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Résumé 

 

Cette thèse vise à faire émerger de nouvelles descriptions de la variabilité des 

plissements du cortex humain en s’appuyant sur des techniques de fouilles de données.  

L’objectif principal est la conception d’algorithmes permettant de découvrir des motifs 

de plissement spécifiques à une sous-population d’individus. Le but final est de réaliser 

un dictionnaire de ces motifs et de les associer à des particularités cognitives ou 

architecturales, voire à des pathologies.  Deux stratégies de « clustering » sont 

proposées pour mettre en évidence de tels motifs. La première repose sur des 

descripteurs de formes globaux correspondant aux invariants de moment 3D, la seconde 

repose sur l’estimation d’une matrice de distances entre chaque paire d’individus. Un 

algorithme de clustering dédié est conçu pour détecter les motifs les plus fréquents de 

manière robuste. Une technique de réduction de dimension est utilisée pour mettre en 

évidence les transitions entre motifs au sein de la population. Les méthodes 

algorithmiques proposées sont utilisées pour étudier la forme du cortex sensori-moteur 

d’une population de gauchers contrariés. Des résultats originaux sur le lien entre la 

forme du sillon central et la latéralité manuelle sont mis en évidence. Les méthodes 

développées sont ensuite utilisées pour construire le premier dictionnaire des motifs 

observés dans les plissements corticaux issu d’une approche algorithmique. 
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Abstract 

 

This thesis aims at proposing new descriptions of the variability of the folding of the 

human cortex using data mining. The main objective is the design of algorithms detecting 

folding patterns specific to a sub-population. The long term goal is the constitution of an 

exhaustive dictionary of all the folding patterns enriched with links to cognitive or 

architectural specificities, or to pathologies. Two clustering strategies are proposed to 

detect such patterns. The first one is based on global shape descriptors called the 3D 

moment invariants, the second one implies the computation of a pairwise distance matrix. 

A dedicated clustering algorithm is designed for robust detection of the most frequent 

patterns. A dimension reduction strategy is proposed to study the transition from one 

pattern to another across the population. The proposed framework is applied to the study 

of the shape of the sensori-motor cortex of a population of left-handers forced to write 

with the right hand. Original discoveries relating the shape of the central sulcus to 

handedness are achieved. The framework is finally used to build the first computerized 

dictionary of the cortical folding patterns.
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Chapter One: Cortical Folding and Cortical Morphology 

 

1.1 Summary 

 

The primary goal of the thesis work is applying computational methods to analyze the 

cortical folding patterns. In this chapter, a general overview is given to the fundamental 

subjects of concern: the phenomenon of cortical folding and the computational 

morphometry of cortical folding. The computational morphometry provides the general 

framework where the thesis work fits in. Within this framework, the cortical folding 

patterns are studied applying computational methods using magnetic resonance imaging 

data.  

 

The rest of the thesis is organized as follows: Chapter One gives an introduction to the 

subjects the most relevant to this work; Chapter Two introduces the approach of using 

clustering algorithms on selected morphometrical features of cortical folding; Chapter 

Three further explores various approaches of finding comprehensive information in 

cortical folding; Chapter Four applies the methods developed to a real dataset, 

illustrating the exciting potentials of such analysis; Chapter Five presents the summary 

of the detailed dictionary of cortical folding patterns and Chapter Six concludes the 

thesis work. 

 

1.2 Introduction 

 

As of all the work combining different fields, in this case, neuroscience and computer 

science, it is of pivotal importance to gain sufficient understanding of the fields involved. 

The questions asked need to be well understood before the right solutions can be found. 

Consequently, this thesis work begins by understanding the neuroscience issues behind. 

The computational methods then need to be selected or designed to answer these specific 

neuroscience questions. In this work, the journey starts with the cortical folding process. 
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The cortex of the brain folds during development. The folding process, mysterious and 

fascinating, is not yet well understood. Does the cortical folding contain some 

information on the functional organization of the human brain? From the folds alone can 

we observe a pattern characteristic of a certain neurological disease? There exists a 

wealth of knowledge on the subject. Thanks to recent advances in software dedicated to 

automatic recognition of cortical sulci (Fillard et al., 2007; Le Goualher et al., 1999; 

Lohmann and von Cramon, 2000; Riviere et al., 2002; Welker, 1988) issues regarding 

cortical folding can now be tackled using large brain databases (Mangin et al., 2004b). 

 

Each brain looks different and none of them looks exactly like the ones in the text books. 

Refer to Fig 1.1, examples of individual folding patterns are shown. It can be observed 

that huge amount of folding variability exists. 

 

 

Fig 1.1. The variability of cortical folding    

Right hemispheres of three individuals, the cortical folds of the frontal lobe are highlighted according to the 

traditional nomenclature.  

  

 

Current studies of this variability focus mainly on simple morphometric features, such as 

the length or the depth of the standard sulci or gyri. Unfortunately, the standard naming 

system cannot always account for the folding pattern variability. Hence some of the 

standard sulci can be difficult to define or to measure. This weakness of the nomenclature 

imposes difficulties on both morphometric studies and the pattern recognition software 

dedicated to automatic recognition of the sulci. 

 

The most detailed description of the sulcus variability has been proposed in the atlas of 

Ono (Ono et al., 1990). This atlas is not based on one single individual but on twenty 
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different brains. For each sulcus, the authors propose a list of possible patterns and their 

frequencies. These patterns are defined for instance from the variability of the sulcus 

interruptions. In a way, the initial goal of the thesis work is to automate the work 

performed by Ono. We want to discover folding patterns that can be observed for a subset 

of the population. Furthermore, we want to find links between folding patterns and 

function.  

 

An overview of the study of brain cortical folding patterns is discussed in the next 

section. The field of computational cortical morphometry is discussed further in section 

1.4, the focus is on the analysis of cortical folding. Note that it is impossible to cover in 

every detail these two vast domains; let alone many related subjects not directly 

concerned in the thesis work. The goal of this chapter is to give enough background 

knowledge to pave the way for the chapters that follow. 

 

 

1.3 The study of cortical folding patterns 

 

Different conceptual approaches are undertaken to map the brain: the functional (initiated 

by Broca, followed by Jackson), the cytoarchitectural (initiated by Baillarger, followed 

by Ramon y Cajal and later Brodman) and the study of sulci and gyri. In this work, the 

third approach, the study of sulci and gyri, is taken. 

