rate — with a small improvement in terms of accuracy —, along with a
confidence interval on this value.

The estimated confidence interval in turn enables the steganalyzer to mea-
sure the inherent difficulty of the image (reliability estimation), in terms of
classical quantitative steganalysis. Through the width of this confidence in-
terval, it becomes possible to rank the images of a database in terms of their
probability of difficulty for quantitative steganalysis, without possessing the
genuine images nor having any information on their being stego or genuine.

The proposed methodology has the advantage of being usable for any stego
algorithm (given the assumptions made in section 2) and any regression
model. Future work will apply this methodology to more stego algorithms
(MMX, JPHS, Outguess. . .) and other regression models, such as SVR. Also,
an analysis of the error εi (in its relation to the embedding changes Ei and
on the assumed independence between the εi) could lead to a better modeli-
sation and a more accurate estimation of the embedding rate and hence of
inner image difficulty.

ACKNOWLEDGMENTS

The authors would like to thank Tomáš Pevný for his advices on addressing
the Quantitative Steganalysis problem.

18 4 CONCLUSION

2 2.5 3 3.5 4
x 10

-3

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Width of Con!dence Interval for

M
ea

n
 o

f
S

td
 o

f
E

rr
.

fo
r

F
ir

st
 E

m
b

.
(3

0
 N

N
)

2 2.5 3 3.5 4 4.5 5 5.5 6
x 10

-3
5

6

7

8

9

10

x 10
-3

Width of Con!dence Interval for

M
ea

n
 o

f
St

d
 o

f
E

rr
. f

o
r

F
ir

st
 E

m
b

ed
d

in
gs

 (
30

 N
N

)

Figure 10: Plot of the mean of DI for the 30 nearest neighbors (with respect
to DI) versus the width of the estimated confidence interval. Top is nsF5 on
BOWS2 and bottom is Steghide on BOSS.

4 CONCLUSION 19

2 2.5 3 3.5 4
x 10

-3

0

0.5

1

1.5

2

2.5

3

3.5
x 10

-5

Width of Con!dence Interval for

V
ar

.
o

f
S

td
 o

f
E

rr
.

fo
r

F
ir

st
 E

m
b

.
(3

0
 N

N
)

2 3 4 5 6 7
x 10

-3

0

0.5

1

1.5

2

2.5

x 10
-5

Width of Con!dence Interval for

V
ar

.
o

f
S

td
 o

f
E

rr
.

fo
r

F
ir

st
 E

m
b

.
(3

0
 N

N
)

Figure 11: Plot of the variance of DI for the 30 nearest neighbors (with re-
spect to DI) versus the width of the estimated confidence interval. Top is
nsF5 on BOWS2 and bottom is Steghide on BOSS.

20 4 CONCLUSION

REFERENCES

[1] Patrick Bas and Teddy Furon. BOWS2 challenge: Break our water-
marking scheme. ECRYPT European Network of Excellence,

.

[2] Rainer Böhme and Andrew D. Ker. A two-factor error model for quan-
titative steganalysis. In Edward J. Delp III and Ping Wah Wong, editors,
Proceedings of SPIE, volume 6072, page 607206. SPIE, 2006.

[3] Samprit Chatterjee and Ali S. Hadi. Influential observations, high
leverage points, and outliers in linear regression. Statistical Science,
1(3):379–393, 1986.

[4] Norman R. Draper and Harry Smith. Applied Regression Analysis, 3rd
edition. Wiley-Interscience, 1998.

[5] Jessica Fridrich. Feature-based steganalysis for jpeg images and its im-
plications for future design of steganographic schemes. In Information
Hiding: 6th International Workshop, volume 3200 of Lecture Notes in
Computer Science, pages 67–81, May 23-25 2004.

[6] Jessica Fridrich, Miroslav Goljan, Dorin Hogea, and David Soukal.
Quantitative steganalysis of digital images: estimating the secret mes-
sage length. Multimedia systems, 9(3):288–302, 2003.

