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A Generic Approach for Automated 
Verification of Product Line Models 

 

This thesis explores the subject of automatic verification of product line models. This 

approach is based on the hypothesis that to automatically verify product line models, they 

should first be transformed into a language that makes them computable. In this thesis, 

product line models are transformed into constraint (logic) programs, then verified against a 

typology of verification criteria. The typology enumerates, classifies and formalizes a 

collection of generic verification criteria, i.e. criteria that can be applied (with or without 

adaptation) to any product line formalism. The typology makes the distinction between two 

categories of criteria: criteria that deal with the formalism in which models are represented, 

and the formalism-independent criteria.  To identify defects in the first category, the thesis 

proposes a conformance checking approach directly related with verification of the abstract 

syntactic aspects of a model. To identify defects in the second category, the thesis proposes a 

domain-specific verification approach. An optimal algorithm is specified and implemented in 

constraint logic program for each criterion in the typology. These can be used independently -

or in combination- to verify individual product line models. The thesis offers to support the 

verification of multiple product line models using an integration approach. Besides, this 

thesis proposes a series of integration strategies that can be used before applying the 

verification as for individual models. The product line verification approach proposed in this 

thesis is generic in the sense that it  can be reused for any kind of product line model that 

instantiates the generic meta model based on which it was developed. It is general in the 

sense that it supports the verification of a comprehensive collection of criteria defined in the 

typology. This approach was implemented in a prototype tool that supports the specification, 

transformation, integration, configuration, analysis and verification of product line models 

via constraints (logic) programming. A benchmark gathering a corpus of 54 product line 

models was developed, then used in a series of experiments. The experiments showed that (i) 

the implementation of the domain-specific verification approach is fast and scalable to 

product line models up-to 2000 artefacts;  (ii) the implementation of the conformance 

checking approach is fast and scalable to product line models up-to 10000 artefacts; and (iii) 

both approaches are correct and useful for industrial-size models. 
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Chapitre 1 en Français 

Introduction 

 

La production de masse n’est pas un phénomène nouveau: depuis le 12ème siècle à Venise, 

jusqu’à nos jours, les industries du navire, du coton et de la voiture utilisent ce concept pour 

accroître l'efficacité et réduire les pertes, deux facteurs clés pour améliorer les bénéfices. 

Cependant, le consumérisme de nos jours rend la production de masse insuffisante pour 

satisfaire les nouvelles exigences où la personnalisation est essentielle. Un nouveau 

paradigme de production était nécessaire pour soutenir ces nouvelles exigences, en gardant 

des coûts de production raisonnables, des besoins de main d’œuvre et des délais de 

commercialisation. Comme  réponse à ce besoin, l’ingénierie des lignes de produits surgit 

comme un nouveau paradigme de développement conduit par la réutilisation  qui permet la 

gestion de composants réutilisables. Dans cette thèse, une ligne de produits est définie 

comme un groupe d'applications similaires au sein d'un secteur de marché et qui partage un 

ensemble commun d'exigences, mais aussi présente une variabilité importante des exigences 

(Bosch 2000, Clements & Northrop 2001). 

Le concept central pour traiter la réutilisation dans l'ingénierie des lignes de produits est 

la définition de composants communs et variables  dans un modèle de domaine ou Modèle de 

Lignes de Produits (MLPs). Un MLP définit l'ensemble des combinaisons correctes de 

composants réutilisables  de la ligne de produits (Pohl et al. 2005) par le biais des relations 

qu’il y a entre eux. Les composants communs font référence à des parties, des aspects, des 

exigences (Sommerville & Sawyer 1997, Sawyer 2005) ou n'importe quel type de 

caractéristiques de la ligne de produits qui font partie de tous les produits de la ligne de 

produits. Les composants variables font référence aux éléments réutilisables qui font partie de 

certains produits (mais pas tous)  pouvant être construits à partir de la ligne de produits. 

 

Pourquoi les lignes de produits sont-elles importantes? 

Comme nous venons de le voir, la stratégie de production orientée lignes de produits a 

plusieurs avantages. Selon l'étude réalisée par Clements & Northrop (2001) l'approche de 

production orientée lignes de produits diminue non seulement le coût par produit (jusqu’à 
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60%), mais aussi le temps de mise sur le marché (jusqu’à 98%), le besoin en main d’œuvre 

(jusqu’à 60%) et améliore la productivité (jusqu’à 10 fois), la qualité de chaque produit 

dérivé (jusqu’à 10 fois) et augmente la taille du portefeuille, et ainsi, la possibilité de gagner 

de nouveaux marchés. 

Cependant, il peut aussi avoir des inconvénients. Par exemple, l'assurance qualité dans le 

contexte des lignes de produits consistant à traiter les problèmes de qualité de chaque produit 

est très coûteuse, sujette à l’erreur et irréalisable pour des très grandes lignes de produits 

(Von der Massen & Lichter 2004, Benavides 2007). La contrepartie est qu’un défaut dans un 

composant du domaine ou dans le MLP peut affecter de nombreux produits de la ligne de 

produits et donc peut devenir coûteux à supprimer, puisque tous ces produits  devraient être 

corrigés (Lauenroth et al. 2010). Pour cette raison, assurer la qualité au tout début de 

l’approche de production orientée ligne de produits doit être en soi un processus de haute 

qualité afin de profiter des avantages qu’elle est sensée fournir. 

 

Pourquoi les modèles des lignes de produits sont-ils importants? 

L'histoire du développement de logiciels et de systèmes montre que l'abstraction joue un rôle 

majeur dans la maitrise de la complexité  (Bosch, 2000). Ainsi, abstraire des composants 

communs et variables d'une collection indéfinie de produits et les organiser dans un modèle 

peut être une bonne option pour gérer la complexité de la ligne de produits. Les modèles des 

lignes de produits améliorent les processus de prise de décisions. En outre, la représentation 

de MLPs dans plusieurs vues améliore la communication des acteurs participant à la gestion 

des lignes de produits (Finkelstein et al. 1992). Nuseibeh et al. (1994) décrivent les vues 

comme des représentations partielles d'un système et de son domaine. 

 

Pourquoi l’assurance qualité des modèles de la ligne de produits est-elle importante? 

L’Ingénierie des Lignes de Produits (ILP) est un nouveau paradigme de développement 

conduit par la réutilisation  qui a été appliqué avec succès dans l'ingénierie de systèmes (Bass 

et al. 2000, Bosch 2000, Clements & Northrop 2001), dans l'ingénierie des processus métier 

(Rolland et al. 2007, Rolland & Nurcan 2010) et dans d'autres domaines (Pohl et al.2005). 

Cependant, le succès de ce nouveau paradigme de développement dépend fortement de la 

qualité des MLPs. Bien qu'il ne soit pas possible de garantir la qualité totale de MLPs (Batory 

2005), ni de prouver qu'un modèle est correct, la qualité peut être améliorée au moyen d'un 

processus de vérification. 
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F.1.1  Problématique 

Malgré le succès relatif des approches existants de vérification de MLPs (Von der Maßen & 

Lichter 2004, Zhang et al. 2004, Batory 2005, Czarnecki & Pietroszek 2006, Benavides 2007, 

Janota & Kiniry 2007, Lauenroth & Pohl 2007, Trinidad et al. 2008, Van den Broek & 

Galvão 2009, Kim et al. 2011, Liu et al. 2011), il ya encore un certain nombre de questions 

qui restent ouvertes et qui ont motivé la recherche présentée dans cette thèse: 

a. Les techniques d'assurance de la qualité du développement des systèmes simples ne 

peuvent pas être appliquées directement aux spécifications des lignes de produits car ces 

spécifications contiennent de la variabilité. Comme l’exemple de Lauenroth et al. (2010) 

le montre, une ligne de produit peut contenir des exigences E et ¬E en même temps. 

L’utilisation d’une technique traditionnelle pour vérifier cette spécification soulèvera une 

contradiction puisque les exigences E et ¬E ne peuvent pas être incluses dans le même 

produit. Par conséquent, il est nécessaire de prendre en compte la variabilité de la ligne 

de produits afin de vérifier que les exigences contradictoires ne peuvent pas faire partie 

d'un même produit. 

b. L'état de l'art sur la vérification spécifique au domaine des LPs est principalement axé 

sur les modèles de caractéristiques (Kang et al. 1990). Seules les propriétés qui peuvent 

être évaluées par rapport aux modèles de caractéristiques représentés comme expressions 

booléennes sont pris en compte dans ces travaux. Ceci écarte les éléments non-booléens 

des formalismes de spécification de lignes de produits les plus sophistiqués (par 

exemple, cardinalités sur le domaine des entiers, attributs et contraintes complexes). La 

raison sous-jacente est que la plupart des approches actuelles restreignent les opérations 

de vérification à celles qui peuvent être résolues par des solveurs booléens. La 

vérification est donc guidée par la technologie présélectionnée et non par les exigences 

de vérification elles-mêmes. En conséquence, les techniques de vérification sont conçues 

pour un nombre limité de formalismes. Ces techniques de vérification sont inadaptées 

pour la plupart des formalismes existants, certains de ces formalismes sont déjà utilisés 

dans l'industrie (Djebbi et al. 2007, Dhungana et al. 2010). 

c. L'état de l'art du développement de lignes de produits montre un support inadéquat pour 

la vérification de multi-modèles. La taille et la complexité de MLPs industriels motive le 

développement des modèles par des équipes hétérogènes (Dhungana et al. 2006, Segura 

et al. 2008). Néanmoins, les outils existants fournissent peu de support pour l'intégration 

des modèles développés par différentes équipes, pour la vérification ultérieure du modèle 
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global et pour des configurations de produits à partir de ces modèles. Par exemple, un 

modèle global qui intègre deux modèles doit lui-même ne pas présenter de défauts 

résultant de l'intégration. 

 

F.1.2  Questions de recherche 

Cette thèse porte sur les trois problèmes précédents en proposant une approche qui guide la 

vérification des modèles de lignes de produits indépendamment du langage et du nombre de modèles 

dans lesquels la LP est spécifiée. De cette façon, l'approche proposée dans cette thèse peut être 

réutilisée indépendamment du langage et du nombre de modèles de la ligne de produits. Par 

conséquent, l'approche proposée est générique, ce qui permet une application directe ou une 

adaptation sur les MLPs Ainsi, l'objectif principal de cette thèse est de répondre à la question de 

recherche suivante: 

Principale question de recherche: Comment des-modèles de ligne de produits peuvent-ils être 

automatiquement vérifiés d'une manière générique et réutilisable? 

 

F.1.3  Hypothèses de recherche 

Les hypothèses de recherche sont les suivantes: 

a. Une approche générique permettra de vérifier les propriétés des spécifications de lignes de 

produits, indépendamment du langage dans laquelle ces spécifications sont modélisées; 

b. Une approche adaptable permettra de vérifier les propriétés structurelles des modèles de lignes de 

produits par l'adaptation de l'approche de vérification d'origine au langage particulier dans lequel 

les modèles sont définis; 

c. Une implémentation correcte et scalable des approches susmentionnées est possible et utile 

pour vérifier les modèles de lignes de produits. 

 

F.1.4  Méthode de recherche 

Adoptant la stratégie Design Science, cette méthode de recherche est en accord avec le modèle de 

processus de conception des sciences proposé par Peffers et al. (2007). La Figure F.1.1 présente, en 

gris, le modèle de processus design science pour la recherche en systèmes d'information, et 

l'application de ce procéssus aux recherches menées dans cette thèse. 



5 

 

Identification 

du problème 

et motivations

Définition d’objectives de 
la solution proposée

Conception et le 
développement

Démonstration Evaluation Communication

In
fé

re
nc

es

T
hé

or
ie

C
on

na
is

sa
nc

es

M
ét

riq
ue

s,
 A

na
ly

se
s

C
on

na
is

sa
nc

e

C
on

na
is

sa
nc

es

•Comment les 

modèles de 

lignes de 

produits 

peuvent être 

vérifiés de 

manière 

générique?

Chapitre 1

•Proposer une méthode 

générique et adaptable pour la 

vérification de (multi-)modèles 

de lignes de produits.

•Proposer une implémentation 

correcte et escalable de 

l’approche précédente.

Chapitre 1

•Typologie de critères 

de vérification 

(Chapitre 4)

•Critères de vérification 

de la conformité 

(Chapitre 5)

•Critères de vérification 

spécifiques au 

domaine(Chapitre 6)

•(Chapitre 7)

•Application de 

l’approche de 

vérification sur 54 

modèles de 

lignes de 

produits.

•Implémentation 

de l’approche de 

vérification. 

Chapitre 8

•Validation 

et 

comparaison 

de 

l’approche 

de 

vérification.

Chapitre 8

•17 publications 

scientifiques

•Manuscrit de 

thèse

 

Figure F. 1.1. Instanciation de la méthodologie de recherche proposée par (Peffers et al. 2007). 

F.1.5  Contributions 

Pour surmonter les limites présentées dans la Section 1, cette thèse propose une approche 

indépendante du langage et entièrement automatisée pour la vérification de modèles de lignes de 

produits. En particulier, les principales contributions de cette thèse sont les suivantes: 

 

a. Spécification de modèles de lignes de produits dans programmes logiques de 

contraintes. Dans cette approche, nous transformons (i) la structure des MLPs et ses 

métamodèles associés par des faits de programmation logique par contraintes, et (ii) la 

sémantique des MLPs dans des programmes par contraintes. Cette thèse propose une 

collection de règles de transformation (Salinesi et al. 2011, Mazo et al. 2011E) et 

deux stratégies (Mazo et al. 2011e) pour transformer les MLPs en programmes de contraintes. 

b. Une fois que le modèle est représenté comme un programme logique de contraintes, la 

vérification est guidée par une typologie de critères de vérification (Salinesi et al. 

2010a, Salinesi & Mazo 2012). Cette typologie de critères de vérification  permet de 

trouver des défauts spécifiques au domaine et de conformité sur les modèles de ligne de 

produits. Cette typologie n'est pas une contribution per se, bien au contraire, cette 

typologie contient la collection des critères de vérification trouvée dans la littérature 

(parfois avec des noms différents), classifie ces critères en fonction de leur nature et leur 

impact dans un processus de vérification, et organise ces critères dans un ordre approprié 

pour leur utilisation et leur implémentation. 

c. Une approche générique pour vérifier les propriétés spécifiques au domaine des 

LPs. Ces propriétés spécifiques au domaine sont associées à l'expressivité et l'absence 

d'erreurs, d’incohérences et de redondances dans les MLPs. Cette approche est générique 

car les MLPs sont représentés comme des programmes de contraintes et ensuite vérifiés 

contre un ensemble de critères de vérification spécifique au domaine  des LPs que tout 

MLP devra respecter. 
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d. Une approche adaptable pour vérifier la conformité des MLPs avec leur métamodèle 

correspondant. Dans le cas de la vérification de conformité, l'approche consiste à vérifier 

si la syntaxe abstraite (Harel & Rumpe 2000, 2004) de MLPs est correcte par rapport au 

métamodèle correspondant. L'approche de la vérification de la conformité proposée dans 

cette thèse est basée sur une collection de contraintes prises à partir d'un métamodèle 

générique. Le métamodèle générique concerne les concepts communs trouvés dans les 

formalismes de LPs que nous avons étudié. 

e. Une amélioration de la scalabilité des algorithmes de vérification de MLPs existants. 

La validation de la démarche de vérification présentée dans cette thèse a été réalisée au 

moyen de deux outils. Les deux implémentations ont été testées à partir d'un benchmark 

constitué à partir de cas industriels et académiques. L'exactitude et la performance de 

l’implémentation de la vérification spécifique au domaine ont été comparées à deux 

outils connus (i.e. Fama et SPLOT). Les résultats sont prometteurs et l’implémentation 

est exploitable pour des MLPs qui ont jusqu’à 2000 composants. L’implémentation de la 

vérification de la conformité n’a pas été comparée avec d'autres implémentations, car 

aucun autre outil pour vérifier la conformité des modèles de ligne de produits n’a été 

trouvé dans la littérature; pourtant l'exactitude des résultats a été vérifiée manuellement. 

La performance de l’implémentation proposée est prometteuse et exploitable pour les 

modèles qui ont jusqu’à 10000 artefacts.  
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Chapter 1 

Introduction 

 

Mass-production is not new, from the 12th century in Venice to our days, ship, gold 

extraction, cotton and car industries used this concept to increase efficiency and less waste, 

two key factors to improve profit. However, the consumerism of our days makes mass-

production insufficient to satisfy the new requirements in which customization is essential. A 

new production paradigm was needed to support these new requirements, keeping reasonable 

production costs, labour needs and time to market. As an answer to this need, product line 

engineering arises as a new reuse-driven development paradigm that permits the management 

of reusable artefacts. In this thesis, a product line is defined as a group of similar applications 

within a market segment and that shares a common set of requirements, but also exhibits 

significant variability in requirements (Bosch 2000, Clements & Northrop 2001). According 

to Clements & Northrop (2007) product line engineering differences from single-system 

development with reuse in two aspects: First, building a product line implies the development 

of a family of product with often “choices and options that are optimized from the beginning” 

and not just one that evolves over time. And second, it implies a preplanned reuse strategy 

that applies across the entire set of products rather than ad hoc or one-time-only reuse. Two 

examples of product lines are (i) “the software for commercial avionics and the software for 

military avionics” (Clements & Northrop 2007), each one serving different market segments 

but being developed as a single product line by a software group; and (ii) the vehicle product 

line of the French manufacturer Renault that can lead to 1021 configurations for the van 

family “Traffic” (Dauron & Astesana 2010). 

Product line engineering explicitly addresses reuse by differentiating between two kinds 

of development processes (Pohl et al. 2005): domain engineering and application 

engineering. 

Definition 1.1: Domain Engineering. During domain engineering the requirements, 

specifications, artefacts, domain tests and evolution of the product line are managed in a 

coherent process. 
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The aim of the domain engineering process is to manage the reusable artefacts 

participating in the PL and the dependencies among them (Stropky & Laforme 1995). The 

reusable artefacts, called domain artefacts, are for instance: requirements, architectural 

components, pieces of processes, methods, tests, etc. 

Definition 1.2: Application Engineering. During application engineering the 

requirements, architectures, specifications, tests and evolution of each application (or 

product) of the product line are managed in a coherent process. 

The aim of the application engineering process is to exploit the variability of the PL in 

order to derive specific applications by reusing the domain artefacts. 

The central concept for addressing reuse in product line engineering is the definition of 

common and variable artefacts on the product line model. A Product Line Model (PLM) 

defines all the legal combinations of reusable artefacts of the product line (Pohl et al. 2005) 

by means of relationships among them. Common artefacts refer to parts, aspects, 

requirements (Sommerville & Sawyer 1997, Sawyer 2005) or any kind of features of the 

product line that are part of all the products of the product line. Variable artefacts refer to the 

possible variations of the product line. In other words, variable artefacts refer to reusable 

elements that are part of some, but not all, products that can be build from the product line. 

 

Why are product lines important? 

As discussed above, there are several advantages to the product line production strategy. 

According to the study realized by Clements & Northrop (2001) the product line production 

approach decreases not only the cost per product (by as much as 60%), but also the time to 

market (by as much as 98%), the labour needs (by as much as 60%) and improves the 

productivity (by as much as 10x), the quality of each derived product (by as much as 10x) 

and increases the portfolio size and therefore the possibility to gain new markets.  

However, there are also drawbacks. For example, quality assurance in the product line 

context, which consists of assuring the quality of the domain artefacts instead of treating 

quality issues in each product, is very expensive, error-prone and computationally infeasible 

in very large product lines (Von der Maßen & Lichter 2004, Benavides 2007). The counter 

part is that a defect in a domain artefact can affect many products of the product line and thus 

can become costly to remove, as all those products might have to be corrected (Lauenroth et 

al. 2010). For this reason, assuring quality from the very beginning of the product line 
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production approach must be itself a process of high quality in order to take advantage of the 

benefits that it is expected to provide.  

 

Why are product lines models important? 

The history of software and system development shows that abstraction plays a major role in 

making complexity manageable (Bosch 2000). Thus, abstracting the common and variable 

artefacts of an undefined collection of products and organising them into a model may be a 

good option to manage the complexity of the product line. Product line models improve 

decision-making processes. In addition, the representation of PLMs in different views 

improves communication of the actors participating in the product line management 

(Finkelstein et al. 1992). Nuseibeh et al. (1994) describe views as partial representations of a 

system and its domain. 

Several approaches have been found in literature to represent commonality and variability 

of a product line. Most of the approaches use features (Kang et al. 1990) as the central 

concept of product line models. However, other modelling approaches exist like Orthogonal 

Variability Models (OVM, cf. Pohl et al. 2005), Dopler variability models (Dhungana et al. 

2010), Textual Variability Language (TVL, cf. Boucher et al. 2010 and Classen et al. 2011), 

Extended KAOS (Semmak et al. 2009, 2010) and constraint-based product line language 

(Salinesi et al. 2010b, Salinesi et al. 2011).  

 

Why is quality-assurance of product line models important? 

Product Line Engineering (PLE) is a reuse-driven development paradigm that has been 

applied successfully in systems engineering (Bass et al. 2000, Bosch 2000, Clements & 

Northrop 2001), business process engineering (Rolland et al. 2007, Rolland & Nurcan 2010) 

and other domains (Pohl et al. 2005). However, the success of this development paradigm 

highly depends on the quality of the PLMs. Although it is not possible to guarantee the total 

quality of PLMs (Batory 2005), neither to prove that a model is correct, the quality can be 

improved by means of a verification process. 

Definition 1.3: PLM Verification. Verification of product line models, at the domain 

engineering level, consists of finding defects in the product line model itself. 



10 

 

The verification process can be considered from two points of view: verification of 

semantic-related criteria and verification of syntax-related criteria. This thesis refers to the 

first category as domain-specific verification and to the second one as conformance checking. 

 Definition 1.4: Domain-specific verification is about the identification of non-structural 

defects on product line models. 

Domain-specific verification is directly related with aspects of the domain of product 

lines. Some of these aspects are common with other than PLMs, like the verification of 

redundancies. Other aspects are specific to product lines domain, like the verification that a 

model should permit several configurations.  

Definition 1.5: Conformance Checking consists of verifying that a model satisfies the 

constraints captured in the meta-model. 

According to this definition of conformance checking, taken from Paige et al. (2007), it is 

verified that the model is indeed a valid instance of its meta-model. Conformance checking is 

directly related with the syntactic properties that a model should respect according to the 

constraints defined in the corresponding metamodel. Some of these syntactic aspects are 

generic to every PLM and other aspects are particular to each PLM metamodel. An example 

of generic conformance criteria is that every PLM should be composed of at least one 

dependency and at least two artefacts; i.e., there is no PLM with only one artefact since a 

single artefact does not guarantee the minimal variability needed in a PLM. In this thesis, 

each conformance criterion is automated be means of a conformance rule. The same 

reasoning can be used for domain-specific verification, and then for verification in general 

(cf. Definiton 1.6). Conformance rules can be compared to the negation of well-formedness 

rules of Spanoudakis & Zisman (2001) and Heymans et al. (2008), structural rules of Van 

Der Straeten et al. (2003), and syntactic rules of Elaasar & Brian (2004). 

Definition 1.6: A verification rule is the automation of a verification criterion 

In this thesis, to automate verification criteria, the model to be verified must be executed 

in a solver. Then, one or several queries to the solver must be executed in order to gather the 

information needed for the verification process.  
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Definition 1.7: A solver is a generic term indicating a piece of mathematical software 

that 'solves' a mathematical problem. A solver takes problem descriptions in some sort of 

generic form and calculates their solution. 

Quality assurance of PLMs has recently been a prominent topic for researchers and 

practitioners in the context of product lines. As aforementioned, identification and correction 

of PLMs defects, is vital for efficient management and exploitation of the product line.  

Defects that are not identified or not corrected will inevitably spread to the products created 

from the product line or affect the evolution of the product line, which can drastically 

diminish the benefits of the product line strategy (Von der Maßen & Lichter 2004, Benavides 

2007). Besides, product line modeling is an error-prone activity. Indeed, a product line 

specification represents not one, but a collection of products that are defined implicitely and 

that may even include contradictory requirements (Lauenroth et al. 2010). The 

aforementioned problems enforce the urgent need of early identification and correction of 

defects in the context of product lines. 

1.1 Problem Statement  

Product line model quality has been an intensive research topic over the last decade (Von der 

Maßen & Lichter 2004, Zhang et al. 2004, Batory 2005, Czarnecki & Pietroszek 2006, 

Benavides 2007, Janota & Kiniry 2007, Lauenroth & Pohl 2007, Trinidad et al. 2008, Van 

den Broek & Galvão 2009, Kim et al. 2011, Liu et al. 2011). Usually, to guarantee a certain 

level of quality of a model, this one must be verified against a collection of criteria and then, 

defects must be corrected. Verifying PLMs entails finding undesirable properties, such as 

redundancies, anomalies or inconsistencies (Von der Maßen et al. 2004). It is widely 

accepted that manual verification of single products is already tedious and error-prone 

(Benavides et al. 2005). This is even worst when several (up to millions) products are 

represented altogether in a single specification. Several approaches to automate PLM 

verification have been proposed in order to overcome this limitation. However, despite the 

relative success of these approaches, there are still a number of pending issues that have 

motivated the research presented in this thesis: 

a. Quality assurance techniques from the development of single systems cannot be directly 

applied to product line specifications because these specifications contain variability. As 

Lauenroth’s et al. (2010) example shows it, a product line may contain requirements R 
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and ¬R at the same time. Using a traditional technique for verifying this specification 

will raise a contradiction since requirements R and ¬R cannot be fulfilled together due to 

the fact that those requirements are not supposed to be included in the same product. 

Therefore, it is necessary to take into account the variability of the product line to check 

whether contradictory requirements can really be part of the same product.  

b. The current state of the art on domain specific verification is mainly focused on feature 

models (Kang et al. 1990). Only properties that can be evaluated over feature models 

represented as Boolean expressions are considered in these works. This brushes aside 

the non-Boolean elements of the more sophisticated product line specification 

formalisms (e.g., Integer cardinalities, attributes and complex constraints). The 

underlying reason is that most of current approaches restrict the verification operations 

to those that can be solved by Boolean solvers. The verification is thus guided by the 

pre-selected technology and not by the verification requirements themselves. As a 

result, verification techniques are designed for a limited number of formalisms.  These 

verification techniques are inadequate for many of the existing formalisms, some of 

these formalisms are already used in industry (Djebbi et al. 2007, Dhungana et al. 

2010). 

c. The current state of the art of product line development shows an inadequate support for 

the verification of PLs specified with several models. The size and complexity of 

industrial PLMs motivates the development of the product line by heterogeneous teams 

(Dhungana et al. 2006, Segura et al. 2008). Nevertheless, existing tools only provide 

little support for integrating the models developed by different teams and the subsequent 

verification of the global model and configurations of products from that model. For 

instance, a global model that integrates two models must itself have no defects resulting 

from the integration. 

1.2 Research Questions 

The thesis addresses the three aforementioned problems by proposing an approach that guides 

the verification of product line models independently of the language and the number of 

models in which the PL is specified. In that way, the approach proposed in this thesis can be 

reused independently of the language and the number of models of the product line. 

Consequently, the proposed approach is generic, permitting a direct application or an 
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adaptation over PLMs.  Thus, the main objective of this thesis is to answer the following 

research question: 

Main RQ: How can product line models be automatically verified in a generic and reusable 

way? 

To answer this main research question, several sub-problems must be solved too. 

Resolution of each of the following four research questions is necessary to solve the main 

research question of the thesis. 

RQ1: How should product line models be formally represented? 

To answer this research question this thesis proposes a language that permits the 

representation of any product line model. There are two aspects of a PLM that can be 

represented: its semantics and its structure. On the one hand, the semantics of a PLM is the 

set of products that can be configured from the PLM. Thus, the semantic representation of a 

PLM permits configuring, without ambiguity, the same products that can be configured from 

the PLM itself. The semantic representation of PLMs will be used to verify the domain-

specific verification criteria that PLMs must respect. On the other hand, the representation of 

the structure of a PLM permits representing the elements (or entities on the corresponding 

metamodel) that constitute the model, the dependencies among them and the order in which 

these elements are related in the PLM. The structure of PLMs will be used to verify the 

criteria assuring the respect of the PLM with its corresponding language; i.e., the 

conformance of the model with the corresponding meta-model. Consequently, both 

representations are necessary to achieve verification of product line models from the semantic 

and structural points of view. 

RQ2: How should verification criteria be classified? 

Some properties of PLMs are independent of the language while other ones are particular 

to each language. This shows that not all criteria are equivalent and therefore several types of 

defects can be checked in a verification process. Thus, one can be interested in executing one 

or another verification criterion according to the impact of these criteria, or the expected level 

of quality of a particular PLM. In addition, this question is about the order in which the 

verification criteria should be executed in order to improve the performance and the quality 

of the verification process. 
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RQ3: How should different models of a product line system be integrated? 

An important challenge in PL domain engineering and application engineering is that 

product lines are often, in practice, specified using several models at the same time (Djebbi et 

al. 2007, Segura et al. 2008, Rosenmüller et al. 2011). This is due to the fact that size and 

complexity of industrial product lines constrain the specification of PL models by 

heterogeneous teams (Dhungana et al. 2006, Segura et al. 2008). In addition, different aspects 

of the product line will be specified with different models, each one appropriated to the kind 

of aspect to model. Besides, it is a fact of industrial life that product line models evolve over 

time, for instance to reflect new marketing requirements, product level innovations that 

should be capitalized at the PL level, or new design decisions about the PL architecture. The 

problem is that any change in a model can impact other models too. For example, changes in 

the architecture can make the corresponding model inconsistent with the technical solution 

models, or with the PL models that represent the sales and marketing models. Thus, in the 

absence of a global model, (i) requirements can get missed or misunderstood (Finkelstein et 

al. 1992) both during domain and application engineering activities. Indeed, a particular 

product line model can be correct when taken standalone and be incorrect when it is 

integrated with other ones. (ii) Configuration, analysis and verification of the entire product 

line will be unfeasible. 

RQ4: Which kind of support can be offered to system engineers for improving quality of 

product line models? 

This question addresses the need of tool support for automatic, efficient and scalable 

verification of product line models. It is well known that developing high quality systems 

depends on developing high quality models (Paige et al. 2007). Verifying the quality of 

models has recently been a prominent topic for many researchers in the community. 

However, the literature review carried out in this thesis shows that scalable methods, 

techniques and tools are needed to deal with this important issue (cf. Chapter 2). In that way 

the answer of this question contributes to solve the main concern of this thesis: propose a 

generic and reusable approach to automatically verify product line models. 

1.3 Research Hypotheses 

Two approaches can be adopted to accomplish the aforementioned objectives. The first 

approach proposes a collection of generic verification criteria that will be applied on product 
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line models previously represented with a unique formalism. This approach has the advantage 

that it makes verification independent of the original language in which the model is 

represented. The second approach proposes a collection of generic verification criteria that 

will be adapted to each formalism according to the language in which the model is 

represented. This second approach is also somehow independent of the language in which the 

product line specification is modeled. The idea is that verification criteria are adapted, to the 

formalism at hand, from the original definition. Thus, we have chosen the first strategy for 

the domain-specific verification criteria and the adaptable strategy to check structural 

properties. To summarize, research hypotheses are the following: 

a. A generic approach will allow verifying domain-specific properties of product line 

specifications independently of the language in which these specifications are modeled; 

b. An adaptable approach will allow verifying structural properties of product line models 

by adaptation of the original verification approach to the particular language in which 

the models are defined; 

c. A correct and scalable implementation of the aforementioned approaches is possible and 

useful to verify product line models. 

1.4 Research Method 

The research presented in this thesis, as most of the researches in computer science, is design 

oriented. As defined by March & Smith (1995) and Hevner et al. (2004) design science is 

about design and validation of solution proposals to practical problems. Hevner et al. (2004) 

suggest that design science differs in two aspects from other branches of science: (a) it is 

concerned with artefacts rather than facts of nature or social structure, and (b) it is concerned 

with a search for prescriptive rules for design, rather than a search for descriptions, 

explanations and predictions, as other branches of science are. Simons (1981) also proposes a 

differentiation between natural science and design science. For him, natural science is about 

the way things are and design science is concerned with how things ought to be. Being design 

oriented, the research method used in this thesis intends to validate the research hypotheses 

presented above by means of prototypes and several case studies. Karl Popper stated that “[a] 

theory which is not refutable by any conceivable event is non-scientific” (Popper 1974). To 

test the research hypotheses of this thesis, the following research strategy was implemented: 
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a. I conducted an investigation of the product line engineering production strategy, its 

benefits, drawbacks and the modus operandi of this strategy from the point of view of 

requirements engineering. 

b. I conducted a survey of the state of the art in product line engineering. In particular on 

the techniques, methods and tools for verification of product line specifications. 

c. I conducted a state of the art in verification of product line specifications. In particular, 

these verification techniques, methods and tools were classified according to the kind of 

verification, the verification criteria proposed in each approach, the kind of 

specifications in which the approach is applied and the technology used to implement 

the approach. 

d. I identified a collection of gaps and drawbacks of the existing approaches with regards 

to the research question of this thesis. In particular, to examine how these solutions 

could be used together to address the problem tackled by this thesis. 

e. I proposed a language-independent and fully-automated approach to verify PLMs; 

f. I evaluated the correctness of the proposed approach through three case studies. The 

results of these case studies were intended to support or refute the hypothesis proposed 

in this thesis (cf. Popperian falsification, Popper (1974)); 

g. I improved the verification approach initially proposed and at the same time I identified 

new research directions. The results of the case studies, a follow-up the current 

verification approaches and the feedback from the computer science community were 

taken into account to improve the initial approach.  

From the design science point of view, this research methodology matches perfectly with 

the design science process model proposed by Peffers et al. (2007). Figure 1.1 presents, in 

shadow, the design science process model for information system research, and the 

application of this process to the research carried out in this thesis. 
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Figure 1.1. Application of the design science process model for information system research (Peffers 
et al. 2007) to the research carried out in this thesis. 
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From an epistemological point of view, this research method reflects Popper's view, in 

which the advance of scientific knowledge is an evolutionary process characterized by the 

formula (Popper 1994): 

PS1  TT1  EE1  PS2 

Following Popper’s formula, this thesis takes as a basis a problem situation (PS1). As an 

attempt to solve this problem, a tentative theory (TT1) with conjectures and limitations is 

proposed. The approach proposed in this thesis was then systematically subjected to the most 

rigorous attempts at falsification possible during a limited period of time. However, it does 

not mean that our approach is true. Nevertheless, as Popper holds, it is more applicable to the 

problem situation at hand (PS1). Consequently, neither does rigorous testing protect a 

scientific theory from refutation in the future. Continuing our research method, a particular 

process of error elimination (EE1) will permit the improvement of our approach and will 

permit the identification of more interesting problems (PS2). 

1.5 Contributions  

To overcome the limitations presented in Section 1, this thesis proposes a language-

independent and fully-automated approach to verify product line models. In particular, the 

main contributions of this thesis are the following: 

a. Specification of product line models into constraint logic programs. In this 

approach, we translate (i) the structure of PLMs and its associated metamodels into 

constraint logic programming facts, and (ii) the semantics of PLMs into constraint 

programs.  This thesis proposes a collection of transformation rules (Salinesi et al. 2011, 

Mazo et al. 2011e) and two strategies (Mazo et al. 2011e) to transform product line 

models into constraint programs. 

b. Once the model is represented as a constraint logic program, the user’s verification is 

guided by a typology of verification criteria (Salinesi et al. 2010a, Salinesi & Mazo 

2012). This typology of verification criteria permits finding domain-specific and 

conformance defects on product line models. This typology is not a contribution per se; 

on the contrary, this typology contains the collection verification criteria found in 

literature (sometimes with different names), classifies these criteria according to their 

nature and impact in a verification process, and arranges these criteria in a convenient 
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order for their use and implementation. In that way, the results obtained from the 

execution of a verification criterion can be reused in the succeeding executions to save 

time and computational recourses, at a time that users choose the criteria to verify 

according to the nature and the intended quality of the model at hand. 

c. A generic approach to verify domain-specific properties in PLMs. These domain-

specific properties are associated with the expressiveness and the absence of errors, 

inconsistencies and redundancies in PLMs. This approach is generic since PLMs are 

represented as constraint programs and then verified against a collection of domain-

specific verification criteria that any PLM should respect. However, certain verification 

criteria cannot be used in certain PLMs since the models do not contain the concepts 

intended to be verified with these particular criteria. For instance, not all PLMs contain 

the notion of optional artefacts; therefore, verification of false optional artefacts in these 

models simply has no sense. This approach can also be used to verify domain-specific 

properties on product lines specified by means of several models, even when models are 

specified in different notations. To do that, this thesis uses the fact that all PLMs we 

used can be represented as variables and constraints among these variables (Salinesi et 

al. 2011b, Mazo et al. 2011c, 2011d), which allows the definition of a pivot language 

(i.e., constraint programming) that allows the integration of the PL into a single model. 

Once the models are integrated into a constraint program, the modus operandi to verify 

multi-models product lines is similar to the one proposed for single-model product lines.  

d. An adaptable approach to check conformance of PLMs with their corresponding 

metamodel. In the case of conformance checking, the approach consists of verifying 

whether the abstract syntax (Harel & Rumpe 2000, 2004) of PLMs is correct with 

regards to the corresponding metamodel. The conformance checking approach proposed 

in this thesis is based in a collection of constraints taken from a generic metamodel. The 

generic metamodel relates the common concepts found in the PL formalisms that we 

sensed. In that way, even if some verification criteria to check conformance of PLMs 

are shared for several models, each one of the generic conformance rules should be 

adapted to each particular formalism. Of course, since the generic metamodel proposed 

in this thesis only relates common concepts of several PL formalisms, conformance 

rules corresponding to concepts not present in our generic metamodel should be 

generated according to the particular metamodel. However, the constraint logic 

programming-based approach proposed in this thesis will remain being an option to 

implement the new conformance criteria. 
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e. An improvement of the existing PLMs verification algorithms’ scalability. The 

validation of the verification approach presented in this thesis was carried out by means 

of two tools. Both implementations were tested with several industrial and academic 

benchmarks and the correctness and performance of the domain-specific verification 

implementation was compared with two popular tools (i.e. FaMa and SPLOT). The 

results are promising and the implementation is scalable to PLMs up-to 2000 artefacts, 

in the worst-case scenario. The conformance checking implementation was not be 

compared with others implementation because no other implementation to check 

conformance of product line models was found in literature; nevertheless the correctness 

of the results were verified manually. The performance of the implementation proposed 

is promising and scalable to models up-to 10000 artefacts. 

1.6 Thesis Organization  

This thesis is organized as follows.  

Chapter 2 reviews related work presented in the literature and classifies them according 

the product line modeling language in which each verification approach is applied. This 

chapter presents five research questions about the state of the art on verification of product 

line models (and even in other kind of models), the advancements, gaps and challenges found 

in literature in this topic. These questions will be systematically answered throughout the 

chapter. 

Chapter 3 provides an overview of the verification approach presented in this thesis. In 

addition, this chapter provides the background information necessary for reading this thesis 

including a transformation and integration approaches, previous stages before verifying 

product line models. This chapter we introduce also the motivating example that will be used 

in the rest of the thesis to develop our approach.  

Chapter 4 presents the first contribution of this thesis: a typology of verification criteria 

developed from our experience with a large number of product line models and the 

cooperation with industries and other research laboratories. This typology classifies the PLMs 

verification criteria according to its nature (domain-specific and conformance checking 

criteria) and its execution order in a verification process. Each criterion is introduced, then 

formalized using first order logic, then illustrated through our running example. 

Chapter 5 presents the conformance checking approach proposed in this thesis to verify 

the abstract syntax of product line models. This approach is developed in a running example 
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and presented from two points of view: generic and metamodel-dependent, for single-models 

product lines. In addition, generic algorithms and their implementations are also presented in 

this chapter. References to algorithms found in literature to implement the criteria and a 

discussion about the performance and scalability of these algorithms are provided. 

Chapter 6 presents the constraint-based approach to automatically verify domain specific 

criteria of product line models. This approach is centred on standalone product lines models 

and developed in our running example. In addition, this chapter also presents generic 

algorithms and their implementations.  

Chapter 7 presents a multi-model verification approach based in the transformation and 

the integration approaches presented in chapter 3. In addition, this chapter shows how the 

approaches to verify stand alone models can be also used to verify multi-model product lines. 

Chapter 8 provides details about the running environment we build in order to 

implement and evaluate our verification approach and the empirical results obtained from this 

evaluation. We discuss and compare the experimental results, its quality and scalability, 

against one of the approaches existing in literature. 

Finally, Chapter 9 concludes the thesis and proposes future research directions.  
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Chapter 2 

State of the Art 

 

This chapter carries out a literature review in order to examine studies proposing PLMs 

verification approaches. This review follows the systematic method proposed by Kitchenham 

(2004) and Webster & Watson (2002). The main aspects regarding the review process are 

presented as follows.  

Research questions 

The aim of this review is to answer the following questions: 

 Q1: What kind of product line modelling notations have been the subject of 

verification techniques? 

 Q2: What verification criteria on product line models have been proposed?  

 Q3: What kind of automated support has been proposed? 

 Q4: What kind of validation was made and what have been the results? 

 Q5: What are the gaps and challenges to be faced in the future? 

Question Q1 gives the structure to this chapter. Each section of this chapter tackles with a 

product line modelling notation for which at least one verification technique has been applied. 

There is also a section for the verification approaches independent of the product line 

modelling notation. The product line modeling notations considered in this state of the art are: 

FM, OVM, Dopler and Latice Structure. 

Questions Q2, Q3 and Q4 have driven the analysis during the literature review presented in 

this chapter. Some of the aspects discussed in order to solve questions Q2, Q3 and Q4 refer to 

(a) the verification criteria; (b) scalability; and (c) applicability to large models. Question Q5 

is discussed in the conclusion section, based on these aspects and a recapitulation table. 

Source material 

As recommended by Webster & Watson (2002), we used both manual and automated methods 

to make a selection of candidate papers in leading journals and conferences and other related 

events. This was augmented with a number of papers, reports and books that relate to product 



22 

 

line engineering. This state of the art presents the results of 40 research works. These 40 works 

are referred as primary studies (Kitchenham 2004).  

In the following, each section deals with a formalism. Then, the presentation is done 

approach by approach. For each approach, (a) the list of criteria handled; (b) verification 

criteria; (c) algorithms and implementations; (d) details about validation of the approach and; 

(e) a critical analysis of each approach are presented. 

This chapter is structured as follows:  

Section 2.1 presents the state of the art related with verification of Feature Models.  

Section 2.2 presents the state of the art related with verification of Orthogonal Variability 

Models.  

Section 2.3 presents the state of the art related with verification of Dopler Variability 

Models.  

Section 2.4 presents the state of the art related with verification of Latice Structure Models.  

Section 2.5 presents the state of the art related with verification approaches that are not 

entangled with a product line modelling language.  

Finally, Section 2.6 reports a systematic analysis of the related works discussed all along 

this chapter, in the light of the aforementioned research questions. 

2.1. Verification of Feature Models 

FMs were first introduced in 1990 as a part of the Feature-Oriented Domain Analysis 

(FODA) method (Kang et al. 1990). Since then, feature modeling has become a de facto 

standard adopted by the software product line community to model product lines. A feature 

model is a compact representation of all the product of a product line in terms of features 

(requirement, quality, or characteristic of a software system) and dependencies among them. 

Since the appearance of FODA, several extensions have been proposed to improve and enrich 

their expressiveness; for instance, cardinalities (Riebisch et al. 2002, Czarnecki et al. 2005), 

and attributes (Streitferdt et al. 2003, Benavides et al. 2005c, White et al. 2009). Feature 

Models (FMs) with these two extensions are called extended feature models. The reader can 

refer to (Schobbens et al. 2007) for a detailed survey on the different feature modelling 

dialects, and to Section 3.4 for the formal definition that is adopted in this thesis to handle the 

feature modeling language. 
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2.1.1. Verification of FODA-like Feature Models 

Seven approaches have been found in the literature to verify FODA-like models: Von der 

Maßen & Lichter (2004), Van der Storm (2004), Batory (2005), Hemakumar (2008), Broek & 

Galvão (2009), Salinesi et al. (2010a) and Mendonca et al. (2009). 

A. Von der Maßen & Lichter (2004) present an approach to identify redundancies, anomalies 

and inconsistencies. According to these authors, a feature model contains a redundancy “if 

at least one semantic information is modeled in a multiple way”; contains anomalies “if 

potential configurations are being lost, though these configurations should be possible”; 

and contains inconsistencies “if the model includes contradictory information”. 

(Verification criteria) 

Redundancies identified in the approach are: (i) mandatory and requires relationships 

between two features; (ii) exclusion of two features related in an alternative relationship; 

(iii) a feature is required by multiple features F1,...,Fn whereas F1 is a parent of F2,...,Fn; 

(iv) a feature excludes multiple features F1,...,Fn whereas F1 is a parent of F2,...,Fn; and 

(v) transitive relationships among several features. 

Anomalies identified in the approach are: (i) optional features required by full-mandatory 

features; (ii) alternative-child features required by full-mandatory features; (iii) or-child 

features required by full-mandatory features; (iv) optional features mutually exclusive with 

full-mandatory features; (v) alternative-child features mutually exclusive with full-

mandatory features; and (vi) or-child features mutually exclusive with full-mandatory 

features. 

Inconsistencies identified in the approach are: (i) exclusion between full-mandatory 

features; (ii) exclusion between relative-full mandatory features; (iii) requirement between 

alternative child features; and (iv) mutual exclusion and requirement between two features.  

(Implementation) Authors use RequiLine (Von der Maßen & Lichter 2003) to validate 

the approach. Requiline is a tool that allows the detection of inconsistencies on the domain 

level and on the application level.  

(Validation) The approach was evaluated in “a small local software company” (Von der 

Maßen & Lichter 2004) and “in a global player of the automotive industry” (Von der 

Maßen & Lichter 2004). According to the authors, RequiLine helps to detect 

inconsistencies in the domain model and in product models.  
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(Results) No information is given about how the automatic detection of redundancies and 

anomalies is achieved. Neither author provides details about the size of the models or 

about the technology used to automate the approach. The lack of results about the 

evaluation experiment makes it difficult to compare or evaluate the approach according to 

its performance, scalability or usability properties in large models. 

B. Van der Storm (2004, 2007) proposes an approach to check consistency of feature 

diagrams and dependency graphs connected with each other by requires-like dependencies. 

Since graphical formalisms are not practical to perform the verification tasks in an 

automated way, the author uses a textual version of feature diagrams, called Feature 

Description Language (FDL) (Van Deursen & Klint 2002). FDL is used to represent the 

hierarchical structure of feature diagram and cross-tree constraints between features.  

(Implementation) On the technical level, Van der Storm (2004) proposes the use of 

Binary Decision Diagram (BDD) solvers to make automatic consistency checking of 

feature configurations.  

(Verification criteria) The approach is able to check (i) if feature diagrams are consistent 

(i.e., feature diagrams permit the generation of one or more products); and (ii) if a 

configuration is consistent with the feature diagram.  

(Validation) There is no case-study that shows how the approach works in practice.  

(Results) Van der Storm does not discuss the conformance checking of feature diagrams 

regarding his metamodel, or about the application of his work on anything other than 

feature diagrams—all the consistency checking work is focused on the feature diagrams. 

C. The proposal of Batory (2005) is to use grammars and propositional formulas to represent 

basic FMs. Proposition formulas enable the verification process of FMs using truth 

maintenance systems and SAT solvers.  

(Verification criteria) Batory’s verification proposal identifies contradictory (or 

inconsistency) predicates and verifying that a given combination of features effectively 

defines a product.  

(Implementation) Propositional formulae, in Conjunctive Normal Form (CNF), plus a 

collection of constraints are derived from FMs represented as grammars. Formulae are not 

directly derived from the FM. Indeed, the author holds that exclusion and inclusion 
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constraints of FMs are too simplistic and do not permit the specification of more complex 

constraints, such as for example: F implies A or B or C.  

(Validation) Once FMs are represented as CNF formulae, they are executed in a SAT 

solver. By means of a query to the solver it is possible to determine whether there is a 

valid solution (product) and whether sets of variable assignments satisfy the propositional 

formulae.  

(Results) There is no discussion about the application of this approach on anything other 

than feature models, or about the performance and scalability of this approach on large 

models. 

D. As a continuation of the work of Batory, Hemakumar (2008) proposed a dynamic solution 

to find contradictions on FMs. In this approach, errors can be detected while using FMs, 

and then reported to domain designers.  

(Verification criteria) The author proposes an incremental consistency algorithm that 

verifies if FMs are contradiction-free or not.  A FM is contradiction-free if it is k-

contradiction free for all k where 0 < k ≤ n. A FM is k-contradiction free if no 

selection of k features exposes a contradiction. For example: dead features can be 

identified when k=1. When k=n, where n is the number of user selectable features, the 

model is proven to be contradiction-free.  

(Implementation) Hemakumar holds that this approach, automated with a SAT solver, is 

at least an order of magnitude faster than model checking.  

(Validation) The incremental consistency algorithm has important practical limits due to 

its poor scalability. Indeed, Hemakumar (2008) claims that his approach “can verify 

contradiction freedom of models with about 20 or fewer features”.  

(Results) Hemakumar (2008) claims that “static analysis to find contradictions in feature 

models with large number of features may be very difficult”. This seems to confirm that 

the proposed approach is not scalable. 

E. Broek & Galvão (2009) analyze FODA models specified as generalized feature trees. 

Their approach transforms FMs into feature trees together with additional constraints 

specified in the Miranda language (Turner 1985). 

(Verification criteria) Once FMs are represented in the functional programming language 

Miranda, the translated FMs are verified against the following criteria: ability to configure 
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several products, no dead features, and absence of conflicting constraints. This last 

criterion is used to provide an explanation to “dead features”. A dead feature is a feature 

that does not appear in any product.  