 

It is fascinating to look at the brain folding patterns. As stated by Welker: “the most 

striking, interesting, yet poorly understood gross morphological features of the cerebral 

hemispheres in mammals are the diverse and complex arrangements of their cortical gyri 

and sulci” (Welker, 1988). 

 

Indeed, while the nuclei in the spinal cord and the brain stem of the mammals are quite 

similar, the cerebrum and cerebellum exhibit great variation in size, shape and 

convolutional complexity. The size and amount of convolution of the mammalian brain 
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has been linked to intelligence. It is believed that those with bigger and more convoluted 

brains possess more behavioral complexity and higher intelligence.  Comparative studies 

revealed that cortical thickness and columnar architecture differ relatively little in 

different mammals. The huge difference lies in cortical surface area. Compared to 

macaque monkeys, the surface area of the human brain is approximately 10 times greater, 

whereas the thickness of the human cortex is only twofold greater (Barondes et al., 1997). 

The larger brains have more gyri and sulci, the variability of the three-dimensional 

convolutional patterns increases as well (Jerison, 1973), see Fig 1.2 for examples. 

 

 

Fig 1.2: The brain of different species 

 

It is believed that during evolution, a greater number and diversity of brain functions 

were achieved by increasing the surface area of cerebral neocortex. The increase in 

surface area is achieved by mechanical buckling, infolding, and fissuring. The folding of 

the cortex might provide more functional modules (Jerison, 1973). 

 

Historically, the importance of folding patterns of the cortex was questioned: “similar to 

the loops of small intestines that seemed to lie in no particular order” (Edwin Clarke, 

1973). In the early 1800s attention was drawn to the possibility of localizing specific 

mental faculties to specific gyri by Gall and his followers (Clarke, 1968). Phrenology is 

history now, but this initiative leads to many descriptive studies of the cerebral 

convolutions (Welker, 1988). These studies include humans as well as primates. As 
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advances were made in experimental methods and technology, this interest in localizing 

specific functions to specific convolutions diminished. More studies focused on the 

microscopic structure and architecture of the cerebral cortex. However, there starts to be 

more structural, connectional, and functional studies that reveal correlates of gyri and 

sulci to brain function (Watson et al., 1993; Welker, 1988). These evidences suggest that 

brain morphology of the folding patterns might be linked to brain connection and 

function. It is thus interesting to explore further the folding patterns with more modern 

and automated computational methods, and try to link these patterns to functions or 

behaviors.  

 

1.3.1 Gyri and Sulci 

 

The folding patterns are already very varied when observed from the brain surface. When 

the cortex is viewed by dissection or serial sections, the gyri and sulci appear to be much 

more complex (Welker, 1988). Traditionally, a nomenclature system is set up to describe 

the convolution of the surface of the human brain (Anatomica, 1983; Clemente, 1985; 

Ono et al., 1990), refer to Fig 1.3 for an example. Due to the enormous variability that 

exists in folding patterns, achieving a unified conception for the description of these sulci 

and gyri is extremely difficult. One interesting example of such attempt for a systematic 

understanding of the sulci and gyri is the sulcal root model (Regis et al., 2005). Indeed, a 

unified scheme cross different species can be confirmed only when the neurological data 

concerning developmental, architectural, connectional, physiological and chemical 

features are available.  
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Fig 1.3 Gyri and Sulci, an example of the text book presentation of nomenclature.  

Gray's Anatomy: The Anatomical Basis of Medicine and Surgery (British Edition. 38th Ed) 

 

 

1.3.2 Development of the cerebral cortex and gyrogenesis  

 

Human cerebral cortex development may be divided into three, partly overlapping 

periods (Marin-Padilla, 1990): embryonic period; intermediate, fetal or migration period 

and the perinatal period. The perinatal period starts about the 24th week of gestation.  

 

Disorders of neuronal migration are likely to occur in the fetal period so defined. On the 

other hand, abnormalities of the structural organization of the cerebral cortex are 
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common in the perinatal period. At about 22 weeks of gestation, the first thalamocortical 

synapses are formed within the cortical plate, cortical interneurons and dendrites of layers 

III and V pyramidal neurons are developing simultaneously. In the period of 22–26 

weeks of gestation, dense granularity is observed in the position of the future layer VI. 

The six-layered adult laminar pattern gradually appears after 28 weeks of gestation. At 1-

2 years after birth, major outgrowth of dendrites occurs, both for pyramidal and for 

nonpyramidal neurons. Mature dendritic extension has been reached at 2–4 years of age. 

Finally, the mature level of outgrowth is reached at about 3–4 years (Uylings, 2001). 

Certain cortical areas such as the frontal and parietal cortices keep increasing until the 

age of 12–13 years (Hori, 2006). 

 

In humans, gyrogenesis usually starts during fetal development. In ferrets, this process 

starts shortly after birth (Neal et al., 2007). While the gyral tissue continues to expand, 

some areas (the sulcal roots) remain in a relatively stable position (Regis et al., 2005). 

Gyrification in humans reaches adult values around age of 10 years (Armstrong et al., 

1995). The primary effect of the folding process is an increase of surface area relative to 

volume, which correlates with an increased number of neurons (Panizzon et al., 2009). 

This increase is presumed to enhance the computational capacities of the cortex with 

some metabolic and connectivity limits (Wen and Chklovskii, 2008). 

 

 

Fig 1.4 Development of the human brain    

Lateral and medial views of the developing human brain in the fourth (a), sixth (b) and eighth (c) 

gestational months, and in a neonate (d).The arrows indicate the position of the central sulcus (Hori, 2006) 
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Gyrogenesis is composed of an intriguingly complex series of events. Without going into 

the details of each, the processes hypothesized during gyrogenesis include: neuronal 

differentiation and dendrogenesis, neuronal orientation, afferent arrival, penetration, 

fasciculation, and arborization, synaptogenesis, glial proliferation and ensheathment, 

laminar aggreration and segregation, rearrangement of cell adhesion molecules and 

related membrane structures, and the differential development of gyri and lobules. From 

the perspective of external morphology, differential development of different gyri and 

lobules affects their relative width, height, shape, orientation, and spatial pattern. The 

gyral crowns, sulcal walls, and fundi are constructed differently and according to 

different developmental timetables (Welker, 1988). 

