Skip to Main content Skip to Navigation
Theses

Nouveaux dispositifs pour l'application contrôlée d'impulsions électriques nanosecondes et pour la détection de leurs effets sur les cellules : Nouveaux résultats et hypothèses sur les paramètres contrôlant l'électroperméabilisation des cellules biologiques

Abstract : New devices for the controlled application of nanosecond electrical pulses and the detection of their effects on cells. New findings and hypotheses on the parameters controlling the electropermeabilization of biological cells.Abstract:Manipulation of the membranes of cells in suspension or in tissues with electrical pulses is a major research topic in bio-electromagnetism. Until recently the effects of pulses of a few microseconds or milliseconds have mainly been studied. Such pulses only affect the cell plasma membrane. Pulses of a few nanoseconds with high field strength (of the order of a few MV /m) might lead to intracellular organelles manipulation. In addition, they represent a new tool to study the mechanisms of permeabilization.This thesis was mainly devoted to the effects of pulses of 10 ns on the plasma membrane. Experimental protocols to apply controlled and reproducible pulses on living objects have been defined. Measurement means (D-dot and B-dot) adapted to high voltages and high frequencies have been developed and implemented thus allowing for accurate and real-time monitoring of the pulses applied on the biological samples.Different approaches have been used to highlight the permeabilization of biological cells by pulses of 10 ns. The techniques used include the monitoring of bio-impedance in tissues and the internalization of non-permeant cytotoxic molecules in cells in suspension and in vivo in tumors. The conducted experiments allowed to demonstrate the high efficiency of low repetition rates in permeabilizing potato tissue. The influence of the conductivity of the extracellular medium on the efficiency of the permeabilization was also investigated. These experiments highlighted the important role played by the dynamic of the establishment and relaxation of the transmembrane potential difference.Finally a wide-field CARS microscope (Coherent Anti-Stokes Raman Scattering) was developed. It has been designed to study the effects of ultra-short pulses on biological cells at the molecular level. It already enables to obtain images of cells in 3 ns.
Document type :
Theses
Complete list of metadata

Cited literature [192 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00684394
Contributor : Abes Star :  Contact
Submitted on : Monday, April 2, 2012 - 1:21:46 AM
Last modification on : Wednesday, October 14, 2020 - 4:00:22 AM
Long-term archiving on: : Tuesday, July 3, 2012 - 2:25:35 AM

File

VA2_SILVE_AUDE_23112011.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00684394, version 1

Collections

Citation

Aude Silve. Nouveaux dispositifs pour l'application contrôlée d'impulsions électriques nanosecondes et pour la détection de leurs effets sur les cellules : Nouveaux résultats et hypothèses sur les paramètres contrôlant l'électroperméabilisation des cellules biologiques. Médecine humaine et pathologie. Université Paris Sud - Paris XI, 2011. Français. ⟨NNT : 2011PA114834⟩. ⟨tel-00684394⟩

Share

Metrics

Record views

649

Files downloads

1356