(Implementation) The approach, fully implemented in Miranda, shows that in cases 

where there are no cross-tree constraints, the function to detect the existence of products 

(by generating one of them) has a O(1) complexity and the function to find the number of 

products O(N). If there are cross-tree constraints, the complexity of the function to find the 

number of products is O(N*2
M

), where N is the number of features and M is the number of 

cross-tree constraints.  

(Validation) Unfortunately, these calculations of efficiency are purely theoretical. No 

systemic empirical evaluation is reported in the paper.  

(Results) Broek & Galvão (2009) claim that their approach is more efficient than other 

approaches that require a transformation of the feature tree into another data structure like 

BDDs. However, Broek & Galvão omit to count the time needed to transform features 

trees into the Miranda language. The approach was validated with a feature tree of 13 

features and two cross-tree constraints, which is not enough to demonstrate its scalability 

and usability on industrial models.  

F. Salinesi et al. (2009b) present a tool for the automatic verification of structural correctness 

of feature models supporting group-cardinalities.  

(Verification criteria) The verification operations implemented in this tool were the 

identification of redundant features, inconsistent constraints, cyclic relationships, and 

poorly defined cardinalities.  

(Implementation) The approach uses graph navigation algorithms, implemented in C#, to 

evaluate each verification criterion. 

(Validation) A case study based in two FMs that contain 21 and 49 features was achieved 

to validate the approach. 

(Results) This preliminary experiment showed that the approach is effective. However, the 

approach, proposed for FODA-like models supporting group-cardinalities, presents major 

scalability issues related with the graph-based algorithms used to implement the approach. 

G. SPLOT (Mendonca et al. 2009) is a Web-based reasoning and configuration system for 

feature models supporting group-cardinalities instead of alternative and or-relations.  
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(Implementation) The system maps feature models into propositional logic formulas and 

uses Boolean-based techniques, such as binary decision diagrams and SAT solvers, to 

reason on feature models.  

(Verification criteria) SPLOT supports two verification operations: detection of void 

models and dead features.  

(Validation and results) The approach presents promising results even with very large 

models. However, the tool does not support conformance checking, and it only supports 

feature models. 

2.1.2. Verification of Extended Feature Models 

Six approaches have been found in the literature to verify extended feature models: Zhang et 

al. (2004), Benavides et al. (2005a), Benavides et al. (2005b, 2006), Janota & Kiniry (2007), 

Trinidad et al. (2008) and Yan et al. (2009). 

A. Zhang et al. (2004) propose an approach based on propositional logical expressions to 

verify FMs.  

(Verification criteria) The approach covers three criteria: (i) “consistency”; the model is 

consistent (or not void) if there exists at least one collection of features that does not 

violate any constraint in the feature model; (ii) “no dead features”; this occurs when each 

feature in a feature model can be selected without violating any constraint in the feature 

model; and (iii) each optional feature in a feature model can be removed without violating 

any constraint in the feature model. The authors hold that by using feature sets, they can 

reduce the computational complexity of the verification operations.  

(Implementation) Zang et al. argue that these verification criteria can be automated by 

using model checking techniques such as SMV1.  

(Validation and results) However, they do not provide any evaluation to substantiate this 

claim. No detail about the approach validation and its results are provided. 

B. Benavides et al. (2005a) propose an approach to analyse FMs. Their approach consists of a 

collection of analysis operations on feature models with attributes and arithmetic relations 

among these attributes.  

(Implementation) All these analysis operations are executed using OPL Studio, a 

commercial Constraint Satisfaction Problem (CSP) solver.   

                                                             
1 http://www.cs.cmu.edu/~modelcheck/smv.html 
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(Verification criteria) Benavides et al’s approach computes the number of products that 

can be configured from FMs. This operation can be used to verify if a given FM is void, 

and to verify if the model is rich enough to be considered a product line model, as opposed 

to just a product model.  

(Validation) Authors have experimentally inferred that the implementation of the 

operation to compute the number of products that can be configured from a FM has an 

exponential behaviour with respect to the number of features. Benavides et al. claims that 

their approach “has a good performance up to 25 features”.  

(Results) The approach is not scalable to large models. The main problem is that real life 

feature models are usually much larger than the models used to validate this approach. 

C. Benavides et al. (2005b, 2006) present an approach for reasoning on FMs with individual 

cardinalities and group cardinalities and with complex constraints on attributes.  

(Verification criteria) Feature models are considered valid if at least one product can be 

configured from it. Valid configurations are collections of features and attributes that 

satisfy all the constraints of the corresponding FM.  

(Implementation) The approach transforms FMs into constraint programs and then, uses 

CPL Studio, a commercial Constraint Satisfaction Problem (CSP) solver, to check if a 

given configuration is valid with regard to the FM from which it was configured. In this 

approach each feature is represented as a CSP variable. The domain of these variables 

depends on the cardinality associated to each variable. By default the domain is {0,1}. 

The domain of variables (features) with individual cardinalities corresponds to the range of 

values of the individual cardinality. As a consequence, it does not consider the possibility 

to clone these features as determined by their individual cardinality. The relationships in 

the FM are represented as ifThenElse CSP constrains, plus a constraint to express 

the selection of the root feature (i.e., root = 1). The overall CSP that corresponds to an 

entire FM is the conjunction of all the constraints.  

(Validation) Authors performed a comparative test between two off the shelf Java 

constraint solvers: JaCoP (Kuchcinski 2003) and Choco (Laburthe & Jussien 2005). The 

tests show that JaCoP is faster than Choco except in finding the number of solutions. The 

experiment was executed on five FMs with up to 52 features.  
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(Results) The time to get one solution seems to be linear and the time to get all solutions 

seemed to be exponential. These results show that the approach suffers extensibility and 

scalability issues. Besides, the problem with this approach is that the constraint 

representing an individual cardinality (m,n) between the father feature A and its child B 

(ifThenElse(A=0;B=0;B in {n,m})) does not consider the case when feature A 

has itself a cardinality.  Therefore, the semantics of individual cardinalities is not well 

represented in the CSP. 

D. Janota & Kiniry (2007) have formalized in higher-order logic (HOL, cf. Gordon & 

Melham 1993) a feature based meta-model that integrates properties of several feature 

modeling approaches such as attributes and cardinalities.  

(Verification criteria) Once the model represented in HOL, expressions can be used to 

evaluate root selectivity, the existence of a path from the root to a given feature, and group 

cardinality satisfaction. Group cardinality satisfaction consists of verifying that the 

boundaries of the group cardinality are correct with reference to the number of features 

that that can be selected from the bundle of features grouped in the cardinality. 

(Implementation) The approach has been implemented in the Mobius program 

verification environment (Barthe et al. 2007), an Eclipse-based platform for designing, 

testing, performing various kinds of static analyses, that was designed to automatically and 

interactively formally verify Java programs and bytecode. 

(Validation and results) The paper does not provide evidence about the efficiency of the 

approach, its scalability, or its applicability to real life cases. 

E. Trinidad et al. (2008) propose a CSP based approach to verify and diagnose FMs.  

(Verification criteria) Trinidad et al’s approach handles three verification criteria: (i) 

“dead features”; (ii) “false optional features”, i.e., features that in spite of being modeled 

as optional, are always chosen whenever their parents are chosen; and (iii) “void models”, 

i.e., models from which no product can be configured. The goal of Trinidad et al. is not 

just to detect the above three errors but also to provide explanations for the cause of these 

errors.  

(Implementation) In order to achieve the first goal, the approach transforms the FM into a 

CSP expression, then queries the Choco solver (by means of the FaMa tool) to find the 

errors.  
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(Validation) The approach has been evaluated on five FMs up to 86 features.  

(Results) Unfortunately, no details about the scalability and the efficiency of the approach 

are provided. 

F. Recently, Yan et al. (2009) proposed a method to (Verification criteria) find redundant 

constraints and features in FMs. A redundant constraint in a constraint that does not 

modify the semantics of the product line model and a redundant feature is a repeated 

feature. This approach is motivated by the fact that the problem size of feature model 

verification is exponential to the number of features and constraints in the model. 

Therefore, eliminating verification-irrelevant features and constraints from FMs should 

reduce the problem size of verification, and alleviates the state-space explosion problem. 

(Implementation) The approach eliminates verification-irrelevant features and constraints 

from feature models. The authors use a BDD solver to execute the non-optimized and the 

optimized feature models in order to compute the difference of time executing both groups 

of models. 

(Validation) The authors carried out an experiment in which they generated three groups 

of in-house random FMs. The first group had 9 FMs, all of them with 500 features and 50 

explicit cross-tree constraints. In this first experiment, authors verified the consistency of 

FMs without eliminating redundant features and constraints in 62.7 sec. The same 

operation took 6.0 sec after 80% of the redundant features were eliminated. The second 

group contained 7 FMs with 100 to 700 features, and from 10 to 70 cross-tree constraints. 

In this second experiment, authors verified the consistency of the model with 600 features 

in 60.5 sec (without eliminating verification-irrelevant features and constraints), and in 

43.9 sec (after eliminating verification-irrelevant features and constraints). The third group 

had 19 FMs with 100 to 1900 features and from 20 to 56 cross-tree constraints. The 

authors verified the consistency of a model with 1200 features and 42 cross-tree 

constraints without eliminating redundant features and constraints in 64 sec. The same 

operation took 3.0 sec when the redundant features had been eliminated. Once redundant 

features were eliminated the Yan et al’s approach allows the verification of consistency on 

models with 1900 features in 64 sec.  

(Results) These experiments show that the approach proposed by Yan et al. improves the 

efficiency and the capability of the approach to FMs’ consistency verification when the 

models contain a large number of redundancies. The problem with this approach is that it 

only considers as redundant constraints these that contain redundant features. Typical 
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redundancies such as domain overlapping, or cyclic relationships (Salinesi et al. 2010a, 

Mazo et al. 2011a) are therefore overlooked. Besides, the validation of the approach was 

done with in-house and random build feature models. There is no guarantee that it works 

with real world feature models. In particular, one can wonder how many redundancies a 

real model typically contains, and what their severity is. Last, no detail is provided about 

the formalisation and implementation of the approach.  

2.2. Verification of Orthogonal Variability Models 

In Orthogonal Variability Models (OVMs, cf. Pohl et al. 2005), a variation point describes 

what varies between the products of a software product line. For each variation point, a 

collection of variants is defined. Configuration consists of selecting among variants associated 

with each variation point. Pohl et al. (2005) propose three types of dependencies to specify 

configuration constraints:  

(1) a mandatory variability dependency between a variation point and a variant indicates 

that this variant must always be selected when the variation point is considered for the product 

at hand. A mandatory variability dependency is drawn as a continuous line; 

(2) an optional variability dependency between a variation point and a variant describes that 

this variant can be selected but it does not need to. An optional variability dependency is 

drawn as a dashed line; 

(3) an alternative choice is a specialization of optional variability dependencies.  An 

alternative choice group comprises at least two variants which are related to a variation point 

by optional variability dependencies. Min, max bounds define how many variants of the 

alternative choice group must be selected at least (min) and how many variants can be selected 

at most (max).  

In addition to variability dependencies, the OVMs permit the definition of constraint 

dependencies to document additional dependencies between variation points and variants, e.g. 

to enforce that two variants of different variation points cannot be selected together.  

Three approaches have been found in the literature to verify OVMs: Metzger et al. (2007), 

Roos-Frantz et al. (2008) and Lauenroth et al. (2010). 

A. Metzger et al. (2007) introduce a formalization of OVMs and propose to use a SAT solver 

to automate verification of OVMs. In this approach, automated reasoning on OVMs is 

supported using the VFD (Varied Feature Diagram) semantics. VFD is based on FFD 
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(Free Feature Diagrams) which is a parametric construct designed to provide the syntax 

and semantics of FODA-like dialects in a generic way (Schobbens et al. 2006). Metzger et 

al. propose to reuse this formalization of feature diagrams, to introduce a formalization of 

OVMs. They introduce a formal version of OVM’s abstract syntax and describe a 

translation from OVM to VFD, thereby they give OVM a formal semantics.  

(Verification criteria) The approach deals with three verification criteria: 

 Valid model: to check whether a VFD is consistent, i.e., whether it permits at least one 

configuration. 

 Product checking: to verify that a given product is a valid configuration of the VFD. 

 Dead variables: those that do not appear in any product. 

(Implementation) The approach was not implemented; however, Metzger et al. 

propose to use SAT solvers to automate their verification approach. 

(Validation and results) The approach was not validated. No details about its 

applicability or scalability are provided. 

B. Roos-Frantz et al. (2008) propose a tool to verify OVMs; however the development of the 

tool is still future work. 

(Verification criteria) The approach deals with: 

 Valid product. Check whether a given product belongs to the set of products 

represented by the OVM or not.  

 Void OVM. Check whether an OVM is void or not, i.e. if it represents at least one 

product. 

 Dead nodes. To identify nodes that do not appear in any product. Dead nodes are 

caused by a wrong usage of constraint dependencies and are the responsible for void 

OVMs. 

(Implementation) The approach proposes to transform OVMs into feature models, then to 

use the FaMa tool to verify the models. Roos-Frantz et al. also proposes other alternatives 

to verify OVMs: for instance, using a formal specification language like Z or B. However, 

no details are provided about the alternative selected by the authors in order to implement 

their approach. Besides, the approach that proposes the aforementioned verification criteria 

was not implemented.  

(Validation and results) Unfortunately, no detail is provided about the implementation of 

these criteria, or about its validation, or about its scalability and performance. 
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C. Lauenroth et al. (2010) present a quality assurance approach that applies model checking 

(Clarke et al. 1999) at the level of the PLM itself, and not product by product (authors call 

this approach: comprehensive strategy) as presented by Metzger et al. (2007).  

(Verification criteria) The approach considers the variability model to ensure that the 

state space of individual products is valid with respect to the variability model.  

 (Implementation) Lauenroth et al. (2010) focus on the next-time-operator (EX f1) 

(Clarke et al. 1999), which can be verified for single systems and can be adapted for the 

verification of PLMs. The next-time-operator over a variable f1 (EX f1) evaluates to 

true, if there is one path starting at the initial state on which f1 holds on the next state.  

The main idea of the Lauenroth et al.’s approach is to include the variability information 

specified in the variability model, as Boolean variables, in the model checking algorithms.  

 (Validation and results) No detail about the implementation or evaluation of the 

approach is presented. The study of the applicability of the approach is presented as future 

work. 

2.3. Verification of Dopler Variability Models 

In Decision-oriented (Dopler) variability models (Dhungana et al. 2010), the problem space is 

defined using decision models whereas the solution space is specified using asset models. A 

decision model consists of a set of decisions and dependencies between them. Assets provide 

an abstract view of the solution space to the degree of detail needed for subsequent product 

derivation. Decisions and assets are linked with inclusion conditions defining traceability from 

the solution space to the problem space. 

Vierhauser et al. (2010) proposes a framework to incrementally detect inconsistencies in 

DOPLER models based in the approach presented by Egyed (2006) for UML models.   

(Verification criteria) Finding inconsistencies like “assets on an asset model calling a 

decision that is not defined in the decision model” are the scope of this framework.  

(Implementation) In this approach inconsistency criteria are specified with OCL. Each 

criterion is implemented by a rule that starts by identifying the model elements to analyze. 

Then, all the model elements for which an inconsistency is detected are inserted in a “rule 

scope” in order to keep track of them. The rule scope consists of a relation between an 

inconsistency detection rule and the collection of model elements that need to be re-analyzed 

after they have been corrected. Next time the rule is executed, the check is only made over the 
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elements in the “rule scope”, and not over the complete model which avoids repeating the 

same verification over and over again. 

(Validation and results) The approach reduces the execution time after the first checking. 

Egyed presents very efficient performance charts for his approach even in UML models with 

10000 classes. Vierhauser et al. (2010) applied the approach over Dopler models with up-to 

121 reusable elements. However, they also observe that this approach may not be efficient for 

all kinds of consistency rules due to the limitations of OCL constraints to compute certain 

verification functions (e.g., verification functions that need computation efforts or that involve 

multi-context data).  

2.4. Verification of Latice Structure Models 

In a product line model, the links between requirements are parent-child links so that 

requirements can be modelled hierarchically in a lattice (Mannion 2002). In this Latice, a 

requirement can have zero to many children and zero to many parents.  

(Verification criteria) In this approach, PLMs are entirely represented as logical expressions 

that can be tested to verify the following aspects. 

 Validity of the PLM: A valid PLM is one in which it is possible to select at least one 

set of requirements that satisfy the relationships between them in the model.  

 A selected combination of requirements can also be tested using this expression in 

order to know if it forms a valid product. 

 Richness of the PLM: this operation computes the number of valid products that can 

be built using a PLM. The result of this operation can be used to determine the 

flexibility level of the model. A small number may mean that there is insufficient 

resilience in the system for future markets. A large number may mean that there is 

unnecessary resilience and that the model should be further constrained. 

(Implementation) Mannion (2002) and Mannion & Kaindl (2007) use first order logic to 

represent PLMs as logic expressions with the aim of verify them. In order to do that, 

Mannion & Kaindl consider each requirement of the PLM as a Boolean variable and each 

dependency between requirements as a logical expression. Indeed, true is assigned to those 

requirements that are selected, and false is assigned to those not selected. These selection 

values are substituted into the product line logical expression. A valid product is one for 

which the product line logical expression evaluates to true. To implement this operation it 
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is enough to find the first product that causes the PLM logical expression to evaluate to 

true. 

Mannion & Kaindl (2007) represent the graph corresponding to the PLM as a Prolog 

programme, which is used to verify the validity and richness of the PLM and the validity of a 

configuration. 

(Validation and results) No validation is provided to test the applicability, precision, 

scalability and usability of the approach, which makes it difficult to compare this approach 

with other ones according to these criteria. In addition, the proposal is not generic. Indeed, it 

was proposed for the lattice notation of PLMs and therefore it does not consider cross-tree 

constraints, or even more complex constraints such as for example constrains over attributes. 

2.5. Formalism-independent Approaches to Verify 

Product Line Models 

Three formalism-independent approaches have been found in the literature to verify product 

line models: Lauenroth & Pohl (2007), Kästner & Apel (2008) and Bruns et al (2011). 

A. Lauenroth & Pohl (2007) propose a formal definition of the properties that a PLM must 

offer in order to support contradiction checks in domain engineering, a formal 

definition of contradiction, and an algorithm to detect possible contradictions on a 

PLM.  

(Verification criteria) To know if the reusable components (S) of the PLM expressed 

in a language L contradict each other, the approach defines contradiction as a function 

contradiction:S→ ℘(ܵ) with the following properties: 

 contradiction(S) = C if the set S contains contradicting requirements. 

The resulting set C = {C1,...,Cx} contains subsets of requirements (Ci ⊆ 

S), where each subset Ci contains a set of contradicting requirements. 

 contradiction(S) = ∅ if the set S of requirements is free of 

contradictions. 

(Implementation) Two assumptions are made in order to implement their approach: 

each requirement that is related to a variant is considered as a variable requirement and 

each requirement that is not related to a variant is considered as a common 

requirement. Next, the approach considers a PLM as a set of n variants V = 

{v1,...,vn}, where each vi is represented by a Boolean variable. vi evaluates to 
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true if the variant vi is selected in a configuration and vi evaluates to false 

otherwise. The dependencies of the PLM are codified as a Boolean function over the 

variants V. 

Lauenroth & Pohl (2007) use the law of contraposition (A⇒B ⇔ ¬B⇒¬A) to find 

contradictions in PLMs.  The central idea is that a contradiction in a PLM does not 

matter as long as it is not possible that the contradicting requirements become part of 

one single product. This requires a function that calculates whether a PLM satisfies—

with the help of a SAT solver—a given set of x preselected variants. 

(Validation) Lauenroth & Pohl (2007) hold that the performance of the algorithm to 

find contradictions among requirements in a PLM is superior to the brute force 

approach because the search for possible contradictions in the variable requirements is 

more efficient than the search for contradictions in all possible product models. The 

main drawback of this approach is that the set of potential contradictions must be 

known before the algorithm is executed. Thus, the algorithm cannot be used to 

systematically identify the contradictions in a PLM, but only to check if given 

contradictory requirements can be configurated in valid products of the PLM.  

(Results) To the best of our knowledge, this approach was neither implemented, nor 

evaluated with real models. Even if Lauenroth & Pohl claim that complexity of their 

approach is NP-complete, they do not provide any detail about its scalability or 

usability in real cases, which makes it difficult to compare this approach with other 

ones according to non-subjective criteria. 

B. Kästner & Apel (2008) extend the Featherweight Java (FJ, cf. Igarashi et al. 2001) 

calculus with annotations to prove that a software product line is well typed at the level 

of source code fragments. They have shown that this extension can be modeled on top 

of FJ, extending only the typing rules and auxiliary functions with implications on pairs 

of annotations.  

(Verification criteria) The approach starts with an informal list of criteria specified as 

annotation rules, then modeled formally in the extended FJ. It provides typing rules 

such as: “a class L can only extend a class that is present” (Kästner & Apel 2008) or 

even rules that deal with the removal process of children from their parent element: “if 

a class is removed then also all methods therein must be removed, if a method is 

removed then also its parameters and term must be removed” (Kästner & Apel 2008).  
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(Implementation) The rules are automated by propagating colours from parent to child 

structures (e.g., if a class is ‘green’, then all its methods are automatically ‘green’ too). 

Some rules (like: “a method is only present when the enclosing class is present” and “a 

constructor parameter is only present when the enclosing class is present” (Kästner & 

Apel 2008)) are automated by means of a function that descends recursively through 

the product line and checks all code fragments that can be annotated. For those code 

fragments the annotations that evaluate to false should be removed. Thus, the remaining 

code fragments are stripped off their annotations. The approach is implemented in an 

extension of the CIDE tool, an annotation checker for Java.  

(Validation and results) Unfortunately, no details about the evaluation or the 

implementation of the approach are provided. 

C. Bruns et al. (2011) present delta-oriented slicing, an approach to reduce the deductive 

verification effort on product lines where individual products are Java programs and 

their relations are described by deltas.  

(Verification criteria) The verification approach answers the question of which proofs 

are influenced by a delta module. Proofs considered in the work look like:  (i) for each 

adds(C; I) prove that the invariant I is fulfilled by all relevant implementations; 

and (ii) for each removes(C; I) invalidate all pre-existing proofs that assume the 

invariant I.  

(Implementation) In their approach, Bruns et al. (2011) analyze the product line model 

to determine which parts of the original product change in the new product and do not 

have to verify these parts again. When a new product is derived by delta application, 

the implementation and the specification of the product change. However, from the 

structural information available in the used delta modules, authors are able to infer 

which specifications of the new product remain valid (i.e., the proofs done for the old 

products are not affected by the change) and which parts have to be (re-)proven in order 

to establish the specified properties. Authors call the latter delta-oriented slice. The 

technologies used to implement the approach are the Java language for programming 

single products, the JML language (Leavens et al. 2006) for formal specifications and 

the KeY system (Beckert et al. 2007) for deductive verification.  

(Validation and results) No details about the implementation of the verification 

algorithm or even about its evaluation are provided by Bruns et al. (2011). 
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2.6. Conclusions 

This chapter reported the collection of a series of works related with the verification of PLMs. 

A first comment is that only some of these verification approaches (Van der Storm 2004, 

Zhang et al. 2004, Batory 2005, Sun et al. 2005, Benavides et al. 2005a, Benavides et al. 

2005b, Benavides et al. 2006, Benavides et al. 2007, Egyed 2006, Metzger et al. 2007, Janota 

& Kiniry 2007, Van der Storm 2007, Lauenroth & Pohl 2007, Mannion & Kaindl 2007, 

Trinidad et al. 2008, Broek & Galvão 2009, Lauenroth et al. 2009, Lauenroth et al. 2010, 

Vierhauser et al. 2010, Kim et al. 2011, Liu et al. 2011) are formally described in the papers 

in which they were presented. Other approaches such in (Von der Maßen & Lichter 2004, 

Hemakumar 2008, Roos-Frantz et al. 2008), were not formally described. Formally described 

or not, each of these verification approaches proposes a collection of verification operations 

over a particular PLM formalism. The state of the art on PLM verification of PLMs is 

summarized in Table 2.1. The columns of the table correspond to the product lime modelling 

languages for which verification criteria have been found in literature. Each verification 

criterion is presented in a different row. Cells indentify which approach handles the 

corresponding criterion for the corresponding formalism. As a consequence, generic 

approaches are not fixed to a particular column and comprehensive approaches are presented 

over several rows. Empty cells in the table do not mean that there is no approach to handle the 

criterion for the corresponding formalism, but that was not found in our literature review. The 

question whether or not this is possible is of course an open issue.  

Table 2.1. Literature review of product line models verification  

Language 

 
Ver. criteria 

Independe

nt of the 

language 

Latice 

Structure 

Models 

Feature Models OVM Dopler 

variability 

language 

UML and 

other 

languages 

Absence of 
contradictions 
on products. 

(Lauenroth 
& Pohl 
2007) 

     

Validity, 
consistency or 
satisfiability of 
the product line 
model: the PLM 
allows generate 
at leas one 
product. 

 (Mannion 
2002) 

(Zang et al. 
2004;Benavides et 

al. 2005b; 
Benavides et al. 
2006; Van der 
Storm 2007; 
Trinidad et al. 
2008;Hemakumar 
2008; Broek & 
Galvão 2009; 
Mendonca et al. 
2009) 

(Metzger et 
al. 2007; 
Roos-Frantz 
et al. 2008) 

  

Consistent or 
satisfiable 
configuration: a 

 (Mannion 
2002) 

(Van der Storm 
2004; Batory 
2005; Benavides 

(Metzger et 
al. 2007; 
Roos-Frantz 

 (Bruns et al. 
2011) 
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configuration 
forms a valid 
product or a 
collection of 
them. 

et al. 2005b; Van 
der Storm 2007) 

et al. 2008; 
Lauenroth et 

al. 2009; 
Lauenroth et 

al. 2010) 
Richness or 
flexibility of the 
product line 
model. 

 (Mannion 
2002) 

(Benavides et al. 
2006; Broek & 
Galvão 2009; 
Mendonca et al. 
2009) 

   

Dead artefacts.   (Von der Maßen 
& Lichter 2004), 
(Zang et al. 2004; 
Trinidad et al. 
2008;Hemakumar 
2008; Broek & 
Galvão 2009; 
Mendonca et al. 
2009; Kim et al. 
2011) 

(Metzger et 

al. 2007; 
Roos- Frantz 
et al. 2008) 

  

False optional 
artefacts. 

  (Von der Maßen 
& Lichter 2004), 
(Trinidad et al. 
2008),  

   

Non-removable 
artefacts. 

  (Zang et al. 2004   (Schaefer et 

al. 2010) 
Redundant 
constraint and 
artefacts. 

  (Von der Maßen 
& Lichter 2004), 
(Yan et al. 2009) 

   

Consistency 
checking: 
absence of 
contradictions 
or non-existent 
elements in 
PLMs. 

    (Bruns et 

al. 2011) 
(Egyed 2006; 
Kästner & 
Apel 2008, 
Vierhauser et 

al. 2010) 

Root selectivity.   (Janota & Kiniry 
2007, Salinesi et 

al. 2009b) 

   

Existence of a 
path from a 
selected artefact 
to the root. 

  (Janota & Kiniry 
2007) 

   

Cardinality 
satisfaction 

  (Janota & Kiniry 
2007) 

   

Circular 
dependencies 
(between the 
features of a 
given 
configuration). 

  (Liu et al. 2011)    

Conformance 
checking with 
the 
corresponding 
metamodel. 
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The literature review carried out in this chapter permits answering the questions presented 

at the beginning of the chapter as follows: 

 Q1: What kind of product line modelling notations have been the subjects of 

verification? 

As our literature review shows, the formalisms handled by verification approaches are: 

Feature-based models, OVMs, Latice Structure Models, Dopler variability models and 

UML-based models. However, most of the approaches existing in the literature 

focused in verification of feature models, as presented in Table 2.1. Of course, it is not 

impossible that other works have been presented on other formalisms. Another 

observation is that, in our literature review, there is no approach to verify multi-model 

product lines. 

 Q2: What verification criteria on product line models have been proposed?  

Answer: (1) Consistency checking among the artefacts of the PLM. (2) Validity or 

satisfiability of the product line model. (3) Consistent or satisfiable configuration: A 

configuration forms a valid product or a collection of them. (4) Richness or flexibility 

of the product line model. (5) Identification of dead artefacts. (6) Identification of false 

optional artefacts. (7) Identification of non-removable artefacts (or core artefacts). (8) 

Identification of redundant constraint and artefacts. (11) Root selectivity. (12) 

Existence of a path from a selected artefact to the root. (13) Group cardinality 

satisfaction. (14) Find circular dependencies between the features of a given 

configuration.  

It is worth noting that most of these criteria are overlapped. Sometimes, different 

names are used to refer to the same criterion; for instance, the criteria 6 and 7 are 

complementary, the first four criteria refer to the same thing. Criterion 5 contains 11, 

and 8 contains 12. Besides, conformance checking (to verify if a PLM respects the 

language in which the model is specified) was never handled so far in the context of 

product lines, at least to the best of our knowledge.  

Another observation is that there is no comprehensive approach, i.e., an approach that 

handles all the criteria (or allows to do it) in a consistent way. 

 Q3: What kind of automated support has been proposed? 

All the techniques we found in the literature represent PLMs in another formalism: 

sometimes a conjunctive normal form formula, at other times in an if-then-else 

structure (i.e., BDD), constraint satisfaction problem (CSP), OCL and in-house 
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representations. The goal of these representations is to automate verification using the 

supporting tools: Prolog solver (Mannion & Kaindl 2007), BDD solver (Van der Storm 

2004, 2007; Trinidad et al. 2008) SAT solver (Batory 2005; Metzger et al. 2007, 

Trinidad et al. 2008), Miranda (Broek & Galvão 2009), model checkers such as SMV 

(Zhang et al. 2004), higher-order logic solvers (Janota & Kiniry 2007), CSP solvers 

(Benavides et al. 2005a, 2005b, 2006, 2007, Tinidad et al. 2008) and OCL interpreters 

(Egyed 2006, Vierhauser et al. 2010). 

 Q4: What kind of validation was made and what have been the results? 

Most of the approaches we found in literature were not evaluated. Other approaches 

like (Kim et al. 2011, Benavides et al. 2005a, 2005b, 2006, 2007, Trinidad et al. 2008, 

Lauenroth et al. 2009, Sun et al. 2005) have been evaluated against few and small 

models with promising results. Authors like Yan et al. (2009) have evaluated the 

scalability of their approach, by applying them against a large number of large models 

generated at random. Egyed (2006) and (Vierhauser et al. 2010) validate the 

correctness, scalability and usability of their approaches on real, large models. Our 

literature review reveals that approaches’ validation is commonly handled in three 

ways (i) by calculating theoretical complexity, (ii) by application to small life-like 

models, (iii) by application to large collection of randomles generated models of 

various sizes, and (iv) by application to large real life models. 

 Q5: What are the gaps and challenges to be faced in the future? 

Our analysis is as follows: 

- Two interesting questions arise from the answer corresponding to Q1: can the 

verification approaches originally created for FMs also be used on other notations? 

And if it is possible, then, how to do that? To the best of our knowledge, there is 

not yet an answer to these questions. 

- This brings us to the question of generality: how to verify a PLM independently of 

the language in which the model at hand is represented and for any verification 

criteria? There is virtually generic approach to verify product lines models, and 

generality is not actually demonstrated in a systematic way. 

- A complementary question if that of comprehensiveness. Even if some approaches 

try to deal with this by implementing several verification criteria, there is not yet an 

approach covering all the verification criteria sensed from literature and from 
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industrial needs. This claim is supported by the last literature review on analysis 

and verification of feature models presented by Benavides et al. (2010). 

- How to verify PLMs in a scalable way? The state of the art presented in this 

chapter shows that none of the techniques that we found in literature scales up to 

large models (e.g., 10000 artefacts in less than one second). This last point is 

important from an industrial point of view. A verification approach that does not 

allow the verification of large models in acceptable times is useless for industrial 

practitioners. 
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Chapter 3 

Overview 

 

This chapter provides the overview of the verification approach proposed in this thesis. The 

chapter does not focus on verification itself, but on the process that we propose to make 

product line models verifiable. Overall, the proposed approach is to transform PLMs, usually 

represented graphically, into executable code in order to verify them. In the case of multi-

model product lines, the models in which the product line is represented should be integrated 

in a rich-enough formalism that allows representing the input models and the relationships 

among them in a homogeneous way. In addition, this pivot language should allow the 

automatic verification of the product line model(s).  

The transformation stage is a preparation step that must be applied to the input PLM in 

order to make it verifiable by means of automatic tools. The automatic verification of PLMs 

entails finding several undesirable properties, such as redundant or contradictory information, 

or cases where the model does not respect the language in which it is specified. Automating 

PLM verification has been the subject of intensive research in recent years. Each verification 

approach usually focuses on one or two verification operations applied over a particular 

product line modelling language. The focus has mostly been on properties that strictly map to 

Boolean expressions. This thesis addresses these limitations by relying on Constraint Logic 

Programming (CLP) and Constraint Programming (CP) over finite domains as a pivot 

language to represent PLMs. Once PLMs are represented as constraint logic programs and 

constraint programs, they can be verified in a generic way against a collection of verification 

criteria. Generality is obtained by the transformation rules from different formalisms into CP 

over finite domains. Comprehensiveness is obtained by exploiting a typology of verification 

criteria. That is further explained and detailed in Chapter 4. This typology of verification 

criteria takes into account the fact that a PLM, independently of the language used to express 

it, must respect (i) certain properties associated with the domain of product lines; and (ii) 

certain properties are associated with the fact that each PLM respects the syntax rules of the 

language in which it is expressed. This typology has several advantages. First, from a 

pragmatic point of view, it can be used to select the criteria against which one wants to verify 
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a PLM, e.g., according to the impact that these criteria have or the expected level of quality of 

a particular PLM. Indeed not all the verification criteria have the same impact on the quality 

level of the PLM. For instance, having a product line model that does not allow to configure 

any product is much more critical than having a PLM with a redundant dependency. The 

aforementioned PLM transformation and verification approach is graphically represented in 

Figure 3.1 for the case of a stand-alone PLM like the feature models.  

Feature Model

Verification

Constraint (Logic) Program

Transformation

 

Figure 3.1.  Overview of the verification process of product line models: the case of FMs. 

However, the product line can be represented by means of several models. Thus is the case 

of Dopler models and product lines represented with multiple feature models. When the 

product line is represented by means of different models, their semantics must be transformed 

into CP as a previous stage to integrate and then verify them against the two categories of 

verification criteria presented in this thesis. This process is graphically presented in Figure 3.2 

for the case of Dopler models.  
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Figure 3.2.  Verification scenario for multi-model product lines: the case of Dopler 
models. 
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It is worth noting that certain multi-model formalisms consider in the models themselves 

the integration mechanisms and therefore no new integration strategies are necessary. For 

instance, an integration step is not necessary for the case of Dopler models. That is due to the 

fact that the integration constraints are already considered in the Dopler’s asset model. On the 

contrary, if the modelling formalisms do not consider any integration mechanism in the 

formalisms themselves, the integration step is necessary. That is the case of PLMs that are 

represented by means of several FMs, as in the running example presented in the next section, 

for instance. The verification process of multiple FMs is presented in Figure 3.3. 

Feature Model Feature Model

Constraint (Logic) Program

TransformationTransformation

Verification

Integration

Constraint (Logic) Program

Constraint (Logic) Program

 

Figure 3.3.  Verification scenario for multi-model product lines: the case of FMs. 

This chapter is organized as follows. Section 3.1 presents the running example that will be 

used in the rest of the thesis to illustrate the proposed approach. The example refers to the 

UNIX product line presented in (Mazo et al. 2011c). This product line is specified with two 

FMs using the feature notation presented in Section 3.1.1, and a Dopler model (Dhungana et 

al. 2010) presented in Section 3.1.2, each one representing a particular view of the product 

line. Next, the chapter presents the background information necessary to read this thesis. This 

background includes: (i) the notions of FMs; (ii) the notion of Dopler models; (iii) the 

transformation process of FMs and Dopler models into constraint programs (cf. Section 3.2) 

and constraint logic programs (cf. Section 3.3); and (iv) the integration process of FMs and 

Dopler models (cf. Section 3.4). Section 3.5 presents a discussion about the issues of 

transformation and integration of product line models, which are fundamental aspects of our 

approach to handle generality, comprehensibility, ability to deal with multiple models, 

automation and scalability. Finally, Section 3.6 concludes the chapter. 
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3.1. Running Example 

The example taken in this thesis is the one of the UNIX operating system. UNIX was first 

developed in the 1960s, and has been under constant development ever since. As other 

operating systems, UNIX is a suite of programs that makes computers work. In particular, 

UNIX is a stable, multi-user and multi-tasking system for many different types of computing 

devices such as servers, desktops, laptops, down to embedded calculators, routers, or even 

mobile phones. There are many different versions of UNIX, although they share common 

similarities. The most popular varieties of UNIX are Sun Solaris, Berkeley (BSD), 

GNU/Linux, and MacOS X.  

The UNIX operating system is made up of three parts: the kernel, the shell and the 

programs; and two constituent elements: files and processes. These three parts consist of a 

collection of files and processes allowing interaction among the parts. The UNIX kernel is the 

hub of the operating system: it allocates time and memory to programs and handles the file-

store and communications in response to system calls. The shell acts as an interface between 

the user and the kernel, interprets the commands (programs) typed in by users, and arranges 

for them to be carried out. As an illustration of the way the shell, the programs and the kernel 

work together, suppose a user types rm myfile (which has the effect of removing the file 

myfile). The shell searches the file-store for the file containing the program rm, and then 

requests the kernel, through system calls, to execute the program rm on myfile. The process rm 

removes myfile using a specific system-call. When the process rm myfile has finished running, 

the shell gives the user the possibility to execute further commands.  

As for any product line, our example emphasizes the common and variable elements of the 

UNIX family and the constraints among these elements. This example is built from our 

experience with UNIX operating systems and it does not pretend to be exhaustive, neither on 

the constituent elements nor on the constraints among these elements (the purpose is to have a 

realistic, easy to understand example to illustrate our approach). The example is presented 

with two models. The first model deals with the technical aspects of UNIX; for instance, the 

technical specification of the screen resolution according to the available types of interface. 

The second view is the one of final users; for instance, it looks at which utility programs or 

what kinds of interfaces are available for a particular user. 

We have chosen a series of 12 important characteristics of the UNIX product line and 

sorted them out in these two views. 
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Technical view: 
 
Characteristic 1. UNIX has one KERNEL. 
 
Characteristic 2. Some of the mandatory functions of the KERNEL are:   ALLOCATING THE MACHINE'S MEMORY to each PROCESS  SCHEDULING the PROCESSES   ACCOMPLISHING THE TRANSFER OF DATA from one part of the machine to 

another 
 
Characteristic 3. UNIX can have several PROCESSES (or none) for each user. The 

collection of PROCESSES varies even when the UNIX product is full-configured. For the 
sake of presentation, this thesis will consider only five processes. 

 
Characteristic 4. UNIX offers a logical view of the FILE SYSTEM. A FILE SYSTEM is 

a logical method for organising and storing large amounts of information in a way that 
makes its management easy.  
 

Characteristic 5. The KERNEL is composed of static or dynamic software modules. If 
the kernel was compiled for a specific hardware platform and cannot be changed, it is 
called a static Kernel. If the Kernel has the ability to dynamically load modules so that it 
can 'adapt' to a platform, it is called a dynamic Kernel. For instance, the modules 
SUPPORT_USB, CDROM_ATECH, and PCMCIA_SUPPORT cannot be charged, can be 
charged in a static way or can be charged in a dynamic way.  
 

Characteristic 6. The SHELL is a command interpreter; it takes each command and 
passes it to the KERNEL to be acted upon. 
 

Characteristic 7. The GRAPHICAL interface is characterized by a WIDTH 
RESOLUTION and a HEIGHT RESOLUTION that can have the following couples of 
values [800,600], [1024,768] and [1366,768]. 

 
User view: 
 
Characteristic 8. UNIX can be installed or not and the installation can be from a 

CDROM, a USB device or from the NET.  
 

Characteristic 9. UNIX provides several hundred UTILITY PROGRAMS for each user. 
The collection of UTILITY PROGRAMS varies even when the UNIX product is full-
configured. 
 

Characteristic 10. The SHELL is a kind of UTILITY PROGRAM. Different USERS may 
use different SHELLS. Initially, each USER has a default shell, which can be overridden 
or changed by users. Some common SHELLS are:  Bourne shell (SH)  TC Shell (TCSH)  Bourne Again Shell (BASH) 
For the sake of simplicity this thesis will consider only two users in this running example: 
ROOT_USER and GUEST_USER. 
 

Characteristic 11. Some functions accomplished by the UTILITY PROGRAMS are:  EDITING (mandatory and requires USER INTERFACE) 
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 FILE MAINTENANCE (mandatory and requires USER INTERFACE)  PROGRAMMING SUPPORT (optional and requires USER INTERFACE)  ONLINE INFO (optional and requires USER INTERFACE) 
 
Characteristic 12. The USER INTERFACE can be GRAPHICAL and/or TEXTUAL.  

3.1.1 Representation of the Running Example with a Feature Notation 

A FM defines the valid combinations of features in a PL, and is depicted as a graph-like 

structure in which nodes represent features, and edges the relationships between them (Kang et 

al. 2002). We use extended feature models, i.e., feature models with individual cardinality (cf. 

Process in Figure 3.5), group cardinalities for bundles of features (cf. Cdrom, Usb and 

Net in Figure 3.6) and attributes (cf. WithResolution in Figure 3.5). We use the 

semantics of (Schobbens et al. 2007) combined with that of cardinality-based feature models 

as proposed by (Michel et al. 2011). The resulting metamodel used in this thesis is depicted in 

Figure 3.4 using the UML notation. According to this metamodel, a feature model is 

composed of at least two features, one of them must be the root feature, and one or more 

dependencies that relates two features in a given order (i.e., from to indicate the beginning of 

the dependency and to to indicate the end of the dependency). 

attribute

Name: {unique}

Domain

groupCardinality

Min

Max

feature

Feature Model

root

mandatoryoptional excludesrequires

0..*
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0..*

1

2..*
1..*
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{complete, disjoint}
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1
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Figure 3.4.  Cardinality and attribute-based feature model metamodel. 

Two instances of this metamodel are presented in Figures 3.5 and 3.6, which correspond to 

the models of our UNIX running example presented above. The elements of the FM 

metamodel of Figure 3.4 are presented and exemplified by means of the following definitions: 
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Definition 3.1: Feature 

A feature is a prominent or distinctive user-visible aspect, quality, or characteristic of a 

software system (Kang et al. 1990) and has a name (Name). For the sake of simplicity features 

are usually identified in FMs, e.g. their name of the feature; for instance Kernel in Figure 

3.5. Every FM must have one root, which is called root feature and identifies the product line; 

for example UNIX in Figures 3.5 and 3.6. Feature names are unique in each model. However, 

two models can have two different features with the same name. 

Definition 3.2: Feature cardinality 

Usually, a feature cardinality is represented as an interval [Min..Max], with Min as 

lower bound and Max as upper bound limiting the number of instances of a particular feature 

that can be part of a product. Each instance is called a clone. For instance in Figure 3.5, feature 

Process is constrained by a [0..*] cardinality where * is an undefined Integer number 

greater or equal than Min. 

Definition 3.3: Attribute in feature models 

Attributes in feature models are specific measurable characteristics of a feature. Although 

there is no consensus on a notation to define attributes, most proposals agree that an attribute 

is a variable with a name (Name), a domain (Domain), and a value (consistent with the 

domain) at a given configuration time. For instance in Figure 3.5, WidthResolution and 

HeightResolution are two attributes with a domain determined by the constraint at the 

bottom of the model. 

Definition 3.4: Mandatory dependency in feature models 

Given two features F1 and F2, F1 father of F2, a mandatory relationship from F1 to F2 

means that if the F1 is selected, then F2 must be selected too, and vice versa. For instance in 

Figure 3.5, features UNIX and Kernel are related by a mandatory relationship. 

Definition 3.5: Optional dependency in feature models 

Given two features F1 and F2, F1 father of F2, an optional relationship from F1 to F2 

means that if F1 is selected, then F2 can be selected or not. However, if F2 is selected, then 

F1 must also be selected. For instance in Figure 3.5, features UNIX and UserInterface 

are related by an optional relationship. 

Definition 3.6: Requires dependency in feature models 
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 Given two features F1 and F2, F1 requires F2 means that if F1 is selected in product, 

then F2 has to be selected too. Additionally, it means that F2 can be selected even when F1 is 

not. For instance, Shell requires ExecutingInstructions (cf. Figure 3.5) and 

Editing requires UserInterface (cf. Figure 3.6). The difference between a requires and 

an optional dependency is that in the requirement, if F2 is selected, F1 must be selected too, 

which is not the case in requirements. 

Definition 3.7: Exclusion dependency in feature models  

Given two features F1 and F2, F1 excludes F2 means that if F1 is selected then F2 cannot 

be selected in the same product. This relationship is bi-directional: if F2 is selected, then F1 

cannot be selected in the same product. 

Definition 3.8: Group cardinality in feature models 

Usually, a group cardinality is an interval denoted <n..m>, with n as lower bound and m 

as upper bound and is associated with a collection of optional dependencies that originate from 

the same features. Group cardinalities help limiting the number of child features that can be 

part of a product when their common parent feature is selected. For instance in Figure 3.6, 

Cdrom, Usb and Net are related in a <1..1> group cardinality, which means that only one 

of these options can be selected in a UNIX configuration.  

Figure 3.5 depicts the model of some technical aspects of a UNIX operating system family. 

This model represents a UNIX product line in which each derived operating system must have 

one kernel, one or several shell applications, one file system, a certain number of processes 

and, optionally, one graphical user interface with a width and height resolution respecting the 

constraint at the bottom of the model. The kernel must ensure certain operations related with 

the machine’s processor scheduling, the interpretation and execution of instructions coming 

from the shell, accomplishing the transfer or data and allocating the machine’s memory. The 

objective of this model is not to be exhaustive in the reusable elements of an UNIX system, 

but to provide a real and easy running example to develop the concepts of this thesis. 
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Figure 3.5.  Technical model of the UNIX operating system family of our running example 

Figure 3.6 provides the feature model that specifies the characteristics of our running 

example that are related with the final-user view of a UNIX product line. 
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Figure 3.6.  User model of the UNIX operating system family of our running example 
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As shown in Figure 3.6, a user has the possibility to install a UNIX system from one of the 

following supports: a CD ROM, a USB device or a network. In addition, users have the 

possibility to install or not utility programs for file maintenance, editing, online access, and 

user interface. The user interface may be graphical or command-line (Shell) based; there are 

three options for the command-line interface: SH, TCSH and BASH. The utility programs for 

the user interface, online information and programming support are specified with optional 

features. 

3.1.2 Representation of the Running Example with the Dopler Language 

The Decision-oriented (Dopler) variability modeling language focuses on product derivation 

and aims at supporting users configuring products. In Dopler variability models (Dhungana et 

al. 2010a; 2010b), the product line’s problem space is defined using decision models whereas 

the solution space is specified using asset models. Decisions can be of four types: Boolean, 

Integer, String or Enumeration. Decisions (from the decision model) and assets (from the asset 

model) are related by means of inclusion conditions. Decisions are related by means of 

hierarchical and logical dependencies, and assets are related by means of functional and 

structural dependencies. The most important concepts in the Dopler modeling language are 

presented in (Dhungana et al. 2010b) and reproduced in Figure 3.7. 
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Figure 3.7.  The core meta-model of Dopler modeling language, taken from (Dhungana et al. 
2010b). 

An example of Dopler model is presented in Figure 3.8. This figure depicts the installation 

of a UNIX operating system (decision model) and the associated packages (asset model) that 

can be selected if the UNIX system is installed with a graphical interface. The decision model 
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is composed of four decisions. The first decision proposes to choose the three ways to install a 

UNIX operating system (from a CD ROM, from a USB or from the Net). This decision 

impacts the second decision, in which the user must select the utility programs to be installed 

in the particular UNIX system. In that regard, five utility programs are proposed: editing tool, 

file maintenance tool, programming tool, online information tool and shell. If the choice 

contains the utility program for online information, the user must decide what kind of 

graphical resolution will be configured and several choices are proposed: 800x600, 

1024x768, 1366x768. The choice of width and height resolution has several decision 

effects. For instance, Figure 3.8 indicates that if(GraphicalResolution==800x600) 

then Width=800. To finish, the allocation of values for the width and height resolution 

must respect a certain number of conditions, such as: Width ≥ 800 and Width ≤ 1366. 

The asset model is composed of seven graphical user interfaces and libraries that can be used 

in a UNIX graphical interface. The Tab Window Manager asset is available for all UNIX 

implementations with a graphical interface and requires the asset Motif; the other assets are 

optional. The IRIS 4d window manager is based on Mwm and Motif and therefore 

requires all of them in order to work in the same way as the KDE asset requires the Qt 

widget toolkit to work. 

Decision model Asset model 

Figure 3.8.  Example of Dopler Model: Installation of a UNIX System 

Tab Window Manager  

(name: Twm; inclusion condition: inclusion(Utility program, 

“OnlineInfo”)) 

Requires  Contributes_to 

Motif toolkit 

(name: Motif) 

Motif Window Manager  

(name: Mwm)  

IRIS 4d window manager  

(name: 4dwm) 

Qt widget toolkit 

(name: Qt)  

K Desktop Environment  

(name: KDE)  

GNU Network Object Model Environment  

(name: GNOME) 

How to install? 

(name: Means of installation; expected val 1:1: 

{“Cdrom”, “Usb”,  “Net”}) 

Which utility programs? 