 

The cortical folding is a sequential process. Refer to Fig 1.4 for the external morphology 

of the cortical folds during development. The Sylvian fissure and insula can be 

recognized at the 14th gestational week as a shallow indentation on the lateral surface of 

the cerebrum. Cerebral sulcus formation begins around the 16th gestational week with the 

appearance of the parieto-occipital and cingulate sulci. Central sulcus formation is seen in 

the 20th to the 21st week (Armstrong et al., 1995; Feess-Higgins and Larroche, 1987).  

 

The classification of sulci into primary, secondary and tertiary sulci has been adopted. 

Definitions are proposed but the precise classification remains controversial. The 

definition based on comparative anatomy defines the primary sulci as those that can be 

found in all gyrencephalic primates. The ontogenetic approach defines the primary sulci 

as those generally appearing before 30th week of gestation (Feess-Higgins and Larroche, 

1987). The secondary and tertiary sulci are those that give the cortex the adult appearance 

(Tamraz and Comair, 2006). The definition concerning the orientation of the sulci is as 

follows: primary sulci are oriented perpendicular to the neuraxis, whereas secondary 

sulcus formation is parallel to the neuraxis, the tertiary sulci bind the primary and 

secondary sulci (Hori, 2006). 

 

Normal gyration and sulcal pattern has been studied prenatally and in preterm and term 

neonates with MRI. Brain maturation was found to start in the central area and to proceed 
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towards the parietooccipital cortex (Ruoss et al., 2001). The frontal cortex develops last. 

As more knowledge concerning early brain development becomes available, the 

classification of sulci could be converged. 

 

It should be kept in mind that gyrogenesis is not an isolated process. The central nervous 

system as a whole is developing as well, together with the development of other tissues 

and organs such as the eye, the heart, the teeth etc. Fig 1.5 gives a timing of these events. 

More specific to the cortex, while the gyri and the sulci are forming, the six-layered adult 

laminar pattern is forming simultaneously (refer to Fig 1.6 as an example). While it is 

interesting to observe the cortical folding process, it is important to put cortical folding 

into the context of the human development as a whole. 

 

 

Fig 1.5 Critical periods of human development  

Critical periods in human development. In the horizontal columns, the period of major complications is 

shown in red, that of minor anomalies in light red. (Hori, 2006) 
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Fig 1.6 Prenatal development of neurons in the prefrontal cortex 

Golgi-stained sections at 10.5(a), 13.5(b), 17(c), 19-25(d), 26-29(e) and 32-34(f) weeks of gestation and a 

neonate(g). CP: cortical plate, FI-VI: fetal cortical layers, IZ: intermediate zone, MZ: marginal zone, SP: 

subplate, VZ: ventricular zone, WM: white matter. (Hori, 2006) 

 

 

1.3.3 Relation of architectonic and function to gyrus 

 

The parcellation of neocortex into structurally different cytoarchitectonic areas has a long 

history; the criteria used to differentiate the areas differ from one author to another. It is 

generally accepted that architectonic distinctions alone do not provide an adequate or 

accurate view of areal differences in cortical organization (Welker, 1988). 

 

Different architectonic fields often occupy different, but adjacent, gyri. When the border 

of the transitional zones lies at the fundus of the interposed sulcus, such sulci have been 

called limiting sulci. Examples of limiting sulci are the central, cingulate and sylvian 

sulci. However, many sulci lie within a single architectonic field, within-field sulci are 

called axial sulci. Examples are the superior and inferior precentral sulci and the 

calcarine sulcus. In some cases a single gyrus contains two or more architectonic fields; 

an example is the postcentral gyrus of primates. Refer to Fig 1.7 for the Brodman’s areas 

relative to the gyrus and sulcus. 

 

One of the most striking evidence for a precise correlation of functional areas with gyral 

and sulcal features came from mapping studies of somatosensory cerebral cortex in 
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raccoons (Welker, 1988). The functional areas of the forepaw correlate well to the 

cortical areas separated by the folding. The crown cortex has larger or more densely 

activated neuronal populations, compared to gyral walls and fundi. Additional studies of 

the raccoon found that not only the ventrobasal thalamus, but also the dorsal column 

nuclei, were subdivided into as many subnuclei as there were gyral crowns in 

somatosensory cortex (Welker, 1988). 

 

 

Fig 1.7 Map of the cerebral cortex in man (Brodmann, 1909).  

 

 

1.3.4 Cortical Connections 

 

To have a better understanding of cortical folding, the underlying fiber connections 

cannot be overlooked. Large and well-organized thalamic nuclei send projections to, and 

receive reciprocal connections from, different specific cortical gyri or gyral groups. 

Limiting sulci which lie at the borders or cortical areas receive projections from different 

thalamic nuclei or nulear complexes. There are also cases where adjacent gyri separated 

by axial sulci within a single cortical field are interconnected with different but adjacent 

thalamic subnuclei. A well-studied example of this is found in the connections of the 
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subnuclei of the raccoon’s ventrobasal complex with the several cortical subgyri within 

somatosensorry cortex (Welker, 1988). 

 

Other than cortical-thalamic connections, numerous cortical-cortical connections exist. In 

human, the superior and inferior longitudinal fascicule, the uncinate fasciculus, and the 

cingulum are some of the largest fiber bundles which interconnect major lobes of the 

cerebral hemisphere (Clemente, 1985). The intergyral “U” fiber connections are also 

demonstrated (Krieg, 1966). It is shown that adjacent gyral crowns are richly 

interconnected, whereas fundic cortex is sparsely interconnected. Regarding 

interhemispheric connections, experiments reveal that most topographically homologous 

gyri of the two hemispheres have reciprocal connections that are symmetric. Many gyral 

crowns project to gyral crowns, and sulcal walls to sulcal walls (Welker, 1988). 

However, some cortical gyri send projections primarily to the walls and fundi of certain 

sulci in the opposite hemisphere. It is interesting to notice that in several mammals, gyri 

that contain specialized sensory or motor representations are devoid of reciprocal 

interhemispheric connections. The examples include the somatosensory hand cortex, the 

visual foveal cortex and the primary auditory cortex in some mammals. Local circuits 

exist between different parts of a single cytoarchitectonic field located on one gyrus, as 

well as between different adjacent subfields on the same gyrus (Welker, 1988).  

 

Finally, it should be kept in mind that many gyral regions send descending projections 

not only to specific thalamic nuclei, but also to specific basal ganglia, brain-stem, 

cerebellar, medullary and spinal cord nuclei.  