[7] Jessica Fridrich, Tomáš Pevný, and Jan Kodovský. Statistically unde-
tectable jpeg steganography: dead ends challenges, and opportunities.
In MM&Sec ’07: Proceedings of the 9th workshop on Multimedia &
security, pages 3–14, New York, NY, USA, 2007. ACM.

[8] Stefan Hetzl and Petra Mutzel. A graph-theoretic approach to steganog-
raphy. In Dittmann J., Katzenbeisser S., and Uhl A., editors, CMS
2005, Lecture Notes in Computer Science 3677, pages 119–128.
Springer-Verlag, 2005.

[9] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences
militaires, 9:5–38, January 1883.

[10] Yoan Miche, Patrick Bas, Amaury Lendasse, Christian Jutten,
and Olli Simula. Reliable steganalysis using a minimum
set of samples and features. EURASIP Journal on Informa-
tion Security, 2009(1):1–13 (Article ID 901381), March 2009.
http://www.hindawi.com/journals/is/2009/901381.html.

[11] Yoan Miche, Antti Sorjamaa, Patrick Bas, Olli Simula, Christian Jutten,
and Aamaury Lendasse. OP-ELM: Optimally-pruned extreme learning
machine. IEEE Transactions on Neural Networks, 21(1):158–162, Jan-
uary 2010.

[12] Tomáš Pevný, Tomáš Filler, and Patrick Bas. Boss challenge: Break our
steganography system, 2010.

REFERENCES 21

[13] Tomáš Pevný and Jessica Fridrich. Towards multi-class blind stegan-
alyzer for jpeg images. In International Workshop on Digital Water-
marking 2005, volume 3710 of LNCS, pages 39–53, 2005.

[14] Tomáš Pevný and Jessica Fridrich. Multiclass blind steganalysis for jpeg
images. In SPIE Electronic Imaging, volume 6072, page 60720O, 16-
19 January 2006.

[15] Tomáš Pevný, Jessica Fridrich, and Andrew D. Ker. From blind to quan-
titative steganalysis. In Edward J. Delp III, Jana Dittmann, Nasir D.
Memon, and Ping Wah Wong, editors, Media Forensics and Security,
volume 7254, page 72540C. SPIE, 2009.

[16] Hedieh Sajedi and Mansour Jamzad. Secure steganography based on
embedding capacity. International Journal of Information Security,
8(6), December 2009.

[17] Andreas Westfeld. F5-a steganographic algorithm. In IHW ’01: Pro-
ceedings of the 4th International Workshop on Information Hiding,
pages 289–302, London, UK, 2001. Springer-Verlag.

22 REFERENCES

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R24 Timo Honkela, Nina Janasik, Krista Lagus, Tiina Lindh-Knuutila, Mika Pantzar, Juha Raitio

Modeling communities of experts. December 2009.

TKK-ICS-R25 Jani Lampinen, Sami Liedes, Kari Kähkönen, Janne Kauttio, Keijo Heljanko

Interface Specification Methods for Software Components. December 2009.

TKK-ICS-R26 Kari Kähkönen

Automated Test Generation for Software Components. December 2009.

TKK-ICS-R27 Antti Ajanki, Mark Billinghurst, Melih Kandemir, Samuel Kaski, Markus Koskela, Mikko

Kurimo, Jorma Laaksonen, Kai Puolamäki, Timo Tossavainen

Ubiquitous Contextual Information Access with Proactive Retrieval and Augmentation.

December 2009.

TKK-ICS-R28 Juho Frits

Model Checking Embedded Control Software. March 2010.

TKK-ICS-R29 Miki Sirola, Jaakko Talonen, Jukka Parviainen, Golan Lampi

Decision Support with Data-Analysis Methods in a Nuclear Power Plant. March 2010.

TKK-ICS-R30 Teuvo Kohonen

Contextually Self-Organized Maps of Chinese Words. April 2010.

TKK-ICS-R31 Jefrey Lijffijt, Panagiotis Papapetrou, Niko Vuokko, Kai Puolamäki

The smallest set of constraints that explains the data: a randomization approach. May 2010.