(name: Utility program; expected val 1:5: {“Editing”, 

“FileMaintenance”, “ProgrammingSupport”, “OnlineInfo”, “Shell”}) 

Default resolution? 

(name: GraphicalResolution; 

expected val 1:1: {“800x600”, 

“1024x768”, “1366x768”}) 

isTaken(Means of installation) 

Width? 

(name: Width; 
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In Dopler, a decision model consists of a set of decisions of utility programs (e.g., Which 

utility programs? with attributes, e.g. name and expected values) and dependencies 

among them (the Visibility condition isTaken(Means of installation) forces to 

make the decision Utility program if the decision Means of installation is 

taken). The Assets model permit the definition of an abstract view of the solution space, to the 

degree of details needed for subsequent product derivation. Decisions and assets are linked 

with inclusion conditions defining traceability from the solution space to the problem space 

(e.g., the asset Tab Window Manager must be included in the solution space if the option 

OnlineInfo of the decision Utility program is selected in a particular configuration). 

In our example, these inclusion conditions are specified as constraints that are added to the 

collection of constraints representing the decision and asset models. Adding these constraints 

integrates, both viewpoints of the PL, and the model is ready to be verified against the 

typology of verification criteria presented in this chapter. 

3.2. Transforming the Semantics of PLMs into Constraint 

Programs 

Constraint Programming (CP) emerged in the 1990’s as a successful paradigm to tackle 

complex combinatorial problems in a declarative manner (Van Hentenryck 1989). It is at the 

crossroads of combinatorial optimization (operations research), constraint satisfaction 

problems (artificial intelligence), declarative programming language (logic and concurrent 

programming) and satisfiability (SAT) problems (Boolean constraint solvers). CP extends 

programming languages with the ability to deal with logical variables of different domains 

(e.g. Integers, Reals, Booleans, ...) and specific declarative relations between these variables 

called constraints (e.g. arithmetic constraints, symbolic constraints, …). A constraint is a 

logical relationship among several variables, each one taking a value in a given domain of 

possible values. A constraint thus restricts the possible values that variables can take. A 

Constraint Satisfaction Problem (CSP) is defined as a triple (X, D, C), where X is a set of 

variables, D is a set of domains, i.e. finite sets of possible values (one domain for each 

variable), and C a set of constraints restricting the values that the variables can 

simultaneously take. In modern CP languages (Diaz & Codognet 2001, Schulte & Stuckey 

2008), many different types of constraints exist and are used to represent real-life problems: 

arithmetic constraints (e.g. X + Y < Z), symbolic constraints e.g.  
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 atmost(N, [X1,X2,X3],V), meaning that at most N variables among [X1, 

X2, X3] can take the value V), 

 global constraints (e.g. all_different(X1, X2, ··· , Xn), meaning that 

all variables should have different values), 

  reified constraints allowing the user to reason about the truth-value of a constraint. 

Solving constraints consists of reducing the variable domains by propagation techniques 

(Bessiere 2006) and then finding values for each constrained variable in a labelling phase. 

This is achieved by iteratively grounding variables (fixing a value for a variable) and 

propagating its effect onto other variable domains (by applying again the same propagation-

based techniques).  

This thesis uses the notion of CP in order to represent the semantics of product line models 

with the purpose of verifying them by using an existing constraint solver or integrate different 

models into a single program. The transformation of feature models and Dopler models into 

constraint programs are presented in the following sections. Both cases are illustrated with the 

corresponding models of our running example. 

3.2.1 Transforming Feature Models into Constraint Programs 

It has been shown that Feature-Oriented Domain Analysis (FODA, cf. Kang et al. 1990) 

models can be represented as Boolean constraint programs through a series of Boolean 

variables, where each variable corresponds to a feature (Benavides et al. 2005), (White et al. 

2008). Literature review shows that most existing approaches transform existing PLMs into 

Boolean constraint program. We believe that this approach hinders the full exploitation of the 

versatility of CP; for instance, the possibility to specify more complex requirements than 

select/de-select a feature, or to make more complex analyses and verification operations 

(Salinesi et al. 2010a, 2010b, 2011, Mazo et al. 2011a). We recall that this thesis uses the 

semantics of cardinality-based FMs proposed by Michel et al. (2011). 

To fill that gap, our thesis is that the following rules can be used to transform FMs into 

constraint programs over finite domains: 

 Each feature is represented as a Boolean (0,1) CP variable. 

 Each attribute is represented as a CP variable, the domain of the attribute belongs to the 

domain of the CP variable. 

 Each feature cardinality [m..n] determines (i) a collection of n variables associated 

to the feature of which this cardinality belongs; and (ii) a constraint restricting the 
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minimum (m) and the maximum (n) number of variables that can belong to a product in 

a certain moment.   

 The domain of a variable is a finite collection of Integer values. When a variable takes 

the value of zero, it means that the variable is not selected. When a variable takes 

another value of its domain (different to zero), the variable is considered as selected.  

 Every relationship is implemented as a constraint. 

And the components of the FMs can be transformed by means of the following 

transformation rules: 

 Feature cardinality: let P be a feature with a feature cardinality [m, n], then we 

create a CP variable P, a collection of n CP variables, one for each possible clone of P 

and an association between P and each of its clones. It is: P ∈ {0,1} ∧ ∀i ∈ [1..݊] ∙ P୧ ∈
{0,1} ⋀(P୧ ⇒ P) . Which comes down to:  m ∗ P ≤ ∑ P୧௡௜ୀଵ  ≤ n ∗ P 

 Mandatory: let P and C be two features, where P is the father of C in a mandatory 

dependency. This constraint can be represented in a generic way (independently of the 

domain of P and C) as follows: 

P ⇔ C which, for P and C Boolean features, is equivalent to C = P 
 Optional: let P and C be two features, where P is the father of C in an optional 

dependency. This constraint can be represented in a generic way (independently of the 

domain of P and C) as follows: 

C ⇒ P which, for P and C Boolean features, is equivalent to C ≤ P 
 Requires: let P and C be two features, where P requires C. If P has a feature cardinality 

[m..n] with ∀୧ୀଵ୬ P୧ ∈ {0,1} clones of P, the constraint is: ⋀௜ୀଵ௡ P୧ ⇒ C. If P does not 

have feature cardinality, the equivalent constraint is: P ⇒ C, which means that if P is 

selected, C has to be selected as well, but not vice versa.  

 Exclusion: let P and C be two features, where P excludes C. If P has a feature 

cardinality [m..n] with ∀୧ୀଵ୬ P୧ ∈ {0,1} clones of P, the constraint is: ⋀୧ୀଵ୬ P୧ ∗ C= 0. 

If P does not have feature cardinality, the equivalent constraint is: P * C = 0. If P 

and C are Boolean features, the equivalent constraint is: ⋀୧ୀଵ୬ P୧ + C ≤ 1. This means 

that both P and C cannot be selected simultaneously.  

 Group cardinality: let C1, C2,...,Ck be features with a non-negative integer 

domain, with the same parent P, and <m, n> the group cardinality boundaries. The 

equivalent constraint implies that each feature C1, C2,...,Ck set to one a Boolean 
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variable BoolC୧ ∈ {0,1} each time that the feature takes a value different to 0 (i.e. the 

feature is selected) : ⋀୧ୀଵ୩ C୧ ⇔ BoolC୧ ∧ m ∗ P ≤ ∑ BoolC୧ ≤ n ∗ P୩୧ୀଵ .  

When P, C1, C2,...,Ck are features with domain {0,1}, the CP representation of 

the group cardinality dependency can be optimized as follows: m ∗ P ≤ ∑ C୧ ≤ n ∗ P୩୧ୀଵ  

 It means that at least m and at most n children features must be selected. Note that the 

dependencies of C1, C2,...,Ck with their parent are constrained by means of the 

optional dependency, or by the feature cardinality constraint in cases where a child 

feature has an individual cardinality. 

The following CP corresponds to the first FM of our running example (cf. Figure 3.5). This 

CP was obtained by means of the aforementioned transformation rules applied over the model 

of Figure 3.5. A complete transformation of our running example of extended feature models 

into CP is presented in Mazo et al. (2011e). 

[UNIX, Kernel, Scheduling, ExecutingInstructions, 
InterpretingInstructions, AccomplishingTheTransferOfData, 
AllocatingTheMachinesMemory, Shell, FileSystem, 
UserInterface, Graphical, Process] ∈ {0, 1} ⋀ 
[WidthResolution] ∈ {0, 800, 1024, 1366} ⋀ 
[HeightResolution] ∈ {0, 600, 768} ⋀ 
[Support_usb, Cdrom_atech, Pcmacia_support] ∈ {0,1,2} ⋀ 
[BoolSupport_usb, BoolCdrom_atech, BoolPcmacia_support] ∈ 
{0, 1} ⋀ 
 
UNIX = 1 ⋀ 
UNIX = Kernel ⋀ 
 
Kernel = AllocatingTheMachinesMemory ⋀ 
AllocatingTheMachinesMemory  Process ⋀ 
 
Kernel = Scheduling ⋀ 
Scheduling  Process ⋀ 
Kernel = AccomplishingTheTransferOfData ⋀ 
AccomplishingTheTransferOfData  Process ⋀ 
 
Shell  InterpretingInstructions ⋀ 
Kernel = InterpretingInstructions ⋀ 
Shell  ExecutingInstructions ⋀ 
Kernel = ExecutingInstructions ⋀ 
 
Support_usb  BoolSupport_usb ⋀ 
Cdrom_atech  BoolCdrom_atech ⋀ 
Pcmacia_support  BoolPcmacia_support ⋀ 
0 ≤ BoolSupport_usb + BoolCdrom_atech + 
BoolPcmacia_support ≤ 3*Kernel ⋀ 
 
UNIX = Shell ⋀ 
UNIX = FileSystem ⋀ 
UNIX ≥ UserInterface ⋀ 
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UserInterface = Graphical ⋀ 
Graphical=1  (WidthResolution=W1 ⋀ HeightResolution=H1)⋀ 
Graphical = 0  (WidthResolution=0 ⋀ HeightResolution=0)⋀ 
fd_relation([[800,600], [1024,768], [1366,768]], [W1,H1])⋀ 
 
UNIX ≥ Process ⋀ 
R1 = Process1 + Process2 + Process3 + Process4 + Process5⋀ 
Process ≤ R1 ≤ Process*5 
 

The second FM of the running example, cf. Figure 3.6, was transformed into the following 

CP by means of the aforementioned transformation rules applied over the model of Figure 3.6. 

[UNIX, Cdrom, Usb, Net, UtilityProgram, FileMaintenance, 
Editing, OnlineInfo, ProgrammingSupport, UserInterface, 
Shell, SH, TCSH, BASH] ∈ {0, 1} ⋀ 

 
UNIX = 1 ⋀ 
UNIX = Cdrom + Usb + Net ⋀ 
UNIX ≥ UtilityProgram ⋀ 
UtilityProgram = FileMaintenance ⋀ 
FileMaintenance  UserInterface ⋀ 
UtilityProgram = Editing ⋀ 
Editing  UserInterface ⋀ 
UtilityProgram ≥ UserInterface ⋀ 
UtilityProgram ≥ OnlineInfo ⋀ 
OnlineInfo  UserInterface ⋀ 
UtilityProgram ≥ ProgrammingSupport ⋀ 
ProgrammingSupport  UserInterface ⋀ 
UserInterface ≤ Graphical + Shell ≤ UserInterface*2 ⋀ 
R2 = SH + TCSH + BASH ⋀ 
Shell ≤ R2 ≤ Shell*3 

3.2.2 Transforming Dopler Models into Constraint Programs 

To represent Dopler models as constraint programs, we first need to identify the Dopler model 

elements defining the variability of a product line. For instance, attributes (such as the 

description attribute of an asset or a decision) do not affect variability and can thus be ignored 

in the constraint representation. The representation of Dopler models as constraint programs 

hence has the following properties (Mazo et al. 2011a): 

 Each decision is represented as a CP variable 

 Each asset is represented as a CP variable. 

The domain and semantics of variables that represent decisions is as follows: 

 Let D be a decision with a visibility condition. If the visibility condition indicates that 

the decision is not visible, the corresponding variable is assigned with zero (0). If the 

visibility condition is a formula, the variable representing the decision is assigned with 

that particular formula. If the visibility condition indicates that the decision is always 
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visible, the variable representing the decision is affected with one (1). If the visibility 

condition of the decision D is not defined, its domain is {0,1}. 

 For Number and String decisions the validity condition becomes the domain of 

variables representing these decisions. The domains of all variables are finite and must 

be composed of Integer values. 

 The domain of Boolean and Enumeration decisions is mapped to a {0,1} domain. Zero 

indicates that nothing is selected and 1 indicates the selection of the associated variable. 

 The domain of assets is mapped to a {0, 1} domain. If the variable representing an asset 

takes the value 0 in a configuration process it means that the asset is not included. If it 

takes the value 1, the asset will be included in a derived product.  

 Asset dependencies are described as constraints. 

 Decisions, assets, and dependencies among them can be mapped into CPs by using the 

following rules. 

o Decision type and validity condition: Let D be a decision, type be its type and valc 

its validity condition. If D.type = Boolean or Enumeration then the equivalent 

constraint is D ∈ {0, 1}. If D.type = Number or String then the equivalent constraint 

is D ∈ valc. Note that the validity condition of String decisions must be previously 

represented as Integer values. For example, a String decision with validity condition 

valc = {Sunday, Monday, Tuesday} can be represented as valc={1, 2, 3}, where 1 

means Sunday, etc. If D.type = Enumeration, let <m, n> be its cardinality and 

DOpt1, DOpt2, ..., DOpti, a set of i decision options grouped in cardinality <m, n>. 

Then the corresponding constraint is: DOpt1 ∈ {0, 1} ⋀ DOpt2 ∈ {0, 1}⋀, ..., DOpti ∈ {0, 1} ⋀ D ⇔ m ≤ DOpt1 + DOpt2 + ...+ DOpti ≤ n. Which is equivalent to m*D ≤ 

 DOpti ≤ n*D 

o Visibility condition: Let D be a decision and visc its visibility condition. If visc = 

false then D = 0. If visc = true then D =1. If visc is a different expression, then the 

corresponding constraint is: D ⇒ visc. Note that a visibility condition (i.e., visc) can 

be true, false or depending on one or more decisions and their values (e.g., 

scope==“assemble yourself” or isTaken(scope)). 

o Decision Effects: Let D be a decision and df its decision effect. The corresponding 

constraint is: D ⇒ df. 

o Asset Inclusion Conditions: Let A be an asset and ic its inclusion condition. The 

corresponding constraint is: A ⇒ ic. 
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o Asset Dependencies: Let A be an asset, ad its dependency and type its type. If type 

is “requires”, the corresponding constraint is: A ⇒ ad. If type is “excludes”, the 

corresponding constraint is: A * ad = 0. This means that if A is selected (equal to 1), 

ad must not be selected (must be equal to 0) and vice-versa. Currently, we do not 

take into account other types of asset dependencies (like parent or child). 

The Dopler model of the running example, cf. Figure 3.8, is formed into the following CP 

by means of the aforementioned transformation rules.  

Decision Model: 
 
[MeansOfInstallation, Cdrom, Usb, Net, UtilityProgram, 
FileMaintenance, Editing, OnlineInfo, ProgrammingSupport, 
Shell, GraphicalResolution] ∈ {0, 1} ⋀ 
[Width] ∈ {0, 800, 1024, 1366} ⋀ 
[Height] ∈ {0, 600, 768} ⋀ 
 
MeansOfInstallation = Cdrom + Usb + Net ⋀ 
MeansOfInstallation  UtilityProgram ⋀ 
 
R1 = Editing + FileMaintenance + ProgrammingSupport + 
OnlineInfo + Shell ⋀ 
UtilityProgram ≤ R1 ≤ UtilityProgram*5 ⋀ 
 
OnlineInfo  GraphicalResolution ⋀ 
GraphicalResolution = 1  (Width=W1 ⋀ Height=H1) ⋀ 
GraphicalResolution = 0  (Width=0 ⋀ Height=0) ⋀ 
fd_relation([[800,600], [1024,768], [1366,768]], [W1,H1])⋀ 
 
Asset Model: 
 
[OnlineInfo, ATwm, A4dwm, AMwm, AMotif, AKDE, AQt, AGNOME] ∈ 
{0, 1} ⋀ 
 
OnlineInfo  Twm ⋀ 
A4dwm  ATwm ⋀ 
A4dwm  AMotif ⋀ 
A4dwm  AMwm ⋀ 
AMwm  AMotif ⋀ 
AKDE  ATwm ⋀ 
AKDE  AQt ⋀ 
AGNOME  ATwm 

3.3. Implementing the Structure of PLMs into Constraint 

Logic Programs by Transformation 

Constraint Logic Programming (CLP, cf. Apt & Wallace 2006) represents a successful attempt 

to merge the best features of logic programming and constraint programming. On the one 

hand, logic programming is based on the idea that (a subset of) first order logic can be used 
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for computing.  Logic programming is concerned with the correct statement of a problem, by 

this reason the program should state what is true about the problem, not how to solve it 

procedurally. On the other hand, constraint programming is a programming paradigm wherein 

relations between variables are stated in the form of constraints. Constraint programming 

differs from the imperative programming languages in that it does not specify a step or 

sequence of steps to execute, but rather the properties of a solution to be found. 

These two concepts allow the development of the CLP paradigm, where constraints are 

embedded in the logic programming paradigm. The main goal is to maintain a declarative 

programming paradigm while increasing expressivity and efficiency via the use of specific 

constraint sorts and algorithms. In other words, a CLP clause is just like a logic programming 

clause, except that its body may also contain constraints of the considered sort. For example, if 

one can use linear inequations over Reals, a CLP clause could be: 

p(X,Y) :-  
       X < Y+1,  
       q(X),  
       r(X,Y,Z). 

Logically speaking, this clause states that p(X,Y) is true if q(X) and r(X,Y,Z) are 

true, and if the value of X is smaller than that of Y + 1. 

Several notations exist to represent CLPs (Colmerauer 1982, Jaffar & Lassez 1987). In this 

thesis, we use the CLP language GNU Prolog (Diaz & Codognet 2001) and its associated 

solver, in order to represent and solve the constraint logic programs of this thesis, and then 

reason over it. 

Now, let us return to the subject of this thesis: verification or product line models, and 

specifically to the transformation of PLMs into CLP, which is the subject of this section. It is 

well known that a metamodel defines the abstract syntax of a language, i.e. concepts and the 

nature of their relationships (constraints on the structure of its instances), therefore the 

structure of a PLM is represented in its metamodel. Thus, from a syntax point of view, a PLM 

is a set of variables and dependencies among them, which are each one instance of an element 

defined in the corresponding metamodel (OMG 2003). 

The particular aim of the abstract syntax transformation consists in verifying the 

conformance of the transformed model with its corresponding metamodel. This process is 

presented in the next section for the case of feature models. 

3.3.1 Transforming Feature Models into Constraint Logic Programs 
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The FM metamodel that we use in this thesis is presented in Figure 3.4 as a UML class 

diagram. Adopting this metamodel rather than other ones allowed us to validate our approach 

against the FMs from the SPLOT benchmark (Mendonça et al. 2009a), which use the concepts 

of cardinalities (Czarnecki et al. 2005) and attributes (Benavides et al. 2005b). The former 

adaptation was also necessary to deal with FMs developed from our experience with industrial 

partners. Due to the fact that a metamodel represents the abstract syntax of a language; the 

instantiation process of models from the metamodel can be used to keep the syntax of the 

language in each model. To automate this process we propose to represent the components of 

the FM metamodel (cf Figure 3.4) as meta-facts as follows:  

(1) feature(IdFeature, Name, IdAttributes).  
(2) root(IdFeature). 
(3) attribute( IdAttribute, Name, Domain). 
(4) dependency(IdDependency, IdFeature1, IdFeature2). 
(5) optional (IdDependency). 
(6) mandatory (IdDependency). 
(7) requires(IdDependency). 
(8) excludes(IdDependency).  
(9) groupCardinality(IdDependencies, Min, Max). 
(10) featureCardinality(IdFeature, Min, Max). 

In the metamodel depicted in Figure 3.4 FM’s elements are modeled by meta-classes, and 

relationships between these elements are modelled by meta-associations. In CLP, FM’s 

elements and its links are called meta-facts and are implemented as CLP facts. In other words, 

a meta-fact is the CLP structure that represents a fact.  In order to define a meta-fact; it is 

necessary to define its name, its parameters and its arity (in case of equal names, the number 

of parameters make two meta-facts different). For instance, the metafact of the line 1 has the 

name: feature, and three parameters: IdFeature, Name, IdAttributes. The 

mapping between the FM metamodel and the aforepresented meta-facts (lines 1 to 10) are 

explained in the rest of this section. It is worth noting that each meta-fact has an identifier, 

even if they make not part of the metamodel. This decision is purely technical; the aim is to 

improve the implementation efficiency due to the fact that identifiers are numbers, which 

allows more performant implementations (e.g., in Prolog, sorting a list of numbers is less time 

consuming than sorting a list of words).  

Each meta-fact has a parameter that uniquely identifies each instance of the meta-fact. 

Identifiers are represented as strings (Prolog’s atoms) and the references to other FM’s entities 

are represented as lists of identifiers; in both cases, the name of the corresponding variable is 

preceded by the label Id.  

Meta-fact 1: feature(IdFeature, Name, IdAttributes). 
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Name is a string representing the feature’s name and IdAttributes is a list of attribute 

identifiers [IdAtt1,...,IdAttN], where [] represents an empty list. 

Meta-fact 2: root(IdFeature). 

The root feature (i.e., UNIX in Figures 3.5 and 3.6) identifies the product line. In this meta-

fact the attribute IdFeature references to the root feature.   

Meta-fact 3: attribute(IdAttribute, Name, Domain). 

An attribute has an identifier, a name and a domain. Name is a string representing the name 

of the attribute instantiated with this meta-fact. Domain is a collection of values that the 

attribute can take. For example [read] means that the value of the corresponding attribute 

can only be read; [1..5] means that the value of the corresponding attribute can be an 

Integer between 1 and 5; [integer] means that the value of the corresponding attribute 

must be an integer.  

Meta-fact 4: dependency(IdDependency,IdFeature1,IdFeature2). 
Meta-fact 5: optional(IdDependency). 
Meta-fact 6: mandatory(IdDependency). 
Meta-fact 7: requires(IdDependency). 
Meta-fact 8: excludes(IdDependency).  

Dependencies between two features are represented by the meta-fact 4. In this meta-fact, 

IdFeature1 and IdFeature2 respectively represent the identifiers of the initial and 

target features involved in the dependency. Dependencies can be of four types:  mandatory, 

optional, requires, or excludes, respectively represented by meta-facts 5, 6, 7 and 8. 

Each meta-fact from 5 to 8 references the corresponding dependency. For example, an 

optional dependency references the corresponding dependency having the identifiers of the 

parent and child features (IdFeature1 and IdFeature2 respectively) intervening in the 

optional dependency. In requires dependencies IdFeature1 is the requiring feature and 

IdFeature2 represents the required feature. 

Meta-fact 9: groupCardinality(IdDependencies, Min, Max). 

Group cardinality is a relationship between several features constrained by a Min and a Max 

value. Group cardinalities can be represented by instantiation of meta-fact 9, where 

IdDependencies is a list of dependency’s identifiers related in the group cardinality. 

Meta-fact 10: featureCardinality(IdFeature, Min, Max). 

Feature cardinality is represented as a sequence of intervals [Min..Max] determining the 

lower (Min) and upper (Max) number of instances of a particular feature that can be part of a 
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product. In meta-fact 10, IdFeature is the identifier of the feature to which the individual 

cardinality belongs. 

The relationship between the meta-fact and the derived facts respects the basic principle of 

meta-modeling. In our case, the instantiation of a meta-fact consists of giving constant values 

to the parameters of this meta-fact. We show this instantiation with  the user model of the 

UNIX operating system family (cf. Figure 3.6). Note that in the following representation of 

the UNIX systems as CLP facts, each feature, attribute and dependency, is identified by a 

sequential number preceded by the prefix fea, att and dep, respectively. 

 
(1) root(fea1).  
(2) feature(fea1, 'UNIX',[]).  
(3) feature(fea2, 'Cdrom', []).  
(4) feature(fea3, 'Usb', []).  
(5) feature(fea4, 'Net', []).  
(6) feature(fea5, 'UtilityProgram', []).  
(7) feature(fea6, 'FileMaintenance', []).  
(8) feature(fea7, 'Editing', []).  
(9) feature(fea8,  'UserInterface', []).  
(10) feature(fea9, 'Graphical', []). 
(11) feature(fea10, 'Shell', []).  
(12) feature(fea11, 'SH', []).  
(13) feature(fea12, 'TCSH', []). 
(14) feature(fea13, 'BASH', []).   
(15) feature(fea14, 'OnlineInfo', []).  
(16) feature(fea15, 'ProgrammingSupport', []).  
(17) dependency(dep1, fea1, fea2).  
(18) dependency(dep2, fea1, fea3). 
(19) dependency(dep3, fea1, fea4). 
(20) dependency(dep4, fea1, fea5).  
(21) dependency(dep5, fea5, fea6).  
(22) dependency(dep6, fea5, fea7).  
(23) dependency(dep7, fea5, fea8).  
(24) dependency(dep8, fea8, fea9). 
(25) dependency(dep9, fea8, fea10). 
(26) dependency(dep10, fea10, fea11). 
(27) dependency(dep11, fea10, fea12). 
(28) dependency(dep12, fea10, fea13). 
(29) dependency(dep13, fea5, fea14). 
(30) dependency(dep14, fea5, fea15). 
(31) dependency(dep15, fea8, fea16). 
(32) dependency(dep16, fea8, fea17). 
(33) dependency(dep17, fea8, fea18). 
(34) dependency(dep18, fea8, fea8). 
(35) optional(dep1).  
(36) optional(dep2).  
(37) optional(dep3).  
(38) mandatory(dep4).  
(39) mandatory(dep5).  
(40) mandatory(dep6).  
(41) optional(dep7). 
(42) optional(dep8). 
(43) optional(dep9). 
(44) optional(dep10). 
(45) optional(dep11). 
(46) optional(dep12).  
(47) optional(dep13). 
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(48) optional(dep14). 
(49) requires(dep15) 
(50) requires(dep16).  
(51) requires(dep17). 
(52) requires(dep18). 
(53) groupCardinality([dep1,dep2, dep3], 1, 1). 
(54) groupCardinality([dep8,dep9], 1, 2).  
(55) groupCardinality([dep10,dep11, dep12], 1, 3).  
 

Lines 1 and 2 define the root feature UNIX with no attributes. Lines 3 to 16 define the rest 

of the features with no attributes. Lines 17 to 34 define the collection of dependencies on the 

model. The nature of these dependencies is declared from lines 35 to 52. Line 53 defines the 

group cardinality <1..1> for dependencies among the root feature UNIX and features Cdrom, 

Usb and Net. Line 54 defines the group cardinality between the relationships identified by the 

atoms dep8 and dep9, corresponding to the father-child pairs UserInterface–Gaphical 

and UserInterface–Shell. Finally, line 55 corresponds to the group cardinality <1..3> 

defining the number of shells that can have a system configured from the model of Figure 3.6. 

3.4. Multi-model Verification 

An important challenge in PL domain engineering and application engineering is that product 

lines are, in practice, often specified using several models at the same time (Dhungana et al. 

2006, Djebbi et al. 2007, Segura et al. 2008, Rosenmüller et al. 2011). This permits dealing 

with various facets of the PL and products, and representing the viewpoints of various 

stakeholders such as executives, developers, distributors, marketing, architects, testers, etc. 

(Nuseibeh et al. 1994). For example, analysts may deliver a requirements model that specifies 

user-oriented system functionality, while architects may deliver a feature-based model 

focusing on the system structure from a more technical design-oriented point of view. In the 

absence of a global model, and given the number of models in which the PL can be specified, 

requirements can get missed or misunderstood (Finkelstein et al. 1992) both during domain 

and application engineering activities, e.g., when the selection of an artefact in one model of 

the product line depends of the selection of another artefact in another model of the product 

line (Zhao et al. 2008, Hubaux et al. 2009, 2010).  

Integration of PLMs is not new. Authors like Alves et al. (2006), Schobbens et al. (2006), 

Liu et al. (2006), Dhungana et al. (2006), Fleurey et al. (2007b), Apel et al. (2007), Jayaraman 

et al. (2007), Segura et al. (2008), Acher et al. (2010) and Rosenmüller et al. (2011) propose 

different approaches to integrate PLMs. It is worth noting that our thesis to verify multi-model 

product lines is to use an integration approach, in contrast to the priorisation of models 
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proposed by Zhao et al. (2008), or the constraint-based approach to define the order in which 

models are configured (Hubaux et al. 2009, 2010). 

CP can be exploited in the context of multi-model PL engineering to capture in a unified 

way the various models, and to arrange them into a unique specification. As a result, domain 

and application engineering activities such as PL analysis or product configuration are 

facilitated. Indeed, the unique representation facilitates the propagation of constraints between 

variables that belong to the different models. When configuration entails a variable in a model, 

it entails the variable in all the other models to which the variable belongs. Another 

considerable advantage is that having all the models of the PL integrated in a single CP 

permits the specification of constraints between different variables that belong to different 

models. Our literature survey did not reveal any interoperability meta-model that would have 

permitted to define relationships among several PL models specified in different languages. 

The constraint-based integration approach proposed in this thesis will be developed in two 

cases: the Dopler models and the FMs. As explained in the next sections, the application of the 

constraint-based integration approach is much simpler in Dopler models than in FMs due to 

the fact that Dopler formalism is itself conceived as a multi-view product line formalist and 

therefore the integration strategy is already defined in the formalism itself. On the contrary, 

FMs are intended to be developed as standalone models, and to the best of our knowledge, 

there are no formal integration mechanisms in this notation itself. Therefore, to integrate FMs, 

this thesis proposes five different ways or integration strategies to do that. 

3.4.1 Integration: the Case of Dopler Models 

Decisions and assets are linked with inclusion conditions defining traceability from the 

solution space to the problem space (e.g., the asset Tab Window Manager must be 

included in the solution space if the option OnlineInfo of the decision Utility 

program is selected in a particular configuration). In our integration approach, these 

inclusion conditions are constraints that will be added to the collection of constraints 

representing the decision and asset model. Once these constraints are added, both models of 

the PL are integrated in a global program. This program is presented as follows: 

[MeansOfInstallation, Cdrom, Usb, Net, UtilityProgram, FileMaintenance, 

Editing, OnlineInfo, ProgrammingSupport, Shell, GraphicalResolution, 

ATwm, A4dwm, AMwm, AMotif, AKDE, AQt, AGNOME] ∈ {0, 1} ⋀ 
fd_domain([Width] ∈ {0, 800, 1024, 1366} ⋀ 
fd_domain([Height] ∈ {0, 600, 768} ⋀ 
 

MeansOfInstallation = Cdrom + Usb + Net ⋀ 
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MeansOfInstallation  UtilityProgram ⋀ 
 

R1 = Editing + FileMaintenance + ProgrammingSupport + OnlineInfo + 

Shell ⋀ 
UtilityProgram ≤ R1 ≤ UtilityProgram * 5 ⋀ 
 

OnlineInfo  GraphicalResolution ⋀ 
GraphicalResolution = 1  (Width=W1 ⋀ Height=H1) ⋀ 
GraphicalResolution = 0  (Width=0 ⋀ Height=0) ⋀ 
fd_relation([[800,600], [1024,768], [1366,768]], [W1,H1])⋀ 
 

OnlineInfo  Twm ⋀ 
 

A4dwm  ATwm ⋀ 
A4dwm  AMotif ⋀ 
A4dwm  AMwm ⋀ 
AMwm  AMotif ⋀ 
AKDE  ATwm ⋀ 
AKDE  AQt ⋀ 
AGNOME  ATwm 

3.4.2 Integration: the Case of Feature Models 

In our process, integrating two PLMs consists of (i) integrating the variables that correspond 

to reusable elements; (ii) integrating attributes and their domains; and (iii) integrating the 

relationships among reusable elements. Integrating two models can be done in two steps: 

matching and merging (Finkelstein et al. 1992, Fleurey et al. 2007b). The matching step 

specifies which elements can match and how they can match. The merge step defines how two 

model elements that match are merged, as well as a mechanism to handle the non-matching 

elements of the input models. For example, if two feature models (Kang et al. 1990) that 

specify a single PL own the same feature A, which is required by another feature in the first 

model, and which is excluded by another feature in the second model, then the situation 

matches because of the feature A. However, the decision to include or not feature A in the 

resulting model depends on the integration strategy. In particular, one has to reason on the 

dependencies between feature A and the other features in both models. 

Integration strategies are about the ways in which models are merged. Indeed, there are 

different ways to merge models, depending on how the models match and depending on the 

expected outcome. Take the following example scenario: a company decides to lengthen the 

production spectrum of the PL. Therefore, it integrates the FMs of two headquarters, and 

keeps in the resulting FM the reusable elements and the production capacity of both 

headquarters. This thesis exploits five different strategies that may be used to integrate FMs: 

two restrictive strategies, two conservative strategies, and one disjunctive strategy. 



68 

 

We believe that handling multi-model verification calls for a rich integration approach, as 

offered by the following five strategies:  

Strategy N° 1 is restrictive in the sense that it allows representing in the resulting FM the 

common products represented in both input models that can be configured with the common 

features and attributes.  

Strategy N° 2 is also restrictive but unlike the first strategy, the products can be configured 

with all features and attributes available on both input models (Acher et al. 2010).  

Strategy N° 3 is conservative in the sense that it is possible to configure from the resulting 

FM the products represented in both input models by using only the common features and 

attributes.  

Strategy N° 4 is also conservative, but this time it is possible to configure products with all 

features and attributes available in both input models (Segura et al. 2008, Acher et al. 2010).  

Strategy N° 5 is disjunctive in the sense that the resulting model allows configuring the 

products presented in one of the input models by using the features and attributes of this 

particular model without considering the features and attributes of the other one. 

Each one of the aforementioned integration strategies are further explained and exemplified 

in Chapter 7. 

3.5. Discussion 

The main working hypothesis in this thesis consists of choosing a constraint language that can 

be handled by a solver in order to execute PLMs and supports the verification approach 

proposed in this thesis. The rest of the section presents some related works about the 

transformation of PLM into other languages and some discussions and challenges in this topic. 

Van Deursen & Klint (2002) proposes to reason about FODA models by translating them 

into a logic program using predicates such as all, one-of, or more-of, that respectively 

specify mandatory, mutually exclusive, and alternative features. For instance constraints: F1 

= all(F2, F3, F4), F4 = one-of(F5, F6) specify that if F1 is included in a 

configuration, then F2, F3, and F4, and therefore either F5 or F6 should be included too. The 

use of CP to reason about feature model was extended by Batory (2005), who proposes an 

approach to transform a feature model into propositional formula using the , , ,  and 

operations of propositional logic. The advantage of using CP is that it enables, for example, 

constraints of the form F  A  B  (C ⋀ D), meaning that feature F needs features A, or 

B, or C and D, which cannot be specified with FODA without creating an extra feature to 
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represent C ⋀ D. As in (Van Deursen & Klint 2002). In these constraints, features are 

Boolean variables (either they are included or not in a configuration). The transformation 

approach presented in this thesis goes a step further as (a) it does not consider Boolean models 

only, but also models with arithmetic constraints, symbolic constraints and reified constraints 

over finite-domain variables and (b) it supports the specification of constraints directly in CP, 

and not just as the result of a transformation from another model. 

In (Benavides et al. 2005a, Benavides et al. 2005b, Benavides et al. 2007) and (Trinidad et 

al. 2008), the authors transform FODA models with and without attributes into Boolean 

expressions. These expressions are executed on Constraint Satisfaction Problem (CSP), 

Satisfiability (SAT) and Binary Decision Diagrams (BDD) solvers in order to execute analysis 

and verification operations over feature models. In (Benavides et al. 2006), the authors show 

how to transform a FM with feature and group cardinalities into a CSP. The approach consists 

of representing each feature as a CSP variable. The domain of each variable depends on the 

cardinality associated to each variable. By default the domain is {0,1}. If a feature has a 

feature cardinality, then the domain of the variable is changed by the cardinality, disregarding 

the possibility of this feature to be cloned in the number of features determined by the feature 

cardinality. The relationships of the FM are represented as ifThenElse constrains on CPS and 

the final CSP for a FM is the conjunction of all the constraints. Despite the originality of this 

proposal, the constraint representing a feature cardinality (m,n) between the father feature A 

and its child B (according to their notation: ifThenElse(A=0;B=0;B in {n,m})) does not 

represent the fact that feature B can be cloned at last n and at most m times, neither consider 

that the feature A can itself have a feature cardinality, and in this case the semantics of feature 

cardinalities is not well represented in the constraint. The transformation approach of FMs into 

CP proposed in this thesis (cf. Section 3.2.1) corrects the defects of the Benavides’s approach. 

Recent work by Karataş et al. (2010) proposes a transformation from extended feature 

models to CP. This work does not consider the real semantics of features’ attributes, 

considering them as sub-features that can be selected or not. Additionally, the transformation 

patterns used by Karataş et al. consider only Boolean formulas to represent extended feature 

models, which reduce the richness of the constraint programming paradigm, a richness 

necessary to represent complex feature models or to execute certain reasoning operations (e.g. 

to detect the optimal product according to a cost criterion). Besides, Karataş et al.’s 

representation of optional features permits the selection of child features without constraining 

the selection of the father feature. 
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From the point of view of the optimal representation of constraints, we exploit the fact that 

a PLMs can be represented in different CPs. For example: instead of representing the <1..1> 

group cardinality of Figure 3.6 as UNIX * 1 ≤ Cdrom + Usb + Net  ⋀ Cdrom + 
Usb + Net ≤ UNIX * 3  we use the representation UNIX = Cdrom + Usb + Net, 

which has the same semantics, but is more compact and less expensive from a computational 

point of view. With this kind of optimization, verification operations proposed in this thesis 

can be executed up to 25% faster. However further work is necessary in that direction to fully 

understand all the possible optimizations. Additionally, further work is necessary in 

multidirectional transformation, since the approach used in this thesis only considers 

unidirectional transformations, i.e., transformation from different product line modelling 

notations to CP but not inversely. 

3.6. Conclusion  

This chapter has presented an overview of the verification framework proposed in this thesis. 

In particular, it focused in the initial stages before the verification of PLM against the typology 

of verification criteria proposed in this thesis. Indeed, this chapter presents the following three 

key concepts, vital for reading and understanding of this thesis: 

1. A UNIX product line, the running example used in this thesis to explain our verification 

approach. This running example is formulated as a collection of characteristics described in 

natural language. These characteristics depict the commonality and the variability of a 

UNIX product line from two points of view: technical point of view and end-user’s point of 

view. From the technical point of view, they represent the components and the 

dependencies among them, that a UNIX PL should respect. From the end-user’s point of 

view, the constraints represent the choice that an end-user has when he/she is installing a 

UNIX operating system. Both, the technical and the end-user characteristics are modeled 

with the feature formalism adopted in this thesis (cf. Section 3.1.1). The end-user view is 

modeled in the Dopler notation. The technical view is not modeled in the Dopler notation 

due to the fact that this notation is decision-oriented and therefore less adequate for users’ 

views. Our thesis is that models specified with classical formalisms (FODA, OVM, Dopler, 

etc) cannot be verified as such, and therefore, they should first be transformed into an 

equivalent formalism that is more adequate for automating operations.  

2. In our transformation approach, the PLM’s semantics is represented with a collection of 

constraints and the PLM’s abstract syntax is represented with a collection of facts. The 
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transformation approach presented in this chapter was tested against a large collection of 

product line models (cf. Chapter 8). The experiments showed that the approach is viable, 

scalable to very large PLMs and correct – according to the comparison with the tools FaMa 

(Trinidad et al. 2008b) and SPLOT (Mendonça et al. 2009). 

3. The aim of the transformation and integration is to get product line models that are 

verifiable in an automated way. In order to achieve this, we propose a typology of 

verification criteria. This typology of verification criteria proposes two categories of 

verification: the first one associated with the verification of the abstract syntax of the model 

and other associated with the criteria that product line models should respect. This typology 

is presented in depth in the next chapters. 

The integration approach exploits the fact that the PLMs that we verify are first represented 

as constraint programs. Once the models are represented as CPs, they can be integrated by 

means of a number of integration rules that can be chosen depending on the situation (e.g. 

integrate two views of a Dopler model vs. integrate two views specified with different 

formalisms), and the intention (conservative, restrictive, etc).  
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Chapter 4 

Typology of Verification Criteria 

 

Verifying PLMs entails several aspects. Certain properties associated with the domain of 

product lines and other properties are associated with the fact that each PLM respects the 

syntactic rules of the language in which it is expressed. Therefore, some properties of PLMs 

are associated with the language in which the model is represented, while other properties are 

associated to the domain of product lines. Thus, product line models seem to be verifiable 

from two different points of view. The first point of view is associated with the formalism. 

The other one is independent of the formalism in which models are represented. At first 

glance, it seems that the first category is specific to the formalism at hand, while the second 

one is applicable to every PLM, in other words, it should be generic. Our experience with 

various formalisms such as Dopler and several dialects of feature models showed us that the 

PL meta-models share some common concepts. For instance, all the metamodels have one or 

several start points from which the model should be navigated. They all provide concepts to 

specify reusable artefacts, dependencies among them to specify the variability, and in some 

cases properties to characterize these artefacts. Our thesis is that a generic approach can be 

taken. The proposal is to group them in a metamodel and then defined as a collection of 

generic criteria (Salinesi et al. 2004) that can be adapted to any PL meta-model in a fully 

automatic way. To identify defects in the first category, we propose a conformance checking 

approach directly related with verification of the abstract syntactic aspects of a model (cf. 

Definition 1.5). To identify defects in the second category, our approach uses a domain-

specific verification approach (cf. Definition 1.4). Both categories of verification exploit 

verification criteria classified in the typology of verification criteria depicted in Figure 4.1. 

Each verification category is referenced under a unique number indicating the order in which 

the verification criteria should be considered. The typology has the form of a tree in which 

the nodes are categories of criteria, and edges generalization structures. The leaves of the 

typology represent individual criteria that can be used to perform verification. Intermediate 

nodes represent the category to which each criterion or sub-category belongs. For instance, in 

order to verify the expressiveness of a PLM, two criteria should be evaluated: Non-void and 
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Non-false. In the same way, the expressiveness criteria are used in order to verify the 

correctness of PLMs from a domain-specific point of view. 

 

Figure 4.1. Typology of verification criteria on PLMs 

 

The outcomes of the typology are multiple:  

(a) the typology classifies the criteria from a semantic perspective, allowing the 

identification of similarities and differences among the criteria;  

(b) the typology makes easier the identification of some defects for which no verification 

criterion is available in the literature. Redundancy of relationships among reusable elements 

is an example of defect for which no verification criterion has been defined in the literature 

(at least to our knowledge).  

(c) the classification behind the typology produces a standard and reusable approach to 

verify PLMs; and 

(d) the typology can be used to select the criteria that one wants to use to verify a PLM 

according to the impact that these criteria have or the expected quality level of a particular 

PLM. 

(e) due to the fact that not all the verification criteria have the same impact, they have 

neither the same priority and consequently the same execution order. For instance, to check if 
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a PLM is non-false (i.e., rich enough) it is preferable to verify before that the model is non-

void beforehand.  

It is worth noting that the collection of verification criteria presented in Figure 4.1 could 

be extended as far as other PL modelling languages are considered and other verification 

criteria are identified. To guarantee that a PLM is defects-free, the typology of verification 

criteria considered must be as exhaustive as possible. Nevertheless, even in such a situation, 

(i) verification alone does not guarantee elimination of defects, and (ii) the correctness of a 

model can only be guaranteed with regard to the criteria used to evaluate the model 

(Finkelstein et al. 1996, Nuseibeh et al. 2000, Spanoudakis & Zisman 2001). 

The following sections use the typology of verification criteria presented in Figure 4.1 to 

develop the verification approach proposed in this thesis. 

4.1 Conformance Checking Criteria 

From the point of view of conformance checking, the aim of this thesis is to verify if PLMs 

satisfy constraints captured from their respective metamodels. For the sake of generality, this 

thesis abstracts in a UML model the most important elements of several product line 

metamodels. This abstraction contains the common concepts of several product line 

metamodels existing in the literature such as FMs (Kang et al. 1990, 1998, 2002) and Dopler 

models (Dhungana et al. 2010). We decided to use these two formalisms to validate the 

verification approach proposed in this thesis, nevertheless we believe that our approach is 

applicable to other formalisms such as FODA, feature trees, OVMs, TVL, etc. We choose 

these two formalisms due to the fact that the first formalism is a common way to represent 

standalone PLMs and the second formalism is a common way to represent multi-model 

product lines; other formalisms were not used due to time constraints of the thesis’ schedule. 

This abstraction is represented in Figure 4.2 and can be used to infer a collection of eight 

generic conformance criteria. For instance, the fact that every PLM should have one or 

several start points (or “roots”), from which the product line model must start in a 

configuration process. Of course, some aspects that directly relate with particular metamodels 

will remain untreated by the generic conformance checking approach. This chapter focuses 

on the generic criteria to verify PLMs; the particular criteria are then discussed in Chapter 5. 

As Figure 4.2 shows, our view is that a PLM is composed of the description of at least 

one reusable element and at least one root artefact. Artefacts and dependencies are considered 

as reusable elements due to the fact that in a multi-stage configuration approach (Czarnecki et 
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al. 2004), not only artefacts are reused but also the dependencies among them. A PLM with 

only one dependency, should have at least two artefacts (at least one of them a root) due to 

the fact that a dependency relates to two or more artefacts. A PLM with only one artefact is 

not permitted. Besides, artefacts are related among them by means of one or several 

dependencies and each dependency relates at least two artefacts. Each artefact has a unique 

name and a domain of values. A domain is represented as a list of values. Each value of the 

domain has a specific meanning (e.g., the artefact PCMCIA_SUPPORT of our running 

example, where the value 0 means that the artefact is not charged (selected) in a particular 

UNIX system, 1 means that the artefact is charged in a static way, and 2 means that the 

artefact is charged in a dynamic way). An artefact can have an individual cardinality (at most 

one). In addition, optional dependencies can be grouped in a group cardinality (by two or 

more). Both, individual and group cardinalities have two attributes; Min and Max, that 

represent the minimum and maximum values of the cardinality. A reusable element can have 

several properties, and the other way round a property belongs to one and only one reusable 

element. Examples of properties of reusable elements are: the attribute of an artefact, or the 

type of a dependency. An attribute such as for instance the price of an artefact, should have a 

unique name, a type and the possible values that the attribute can take (its domain). 

Dependencies are also reusable elements, and therefore they can have properties. For 

instance, dependency properties should indicate the type of dependency, e.g requires or 

excludes (which are usually represented by a special arrow), and the unique name or 

identifier used to uniquely identify the dependency in the model. It is worth noting that in 

Dopler and feature models, the name of dependencies is not explicitly visible in the models. 

However, they are necessary when the models are merged, for instance. In addition, in Dopler 

models, the type of each dependency is usually presented in the models. 

Our approach in this thesis is to exploit the metamodel of Figure 4.2 to specify 

verification criteria. In particular, this section will exploit the metamodel of Figure 4.2 in 

order to derivate eight conformance checking criteria. The strategy to achieve this was similar 

to business rules derived from a conceptual model: each constraint in this figure becomes a 

conformance checking criterion and each criterion is implemented as a conformance rule (cf. 

Definiton 1.6).  
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Figure 4.2 UML class diagram representation of common elements of several product line 
metamodels 

Prior to formalizing the verification criteria in first order logic (FOL), a certain number of 

predicates (Osman et al. 2008), derived from the metamodel of Figure 4.2, must be defined. 

In order to do that, each class of the metamodel is defined as a predicate that evaluates if a 

given variable corresponds to the type of element represented by the class. In addition, each 

dependency of the metamodel is defined as a predicate, as follows:  

 has_root: evaluates the fact that an artefact of type root is the root of a product line 

model. For example, has_root(M, R) is a FOL predicate that evaluates if the product 

line model M has a root artefact R. 

 has_reusableElement: evaluates if there is a reusable element R in the product line 

model M. For example, has_reusableElement(M, R) returns true if there is a reusable 

element R in M. 

 belongs_to: evalutes if there is a property P that belongs to a reusable element R. For 

example, belongs_to(R, P) reuturns true if P is a property of R. 

 is_a: evaluates if a given class B, of the metamodel represented in Figure 4.2, is a 

subclass of another class A. For example, is_a(A, B) returns true if B is a subclass of 

A, and false otherwise. 
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 relates: evaluates if there a list of artefacts [A1, A2, …, Ai] that are related to a 

dependency D. For example, relates(D, [A1, A2]) returns true if there is a 

dependency D that relates the artefacts A1 and A2. 

 is_associated_to: evaluates if there is an individual cardinality IC associated to an 

artefact A. For example, is_associated_to(A, IC). 

 groups: evaluates if a collection of optional dependencies [O1, O2, …, Oi] belong to a 

group cardinality GC. For example, groups(GC, [O1, O2]) returs true if the optional 

dependencies O1 and O2 belong to the group cardinality GC. 

And the following function: 

 isPLMofOptional: this function returns, for a given dependeny of type optional, the 

product line model to which the dependency belongs. For example, 

isPLMofOptional(O). 

The eight criteria are: Root uniqueness/multiplicity, Reusable elements 

uniqueness/multiplicity, Dependency completeness, Non-overlap of properties for each 

artefact, Association of individual cardinalities to artefacts, Optional dependencies in group 

cardinalities, Non-overlap of the artefact in a same model and Properties belonging to a 

single reusable element. Each of these criteria is defined, formalized in FOL according to 

Bradley & Manna (2007 pp. 51) and illustrated with our running example (cf. Figures 3.5, 3.6 

and 3.7) as follows.  