 

 

1.3.5 Pathological gyral and sulcal patterns 

 

Abnormal gyral and sulcal patterns have been observed. There are terms describing the 

anomalies of cortical development in humans and animals, which include: agyria (lacking 

gyri), pachygyria (broad gyri with thin cortex), ulegyria (narrow, distorted, and scarred 
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gyri), microgyria (abnormally narrow gyri), polymicrogyria (supernumerary tiny gyri), 

polygyria (an unusually large number of gyral formations), schizogyria (gyri with 

disrupted continuity), ectopic gyri (gyri that occur in unusual places), and cortical warts 

(small innervated cellular protrusions of cortex) (Welker, 1988).  

 

Abnormalities of cortical development produce alternations in form and pattern of gyri 

and sulci, many of these are also associated with sensory, motor, cognitive, and 

motivational disorders. The interactions during development are complex. The difficulty 

in deciphering the folding mechanism based on abnormalities is that these abnormalities 

usually affect many levels of development, and little is known of the time and nature of 

the cause (Welker, 1988). 

 

One interesting example illustrating the link between the underlying connections and the 

sulcal pattern is the case of brains without corpus callosum (callosal agenesis). In these 

cases, the bundles of Probst become longitudinal instead of crossing the hemispheres as 

corpus callosum. Typically, the cingulate region shows more radial arrangement. Refer to 

Fig 1.8 for the abnormal bundles and abnormal sulcal pattern. The other example is the 

Williams syndrome, a rare disorder characterized by dissociation between language, face 

processing and spatial cognition. Overly social behavior is observed that is opposite to 

that seen in autism (Bellugi et al., 1999). It is found that the central sulcus of the patients 

are shorter and does not become opercularized in the interhemispheric fissure (Galaburda 

et al., 2001). The central sulci are also observed to be separated by unusual gyral 

convolutions (Hori, 2006). 

 

 

Fig 1.8 Callosal agenesis 
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Left: Development of the bundles of Probst. The commissural fibres of the corpus callosum in a normal 

brain (a) are shown by broken lines; the abnormal longitudinal bundles of Probst (b) which fail to cross are 

shown in solid lines. (Hori, 2006) Right: Photographs show a fetal case of callosal agenesis: a medial view 

of the brain; note radial arrangement of gyri; b coronal section of the brain 

 

The examples above implies that even though folding abnormalities are most likely 

consequences of multiple functional abnormalities, it nevertheless links altered form to 

altered function in the cortex, and can shed some light on the underlying developmental 

mechanism. 

  

 

1.3.6 Comparative and developmental studies 

 

Comparative studies among different species provide many interesting insights into brain 

evolution and development. For example, it is observed that the size of the localized areas 

of the cortex is different among mammals. Relatively large cortical somatosensory hand 

area is observed in raccoons, larger rhinarial areas in pigs, larger lip area in llamas, and 

larger tail area in spider monkeys (Welker, 1988).  

 

More specific to gyrogenesis, historical comparative studies reveal that gyrification is not 

associated with brain size or body size across species. Smaller brains can be more 

convoluted than bigger ones. An example is the least weasel, the smallest living 

carnivore, which has a highly convoluted brain smaller than that of a smooth-brained 

rodent (Jerison, 1973). Another well documented fact is that the cortical thickness of 

cerebral cortex varies relatively little (1-4mm) among brains of different mammals over a 

wide range of brain and body sizes, from mouse to elephant (Braitenberg, 2001).  

 

More recent studies confirm that as the brain size increases, the cortical thickness 

increases only slightly, while the degree of sulcal convolutions increases dramatically (Im 

et al., 2008).  Furthermore, the relation of gyrification to brain size might follow region-

specific patterns within species. Toro et al (Toro et al., 2008) found that as the brain size 
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increases in humans, the cortical folding is increased more specific to the prefrontal 

cortex. The major implications are: the processing operations of cerebral cortex are 

probably the same everywhere; increasing the number of processing modules is mainly 

by the increase in cortical surface area. 

 

It is interesting to note that shapes and orientations of most gyri differ in predictable ways 

in different species, as well as in different cortical regions in any one species. 

Convolutions and sulci do not appear randomly in different mammalian groups, but tend 

to occur in taxon-specific patterns. Within each group, there are greater similarities, 

despite wide variations in brain size and gyral and sulcal complexity. The study of the 

somatosensory cortex in raccoons by Welker (Welker, 1988) reveals that minor 

interanimal differences were associated with variations in the deployment of specific 

peripheral somatosensory projections to cerebral cortex.  

 

The development of sulcal and gyral patterns is strongly influenced by genetic processes 

(Piao et al., 2004), yet studies of monozygotic twins reveal considerable differences in 

their surface morphology (Thompson et al., 2001; White et al., 2002). This could be due 

to environmental influences during early development. It is found in twin studies that the 

deeper and developmentally earlier sulci of the brain (i.e., the central sulcus or the 

sylvian fissure) are more highly correlated than the superficial or tertiary sulci, which 

develop mainly after birth, and appear to be more affected by non-genetic influences 

(Lohmann et al., 1999). 

 

 

1.3.7 Explanation of gyrification and fissuration 

 

Gyrus building is considered to be consisting of numerous constructional processes. The 

gyral crowns, sulcal walls, and fundi (bottom) are different in architectural, connectional 

and functional features (Welker, 1988). Various models have been proposed to account 

for the phenomena of convolutions. The non-isotropic forces might be due to the complex 
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interaction of differential growth of the cortical layers, cell migration, cell myelination, 

cortical-cortical and cortical-thalamic connectivity, synaptic pruning, brain size and 

metabolism (White et al., 2010).  

 

It was first proposed that sulcation is due to cortex expansion constrained by the skull and 

the basal ganglia (LeGrossClark, 1945). It is later found out that removal of large amount 

of cortical and subcortical structure in sheep brain results in normal sulcal size and 

organization (Barron, 1950). So cortical folding is likely not due to constrained growth 

solely. Van Essen (Van Essen, 1997) proposes that neuronal connections that develop 

during the second trimester produce localized fiber tension which draws densely 

interconnected regions closer together. Tension along axon in the white matter is 

suggested to be the primary driving force of cortical folding. As regions of greater 

connectivity move closer together in an enclosed and rapidly growing brain, they form 

gyri (outward fold). The more sparsely connected regions drift apart and the sulci (inward 

fold) form. The tension, although very small for an individual axon, is summed by the 

very large number of neurons. The characteristic pattern of the convolutions can thus be 

explained by the highly specific organization of the underlying connectivity. This model 

suggests that differential growth of different cortical layers is a consequence rather than a 

cause of cortical folding.  