TKK-ICS-R32 Tero Laitinen

Extending SAT Solver With Parity Constraints. June 2010.

TKK-ICS-R33 Antti Sorjamaa, Amaury Lendasse

Fast Missing Value Imputation using Ensemble of SOMs. June 2010.

ISBN 978-952-60-3249-8 (Print)

ISBN 978-952-60-3250-4 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

colophon

This thesis was printed by Multiprint Oy.

Final Version as of October 22, 2010 at 10:55.

	Abstract
	Résumé
	Acknowledgments
	Contents
	List of Symbols
	Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Scope of the dissertation
	1.2 Scientific contributions of the dissertation
	1.3 Publications presented and author's contribution
	1.4 Structure of the dissertation

	Basics on Steganography and Steganalysis
	2 Steganography
	2.1 What is Steganography
	2.2 Historically
	2.3 Nowadays
	2.3.1 Some steganography examples
	2.3.2 The two main parts of steganography
	2.3.3 A future development: Batch Steganography

	2.4 Current state of the art techniques
	2.4.1 JPEG basics
	2.4.2 A non-exhaustive overview of Stego algorithms

	2.5 Conclusion

	3 Steganalysis
	3.1 What is steganalysis
	3.1.1 Kerckhoffs' principle
	3.1.2 A definition of security for steganography
	3.1.3 Measuring security empirically: benchmarking

	3.2 Different classes of steganalysis
	3.2.1 Targeted steganalysis
	3.2.2 Blind steganalysis
	3.2.3 Quantitative steganalysis
	3.2.4 Forensic steganalysis

	3.3 Performing steganalysis: schemes
	3.3.1 Visual detection
	3.3.2 First-order statistics based steganalysis
	3.3.3 RS steganalysis
	3.3.4 Calibration-based steganalysis
	3.3.5 Markov-based steganalysis
	3.3.6 SPAM features
	3.3.7 Undiscussed schemes

	3.4 A pitfall in steganalysis
	3.5 Conclusion

	A fast, efficient and robust Machine Learning technique: OP-ELM
	4 A short review on Machine Learning
	4.1 Learning problems
	4.1.1 What is Machine Learning
	4.1.2 Classes of learning problems
	4.1.3 Structure of the supervised learning problem
	4.1.4 Building a model for the learning problem

	4.2 Practical notes on data processing for model building
	4.3 Some model classes for Machine Learning
	4.3.1 Linear discrimination and regression
	4.3.2 Artificial Neural Networks
	4.3.3 k-Nearest Neighbors
	4.3.4 Gaussian Processes
	4.3.5 A global drawback

	4.4 Conclusion

	5 The Optimally-Pruned Extreme Learning Machine
	5.1 A need for speed (and efficiency)
	5.2 Existing recent random projection based models
	5.2.1 Reservoir Computing
	5.2.2 ELM based

	5.3 OP-ELM
	5.3.1 Some possible limitations of the ELM
	5.3.2 A methodology around ELM: OP-ELM
	5.3.3 A possibly faster version: HQ criterion

	5.4 Conclusion

	Using Machine Learning for Steganalysis Problems
	6 A practical approach to benchmarking steganographic schemes
	6.1 Why is feature selection so important ?
	6.1.1 Issues in high-dimensional spaces
	6.1.2 More specifically: for steganalysis problems
	6.1.3 Performing feature selection

	6.2 Practical benchmarking of stego algorithms
	6.2.1 Determining a sufficient number of points
	6.2.2 Determining a sufficient number of features

	6.3 Conclusion

	7 A novel approach to quantitative steganalysis and image reliability estimation
	7.1 Re-embedding concept for quantitative steganalysis
	7.2 Embedding rate and Confidence interval estimation
	7.3 Inner image difficulty/ reliability estimation
	7.3.1 A possible measure of the difficulty
	7.3.2 A ``conality'' test
	7.3.3 Inner image difficulty estimation

	7.4 Conclusion

	8 Summary and conclusions
	Bibliography

	Publications
	A Publication A
	B Publication B
	C Publication C
	D Publication D
	E Publication E
	F Publication F
	Colophon