A. Root uniqueness/multiplicity 

Definition: a product line model is composed of one or several root elements, which are 

special kinds of artefacts; even if some languages use other words to describe the same 

concept as is the case in OVM or Dopler models. 

Formalization: ∀ M, ∃ R . producLineModel(M) ⋀  root(R) ⋀ has_root(M, R) 

Example: while the FODA metamodel (cf. Kang et al. 1990) constrains the existence of 

one and only one root artefact, the FOPLE (Feature Oriented Product Line Software 

Engineering, cf. Kang et al. 2002) metamodel considers the existence of several root 

features. In our running example, UNIX is the root of both feature models (cf. Figures 3.5 

and 3.6). In the same way, Means of installation is the root decision of the 

Dopler model of Figure 3.8. Therefore the three models comply with this conformance 

criterion. 
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B. Reusable elements uniqueness/multiplicity  

Definition: a PLM is composed of one or several reusable elements. This criterion is a 

necessary but not sufficient condition to enable the derivation of several products from a 

product line model. 

Formalization: ∀M, ∃R . producLineModel(M) ⋀  reusableElement(R) ⋀ 

has_reusableElement(M, R)  

Example: the feature models of Figures 3.5 and 3.6 have 25 reusable elements (15 

features and 20 dependencies) and 32 reusable elements (14 features and 18 

dependencies), respectively. The Dopler running example shown in Figure 3.8 has 11 

artefacts (i.e., 4 decisions and 7 assets) and 12 dependencies. Therefore the three models 

comply with this conformance criterion. 

C. Dependency completeness 

Definition: in a PLM, each dependency relates two or several artefacts. Indeed, all 

product line models have dependencies, at least one in order to represent the variability 

and the commonality of the product line. It is worth noting that for the “classical” 

dependencies (i.e., optional or mandatory or requires or excludes) the related artefacts 

should be different; however, there are particular dependencies in some product line 

formalisms in which an artefact can be related with itself (e.g., the validity condition that 

relates the decision “Width?” with itself by means of the constraint “Width ≥ 800 && 

Width ≤ 1366”). Due to the fact that the most of dependencies in product line models are 

optional, mandatory, requires and excludes dependencies (cf. Tables 10.1 to 10.5 on 

Appendix), our formalization and implementation considers the case where each 

dependency relates two or several different artefacts. 

Formalization: for every PLM, and for each dependency D of M, there are two different 

artefacts related by D: 

∀M, ∀R1, ∀D, ∃R2, ∃R3, ∃A1, ∃A2 . producLineModel(M) ⋀ 
reusableElement(R1) ⋀ reusableElement(R2) ⋀ reusableElement(R3) ⋀  

dependency(D) ⋀ has_reusableElement(M, R1) ⋀ has_reusableElement(M, R2) ⋀ 

has_reusableElement(M, R3) ⋀ is_a(R1, D) ⋀ artefact(A1) ⋀ artefact(A2) ⋀ is_a(R2, 

A1) ⋀ is_a(R2, A2) ⋀ relates(D, [A1, A2])  ⋀ A1 ≠ A2.  

It is also necessary to express that every PLM has at least one dependency: 
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∀M, ∃D, ∃R . producLineModel(M) ⋀ dependency(D) ⋀ reusableElement(R) ⋀ 

has_reusableElement(M, R) ⋀ is_a(R, D)  

Example: Figure 3.6 has an optional dependency between the father feature UNIX and the 

child feature UtilityProgram. The dependency contains(Utility program, 

“OnlineInfo”)  GraphicalResolution of the Dopler model depicted in 

Figure 3.8 represents a requirement dependency. This dependency implies that if the user 

chooses the utility program called OnlineInfo, he/she should also choose a 

GraphicalResolution. 

D. Non-overlap of the artefact in a same model 

Definition: each artefact of a PLM should be identified in a unique manner. Most of the 

time, the name of the artefact permits the identification of the artefact. Therefore, this 

name should be unique (within each model) to avoid redundancies and evolutions 

problems. However, this conformance criterion is not violated when two different models 

contain artefacts with the same name.  

Formalization: ∀M, ∀R1, ∀R2, ∀A1, ∀A2 . producLineModel(M) ⋀ 

has_reusableElement(M, R1)  ⋀ has_reusableElement(M, R2)  ⋀ 

reusableElement(R1) ⋀ reusableElement(R2) ⋀ artefact(A1) ⋀ artefact(A2) ⋀ 

is_a(R1, A1) ⋀ is_a(R2, A2)  ⋀ (A1 ≠ A2) → (A1.Name ≠ A2.Name)  
Example: in our running example, the artefacts of each model have a unique name in the 

model. For example, the feature called UserInterface appears only one time in the 

model of Figure 3.5 and only one time in the model of Figure 3.6. 

E. Properties belonging to a single reusable element 

Definition: a property belongs to one and only one reusable element. 

Formalization: ∀P, ∀R1, ∀R2 . property(P) ⋀ reusableElement(R1) ⋀ 

reusableElement(R2)  ⋀ belongs_to(R1, P) ⋀ belongs_to(R2, P) → R1 = R2 

Example: in Figure 3.5, the artefact called Graphical has two properties: 

WidthResolution and HeightResolution. Due to the fact that these properties 

belong to only one artefact, the model of Figure 3.5 complies with this conformance 

criterion. This criterion allows, for instance, distinguishing the property price of an 

artefact A from the price of another artefact B. 
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F. Non-overlap of the properties that belong to the same reusable element 

Definition: in a same product line model, a property has a unique name. Indeed, the name 

of each property should be different from one another in order to avoid ambiguity 

problems during product configuration, verification management (as presented in the 

general frameworks proposed by Finkelstein et al. (1994, 1996), Nuseibeh et al. (2000) 

and Spanoudakis & Zisman (2001)) and maintenance stages. 

Formalization: ∀M, ∀R, ∀P1, ∀P2 . producLineModel(M) ⋀ reusableElement(R) ⋀ 

property(P1) ⋀ property(P2) ⋀ has_reusableElement(M, R) ⋀ 

belongs_to(R, P1) ⋀ belongs_to(R, P2)  ⋀ P1 ≠ P2 → P1.Name ≠ P2.Name 

Example: in Figure 3.5, the attributes WidthResolution and HeightResolution 

have a unique name and a domain [800, 1024, 1366] and [600, 768] respectively. In 

Figure 3.8, the dependency of type “Visibility condition” has the value “isTaken(Means 

of installation)” and is identified with an artificial name, e.g. Depd01. 

G. Association of individual cardinalities to artefacts  

Definition: an individual cardinality is associated to one and only one artefact. Even if 

two individual cardinalities have the same values, each one of them would be associated 

to different artefacts. This conformance criterion is useful from the point of view of 

maintenance since the elimination of an individual cardinality for a particular artefact 

entails its elimination for the corresponding artefact, and this action does not affect the 

other artefacts that have an identical cardinality.  

Riebisch et al. (2002) propose to extend FMs with cardinalities similar to those found in 

UML class diagrams. This kind of cardinality, called individual cardinality, is a concept 

used in several feature metamodels (e.g., Riebisch et al. 2002, Sun et al. 2005, Czarnecki 

et al. 2005, Michel et al. 2011); however, it is not used in most of product line 

metamodels in literature, e.g., FODA (Kang et al. 1990), OVM (Pohl et al. 2005) and 

Dopler (Dhungana et al. 2010).  

Formalization: ∀C, ∀A1, ∀A2 . individualCardinality(C) ⋀ artefact(A1) ⋀ 

artefact(A2) ⋀  is_associated_to(A2, C)  ⋀ is_associated_to(A1, C) → A1 = A2  

Example: artefact Process in Figure 3.5 has an individual cardinality [0..*] indicating 

that the artefact Process can be instantiated several times in a same product. Therefore 

the model of Figure 3.5 complies with this conformance criterion. 
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H. Optional dependencies in group cardinalities 

Definition: a group cardinality gathers two or more optional dependencies. By definition 

3.8, a group cardinality is about the selection of a certain number of artefacts among a 

collection of them. In this selection each artefact must have the same possibility to be 

chosen as the others, which is why dependencies must be optional. This thesis considers 

this conformance criterion, initially presented in (Czarnecki et al. 2005), as a good 

practice. It is worth noting that this thesis relates group cardinalities and dependencies 

(not artefacts). This choice is due to the fact that graphically a group cardinality groups 

two or more dependencies and not two or more artefacts. This choice was also made to 

improve the performance of the criterion implementation.  

The following FOL formula represents the fact that for all groupCardinality there are two 

optional dependencies, of the same product line model, associated to the 

groupCardinality. 

Formalization: ∀G, ∃X1, ∃X2 . groupCardinality(G) ⋀ optional(X1) ⋀ optional(X2) ⋀ X1 ≠ X2 ⋀ isPLMofOptional(X1) =  isPLMofOptional(X2) ⋀ groups(G, [X1, X2]) 

Example: Figure 3.6 presents three group cardinalities: <1..1> that group dependencies 

between the father feature UNIX and the child features Cdrom, Usb and Net, <1..2> that 

group the dependencies between the father feature UserInterface and the child 

features Graphical and Shell, and <1..3> grouping the dependencies between the 

father feature Shell and the child features SH, TCSH and BASH. 

4.2 Domain-specific Criteria 

In the context of product lines, domain-specific verification criteria are properties that every 

model has to respect in order to be a “real” PLM. In addition the model should correctly 

represent the domain intended to be represented whit the PLM. This thesis, due to the fact 

that all these verification criteria are related with the domain of the product lines, groups all 

these verification criteria under the name of domain-specific verification. 

This thesis proposes four groups of domain-specific verification criteria: expressiveness, 

error-free, consistency and redundancy-free. Each group is composed of one or several 

domain-specific verification criterion. Each one of these criterion is defined, formalized and 

exemplified with our running example (cf. Figures 3.5, 3.6 and 3.7) as follows.  
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The formalization corresponds to FOL formulas that use the following predicates (Osman 

et al. 2008). These predicates are implemented in the Analysis module of the tool VariaMos 

(Mazo & Salinesi 2011).  

 isOptional: this predicate evaluates if an artefact A of a product line model M is 

modeled as an optional artefact (i.e., if the artefact is the child of an optional 

dependency). For example, isOptional(M, A) returs true if the artefact A is modeled 

as optional in the model M, or false otherwise.  

 oneProduct: returns true if a given product line model M allows the configuration of 

at least one product, and false otherwise. For example, oneProduct(M). 

 oneProductWithConstraint: returns true if a given product line model M allows the 

configuration of at least one product that respects a given constraint C, and false 

otherwise. To be precise, constraints are mathematical expressions over variables, 

representing Properties and Artefacts, and constants over a given domain. For 

example, oneProductWithConstraint(M, C), where C is ‘Property1+Property2’. 

 find: returns true if a certain number of different products can be derived from a 

product line model M, and false otherwise. For example, find(M, 2) is true if the 

product line model M allows the derivation of at least 2 products. 

We also need to define the following functions, other than the function isPLMofOptional 

defined in Section 4.1: 

 semanticOf: retunrs the collection of products that are possible to be derivated from a 

product line model M or false if no product can be derivated from the model. For 

example, semanticOf(M). 

 eraseOneDependency: this function takes a product line model M and a dependency 

D, and returns the product line model whitout the dependency D. For example: 

eraseOneDependency(M, D). 

 isPLMofDependency(D): this function returns the product line model associated to the 

dependency D. 

4.2.1 Expressiveness 

Every PLM should permit the configuration of more than one product, i.e., the model should 

not be void, and be expressive enough to permit the configuration of more than one product 

(Benavides et al. 2005). Indeed, the purpose of PLMs is to represent at least two products –

otherwise, there is no reuse. The former is called “non-void” and the latter “non-false”. Each 
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criterion can be used to verify the expressiveness of PLMs at its turn. It is however worth 

noting that the latter includes the former: if a PLM is non-false, then it is non-void too. 

A. Non-void PLMs 

Definition: a void PLM is defined as a model that does not permit the configuration of 

any product.  

Formalization: to formalize this criterion, we define the following Boolean function: 

nonVoidPLM(M) ≙ producLineModel(M) ∧ find(M,1)  

Example: FMs of Figures 3.5 and 3.6 are not void. Dopler model of Figure 3.8 is not 

void. Each of these models allows configuring at least one product. 

B. Non-false PLMs 

Definition: a false PLM is defined as a model that permits configuring one product only. 

In this case, the model cannot be considered as a PLM, but as a product model. This 

criterion can be automated by means of an operation that takes a PLM as input and 

returns “False PLM” if at most one valid product can be configured with it. Although this 

operation would also help to detect when PLMs are void (our precedent operation), the 

converse is not true. The two criteria have then a separate definition. 

Formalization: nonFalsePLM(M) ≙ producLineModel(M) ∧ find(M,2)  

Example: FMs of Figures 3.5 and 3.6 are not false. Dopler model of Figure 3.8 is not 

false. All these models permit the configuration of at least two products each one. 

4.2.2 Error-free 

The Dictionary of Computing defines an error as “A discrepancy between a computed, 

observed, or measured value or condition, and the true, specified, or theoretically correct 

value or condition” (Howe 2010). In PLMs, an error represents a discrepancy between what 

the engineer wants to represent and the result obtained from the model. For instance, this is 

the case when the engineer includes a new reusable element (in a given domain) in a PLM, 

but this element never appears in a product. Our ontology proposes three criteria to identify 

errors in PLMs: non-attainable domain values of PLM’s reusable artefacts, i.e. an artefacts A 

with a domain [0, 1, 2, 3] but can never attain the values 1 and 2; dead artefacts, i.e. artefacts 

of the PL that are never used in a product: this means that their value is all time 0; and the 

third criterion permits the identification of the reusable elements modeled as optional but that 

appear in all the products of the PL, i.e. an artefacts A with a domain [0, 1, 2, 3] but can never 

attain de value 0. It is worth noting that the former criterion includes the second (artefacts 
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that can never attain non-cero values), and the third one, for optional artefacts (i.e., when the 

domain of the artefact includes the 0 value). However, the opposite is not true. 

C. Non-dead Artefacts 

Definition: An artefact is dead if it cannot appear in any product of the product line. From 

a mathematical point of vew, an artefact is dead if it is always setted to 0 in each one of 

the products that can be derived from the product line model. Our formalization expresses 

the fact that it should be possible to configure at least one product with each artefact of a 

product line model. 

Formalization: ∀M, ∀R, ∀A . producLineModel(M) ⋀ reusableElement(R) ⋀ 

artefact(A)  ⋀ has_reusableElement(M, R) ⋀ is_a(R, A)  ⋀ 

oneProductWithConstraint(M, ‘A> 0’) 

Example: There are no dead artefacts in our running example. In other words, artefacts in 

feature and Dopler models have the possibility to be selected almost one configuration. 

D. Non-false Optional Artefacts 

Definition: An optional artefact is an artefact playing the role of child in an optional 

dependency. An artefact is false optional if it is included in all the products of the product 

line despite being declared optional (Von der Maßen & Lichter 2004, Benavides et al. 

2005, Trinidad et al. 2008). Our formalization expresses the fact that if an artefact is 

optional, it should be possible to configure at least one product whitout this artefact (i.e., 

setted to 0). 

Formalization: ∀M, ∀R, ∀A . producLineModel(M) ⋀ reusableElement(R) ⋀ 

artefact(A)  ⋀ has_reusableElement(M, R) ⋀ is_a(R, A) ⋀ isOptional(M, A) → 

oneProductWithConstraint(M, ‘A= 0’)  

Example: Feature Process, in Figure 3.5, with individual cardinality [0..5] is included 

by several futures bellowing to the core of the product line. Therefore, feature Process 

is a false optional feature due to the fact that it appears in all the configurations of the 

product line despite the zero value of its individual cardinality. 

 

E. Attainable Domains 

Definition: A non-attainable domain value is the value of an artefact, or a property, that 

never appears in any product of the product line. For example, if an artefact A has the 

domain [0,1], value 1 is non-attainable if A can never be integrated in a product line; 
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i.e., it never takes the value of 1. Non-attainable values are clearly undesired since they 

give the user a wrong idea about domain of reusable elements.  

Formalization: First, we evaluate each value Domaini of the artefacts’ domain: 

∀M, ∀R, ∀A. Domaini . producLineModel(M) ⋀ reusableElement(R) ⋀ artefact(A)  ⋀ has_reusableElement(M, R) ⋀ is_a(R, A)  ⋀ oneProductWithConstraint(M, ‘A=  

A.Domaini’)  

Second, we evaluate each value Domaini of the propertie’s domain: 

∀M, ∀R, ∀P.Domaini  . producLineModel(M) ⋀ reusableElement(R) ⋀ Property(P) ⋀ has_reusableElement(M, R) ⋀ belongs_to(R, P)  ⋀ oneProductWithConstraint(M, 

‘P=  P.Domaini’)  

Example: In Figures 3.5 and 3.6 the feature UNIX can never take the value of 0 due to the 

fact that this feature plays the role of root and therefore its value is constant to 1 even if it 

is a Boolean feature. Indeed, all core features of each model take the constant value of 1. 

In the Dopler model of Figure 3.8, the decision Means of installation that is the 

root decision of the model only takes the value of 1; i.e., this decision must be considered 

in all configurations.  

4.2.3 Redundancy-free 

According to the Oxford Dictionary, something redundant is something “able to be omitted 

without loss of meaning or function” (Oxford University 2008). Therefore, redundancy in a 

PLM is about the presence of reusable elements and variability constraints among them that 

can be omitted from the PLM without loss of semantics on the PLM. Redundant 

dependencies in FMs are undesired because, although they do not alter the space of solutions, 

they may consume extra computational effort in derivation and analysis operations, as 

demonstrated in (Yan et al. 2009), and they are likely to generate inconsistencies when the 

PL evolves. For the sake of evolution, it is certainly better to detect and correct these 

redundancies. However, and due to the fact that this thesis represents PLMs as constraint 

programs, it is also worth noting that in constraint models the presence of redundant 

dependencies is not necessarily undesired. While the space of solutions remains the same, 

more propagation might occur. Quite frequently, particular redundant dependencies are added 

explicitly to improve the solving performance and then removed to not affect the evolution of 

the model, as presented in (Borrett & Tsang 2001). In order to detect redundant dependencies 

in a PLM this thesis proposes an operation that takes a PLM and a constraint (and its 
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negation) as input and returns true if removing the constraint does not change the space of 

solutions. 

F. Non-redundant Dependencies 

Definition: a redundant dependency is a dependency that does not reduce the semantics of 

a PLM. In other words, the collection of products that can be generated with or without 

the constraint are identical. It is worth noting that redundancy is not a bijection as a 

dependency can in fact be subsumed by the conjunction of several other dependencies. 

The following formalization corresponds to the redundantDependency function that 

returns true if the dependency D is redundant and false otherwise. 

Formalization: redundancyDependency(D) ≙  dependency(D) ⋀  

(semanticOf( isPLMofDependency(D)) =  

semanticOf(eraseOneDependency( isPLMofDependency(D), D)) 

Example: In Figure 3.5, the dependency Shell requires Executing Instructions 

and the constraint Shell requires Interpreting Instructions are both redundant 

due to the fact that features Executing Instructions and Interpreting 

Instructions are included in all products and therefore they do not need to be included 

by the feature Shell in order to be included in a particular product. 

4.3 Multi-model Verification Criteria 

Representing a PL with several models permits tackling various aspects of the product line. 

This happens in particular, in the presence of multiple stakeholders with various viewpoints 

(executives, developers, distributors, marketing, architects, testers, etc.; cf. Nuseibeh et al. 

1994). For example, a UNIX product line can be composed of several models, each one 

developed by a different team or developing a particular view of the PL. Thus, while the team 

responsible for the kernel develops a model, the team responsible of the user interface 

develops another model. Motivated by the fact that (a) this practice is current in industry 

(Dhungana et al. 2010); (b) even if each individual model is consistent, once the models are 

integrated, they can be inconsistent; and (c) current state of the art lacks proposals for multi-

model PL verification; this thesis proposes a method to verify multi-model PLs. Overall, the 

approach is to integrate the models after having transformed them into a CP. The proposed 

method is composed of three steps: (i) the base models are transformed into constraint 

programs that grasp their semantics; (ii) the resulting CPs are integrated using a series of 
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different integration strategies and rules according to each language; and (iii) the collection of 

verification criteria, initially proposed in this thesis for standalone models, are applied on the 

integrated model in the same way as for standalone PLMs. From the point of view of 

integration, it is worth noting that the case where the models come from different metamodels 

was not considered in this thesis and instead, proposed as future work. The multi-model 

verification approach is further explained in Chapter 7. 

4.4 Summary 

In order to verify models against the verification criteria classified in the typology presented 

in this chapter, it is necessary to represent PLMs in an expressive-enough language to 

represent both the semantics and the syntax of PLMs. Experience shows that the semantics of 

PLMs can be represented as a collection of variables over different domains and constrains 

among these variables. While the variables specify what can vary from a configuration to 

another one, constraints expressed under the form of restrictions specify what combinations 

of values are permitted in the products. This approach extends to the structure of a PLM, 

which can be represented as a collection of logic facts with the elements of each PLM and a 

collection of relationships among them to represent abstract syntax of the particular model.  

The typology of verification criteria emphasizes the difference between domain-

specific and conformance defects. In the case of domain-specific verification, the defects are 

associated with non-expressiveness, errors, inconsistencies and redundancies. In the case of 

conformance checking, the purpose is to verify if the abstract syntax of a model is correct 

with regards to the corresponding metamodel. Once the abstract syntax of the PLM is 

translated into a constraint logic program, users can verify it against a collection of 

conformance criteria. These criteria are generic due to the fact that they are derived from a 

generic PL metamodel; then, they could be adapted to the particular metamodel at hand. For 

example, if the metamodel specifies that PLMs can have only one root artefact, the user can 

propose a conformance checking rule for this criterion. The implementation and evaluation of 

the PLM verification approach presented in this chapter is presented in the remaining 

chapters of this thesis.  
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Chapter 5 

Conformance Checking of Product Line Models 

 

In general, conformance checking, cf. Definition 1.5, is a kind of consistency checking 

focused on verification of a model (a product line model in our case) against a collection of 

conformance criteria generated from the corresponding metamodel. The difference between 

conformance checking and consistency checking is that consistency checking consists of 

“analyzing models to identify unwanted configurations defined by the inconsistency rules” 

(Cabot & Teniente 2006), whereas conformance checking focuses on the verification of the 

PLM itself and not on its potential configurations. The choice to deal with conformance 

checking instead of consistency checking is supported by the fact that this thesis exclusively 

focuses on verification of PLMs in the domain engineering stage (cf. Definition 1.1) and not 

on finding inconsistent configurations.   

Another issue in the context of product lines is that product verification should be 

achieved at the level of product line models first. Indeed, product models are not instantiated 

from their meta-models, but by configuration of PLMs. The assumption is that any product 

model configured from a correct PLM is itself correct. On the semantic level, a product line 

model is defined as the collection of all the product models that can be derived from it. 

Therefore checking the conformance of the product line model is equivalent to checking the 

conformance of all the possible product models (Djebbi & Salinesi 2007). However, we 

would like to avoid verifying all the product models because of a scalability issue: their 

number can be simply too high (Mendonça et al. 2009). The naïve approach that consists of 

achieving product model verification by checking their conformance with the product line 

meta-model is also not scalable to real world constraints: one does not want to deal at the 

application engineering stage with errors that should have been detected during domain 

engineering. 

This chapter is structured as follows. Section 5.1 presents a generic approach to check 

conformance of product line models, based in a generic product line metamodel. The generic 

approach is based in a collection of verification criteria classified in the ontology of 

verification criteria presented in the previous chapter. For each conformance checking 
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criterion, Section 5.1 provides an explanation with regards to the generic product line 

metamodel and an algorithm to implement each criterion. Section 5.2 presents the 

conformance checking approach applied to a particular formalism: feature models. This 

specific approach specialises the generic conformance checking criteria presented in Section 

5.1 to the feature model metamodel. Other criteria are particular to the FM metamodel and 

therefore they are not present in the ontology of generic verification criteria. For each FM 

conformance checking criteria, an explanation with regards to the FM metamodel, an 

algorithm in pseudo-code, and its implementation in CP, is provided. Section 5.3 summarises 

the chapter. 

5.1 Generic Conformance Criteria for Product Lines 

Models 

The approach proposed in this thesis to check the conformance of PLMs exploits (i) a 

collection of generic conformance criteria, as presented in Chapter 4, and (ii) a collection of 

specific conformance criteria. 

The generic conformance criteria are the ones generated from the generic product line 

metamodel presented in Chapter 4 (cf. Figure 4.2).  

The specific conformance criteria are directly related to specific aspects of each 

metamodel, i.e. aspects that are not grasped by the generic metamodel. For instance, the FM 

metamodel, presented in Figure 3.4, contains the notion of mandatory dependency. This 

concept is not handled in the generic metamodel of Figure 4.2. It is therefore a specific 

concept that requires specific verification criteria. 

This section focuses on the generic conformance checking criteria highlighted in Figure 

5.1. For each one of these generic conformance checking criteria, an algorithm is proposed. It 

is worth noting that even if the conformance checking criteria are generic, they should be 

adapted to each particular metamodel. Therefore the implementation of each criterion should 

be specialized for each particular metamodel too. For instance, the generic criterion “Root 

uniqueness/multiplicity”, which specifies that a PLM is composed of one or several root 

artefacts, uses the concepts and constraints of the generic PL metamodel (cf. Figure 4.2). The 

FM criterion “root uniqueness”, which specifies that a feature model is composed of one and 

only one root feature, uses the concepts and constraints of the FM metamodel used in this 

thesis (cf. Figure 3.4). As this example shows, there are no contradictions between both 

criteria. Instead, the specific criterion is a particular instance of the generic criterion. In this 
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case, the specific conformance criterion uses the concepts and constraints of the FM 

metamodel instead of the ones of the generic PL metamodel. Defining this criterion can be 

simply done by specializing the concepts of the generic criterion:  

Product Line Model  Feature Model,  

artefact  feature,  

root artefact  root feature. 

 

Figure 5.1. Generic conformance checking criteria 

 

CC.1. Root uniqueness/multiplicity 

This conformance checking criterion is highlighted in Figure 5.2, over the generic PLM 

metamodel presented above in Figure 4.2. This criterion specifies that a PLM is composed of one or 

several root artefacts. 
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Figure 5.2. CC.1 highlighted in the generic PLM metamodel. 

Algorithm: The algorithm that implements this conformance criterion looks for root artefacts 

in the PLM. Then, each root artefact found is kept in a list. Once all the artefacts of the PLM 

are evaluated, the algorithm computes the number of elements in the list. If this number is 

equal to 0, a conformance defect is raised. The algorithm of this conformance criterion is 

specified as follows. 

 For each productLineModel M  
 { 

RootArtefactList =''; 
For each root artefact RA 
{  

RootArtefactList += RA; 
} 
N = length(RootArtefactList); 
If (N = 0) 
{  

return 'defect found in model:' M; 
} 

} 

A more interesting problem consists of determining the root artefacts among the 

collection of artefacts of the product line model when the type of the root artefacts is not 

known in advance. However, the root artefacts in the product line modelling formalism 

referenced in this thesis uses a particular tag to indicate that an artefact is a root artefact, for 

instance: in the Dopler formalism, even if the root concept does not exist in the Dopler 
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metamodel (cf. Figure 3.7), the visibility condition of certain decisions is set to true to 

indicate that the decision is a root decision. In feature models the root concept is explicitly 

presented in the FM metamodel (cf. Figure 3.4) and therefore the concept should be explicit 

in the FMs. For this reason, the algorithm searches for the root artefacts assuming that there 

are some criteria to define if the artefact is root or not.  

CC.2.  Reusable elements uniqueness/multiplicity 

This conformance checking criterion is highlighted in Figure 5.3, over the generic PLM 

metamodel shown in Figure 4.2. This criterion specifies that a PLM is composed of one or several 

reusable elements. 
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Figure 5.3. CC.2 highlighted in the generic PLM metamodel. 

Algorithm: this algorithm looks for at least one reusable element. Once a reusable element is 

found, the algorithm breaks. The break is because of the first reusable element is found and 

therefore there is no conformance violation in the model at hand regarding this conformance 

criterion. If no reusable element is found in the model, the algorithm shows a conformance 

violation to the user.  

For each productLineModel M  
 { 

fly = false; 
For (each reusableElement R) { 

  fly = true; 
  break; 
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} 
If (fly = false) { 

returns ‘defect found in model:’ M; 
} 

} 

The break avoids useless computations when a first reusable element is found in a given 

model. If no reusable elements are found in a given model, the variable fly keeps its value 

false and therefore at the end of each model the algorithm evaluates the value of this variable 

and if the value is false violation of this conformance criterion is signalled to the user.  

CC.3.  Non-overlap of the artefacts that belong to the same model 

This conformance checking criterion is highlighted in Figure 5.4, over the generic PLM 

metamodel of Figure 4.2. This conformance criterion specifies that each artefact has a unique name in 

the model to which the artefact belongs. However, another PLM can have another artefact with the 

same name. 

 

property

Name: {unique}

Type

Domain

groupCardinality

root

1..*
2..*

1..*

0..* 1

1..*

0..1

2..*

reusableElement

dependency

artefact

Name : {unique}

Domain

individualCardinality

productLineModel

0..1

1

relates

groups

belongs_to

is_associated_to

optional

Min

Max

Min

Max

has_root

has_reusableElement

is_a

is_a

is_a

 

Figure 5.4. CC.3 highlighted in the generic PLM metamodel. 

Algorithm: The algorithm for this conformance criterion looks for pairs of different artefacts 

that share the same name. Each time the algorithm identifies a pair of artefacts with the same 

name, it returns to the user the identifiers and the name of both artefacts, and the model in 

which the defect was found. The algorithm is as follows: 
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For each productLineModel M  
 { 

For (each artefact A1) 
{ 

  If (there is an artefact A2 and A1≠A2 and A1.Name=A2.Name) 
  { 
   Return (A1, A2, Name, M); 

} 
} 

} 

Several algorithms are proposed in literature in order to detect overlaps (i.e., variables 

that belong to a same model and sharing the same name). Several of these proposals are: (i) 

unification algorithms (Knight 1989), where the unification algorithm performs a systematic 

matching between the terms that they are given to unify. (ii) Shared anthologies, where 

authors of the models should tag the elements with items in a shared ontology. The tag of a 

model element is taken to denote its interpretation in the domain described by the ontology 

and therefore it is used to identify overlaps between elements of different models. A total 

overlap in this approach is assumed when two model elements are "tagged" with the same 

item in the ontology (Leite & Freeman 1991, Robinson 1994, Robinson & Fickas 1994, 

Boehm & In 1996). (iii) Similar analysis, which is an “approach that exploits the fact that 

modelling languages incorporate constructs which imply or strongly suggest the existence of 

overlap relations. For instance, the "Is-a" relation in various object-oriented modelling 

languages is a statement of either an inclusive overlap or a total overlap” (Spanoudakis & 

Zisman 2001). Due to the fact that the aforepresented algorithm looks for overlapping in each PLM, 

the more inexpensive way to detect them is by unification of artefacts’ names.  

CC.4. Dependency completeness 

This conformance checking criterion is highlighted in Figure 5.5, over the generic PLM 

metamodel of Figure 4.2. This conformance criterion makes reference to the fact that each 

dependency relates two or several artefacts. 
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Figure 5.5. CC.4 highlighted in the generic PLM metamodel. 

Algorithm: The algorithm corresponding to this conformance criterion looks for a 

dependency (i.e., optional or mandatory or requires or excludes) between two identical 

artefacts. If such a situation is met, the artefact, its name and the PLM in which the defect 

was found are returned. The algorithm to check this non-conform situation is presented as 

follows: 

For each productLineModel M  
 { 

For (each artefact A) 
{ 
 If (there is a dependency D between A and A) 
 { 
  Return (A, A.Name, M); 

} 
} 

} 

This algorithm searches for wrong dependencies, i.e. dependencies that do not respect this 

conformance criterion and therefore relate the same artefact. This algorithm evaluates if there 

are dependencies among the same artefact. If some of these dependencies are found, the 

elements intervening in the non-conformance are returned.  

CC.5. Properties belonging to a single reusable element 

This conformance checking criterion is highlighted in Figure 5.6, over the generic PLM 

metamodel of Figure 4.2 This criterion refers to the fact that a property belongs to one and only 

one reusable element.  
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Figure 5.6. CC.5 highlighted in the generic PLM metamodel. 

Algorithm: The algorithm that implements this conformance criterion looks for property 

elements in the PLM. For each property, the algorithm puts into a list the reusable elements to 

which the property is related. Once all the property elements of the PLM are evaluated, the 

algorithm computes the number of elements in the list. If this number is different to 1, a non-

conformant situation regarding this conformance criterion is identified. For each non-

conformance detected in the model at hand, the list of reusable elements implied in the defect 

is returned.  

For each productLineModel M  
 { 

ReusableElementsList =''; 
For each property P 
{  

reusableElement RE; 
If (belongs_to(RE, P)) 
{ 

ReusableElementsList += RE; 
} 

} 
N = length(ReusableElementsList); 

If (N ≠ 1) 
{  

return ReusableElementsList; 
} 

} 
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For each product line model, this algorithm looks for properties instead of reusable 

elements. This decision avoids the evaluation of reusable elements without artefacts, which 

improves significantly the performance of the algorithm in product line models where only 

few reusable elements have properties. If the model contains many properties, the 

performance of the algorithm is in the worst of the cases, similar to the equivalent algorithm 

that navigates through the reusable elements and of each one of them searches if there are 

properties that belongs at the same time to other reusable element. 

CC.6. Non-overlap of the properties that belong to the same reusable element 

This conformance checking criterion is highlighted in Figure 5.7, over the generic PLM 

metamodel of Figure 4.2. This criterion specifies that properties of the same reusable elements 

cannot have the same name. 
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Figure 5.7. CC.6 highlighted in the generic PLM metamodel. 

Algorithm: The algorithm looks for artefacts with properties. Once an artefact with properties 

is found, the algorithm looks for two different properties that share the same name. Each time 

that a couple of different properties with the same name is found, the artefact to which they 

belong to and the couple of properties are returned to the user. So on, the algorithm 

recursively evaluates the other artefacts of the model, as follows. 

For each productLineModel M  
 { 
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For (each reusableElement E) 
{ 

If (E has properties LProp) 
{ 

  For (each {Prop1, Prop2} of LProp) 
  { 

   If ((Prop1 ≠ Prop2) and (Prop1.Name = Prop2.Name)) 
   { 
    Return (Prop1, Prop2, E, M); 
   } 
  } 

} 
} 

} 

This algorithm can also be implemented by means of the overlap detection techniques 

discussed in the conformance checking rule 3 (CC.3) and an extra constraint to guarantee that 

the two elements under comparison are effectively different one each other. The 

computational complexity of the implementation will depend on the technique used to find 

the overlaps.  

CC.7. Association of individual cardinalities to artefacts 

This conformance checking criterion is highlighted in Figure 5.8, over the generic PLM 

metamodel of Figure 4.2. This criterion specifies that an individual cardinality should be associated to 

one and only one artefact. 
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Figure 5.8. CC.7 highlighted in the generic PLM metamodel. 
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Algorithm: The algorithm looks for individual cardinalities in each PLM. For each one of the 

individual cardinalities, the algorithm puts into a list the artefacts to which the individual 

cardinality is related. Once all the individual cardinalities of the PLM are evaluated, the 

algorithm computes the number of elements in the list. If this number is different to 1, one 

conformance violation regarding this conformance criterion over the model at hand is 

identified and the list of artefacts is returned to the user. The corresponding algorithm of this 

conformance criterion is presented as follows. 

For each productLineModel M  
 { 

ArtefactList =''; 
For each indivualCardinality I 
{  

If (I is associated to an artefact A) 
{ 

ArtefactList += A; 
} 

} 
N = length(ArtefactList); 

If (N ≠ 1) 
{  

return (ArtefactList, M); 
} 

} 

This algorithm searches at first for the individual cardinalities and then, it evaluates if the 

individual cardinality at hand is associated to more than one artefact. It is worth noting that 

the algorithm avoids useless evaluations (i.e., evaluation of artefacts without individual 

cardinalities).  

CC.8. Optional dependencies in group cardinalities 

This conformance checking criterion is highlighted in Figure 5.9, over the generic PLM 

metamodel of Figure 4.2. This criterion specifies that a group cardinality should group two or more 

optional dependencies. 
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Figure 5.9. CC.8 highlighted in the generic PLM metamodel. 

Algorithm: The algorithm looks for group cardinalities with only one dependency. This 

algorithm navigates through the group cardinalities of the PLM and for each one of them, 

evaluates the number of dependencies belonging to the group cardinality. If this number is 

equal to one, the algorithm returns the group cardinality and the model to which it belongs to, 

as follows. 

For each productLineModel M  
 { 

For each groupCardinality GC 
{ 

  If (GC only contains one dependency) 
  { 
   return (GC, M); 

} 
} 

} 

This algorithm searches for the group cardinalities instead of optional dependencies, 

based on the fact that in product line models there are fewer group cardinalities than optional 

dependencies. This decision improves the execution time of the implementation avoiding 

useless evaluations (evaluation of optional dependencies not associated in a group 

cardinality). 
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5.2 The Case of Feature Models 

This section presents the application of the aforementioned generic conformance checking 

criteria, in the case of FMs and the implementation of these criteria according to the FM 

metamodel depicted in Figure 3.4.  

The purpose of this section is to show how a collection of conformance criteria (among 

which several were adapted from the generic criteria, and others are specific as the deltas of 

the FM metamodel with reference to the generic PL metamodel) can be extracted from the 

FM metamodel and checked automatically. In this manner, one can extend the conformance 

checking criteria according to particular requirements and depending on the metamodel at 

hand. The implementation of each verification criterion is a verification rule (cf. Definition 

1.6). Rules implementing FM conformance criteria can be seen as a queries that will be 

executed over a FM represented as a CLP (cf. Chapter 3). If the rule is evaluated to true in a 

model, its output is a set of elements that make true the evaluation of the rule. Note that in 

each algorithm there are only instantiated the elements that need to be analyzed to evaluate 

the corresponding rule, and each time that a case where the conformance rule is evaluated 

true, the elements participating in the case are signalled to the user. Therefore, the approach 

proposed in this thesis identifies not just the presence of conformance violations but also 

theirs sources. 

The following concepts of the FM metamodel are specializations of the concepts 

presented in the generic metamodel (cf. Figure 4.2):  

Product Line Model  Feature Model,  

artefact reusableElement  feature,  

dependency reusableElement  dependency,  

property  attribute,  

root artefact  root feature,  

individualCardinality  featureCardinality,  

optional dependency  optional dependency, and  

groupCardinality  groupCardinality.  

All the other concepts of the FM metamodel are specific to the FM formalism. 

FM CC. Criterion 1. A feature model should have one and only one root 

As defined by Kang et al. (1990), Griss et al. (1998), Matthias et al. (2002) and Czarnecki et 

al. (2005), we consider that a FM should have only one root feature. 
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The application of this criterion has for consequence that when someone makes several 

feature models for the different aspects of a same PL, the collection of feature models is 

integrated with a single root representing the different aspects of the PL. In Figure 5.10, this 

criterion is highlighted over the FM metamodel presented in Figure 3.4. Figure 5.10 depicts 

the fact that a FM is composed of one and only one root feature and that the root is a kind of 

feature. Thus, it is possible to find the elements that do not respect this conformance criterion.  
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Figure 5.10. FM CC criterion 1 on the FM metamodel 

Algorithm: The algorithm that implements this conformance criterion for FMs looks for root 

features in the FMs; then, each root feature found is kept in a list. Once all the root features of 

the FM at hand are evaluated, the algorithm computes the number of elements in the list. If 

this number of different to 1, one defect regarding to this conformance criterion over the 

model at hand is identified and the list of root features is returned to the user. The algorithm 

is thus as follows. 

RootFeatureList =''; 
For each root feature RF 
{  

RootFeatureList += RF; 
} 
N = length(RootFeatureList); 

If (N ≠ 1) 
{  

return RootFeatureList 
} 
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Implementation: This algorithm is implemented in GNU Prolog as a constraint logic program 

query as follows: 

(1) conformance_rule_1(LRootId) :-  

(2) findall(FeatureId, root(FeatureId), LRootId), 

(3) length(LRootId, N), 

(4) N \== 1. 

Line 1 uses one output variable to return the list of identifiers of the FM only if the 

number of elements of the list is different to one. The GNU Prolog built-in predicate 

findall(FeatureId, root(FeatureId), LRootId) returns a list LRootId with all values 

for the identifiers of features FeatureId corresponding to the identifier of a root feature 

root(FeatureId). Then, the GNU Prolog built-in predicate length(LRootId, N) 

calculates the length of the list returned by the predicate of line 2 and gives the result in the 

variable N , which is constrained to be different to 1 (line 4) before return the result LRootId 

in line 1. 

 

FM CC. Criterion 2. Features intervening in a group cardinality relationship 

should not be mandatory features  

According to Definition 3.8, a group cardinality dependency is about the selection of a certain 

number of features among a given set. In this selection, each feature should have the same 

possibility to be chosen as the others. In this case, all the child features participating in a 

group cardinality should be optional features. We consider this conformance criterion, 

initially proposed by Czarnecki et al. (2005), as a good practice to avoid errors and 

redundancies. Conversely, the application of this criterion does not have any negative 

consequence over the group cardinality specification since it is enough to reduce in one the 

boundaries of the group cardinality when a mandatory feature is erased from the 

specification. Figure 5.11 highlights this criterion over the FM metamodel presented in 

Figure 3.4. Figure 5.11 depicts the fact that two or several optional dependencies can or 

cannot participate in a group cardinality. Likewise, an optional dependency relates two 

features, where, by definition (cf. Kang et al. 1990), the last one is considered as optional 

feature. 
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Figure 5.11. FM CC Criterion 2 on the FM metamodel 

Algorithm: The algorithm that corresponds to this conformance criterion looks for mandatory 

dependencies participating in group cardinalities. This algorithm instantiates the group 

cardinalities of the FM and for each one of them, evaluates if the dependency is optional or 

not. Then, the algorithm returns each mandatory dependency found in the precedent stage, as 

follows.  

For each groupCardinality 
{ 
 If (groupCardinality contains a mandatory dependency MD) 

{ 
  Returns MD 

} 
} 

 

Implementation: This algorithm is implemented as a constraint logic program query as 

follows: 

(1) conformance_rule_2(DepId, FeatureId) :-  

(2)   groupCardinality(LDepId, _, _), 

(3)   member(DepId, LDepId), 

(4)   dependency(DepId, _, FeatureId, mandatory). 

Line 1 uses two output variables to return the identifiers of a dependency and its 

associated mandatory child feature involved in a group cardinality. The detection of 

inconsistencies consists of looking for mandatory dependencies (line 4) among the 

dependencies that belong to a group cardinality (line 2). The built-in predicate of line 2 
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(member(DepId, LDepId)) takes, each time that the predicate is called, the last element 

(DepId) from a list of elements (LDepId).  

 

FM CC. Criterion 3. A feature should not have two attributes with the same 

name 

The attributes of the product line model should not only be uniquely identified but also they 

should have different names to avoid redundancies and management issues in a PLM 

evolution process. In the running example depicted in Figure 3.5, feature Graphical has two 

attributes but they are not violating this conformance criterion because its two attributes have 

different names (WidthResolution, HeightResolution). The other way round, two 

different features may have attributes with the same name without this conformance criterion 

be violated. Figure 5.12 highlights this conformance criterion over the FM metamodel 

presented in Figure 3.4. Figure 5.12 depicts the fact that a feature may have zero or several 

attributes and that each attribute should have a unique name. 
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Figure 5.12. FM CC Criterion 3 on the FM metamodel 

Algorithm: The algorithm that corresponds to this conformance criterion looks for features 

with attributes. Once a feature with attributes is found, the algorithm looks for two different 

attributes sharing the same name. Each time a couple of different attributes with the same 

name is found, the feature to which they belong to and the couple of attributes is returned to 

the user. Thus, the algorithm iteratively evaluates the other features of the model, as follows. 
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For (each feature F) 
{ 

If (F has attributes LAtt) 
{ 

 For (each {Att1, Att2} of LAtt) 
 { 

  If ((Att1 ≠ Att2) and (Att1.Name = Att2.Name)) 
  { 
   Return (Att1, Att2, F) 
  } 
 } 
} 

} 

 

Implementation: This algorithm is implemented by means of the next constraint logic 

program query, which searches for two different attributes, of the same feature, with the same 

name.  

(1) conformance_rule_3(FeatureName,AttId1,AttId2,AttName) :-  

(2)   feature(_, FeatureName, LAttId), 

(3)   choose(LAttId, AttId1, LAttId1), 

(4)   member(AttId2, LAttId1), 

(5)   AttId1 \== AttId2, 

(6)   attribute(AttId1, AttName, _), 

(7)   attribute(AttId2, AttName, _). 

Line 1 uses four output variables to return the name of the feature that has the repeated 

attributes, their two identifiers and the name of the repeated attributes, if any feature where 

these characteristics exists. These variables will take the values of one feature where two of 

its attributes have the same name. Usually in CLP other solutions can be obtained thanks to 

the underlying non-determinism mechanism. The source of non-determinism stands in line 2 

that chooses one feature, line 3 that chooses an attribute associated with the feature at hand 

and line 4 that chooses a second attribute of the feature. Then, line 5 constraints the fact that 

both features must be different and lines 6 and 7 constraint the fact that the two attributes 

must have the same name. It is worth noting the declarative formulation of this conformance 

rule and the fact that we only use relevant elements for the conformance criterion. In this rule 

we are interested in comparing attributes of a same feature. Therefore, we only consider 

features with a list of attributes (LAttId) and do not use dependencies or cardinalities 

because they are not relevant for this criterion. The research strategy we use in each 

conformance rule is exhaustive because we do not avoid evaluating any case even if in our 

research we only consider elements relevant to the scope of each conformance criterion.  

 



108 

 

FM CC. Criterion 4. Two features should not have the same name, in the same 

model 

The fact that several features share the same name can generate ambiguity problems in 

product configuration and maintenance stages. In none of the models of our running example 

(cf. Figure 3.5 and 3.6) have the same names been used for different features in the same 

view. There are some features with the same name (e.g., Shell, UserInterface and 

Graphical) but these are in different models. This criterion does not apply in this case as it 

only considers one model at time as specified with the “Feature Model” entity. Figure 5.13 

highlights this conformance criterion in the FM metamodel. 
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Figure 5.13. FM CC Criterion 4 on the FM metamodel 

Algorithm: The algorithm that corresponds to this conformance criterion looks for features 

that although different from each other, share the same name. Once these features are 

identified, the algorithm returns the identifiers of both features and the corresponding name to 

the user. The algorithm is as follows: 

For (each feature F1) 
{ 

  If (there is another feature F2 and F1≠F2 and F1.Name=F2.Name) 
  { 
   Return (F1, F2, Name) 

} 
} 
 

Implementation: This algorithm is implemented as follows. 

(1) conformance_rule_4(FeatureId1, FeatureId2, FeatureName) :-  

(2)   findall(FName-FId, feature(FId, FName,_), LNameId), 
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(3)   keysort(LNameId ,LNameId1), 

(4)   append(_,[FeatureName-FeatureId1, FeatureName-FeatureId2|_],  

                LNameId1). 

Line 1 uses three output variables to return the identifiers and the name of the pairs of 

different features that have the same name. The GNU Prolog built-in predicate 

findall(FName-FId, feature(FId, FName,_), LNameId) returns a list LNameId with all 

values for the pair of values FName-FId corresponding to the name and identifier of a same 

feature; i.e., that satisfied the predicate feature(FId, FName,_). Then, the GNU Prolog 

built-in predicate keysort sorts the list LNameId (and puts the result in LNameId1) according 

to the names of the features in the list. This way, if there are two features with the same 

name, they are together in the list. Line 4 uses the GNU Prolog built-in predicate append to 

search for two consecutive elements with the same name under the list LNameId1 obtained 

from the line 3. 

 

FM CC. Criterion 5. A child feature cannot be related in an optional and a 

mandatory dependency at the same time 

When a feature is involved as a child in an optional/mandatory relationship, this feature is 

also referred to as optional/mandatory. By definition 3.5, a feature that is optional cannot be 

mandatory at the same time and vice versa. In the metamodel, optional and mandatory are 

complete and disjoint dependencies. This conformance criterion covers two cases. In the first 

case, it evaluates if a feature is constrained two times by the same father by means of an 

optional dependency and a mandatory dependency. In the second case, it evaluates if a 

feature is mandatory towards one parent and optional towards another one, directly or 

indirectly (through other features). Figure 5.14 highlights this conformance criterion in the 

FM metamodel.  
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Figure 5.14. FM CC criterion 5 on the FM metamodel 

Algorithm: The algorithm corresponding to this conformance criterion takes the collection of 

mandatory dependencies between features F1 (father) and F2 (child) and then looks for an 

optional dependency in which F2 is again the child feature. If such cases are identified in the 

FM, the dependencies and the child feature are returned to the user. The corresponding 

algorithm is as follows: 

For (each mandatory dependency D1 between features F1 and F2, in this 
order) 

{ 
  If (there is an optional dependency D2 between features F3 and 

F2, in this order) 
  { 
   Return (D1, D2, F2) 

} 
} 

 

Implementation: This algorithm is implemented as a constraint logic program query. This 

program looks for features constrained at the same time by an optional and a mandatory 

dependency. 

(1) conformance_rule_5(FeatureId, DepId1, DepId2) :-  

(2)   bagof(TypeId-DepId, FId0^dependency(DepId, FId0, FeatureId,  

               TypeId), L), 

(3)   % member(mandatory-DepId1, L), member(optional-DepId2,L). 

(4)   once((member(mandatory-DepId1, L), member(optional-DepId2, L))). 