 

Such a theory links brain surface morphology with regional neuronal connectivity, in a 

developmental framework (White and Hilgetag, 2008). The link between gyrification and 

axonal tension has been supported by experimental findings in the primate brain 

(Hilgetag and Barbas, 2006).  

 

Alternate folding theories emphasize on mechanical factors such as abutting cortical 

plates (Richman et al., 1975), or the differential growth with mechanical constrains 

(Todd, 1982). Genetic factors likely play a crucial role in cortical folding. The genetic 

control of cortical development is proposed (Rakic, 1988); links between cortical folding 

and cytoarchitecture is confirmed (Fischl et al., 2008). Cortical folding has also been 
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linked to genetic factors by studying the abnormal folding of diseases with known genetic 

link such as William’s syndrome (Gaser et al., 2006; Kippenhan et al., 2005). Indeed, the 

fiber development, the differential growth in cortical layers and in different sub-regions, 

could be a complex concerted process determined by genetics.  

 

The major mechanical factors that contribute to the folding process, fiber pulling or 

differential growth under constrain, remain to be clarified in the future. Some interesting 

computer based models of cortical folding are proposed, which will be discussed in detail 

in the next section.  

 

 

1.4 Computational morphometry of cortical folding 

 

The general framework of cortical folding is introduced above. Next, we discuss some 

computational methods applied to the study of cortical folding. The conventional naming 

system seems inadequate for describing the folds; this is partly due to the variability that 

exists, partly due to the use of external morphological criteria alone in the description of 

folding patterns. One of the goals of this work is to understand better the variability in 

cortical folding patterns. 

 

The recent advancement in brain imaging such as the Magnetic Resonance (MR) 

techniques can provide valuable information. Multiple subjects can be followed 

consistently in longitudinal studies. Applying modern computational methods, massive 

data can be analysed automatically. Computational morphometry is the field concerned 

with the qualification of anatomical features and changes in individual brains or brain 

populations (Mietchen and Gaser, 2009). This thesis work is an application of 

computational morphometry.  In the following, only topics relevant to the thesis work are 

introduced. Subjects less relevant are not discussed; the aim is to introduce subjects that 

our work can contribute in advancing the current understanding. 
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1.4.1 Cortical morphology and the modeling of cortical folding 

 

The voxel-based-morphometry (VBM) approach is used in many brain morphometry 

studies (Ashburner and Friston, 2000). In VBM studies, three-dimensional spatial 

alignment is applied; voxel-wise comparison of the local concentration of grey and white 

matter across populations is then carried out. When the cortex is of interest in particular, 

the cortical thickness analysis is often used after alignment of the cortical surfaces 

(Ashburner, 2009; Fischl and Dale, 2000). More related to our work of cortical folding, a 

group of computational methods utilizing the sulci/gyri are developed, which will be 

discussed here.  

 

Regarding the cortical folding process, as discussed in section 1.3, numerous factors are 

involved. Different hypothesis regarding cortical folding are proposed, emphasis are put 

on fiber tension (Van Essen, 1997), differential growth of the sub-layers (Richman et al., 

1975), and differential growth of different sub-regions of the brain (Welker, 1988). The 

fold formation could be mainly due to genetic factors or mechanical factors. With the 

advancement in MRI and computer algorithms, these models can be tested. 

 

Computer simulation of the morphogenetic model (Toro and Burnod, 2005) has been 

proposed to clarify the importance of mechanical and genetic factors in cortical folding. 

The results suggest that convolutions could be a natural consequence of cortical growth. 

Such a model can produce primary, secondary and tertiary folds. 

 

The causation of fiber tension for gyrification hence remains controversial. In another 

recent study, cerebral cortical folding has been modeled combining structural and 

diffusion tensor MRI in sheep.  Finite element modeling is combined with explicit growth 

mechanisms to be tested. The growth mechanisms tested are white matter tension or 

tangential cortical growth that drives cortical folding (Geng et al., 2009). It is found that 

tangential cortical growth is a plausible biomechanism of sulcal root formation and hence 
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cortical folding. It is also shown in the developing ferret brain that, even though the 

axons are verified to be under considerable tension, the tension likely does not drive 

folding. Using computational models, it is shown that deferential cortical growth 

accompanied by remodeling of the subplate leads to outward folds and stress fields 

consistent with microdissection experiments. This result supports a mechanism involving 

differential growth of the layers (Xu et al., 2010). 

 

Another interesting approach to explain the consistency and variability of the cortical 

folding pattern proposes a phenomenological model (Lefevre and Mangin, 2010). This 

model is based on reaction diffusion mechanisms, where the Turing morphogens are 

responsible for the differential growth of the sulci and the gyri. This model mimics the 

progressive folding of the cortical surface; it can generate reproducible yet variable 

patterns using sulcal roots (Regis et al., 2005). The study suggests that interactions 

between growth factors may be sufficient in the formation of consistent yet variable 

folding patterns. Such a model would give more emphasis to genetic factors, which 

subsequently determines the timing and amount of the generation of growth factors. 

 

The mystery of cortical folding and the importance of various factors contributing to this 

phenomenon remain to be deciphered. The studies discussed above illustrate the exciting 

potential of computational methods in testing hypothesis of complex phenomenon such 

as cortical folding.  

 

The cortical folding analysis is of growing interest due to the potential connection of 

cortical folding to white matter connections underneath (Van Essen, 1997). Recent links 

has also been found between cortical folding and cytoarchitectony (Fischl et al., 2008). 

The analysis of cortical folding would thus be valuable for the study of development and 

pathology (White et al., 2010). Abnormal developments possibly leave traces that can be 

observed in abnormal folding patterns.  

 

Next, the different approaches in the study of cortical folding are discussed.  
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1.4.2 Approaches in the study of cortical folding 

 

One way to allow comparison of cortical folding and morphology across subjects is to 

first align the surfaces. Many approaches can be used for such two-dimensional spatial 

normalization. The alignment based on folding depth and curvature on the stable sulci 

can be carried out. These stable sulci can be defined manually or automatically (Fischl et 

al., 1999; MacDonald et al., 2000). In cortical thickness and gyral surface analysis (Fischl 

et al., 2004), the alignment is carried out first. 