Line 1 uses three output variables to return the identifiers of the feature and its associated 

dependencies that violate the conformance criterion. Then, the GNU Prolog built-in predicate 
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bagof groups by the variable FId0 (initial FeatureId) all the dependencies in which a given 

feature is involved. For each FeatureId (by backtracking) this predicate returns a list L 

consisting on elements of the form TypeId-DepId associated with each particular 

FeatureId. Once this list is ready, the GNU Prolog built-in predicate once searches both a 

mandatory and an optional dependency in each member of L. Thus, if this predicate finds 

some results, then this means that a particular feature is involved in a mandatory and an 

optional relationship at the same time. By means of the backtracking mechanism, another 

group of TypeId-DepId, for other FeatureId is tested until the latest feature. Line 3 is 

commented and can be used if we want all possibilities for a same FeatureId. 

 

FM CC. Criterion 6. Two features cannot be required and mutually excluded at 

the same time 

If two features are related in requires and excludes relationships, the model is not-conform to 

the FM metamodel (cf. Figure 3.4). This conformance criterion is applicable in the cases in 

which features are related directly (i.e., F1 requires F2 and F1 excludes F2) and transitively 

(i.e., F1 requires F2, F2 requires F3 and, F1 excludes F3) in mutual exclusion and 

requirement. Figure 5.15 highlights this conformance criterion in the FM metamodel. 
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Figure 5.15. FM CC criterion 6 on the FM metamodel 

Algorithm: The algorithm that corresponds to this conformance criterion takes the collection 

of requires dependencies between features F1 (requiring) and F2 (required) and then looks for 
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an exclusion dependency between these two features. If such cases are identified in the FM, 

the features are returned to the user. The corresponding algorithm is as follows: 

For (each requires dependency D1 between features F1 and F2) 
{ 
  If (there is an excludes dependency D2 between F1 and F2) 
  { 
   Return (F1, F2) 

} 
} 
 

It is worth noting that this algorithm does not consider the case in which features are 

related transitively (i.e., F1 requires F2, F2 requires F3 and, F1 excludes F3) in mutual 

exclusion and requires due to the fact that this case does not corresponds to a conformance 

checking criterion but to a semantic criterion. The conformance criteria are directly deduced 

from the metamodel at hand, and in the case of FM metamodel, requires and mandatory 

dependencies relate two features. The case of transitivity is treated as a domain-specific 

criterion (cf. Chapter 6). 
 

Implementation: This algorithm is implemented as a CLP query in the following manner: 

(1) conformance_rule_6(FeatureName1, FeatureName2) :- 
(2) dependency(_, A, B, requires), 
(3) order2(A, B, A1, B1), 
(4) dependency(_, A1, B1, excludes), 
(5) feature(A, FeatureName1, _), 
(6) feature(B, FeatureName2, _). 
(7) order2(A, B, A, B) :- 
(8) A @=< B, !. 
(9) order2(A, B, B, A). 
 

Line 1 uses two output variables to return the names of features that are required and 

mutually excluded at the same time in a same model. Line 2 instantiates a requires-type 

dependency between features A and B. In requires dependencies there is a predefined order 

for the identifiers of both features involved in the dependency (i.e., if A requires B, the 

identifier of A should be placed before the identifier of B). On the contrary, in the data 

structure defined to represent exclusion dependencies there is no predefined order to arrange 

the identifiers. In line 3, the identifiers of features that will be used to instantiate exclusion 

dependencies are ordered. This order is necessary to optimize the execution time of the 

conformance rule. Once the identifiers or both features involved in an exclusion dependency 

are ordered (lines 7 to 9), line 4 instantiates an exclusion dependency with the order of values 

A and B (named A1 and B1), which can also be used in line 2 to instantiate a requires 

dependency.  
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FM CC. Criterion 7. Each dependency relates two or several different features  

According to the FM metamodel shown in Figure 3.4 every dependency should be set 

between two different features. Figure 5.16 highlights this conformance criterion in the FM 

metamodel.  
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Figure 5.16. FM CC criterion 7 on the FM metamodel 

Algorithm: The algorithm that implements this FM conformance criterion looks for a 

dependency (i.e. optional or mandatory or requires or excludes) between two identical 

features. If such a situation is found, the feature and its name are returned to the user. The 

algorithm is as follows: 

For (each feature F) 
{ 

 If (there is an optional or mandatory or requires or excludes 
dependency D between F and F) 

 { 
  Return (F, F.Name) 

} 
} 
 

Implementation: This algorithm is implemented as a constraint logic program query in the 

following manner: 

(1) conformance_rule_7(FeaId, FeaName) :- 

(2)   (dependency(_, FeaId, FeaId, optional) ; dependency(_, FeaId, 

FeaId, mandatory) ; dependency(_, FeaId, FeaId, excludes) ; 

dependency(_, FeaId, FeaId, includes)), 

(3)   feature(FeaId, FeaName, _). 

Line 1 is the clause that corresponds to this FM conformance criterion and returns to the 

user the identification and the name of each feature that includes or excludes itself. In line 2 
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an optional or mandatory or requires or excludes dependency between the feature (FeaId) 

and itself (FeaId) is instantiated. At line 3 FeaId is used in order to instantiate a feature and 

save its name in the variable FeaName. 

5.3 Summary 

In the case of conformance checking, the purpose is to verify if the abstract syntax of a model 

is correct with regards to the corresponding metamodel. Once a PLMs’ abstract syntax is 

transformed into constraint logic programming, users can verify them against conformance 

criteria derived from the corresponding meta-models (Mazo et al. 2011b).  

Even if the approach presented in this chapter is generic, the algorithms corresponding to 

each criterion should be adapted to the specific concepts and constraints of the metamodel at 

hand. Besides, there will be several concepts and constraints in each specific metamodel that 

are not included in the generic metamodel and therefore new conformance criteria for these 

concepts and constraints should be defined by the engineer.  

To summarize, this chapter proposes a generic conformance checker that uses 

parameterizable criteria to detect non-conformance on product line models. This generic 

conformance checking approach can be adapted to specific product line formalisms by (i) 

means of specialization of the generic criteria, and (ii) implementation of the specific deltas 

(deltas are concepts of the specific metamodels not considered in the generic metamodel). In 

addition to this contribution, the generic algorithms can be implemented in different ways, we 

proposed in this chapter its implementation in constraint programming using the GNU Prolog 

language (Diaz & Codognet 2001). 
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Chapter 6 

Domain-specific Verification of Product Line 

Models 

 

Looking for undesirable properties in PLMs is not a new subject and several works exist in 

the literature (Von der Maßen & Lichter 2004, Batory 2005, Benavides et al. 2005, Lauenroth 

& Pohl 2007, Trinidad et al. 2008, Mendonça et al. 2009). These works, among others, agree 

with the fact that verification of PLMs consists of “finding undesirable properties, such as 

redundant or contradictory information” (Trinidad et al. 2008). The approach presented in 

this thesis classifies these undesirable properties in several sub-categories. As the typology 

presented in Chapter 4 shows, these properties can be grouped in the class of domain-specific 

verification criteria, under three categories: expressiveness, error-free and redundancy-free.  

The expressiveness category intends to verify if PLMs are really PLMs. This is probably 

the most important category due to the fact that a PLM that permits the configuration of no 

products at all or permits the configuration of only one product is a useless model.  

The error-free category is about the errors of the PLM, i.e. wrong representations of the 

product line domain. This thesis identifies three types of errors widely studied in literature: 

presence of domain values that cannot be attained (Trinidad et al. 2008), presence of useless 

artefact (Von der Maßen & Lichter 2004, Trinidad et al. 2008, Van den Broek & Galvão 

2009, Benavides et al. 2005, 2006,  Elfaki et al. 2009) and presence of artefacts intended to 

be optional but appearing in all the products of the PL (Von der Maßen & Lichter 2004, 

Benavides et al. 2005, Trinidad et al. 2008). Even if the error criteria are not as crucial as the 

expressiveness criteria, PLMs should be verified against them in order to identify and correct 

all the errors before configuring any product. The longer an error goes unnoticed, the more 

subsequent decisions and product configurations are based on it, and hence the more difficult 

and expensive it will be to correct it (Boehm 1981).  

The redundant-free category of verification criteria is about redundancies in PLMs. 

Redundancies are not errors. However they are undesirable since they increase the 

computational effort in configuration, analysis and configuration stages, and they undermine 

the correct evolution of PLMs. 
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The domain-specific verification criteria considered in this thesis are highlighted in 

Figure 6.1.  

 

Figure 6.1. Domain-specific verification criteria 

 

The rest of this chapter develops the domain-specific verification depicted in Figure 6.1. 

For each criterion we present a generic algorithm, its application to our running example, its 

comparison with other algorithms proposed in literature (if some exist) and the 
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thesis is to propose optimized algorithms to implement each verification criterion. To this 

end, we manipulate in java the CP queries and the answers obtained from the solver in order 

to reuse these answers and avoid useless queries. We use java to implement certain 

algorithms that are composed of several CP queries arranged in a given order, e.g. the 

algorithm to check is composed of several CP queries that must be executed according to the 

results obtained from the solver for each query. It is worth noting that even if the queries are 

made in constraint programming, the traitement of the results of these queries are made in 

java in order to reuse these results and avoid future useless queries. 
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6.1 Non-void PLMs 

A void PLM is defined as a model that does not permit the configuration of any product. 

Algorithm:  

The proposed approach determines if there is at least one product that can be generated by 

means of a query to a CP solver. The model is passed to the solver, which is then 

requested for a solution. If [V1, V2, ..., Vi] is the vector of variables in the CP 

that implements the artefacts and properties of the PLM, then a solution is P1=[Vj1, 

Vj2, ..., V
j
i] where Vjk is a possible value of Vk and all the values respects the 

constraints of the PLM. If such a solution exists, the PLM is not void. The solver will 

then return one valid product; false otherwise. 

Void_PLM(PLM M, Solver S) { 
Load the model M in the solver S; 
Answer = S.getOneSolution();  
If (Answer ≠ “false”) { 

  Write (Answer); 
} 
Else { 

  Write (“Void PLM”); 
} 

} 

Application to the Running Example: 

The application of this algorithm over the running example gives (within others) the 

following product that can be configured from the FM of Figure 3.5.  

P1 = [UNIX=1, Kernel=1, Scheduling=1, ExecutingInstructions=1, 

InterpretingInstructions=1, AccomplishingTheTransferOfData=1, 

AllocatingTheMachinesMemory=1, Shell=1, FileSystem=1, UserInterface=1, 

Graphical=1, Process1=1, Process2=1, Process3=1, Process4=1, Process5=1, 

WidthResolution=800, HeightResolution=600, Support_usb=0, Cdrom_atech=1, 

Pcmacia_support=2].  

An example of product that can be configured from the Dopler model of Figure 3.8 is:  

P2 = [MeansOfInstallation=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, 

FileMaintenance=1, Editing=1, OnlineInfo=0, ProgrammingSupport=0, 

Shell=1, GraphicalResolution=0, Width=0, Height=0, ATwm=0, A4dwm=0, 

AMwm=0, AMotif=0, AKDE=0, AQt=0, AGNOME=0]. 

Therefore, both models are not void. 
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Discussion:  

Two alternative techniques have been proposed so far to implement this operation: (i) 

calculating the number of products (Van den Broek & Galvão 2009), and (ii) asking for a 

product configuration that meets the constraints of a FM (Benavides et al. 2005, Trinidad 

et al. 2008). The problem with the former approach is that it is unnecessarily 

computational costly (if at all possible). Indeed, there is no need to compute all solutions 

to prove that the model has at least one solution. The proposal of this thesis follows along 

the lines of the latter alternative as presented above. 

Implementation:  

The Java pseudo-code and the queries to the GNU Prolog solver, corresponding to the 

above algorithm are presented as follows: 

(1) ConnectionProlog connection = new 
ConnectionProlog("localhost",port); 

(2) public String noVoid(String model, String listVariablesOfTheModel) 
{ 

(3)   String sol = connection.sendMessage("exec("+model+","+ 
listVariablesOfTheModel+")."); 

(4)    if(sol.equals("false")){ 
(5)     sol = "Void PLM"); 
(6)    } 
(7)   return sol; 
(8) } 

Line 2 corresponds to the parameterizable function that automates the non-void 

verification criterion. Line 3 executes in GNU Prolog the model at hand, and retrieves the 

solution from the solver in the variable listVariablesOfTheModel, which is then 

returned from the sendMessage function and saved into the variable sol. Line 7 returns 

the solutions obtained from the solver, or  the string “Void PLM” is there is no products 

in the PLM at hand (model). 

6.2 Non-false PLMs 

A false PLM is defined as a model that permits the configuration of one product only. 

Algorithm:  

The approach proposed in this thesis asks the solver to generate two products in order to 

decide if the PLM is false. The algorithm of our approach is as follows: 

False_PLM(PLM M, Solver S) { 
 Load the model M in the solver S; 

Answer1 = S.getOneSolution();  
If (Answer1 ≠ “false”) { 
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  Answer2 = S.getOneSolution(); 
If ((Answer1 ≠ Answer2) && (Answer2 ≠ “false”)) { 

Write (Answer1, Answer2); 
  } 
  Else { 

Write (“False PLM”); 
} 

} 
Else { 

Write (“False PLM”); 
} 

} 

Application to the Running Example: 

The application of this algorithm over the running example of Figure 3.5 gives two 

products: P1 already presented in the previous section, and P3 = = [UNIX=1, Kernel=1, 

Scheduling=1, ExecutingInstructions=1, InterpretingInstructions=1, 

AccomplishingTheTransferOfData=1, AllocatingTheMachinesMemory=1, 

Shell=1, FileSystem=1, UserInterface=0, Graphical=0, Process1=1, 

Process2=1, Process3=1, Process4=1, Process5=1, WidthResolution=0, 

HeightResolution=0, Support_usb=0, Cdrom_atech=1, Pcmacia_support=2]. 

In the same way, this algorithm applied over the Dopler model of the running example 

(cf. Figure 3.8) gives two products: P2 already presented in the previous section and P4 = 

[MeansOfInstallation=1, Cdrom=0, Usb=1, Net=0, UtilityProgram=1, 

FileMaintenance=1, Editing=1, OnlineInfo=1, ProgrammingSupport=0, 

Shell=1, GraphicalResolution=1, Width=800, Height=600, ATwm=1, A4dwm=0, 

AMwm=0, AMotif=0, AKDE=1, AQt=1, AGNOME=0]. 

Discussion:  

Although this operation could also help detecting when PLMs are void (our preceding 

operation), the converse is not true. The two operations have then a separate 

implementation. 

Implementation:  

The Java pseudo-code and queries to the GNU Prolog solver corresponding to the above 

algorithm are presented as follows: 

(1) ConnectionProlog connection = new 
ConnectionProlog("localhost",port); 

(2) public String FalsePLM(String model, String 
listVariablesOfTheModel) { 

(3)   String sol1 = connection.sendMessage("exec("+model+","+ 
listVariablesOfTheModel+")."); 

(4)   String result = "False PLM"; 
(5)   if(!sol1.equals("false")){ 
(6)    sol2 = nextSolution(); 
(7)    if(!sol2.equals("false")){ 
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(8)     result = sol1 + sol2; 
(9)    } 
(10)   } 
(11)   return result; 
(12) } 
(13) public String nextSolution(){ 
(14)  return connection.sendMessage("next."); 
(15) } 

Lines 2 to 12 represent the function to verify if the product line model model is false or 

not. If the model allows generating two products (lines 3 and 6), both products are 

returned to the user by means of the variable result (lines 8 and 11). If only one product 

or no products can be generated from the PLM, the functions return “False PLM” (lines 4 

and 11). Lines 13 to 15 represent the function to find the next product from the PLM. 

6.3 Non-dead Artefacts 

An artefact is dead if it cannot appear in any product of the product line. 

Algorithm:  

The approach presented in this thesis evaluates each non-zero value of each artefact’s 

domain. If an artefact cannot attain any of its non-zero values, then the reusable element 

is dead. The corresponding algorithm is presented as follows: 

DeadArtefacts(PLM M, Solver S) { 
 Load the model M in the solver S; 
 DeadArtefactsList = all variables of M; 

For (each variable V ∈ DeadArtefactsList) { 
  Product = S.getOneSolution(“V > 0”); 

 If (Product = “false”) { 
  Write (“The artefact ” + V + “ is  dead”); 

} 
Else { 

 Erase V and all the other non-zero variables obtained in  
Product from DeadArtefactsList; 

} 
 } 

} 

Application to the Running Example:  

The application of the aforementioned algorithm in our running example is as follows. 

The initial list of dead artefacts is composed of all the artefacts of the PLM:  

deadArtefactsList=[UNIX, Kernel, Scheduling, ExecutingInstructions, 

InterpretingInstructions, AccomplishingTheTransferOfData, 

AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface, 

Graphical, Process1, Process2, Process3, Process4, Process5, 

WidthResolution, HeightResolution, Support_usb, Cdrom_atech, 

Pcmacia_support].  
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Then, the algorithm queries for a configuration based on artefacts for which the algorithm 

still ignores if they are dead or not, and sieves the selected (and thus alive) elements from 

this list. For example, to know if Kernel is dead or not, it is sufficient to query the solver 

for a product with Kernel=1, which provides a product:  

P5 = [UNIX=1, Kernel=1, Scheduling=1, ExecutingInstructions=1, 

InterpretingInstructions=1, AccomplishingTheTransferOfData=1, 

AllocatingTheMachinesMemory=1, Shell=1, FileSystem=1, UserInterface=1, 

Graphical=1, Process1=1, Process2=1, Process3=1, Process4=1, Process5=1, 

WidthResolution=800, HeightResolution=600, Support_usb=0, Cdrom_atech=1, 

Pcmacia_support=2].  

This not only means that the artefact Kernel is not dead, but also that the other artefacts 

with values different from 0 are not dead. According to the algorithm, these artefacts can 

be sieved from the list of dead artefacts. Therefore, in the second iteration, the list of dead 

artefacts is deadArtefactsList=[Support_usb]. The next step consists of querying for 

products with Support_usb=1. As answer, the solver provides another product, which 

means that the Support_usb artefact is not dead either. According to our algorithm, the 

variable Support_usb must be erased from the list of dead artefacts. At this point the list 

of dead artefacts is empty, which means that there are no dead artefacts in the PLM.  

The purpose of the list deadArtefactsList is to reuse the information gathred from the 

solver and then reduce the number of future queries. For instance, in this example only 

two queries were necessary to evaluate all artefacts. In contrast, 21 queries would have 

been required in the current state of the art algorithm (Broek & Galvão 2009). However, 

it is not possible to calculate in advance how many queries would be needed, or even, to 

guarantee that the minimal number of queries will be executed, as this depends on the 

configuration generated by the solver. 

Discussion: 

Artefacts can be dead because: (i) they are excluded by an element that appears in all 

products (also known as full-mandatory or core artefacts, c.f. Von der Maßen & Lichter 

2004, Benavides et al. 2005, Trinidad et al. 2008, Van den Broek & Galvão 2009); and 

(ii) they are wrongly constrained (e.g., an attribute of the feature is > 5 and < 3 at the 

same time, or a group cardinality is wrong defined).  

There are several approaches to detect dead artefacts. Elfaki et al. (2009) detect dead 

features by searching only for predefined cases, i.e. defined dead features in the domain-
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engineering process. This approach depends of the feature dialect used in Elfaki et al. 

(2009), therefore this approach is not directly exploitable for other formalisms.  

Trinidad et al. (2006, 2008) detect dead features by finding all products and then 

searching for unused features. This approach is not scalable to large models. 

Broek & Galvão (2009) detect dead features by transforming the FM into a generalized 

feature tree, and then searching the feature occurrences that cannot be true. This approach 

depends on the premise that the product line model should be representable as a 

generalized feature tree, which has been identified as a problem when Roos-Frantz & 

Segura (2008) tried to transform OVM models into feature trees without success. To the 

best of our knowledge there is no detail in literature about the way in which this approach 

and other ones existing in the literature (e.g. Mendonça et al. 2009) were implemented. 

The algorithm proposed in this thesis evaluates each non-zero value of each reusable 

element’s domain, and reuses each solution obtained from the solver in order to avoid 

useless computations. Therefore, our approach is original, and scalable as the paragraph 

above shows it. 

It is worth noting that this algorithm can only be executed once the model at hand is 

found to be non-void. Otherwise, if the model is void, all the artefacts of the PLM will be 

dead and therefore every execution of the algorithm to detect dead artefacts will show that 

the artefact at hand is dead. This observation shows how important it is to respect the 

order proposed by our typology of verification criteria to identify in which sequence they 

should be verified. 

Implementation:  

The Java pseudo-code and the queries to the GNU Prolog solver, corresponding to the 

above algorithm are presented as follows: 

(1) findDeadVariables(String[] dataModel, Vector variables){ 
(2)  deadVariables = vector with all the variables of the PLM; 
(3)  while(j<deadVariables.size()){ 
(4)   String[] value = domains.elementAt(j)); 
(5)   String wrongValues = new String(); 
(6)   String sol = new String(); 
(7)   for(int i=0; i<value.length; i++){ 
(8)    if(!value[i].equals("0")){ 
(9)    String configuration = 

utilities.makeConfiguration(feature, 
(String)deadFeatures.elementAt(j), value[i]); 

(10)    String prolog = "("+dataModel[0]+"="+configuration;  
(11)    prolog = prolog.concat(", "+dataModel[1]+"), 

"+dataModel[0]); 
(12)    sol = connection.sendMessage("exec("+prolog+")."); 
(13)    if(sol.equals("fail.")){ 
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(14)     wrongValues = wrongValues + value[i]+", "; 
(15)    } 
(16)    else{ 
(17)     break; 
(18)    } 
(19)   } 
(20)   } 
(21) } 

Line 1 corresponds to the function to find dead variables in a PLM (dataModel). Line 3 

evaluates if there remain variables of the PLM, initially classified as dead variables (line 

2), in the vector deadVariables. For each one of the variables of the PLM, line 4 

retrieves all the values that the variable at hand can take, and line 6 saves in wrongValues 

the values that the variable at hand cannot take. Line 8 evaluates each value of the 

variables’ domain, except the value 0. If the domain’s value is different to 0, the program 

creates a configuration with the value at hand, and requests the solver for one solution 

with this configuration (lines 9 to 13). If the configuration does not generate any solution; 

the program keeps the value that variables cannot take into the variable wrongValues 

(lines 14 to 17). For each variable of the PLM, the program evaluates if there is at least 

one solution with each one of the values of the variable’s domain in order to determine if 

the variable is dead or not (lines 7 to 15). Since a solution is found for a given variable, 

the program breaks the for cycle corresponding to the domain’s values of the variable at 

hand in order to avoid useless computations (lines 16 to 18). 

6.4 Non-false Optional Artefacts  

An optional artefact is an artefact playing the role of child in an optional dependency. An 

artefact is false optional if it is included in all the products of the product line despite being 

declared optional (Von der Maßen & Lichter 2004, Benavides et al. 2005, Trinidad et al. 

2008). 

 

Algorithm:  

To verify if an optional artefact is a false optional, this algorithm queries for a product 

that does not contain the artefact at hand (setting the feature value to 0). If there is no 

such product, then the artefact evaluated is indeed a false optional. 

 
FalseOptionalReusableElements(PLM M, Solver S) { 
 Load the model M in the solver S; 
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 FalseOptionalElementsList = all optional elements of M; 

For (each variable V ∈ FalseOptionalElementsList) { 
  Product = S.getOneSolution(“V = 0”); 

 If (Product = “false”) { 
  Write (V + “ is  false optional”); 

} 
Else { 

 Erase V and all the other variables with a Zero 
affectation into Product, from DeadElementsList; 

} 
 } 

} 

Application to the running example: 

If one wants to know whether the optional artefact Process is a false optional or not, it 

is sufficient to request for a product without this artefact (Process=0). The solver, in 

this case, returns “false”, which means that this optional artefact always take the value of 

1; i.e., the artefact is false optional, as presented in Figure 3.5. This figure shows that 

Process is included by Sheduling, AccomplishingTheTransferOfData and 

AllocatingMachine’sMemory, which are part of the core artefacts of the UNIX 

product line. 

Discussion: The literature proposes two main approaches to detect false optional artefacts 

in a PLM. Trinidad et al. (2006) detect false optional features in FM based on finding all 

products, and then searching for common features among those which are supposed to be 

optional. This technique is not scalable and sometimes even unfeasible due to the fact that 

it requires to generate all possible products first.  

Trinidad et al. (2008) present another technique to detect false optional features—they 

call them full mandatory features—that tests the optional dependency instead of the 

feature itself. Their technique, automated as a constraint satisfaction problem, sets to 0 the 

optional feature at hand and sets to 1 its father.  

The approach presented in this thesis evaluates that there exists one configuration without 

each presumed optional feature. This approach does not try to check that the father 

artefact must be set to 1. Indeed if the presumed optional artefact is set to 0 and there is a 

solution (the model is consistent to this constraint), the father can or cannot take the value 

1. Besides, this approach mixes up a structural issue in a semantic verification. In fact, 

Trinidad et al. are evaluating at the same time that the presumed optional feature must be 

optional and that its father in not a dead feature. This observation demonstrates again the 
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usefulness of the typology of our verification criteria, in this particular case to separate 

concerns verification in the algorithm. 

Implementation:  

The Java pseudo-code and the queries to the GNU Prolog solver, corresponding to the 

above algorithm are presented as follows: 

(1) findFalseOptionalArtefacts(String[] dataModel, Vector variables){ 
(2)  for(int i=0; i< variables.size(); i++){ 
(3)   String[] valuesCardinality = 

utilities.getCardinality(domains.elementAt(i)); 
(4)   for(int j=0; j<valuesCardinality.length; j++){  
(5)    if(valuesCardinality[j].equals("0")){ 
(6)     String configuration = 

utilities.makeConfiguration(featureAll, (String) 
OptionalElements.elementAt(i), valuesCardinality[j]); 

(7)     String sol = 
connection.sendMessage("exec("+prolog+")."); 

(8)     if(sol.equals("fail.")){ 
(9)      textFeature = " The Feature "+ 

variables.elementAt(i)+" is a False Optional Variable."; 
(10)     } 
(11)    } 
(12)   } 
(13)  }  
(14) } 

Line 1 represents the function to find false optional artefacts on a PLM called dataModel 

among the list of artefacts (called variables) of the PLM. In this implementation, 

artefacts are represented as variables. For each one of the variables on the list variables 

(line 2), the program takes all the values that the variable at hand can take (line 3). For 

each of the values that is consistent with the variable’s domain (line 4), the program 

verifies if the variable can take the 0 value. If the variable at hand can take the 0 value, 

one product is requested from the solver with this variable setted to 0 (lines 5 to 7). If 

there is no solution (i.e., the solver returns fail) for this configuration, the variable at hand 

is false optional (lines 8 and 9). 

6.5 Attainable Domains 

A non-attainable domain value is the value of an artefact, or an artefact’s property, that can 

never appear in any product of the product line. 

Algorithm:  

The algorithm proposed in this thesis to automate this verification criterion evaluates the 

domain of each artefact and artefact’s property of the PLM. For each domain value, the 
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algorithm requests the solver at hand for a solution. A variable is defined by each artefact 

and each property. If the solver gives a solution for all the values of the variable’s 

domain, the variable is erased from the list of reusable elements with non-attainable 

domains. Otherwise, the variable, representing a reusable element, is affected with the 

non-attainable value(s) and kept in the list of artefacts and properties with non-attainable 

domains. In each product obtained from the solver, all the artefacts and properties of the 

PLM are affected with a particular value of the corresponding domain.  

Thus, this algorithm reuses the information obtained from the solver and records that 

information in order to avoid achieving useless requests, i.e., testing the attainability of 

domain values that have already been obtained in precedent tests. The corresponding 

algorithm is as follows: 

NonAttainableDomains(PLM M, Solver S) { 
Load the model M in the solver S; 

For (each variable V ∈ M) { 
  For(each Di ∈ domain of V AND not in {PrecedentProducts}){ 
   Product = S.getOneSolution(“V = Di”); 

If (Product = “false”) { 
Write (“The domain ” + Di + “ of ” + V + “ is non-

attainable”); 
} 
Else { 

PrecedentProducts += Product; 
} 

  } 
 } 

} 

Application to the Running Example:  

For instance in the running example, if when asking for a product with 

WidthResolution=800 we get a product:  

P6 = [UNIX=1, Kernel=1, Scheduling=1, ExecutingInstructions=1, 

InterpretingInstructions=1, AccomplishingTheTransferOfData=1, 

AllocatingTheMachinesMemory=1, Shell=1, FileSystem=1, UserInterface=1, 

Graphical=1, Process1=1, Process2=1, Process3=1, Process4=1, Process5=1, 

WidthResolution=800, HeightResolution=600, Support_usb=0, Cdrom_atech=1, 

Pcmacia_support=2].  

This means both that: 

o WidthResolution can attain the value of 800, and that  

o the rest of variables can attain the values assigned by the solver.  

Thus, it is not necessary to ask if the variable UNIX can attain those values, e.g. to test if 

the variable Pcmacia_support can take the value of 2.  
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Discussion: The approach presented in this thesis can assesses the attainability of any 

artefact or property, for all (or parts of) their domain values. This operation was also 

implemented by Trinidad et al. (2008). However, the approach was specifically restricted 

to the Boolean domains on FMs, which constitutes a limitation of the approach in terms 

of reuse it in other notations such as extended FMs. In their approach, Trinidad et al try to 

find a product with each value of the features’ domain, i.e, 0 and 1 (true and false). 

Implementation:  

This algorithm is implemented, as follows: 

(1) findWrongDomain(String[] dataModel, Vector variables){   
(2)  String textVariable = ""; 
(3)  for(int i=0; i<variables.size(); i++){ 
(4)   String[] valuesDomain = 

utilities.getDomain(domains.elementAt(i)); 
(5)   boolean flag = false; 
(6)   String wrongValues = new String(); 
(7)   //evaluate it there is a solution for each domain’s value 
(8)   for(int j=0; j<valuesDomain.length; j++){ 
(9)    String configuration = 

utilities.makeConfiguration(variables, 
(String)variables.elementAt(i), valuesDomain[j]); 

(10)    String prolog = "("+dataModel[0]+"="+configuration; 
(11)    prolog = prolog.concat(", "+dataModel[1]+"), 

"+dataModel[0]);  
(12)    String sol = 

connection.sendMessage("exec("+prolog+")."); 
(13)    if(sol.equals("fail.")){ 
(14)     wrongValues=wrongValues+valuesDomain[j]+", "; 
(15)     flag=true; 
(16)    } 
(17)   } 
(18)   if(flag){ 
(19)    textVariable = textVariable + 

wrongValues.substring(0, wrongValues.length()-2)+"."; 
(20)   } 
(21)   else{ 
(22)    textVariable = "The Variable 

"+features.elementAt(i)+" don't have wrong domain values"; 
(23)   } 
(24)  }   
(25) } 

Line 1 specifies the function to find the non-attainable domain’s values of the variables 

(variables) of a product line model (dataModel). The for cycle of line 3 retrieves the 

domain of each variable and evaluates if the variable at hand can attain all the values of 

its domain. This process creates a configuration with each domain’s value (lines 8 and 9) 

and creating for each value, one configuration to be sent to the solver (lines 10 and 11). If 

the answer from the solver (line 12) is a fail, the variable cannot take the value used in the 

configuration (lines 13 to 16). Lines 18 to 20 are used to save the values that the variable 
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at hand cannot take, and lines 21 to 23 are used to inform the user that the variable at 

hand has no wrong domain values. 

6.6 Non-redundant Dependencies 

A redundant constraint is a constraint that does not reduce the semantics of a PLM. 

Algorithm:  

The approach proposed in this thesis to check non redundant dependencies is based on the 

fact that if a system is consistent, then the system plus a redundant constraint is consistent 

too.  Therefore, negating the allegedly redundant relation implies contradicting the 

consistency of the system and thus rendering it inconsistent (Mazo et al. 2011a). This 

approach is more efficient, and thus more scalable, when applied on large models. Our 

algorithm is in two steps: first, it tries to obtain a solution with the set of constraints; then, 

if a solution exists, the constraint to check is negated. In the case where no solution is 

found, the inspected constraint turns out to be redundant. This algorithm to find redundant 

constraints can be formalized as follows: 

Non-redundantDependencies(PLM M, Solver S) { 
Load the model M in the solver S; 
If (at least one product can be configured from M under a collection 
of constraints C = {C1,...,Ci}) 
{ 

Write (C ⊨ M); 
Let take Cr ∈ C a constraint to be evaluated;  

If (C without Cr ⊨ M  AND  C ∪ ¬Cr |≠  M)  
{ 
 Write (Cr is redundant); 
} 
Else 
{ 
 Write (Cr is not redundant); 
} 

} 
} 

Application on the running example: 

To check if the constraint UNIX ≥ UserInterface is redundant or not, it is sufficient 

to query the solver for a product. Then, if a product is found, the algorithm proceeds by 

replacing the constraint by its negation (UNIX < UserInterface) and asks again for a 

product. If the solver does not give a solution (as is the case for the running example 

presented in Section 3.3), one can infer that the constraint (UNIX ≥ UserInterface) is 

not redundant. 
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Discussion: 

The literature offers two alternatives ways to check if a relationship is redundant or not. 

The naïve algorithm consists of calculating all the products of the PLM with the 

constraint to check; then, remove the constraint; and calculate all the solutions of the new 

model. If both results are equal (i.e. exactly the same products can be configured with and 

without the constraint), then the constraint is redundant. This approach is computationally 

very expensive as it requires (a) to compute all configurations twice and (b) to perform an 

intersection operation between two potentially very large sets (e.g. 1021 configurations for 

the Renault PLM according to Dauron & Astesana (2010)). Not only is this algorithm not 

scalable, but also it is typically unfeasible.  

The element-oriented approach, proposed by Yan et al. (2009) defines a redundant 

constraint of a PLM as a constraint in which a redundant reusable element takes part. This 

approach calculates the redundant reusable elements on feature models —features 

disconnected from the FM. Then the redundant constraints are those in which the 

redundant features take part. Though it yields a solution, this algorithm is not sufficiently 

general: indeed, only trivial cases of redundancy are considered. Many cases of redundant 

dependencies cannot be discovered using this approach. 

Implementation: 

This algorithm is implemented in Java and using the following code: 
 
(1) findRedudantDependencies(String[] dataModel, Vector dependencies){

  
(2)  Vector constraints = (Vector) dependencies.elementAt(0); 
(3)  Vector negationConstraints = (Vector) 

dependencies.elementAt(1); 
(4)  resultProlog = 

connection.sendMessage("exec("+dataModel[1]+","+dataModel[0]+").")
;  

(5)  if(!resultProlog.equals("fail.")){ 
(6)   for(int i=0; i < dependencies.size(); i++){ 
(7)    String model = utilities.converToString(path, 

(String)constraints.elementAt(i)); 
(8)    int begin = model.indexOf("fd_labeling"); 
(9)    String message = model.substring(0, begin);  
(10)    message += "\nfd_labeling("+dataModel[0]+")"; 
(11)    String messageFinal =  "(("+ message+"), 

"+dataModel[1]+"),"+dataModel[0];   
(12)    resultProlog= 

connection.sendMessage("exec("+messageFinal+")."); 
(13)    if(!resultProlog.equals("fail.")){ 
(14)     begin = model.indexOf("fd_labeling"); 
(15)     message = model.substring(0, begin); 
(16)     message += negationConstraints.elementAt(i) 

+",\n fd_labeling("+dataModel[0]+")"; 
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(17)     messageFinal =  "(("+ message+"), 
"+dataModel[1]+"),"+dataModel[0];  

(18)     resultProlog= 
connection.sendMessage("exec("+messageFinal+")."); 

(19)     if(!resultProlog.equals("fail.")){ 
(20)     VerificationManagerView.txtResultats.append("

 The Relationships "+constraints.elementAt(i)+" is not 
Redundant\n"); 

(21)     } 
(22)     else{ 
(23)     VerificationManagerView.txtResultats.append("

 The dependencies "+ dependencies.elementAt(i)+" is 
Redundant\n"); 

(24)     } 
(25)    } 
(26)    else{ 
(27)     VerificationManagerView.txtResultats.append("

 The dependencies "+ dependencies.elementAt(i)+" is not 
Redundant\n"); 

(28)    }  
(29)   } 
(30)  } 
(31)  else{ 
(32)   VerificationManagerView.txtResultats.append("The model is 

inconsistent" + "\n"); 
(33)  }  
(34) } 

Line 1 corresponds to the function to find the redundant dependencies from a vector with 

a collection of dependencies and its corresponding negations (dependencies). Line 2 

captures the vector with the dependencies to verify and line 3 captures the vector with the 

dependency negations. The first step of the algorithm consists of verifying if the model is 

consistent (line 4). If there is at least one solution (line 5), the model is consistent and can 

be checked for non redundant dependencies.The for cycle of line 6 allows to consider 

each dependency at its turn. 

The second step of the algorithm consists of verifying the consistency of the model 

without the dependency at hand. In order to do that, line 7 creates a model without the 

constraint at hand, and line 12 executes the solver to check whether the new model has at 

least one solution. If there is a solution, the new model (the model without the 

dependency to verify) is consistent (line 13).  

The third step of the algorithm consists of verifying the consistency of the model with the 

negation of the dependency to verify instead of the dependency itself. The new version of 

the model with the negated constraint is created at lines 15 and 16. Line 18 executes the 

new model in the solver in order to get one solution. If there is a solution the dependency 

at hand is not redundant (line 19). If there is no solution, this means that the dependency 

at hand is redundant (lines 22 and 23).  
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If the model has at least one solution with the dependency to verify and has no solution 

without the dependency to verify, this means that the dependency at hand is not redundant 

(lines 26 and 27).  

Lines 31 and 32 deal with the case where the model without modifications has no 

solutions. Then the model is inconsistent, and therefore identification of redundant 

dependencies with this technique is not possible. 

6.7 Summary 

Product line modeling is of crucial importance for the quality of product line engineering 

(Salinesi et al. 2010a, Mazo et al. 2011c). Thus, it is vital to provide mechanisms to verify 

that product line models respect certain properties or criteria against with these properties 

should be verified. This chapter develops one of the two verification categories introduced in 

Chapter 4. The verification approach developed in this chapter is called domain-specific 

verification. The verification approach is based on constraint programming. This approach 

represents PLMs as constraints programs and implements the verification criteria presented in 

this chapter as queries on those models. These verification criteria are grouped in three 

categories (i.e., expressiveness of the PLM, non-errors and non-redundancies) and are 

arranged in a typology of PLM verification criteria. The domain-specific verification criteria 

are: Non-void PLMs, Non-false PLMs, Non-dead Artefacts, Non-false Optional Artefacts, 

Attainable Domains, Non-redundant Dependencies. This chapter also proposes algorithms to 

implement each domain-specific verification criterion. A java pseudo code of each algorithm 

is also presented to show the interactions with the GNU Prolog solver and the reuse of each 

unswer obtained from the solver to avoid useless queries to the solver. The applicability of 

each algorithm is shown using the running example. Scalability of our approach is 

systematically discussed with regards to prior ones. 
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Chapter 7 

Verification of Multi-model Product Lines  

 

Multi-model representation of product lines permits tackling various models and aspects of a 

system, in particular in the presence of stakeholders with multiple viewpoints (executives, 

developers, distributors, marketing, architects, testers, etc.; cf. Nuseibeh et al. 1994). For 

example, a UNIX product line can be composed of several models, each one developed by a 

different team or developing a particular view of the PL. Motivated by the fact that (a) this 

practice is current in industry (Dhungana et al. 2010); (b) even if each individual model is 

consistent, once the models are integrated, they can easily be inconsistent; and (c) the 

shortcomings of the current state of the art in multi-model product line verification, this thesis 

proposes a method to verify multi-model product lines. This method uses the transformation 

and integration approach presented in Chapter 3. Once models are integrated, the collection 

of generic conformance checking and domain-specific verification criteria proposed in this 

thesis for standalone models can be applied on the integrated model. This verification 

approach can be applied on the integrated models in the same manner as for standalone 

models. It is worth noting that to apply the conformance checking approach proposed in this 

thesis, the resulting model should previously have a well defined metamodel.  

This method applies in two different cases: when the integration mechanisms are not 

defined in the metamodel and when the metamodel specifies the mechanism in which the 

model should be integrated. Both cases are illustrated in the following sections: (a) by 

integration of two feature models, and (b) by integration of the two views of a Dopler model. 

7.1 Verification of Integrated Feature Models 

Integrating two models that are individually without defects can generate a model with 

several defects.  For instance, if in a feature model FM1, feature C is an optional child of 

feature A, and in another feature model FM2, feature C is an optional child of feature B, the 

resulting FM will have two fathers of C (A and B). Even worse, if in FM1 feature B is an 

optional child of feature A, and in FM2 feature A excludes feature B, the resulting FM will be 

a void model.  
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To develop our integration approach we will consider two input FMs called Base Model 1 

and Base Model 2, which, after integration, will produce a resulting model called Result.  

 

Strategy N° 1: restrictive and keeping common features and attributes 

This strategy is restrictive in the sense that it permits representing in the resulting FM the 

common products represented in both input models that can be configured with the common 

reusable elements and attributes. In the restrictive strategy we chose the constraints 

corresponding to the most restrictive dependencies. For example:  

Base model 1 Base model 2 Resulting model 

A = B (A ≥ B) ⇒C A = B 
 

We identify two categories to match common features of two FMs. The first category 

consists of a perfect match of two features (each one bellowing to one input model) in name, 

quantity and domain of each corresponding pair of attributes. In this case, the resulting feature 

is exactly a copy of one of the input features. In the second category, this strategy gives 

priority to the common features and attributes due to the fact that this strategy keeps only 

common elements. The integration rules that formalize the application of this integration 

strategy in feature models are presented in Table 7.1. Both categories (perfect and partial 

match) are considered in the integration rules of Table 7.1. 

Table 7.1. Integration strategy N° 1.  Rules for the restrictive strategy, keeping only common 
features and attributes 

N Base1 – Feature 
representation 

Base2 – Feature 
representation 

Result – Feature 
representation 

Strong Result – CP representation 

1 

   

FeatureA ∈ {0,1} ⋀ 
Att2 ∈ {DomainA21} 
∩{DomainA22} ⋀ 

FeatureA ⇔ Att2 > 0 
 

2 

 

 
FeatureB ∉ Features(Base2)  

FeatureA ∈ {0,1} 
3 

 
 respectively 

FeatureA = FeatureB 
Or 

FeatureA ≥ FeatureB 
Or 

FeatureA ⇒ FeatureB 
Or 

FeatureA * FeatureB = 0 

respectively 

4 

   

FeatureA = FeatureB 

5 

   

(FeatureA = FeatureB) ⋀(FeatureA ≥FeatureB) 
It is: 

FeatureA = FeatureB 
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6 

   

(FeatureA ≥ FeatureB) ⋀(FeatureA ⇒ FeatureB) 
It is: 

FeatureA ⇒FeatureB 

7 

   

(FeatureA = FeatureB) ⋀(FeatureA ⇒FeatureB) 

It is: 
FeatureA = FeatureB 

8 

 
 

Contradiction Contradiction to be solved 
by a domain expert 

9 

  

Mismatch with FMs’ 
syntax  

(FeatureA ≥ FeatureB) ⋀ 
(FeatureB ≥ FeatureA) 

It is: 
FeatureA = FeatureB 

10 

   

FeatureA = FeatureB 

11 

   

FeatureA = FeatureB 

12 

  

If features A and B are full-
mandatory: 

 

If features A and B are full-mandatory:
 

FeatureA = FeatureC ⋀ 
FeatureB = FeatureC 

 

13 

  

If features A and B are full-
mandatory: 

 

If features A and B are full-mandatory:
 

(FeatureA ≥ FeatureC)⋀ 
FeatureB =  FeatureC 

 

14 

  

If there is a path between 
features A and B, it is 

necessary to determine the 
hierarchical order among 

features A, B and C. 
Otherwise there is a 
mismatch with FMs’ 

syntax 

If features A and B are full 
mandatory: 

(FeatureA ≥ FeatureC) ⋀ 
(FeatureB ≥  FeatureC) 

If only Feature A is full-
mandatory: 

(FeatureA ≥ FeatureC) 
If only Feature B: 

(FeatureB ≥ FeatureC) 

If none is full-mandatory 
Feature C ∈ {0,1} 

15 

  

If Feature B is mandatory in 
Base 1: 

 
Otherwise: 

 

If Feature B is full mandatory in Base 1: 
FeatyreA = FeatureB 

 
Otherwise: 

FeatureA ≥ FeatyreB 

16 

   

FeatyreA = FeatureB 
 

17 

  

If Feature C is mandatory in 
Base 1 or Base 2: 

 
Otherwise: 

If Feature C is full mandatory in Base 1: 
FeatyreA = FeatureC 

 
Otherwise: 

FeatyreA ≥ FeatureC 
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This strategy can be used in multi-team development, that is, when the product line is 

represented with several models, each one complementing the other ones. Besides, this 

strategy is also useful in the case where two companies on the same market decide to offer 

together a common portfolio, i.e., a portfolio with products that can be produced at the same 

time for both companies. However, it is not possible to directly apply this strategy in two 

FMs (e.g.  Figures 3.5 and 3.6). Indeed this strategy keeps only the common features and 

attributes of both base models. This implies eliminating some core features (e.g., Kernel, 

FileSystem, Scheduling, ExecutingInstructions, InterpretingInstructions and 

AccomplishingTheTransferOfData). With this loss, the resulting FM has no sense due to 

the fact that a Unix system needs one kernel, for instance. In order to avoid that, we propose a 

version of this strategy that consists of a restrictive strategy keeping only (i) common features 

and attributes; and (ii) core features and the relationships among them. In order to identify the 

core features (features that appear in all the products), one can use the corresponding 

operation—fully automated in the VariaMos tool (Mazo & Salinesi 2010)—to get them. With 

this modification, the resulting FM, presented in Figure7.1 and represented as a CP in Table 

7.2, contains the core features of both base models and also the common features and 

attributes integrated according to the rules of Table 7.1. 

Kernel

UserInterface

Graphical

Process

[0..5]

UNIX

AllocatingTheMachine'sMemory

AccomplishingTheTransferOfData

Scheduling

InterpretingInstructions

ExecutingInstructions

Shell 
FileSystem Cdrom

SH

Usb
Net

<1..1>

BASH

TCSH

<1..3>

 

Figure 7.1. Feature models of Figure 3.5 and 3.6 integrated by means of the “conservative strategy 
keeping features and attributes of the original models” 
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Note that in case of features grouped in a cardinality where, for instance, at least one 

feature must be selected (i.e., cardinalities <1..1>, <1..2> and <1..3> on Figure 3.6), 

the intervention of the user is necessary  in order to specify the feature(s) that she/he wants to 

keep in the resulting model. In our case, we kept the two original group cardinalities (Shell 

≤ SH + TCSH + BASH ≤ Shell * 3 and UNIX = Cdrom + Usb + Net).  

Table 7.2. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy N° 1 

Application 
of Rule 1 

[UNIX, Kernel, Scheduling, ExecutingInstructions, 
InterpretingInstructions, AccomplishingTheTransferOfData, 
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface, 

Graphical, Process, Cdrom, Usb, Net, SH, TCSH, BASH] ∈ {0,1} ⋀ 
2 UNIX = Kernel ⋀ 
3 UNIX = Shell  ⋀ 
2 with user 
intervention 

Shell ≤ SH + TCSH + BASH ≤ Shell * 3 ⋀ 
No 
matching 
with the 
other model 

Kernel1 = AllocatingTheMachinesMemory1 ⋀ 
AllocatingTheMachinesMemory1  Process ⋀ 
Kernel1 = Scheduling1 ⋀ 
Scheduling1  Process ⋀ 
Kernel1 = AccomplishingTheTransferOfData1 ⋀ 
AccomplishingTheTransferOfData1  Process ⋀ 
Shell1  InterpretingInstructions1 ⋀ 
Kernel1 = InterpretingInstructions1 ⋀ 
Shell1  ExecutingInstructions1 ⋀ 
Kernel1 = ExecutingInstructions1 ⋀ 

2 with user 
intervention 

Process ≤ Process1 + Process2 + Process3 + Process4 + Process5 ≤ 
Process * 5 ⋀ 
Process ≤ UNIX ⋀ 

2 Shell (Kernel=InterpretingInstructions) ⋀ 
2 Shell (Kernel = ExecutingInstructions) ⋀  
2 keeping 
full-
mandatory 

UNIX = FileSystem ⋀ 
3 UNIX ≥ UserInterface ⋀ 

16 UserInterface = Graphical ⋀ 
2 with user 
intervention 

UNIX = Cdrom + Usb + Net 

 

In this resulting model it is possible to configure products that do not exist in any of the 

base models (cf. Figures 3.5 and 3.6). For example, the product {UNIX, Kernel, 

ExecutingInstructions, InterpretingInstructions, Shell, FileSystem, 

Process, Cdrom, SH} can be configured from the resulting model; however, it does not 

exist  in any of the base models. This is due to the fact that this strategy keeps the full 

mandatory features of both models and some other features in group cardinalities according 

to the criteria of the user. Therefore, the resulting model will represents the common features 

of both input models but also the core features of each input model even if there is not a 
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corresponding feature in the other input model. The integrated model permits the 

configuration of 43 different UNIX systems
2  (with five Processes at maximum).  

 

Strategy N° 2: restrictive and keeping all features and attributes 

This strategy is also restrictive; however, in contrast to the first strategy, products can be 

configured with all reusable elements and attributes available on both input models (Acher et 

al. 2010).  In this strategy the idea is to keep the most restrictive relationships but keeping the 

features and attributes presented in both base models. This integration strategy gives to the 

domain expert the possibility to represent, in an integrated model, the products presented at the 

same time on both input models and to enrich the expressivity power of the resulting PLM 

with the reusable elements of both input models. For example:    

Base model 1 Base model 2 Resulting model 

A = B (A ≥ B) ⇒ C (A ≥ B) ⇒ C 
 

Now we will integrate our running example by using the merging rules proposed in Table 

7.3. In this case, we keep features and attributes of the original models and intersect the 

domains of common attributes and the constraints of common features.  

Table 7.3. Integration strategy N° 2.  Rules for the restrictive strategy, keeping all 
features and attributes. 

N Base1 –  
Feature representation 

Base2 –  
Feature representation 

Result –  
Feature representation 

Weak Result – 
CP representation 

1 

   

FeatureA ∈ {0,1}, 
Att1 ∈ {DomainA1}, 
Att2 ∈ {DomainA21} 
∩{DomainA22}, 

Att3 ∈ {DomainA3}, 
FeatureA ⇔ Att1> 0, 
FeatureA ⇔ Att2> 0, 
FeatureA ⇔ Att3> 0 

2 

 

 
FeatureB ∉ Features(Base2) 

respectively 

FeatureA = FeatureB 
Or 

FeatureA ≥ FeatureB 
Or 

FeatureA ⇒ FeatureB 
Or 

FeatureA * FeatureB = 0 

respectively 
3 

  respectively 

FeatureA = FeatureB 
Or 

FeatureA ≥ FeatureB 
Or 

FeatureA ⇒ FeatureB 
Or 

FeatureA * FeatureB = 0 

respectively 
4 

   

FeatureA = FeatureB 

                                                             
2 Calculated in GNU Prolog by means of the query: g_assign(cpt,0), productline(_), g_inc(cpt), fail;g_read(cpt,N). Where 

productline is the fact that represents the product line model loaded into the solver, cpt is a counter variable and N the 
number of products of the product line at the end of the query. g_assign, g_inc and g_read are predicates of GNU Prolog. 
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5 

   

FeatureA = FeatureB 

6 

   

FeatureA ⇒ FeatureB 
7 

   

FeatureA = FeatureB 

8 

 
 

Contradiction Contradiction to be solved 
by a domain expert 

9 

  

Mismatch with FMs’ 
syntax  

(FeatureA ≥ FeatureB) ⋀ 
(FeatureB ≥ FeatureA) 

It is: 
FeatureA = FeatureB 

10 

   

FeatureA = FeatureB 

11 

   

FeatureA = FeatureB 

12 

  
 

FeatureA = FeatureC ⋀ 
FeatureB = FeatureC 

 

13 

  
 

(FeatureA ≥ FeatureC) ⋀ 
FeatureB = FeatureC 

14 

  

If there is a path between 
features A and B, it is 

necessary to determine the 
hierarchical order among 

features A, B and C. 
Otherwise there would   

be a mismatch with FMs’
syntax 

(FeatureA ≥ FeatureC) ⋀ 
(FeatureB ≥ FeatureC) 

15 

  
 

FeatyreB ≤ FeatureA ⋀ 
(m1*FeatureA ≤ FeatyreB + 

FeatyreC + 
FeatyreD  ≤ n1*FeatureA) 

16 

  

FeatyreA = FeatureB ⋀ 
 (m1-1)*FeatureA ≤ FeatyreC+ 
FeatyreD ≤ (n1-1)*FeatureA 

17 

   

 (m1*FeatureA ≤ FeatyreB + 
FeatyreC ≤ n1*FeatureA) ⋀ 
(m2*FeatureA ≤ FeatyreC + 
FeatyreD ≤ n2*FeatureA) 

 
The application of these integration rules in our running example gives as result the 

LINUX product line model presented as a constraint program in Table 7.4. 

Table 7.4. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy N° 2 

Application 
of Rule 1 

[UNIX, Kernel, Scheduling, ExecutingInstructions, 
InterpretingInstructions, AccomplishingTheTransferOfData, 
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface, 
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Graphical, Process1, Process2, Process3, Process4, Process5, 
Cdrom, Usb, Net, UtilityProgram, FileMaintenance, Editing, 

OnlineInfo, ProgrammingSupport, SH, TCSH, BASH] ∈ {0, 1} ⋀ 
[WidthResolution] ∈ {800, 1024, 1366]) ⋀ 
[HeightResolution] ∈ {600, 768} ⋀ 
[Support_usb, Cdrom_atech, Pcmacia_support] ∈ {0,1,2}⋀ 
[A, B, C] ∈ {0, 1} ⋀ 

2 UNIX = Kernel ⋀ 
No 
matching 
with the 
other model 

Kernel1 = AllocatingTheMachinesMemory1 ⋀ 
AllocatingTheMachinesMemory1  Process ⋀ 
Kernel1 = Scheduling1 ⋀ 
Scheduling1  Process ⋀ 
Kernel1 = AccomplishingTheTransferOfData1 ⋀ 
AccomplishingTheTransferOfData1  Process ⋀ 
Shell1  InterpretingInstructions1 ⋀ 
Kernel1 = InterpretingInstructions1 ⋀ 
Shell1  ExecutingInstructions1 ⋀ 
Kernel1 = ExecutingInstructions1 ⋀ 

2 Process ≤ Process1 + Process2 + Process3 + Process4 + Process5 ≤ 
Process * 5 ⋀ 
UNIX ≥ Process ⋀ 

2 FileSystem = UNIX ⋀ 
No 
matching 
with the 
other model 

Support_usb1  A ⋀ 
Cdrom_atech1  B ⋀ 
Pcmacia_support1  C ⋀ 
0 ≤ A + B + C ≤ 3 * Kernel1 ⋀ 

Rule 2 with 
user 
intervention 
and  
Rule 14 

UNIX ≥ UtilityProgram ≥ UserInterface ⋀ 
16 UserInterface = Graphical ⋀ 

Graphical = 1  (WidthResolution= W1 ⋀  HeightResolution= H1) ⋀ 
Graphical = 0  (WidthResolution = 0 ⋀  HeightResolution = 0) ⋀ 
fd_relation([[800, 600], [1024, 768], [1366, 768]], [W1,H1]) ⋀ 
UserInterface ≥ Shell ⋀ 

2 Shell ≤ SH + TCSH + BASH ≤ Shell * 3 ⋀ 
2 UNIX = Cdrom + Usb + Net ⋀ 
2 UtilityProgram = Editing  ⋀ 
2 UtilityProgram = FileMaintenance ⋀ 
2 UtilityProgram ≥ UserInterface ⋀ 
2 UtilityProgram ≥ OnlineInfo ⋀ 
2 UtilityProgram ≥ ProgrammingSupport  

 

Note that some auxiliary variables are created, like R1 to record the result of the 

computation Cdrom + Usb + Net. R1 is used in the constraint UNIX ≤ R1 ⋀ R1 ≤ UNIX. 

In addition, we use the Boolean variables A, B and C in order to keep the state corresponding 

to the selection of each kernel module. Thus, if the module Support_Usb is selected (set to 1 

when it is changed in a static way, and set to 2 when it is charged in a dynamic way) the value 

of A will be set to 1, if Cdrom_Atech is selected (set to 1 or 2 accordint to its mode of 

charging) the variable B will be set to 1, and if Pcmcia_Support is selected (set to 1 or 2 
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accordint to its mode of charging), C will be set to 1. The resulting model still allows 

configuring 244219 different products, which illustrates that even in a restrictive strategy; the 

expressivity power of the resulting model significantly increases when all the features and 

attributes of the input models are kept. 

 

Strategy N° 3: Conservative and keeping only common features and attributes 

This strategy is conservative in the sense that it permits configuring the products represented 

in both input models by using only the common reusable elements and attributes. This strategy 

represents in the resulting model a collection of products that are encompassed by the first 

base model or by the second model, with the features and attributes that are common to both 

base models. This integration strategy is for instance useful when a company wants to propose 

a new series of products that can be produced on two different headquarters and that are 

offered indistinctly by means of a Web site. A generic example of the application of this 

strategy can be:  

Base model 1 Base model 2 Resulting model 

A = B (A ≥ B) ⇒ C A ≥ B 
 

It is worth noting that our integration approach with constraint programs avoids using 

artificial features to represent situations where the structure of the feature representation 

forces their use (cf. rules 10, 11 and 12 in Table 7.5). However, these artificial features do not 

contribute in anything from the semantic point of view because the collection of products that 

can be generated with and without these artificial features is the same. On the contrary, they 

increase the complexity of the product line and the time to be configured and analyzed. Thus, 

with the Conservative strategy, keeping common features and attributes, it would be 

necessary to keep the core features on the resulting model. In addition, the involvement of a 

modeling expert would be necessary to determine unsolved situations, as on with the group 

cardinality of Figure 3.6.   

Table 7.5. Integration strategy N° 3.  Rules for the conservative strategy, keeping only 
common features and attributes. 

 Base1 – Feature representation Base2 – Feature 
representation 

Result – Feature representation Result – Cp representation 

1 

   

FeatureA ∈ {0,1}, 
Att2 ∈ {DomainA21} ⋃{DomainA22}, 
FeatureA ⇔ Att2 > 0 

2 

 
FeatureB ∉ Features(Base2) 

 
 

FeatureA ∈ {0,1} 
 

Or  
 

Keep the full mandatory 
features and their 
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corresponding constraints 

3 

   

[FeatureA,FeaureB] ∈ {0,1} 
4 

  

Mismatch with de FMs’ 
syntax 

(FeatureA ⇒ FeatureB) (FeatureB⇒FeatureA) 
 

5 

   

(FeatureA =  FeatureB) (FeatureA 
≥ FeatureB) 

It is: 
FeatureA ≥ FeatureB 

6 

   

(FeatureA ≥ FeatureB) (FeatureA ⇒FeatureB) 

It is: 
FeatureA ⇒ FeatureB 

7 

   

(FeatureA =  FeatureB) (FeatureA ⇒FeatureB) 

It is: 
FeatureA ⇒ FeatureB 

8 

 
 

Contradiction Contradiction to be solved 
by a domain expert 

9 

   

(FeatureA ≥ 
FeatureB)  
(FeatureB ≥ 
FeatureA) 

10 

   

FeatureA =  
FeatureB 

11 

  
Feature BFeature A

Artificial Feature C

 

(FeatureA≥FeatureB) 
(FeatureB=FeatureA) 

It is: 
FeatureA ≥ FeatureB 

12 

  

If there is a path between 
features A and B, it is 

necessary to determine the 
hierarchical order among 

features A, B and C. 
Otherwise there is a 
mismatch with FMs’ 

syntax 

If features A and B are full 
mandatory: 

(FeatureA = FeatureC) 
(FeatureB =  FeatureC) 

If only Feature A is full-
mandatory: 

(FeatureA = FeatureC) 

If only Feature B: 
(FeatureB =  FeatureC) 

If none is full-mandatory 
Feature C ∈ {0,1} 

13 

  

If there is a path between 
features A and B, it is 

necessary to determine the 
hierarchical order among 

features A, B and C. 
Otherwise there is a 
mismatch with FMs’ 

syntax 

 If features A and B are full 
mandatory: 

(FeatureA ≥ FeatureC) 
(FeatureB =  FeatureC) 

If only Feature A is full-
mandatory: 

(FeatureA ≥ FeatureC) 
If only Feature B: 

(FeatureB =  FeatureC) 

If none is full-mandatory 
Feature C ∈ {0,1} 

14 

  

If there is a path between 
features A and B, it is 

necessary to determine the 
hierarchical order among 

features A, B and C. 
Otherwise there is a 
mismatch with FMs’ 

syntax 

 If features A and B are full 
mandatory: 

(FeatureA ≥ FeatureC) 
(FeatureB ≥  FeatureC) 

If only Feature A is full-
mandatory: 

(FeatureA ≥ FeatureC) 
If only Feature B: 

(FeatureB ≥ FeatureC) 

If none is full-mandatory 
Feature C ∈ {0,1} 
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15 

   

FeatureA ≥ FeatureB 

16 

   

FeatureA ≥ FeatureB 

17 

   

FeatureA ≥ FeatureC 

 
This strategy, applied to our running example, gives a PLM with the common features 

and attributes where the conservative relationship prevails over the restrictive one. Besides, 

we keep the group cardinalities (except the optional group cardinality <0..3> among 

Support_usb, Cdrom_atech and Pcmacia_support) of the input models without 

modifications and the core features with their respective relationships. The resulting model is 

presented in Table 7.6. 

Table 7.6. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy N° 3 

Application 
of Rule 1 

[UNIX, Kernel, Scheduling, ExecutingInstructions, 
InterpretingInstructions, AccomplishingTheTransferOfData, 
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface, 

Graphical, Process, Cdrom, Usb, Net, SH, TCSH, BASH] ∈ {0,1} ⋀ 
2 UNIX = Kernel ⋀ 
No 
matching 
with the 
other model 

Kernel1 = AllocatingTheMachinesMemory1 ⋀ 
AllocatingTheMachinesMemory1  Process ⋀ 
Kernel1 = Scheduling1 ⋀ 
Scheduling1  Process ⋀ 
Kernel1 = AccomplishingTheTransferOfData1 ⋀ 
AccomplishingTheTransferOfData1  Process ⋀ 
Shell1  InterpretingInstructions1 ⋀ 
Kernel1 = InterpretingInstructions1 ⋀ 
Shell1  ExecutingInstructions1 ⋀ 
Kernel1 = ExecutingInstructions1 ⋀ 

2 Process ≤ Process1 + Process2 + Process3 + Process4 + Process5 ≤ 
Process * 5 ⋀ 
UNIX ≥ Process ⋀ 

2 UNIX = FileSystem ⋀ 
12 (UNIX = Shell ∨ UserInterface ≥  Shell) ⋀ 
14 (UNIX ≥ UserInterface ∨ UtilityProgram ≥  UserInterface) ⋀ 
16 UserInterface ≥ Graphical ⋀ 
2 UNIX ≥ UtilityProgram ⋀ 
Rule 2 with 
user 
intervention 

Shell ≤ SH + TCSH + BASH ≤ Shell * 3 ⋀ 
Rule 2 with 
user 
intervention 

UNIX = Cdrom + Usb + Net ⋀ 
 

All features, except those that are common to the input models or core features in one of 

the models, are not included in the resulting model. In contrast with the model resulting from 
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application of Strategy 1, which permits the configuration of 43 products, the resulting model 

after application of Strategy 3 permits the configuration of 73 products. The difference is due 

to the fact that this strategy intends to keep the maximum number of possible products with 

the common reusable elements of both input models. 

 

Strategy N° 4: Conservative and keeping all features and attributes 

As strategy N° 3, this strategy is also conservative, but this time it permits the configuration of 

products with all reusable elements and attributes available in both input models (Segura et al. 

2008, Acher et al. 2010). When two elements of the input models match according to the rules 

of Table 7.7, the conservative strategy keeps the constraint corresponding to the most general 

relationship. In other words, this strategy keeps the construct that permits configuring the 

products represented in both input models, for example: 

Base model 1 Base model 2 Resulting model 

A = B (A ≥ B) ⇒ C (A ≥ B) ⇒ C 
 

Now, we use the rules of Table 7.7 to integrate our running example by means of the 

conservative strategy keeping features and attributes of the original models. This strategy 

seems to be one of the most appropriate ways to integrate FMs in a multi-team working 

environment where each team models a particular aspect of the PL. This claim is supported 

by the fact that the variability of each model complements the variability of the other models 

and in that way the resulting model combines in a generative way the features and the 

variability of the input models. Another context in which this strategy would be useful is 

when two companies are merged and the new company uses the reusable components of the 

legacy FMs to offer a larger portfolio of products that combine the products individually 

offered by the original companies.  

Table 7.7. Integration strategy N° 4.  Rules for the conservative strategy, keeping all features 
and attributes. 

 
 Base1 – Feature representation Base2 – Feature 

representation 
Result – Feature representation Result – Cp representation 

1 

   

FeatureA ∈ {0,1}, 
Att1 ∈ {DomainA1}, 
Att2 ∈ {DomainA21} ⋃{DomainA22}, 
Att3 ∈ {DomainA3}, 

FeatureA ⇔ Att1 > 0, 
FeatureA ⇔ Att2 > 0, 
FeatureA ⇔ Att3 > 0 

2 Feature A

Feature B

Feature A

Feature B

or

 

 
FeatureB ∉ Features(Base2) 

 

FeatureA ≥ FeatureB 
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3 

or  

 
FeatureB ∉ Features(Base2) 

 

[FeatureA,FeatureB]∈{0,1} 
4 

 
  

[FeatureA,FeatureB]∈{0,1} 
5 

  

Mismatch with de FMs’ 
syntax 

(FeatureA ⇒ FeatureB) 
(FeatureB ⇒FeatureA) 

 

6 

   

(FeatureA =  FeatureB) 
(FeatureA ≥FeatureB) 

It is: 
FeatureA ≥ FeatureB 

7 

  

Mismatch with de FMs’ 
syntax 

(FeatureA ≥ FeatureB) 
(FeatureA ⇒FeatureB) 

 

8 

   

(FeatureA =  FeatureB) 
(FeatureA ⇒FeatureB) 

It is: 
FeatureA ⇒ FeatureB 

9 

 
 

Contradiction Contradiction to be solved 
by a domain expert 

10 

   

(FeatureA ≥ 
FeatureB)  
(FeatureB ≥ 
FeatureA) 

11 

   

FeatureA = FeatureB 

12 

  
Feature BFeature A

Artificial Feature C

 

(FeatureA ≥ 
FeatureB)  

(FeatureB=FeatureA) 

13 

  

If there is a path between 
features A and B, it is 

necessary to determine the 
hierarchical order among 

features A, B and C. 
Otherwise there would   be a 

mismatch with FMs’ 
syntax 

(FeatureA=FeatureC)  
(FeatureB=FeatureC) 

14 

  

If there is a path between 
features A and B, it is 

necessary to determine the 
hierarchical order among 

features A, B and C. 
Otherwise there would   be a 

mismatch with FMs’ 
syntax 

(FeatureA ≥FeatureC)  
(FeatureB=FeatureC) 

15 

  

If there is a path between 
features A and B, it is 

necessary to determine the 
hierarchical order among 

features A, B and C. 
Otherwise there would   be a 

mismatch with FMs’ 
syntax 

(FeatureA ≥ FeatureC) 
(FeatureB ≥ FeatureC) 
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16 

  
 

 (m1*FeatureA ≤ FeatureB + 
FeatureC + 

FeatureD  ≤ n1*FeatureA) 

17 

  
 

 (m1*FeatureA ≤ FeatureB + 
FeatureC + 

FeatureD  ≤ n1*FeatureA) 

18 

   

 (m1*FeatureA ≤ FeatureB + 
FeatureC ≤ n1*FeatureA) ⋀ 
(m2*FeatureA ≤ FeatureC + 
FeatureD ≤ n2*FeatureA) 

 
The application of the matching and merging rules shown in Table 7.7 to the models 

presented in Figures 3.5 and 3.6, results in the product line model presented in Table 7.8. 

Table 7.8. UNIX running example of Figures 3.5 and 3.6 integrated with the strategy N° 4 

Application 
of Rule 1 

[UNIX, Kernel, Scheduling, ExecutingInstructions, 
InterpretingInstructions, AccomplishingTheTransferOfData, 
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface, 
Graphical, Process1, Process2, Process3, Process4, Process5, 
Cdrom, Usb, Net, UtilityProgram, FileMaintenance, Editing, 

OnlineInfo, ProgrammingSupport, SH, TCSH, BASH] ∈ {0, 1} ⋀ 
[WidthResolution] ∈ {800, 1024, 1366} ⋀ 
[HeightResolution] ∈ {600, 768} ⋀ 
[Support_usb, Cdrom_atech, Pcmacia_support] ∈ {0,1,2}⋀ 
[A, B, C] ∈ {0, 1} ⋀ 

2 UNIX ≥ Kernel ⋀ 
No 
matching 
with the 
other model 

Kernel1 = AllocatingTheMachinesMemory1 ⋀ 
AllocatingTheMachinesMemory1  Process ⋀ 
Kernel1 = Scheduling1 ⋀ 
Scheduling1  Process ⋀ 
Kernel1 = AccomplishingTheTransferOfData1 ⋀ 
AccomplishingTheTransferOfData1  Process ⋀ 
Shell1  InterpretingInstructions1 ⋀ 
Kernel1 = InterpretingInstructions1 ⋀ 
Shell1  ExecutingInstructions1 ⋀ 
Kernel1 = ExecutingInstructions1 ⋀ 

2 Process ≤ Process1 + Process2 + Process3 + Process4 + Process5 ≤ 
Process * 5 ⋀ 
UNIX ≥ Process ⋀ 

2 UNIX ≥ FileSystem ⋀ 

No 
matching 
with the 
other model 

Support_usb1  A ⋀ 
Cdrom_atech1  B ⋀ 
Pcmacia_support1  C ⋀ 
0 ≤ A + B + C ≤ 3*Kernel1 ⋀ 

14 (UNIX = Shell ∨ UserInterface ≥  Shell) ⋀  
15 (UNIX ≥UserInterface ∨ UtilityProgram ≥UserInterface)⋀ 

17 UserInterface ≥  Graphical ⋀ 
Graphical = 1  (WidthResolution= W1 ⋀  HeightResolution= H1) ⋀ 
Graphical = 0  (WidthResolution = 0 ⋀  HeightResolution = 0) ⋀ 
fd_relation([[800, 600], [1024, 768], [1366, 768]], [W1,H1]) ⋀ 

2 with user 
intervention 

Shell ≤ SH + TCSH + BASH ≤ Shell * 3 ⋀ 
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2 with user 
intervention 

UNIX = Cdrom + Usb + Net ⋀ 
2 with user 
intervention 

UtilityProgram = FileMaintenance ⋀  
2 with user 
intervention 

UtilityProgram = Editing ⋀  
2 with user 
intervention 

UtilityProgram ≥ OnlineInfo ⋀  
2 with user 
intervention 

UtilityProgram ≥ ProgrammingSupport 

 

Note that the supplementary restrictions among features present in the resulting model 

(e.g., FileMaintenance  UserInterface, Editing  UserInterface) are not 

included in the resulting model in order to keep the essence of this strategy (i.e., to be the less 

restrictive as possible). With this strategy, it is also worth noting that in Table 7.7 

relationships conditioning the presence of features that are neither common nor core features 

should be included in the resulting model unless the integrator engineer decides otherwise. In 

the same way, the integrator engineer must decide how to integrate the features and the 

constructs that belong to one of the base models but not to the other one; as the case of the 

group cardinalities that have been kept without modifications on the resulting model.  

The resulting model allows configuring 967221 different products, which shows the 

expressivity of the resulting model when models are integrated with a conservative strategy. 

 

Strategy N° 5: Disjunctive and keeping the features and attributes of the original models 

This strategy is disjunctive in the sense that the resulting model permits configuring the 

products presented on one of the input models by using the reusable elements and attributes of 

one of the particular models but not those of the other model, for example: 

Base model 1 Base model 2 Resulting model 

A = B (A ≥ B) ⇒C (A = B) ⊕ ((A ≥ B) ⇒C) 
 

This strategy can be justified by cases where two different companies, in progressive 

merge, integrate their FMS but at the beginning they want to keep in the integrated PLM the 

possibility to generate with only one model, the products of each company. 

This integration strategy creates an artificial root feature that will be related to the root 

features of each base model by means of an exclusion relationship. It is worth noting there is 

not necessary any integration rule to implement this integration strategy. It is due to the fact 

that the collection of products that this strategy is intended to allow in the resulting model is 

composed of the union of both models, and then the cardinality of the resulting model is 

mathematically represented by card(BaseModel1  BaseModel2) = 
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card(BaseModel1) + card(BaseModel2) - card(BaseModel1  BaseModel2). 

This shows that there are no necessary integrations rules in order to apply this strategy and 

that a simple disjunction between both models is enaught (the disjoction is represented as a 

<1..1> group cardinality between the root features of both models, as presented in Figure 

7.2). An example of the application of this strategy is presented in Figure 7.2 with our 

running example (cf. Figures 3.5 and 3.6).  

Kernel1

UserInterface1

Graphical1

Process1

[0..*]

UNIX1

Graphical→  relation([WidthResolution, HeightResolution], {[800, 600], [1024,768], [1366,768]}) 

AllocatingTheMachine'sMemory1

AccomplishingTheTransferOfData1

Scheduling1

InterpretingInstructions1

ExecutingInstructions1

Shell1 

WidthResolution

HeightResolutionCdrom_atech1

Support_usb1

FileSystem1

Pcmacia_support1

<0..3>

Cdrom2

UserInterface2

Graphical2

Editing2

UNIX2

Shell2 

SH2

Usb2
Net2 UtilityProgram2

<1..1>

BASH2
TCSH2

File

Maintenance2 

Programming 

Support2 

OnlineInfo2 

<1..3>

<1..2>

UNIX

<1..1>

 

Figure 7.2. Application of the disjunctive integration strategy on our running example. 

Thus, the FMs of our running example can be integrated, following the disjunctive 

strategy, as a CP as follows.  

[UNIX, UNIX1, Kernel1, Scheduling1, ExecutingInstructions1, 
InterpretingInstructions1, AccomplishingTheTransferOfData1, 
AllocatingTheMachinesMemory1, Shell1, FileSystem1, UserInterface1, 
Graphical1, Process1, Process2, Process3, Process4, Process5, UNIX2, 
Cdrom2, Usb2, Net2, UtilityProgram2, FileMaintenance2, Editing2, 
OnlineInfo2, ProgrammingSupport2, UserInterface2, Shell2, SH2, TCSH2, 
BASH2] ∈ {0, 1} ⋀ 
[WidthResolution] ∈ {0, 800, 1024, 1366} ⋀ 
[HeightResolution] ∈ {0, 600, 768} ⋀ 
[Support_usb1, Cdrom_atech1, Pcmacia_support1] ∈ {0,1,2} ⋀ 
[A, B, C] ∈ {0, 1} ⋀ 
 
UNIX = 1 ⋀ 
 
%this is the disjunction: 
UNIX = UNIX1 + UNIX2 ⋀ 
 
UNIX1 = Kernel1 ⋀ 
Kernel1 = AllocatingTheMachinesMemory1 ⋀ 
AllocatingTheMachinesMemory1  Process ⋀ 
Kernel1 = Scheduling1 ⋀ 
Scheduling1  Process ⋀ 
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Kernel1 = AccomplishingTheTransferOfData1 ⋀ 
AccomplishingTheTransferOfData1  Process ⋀ 
Shell1  InterpretingInstructions1 ⋀ 
Kernel1 = InterpretingInstructions1 ⋀ 
Shell1  ExecutingInstructions1 ⋀ 
Kernel1 = ExecutingInstructions1 ⋀ 
 
Support_usb1  A ⋀ 
Cdrom_atech1  B ⋀ 
Pcmacia_support1  C ⋀ 
0 ≤ A + B + C ≤ 3 * Kernel1 ⋀ 
UNIX1 = Shell1 ⋀ 
UNIX1 = FileSystem1 ⋀ 
 
UNIX1 ≥ UserInterface1 ⋀ 
UserInterface1 = Graphical1 ⋀ 
Graphical1=1  (WidthResolution=W1 ⋀ HeightResolution=H1)⋀ 
Graphical1=0  (WidthResolution=0 ⋀ HeightResolution=0) ⋀ 
fd_relation([[800, 600], [1024, 768], [1366, 768]], [W1,H1]) ⋀ 
 
UNIX1 ≥ Process ⋀ 
R1 = Process1 + Process2 + Process3 + Process4 + Process5 ⋀ 
Process ≤ R1 ≤ Process * 5 ⋀ 
 
UNIX2 = Cdrom2 + Usb2 + Net2 ⋀ 
UNIX2 ≥ UtilityProgram2 ⋀ 
 
UtilityProgram2 = FileMaintenance2 ⋀ 
FileMaintenance2  UserInterface2 ⋀ 
UtilityProgram2 = Editing2 ⋀ 
Editing2  UserInterface2 ⋀ 
UtilityProgram2 ≥ UserInterface2 ⋀ 
UtilityProgram2 ≥ OnlineInfo2 ⋀ 
OnlineInfo2  UserInterface2 ⋀ 
UtilityProgram2 ≥ ProgrammingSupport2 ⋀ 
ProgrammingSupport2  UserInterface2 ⋀ 
 
UserInterface2 ≤ Graphical2 + Shell2 ≤ UserInterface2 * 2 ⋀ 
R2 = SH2 + TCSH2 + BASH2 ⋀ 
Shell2 ≤ R2 ≤ Shell2 * 3 
 

This resulting model permits the configuration of 3324 different products. It is worth 

noting that the null product (all the variables set to 0) present in both input FMs is counted 

only one time in the resulting model. This fact explains the result 3324 = 3225 + 100 – 1; 

where 3225 is the number of products of the base model presented in Figure 3.5, and 100 is 

the number of products of the base model presented in Figure 3.6. 

In order to develop our multi-model verification approach, we use the integration of the 

two FMs of our running example by means of the “conservative strategy keeping features and 

attributes of the original models” (also called Strategy N° 1).  

7.1.1 Conformance Checking 
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The abstract syntax of the resulting model presented in Figure 7.1 can be represented as a 

constraint logic program, by means on the approach presented in Chapter 3. The resulting 

constraint program is as follows: 

(1) root(fea1). 
(2) feature(fea1, 'UNIX',[]).  
(3) feature(fea2, 'Kernel', []).  
(4) feature(fea3, 'Scheduling', []).  
(5) feature(fea4, 'ExecutingInstructions', []).  
(6) feature(fea5, 'InterpretingInstructions', []).  
(7) feature(fea6, 'AccomplishingTheTransferOfData', []). 
(8) feature(fea7, 'AllocatingTheMachinesMemory', []).  
(9) feature(fea8, 'Shell', []).  
(10) feature(fea9,  'SH', []).  
(11) feature(fea10, 'TCSH', []). 
(12) feature(fea11, 'BASH', []).  
(13) feature(fea12, 'FileSystem', []).  
(14) feature(fea13, 'UserInterface', []). 
(15) feature(fea14, 'Graphical', []).   
(16) feature(fea15, 'Process', []).  
(17) feature(fea16, 'Cdrom', []).  
(18) feature(fea17, 'Usb', []).  
(19) feature(fea18, 'Net', []).  
(20) dependency(dep1, fea1, fea2).  
(21) dependency(dep2, fea2, fea3). 
(22) dependency(dep3, fea2, fea4). 
(23) dependency(dep4, fea2, fea5).  
(24) dependency(dep5, fea2, fea6).  
(25) dependency(dep6, fea2, fea7).  
(26) dependency(dep7, fea1, fea8).  
(27) dependency(dep8, fea8, fea9). 
(28) dependency(dep9, fea8, fea10). 
(29) dependency(dep10, fea8, fea11). 
(30) dependency(dep11, fea1, fea12). 
(31) dependency(dep12, fea1, fea13). 
(32) dependency(dep13, fea13, fea14). 
(33) dependency(dep14, fea1, fea15). 
(34) dependency(dep15, fea1, fea16). 
(35) dependency(dep16, fea1, fea17). 
(36) dependency(dep17, fea1, fea18). 
(37) dependency(dep18, fea8, fea4). 
(38) dependency(dep19, fea8, fea5). 
(39) dependency(dep20, fea3, fea14). 
(40) dependency(dep21, fea6, fea14). 
(41) dependency(dep22, fea7, fea14). 
(42) mandatory(dep1).  
(43) mandatory(dep2).  
(44) mandatory(dep3).  
(45) mandatory(dep4).  
(46) mandatory(dep5).  
(47) mandatory(dep6).  
(48) mandatory(dep7). 
(49) optional(dep8). 
(50) optional(dep9). 
(51) optional(dep10). 
(52) mandatory(dep11). 
(53) optional(dep12).  
(54) mandatory(dep13). 
(55) optional(dep14). 
(56) optional(dep15) 
(57) optional(dep16).  
(58) optional(dep17). 
(59) requires(dep18). 
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(60) requires(dep19). 
(61) requires(dep20). 
(62) requires(dep21). 
(63) requires(dep22). 
(64) groupCardinality([dep8, dep9, dep10], 1, 3). 
(65) groupCardinality([dep15, dep16, dep17], 1, 1).  
(66) individualCardinality(fea14, 0, 5) 
 

Where lines 1 and 2 define the root feature, lines 3 to 19 define the rest of features, lines 

20 to 41 defines the dependencies among features, lines 44 to 63 define the type of each 

dependency, lines 64 and 65 define the two group cardinality of the model and line 66 defines 

the individual cardinality of the feature Process (identified by the atom fea14).  

The generic conformance checking approach presented in Chapter 5 can be adapted to the 

feature dialect used in this thesis (cf. Figure 3.4) and used to check the conformance of the 

FM depicted in Figure 7.1 against the FM metamodel depicted in Figure 3.4. The eight 

generic conformance criteria (CC) to check conformance of PLM, adapted to the feature 

dialect used in this thesis give the following results: 

CC.1. A FM is composed of one or several root features: line 1 presents one instance 

of a root feature. 

CC.2. A FM is composed of one or several features and dependencies: lines 2 to 19 

represent 18 instances of features and lines 20 to 41 represent 21 instances of 

dependencies. 

CC.3. Each feature has a unique name: logical facts of lines 2 to 19 have, each one, 

three atoms (an atom is a general-purpose name with no inherent meaning); the 

second atom of each fact corresponds to its name and is unique to each fact. 

CC.4. Each dependency relates two or several different features: each fact 

instantiating a dependency (cf. lines 20 to 41) has three atoms; the first atom 

represents the identifier of each dependency and the second and third atoms represent 

the features related by the corresponding dependency. 

CC.5. An attribute belongs to one and only one feature: there is not attributes on the 

model of Figure 7.1 and therefore there is not facts representing attributes in the 

constraint logic program representation of the model. 

CC.6. An attribute has a unique name: the model of Figure 7.1 has no attributes to be 

evaluated. 

CC.7. An individual cardinality is associated to one and only one feature: the 

individual cardinality instantiated in line 66 has three atoms, the first atom represents 

the name of the feature with a cardinality [0..5].  
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CC.8. A group cardinality groups two or more optional dependencies: lines 64 and 

65 instantiate the two group cardinalities of the FM represented in Figure 7.1. The 

first group cardinality has three atoms, the first atom is a list of features, and the 

second and third atoms represent the lower and upper boundaries of the cardinality. 

The list of features contains three atoms (i.e., dep8, dep9, dep10), each one of them 

is the identifier of one optional (cf. lines 49, 50 and 51 respectively) dependency (cf. 

lines 27, 28 and 29 respectively).  

 

7.1.2 Domain-specific Verification 

The semantics of the resulting model depicted in Figure 7.1 can be represented as a constraint 

program by means of the approach presented in Chapter 3. The resulting constraint program 

is presented below, where a coma between two constraints means an and.  

(16) domain([UNIX, Kernel, Scheduling, ExecutingInstructions, 
InterpretingInstructions, AccomplishingTheTransferOfData, 
AllocatingTheMachinesMemory, Shell, FileSystem, UserInterface, 
Graphical, Process, Cdrom, Usb, Net, SH, TCSH, BASH], 0, 1), 

(17) UNIX = Kernel, 
(18) UNIX = Shell, 
(19) Shell ≤ SH + TCSH + BASH, 
(20) SH + TCSH + BASH ≤ Shell * 3, 
(21) Kernel = AllocatingTheMachinesMemory, 

(22) AllocatingTheMachinesMemory  Process, 
(23) Kernel = Scheduling, 

(24) Scheduling  Process, 
(25) Kernel = AccomplishingTheTransferOfData, 

(26) AccomplishingTheTransferOfData  Process, 

(27) Shell  InterpretingInstructions, 
(28) Kernel = InterpretingInstructions, 

(29) Shell  ExecutingInstructions, 
(30) Kernel = ExecutingInstructions, 
(31) R1 = Process1 + Process2 + Process3 + Process4 + Process5, 
(32) Process ≤ R1, 
(33) R1 ≤ Process * 5, 
(34) Process ≤ UNIX, 
(35) UNIX = FileSystem, 

(36) UserInterface ≤ UNIX, 
(37) UserInterface = Graphical, 
(38) UNIX = Cdrom + Usb + Net 

 

Line 1 defines the domain of the variables of the product line, lines 2, 3, 6, 8, 10, 13, 15, 

20 and 22 define the mandatory dependencies on the product line, lines 7, 9, 11, 12 and 14 

define the requirement dependencies, lines 19 and 21 define the optional dependencies and 

lines 4, 5 and 23 define the group cardinalities, and lines 16, 17 and 18 represent the 

individual cardinality of the product line. 
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Now the domain-specific verification approach presented in Chapter 6 for standalone 

models can also be applied on this integrated model. The application of the domain-specific 

verification criteria depicted in the typology of Figure 4.1 gives the following results: 

1. Non-void. 

The integrated model presented above is not void and its semantic richness permits 

the configuration of 12441600 different products. It is worth noting that the variable 

UserInterface that was an optional feature in the models of Figures 3.3 and 3.4 

becomes a mandatory feature in the integrated model. This is because of the 

restrictive strategy in which, the requires dependencies with the feature 

UserInterface in the model of Figure 3.6 and the direct dependency with the root 

feature in Figure 3.5, makes this feature mandatory. 

2. Non-false. 

The integrated model is non-false. In fact, the base model of Figure 3.5 permits the 

configuration of 3225 products, and the base model of Figure 3.6 permits the 

configuration of 100 products; which means that even better, the expressiveness of the 

resulting model was significantly increased. 

3. Attainable domains. 

No features, except the core features that can take the value of 0. All the features of 

the integrated model can attain their domain. 

4. Non-dead artefacts. 

There are no dead features in the integrated model. 

5. Non-false optional artefacts. 

Feature Process is modeled as optional (because of its [0..5] individual cardinality); 

however, Process appears in all the products of the PL due to the fact that this feature 

is included by other core features like Scheduling. 

6. Non-redundant constraints. 

On the one hand UtilityProgram ≤ UNIX, and on the other hand UserInterface 

≤ UtilityProgram. Therefore, the constraint: UserInterface ≤ UNIX is redundant. 

This redundancy can be explained by the fact that the variable UserInterface is 

already an optional variable of UNIX through UtilityProgram. The technique 

presented in Section 5.2 verifies the consistency of the model with the redundant 

constraints, and then changing the constraint by its negation (UserInterface > 
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UNIX) and proving the inconsistency of the new model was used to identify this 

redundancy. 

7.2 Verification of Dopler Variability Models 

Decisions and assets are linked with inclusion conditions defining traceability from the 

solution space to the problem space (e.g., the asset Tab Window Manager must be included in 

the solution space if the option OnlineInfo of the decision Utility program is selected in a 

particular configuration). In our integration approach, these inclusion conditions are 

constraints that will be added to the collection of constraints representing the decision and 

asset model. Once these constraints are added, both viewpoints of the PL are integrated, and 

the model is ready to be verified against the criteria depicted in Section 5.2 with minor 

variants in some criteria. The application of these verification criteria over the Dopler model 

depicted in Figure 3.8 and the explanation regarding the minor variants are presented as 

follows:  

1. Void model. 

This model is not a void because it permits the configuration of at least one product; for 

instance C1 = {USB, Editing, ProgrammingSupport, Shell} 

2. False model. 

This model is not a false model because it permits the configuration of more than two 

products; for instance: C2 = {Cdrom, Editing, OnlineInfo, Shell, Twm, KDE, 

Qt, GraphicalResolution = “800x600”, Width = 800} and C3 = {USB, Editing}. 

3. Non-attainable validity conditions’ and domains’ values. 

This operation either (i) takes a collection of decisions as input and returns the decisions 

that cannot attain one or more values of its validity condition; or (ii) takes a collection of 

assets as input and returns the assets that cannot attain one of the values of its domain. A 

non-attainable value of a validity condition or a domain is a value that can never be taken 

by a decision or an asset in a valid product. Non-attainable values are undesired because 

they give the user a wrong idea of the values that decisions and assets modeled in the 

product line model can take. In our example (see Figure 3.8), the validity condition Width 

≥ 800 && Width ≤ 1366 determines a very large range of values that can take the 

variable Width, however this variable can really take three values: 800, 1024 and 1366 

which means that values like 801, 802,..., 1023, 1025, ..., 1365 are not attainable values. 

4. Dead reusable elements. 
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In the Dopler language, the reusable elements are Decisions and Assets. This operation 

takes a collection of decisions and assets as input and returns the set of dead decisions and 

assets (if some exist), or false otherwise. A decision is dead if it never becomes available 

for answering it (Mazo et al. 2011a). An asset is dead if it cannot appear in any of the 

products of the product line (Mazo et al. 2011a). The presence of dead decisions and 

assets in PLMs indicates modeling errors and intended but unreachable options. A 

decision can become dead (i) if its visibility condition can never evaluate to true (e.g., if 

contradicting decisions are referenced in a condition); (ii) a decision value violates its 

own visibility condition (e.g., when setting the decision to true will in turn make the 

decision invisible); or (iii) its visibility condition is constrained in a wrong way (e.g., a 

decision value is > 5 && < 3 at the same time). An asset can become dead (i) if its 

inclusion depends on dead decisions, or (ii) if its inclusion condition is false and it is not 

included by other assets (due to requires dependencies to it). Dead variables in CP are 

variables than can never take a valid value (defined by the domain of the variable) in the 

solution space. Thus, our approach evaluates each non-zero value of each variable’s 

domain. If a variable cannot attain any of its non-zero values, the variable is considered 

dead. For instance, in the Dopler model of Figure 3.8, there are not dead decisions or 

assets. 

5. Redundancy-free. 

In the asset model (cf. the right of Figure 3.8) the asset 4dwn requires MwM, which at the 

same time requires the asset Motif, therefore the dependency 4dwm requires Motif is 

redundant according to the redundancy-free algorithm presented in Section 5.2. 

It is worth noting that the domain-specific operation “false optional reusable elements” is 

not applicable in Dopler models due to the fact that this language does not have explicitly the 

concept of optional. Decisions and assets are optional in Dopler models according to the 

evaluation of the visibility conditions (in the case of decisions) and inter-assets dependencies 

in the case of assets. 

7.3 Gaps and Challenges 

The CP-based approach to verify multi-model product lines is a first step in this direction that 

complements the related works found in literature. Some of these works are: 

Alves et al. (2006) propose an approach to FM refactoring, which, in contrast to FM 

specialization formalized by Czarnecki et al. (2005), is a transformation that either maintains 
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or increases the set of all FM configurations, whereas FM specialization is a transformation 

that decreases the set of configurations. Both approaches propose a collection of operations 

allowing, for example, merge optional and alternative relations of two FMs. Alves et al. 

present the refactoring as a sequence of modification operations applied to both original FMs 

separately; for example: change, add or remove a relationship, collapse two relationships and 

pull up/push down a feature. Alves et al. can derive other refactorings between more than two 

FMs by taking a base FM and applying on it a sequence of operations (corresponding to 

relationships among the products configured from the other input models). The authors encode 

FMs in the Prototype Verification System language (PVS) in order to prove the FM 

refactorings proposed in their work. Unfortunately, this approach only considers one strategy 

to merge features models. In addition, due to the fact that the merge operation of FMs is based 

in the relationships among the features of the products derived from the input FM and not on 

the FM themselves, this approach is not realizable in very large FMs because in some cases, it 

is impossible derive all their products. 

Schobbens et al. (2006) survey feature diagram variants and generalize the various 

syntaxes through a generic artefact called Free Feature Diagrams (FFD). In their work, the 

authors identify and define three kinds of merging strategies on FMs: intersection, union and 

reduced product. To the best of our knowledge, they do not provide automated support for the 

merging of FMs neither details about the implementation of these three strategies to deal with 

problems of coherence, redundancies and situations difficult to integrate. One example of 

these difficulties is when the resulting model needs a new concept to represent the correct 

semantics of the input models with regard to the selected merging strategy. In this chapter we 

consider these cases and complement their approach with two other integration strategies. In 

this context, we presume that our proposal complements their work and offer some indications 

about the implementation of FM integration strategies. 

Liu et al. (2006) study PL refactoring at the code level and propose what they call Feature 

Oriented Refactoring (FOR). They provide a semi-automatic refactoring process to enable the 

decomposition of a program into features. The authors propose two operations on FOR. The 

first is the so-called introduction sum: “a binary operation that aggregates base modules by 

disjoint set union. A base module is a set of unique variables and methods that belong to one 

or more classes”. The second operation is called function composition or weaving, a function 

“used to weave the changes of a derivative module into a base module, yielding a woven base 

module”. A derivative module is the collection of refinements that modify the methods of a 
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module. This approach complements our work, since it could be applied in our approach at the 

code level in software product lines. 

Fleurey et al. (2007) propose a generic framework for merging models. The framework is 

independent from a modeling language and has been implemented in the tool Kompose 

(Fleurey 2007a). The generic framework is specialized by decorating the metamodel of the 

language with signatures (e.g., the type). These signatures permit capturing semantic elements 

of the modeling language in order to produce a meaningful composition operator. The main 

advantage of the proposed approach is that permits the definition of merging operators for new 

modeling languages. The main limitation is that the framework relies on the structure of the 

models to compose. The signatures are the only elements which can be used to take into 

account semantics of models to compose. This is an issue in FMs due to the hierarchical 

nature of this kind of model and the typical mismatch problems related with the structure of 

the resulting model (as in Tables 7.1, 7.3, 7.5 and 7.7). 

Apel et al. (2007) present an algebra for feature-oriented software development. The 

authors present a procedure for composing (merging) feature trees using tree superimposition. 

This recursive procedure, in the words of the authors, composes “two nodes to form a new 

node (1) when their parents have been composed already (this is not required for composing 

root nodes) and (2) when they have the same name and type. If two nodes have been 

composed, their children are composed as well, if possible. If not, they are added as separate 

child nodes to the composed parent node”. As in our work, they assume that nodes with the 

same name refer to the same software artefacts and that the granularity levels of both FMs are 

the same. Compared to our work, they explore only one strategy to compose FMs and do not 

consider cross-tree constraints or feature attributes as we explore in our approach, or the 

syntactical mismatches present on some composition situations as presented in Tables 7.1, 7.3, 

7.5 and 7.7. In contrast, they explore the problem of superimposition of features, which is a 

complement of the work presented in this chapter.  

Jayaraman et al. (2007) propose an approach to integrate FMs by using graph 

transformation rules. One year later, Segura et al. (2008) presented a similar approach. This 

approach presents a catalogue of merge rules describing how to build a FM including all the 

products represented by two given FMs (a conservative strategy) previously represented as 

graphs. Both approaches use a free Java graphical tool for editing and transforming graphs 

called Attributed Graph Grammar System (AGG). To do that, the authors of both works make 

two assumptions: (i) “input FMs represent related products using a common catalogue of 

features”; and (ii) “the parental relationship between features is equal in all the FMs”. In our 
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approach, we also assume that features with the same name refer to the same artefact and that 

FMs to be integrated must have the same level of granularity. However, we present several 

strategies to integrate FMs and not only the conservative one. As an improvement of 

Jayaraman et al’s work, Segura et al. use FMs with attributes and two kinds of cross-tree 

constraints (requires and excludes). In our approach we consider features with attributes, with 

cardinalities and with external constraints (additional to requires/excludes) often presented in 

industrial FMs (Salinesi et al. 2011). Our approach is inspired on Segura et al.’s work; in 

addition, this Chapter provides a more complete scenario for integration of extended feature 

models with the details of mismatches and contradictions omitted in (Segura et al. 2008). 

Acher et al. (2010) propose two strategies to integrate the features of two FMs without 

cross-tree relationships, attributes and cardinalities. The fist strategy makes an intersection 

among the features of both input models. The second strategy unifies the features of both input 

models and therefore the resulting model will contain the features of both input models. Achar 

et al. hold that (i) the first strategy preserves the products that are represented in both input 

models at the same time; and (ii) the second strategy preserve the products of both input 

models. However, due to the fact that in this approach authors only consider the features of 

both input models and not the relationships among them, the semantics of the resulting model 

cannot be defined by the intersection/union of both input models. Unfortunately, their 

approach does not provide details about how these two strategies have been implemented 

neither about how to treat the contradictory and mismatch situations. 

Rosenmüller et al. (2011) provide three alternative mechanisms to compose variability 

models in order to improve composition.  The three mechanisms are inheritance, 

superimposition and aggregation. As in object-oriented programming, the authors use 

inheritance to create a new variability model that extends an existing model with new features 

and constraints. Indeed, Rosenmüller et al aim at deriving (i) the union of all features and (ii) 

the union of all constraints. The first operation increases variability by permitting all feature 

combinations of the merged models. The second operation limits variability by joining the 

constraints of the models using conjunctions. In order to do that, they translate the models into 

their Boolean propositional formula, merge these representations, and create a new feature 

model from the merged formula. This approach is similar to ours, but unfortunately no details 

about how to merge these propositional formulas are provided in their work. Besides, we 

consider not only the union strategy but other four composition strategies and instead of 

Boolean propositional formulas we use constraints, which can be used to merge not only 

FODA models but others PLMs. A more restrictive mechanism is the superimposition, in 
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which the propositional formulas corresponding to each base model are preserved in the 

resulting model. However, the authors do not provide details about the implementation of this 

mechanism, or about how to deal with the contradictions and redundancies in the resulting 

model. In contrast, inheritance and aggregation are more appropriate when input models have 

different names for the same artefact due to the fact that these two mechanisms permit the 

creation of new concepts when the names do not match. Unfortunately, these two mechanisms 

do not scale, because the composition in these cases is done manually.  

However, even with all these works and the increasing effort of the product line community 

to allow the configuration of products from a multi-model product line, some questions still 

remain unsolved, as for example: 

1. How to deal with multi-model PLs where each model is represented in a different 

language (i.e., where there is no a common metamodel)?  

2. Is the constraint language enough expressive to represent the semantics of a multi-model 

PL expressed with several variability languages? Is there a sort of “assembler language” 

to compile every PLM independent of their metamodel? 

3. Is the verification approach presented in this chapter valid for these kinds of multi-view 

models where each view is represented in a different formalism?  