 

Beyond cortical thickness and cortical surface analysis, the nature of cortical folding can 

be studied. An index is used to quantify the extent of folding, the gyrification index (GI). 

The GI is first defined as the ratio between the lengths of coronal outlines for the brain 

including and excluding the sulcal regions (Zilles et al., 1988). This approach leads to 

interesting findings. For example, it is found that the GI increases dramatically in the 

third trimester of development, then remains more or less constant throughout life 

(Armstrong et al., 1995). 

 

The limitation to this method of measuring the GI is that it is obtained in two-dimensions, 

the measurements could be biased. The possibility of defining three-dimensional GI is 

being explored. The 3D GI can be defined locally from the geometry of the cortical 

surface (Schaer et al., 2008; Toro et al., 2008); it can also be defined globally (Rogers et 

al., 2010) or both at the global level and the sulcus level (Cachia et al., 2008).  In the 

study of premature infants, specific GI is designed (Dubois et al., 2008). 

 

Other than the thickness and gyrification index, other features have been used to study 

cortical folding. The easier to access features are the length, the depth and the surface 

area of the sulci (Mangin et al., 2004b). Another interesting feature useful to monitor 
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aging is the opening of the folds, defined as the distance between the two walls of a 

particular sulcus (Kochunov et al., 2005). 

 

Our methods developed in this work are using a more comprehensive measure, the 3D 

shape of the folds. The shape needs to be detected and further represented reliably for 

pattern analysis. The details of the representation of the sulcal shape can be found in 

Chapter Two and Chapter Three. The sulcal identification and extraction is done by using 

the software BrainVISA (Mangin et al., 2004b). The image processing algorithms in 

BrainVISA obtain the shapes of the sulci in three steps. First, a hollow object made up of 

gray matter and cerebrospinal fluid is extracted from the T1-weighted image. Second, the 

object from step one is skeletonized to obtain the hemisphere hull and the numerous 

medial surfaces of the cortical folds. Third, the skeleton obtained in step two is split to 

separate the folds from each other and from the hemisphere hull.  The naming of the sulci 

can be carried out automatically (Mangin et al., 2004b; Perrot et al., 2009b).   

 

Sulcal extraction and analysis is carried out by other teams as well. In the work of Le 

Goualher (Le Goualher et al., 1999), the active ribbon method is used to extract the 

superior and the fundus trace of the sulci; these are then extended to the surface of the 

whole sulcus. The labeling is semi-automated, in the sense that for the labeling of each 

sulcus, the user is given a list of choices as the most likely candidates. This list is based 

on the priors for the expected sulcal spatial distribution. The sulcal shape can then be 

compared statistically to investigate such issues as the link of sulcal shape to genetics in 

twin studies (Le Goualher et al., 2000). 

 

Various other methods are used to extract the fundi of the sulcus (Kao et al., 2007; Li et 

al., ; Seong et al., 2010; Shi et al., 2009) or the surface sulci lines (Fillard et al., 2007; Tu 

et al., 2007). The results of the analysis using the top or bottom of the sulci would 

provide different but interesting information regarding the sulcal pattern and cortical 

morphometry in general. 
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The normalization process discussed before would possibly create difficulties in further 

variability analysis. When studying the shape variability of specific sulci, an interesting 

approach is to create a co-ordinate system based on the sulcal depth profile (Cykowski et 

al., 2008). In the next section, some of the findings using the methods discussed above 

are briefly discussed.  

 

 

1.4.3 Applications of cortical morphology 

 

The study of cortical morphology can shed some light on many important issues. In 

particular, the findings in the four domains would be discussed: brain abnormalities, brain 

development and aging, brain plasticity and the relation of genetics to brain development 

and cortical folding.   

 

 

1.4.3.1 Brain abnormalities 

 

Since cortical folding pattern is very stable through-out life in normal population 

(Armstrong et al., 1995), a deviation from the normal gyrification rates or gyrification 

patterns has thus a high probability to indicate brain malfunction. Global and regional 

abnormal gyrification is found in a variety of disorders. Using the 2D normalization 

approach discussed above, abnormal symmetry of cortical folding has been found in 

William’s syndrome (Van Essen et al., 2006) and Schizophrenia (Csernansky et al., 

2008).  Sulcal depth difference is found in autism (Nordahl et al., 2007).  

 

The GI study reveals many interesting results as well. Using the 2D GI, it is found that 

gyrification pattern in monozygotic twin pairs is different for autism. Increased folding is 

found in the right parietal lobe, and the increase in folding is associated with more 

symptoms of autism (Kates et al., 2009). Decreased folding is found in the prefrontal lobe 

in patients with obsessive-compulsive disorder (OCD) (Wobrock et al.), while increased 
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folding in the same region is found to be linked to the high risk group for schizophrenia 

(Harris et al., 2007). Many other regions of abnormal folding are linked to pathology. For 

example, abnormal folding in the anterior cingulate cortex is linked to bipolar disorder 

(Fornito et al., 2007) and OCD (Shim et al., 2009). Measuring gyrification index at both 

the global and local sulcal level of language-related cortex (Cachia et al., 2008), it is 

found that the schizophrenia patients with auditive hallucination have a decrease in sulcal 

index in the superior temporal sulcus, the middle frontal sulcus and the diagonal branch 

of the Sylvian valley, the region defining the Broca’s area. 

 

Specific sulcal shape has been linked to pathology as well. Change in the frequency of 

specific folding patterns of the collateral sulcus is linked to temporal lobe epilepsy (Kim 

et al., 2008). The shape of the temporo-parietal junction and the superior temporal sulcus 

is linked to inner or outer space hallucinations (Plaze et al., 2009).  

 

 

1.4.3.2 Brain development and aging 

 

The study of cortical folding can provide many insights of brain development and aging. 

The computational approaches provide exciting potential of studying cortical folding in 

newborns (Dubois et al., 2008).  Early structural measurements such as cortical folding 

can be useful in the follow-up study of highly premature infants. 

 

In the study of brain volume related to GI, it is found that there is a disproportionate 

increase in cortical surface, especially in the prefrontal area (Toro et al., 2008).  More 

general traits such as brain asymmetry can also be studied. The position and surface area 

asymmetry can be studied in adults (Lyttelton et al., 2009) and infants (Hill et al., 2010). 