4. The verification criteria proposed for standalone product line models is enough for 

verifying multi-model product lines?  

5. Is configuring a product from two models (of the same PL) equivalent to configuring a 

product from an integrated model? How to avoid or to deal with the contradictions and 

mismatches present on the resulting PLM even if the base models were correct 

themselves?  

6. How to guarantee that the resulting model represent the right semantics that the actor 

wants to represent in the resulting model? 

7. How to deal with the terminology and structural incoherencies and mismatches? How to 

integrate PLMs where each structure of each PLM is very different from one another? 

8. How to deal with base models in which the level of granularity of requirements specified 

in them is different? 

9. How to deal with addition of supplementary constraints specifying model inter-

dependencies? How to deal with specification of dependencies that cannot be defined in 

any of the languages of the base models (e.g., constraints on Integer variables, or on 3 or 

more variables) or definition of constraint preferences (e.g., Maximize (2 * C1 + C2))? 

10. What is the formal semantics of each strategy to integrate FMs?  
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11. Is our collection of strategies to integrate FMs complete? Is the catalogue of integration 

rules correct and complete according to the given semantics? 

Even if this thesis does not have the answer to all these questions, the constraint-based 

approach presented here is a step ahead for future works willing to solve these questions. 

7.4 Summary 

This chapter presents the extension of our verification approach to the context of multi-model 

product lines. Our proposal way to handle this is the UNIX running example, represented by 

means of a Dopler model and two FMs. The running example was transformed into constraint 

logic programs in order to integrate them and make them automatically verifiable. Once the 

models were transformed, they were individually verified against the typology of verification 

criteria presented in Chapter 4. The results obtained from these two cases show the 

applicability of this verification approach in at least these two product line modelling 

languages. However, several research questions still remain unsolved, representing new 

research topics for future works.   
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Chapter 8 

Evaluation 

 

This chapter reports the results of several empirical experiments carried out to evaluate the 

ideas proposed in this thesis. In particular, this chapter’s goal is to evaluate: 

 the implementability of our verification approach,  

 its generality against different product lines, specified with different languages 

and in different manners (stand alone and multi-model), 

 the scalability of the proposed approach.  

The performance results of the tool that was implemented is compared with one of the 

most popular PLM verification tools of the literature. The verification operations related with 

conformance checking could not be compared with other solutions due to the fact that, to the 

best of our knowledge, there are not implementations in literature to be compared to.  

This chapter provides details of the resources used in the experiments and report and 

discuss the observed results. 

8.1 Hardware and Software 

Evaluation was made in the following environment: Laptop with Windows Vista of 32 bits, 

processor AMD Turion 64 bits X2 Dual-Core Mobile RM-74 2,20 GHz, RAM memory of 

4,00 GB, GNU Prolog 1.3.0 and Eclipse RPC Galileo-SR2-Win32. 

8.2 Benchmarks 

8.2.1 Real Models 

We selected a large collection of feature models used in the field of software product lines to 

construct the corpus of 34 FMs that served as basis for our experiments. Those models have 

been used in a variety of ways by their proposers and served mostly as a mean to illustrate 

approaches and techniques applied to software product lines. Table 8.1 presents the name, the 

number of features and a small description of 16 of these models, sorted by the number of 

features in the model.  
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Table 8.1. 16 FMs taken from the literature of software PLs and used in our experiments 

Feature Models Taken From the 
Literature 

Number 
of 

Features 
Description 

TelecommunicationSystem 12 

This model represents the functionalities of a 
telecommunication switch, which can be extended by 

installing additional software modules onto the 
hardware component such as management software or 

application packages for messaging and IP-services 
(Felfernig et al. 2001) 

James_fm 14 

JAMES is a framework to develop web collaborative 
systems with a particular kind of database, user 

interface and one or several modules (Benavides et al. 
2005) 

CellPhone_fm 15 
This model is a SPL for applications that 

manipulate photo, music, and video on mobile devices, 
such as mobile phones (Figueiredo et al. 2008) 

GraphBatory_fm 20 
This model is a family of graph applications where 
each graph PL application implements one or more 

graph algorithms (Batory 2005) 

MobilePhone_fm 20 
This model represents a mobile phone family with 

several utility functions, settings, media facilities and 
types of connectivity (Segura 2008) 

Fame_dbms_fm 21 

This model corresponds to a SPL of embedded 
database management systems (DBMS) with different 
types of index, access methods, statistics (e.g., buffer 
hit, ratio, table size, etc.) and transactions (Kastner et 

al. 2009) 

Insurance_Product_fm 25 

PL Model for Insurance Systems. This model proposes 
several types of insurance objects, insurance options, 

payment modes and insurance conditions 
(Tekinerdogan & Aksit 2003) 

KeyWordInContext_fm 25 

This model represents the most important features of 
the KeyWord in Context problem formulated by 

Parnas (1972) to contrast different criteria for modular 
software decomposition (Sun et al. 2005) 

DigitalVideoSystem_fm 26 
This model represents a Digital Video System that 
need to be controlled remotely and optionally, by a 

telephone or by a net (Streitferdt et al. 2003) 

GraphMei_fm 30 
This models represent the family of operation of a 
graph editor tool such as adding, content moving, 
outline moving, removing, etc (Mei et al. 2003) 

WebPortal_fm 43 
It is a feature model for a web portal product line with 

persistency, security and performance features and 
some services (Mendonca et al. 2008) 

DocGen_fm 44 

DocGen is the FM of a commercial documentation 
generator. This documentation includes textual 

summaries, overviews, control flow graphs, 
architectural information, etc., at different levels of 

abstraction (Van Deursen & Klint 2002) 

Thread_fm 44 

The thread FM represents indeed the decision model a 
programmer has to go through when deciding which 
kind of thread support his or her application really 

needs (Beuche 2003) 
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HIS_fm 67 
This is a FM of a Home Integration System (HIS) 
product line constraining the services, controls and 

quality attributes of a HIS (Kang et al. 2002) 

ModelTransformationTaxonomy 88 

This is FM representing the variation elements of a 
model transformation process such as transformation 

rules, rule application strategies, tracing, directionality 
and source-target relationships (Czarnecki. & Helsen 

2003) 

EShopping_fm 287 

This model corresponds to the product line  
of Business-to-Consumer systems. Elements like the 
catalogue of products, the characteristics of products, 
payment options and customer services are related in 

this model (Lau 2006) 
 

In our experiments we also used two Dopler models provided by the authors of the 

Dopler formalism (Dhungana et al. 2010). These models and the number of variables 

presented in each one of them are presented in Table 8.2, sorted by the number of variables in 

the model. 

Table 8.2. Dopler variability models. 

Dopler Models 
Number 

of 
Variables 

Description 

Kamera8655 39 

This model defines the variability of a fictitious product line of digital 
cameras. This model has been created by analyzing datasheets of all 

available digital cameras of a well-known digital camera manufacturer. 
The model comprises 7 decisions and 32 assets (Mazo et al. 2011a). 

DOPLER tool 
suite model 

121 

This model represents the variability of the configurable DOPLER tool 
suite and comprises 14 decisions, 40 decision options and 67 assets (Mazo 

et al. 2011a). The model has been created by the developers of the 
DOPLER tool suite. 

 

Three product line models represented as constraints programs were developed by us, 

based in our academic and industrial experiences. They were also used in our experiments 

and are briefly presented in Table 8.3, sorted by the number of variables in the model. 

Table 8.3. Benchmark of PLMs represented  from scratch as constraint programs. 

Constraint Program 

Product Line Models 
Number of 
Variables Description 

Vehicle movement 
control systems 

21 
This model represents a vehicle movement control systems 
product line with different kind of sensors (Salinesi et al. 

2010b). 

UNIX 37 
Multi-model UNIX product line model used in this these; 

cf. Figures 3.5 and 3.6. 

Stago 49 
This model represents a family of blood analysis 

automatons fabricated by the company Stago (Djebbi & 
Salinesi 2007), (Salinesi et al. 2010b). 
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Despite the number of models that we collected from literature, our academic partners 

and our own models, it was extremely challenging to find larger models to be representatives 

of the large-scale industrial product line models.  For instance, Batory et al. (2006) points out 

that product lines in the automotive industry can contain up to 10000 features. We are aware 

that such models exist, however they are usually part of commercial projects that offer 

limited access to their resources. Therefore, we used several automatically generated models. 

They are used in well known benchmarks for the software PL community. These models are 

presented in the next section.  

8.2.2 Automatically-Generated Models 

The automatically-generated FMs we used in this thesis were taken from the SPLOT tool 

(Mendonça et al. 2009b), which provides a large collection of automatically-generated FMs 

to support empirical studies on the performance and scalability of automated techniques for 

reasoning on FMs. According to Mendonça et al. (2009a), in each automatically-generated 

model, each type of mandatory, optional, inclusive-OR (<0..n> group cardinality) and 

exclusive-OR (<0..1> group cardinality) feature was added with equal probability. The 

branching factor (number of children per parent node) of the feature tree varied from 1 to 6. 

The cross-tree constraints were generated as a single Random 3-CNF formula 3 over a subset 

of features in the tree.  

Each model in the benchmark corresponds to a random 3-CNF formula, depending on the 

CTCR. Mendonça et al. (2009a) define Cross-Tree Constraint Ratio (CTCR) as the ratio of 

the number of features in the cross-tree constraints to the number of features in the feature 

tree. For instance, for a model with 1000 features and 30% CTCR, 300 distinct variables are 

selected randomly from the model and combined randomly into ternary CNF clauses. 

According to the Mendonça et al (2009a) description of the automatically-generated FMs, 

variables are negated in each clause with a 0.5 probability and identical clauses were not 

permitted. The number of clauses is controlled by clause density. For instance, given clause 

density of 2.3 for a model of 1000 features, the tool generates 690 (= 2.3×300) random 

ternary clauses. The clause density refers to the density of clauses in the cross-tree constraints 

not in the formula induced by the entire feature model.  

Five of the 15 automatically-generated FMs used in this thesis are presented in Table 8.4. 

                                                             
3 In Boolean logic, a formula is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses, where a clause is a 

disjunction of literals. In a clause, a literal and its complement cannot appear in the same clause. In a Random 3-CNF 

formula, at most 3 variables per clause are randomly combined to create a formula; for example, the formulas ¬A฀B and 
(A฀B)฀(A฀C) are in 3-CNF; the formula A฀¬A is not in CNF and the formula (A฀B)฀(A฀C)฀D is not in 3-CNF.  
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Table 8.4. Five automatically-generated FMs taken from SPLOT (Mendonça et al. 2009b)  

Some of the automatically-generated FMs with 
SPLOT 

Number 
of 

Features 
Description 

SPLOT-3CNF-FM-500-50-1.00-UNSAT-1 500 
Number of 3-CNF Variables: 50 and 3-

CNF Clause Density: 1.0 

SPLOT-3CNF-FM-1000-100-1.00-UNSAT-10 1000 
Number of 3-CNF Variables: 100 and 3-

CNF Clause Density: 1.0 

SPLOT-3CNF-FM-2000-200-1.00-UNSAT-1 2000 
Number of 3-CNF Variables: 200 and 3-

CNF Clause Density: 1.0 

SPLOT-3CNF-FM-5000-500-0.30-SAT-10 5000 
Number of 3-CNF Variables: 500 and 3-

CNF Clause Density: 0.3 

SPLOT-3CNF-FM-10000-1000-0.10-SAT-1 10000 
Number of 3-CNF Variables: 1000 and 

3-CNF Clause Density: 1.0 

8.3 Evaluating the Domain-specific Verification 

Approach 

We performed a series of experiments to evaluate the domain-specific verification approach 

proposed in this thesis. The goal was to measure: 

 the effectiveness or precision of the defect’s detection,  

 the computational scalability, and  

 the usability of the approach to verify different kinds of product line models.  

These measurements are presented in the next sections, grouped by the kind of product 

line models against which they were measured. 

8.3.1 The Case of Feature Models  

We assessed the feasibility, precision and scalability of our approach with 46 models, out of 

which 44 were taken from the SPLOT repository (Mendonca et al. 2009b) and the other two 

models are the Vehicle movement control system and the Stago model (cf. Table 8.3). The 

size of the models is distributed as follows:  

32 models of sizes from 9 to 49 features,  

4 from 50 to 99, 5 from 100 to 999 and  

6 from 1000 to 2000 features.  

The six feature models with sizes from 5000 to 10000 features were not considered in this 

experiment due to the fact that the GNU Prolog solver (the used version) does not accept 

more that 5000 variables. Note that SPLOT models do not have attributes, in contrast to our 

two industrial models. Therefore artificial attributes were introduced in a random way, in 

order to have models with 30%, 60% or 100% of their features with attributes.  In order to do 
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that, we have created a simple tool4 that translates models from SPLOT format to constraint 

programs. Then we integrated the artificial attributes. In order to test that the transformation 

respects the semantics of each feature model, we have compared the results of our models 

without attributes with the results obtained with the tools SPLOT (Mendonca et al. 2009b) 

and FaMa (Trinidad et al. 2008b). In both comparisons we have obtained the same results in 

all the shared functions: detection of void models, dead features, and false optional features. 

These results show that our transformation algorithm respects the semantics of initial models.  

Precision of the detection 

Not only must the transformation of FMs into CPs be correct, but also the detection of 

defects. As aforementioned, the results obtained with our tool VariaMos against the results 

obtained with two other tools: SPLOT and FaMa, were compared. These comparisons were 

made over models without attributes (the original models taken from SPLOT do not have 

attributes) and with restricted group cardinalities, due to the fact that the group cardinalities 

used in SPLOT and FaMa must be able to be transformed into OR, AND and XOR 

operations. For example, a <0..3> group cardinality over three features can be represented 

as an OR among the three features, but a <2..5> group cardinality cannot be represented 

with an OR, AND or XOR operators. These comparisons show the same results, for the 

common verification functions on the three tools, but due to the fact that our own models 

contain attributes and group cardinalities <m..n>, for any m and n bellowing to non negative 

Integer numbers, a manual inspection has been necessary. A manual inspection on two 

samples of 28 and 56 features has shown that our approach identifies 100% of the anomalies 

with 0% false positives. 

Computational Scalability 

The execution time of the verification criteria in our implementation shows that the 

performance obtained with our approach is acceptable in realistic situations. In the worst 

case, verification criteria were executed in less than 19 seconds for models up to 2000 

features. Figure 8.1 shows the execution time of each one of the six verification criteria in the 

50 models. Each plot in the figure corresponds to a verification criterion: Figure 8.1(1) 

corresponds to criterion 1, Figure 8.1(2) corresponds to criterion 2 and so on. Times in the Y 

axis are expressed in milliseconds (ms). The X axis corresponds to the number of features. It 

                                                             
4 parserSPLOTmodelsToCP.rar available at: https://sites.google.com/site/raulmazo/  
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is worth noting that most of the results overlap the other ones; we avoid the use of a 

logarithmic scale in the X axis, to keep the real behaviour of the results. 
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Figure 8.1. Execution time of the six verification criteria, per number of features 

Let us now present the results in more detail.  

For the models with sizes between 9 and 100 features our approach verified all criteria in 

less than 1 second on average.  

For the models with sizes between 101 and 500 features, our apporach verified dead 

features and false optional features in 0.4 seconds, took 1 second to calculate the non 

attainable domains and 0 milliseconds in the rest of verification criteria. It is worth noting 

that GNU Prolog does not provide time measures of microseconds (10-6 seconds); thus, 0 

milliseconds (10-3 seconds) must be interpreted as less than 1 millisecond. In general, over 

the 46 FMs, the execution time to detect dead features, false optional features and non 

attainable domains was less than 8.679, 8.819 and 19.089 seconds respectively. For the 

rest of verification criteria, the execution time is lower than 0.016 seconds even for the 

largest models. We can only make projections to evaluate the behaviour of our approach with 

larger models. Following the projection of our results, our approach is probably able to be 

used in larger FMs with a quadratic increase. To finish, the verification operations like 

redundant relationships, false feature models and void feature models are executed in less 

than 0.03 seconds. According to the results of our experiment, we can conclude that our 

domain-specific verification approach presented in Chapter 5 is scalable to large FMs. 

 

8.3.2 The Case of Dopler Variability Models 
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The verification approach presented in this thesis was also tested with two Dopler models (cf. 

Table 8.2) named “digital camera” and “DOPLER”. In both models, 33 defects in the 

DOPLER model and 22 defects in the camera model were seeded. The defects cover 

different types of problems to show the feasibility of the verification approach. For instance, 

the decision Wizard_height cannot take the values 1200, 1050, 1024 and 768 and the 

asset VAI_Configuration_DOPLER cannot take the value 1 (is never included for any 

product), even if these values take part in the corresponding variables’ domain. Furthermore, 

the execution time of applying the approach for both models, for the different verification 

criteria, has been measured. The results of this experiment are presented below. 

The DOPLER model was not void (it could generate 23016416 products). However, 18 

defects related with non-attainable domain values and 15 dead decisions and assets (these 

together are the 33 defects we have seeded before) have been discovered. The verification of 

the digital camera model showed that the model is not void (it can generate 442368 

products). In this model, 11 defects related with non-attainable domain values as well as 11 

dead decisions and assets (these together are the 22 defects we have seeded before) have 

been discovered. It is noteworthy that the same number of defects was identified in a manual 

verification of both models. The automated verification found all of the seeded defects in the 

DOPLER model and all of the seeded defects in the camera model.  

Table 8.5. Results of Dopler models verification: Execution time (in milliseconds) and 
number of defects found with each verification operation. 
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DOPLER 

81 Variables 

Defects No No 18 15 No 

Time 0 0 125 47 0 

Camera 

39 Variables 

Defects No No 11 11 No 

Time 0 0 16 15 0 

 

Table 8.5 shows the number of defects found and the execution time (in milliseconds) 

corresponding to the verification operations on the models. No defects were found regarding 

the “Void model”, “False model” and “Redundant relationships” operations and the execution 

time was less than 1 millisecond for each one of these operations in each model. The model 
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transformations from Dopler models to constraint programs took about 1 second for each 

model.  

8.4 Evaluating the Conformance Checking Approach 

We performed a series of experiments to evaluate the effectiveness or precision, the 

scalability and the usability of the conformance checking approach proposed in this thesis. In 

order to do so, we executed the approach presented in Chapter 5 over 50 feature models 

taken from the SPLOT repository (Mendonça et al. 2009b).  

The size of the models were distributed as follows: 30 models of sizes from 9 to 49 

features, 4 from 50 to 99, 4 from 100 to 999, 9 from 1000 to 5000 and 3 of 10000 

features.  

Note that SPLOT models neither support attributes nor multi root features. Therefore 

artificial attributes (a variable followed by a domain, for example A:String) were 

introduced in a random way, in order to have models with 30%, 60% or 100% of their 

features with attributes. Following the same logic, we introduced one artificial root on the 

50% of the SPLOT models. In order to do that, we created a simple tool that transforms 

models from SPLOT format to facts and automates the assignation of artificial attributes, 

permiting repeated attributes inside each affected feature (between 1 and 5 features per 

affected feature), and roots.  

Precision of the detection 

One example of the effectiveness of our approach is the 56 conformance anomalies of the 

models taken from SPLOT, violating conformance criteria (CC) 4, 6 or 7. The list of 

conformance criteria is: 

FM CC. Criterion 1: A feature model should have one and only one root. 

FM CC. Criterion 2: Features intervening in a group cardinality relationship should not be 

mandatory features. 

FM CC. Criterion 3: A feature should not have two attributes with the same name. 

FM CC. Criterion 4: Two features should not have the same name, in the same model. 

FM CC. Criterion 5. A child feature cannot be related in an optional and a 

mandatory dependency at the same time. 

FM CC. Criterion 6. Two features cannot be required and mutually excluded at the 

same time. 
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FM CC. Criterion 7. Each dependency relates two or several different features. 

 

For example, in the Model transformation taxonomy feature model (cf. Table 8.1), 

features like Form, Semantically_typed, Interactive, Source, 

Syntactically_typed, Target and Untyped appear twice. In addition, we found 

1553 conformance defects with regards to criteria 1 and 3. These came from the attributes 

and root features that were intentionally introduced in the SPLOT models. A manual 

inspection on a sample of 56 conformance defects showed that the tool identified 100% of 

the anomalies with 0% false positive. This confirms our belief that our tool has a 100% 

precision and a 100% recall. 

Computational Scalability 

The execution times of our tool during the experiment show that our approach is able to 

support a smooth interaction during a conformance checking process. Indeed, each 

conformance rule was executed within milliseconds. Figure 8.2 shows the execution time of 

each one of the seven conformance rules in the 50 models. In Figure 8.2 each plot 

corresponds to a conformance rule: Figure 8.2 (1) corresponds to confornace criterion 1, 

Figure 8.2 (2) corresponds to conformance criterion 2 and so on. Times in the Y axis are 

expressed in milliseconds (ms) and X axis corresponds to the number of features in a Log10 

scale to facilitate the distribution of the results and avoid the overlapping of results. 
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Figure 8.2. Execution time, of the 7 FM conformance criteria, per number of features (in a 
Log10 scale) 

Initial analyses indicated us that 74.2% of the queries take 0 ms. This actually means 

that the execution time is less than 1 ms. In small models (9 to 100 features) the worst rule 

execution time was 32 ms. In large models (100 to 10000 features), execution time of each 

rule was less than 140 ms. The maximal time taken by the tool to execute all nine 

conformance rules on complete models was 265 ms, which is still a ¼  of a second.  

Table 8.6 shows the correlation coefficient (R²) between the number of features in the 

models and the time that each rule takes to be executed. Of course, the R² does not prove 

independency between these variables. However, it gives a good indication of their 

dependency/independency. In the case of criteria 1, 2, 3, 4, and 6, the correlation coefficient 

is next to 0. This means that, despite the NP complexity of verification of product line models 

(Mendonça et al. 2009), (Yan et al. 2009), our tool seems to be scalable to large models when 

cheking these criteria. It seems that every criterion can be checked in a linear (criteria 1, 2, 3, 

4, and 7) and polynomial (criteria 5 and 6) time, according to the correlation coefficient of 

Figure 8.2. As presented in Chapter 5, this good scalability is due to the fact that our 

conformance checking approach was optimised so as to avoid evaluating whole models, but 

only through series of queries combined in an appropried way. 
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Table 8.6. Correlation coefficients between “number of features” and “criteria execution 
time” per each rule and over the 50 models. 

Rule 1 2 3 4 5 6 7 

R² 0.01 0.04 0.01 0.15 0.74 0.87 0.35 

8.5 Tool Support 

Several tools were developed in our research to support automated model transformation, 

integration and verification. The tools were built on Java and Prolog.  

To transform feature models into constraint logic programs we used the SPLOT 

transformation API (Mendonca et al. 2009b). We have also built a tool based on ATL (Atlas 

Transformation Language) to implement transformation rules. Both transformation strategies 

are developed in Chapter 3 and details about the tools automating these strategies are 

presented in (Mazo et al. 2011e).  

To transform Dopler models into constraint programs we used a navigation API provided 

by the developers of the Dopler language (Dhungana et al. 2010).  

To check the conformance of feature models we used a tool developed in Prolog (cf. 

Appendix), which was executed in GNU Prolog (Diaz & Codognet 2001).  

To manage product line models and their integration, to configure the connection with 

GNU Prolog and to implement the domain-specific verification algorithms proposed in this 

thesis, we developed an eclipse plug-in. The resulting tool, called VariaMos (Variability 

Models). VariaMos is can be accessed online at https://sites.google.com/site/raulmazo/ 

8.5.1. VariaMos 

VariaMos uses the solver GNU Prolog as the executor engine of the verification operations. 

This connection with GNU Prolog is made using a client-server architecture through a socket 

connection as detailed in Figure 8.3. The architecture of VariaMos and its user interface to 

manage, integrate and execute the domain-specific verification proposed in this thesis, are 

presented in the next sections. 

 

 

8.3. Communication chema of VariaMos with GNU Prolog. 
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As Figure 8.3 shows it, the VariaMos plug-in plays the role of client. Its goal is to: 

 Control the flow of data and send the request to the GNU Prolog tool. 

 Process the responses received from GNU-Prolog. 

 Support the interaction with the end users by means of the user interface, in 

particular to manipulate PLM, and call verification functions. 

The GNU Prolog tool plays the role of server. It is intended to:  

 Wait for any request. It plays a passive role in the communication. 

 Once a request is received, process it and then send the result to the client. 

 Be transparent to the end user. The end user does not interact directly with the 

GNU Prolog server. 

A screenshot of the user interface to configure the connection of VariaMos with the GNU 

Prolog solver is presented in Figure 8.4. 

 

Figure 8.4. Screenshot of the configuration tag for the connection of VariaMos with GNU 
Prolog. 

 

Technical Architecture  

VariaMos is thus composed of two packages, the MANIFEST.MF with the business rules (or 

Model) and VariaMos.jar with the classes that implement the view. The classes of these two 

packages use other Eclipse packages like jdt.jar, jface.jar, resources.jar and ui.jar. An 

overview of the relationships among these packages is presented in Figure 8.5.  
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Model View

VariaMos.jarMANIFEST.MF

VariaMos Plug-in

 

Figure 8.5. Architecture of the VariaMos Eclipse plug-in. 

The functions of each VariaMos’s package are presented as follows: 

jface.jar gives the collection of tools to create and manage the components that belong to 

the user interface (UI). Jface works together with the Standard Widget Toolkit (SWT) library 

in order to manage the functionalities of components like text areas, fonts, windows and all 

the actions and objects provided by the library ui.jar. Jface and SWT are necessary in an 

eclipse plug-in environment because they permit defining the location of each UI component 

into the Eclipse workbench.  

Ui.jar permits adding UI components and the corresponding set of actions into the plug-

in. In addition, Ui.jar adds particular actions to the action bar and adding the plug-in view to 

the set of Eclipse’s views.  

Jdt.jar, it is the acronym of Java Development Tools, which is a collection of plug-ins 

that add the capabilities of a full-featured Java IDE to the Eclipse platform. Due to the fact 

that VariaMos was developed in Java, we used some particular functions of the plug-ins 

provided by the JDT library, especially jdtcore.jar, in order to create, debug, edit, compile, 

execute and interface the collection of Java programs used in VariaMos.  
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Resource.jar: it provides the necessary elements in order to manage the relationship 

between Eclipse and our plug-in VariaMos, as for example the position that the plug-in’s UI 

will have in the Eclipse workspace. 

 

Our plug-in, packaged in the file VariaMos.jar, contains 13 classes to manage the user 

interface, the execution of the domain-specific verification operations proposed in this thesis 

and the connection with GNU Prolog. The distribution of these classes in the corresponding 

packages is presented in Figure 8.6. 

 

8.6. Packages diagram of VariaMos 

The Java classes included in the views package are responsible for interaction with the 

menus package. This interaction shows to the user the changes made to the plug-in through 

the actions added in the Eclipse menu bar. The view package also uses the prolog package 

due to the fact that all the instructions that will be sent to the solver are generated in the 

prolog package. These instructions are generated in the prolog package according to the 

GNU Prolog syntax and then, they are sent to the solver by means of the methods provided 

by the built-in classes in the connectionProlog package. The connectionProlog package also 

executed the server file (server.pl) in the solver in order to establish a socket connection and 

communicate with the server by means of the facts provided in the server.pl file (cf. 

Appendix). The functions or facts, provided in the server.pl file, that the connectionProlog 
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package can execute in the solver are: server to assign a communication port, server_next to 

read a next instruction from the socket, server_stop to close the socket connection, 

server_loop to execute a collection of instruction passed as parameter and get the answers in 

other parameter, server_exec to execute a goal passed as parameter and get the answer in 

other parameter, server_msg to format a message, server_read to read a string from the 

socket and server_write to write a string in the socket. 

 

User Interface 

Figure 8.7 presents a screenshot of the product line models management tag provided in 

VariaMos. The left part shows the constraint programming representation of our UNIX 

running example (cf. Chapter 3). The right side is the user interface to all functions to manage 

the edition, transformation into CP and integration of product line models.  

As the tabs show, other functions are available to support: verification, analysis, 

requirement specifications, configuration. 

 

Figure 8.7. Screenshot of the PLMs management interface provided by VariaMos. 

Figure 8.8 presents a screenshot of the main window of the VariaMos tool, once the 

verification operations “Richness or no false PLMs” and “dead variables” are executed over 

the first model of our running example (cf. Chapter 3). 
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Figure 8.8. Screenshot of the domain-specific verification functions provided by VariaMos. 

As the screenshot shows, the VariaMos tool allows to choose which verification to 

perform and on which model to perform it. The results of verification are shown at the 

bottom of the window together with the execution time. It is also possible to verify views on 

models, which makes it possible to explore progressively the validity of sub-PLMs (i.e. from 

a semantic point of view subspaces of the collections of products that can be generated from a 

PLM).  

8.5.2. Conformance Checker of Feature Models 

The conformance checker of feature models developed to validate this thesis is a tool that 

verifies if a feature model satisfies the constraints captured in the FMs metamodel. This tool 

was constructed in the GNU Prolog language (Diaz & Codognet 2001) and executed in the 

solver with the same name. The source code of this tool is presented in the Appendix section 

of this thesis. A screenshot of the user interface, once executed in GNU Prolog over the FM 

called CocheEcologico_94_fm (a feature model taken from SPLOT and corresponding 

to the PL of an ecologic car with 94 features), is presented in Figure 8.9. This screenshot 

shows how our FM conformance checker discovered six defects regarding the conformance 

criterion “Two features should not have the same name” that correspond to the rule number 

two in our tool. For instance, in this feature model, feature identified with numbers 17 and 

61 have the same name “Blanco” and features identified with the numbers 19, 59 and 69 

have the same name “Negro”.  
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Figure 8.9. Conformance Checker of Feature Models 

8.6 Comparison with FaMa 

The VariaMos tool was compared with the state-of-the-art implementation of domain-specific 

verification. For this purpose, we selected FaMa, a Framework for AutoMated Analyses and 

verification of feature models integrating some of the most commonly used logic 

representations and solvers proposed in the literature such as BDD, SAT and CSP solvers 

(Trinidad et al. 2008b).  

We selected FaMa to be compared to, because it is the only tool, to the best of our 

knowledge, that uses a constraint solver to execute the verification operations implemented in 

the tool and it is the type of solver that we also used to implement our approach.  

We did not compare the execution time of redundant relationships and false product line 

models (or richness) operations because they are not implemented in FaMa. To make the 

comparison as fair as possible, we set up FaMa to use the Choco solver as the reasoner used 

because it is also based on Constraint Programming and FaMa implements, for this solver, all 

the operations we are interested in. It is worth noting that the verification operations dead 

features, false-optional features and wrong cardinalities are compared as a package and not 

individually due to the fact that FaMa does not compute the time separatly. The VariaMos 

versus FaMa comparison results is presented in Figure 8.10. The figure ares given with a 

logarithmic scale in the X axis for the sake of presentation.  
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VariaMos shows quite extensive performance gains over FaMa. In our tool, the execution 

time (CPU time) of operations dead features, false optional features and non attainable 

domains, goes from 14 milliseconds (ms) in models up to 50 features to 64 ms in models up 

to 100 features. As aforementioned, these operations are aggregated because they are 

implemented that way in FaMa, in other words, it is not possible to measure their 

performance separately. These same three functions are executed in 8829 ms in models up to 

1000 features and 36587 ms in models up to 2000 features. In FaMa, the execution time of 

these three operations goes from 151 ms in models up to 50 features to 596 ms in models up 

to 100 features. The same three operations are executed in 28006 ms in models up to 500 

features, in 192685 ms (3,2 minutes) in models up to 1000 features and in 1979458 ms (33 

minutes) in models up to 2000 features. In the other operation (detection of void models) our 

approach is constant and always gives times lower than 1 second. In contrast, for that 

verification operation, the execution time in FaMa is linear. As we can see in Figure 8.10, the 

difference between the execution time in FaMa and VariaMos grows with the size of models, 

which means that our improvement increases more as larger are the feature models. In 

summary, the gain, in terms of time, when we execute the first three verification operation in 

FaMa and in Prolog is not in terms of number of times faster, but in computational 

complexity. According to the results depicted in Figure 8.10(1), it seems that the 

computational complexity to execute the first three verification operations is exponential in 

FaMa and polynomial in VariaMos. In the same way, the time to execute the verification 

operation void feature model seems to be polynomial in FaMa and linear in VariaMos as 

presented in Figure 8.10(2). It must be noted that in terms of the precision and recall, both 

approaches are equal, that is, both find exactly the same defects. 
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Figure 8.10. FaMa versus VariaMos (X axis is in a Log10 scale). 

8.7 Summary  

This chapter has presented an evaluation of our verification approach using a corpus of 54 

models specified in several languages and with sizes from 9 to 10000 artefacts. This chapter 

shows how the application of the verification approach, presented in earlier chapters, in the 

54 PLMs gives sufficient evidence to support the hypothesis of this thesis. In particular: 

- The verification approach can be used to verify product line models specified in 

different kind of languages and PL specified with only one or with several models. 

- Our experiments show that the verification approach is correct, useful, and our tool 

implementation is fast and scalable.  

- To the best of our knowledge, our conformance checking approach offers the first 

implementation of a FM conformance checker. The domain-specific verification 

approach considers more verification criteria than each one of the works found in the 

literature, offers an ordered way to verify FMs, and improves the computational 

scalability of PLM verification: (i) passing from verification of PLMs with 1000 

artefacts at maximum in 41.67 minutes (dead features, false optional and wrong 

cardinalities in FaMa) to verification of PLMs up to 2000 artefacts (and even more) in 

18 seconds in VariaMos for the same three verification criteria; and (ii) passing from 

verification of the not void (consistency) PLMs with 1200 artefacts in 64 seconds 

(before elimination of redundant artefacts) and 1900 artefacts in 64 seconds (after 
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elimination of redundant artefacts from the model) in Yan et al. (2009), to 

identification of not void PLM with 2000 artefacts in 8 seconds in VariaMos.    

The tools developed in this thesis are used together accordint to the architecture depicted 

in Figure 8.11.  
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Figure 8.11. General architecture of the transformation, integration and verification tools. 

Figure 8.11 relates in a unified architecture the different tools developed to validate the 

PLM verification approach proposed in this thesis. To verify PLMs, we first transform them 

into constraint (logic) programs by means of ATL rules or in-house applications (Application 

Programming Interfaces APIs) to navigate through the elements of PLMs. Once PLMs 

transformed, they can be edited, integrated into a single model or formatted into the GNU 

Prolog language. To format PLMs into GNU Prolog we used XPath to navigate through the 

tags of each model, initially represented as XMI (XML Metadata Interchange) files. The 

PLMs represented in the GNU Prolog language can be verified, analyzed and configured 

using the GNU Prolog solver. Our tools are connected to GNU Prolog by means of a socket 

that allows executing PLMs, executing verification rules and retrieving the results from the 

solver. Then, answers retrieved from the solver are treated by our tools and presented to the 

user. 
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Chapter 9 

 

Conclusions and Future Research 

 

The main objective of this thesis is to answer the research question: How can product line 

models be automatically verified in a generic and reusable way? To answer this question, 

this thesis proposes: 

a. A state of the art in verification of product line models 

b. A typology of verification criteria that classify and dispose the verification criteria 

found in literature according to the nature of criteria, and inside of each category, 

according to the order in which they should be executed. These two categories of 

verification criteria are called “conformance checking” and “domain-specific 

verification”. The order indicates the sequence in which verification criteria should be 

executed according to their impact on the overall quality of the PLM and the logic 

sequence of the verification process. 

c. Verification criteria formalized in first order logic and generic algorithms to 

implement them.  

- In the case of conformance checking, the generic algorithms should be adapted to 

particular metamodels.  

- In the case of domain-specific verification the algorithms reuse the precedent 

answers obtained from the solver in order to reduce the execution time of each 

criterion.   

d.  An approach to verify multi-model product lines. 

e. A tool to automate and validate the verification approach. 

f. A benchmark of 54 product line models with size up-to 10000 artefacts. 

g. An evaluation and comparison of our implementation with another tool. 

9.1. Conclusions 

The proposals used to the answer the research question of this thesis are summarized in the 

next sub-sections. 
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9.1.1 State of the art in verification of product line models 

As for as product line model verification, literature review shows: 

a.  Most of approaches existing in literature focus in verification of feature models, as 

presented in Table 2.1.  

b. Table 2.1 shows that there is no approach that covers all the verification criteria, or all 

the PL formalisms.  

c. Most of these criteria are overlapped, i.e., different names are used to refer to the 

same criterion. 

d. There is no approach to verify multi-model product lines. 

e. There is no comprehensive approach, i.e., an approach that handles all the criteria in a 

consistent way. 

f. All the techniques we found in the literature transform PLMs in another formalism: 

sometimes a conjunctive normal form formula, other times in an if-then-else structure 

(i.e., BDD), also constraint satisfaction problem (CSP), OCL and in-house 

representations. 

The following challenges arise from our literature review:  

g. Can the verification approaches originally created for FMs also be used on other 

notations? And if it is possible, then, how to do that?  

h. How to verify a PLM independently of the language in which the model at hand is 

represented and for any verification criteria? There is no generic approach to verify 

product lines models. 

i. How to verify PLMs in a scalable way? 

9.1.2 Typology of verification criteria 

The typology of verification criteria emphasizes the difference between domain-specific and 

conformance defects. The outcomes of the typology are multiple:  

j. It classifies the criteria from a semantic perspective, allowing the identification of 

similarities and differences among the criteria. 

k. The typology helps the identification of some defects for which no verification 

criterion is available in the literature.  

l. The classification behind the typology produces a standard and reusable approach to 

verify PLMs. 
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m. The typology can be used to select the criteria that one wants to use to verify a PLM 

according to the impact that these criteria have or the expected quality level of a 

particular PLM. 

n. Due to the fact that not all the verification criteria have the same impact, they have 

neither the same priority nor the same execution order; the typology can be used to 

guide the verification process and to propose specific defects management strategies 

and policies. 

9.1.3 Conformance Checking, a Generic and Adaptable Verification 

Approach 

From the point of view of conformance checking, this thesis proposes a collection of 

verification criteria to check conformance of product line models with their corresponding 

metamodels. This approach is generic and adaptable. Genericity was obtained by developing 

these criteria from a generic metamodel that entails common structures of several PL 

metamodels. Adaptability is obtained by specialising the generic metamodel with a specific 

metamodel. The conformance checking approach needs a transformation of the PLMs’ 

abstract syntax into constraint logic programs. Thus, the abstract syntax of PLMs, once 

represented as a collection of logic facts, can be evaluated against a collection of 

conformance criteria taken from the corresponding metamodel. It is worth noting that some 

of these criteria are generic to several PLM metamodels and other criteria are particular to the 

metamodel at hand. These conformance criteria are implemented as CLP queries over PLMs 

and intend to find the elements of the PLMs not satisfying the conformance criteria. 

The conformance checking approach is fully automated in a Prolog-based tool. This tool 

is used to execute a series of experiments to test the feasibility, the performance and the 

computational scalability of the conformance checking approach over feature models. As 

presented in Chapter 8, the experiment supports the fact that the approach presented in this 

thesis to check conformance is correct, useful, and our tool implementation is fast and 

scalable to PLMs up-to 10000 variables. 

9.1.4 Domain-specific Verification of PLMs, a Generic Verification 

Approach 

This thesis presents a generic and reusable approach to verify domain-specific properties of 

PLMs against a collection of verification criteria. To use these verification criteria the 

semantics of the PLM at hand should be represented as a constraint program. While the 



186 

 

variables of the constraint programs specify what can vary from one configuration to another 

one, the constraints express, under the form of restrictions, what combinations of values are 

permitted in the products. Once PLMs represented as CPs, this thesis proposes the use of CP 

solvers in order to execute the verification criteria. The approach was applied to extended 

feature models, Dopler models and constraint-based PLMs, which gives an idea of the 

genericity of this approach. 

The PLM verification approach proposed in this thesis is validated against a series of 

experiments (cf. Chapter 8) to evaluate the hypotheses raised in Chapter 1. The experiment 

supports the fact that the approach proposed in this thesis to verify domain-specific properties 

of PLMs is correct, useful, and our tool implementation is fast and scalable to PLMs up-to 

2000 variables.   

9.1.5 Verification of Multi-model Product Lines 

From the point of view of multi-model product line specification, this thesis proposes an 

approach that captures in a unified representation the various models of the PL. As a result, 

domain and application engineering activities such as PLM verification and analysis, or 

product configuration will be facilitated. The multi-model verification approach presented in 

this thesis consists of re-using the verification approach proposed for standalone PLM in 

order to verify multi-model product line specifications. This approach was validated in the 

case of feature models (where several FMs are used to specify a PL and they are integrated 

by means of five integration strategies) and Dopler models (where a PL is specified by means 

of a decision and an asset models integrated by inclusion rules). However, this thesis does not 

consider the case where a PL is specified by several models, each one specified in a different 

modelling notation. This case is proposed in Chapter 7 as a future work. 

9.1.6 Automation and Validation of the Verification Approach 

Several tools were developed in our research to support automated model transformation, 

integration and verification. To transform feature models into constraint logic programs we 

(i) used the SPLOT transformation API (Mendonca et al. 2009b), and (ii) we build a tool 

based on ATL (Atlas Transformation Language) transformation rules. To transform Dopler 

models into constraint programs we used a navigation API provided by the Software 

Engineering and Automation Institute of the Johannes Kepler University, Austria. To check 

the conformance of feature models we build a tool in GNU Prolog (Diaz & Codognet 2001). 

To manage product line models, their integration, to configure the connection with GNU 
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Prolog and use the domain-specific verification criteria proposed in this thesis, we developed 

a tool called VariaMos (Variability Models). The algorithms in which these tools are based 

are presented in the Apendix. 

The verification approach proposed in this thesis was evaluated with a collection of 54 

product line models with sizes up-to 10000 artefacts. The verification approach can be used 

to verify product line models specified in different kinds of languages and PLs specified with 

only one or with several models. 

Our experiments show that the verification approach is correct, useful, and our tool 

implementation is fast and scalable. The conformance checking approach offers the first 

implementation of a FM conformance checker. The domain-specific verification approach 

considers more verification criteria than the works found in the literature, offers an ordered 

way to verify FMs, and improves the computational scalability of PLM verification: (i) 

passing from verification of PLMs with 1000 artefacts at maximum in 41.67 minutes (dead 

features, false optional and wrong cardinalities in FaMa) to verification of PLMs up to 2000 

artefacts (and even more) in 18 seconds in VariaMos for the same three verification criteria; 

and (ii) passing from verification of the not void (consistency) PLMs with 1200 artefacts in 

64 seconds (before elimination of redundant artefacts) and 1900 artefacts in 64 seconds (after 

elimination of redundant artefacts from the model) in Yan et al. (2009), to identification of 

not void PLM with 2000 artefacts in 8 seconds in VariaMos. 

9.2. Future Research Agenda 

A desirable aspect of any research is that in addition to providing solutions to initial issues or 

questions, it should identify new research topics that would allow researchers to further work 

to eventually produce more useful knowledge and progress. This section presents some 

research directions and required additional work on verification of product line models and 

also some particular research directions in conformance checking, domain specific 

verification of PLMs and further validation of the approach presented in this thesis. 

9.2.1 Further Challenges in Verification of Product Line Models 

Two general frameworks (proposed by Finkelstein et al. 1996 and by Nuseibeh et al. 2000) 

describe the process of “inconsistency management”. These processes can be adapted to the 

context of PLM verification and in that way complement the verification approach presented 

in this thesis. These approaches share the premise that the process of managing 

inconsistencies includes activities for detecting, diagnosing and handling them. It is probably 
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that the generic PLM verification approach presented in this thesis (which deals with 

detection of defects and, in the most of cases with identification of the defects’ source) would 

evolve following the “inconsistency management process” proposed by Finkelstein et al. 

(1996) and Nuseibeh et al. (2000). According to them, the verification management process, 

after detection of defects, must be conducted as follows: 

 

A. Diagnosis of defects 

This activity is concerned with the identification of the source, the cause and the impact of 

each defect found in the previous detection stage. Adapting the definitions of “source of an 

inconsistency” given by Nuseibeh et al. (2000) and by Spanoudakis & Zisman (2001) to the 

domain of product lines, the source of a PLM’s defect is the set of elements of the model 

which have been used in the construction of the argument that shows that the models violate a 

verification rule. In the same way, the cause of a PLM’s defect is defined as the conflict(s) in 

the perspectives and/or the goals of the stakeholders which are expressed by the elements of 

the models that give rise to the defect. The impact of a defect is defined as the consequences 

that a defect has for a system, e.g., in terms of performance and evolvability. 

The verification approach proposed in this thesis also deals with identification of defects’ 

source, except for three verification criteria: Non-redundant dependencies, Non-void and 

Non-false PLMs. For all the other verification criteria, our approach identifies the elements 

participating in the model’s construct that violates the corresponding verification rule. The 

three cases where the source of defects is not known are part of the future work.  

The source and the cause of a defect play an important role in the defect management 

process since they can be used to determine what options are available for resolving or 

ameliorating them and the cost and the benefits of the application of each of these options. 

Establishing the impact of a defect category in qualitative or quantitative terms is also 

necessary for deciding with what priority the category of defect has to be handled and for 

evaluating the risks associated with the actions for handling each category. The classification 

of the verification criteria by means of our typology, is a first effort to determine the impact 

of each verification criterion. 

 

B. Handling of defects 

According to van Lamsweerde et al. (1998), Robinson (1997) and Spanoudakis & Zisman 

(2001) “handling [defects] is a central stage in the process of [defect] management”. This 

stage, adapted to the domain of product lines, concerns with the following activities: 
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(i) the identification of the possible actions for dealing with verification criteria, 

(ii) the evaluation of the cost and the benefits that would arise from the application of 

each these actions, 

(iii) the evaluation of the risks that would arise from not resolving the defect and in 

general, the verification criterion to with the defect is associated with, and 

(iv) the selection of one of the actions to execute. 

 

C. Specification and application of a defect management policy 

To manage a defects’ detection and correction process in a coherent and effective way it is 

necessary to have a policy about the defect management that should be applied to a particular 

project (Finkelstein et al. 1996). According to Spanoudakis & Zisman (2001), this policy must 

specify: 

(i) the agent(s) that should be used to verify the product lines models (and for each 

particular PLM in multi-model product lines). 

(ii) the verification criteria that should be checked against the models 

(iii) the circumstances that will trigger the execution of each verification criterion 

(iv) the mechanisms that should be used for diagnosing each defect according to the 

criterion to which it belongs and the circumstances in which the defect happened. 

(v) the mechanisms that should be used for assessing the impact of each verification 

criterion and the circumstances that should trigger this activity 

(vi) the mechanisms that should be used for assessing the cost, benefits and risks 

associated with different verification criteria handling options, and 

(vii) the stakeholders who would have responsibility for handling defects and 

responsible of the models’ quality. 

 

D. A transversal tracking activity. 

This activity is charged to record what happens in each stage and activity of the defect 

management process. Keeping track of what has happened in the process makes the 

understanding of the findings, the decisions and the actions taken by those who might need to 

use or refer to the PLMs in subsequent stages of the development life-cycle of the PL easier. 

9.2.2 Future Work in Conformance Checking 

Future works in conformance checking of PLMs include the following items: 
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(i) Implement an incremental checker with rule scopes such as the one proposed by 

Egyed (2006). It is expected that this improvement will reduce the execution time 

of some of the conformance rules.  

(ii) Devise the classification of conformance criteria according to their severity and 

complexity.  

(iii) Another important research direction is about man-machine interface and usability 

of the results obtained from verification. This future work proposition is about 

how to best present feedback to users and how improve the ergonomic of the 

implementations developed in this thesis when it comes to dealing with dozens of 

models that contain thousands of artefacts and dependencies. The efficiency of the 

verification approach depends highly on how to navigate in models and 

verification results.  

(iv) Another future work consists of investigating how to automatically generate 

specific conformance criteria and their associated implementation (conformance 

rule, i.e., criteria that cannot be generated from the generic metamodel) and if 

possible optimize them automatically. 

9.2.3 Future work in Domain-specific Verification 

Future works in domain-specific verification of PLMs include the following items.  

(i) Extend the set of available verification criteria (e.g., regarding the evolution and 

the temporal properties of PLMs). To guarantee defect-free product line models, 

the collection of considered defects must be as exhaustive as possible.  

(ii) Classify the verification criteria according to their severity, complexity and 

implementability. With such a classification, it should be possible to guide the 

verification stage, propose the corresponding fixing actions according to each 

category of defect and improve the execution time of each verification operation. 

(iii) Exploration of model-checking techniques, further to the ones developed by 

Zhang et al. (2004) and Lauenroth et al. (2010), which are in an initial stage. 

9.2.4 Future Work in Evaluation 

Even if our experiments showed very promising results to usability, recall and scalability of 

VariaMos, some important assumptions must be kept in mind and several questions still 

remain open.  
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The most important assumption is that using our approach, engineers could verify product 

line models specified in other languages. Genrality is not proven per se: we can only 

guarantee that the proposed approach cover several formalisms (FODA, DOPLER, extended 

feature models). In so far as generality is concerned, we cannot guarantee that users won’t 

come up with their own verification criteria (and require to use other CP solvers than GNU 

Prolog) Some of the future works that would improve the validation of our approach are:  

 Address how to best visualize the defects found with our product line verification 

approach. Much of this problem has to do with human-computer interaction and 

further studies in this topic would be part of the future work. 

 Another future work consists in adressing the downstream economic benefits of the 

verification approach presented in this thesis. For example, one could raise the 

question how does fast detection of defects really benefit software engineering at 

large? How much does it cost to fix a defect early on as compared to later on? These 

complex issues have yet to be investigated and measured from a socio-economical 

perspective. 

 Even if the performance and scalability of our experiment with Dopler models 

indicate scalability and good performance of our verification approach, 

complementary tests with larger real size models are necessary. 