More specific to sulci, the asymmetry of the depth of the central sulcus is studied 

(Cykowski et al., 2008). It is found that the central sulcus is asymmetrical in surface area 

and length (Kloppel et al., 2010; Mangin et al., 2004a).   
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Cortical analysis can also shed some light on the aging process. The age-related change 

in sulcal width and depth are studied to show that sulcal structures in multimodal cortical 

areas have more profound age-related changes than those in unimodal areas (Kochunov et 

al., 2005).  The sulcal depth and surface area change is found in brain atrophy such as in 

the case of Cerebral Autosomal Dominant Arteriolopathy with Subcortical Infarcts and 

Leukoencephalopathy (CADASIL) (Jouvent et al., 2009). 

 

 

1.4.3.3 Brain plasticity 

 

Plasticity and the effect of learning is a subject of enduring interest. A series of VBM 

studies found links between brain morphometry and function in terms of proficiency in 

various performances. Brain has the potential for changes in structure and function 

throughout life. For example, a bilateral gray matter expansion in the medial temporal 

visual area (also known as V5) is found in juggling novices (Draganski et al., 2004). 

Furthermore, such changes can be detected after just 7 days of juggling practice 

(Driemeyer et al., 2008). 

 

Plasticity in terms of cortical folding is less easy to be studied, probably due to the fact 

that folding changes take much longer than gray matter changes to be established. Some 

studies do report for example the central sulcus of amputees may eventually lose its 

characteristic shape (Dettmers et al., 1999). Furthermore, such flattened central sulcus is 

not observed in amputees of the arms that used their foot for sophisticated activities such 

as painting or sculpting (Yu et al., 2006). In the study of hand converters, the natural left-

handers who are forced to write with the right hand, it is found that the asymmetry of the 

central sulcus surface area is changed compared to left-handers (Kloppel et al., 2010). In 

Chapter Four of this thesis, this work on the analysis of the central sulcus of hand-

converters is continued with interesting results.     
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1.4.3.4 Brain development and genetics 

 

The genetic influence on brain structure is found in twin studies (Peper et al., 2007; 

Schmitt et al., 2007; Thompson et al., 2001). The thickness and surface area of the cortex 

is likely influenced by different and distinct genetic factors (Panizzon et al., 2009).  

 

Evolutionary studies can provide information complementary to those of clinical studies, 

since many biological mechanisms behind development; aging, learning and disease are 

shared between a wide range of organisms (Carroll, 2005). 

 

 

1.4.4 Organizational framework of cortical folding and future work  

 

Some organizational framework has been proposed regarding the cortical folding 

patterns. In the sulcal root model (Regis et al., 2005), the variability observed in cortical 

folding is explained based on the gyri buried inside the sulci (the plis de passage). In rare 

cases the “plis de passage” is too buried to be observed in adult brains. The sulcal roots 

are the units corresponding to the first folding locations during fetal development. The 

units of sulcal roots are organized in a system of meridians and parallels of the cortical 

surface. The locations of sulcal roots are relatively stable across individuals, the 

variability occurs in later development during the folding process. These relatively stable 

entities across subjects could be very useful for sulcal labeling and spatial normalization 

before anatomical or functional analysis.  

 

The sulcal roots are obtained in three steps: i) each main sulcus is split into portions 

according to interruptions observed in literature, mainly from Ono and Kubik atlas (Ono 

et al., 1990); ii) split based on the “plis de passage”; iii) split based on embryological 

literature when available. It is assumed that the depth of the “plis de passage” is 

correlated with the date of apparition.  
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Fig 1.9 The sulcal roots (as fig 5 of the paper on sulcal roots (Regis et al., 2005)) 
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Fig 1.10 The sulcal pits (as presented in (Im et al., 2010)) 

s.: sulcus, 1 middle frontal s. a, 2 middle frontal s. b, 3 superior frontal s., 4 junction between superior 
frontal s. and precentral s., 5 precentral s., 6 junction between precentral s. and inferior frontal s., 7 inferior 
frontal s.a, 8 inferior frontal s. b, 9 inferior frontal s. c, 10 central s. a, 11 central s. b, 12 central s. c, 13 
postcentral s. a, 14 postcentral s. b, 15 intraparietal s. a, 16 intraparietal s. b, 17 superior temporal s. a, 18 
superior temporal s. b, 19 superior temporal s. c, 20 superior temporal s. d, 21 inferior temporal s. a, 22 
inferior temporal s. b, 23 inferior temporal s. c, 24 inferior temporal s. d, 25 inferior temporal s. e, 26 
occipito-temporal s. a, 27 occipito-temporal s. b, 28 occipito-temporal s. c, 29 collateral s. a, 30 collateral s. 
b, 31 collateral s. c, 32 collateral s. d, 33 orbital s., 34 olfactory s., 35 cingulate s. a, 36 cingulate s. b, 37 
cingulate s. c, 38 cingulate s. d, 39 cingulate s. e, 40 cingulate s. f, 41 subparietal s., 42 lateral occipital s., 
43 calcarine s. a, 44 calcarine s. b, 45 calcarine s. c, 46 parieto-occipital s. a, 47 parieto-occipital 
 

 

Another approach which obtained very similar map as that of the sulcal roots is the sulcal 

pits model (Lohmann et al., 2008). The sulcal depth is used; the sulcal pit is the zone of 

the sulcus where the depth is maximal. These sulcal pits are hypothesized to be under 

genetic control based on sulcal analysis of monozygotic twins. 

 

The sulcal roots and sulcal pits results are displayed below in Fig 1.9 and Fig 1.10, taken 

from the original papers (Im et al., 2010; Regis et al., 2005). 

 

To understand better the mechanism of cortical folding, large scale developmental studies 

(longitudinal) on folding would need to be carried out. Functional analysis would need to 

be combined with folding pattern analysis to understand better the implications of 

specific folding patterns. Mathematical models such as the reaction-diffusion model 
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(Lefevre and Mangin, 2010) can be used to provide more insights into the process of 

folding. 

 

On the other hand, systematic folding pattern analysis such as that of the work of Ono 

(Ono et al., 1990) is still important. Such work can be extended with the knowledge 

obtained from the above approaches. The knowledge gained can likely provide new 

insights to the organizational framework of cortical folding discussed above. 