 How do the users explore models to verify them? It would be interesting to log 

verification activities to learn which criteria are verified first, if there is a systematic 

order, and even if verification is systematically complete. Such logs would also be 

useful to build empirically a process model of PLM verification. 
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Appendix A: Publications 

 

This appendix contains the titles and venues of the publications the PhD research has 

produced so far: 

 

Salinesi C, Mazo R. Defects in Product Line Models and how to Identify them. "Software 
Product Lines - The Automated Analysis", edited by Abdelrahman Elfaki, InTech editions, 
ISBN 979-953-307-700-9. To appear in January 2012. 

Mazo R., Salinesi C, Djebbi O., Diaz D., Lora-Michiels A. Constraints: the Heard of Domain 
and Application Engineering in the Product Lines Engineering Strategy. International Journal 
of Information System Modeling and Design IJISMD (accepted). Sweden, July 2011.  

Mazo R., Salinesi C., Diaz D. Abstract Constraints: A General Framework for Solver-
Independent Reasoning on Product Line Models. Accepted on INSIGHT - Journal of 
International Council on Systems Engineering (INCOSE), November 2011. 

Mazo R., Salinesi C., Diaz D., Lora-Michiels A. Transforming Attribute and Clone-Enabled 
Feature Models Into Constraint Programs Over Finite Domains. 6th International Conference 
on Evaluation of Novel Approaches to Software Engineering (ENASE), Springer Press, 
Beijing–China, 8-11 June 2011. 

Mazo R., Lopez-Herrejon R., Salinesi C., Diaz D., Egyed A. Conformance Checking with 
Constraint Logic Programming: The Case of Feature Models. In 35th Annual International 
Computer Software and Applications Conference (COMPSAC), IEEE Press, Munich-
Germany, 18-22 July 2011. Best Paper Award. 

Salinesi C., Mazo R., Djebbi O., Diaz D., Lora-Michiels A. Constraints: the Core of Product 
Line Engineering. Fifth IEEE International Conference on Research Challenges in 
Information Science (RCIS), IEEE Press, Guadeloupe-French West Indies, France, May 19-
21 2011. Best Paper Award. 

Mazo R., Grünbacher P., Heider W., Rabiser R., Salinesi C., Diaz D. Using Constraint 
Programming to Verify DOPLER Variability Models. 5th International Workshop on 
Variability Modelling of Software-intensive Systems (VaMos'11), Namur-Belgium, January 
27th-29th, 2011. 

Salinesi C., Mazo R., Diaz D.,  Djebbi O. Solving Integer Constraint in Reuse Based 
Requirements Engineering. 18th IEEE International Conference on Requirements 
Engineering (RE'10). Sydney - Australia. September-October 2010. 

Salinesi C., Mazo R., Diaz D. Criteria for the verification of feature models, In 28th 
INFORSID Conference, Marseille - France, May 2010. 



194 

 

Lora-Michiels A., Salinesi C., Mazo R. A Method based on Association Rules to Construct 
Product Line Model. 4th International Workshop on Variability Modelling of Software-
intensive Systems "Celebrating 20 Years of Feature Models". Linz-Austria, Janvier 2010. 

Lora-Michiels A., Salinesi C., Mazo R. The Baxter Return of Experience on the Use of 
Association Rules to Construct its Product Line Model. Journée SPL, Lignes de produits 
logiciels et usines logicielles. Nantes-France. Octobre 2009. 

Salinesi C., Rolland C., Mazo R. VMWare: Tool Support for Automatic Verification of 
Structural and Semantic Correctness in Product Line Models, International Workshop on 
Variability Modelling of Software-intensive Systems (VaMoS), Sevilla-Spain, pp. 173 - 176, 
January 2009. 

Mazo R. Aperçu d’une Méthode Automatisée basée sur des Contraintes Génériques pour la 
Vérification de Modèles Multi-vues de Lignes de Produits/ Overview of an Automated 
Method based on Generic Constraints for Verifying Multi-View Product Line Models. Poster 
in Forum Academie-industrie AFIS, Bordeux 2,3 Décembre 2010 

Salinesi C, Diaz D., Mazo R., Djebbi O. Spécification d’Exigences dans le Contexte de 
Lignes de Produits. Journée Action IDM - INFORSID “Exigence, Traçabilité et Co-
conception dans les processus de développement”. Paris-France. Octobre 2009. 

Salinesi C., Diaz D., Djebbi O., Mazo R. Exploiting the Versatility of Constraint 
Programming over Finite Domains to Integrate Product Line Models. Poster in 17th IEEE 
International Conference on Requirements Engineering (RE'09). Atlanta-USA. Septembre 
2009. 

Salinesi C., Rolland C., Diaz D., Mazo R. Looking for Product Line Feature Models Defects: 
Towards a Systematic Classification of Verification Criteria. Poster in 17th IEEE 
International Requirements Engineering Conference (RE'09). Atlanta-USA, September 2009. 

Mazo R. Processus pour la Vérification et Validation de Modèles de Lignes de Produits. 
Porter in 27^th Francophone Conference on Information Systems and Data Bases 
INFORSID, Toulouse-France. May 2009. 
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Appendix B: Implementation Details 

 

Several tools were developed in this thesis in order to validate our approach and its associated 

hypothesis. The most of these tools were presented along in this thesis. In the next section we 

provide the algorithms or relevant code source of each one of these tools. The execution files 

of each tool are available to download at https://sites.google.com/site/raulmazo/ 

1. Representation of other variability languages as 

constraint programs 

The semantics of a product line model can be specified as a constraint program (Salinesi et al. 

2010b, Mazo et al. 2011a, 2011e) by means of:  (i) a set of variables X={x1,...,xn}; (ii) 

for each variable xi, a finite set Di of possible values (its domain); and (iii) a set of constraints 

restricting the values that they can simultaneously assume. A variable in a PLM has a domain 

of values, and the result of the configuration process is to provide it a value. This 

representation of the semantics of a PLM is very similar to the representation of a Constraint 

Satisfaction Problem (CSP), which is defined as a triple (X, D, C), where X is a set of 

variables, D is a set of domains, and C a set of constraints restricting the values that the 

variables can simultaneously take (cf. Section 1). Indeed, we have shown in Section 4-A how 

to represent the syntax and the semantics of feature models as constraint logic programs and 

constraint programs, respectively. However, not only feature models can be represented by 

means of constraints. Our experience and related works (Kang et al. 2002, Riebisch et al. 

2002, Mannion 2002, Von der Maßen & Lichter 2002, Czarnecki et al. 2005, Benavides et al. 

2005c, Pohl et al. 2005, Ziadi 2004, Korherr & List 2007, White et al. 2009, Boucher et al. 

2010, Dhungana et al. 2010) show that PLMs can also represented in other notations with the 

aim of verify and analyse them. Thus, we proposed in this thesis a collection of representation 

patterns of the semantics of PLMs into constraint programs.  Tables 10.1 to 10.5 compile the 

constructs, and its corresponding CP representations, of the most popular languages used to 

specify PLMs. 

 

 

Table 10.1. Compilation of the feature-based languages’ constructs and the corresponding 
representation as CPs.  
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Constructor and 

domains vs. Languages 

FODA-like models (Kang et 

al., 1990, 2002) 
Feature models with 

cardinalities (Riebisch et al. 
2002, Czarnecki et al. 2005) 
and attributes (Streitferdt et al. 
2003, Benavides et al. 2005c, 
White et al. 2009) 

Root. The root element 
must be selected in all the 
configurations. 

If {Root} ∈ {true, false} then 
Root = true  
If {Root} ∈ {0, 1} then    
Root = 1 

If {Root} ∈ {true, false} then 
Root = true  
If {Root} ∈ ℤ then Root ≥ 1 

Optional. If the father 
element is selected, the 
child element can but 
needs not be selected. 
Otherwise, if the child 
element is selected, the 
father element must as 
well be selected. 

If {Father, Child} ∈ {true, 
false} then Child ⇒ Father 
If {Father, Child} ∈ {0, 1} 
then Father ≥ Child 

If {Father, Child} ∈ {true, 
false} then Child ⇒ Father 
If {Father, Child} ∈ {0, 1} then 
Father ≥ Child 
If {Father, Child} ∈ ℤ then 
Child  ≥ 1 ⇒ Father  ≥ 1 

Mandatory. If the father 
element is selected, the 
child element must be 
selected as well and vice 
versa. 

If {Father, Child} ∈ {true, 
false} then Father ⇔ Child  
If {Father, Child} ∈ {0, 1} 
then Father = Child 

If {Father, Child} ∈ {true, 
false} then Father ⇔ Child  
If {Father, Child} ∈ {0, 1} then 
Father = Child 
If {Father, Child} ∈ ℤ then 
Child  ≥ 1 ⇔ Father  ≥ 1 

Requires (includes). If 
the requiring element is 
selected, the required 
element(s) has(have) to be 
selected as well, but not 
vice-versa. 

If {Requiring, Required} ∈ 
{true, false, 0, 1} then 
Requiring ⇒ Required 

If {Requiring, Required} ∈ 
{true, false, 0, 1} then 
Requiring ⇒ Required 
If  {Requiring, Required} ∈ ℤ 
then Requiring ≥ 1 ⇒ Required 
≥ 1 

Exclusion. Indicates that 
both excluded elements 
cannot be selected in one 
product configuration. 

If {Excluding, Excluded} ∈ 
{true, false} then Excluding ⊕ Excluded 
If {Father, Child} ∈ {0, 1} 
then Excluding + Excluded ≤ 
1 

If {Excluding, Excluded} ∈ 
{true, false} then Excluding ⊕ 
Excluded 
If {Father, Child} ∈ {0, 1} then 
Excluding + Excluded ≤ 1 
If {Father, Child} ∈ ℤ then 
Excluding * Excluded = 0 

Alternative/xor-
decomposition. A set of 
child elements are defined 
as alternative if only one 
element can be selected 
when its parent element is 
part of the product. 

If {Father, Child1, …, 
ChildN} ∈ {true, false} then: 
(Child1⇔(¬Child2 ⋀...⋀ 
¬ChildN ⋀ Father) ⋀ Child2 ⇔ (¬Child1 ⋀...⋀ ¬ChildN ⋀ 
Father) ⋀ ChildN ⇔ (¬Child1 ⋀...⋀ ¬ChildN-1 ⋀ Father)) 

 

Or-Relation. A set of 
child elements are defined 
as an or-relation if one or 
more of them can be 
included in the products in 

If {Father, Child1, …, 
ChildN} ∈ {true, false} then: 
Father ⇔ Child1 ... 
ChildN 
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which its parent element 
appears. 
Group cardinality. 
Cardinality determines 
how many variants (with 
the same father) may be 
chosen, at least M and at 
most N of the group. 
Besides, if one of the 
children is selected, the 
father element must be 
selected as well. 

 If {Father, Child1, …, ChildN} ∈ {0, 1} then 
Father ≥ Child1 ⋀ …⋀ Father ≥ 
ChildN ⋀ 
M*Father ≤ Child1+...+ChildN 
≤ N*Father 

A feature cardinality is 
represented as a sequence 
of intervals [min..max] 
determining the number of 
instances of a particular 
feature that can be part of 
a product. 

 If {Father, Clone1, …, CloneN} ∈ { 0, 1} then: 
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒ Father ⋀  
Father ⇒ (M ≤ Clone1 + … + 
CloneN ≤ N) 

Attribute. An attribute is 
a variable associated to a 
reusable element. 

 value ∈ Domain ⋀ Attribute = 
value ⋀ 
ReusableElement⇔Attribute >0 

 

Table 10.2. Compilation of the OVM and TVL’s constructs and the corresponding representation 
as CPs.  

Constructor and 

domains vs. Languages 

Orthogonal Variability 

Models (OVM) (Pohl et al. 
2005) 

Textual Variability Language 

(TVL) (Boucher et al. 2010), 
(Classen et al. 2011) 

Root. The root element 
must be selected in all the 
configurations. 

 root Element 

Dependency/and-

decomposition: operator 

allOf. The selection of the 
children depends of the 
selection of the father 
element and vice versa 

 Father ⇔ (Child1 ⋀…⋀ 
ChildN) 

Optional. If the father 
element is selected, the 
child element can but 
needs not be selected. 
Otherwise, if the child 
element is selected, the 
father element must as 
well be selected. 

If {Element1, Element2} ∈ 
{true, false} then Element2 ⇒ 
Element1 
if {Element1, Element2} ∈ 
{0, 1} then Element1 ≥ 
Element2 
If {Element1, Element2} ∈ ℤ 
then Element2 ≥ 1 ⇒ 
Element1 ≥ 1 

Child ⇒ Father 

Mandatory. If the father 
element is selected, the 
child element must be 

If {Element1, Element2} ∈ 
{true, false} then Element1 ⇔ Element2 

Father ⇔ Child 
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selected as well and vice 
versa. 

If {Element1t, Element2} ∈ 
{0, 1} then Element1 = 
Element2 
if {Element1, Element2} ∈ ℤ 
then Element2  ≥ 1 ⇔ 
Element1 ≥ 1 

Requires (includes). If 
the requiring element is 
selected, the required 
element(s) has(have) to be 
selected as well, but not 
vice-versa. 

If {Requiring, Required} ∈ 
{true, false, 0, 1} then 
Requiring ⇒ Required 
If  {Requiring, Required} ∈ ℤ 
then Requiring ≥ 1 ⇒ 
Required ≥ 1 

If {Requiring, Required} ∈ 
{true, false, 0, 1} then 
Requiring ⇒ Required 

Exclusion. Indicates that 
both excluded elements 
cannot be selected in one 
product configuration. 

If {Excluding, Excluded} ∈ 
{true, false} then Excluding ⊕ Excluded 
If {Father, Child} ∈ {0, 1} 
then Excluding+Excluded ≤ 1 
If {Father, Child} ∈ ℤ then 
Excluding * Excluded = 0 

 

Alternative/xor-

decomposition. A set of 
child elements are defined 
as alternative if only one 
element can be selected 
when its parent element is 
part of the product. 

 If {Father, Child1, …, ChildN} ∈ {0, 1} then: 
(Child1⇔(¬Child2 ⋀...⋀ 
¬ChildN ⋀ Father) ⋀ Child2 ⇔ 
(¬Child1 ⋀...⋀ ¬ChildN ⋀ 
Father) ⋀ ChildN ⇔ (¬Child1 ⋀...⋀ ¬ChildN-1 ⋀ Father)) 

Or-Relation. A set of 
child elements are defined 
as an or-relation if one or 
more of them can be 
included in the products in 
which its parent element 
appears. 

 If {Father, Child1, …, ChildN} ∈ {0, 1} then: 
Father ⇔ Child1 ... ChildN 

Group cardinality. 
Cardinality determines 
how many variants (with 
the same father) may be 
chosen, at least M and at 
most N of the group. 
Besides, if one of the 
children is selected, the 
father element must be 
selected as well. 

If {VariationPoint, Variant1, 
…, VariantN} ∈ {0, 1} then 
VariationPoint ≥ Variant1 ⋀ 
…⋀ VariationPoint ≥ 
VariantN ⋀ 
M*VariationPoint ≤ 
Variant1+...+ VariantN ≤ 
N*VariationPoint 

If {Father, Child1, …, ChildN} ∈ {0, 1} then 
Father ≥ Child1 ⋀ …⋀ Father ≥ 
ChildN ⋀ 
M*Father ≤ Child1+...+ChildN 
≤ N*Father 

Individual cardinality is 
represented as a sequence 
of intervals [min..max] 
determining the number of 
instances of a particular 
feature that can be part of 

If {Father, Clone1, …, 
CloneN} ∈ { 0, 1} then: 
Clone1 ⇒ Father ⋀ ...⋀ 
CloneN ⇒ Father ⋀  
Father ⇒ (M ≤ Clone1 + … + 
CloneN ≤ N) 

If {Father, Clone1, …, CloneN} ∈ { 0, 1} then: 
Clone1 ⇒ Father ⋀ ...⋀ CloneN ⇒ Father ⋀  
Father ⇒ (M ≤ Clone1 + … + 
CloneN ≤ N) 
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a product. 
Attribute. An attribute is 
a variable associated to a 
reusable element. 

 Attribute ∈ { integer, real, 
boolean, enumeration} ⋀ 
Attribute = value ⋀ 
ReusableElement ⇔Attribute>0 

 

Table 10.3. Compilation of the Class-based and Use case-based variability languages’ 
constructs and the corresponding representation as CPs.  

Constructor and 

domains vs. Languages 

Class-based PLMs (Ziadi 
2004; Korherr & List 2007) 

Use case-based PLMs (Van der 
Maßen & Lichter 2002) 

Optional. If the father 
element is selected, the 
child element can but 
needs not be selected. 
Otherwise, if the child 
element is selected, the 
father element must as 
well be selected. 

If {Element1, Element2} ∈ 
{true, false} then Element2 ⇒ 
Element1 
If {Element1, Element2} ∈ 
{0, 1} then Element1 ≥ 
Element2 

If {Element1, Element2} ∈ 
{true, false} then Element2 ⇒ 
Element1 
If {Element1, Element2} ∈ {0, 
1} then Element1 ≥ Element2 

Mandatory. If the father 
element is selected, the 
child element must be 
selected as well and vice 
versa. 

If {Element1, Element2} ∈ 
{true, false} then Element1 ⇔ Element2 
If {Element1t, Element2} ∈ 
{0, 1} then Element1 = 
Element2 

If {Element1, Element2} ∈ 
{true, false} then Element1 ⇔ 
Element2 
If {Element1t, Element2} ∈ {0, 
1} then Element1 = Element2 

Requires (includes). If 
the requiring element is 
selected, the required 
element(s) has(have) to be 
selected as well, but not 
vice-versa. 

If {Requiring, Required} ∈ 
{true, false, 0, 1} then 
Requiring ⇒ Required 
If  {Requiring, Required} ∈ ℤ 
then Requiring ≥ 1 ⇒ 
Required ≥ 1 

If {Requiring, Required} ∈ 
{true, false, 0, 1} then 
Requiring ⇒ Required 
If  {Requiring, Required} ∈ ℤ 
then Requiring ≥ 1 ⇒ Required 
≥ 1 

Group cardinality. 
Cardinality determines 
how many variants (with 
the same father) may be 
chosen, at least M and at 
most N of the group. 
Besides, if one of the 
children is selected, the 
father element must be 
selected as well. 

 If {Father, Child1, …, ChildN} ∈ {0, 1} then 
Father ≥ Child1 ⋀ …⋀ Father ≥ 
ChildN ⋀ 
M*Father ≤ Child1+...+ChildN 
≤ N*Father 
 

Individual cardinality is 
represented as a sequence 
of intervals [M..N] 
determining the number of 
instances of a particular 
reusable element that can 
be part of a product.  

If {FatherClass, Clone1, …, 
CloneN} ∈ { 0, 1} then: 
Clone1 ⇒ FatherClass ⋀ ...⋀ 
CloneN ⇒ FatherClass ⋀  
FatherClass ⇒ (M ≤ Clone1 + 
… + CloneN ≤ N) 
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Table 10.4. Compilation of the Dopler and CEA variability languages’ constructs and the 
corresponding representation as CPs.  

Constructor and 

domains vs. Languages 

Dopler variability language 
(Dhungana et al. 2010) 

CEA - variability language 

Root/Visibility 

Condition. The root 
decision must be solved in 
all the configurations. 

Decision = true ∨ Decision = 
false 

 

Mandatory. If the father 
element is selected, the 
child element must be 
selected as well and vice 
versa. 

 If {Element1, Element2} ∈ 
{true, false} then Element1 ⇔ 
Element2 
If {Element1, Element2} ∈ {0, 
1} then Element1 = Element2 

Requires/Decision 

Effects/ Inclusion 
Conditions. If the 
requiring element is 
selected, the required 
element(s) has(have) to be 
selected as well, but not 
vice-versa. 

Constraint1 ⇒ Constraint2; 
Asset ⇒ Decision 

 

Validity condition. RDL 

equivalent: "sauf". The 
Validity Condition 
constrains the range of 
possible values for a 
particular reusable element 

 If {Element1, Element2} ∈ 
{true, false, 0, 1} then Element1 ⇒ Element2 
If  {Element1, Element2} ∈ ℤ 
then Element1 ≥ 1 ⇒ Element2 
≥ 1 

Or. Almost one of the 
reusable elements related 
in the OR dependency 
must be selected in a 
particular configuration. 

 If {Element1, Element2, …, 
ElementN} ∈ {true, false} then: 
Element1 ∨...∨ ElementN = true 
If {Element1, Element2, …, 
ElementN} ∈ {1, 0} then: 
Element1 + ...+ElementN ≥ 1 

Group cardinality/ 

Enumeration Decision 
Type/. Cardinality 
determines how many 
Decision options of the 
same Decision may be 
chosen in a configuration, 
at least M and at most N of 
the group. 

Decision ∈ ValidityCondition ⋀ 
Decision ≥ DecisionOption1 ⋀ …⋀ Decision ≥ 
DecisionOptionN ⋀ 
M*Decision ≤ 
DecisionOption1+...+ 
DecisionOptionN ≤ 
N*Decision 

 

 

Table 10.5. Compilation of the RDL and Latice variability languages’ constructs and the 
corresponding representation as CPs.  

Constructor and 

domains vs. Languages 

Renaul Documentary 

Language (RDL) 
Latice (Mannion 2002) 

Root. The root element 
must be selected in all the 

root Projet_Vehicule  
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configurations. 
Dependency. The 
selection of the children 
depends of the selection of 
the father element and vice 
versa 

 Father ⋀ (Child1 ⋀…⋀ ChildN) 

Optional. If the use case is 
selected, the child element 
can but needs not be 
selected. Otherwise, if the 
child element is selected, 
the use case must as well 
be selected. 

if {Use_Case, Element} ∈ 
{true, false} then Element ⇒ 
Use_Case 
if {Use_Case, Element} ∈ {0, 
1} then Use_Case ≥ Element 

 

Mandatory. If the father 
element is selected, the 
child element must be 
selected as well and vice 
versa. 

if {Use_Case, Element} ∈ 
{true, false} then Use_Case ⇔ Element 
if {Use_Case, Element} ∈ {0, 
1} then Use_Case = Element 

Father ⇔ Child 

Requires (includes). If 
the requiring element is 
selected, the required 
element(s) has(have) to be 
selected as well, but not 
vice versa. 

if {Requiring, Required} ∈ 
{true, false, 0, 1} then 
Requiring ⇒ Required 
If  {Requiring, Required} ∈ ℤ 
then Requiring ≥ 1 ⇒ 
Required ≥ 1 

 

Exclusion. Indicates that 
both excluded elements 
cannot be selected in one 
product configuration. 

if {Excluding, Excluded} ∈ 
{true, false} then Excluding ⇒ ¬Excluded 
if {Excluding, Excluding} ∈ 
{0, 1} then Excluding - 
Excluded ≥ 1 

Excluding ⊕ Excluded 

Alternative/xor-
decomposition. A set of 
child elements are defined 
as alternative if only one 
element can be selected 
when its parent element is 
part of the product. 

if {Use_Case, Element1, …, 
ElementN} ∈ {true, false} 
then: 
(Element1⇔(¬Element2 ⋀...⋀ ¬ElementN ⋀ Father) ⋀ 
Element2 ⇔ (¬Element1 ⋀...⋀ ¬ElementN ⋀ 
Use_Case) ⋀ ElementN ⇔ 
(¬Element1 ⋀...⋀ 
¬ElementN-1 ⋀ Use_Case)) 
if {Use_Case, Element1, …, 
ElementN} ∈ℤ then: 
Use_Case - (Element1 + ...+ 
ElementN) = 0 

 

Or-Relation. A set of 
child elements are defined 
as an or-relation if one or 
more of them can be 
included in the products in 

if {Father, Child1, …, 
ChildN} ∈ {true, false} then: 
Father ⇔ Child1 ∨...∨ ChildN 
if {Use_Case, Element1, …, 
ElementN} ∈ℤ then: 

Father ⇔ Child1 ∨...∨ ChildN 
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which its parent element 
appears. 

Use_Case - (Element1 + ...+ 
ElementN) ≥ 0 

Validity condition. RDL 
equivalent: "sauf". It 
constrains the range of 
possible values for a 
particular use case. 

if {Relation1, Use_Case} ∈ 
{true, false} then Relation1 ⇒ 
Use_Case 
if {Relation1, Use_Case} ∈ 
{0, 1} then Use_Case - 
Relation1 ≥ 0 

 

Conjunction of 
subgraphs. If Gi and Gj 
are the logical expressions 
for two different 
subgraphs of a lattice, the 
PLM is con conjunction of 
Gi and Gj 

 Gi ⋀ Gj 

2. Parser to Transform the Semantics of Feature Models 

into Constraint Programs  

The next algorithm uses the SPLOT API to transform the semantics FMs represented in XML 

files into CPs. This algorithm navigates the XML file and creates, for each element of the 

feature model, the corresponding representation on constraints. For each FM, two important 

sub-sets must be transformed: the feature tree and the set of constraints. The algorithm starts 

at the root feature in depth first search in order to transform the feature tree. Next, the 

solitaire features (optional and mandatory) and its corresponding father are transformed into 

constraints according to the rules proposed in Table 10.1. Then, the features grouped in a 

cardinality and the corresponding father are transformed into constraints. Once the current 

transformation is made, the algorithm uses the current feature to recursively call the function 

to traverse the feature tree in depth first search, until the end of the tree. Then, the next 

algorithm transforms the set of constraints, represented as Conjunctive Normal Form (CNF) 

formulas, into constraint programs. There are two kind of constrains:  requires and excludes. 

The algorithm transforms each CNF constraint into a CP consisting on a sum of variables 

being greater than 0 (e.g., Feature1 +...+ FeatureN > 0). To finish, features 

without negation are transformed into CP variables and features with a negation (e.g., 

¬Feature) are transformed into the features’ complement, it is: 1-Feature.  
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Algorithm 10.1 Parser to Transform the Semantics of Feature Models into Constraint 
Programs using the SPLOT API 

 

TransformationOfFMsSemanticIntoCPs(Feature Model FM){ 
node = FM.GetRoot(); 
traverseDFS(node); 
traverseConstraints(FM); 

} 
 
traverseDFS(FeatureTreeNode node){ 

if ( node instanceof RootNode ) { 
transform node into a root constraint; 

} 
else if (node instanceof SolitaireFeature) { 

  // Optional Feature 
  if(node.isOptional()){ 

transform optional dependency into CP 
} 
// Mandatory Feature 
else{ 

transform mandatory dependency into CP 
} 

 } 
 // Feature Group 
 else if ( node instanceof FeatureGroup ) { 
  transform group cardinality dependency into CP 
 } 
 //we call the method traverseDFS for each children in a recursive way 
 for( int i = 0 ; i < node.getChildCount() ; i++ ) { 
  traverseDFS(node.getChildAt(i)); 
 } 
} 
 
traverseConstraints(FeatureModel FM) { 
 for(PropositionalFormula formula : FM.getConstraints() ) { 
 Iterator iter = formula.getVariables().iterator(); 
  while(iter.hasNext()){ 
   artefact = iter.next();    
   if(artefact.isPositive()){      
    constraint += artefact.getName()+" + "; 
   } 
   else{ 
    constraint += "(1-"+artefact.getName()+") + "; 
   }    
  } 

} 
} 
 
       

3. Parser to Transform the Semantics of Feature Models 

into Constraint Programs using ATL Rules 

The next ATL (Atlas Transformation Language) rules allows transforming features into CP 

variables, group cardinality boundaries into CP constants, and neutral, optional, mandatory, 

requires and excludes dependencies into constraints. For instance, the Feature2Variable 
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rule takes each source feature and transforms it into a variable. In the modus operandi of this 

rule, the feature’s name is affected to the variable’s name and the haveDomain variables’ 

relationship is the collection of the haveCardinality features’ relationship.  If the feature 

to be transformed has a cardinality, then the subordinated rule (lazy rule) 

Cardinality2Domain is called to represent the corresponding cardinality as a domain of 

the feature. 

 

Source code 10.1 Parser to Transform the Semantics of Feature Models into Constraint 
Programs using ATL Rules 

 

module Features2CP; 
 
create OUT: CPs from IN: Features; 
 
--function to get the source of a Neutral dependency 
helper context Features!Neutral def: getSourceN(): String =
 self.source.name; 
 
--function to get the target of a Neutral dependency 
helper context Features!Neutral def: getTargetN(): String =
 self.target.name; 
 
--function to get the source of an Optional dependency 
helper context Features!Optional def: getSourceO(): String = 
self.source.name; 
 
--function to get the target of an Optional dependency 
helper context Features!Optional def: getTargetO(): String = 
self.target.name; 
 
--function to get the source of a Mandatory dependency 
helper context Features!Mandatory def: getSourceM(): String = 
self.source.name; 
 
--function to get the target of a Mandatory dependency 
helper context Features!Mandatory def: getTargetM(): String = 
self.target.name; 
 
--function to get the source of a Requires dependency 
helper context Features!Require def: getSourceR(): String =
 self.source.name; 
 
--function to get the target of a Requires dependency 
helper context Features!Require def: getTargetR(): String =
 self.target.name; 
 
--function to get the source of an Excludes dependency 
helper context Features!Exclude def: getSourceE(): String =
 self.source.name; 
 
--function to get the target of an Excludes dependency 
helper context Features!Exclude def: getTargetE(): String =
 self.target.name; 
 



205 

 

--function to concatenate with the symbol + a sequence of strings 
helper def: concatenateStrings(strings: Sequence(String), before: String, 
after: String): String = strings->iterate(s; acc: String = '' | acc + 
before + s + after); 
 
--function to get the first element of a sequence of strings 
helper def: firstOfSequence(strings: Sequence(String)): String = strings-
>first(); 
  
 
rule Feature2Variable { 
 from s : Features!Feature 
  
 to t1 : CPs!Variable ( 
   name <- s.name,  
   haveDomain <- s.haveCardinality-> collect(e | 
thisModule.Cardinality2Domain(e)) 
  ) 
 } 
 
lazy rule Cardinality2Domain { 
 from s : Features!Cardinality 
  
 to   cardi : CPs!Domain ( 
   min <- s.min, 
   max <- s.max 
  ) 
 } 
 
rule GroupCardinality2Constraint{ 
 from s: Features!GroupCardinality 
  
 to t1: CPs!Constraint ( 
   constraint <- 
thisModule.firstOfSequence(s.haveRelationship->collect(e | e.getSourceN())) 
+ ' >= 1 <==> ' + thisModule.concatenateStrings(s.haveRelationship-
>collect(e | e.getTargetN()), '', '+') + ' >= ' + s.min 
   ), 
  t2: CPs!Constraint ( 
   constraint <- 
thisModule.firstOfSequence(s.haveRelationship->collect(e | e.getSourceN())) 
+ ' >= 1 <==> ' + thisModule.concatenateStrings(s.haveRelationship-
>collect(e | e.getTargetN()), '', '+') + ' <= ' + s.max 
   ) 
 } 
 

rule Neutral2Constraint{ 
 from s: Features!Neutral 
  
 to t: CPs!Constraint ( 
  constraint <- s.getSourceN() + ' >= ' + s.getTargetN() 
  ) 
 } 
 
rule Optional2Constraint{ 
 from s: Features!Optional 
  
 to t: CPs!Constraint ( 
  constraint <- s.getSourceO() + ' >= 1 <==> ' + s.getTargetO() + 
' >= 0' 
  ) 
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 } 
 
rule Mandatory2Constraint{ 
 from s: Features!Mandatory 
  
 to t: CPs!Constraint ( 
  constraint <- s.getSourceM() + ' >= 1 <==> ' + s.getTargetM() + 
' >= 1' 
  ) 
 } 
 
rule Require2Constraint{ 
 from s: Features!Require 
  
 to t: CPs!Constraint ( 
  constraint <- s.getSourceR() + ' >= 1 ==> ' + s.getTargetR() + 
' >= 1' 
  ) 
 } 
 
rule Exclude2Constraint{ 
 from s: Features!Exclude 
  
 to t: CPs!Constraint ( 
  constraint <- s.getSourceE() + ' != 0 <==> ' + s.getTargetE() + 
' == 0' 
  ) 
 } 

4. Parser to Transform the Semantics of Dopler Models 

into Constraint Programs  

The conversion algorithm has two main phases presented in the following pseudo-code. First, 

the algorithm navigates through the decision model and then through the asset model. In both 

cases, we gather the relevant information of decisions and assets and translate them into 

constraints in CP. Relevant information means information affecting the variability as 

described above; for example, a description attribute does not affect the variability of the 

product line model. Our algorithm for converting Dopler variability models is implemented 

as an Eclipse plug-in that uses the API of the DOPLER tool suite. In the next algorithm, the 

variable DM represents the Dopler model to be transformed and the variable CP accumulates 

the results of each transformation. CP is the resulting constraint program representing DM. 

 

Algorithm 10.2 Parser to Transform the Semantics of Dopler Models into Constraint 
Programs using the API of the DOPLER tool suite 

CP = ""; 

for each decision D in DM{ 

 if D.type == Boolean { 

   CP += "D ∈ {0, 1}"; 
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   visc = D.getVisibilityCondition(); 

   if visc == false { CP += "D = 0";} 

   else if visc == true {CP += "D = 1";} 

   else { CP += "D ⇒ visc";} 

   df = D.getDecisionEffect(); 

   CP += "D ⇒ df"; 

 } 

 else if D.type == Enumeration { 

   CP += "D ∈ {0, 1}"; 
   m, n = D.getCardinality(); 

   DOpt1, DOpt2,...,DOpti=D.getDecOptions(); 

   CP += "DOpt1, DOpt2,...,DOpti ∈ {0, 1}"; 
   CP += "D ⇔ m≤DOpt1+DOpt2+...+DOpti≤n"; 
   visc = D.getVisibilityCondition(); 

   if visc == false { CP += "D = 0";} 

   else if visc == true {CP += "D = 1";} 

   else { CP += "D ⇒ visc";} 

   df = D.getDecisionEffect(); 

   CP += "D ⇒ df"; 

 } 

 else if D.type == Number { 

   val = representValidityConditionAsCP(); 

   CP += "D ∈ val"; 
   visc = D.getVisibilityCondition(); 

   if visc == false { CP += "D = 0";} 

   else if visc == true {CP += "D = 1";} 

   else { CP += "D ⇒ visc";} 

   df = D.getDecisionEffect(); 

   CP += "D ⇒ df"; 

 } 

 else if D.type == String { 

   valc = representValidityConditionAsCP(); 

   CP += "D ∈ valc"; 
   visc = D.getVisibilityCondition(); 

   if visc == false { CP += "D = 0";} 

   else if visc == true {CP += "D = 1";} 

   else { CP += "D ⇒ visc";} 

   df = D.getDecisionEffect(); 

   CP += "D ⇒ df"; 

 } 

} 

for each asset A in DM{ 

 CP += "A ∈ {0, 1}"; 
 ic = A.getInclusionCondition(); 
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 if ic is not null {  

   CP += "A ⇒ ic"; 

 } 

 ad = A.getDependency(); 

 if A.type == requires { 

   CP += "A ⇒ ad";  

 } 

 else if A.type == excludes { 

   CP += "A * ad = 0";  

 } 

} 

Write ("The constraint program representation of the DOPLER model DM is: 

" + CP); 

5. Parser to Transform the Syntax of Feature Models 

into Constraint Programs  

The next algorithm uses the Mendonça’s API for navigation over SPLOT’s XML-based 

feature models. The algorithm to transform the syntax of FMs into constraint logic programs 

navigates the XML file and creates, for each element of the feature model, the corresponding 

representation on facts. For each FM, two important sub-sets must be transformed: the feature 

tree and the set of constraints. We start at the root feature in depth first search in order to 

transform the feature tree. Next, the solitaire features (optional and mandatory) and its 

corresponding father are transformed into facts as presented in Chapter 3. Then, the features 

grouped in a group cardinality and the corresponding father are transformed into facts. Once 

the current transformation is made, the algorithm uses the current feature to recursively call 

the function to traverse the feature tree in depth first search, until the end of the tree. Then, 

the algorithm transforms the set of constraints, represented as Conjunctive Normal Form 

(CNF) formulas, into facts. There are two kind of constrains:  requires and excludes. Thus, 

each CNF formula, corresponding to an exclusion dependency, is transformed into two facts 

(one dependency fact and one fact excludes) and each CNF formula corresponding to a 

requirement dependency is transformed into two facts (one dependency fact and one requires 

fact) as we explained in Chapter 3. 

 

 

Algorithm 10.3 Parser to Transform the Syntax of Feature Models into Constraint 
Programs using the SPLOT API 
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TransformationOfFMsSyntaxIntoCPs(Feature Model FM){ 
node = FM.GetRoot(); 
traverseDFS(node); 
traverseConstraints(FM); 

} 
 
traverseDFS(FeatureTreeNode node){ 

if ( node instanceof RootNode ) { 
transform node into a root constraint; 

} 
else if (node instanceof SolitaireFeature) { 

  // Optional Feature 
  if(node.isOptional()){ 

transform optional dependency into CP 
} 
// Mandatory Feature 
else{ 

transform mandatory dependency into CP 
} 

 } 
 // Feature Group 
 else if ( node instanceof FeatureGroup ) { 
  transform group cardinality dependency into CP 
 } 
 //we call the method traverseDFS for each children in a recursive way 
 for( int i = 0 ; i < node.getChildCount() ; i++ ) { 
  traverseDFS(node.getChildAt(i)); 
 } 
} 
 
traverseConstraints(FeatureModel FM) { 
 for(PropositionalFormula formula : FM.getConstraints() ) { 

relationType="excludes";   
Iterator iter = formula.getVariables().iterator(); 

  while(iter.hasNext()){ 
   var[i] = iter.next();    
   //if one artefact > 0 ==> requires 
   if(var[i].isPositive()){ 

relationType="requires"; 
   } 

i++; 
  } 
 Build a fact according to relationType for variables in var[] 

} 
} 

6. Domain-specific Verification of Product Line Models 

In order to execute the domain-specific verification operations proposed in this thesis, we 

developed a tool called VariaMos. VariaMos is an Eclipse plug-in presented in Chapter 7. In 

this section we present the algorithm in Java of each verification operation implemented in 

VariaMos. 

 

Algorithm 10.4 Find a valid solution 
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giveOneSolution(String model, String listVariables){ 
   
 //obtain a valid solution 
String sol = 

connection.sendMessage("exec("+model+","+listVariables+").");  
 return sol; 
} 

 
Algorithm 10.5 Get the next solution 

public String nextSolution(){ 
   return connection.sendMessage("next."); 

  } 

 
 

Algorithm 10.6 Non void PLM 

private ConnectionProlog connection = new 
ConnectionProlog("localhost",port); 
public String noVoid(String model, String 
listVariablesOfTheModel) { 

String sol = connection.sendMessage("exec("+model+","+ 
listVariablesOfTheModel+")."); 

 if(sol.equals("false")){ 
  sol = "Void PLM"); 

} 
return sol; 

} 

 
 

Algorithm 10.7 Non false PLM 

private ConnectionProlog connection = new 
ConnectionProlog("localhost",port); 

public String FalsePLM(String model, String 
listVariablesOfTheModel) { 

String sol1 = connection.sendMessage("exec("+model+","+ 
listVariablesOfTheModel+")."); 
String result = "False PLM"; 

 if(!sol1.equals("false")){ 
  sol2 = nextSolution(); 
  if(!sol2.equals("false")){ 
   result = sol1 + sol2; 

} 
} 
return result; 

} 

 
Algorithm 10.8 Non-attainable domains 

findWrongDomain(String[] dataModel, Vector variables){   
 String textVariable = "";   
 //in order to evaluate each variable selected by the user 
 for(int i=0; i<variables.size(); i++){ 
  //get the domain of each variable 
  String[] valuesDomain = 
utilities.getDomain(domains.elementAt(i)); 
   
  //flag to identify fails 
  boolean flag = false; 
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  String wrongValues = new String(); 
  //evaluate it there is a solution for each domain’s value 
  for(int j=0; j<valuesDomain.length; j++){ 
   //configuration with each domain’s value 
   String configuration = 
utilities.makeConfiguration(variables, 
(String)variables.elementAt(i), valuesDomain[j]); 
   //create the configuration to be send to GNU Prolog 
   String prolog = "("+dataModel[0]+"="+configuration; 
   prolog = prolog.concat(", "+dataModel[1]+"), 
"+dataModel[0]); 
   //to execute the instruction  
   String sol = 
connection.sendMessage("exec("+prolog+")."); 
   //if there is a fail,the vairiable cannot take this 
value 
   if(sol.equals("fail.")){ 
    wrongValues=wrongValues+valuesDomain[j]+", "; 
    flag=true; 
   } 
  } 
  //save the values that the variable cannot take 
  if(flag){ 
   textVariable = textVariable + 
wrongValues.substring(0, wrongValues.length()-2)+"."; 
  } 
  //the variable has not wrong domain’s values 
  else{ 
   textVariable = "The Variable 
"+features.elementAt(i)+" don't has wrong domain's values"; 
  } 
 }   
} 

 

Algorithm 10.9 Dead reusable elements 

findDeadVariables(String[] dataModel, Vector variables){ 
  deadVariables = vector with all the variables of the PLM; 
  //for each one of the variables in deadVariables 
  while(j<deadVariables.size()){ 
   //get all the values that the current variable can take 
   String[] value = domains.elementAt(j)); 
   //identify when we have a solution or a fail from Prolog 
   boolean flag = false; 
   //save the values that the variables cannot take 
   String wrongValues = new String(); 
   String sol = new String(); 
   //evaluate each value of the domain(except 0)  
   for(int i=0; i< value.length; i++){ 
    if(!value[i].equals("0")){ 
    //create a configuration with the variables’ domain 
values 
    String configuration = 
utilities.makeConfiguration(feature, 
(String)deadFeatures.elementAt(j), value[i]); 
    //create the instruction to be executed in Gnu-
Prolog 
    String prolog = "("+dataModel[0]+"="+configuration; 
    //send the instruction to GNU Prolog  
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    prolog = prolog.concat(", "+dataModel[1]+"), 
"+dataModel[0]); 
    sol = connection.sendMessage("exec("+prolog+")."); 
    //if the configuration does not generate any 
solution; we kept the value that the variables cannot take 
    if(sol.equals("fail.")){ 
     wrongValues = wrongValues + value[i]+", "; 
     flag=true; 
    } 

//it is not necessary to evaluate all the values of 
each domain, with the first product obtained we know that 
the variables is not dead  

    else{ 
     break; 
    } 
   } 

} 
 } 

 

Algorithm 10.10 False optional reusable elements 

findFalseOptionalFeatures(String[] dataModel, Vector 
OptionalElements){ 
  //for each one of the variables to be verified 
  for(int i=0; i< OptionalElements.size(); i++){ 
   //take all the values that this variable can take 
   String[] valuesCardinality = 
utilities.getCardinality(domains.elementAt(i)); 
   for(int j=0; j<valuesCardinality.length; j++){ 
    //verify if the variable can take the 0 value  
    if(valuesCardinality[j].equals("0")){ 
     //create a configuration with the variable=0 
    String configuration = 
utilities.makeConfiguration(featureAll, (String) 
OptionalElements.elementAt(i), valuesCardinality[j]); 
     //get a sol. from GNU Prolog with this conf 
     String sol = 
connection.sendMessage("exec("+prolog+")."); 
     //if there is not solution, the variable is 
false optional 
     if(sol.equals("fail.")){ 
      textFeature = " The Feature "+ 
OptionalElements.elementAt(i)+" is a False Optional Variable."; 
     } 
    } 
   } 
  }  
} 

 

Algorithm 10.11 Redundancy-free 

findRedudantRelatioships(String[] dataModel, Vector relatonships){  
 //vector with the variables to verify 
 Vector constraints = (Vector)relatonships.elementAt(0); 
 //vector with the negations of the variables to verify 
 Vector negationConstraints = (Vector)relatonships.elementAt(1); 
  
 //1. Verify if the model is consistent 
 resultProlog = 
connection.sendMessage("exec("+dataModel[1]+","+dataModel[0]+")."); 
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 //if there is a solution, the model is consistent  
 if(!resultProlog.equals("fail.")){ 
  //Verify each one of the constraints selected by the user 
  for(int i=0; i<constraints.size(); i++){ 
   //2.verify the consistency of the model without the const 
   //create a string with the model without the constraint 
   String model = utilities.converToString(path, 
(String)constraints.elementAt(i)); 
   int begin = model.indexOf("fd_labeling"); 
   String message = model.substring(0, begin);  
   message += "\nfd_labeling("+dataModel[0]+")"; 
   String messageFinal =  "(("+ message+"), 
"+dataModel[1]+"),"+dataModel[0];  
   //execute the model to get a solution  
   resultProlog= 
connection.sendMessage("exec("+messageFinal+")."); 
      
   //if there is a solution the model without the constraint 
at hand is consistent 
   if(!resultProlog.equals("fail.")){ 
    
    //3.consistenty of the model with the negation 
    begin = model.indexOf("fd_labeling"); 
    message = model.substring(0, begin);   
    message += negationConstraints.elementAt(i) +",\n 
fd_labeling("+dataModel[0]+")"; 
    messageFinal =  "(("+ message+"), 
"+dataModel[1]+"),"+dataModel[0];  
    //execution of the sentence to get one solution  
    resultProlog= 
connection.sendMessage("exec("+messageFinal+")."); 
    //if there is a solution the const is not redundant 
    if(!resultProlog.equals("fail.")){ 
     VerificationManagerView.txtResultats.append("
 The Relationships "+constraints.elementAt(i)+" is not Redundant\n"); 
    } 
    //if there is not solutions the const is redundant 
    else{ 
     VerificationManagerView.txtResultats.append("
 The Relationships "+constraints.elementAt(i)+" is Redundant\n"); 
    } 
   } 
   //if without the constr there is no solts: not redundant 
   else{ 
    VerificationManagerView.txtResultats.append(" The 
Relationships "+constraints.elementAt(i)+" is not Redundant\n"); 
   }  
  } 
 } 
 //the model is not consistent because there is no valid solutions 
 else{ 
  VerificationManagerView.txtResultats.append("The model is 
inconsistent" + "\n"); 
 }  
} 
 

7. Conformance Checker of Feature Models 
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A conformance checker is a tool that verifies if a certain model is a correct instance of its 

metamodel, it is, verify if the model respects the syntax rules of the metamodel. The next 

program check the conformance of Feature Models with the metamodel presented in Chapter 

3. Detailed explanations about each line of code below are also provided in Chapter 3. 

 

Source code 10.2 Conformance Checker of Feature Models 

/* Format of Feature Model Files 
root(FeatureId) - defines a root feature. NB: root Id(s) should be the 
lowest feature Id(s) 
 
feature(FeatureId, FeatureName, LAttId) - defines a feature with a unique 
Id, a name and a list of attributes.  NB: LAttId is ascending sorted 
 
attribute(AttId, AttName, LAttDomain, AttValue) - defines an attribute with 
a unique Id, a name a list of domain values, and a value 
 
dependency(DepId, FeatureId1, FeatureId2, DepType) - defines a dependency 
between the source FeatureId1 and the target FeatureId2 whose type is 
DepType = mandatory / optional / requires / excludes. NB: for excludes 
(which is commutative) it is expected FeatureId1 < FeatureId2. 
 
groupCardinality(LDepId, Min, Max) - defines a cardinality for a set of 
dependencies LDepId to be between Min and Max. 
*/ 
 
load_fm(File) :- 
 '$remove_predicate'(root, 1), 
 '$remove_predicate'(feature, 3), 
 '$remove_predicate'(attribute, 3), 
 '$remove_predicate'(dependency, 4), 
 '$remove_predicate'(groupCardinality, 3), 
 consult(File), 
 mk_index. 
 
:- dynamic(inclusion_dep/2). 
 
mk_index :- 
 retractall(inclusion_dep(_, _)), 
 dependency(_, Id1, Id2, Type), 
 inclusion_type(Type), % this is used by rule 10 
 assertz(inclusion_dep(Id1, Id2)), 
 fail. 
 
mk_index. 
 
inclusion_type(mandatory). 
inclusion_type(optional). 
inclusion_type(requires). 
 
/* run all rules */ 
 
do_all :- 
 user_time(T), 
 g_assign(t, T), 
 write('\n*** testing rule 1'), nl, 
 conformance_1(FeatureName, AttId1, AttId2, AttName), 
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 write(conformance_1(FeatureName, AttId1, AttId2, AttName)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
 write('\n*** testing rule 2'), nl, 
 conformance_2(FeatureId1, FeatureId2, FeatureName), 
 write(conformance_2(FeatureId1, FeatureId2, FeatureName)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
 write('\n*** testing rule 3'), nl, 
 conformance_3(LRootId), 
 write(conformance_3(LRootId)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
 write('\n*** testing rule 4'), nl, 
 conformance_4(DepId, FeatureId), 
 write(conformance_4(DepId, FeatureId)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
 write('\n*** testing rule 5'), nl, 
 conformance_5(FeatureId, DepId1, DepId2), 
 write(conformance_5(FeatureId, DepId1, DepId2)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
 write('\n*** testing rule 6'), nl, 
 conformance_6(LDepId, Min, Max), 
 write(conformance_6(LDepId, Min, Max)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
 write('\n*** testing rule 7'), nl, 
 inconsistecy_7(FeatureName1, FeatureName2), 
 write(inconsistecy_7(FeatureName1, FeatureName2)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
 write('\n*** testing rule 8'), nl, 
 conformance_8(RootName, FeatureName), 
 write(conformance_8(RootName, FeatureName)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
 write('\n*** testing rule 9'), nl, 
 conformance_9(ChildName, AncName), 
 write(conformance_9(ChildName, AncName)), nl, 
 fail. 
 
do_all :- 
 disp_time, 
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 write('\n*** done !'), nl. 
 
disp_time :- 
 user_time(T2), 
 g_read(t, T1), 
 T is T2 - T1, 
 g_assign(t, T2), 
 format('   in ~w msec~n', [T]). 
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