 

 

1.5 Discussion 

 

A brief tour has been given to the subjects of concern to the thesis work: the biological 

process of cortical folding and cortical morphology. It should be emphasized that this 

thesis work is an interdisciplinary effort to understand brain development and cortical 

folding. The methods designed and chosen need to suit the specific neuroscience 

questions. The evaluation of the validity and quality of the results should be based on 

neuroscience as well. It is our hope that the knowledge gained through this work may add 

to the existing knowledge base of neuroanatomy and neuroscience. 

 

The methods developed and used, together with some example results can be found in 

Chapter Two and Three. An application of such analysis to the understanding of 

handedness can be found in Chapter Four. Chapter Five present the dictionary and 

Chapter Six gives a summary of the knowledge gained in terms of cortical folding 

patterns through this work.  
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Chapter Two:  Clusters of folds 

 

2.1 Summary   

 

In this chapter, the concept of using clustering algorithms to analyze cortical folding is 

introduced. The effort of selecting the suitable shape descriptor and the development of a 

clustering algorithm specific to cortical folding analysis is described. Some interesting 

results obtained are presented and discussed. 

 

 

2.2 Introduction to the analysis of cortical folding 

 

Human brain cortex folds to increase its surface area during development. To better 

understand the nature and the degree of variability, some real brains are presented in Fig 

2.1 (as Fig 1.1, shown here for easier inspection). In the first brain, the superior frontal 

sulcus (the green fold) is broken into three pieces, while in the second and the third brain 

it is continuous as shown in most textbooks. Refer to the intermediate frontal sulcus (the 

cyan fold): in the first brain it is broken into three pieces, in the second brain there exists 

less discontinuity, while in the last brain it is extremely discontinuous to the extent that it 

is hard to be labeled in the conventional naming framework.  

 

 

 

Fig 2.1 The variability in brain folding patterns  

 

Indeed, the traditional naming system cannot account for the huge variability in brain 

folding patterns. Furthermore, the naming system is based on external morphological 
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criteria alone, the three-dimensional complexity of the folds is hidden and thus cannot be 

accounted for. 

 

This leads to the goal of our current effort, try to understand better the variability of 

sulcal folding patterns in a comprehensive manner. This includes the description of the 

various folding patterns. The possible link of certain characteristic folding patterns to 

neurological interpretations such as pathology or behaviour will be explored as well. 

From the folds alone can we observe patterns characteristic of certain neurological 

diseases? The knowledge of folding patterns could also be added to the traditional 

naming system to better characterize the brain morphology. Eventually, this information 

may be used by the artificial vision system such as BrainVISA for improving automatic 

fold recognition. 

  

The most detailed description of the sulcus variability has been proposed in the atlas of 

Ono (Ono et al., 1990). Here we try to approach the analysis of folding patterns in a more 

systematic way. In one sense, we attempt to automate the work performed by Ono. With 

the help of computer algorithms, a large amount of subjects can be analyzed in a more 

consistent manner than visual inspection by human eyes. It is important to keep in mind, 

however, that this type of cortical folding analysis up till now can only be performed by 

experienced neuroanatomists. Due to the huge variability that exists, this type of analysis 

is challenging even for an expert. So to automate this type of analysis, even partially, is 

not a trivial task.  

 

What are these cortical folding patterns that we are looking for? In the preliminary study 

these patterns are loosely defined as a group of brains that show a characteristic trait 

which distinguishes them from the other brains. This characteristic could be based on the 

3D shape of the fold, the surface area of the fold, the degree of curvature, the number and 

position of interruptions etc. Since this type of unsupervised learning on the shape of the 

folds has never been carried out systematically before, we do not have a clear definition 

of how to define the resulting patterns to start with. It is also very likely that no single 
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finite set of parameters (angles, length, depth etc) can be defined to characterize the 

patterns found. For now, we simply define a pattern to be a certain characteristic that can 

distinguish one group of folds from another.  

 

We expect to observe characteristic folding patterns in only a subset of the population. 

Refer back to Fig 2.1, suppose we found two patterns for the superior frontal sulcus (the 

green fold): one being broken into three pieces, the other being continuous. It is important 

to keep in mind that, in a given dataset, it is likely that only a subset of the subjects would 

have one of the two patterns. The rest of the subjects would not fit these two pattern 

descriptions. The computer algorithm used for clustering should be able to choose the 

subset that contains interesting patterns.  

 

 

2.2.1 Clustering algorithms 

 

Now the general goal is defined, we discuss the method that can be used to tackle such a 

problem of sulcal pattern discovery. Clustering analysis would need to be carried out. 

Clustering is the unsupervised classification of patterns (observations, data items, or 

feature vectors) into groups, or clusters. It is distinguished from the supervised learning 

by the fact that there are no training examples to teach some a priori output. Clustering 

analysis is performed often when little prior information is available about the data; it is 

useful for exploration of the interrelationships among the data points, to make an 

assessment of their structure (Jain et al., 1999). Clustering is an essential component of 

data mining, a process of exploring and analyzing large amounts of data in order to 

discover useful information (Berry and Linoff, 2000). While there are still debate toward 

the ultimate definition of clustering, a rough definition is nonetheless possible: for a 

given set of data points and a similarity measure, we regroup the data such that objects in 

the same cluster are similar and objects in different clusters are distinct (Jain and Dube, 

1988). 
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Large number of clustering algorithms exists in literature from various domains, ranging 

from pattern recognition, artificial intelligence, image processing, statistics, and applied 

mathematics to marketing, psychology, and biology. In each field, a set of algorithms 

tend to dominate for historical and practical reasons. For example, the hierarchical-based 

approach is more used in the artificial intelligence community, while the model-based 

approach is more used in the statistical community. While exciting new advancement has 

been made in clustering algorithm development, challenges still remain. Part of the 

reason is that domain specific problems often require the use of specifically designed 

algorithms, general clustering algorithms are often not sufficient. The behavior of real-

life situations is always complex, unpredictable challenges rise, demanding more 

sophisticated or more specific solutions. 

 

There is no clustering technique that is universally applicable for uncovering the variety 

of structures present in multi-dimensional datasets. Not all clustering techniques can 

uncover all the clusters present with equal facility, because clustering algorithms often 

contain implicit assumptions about cluster shapes. In reality, data hardly follow the 

“ideal” structures such as being hyperspherical or linear. Very often, a dedicated 

clustering algorithm performs slightly better than the existing ones on a specific 

distribution of patterns (Jain et al., 1999). Furthermore, it is difficult for humans to obtain 

an intuitive interpretation of the clustering results, especially for data in high-dimensional 

space.  

 

Clustering analysis is intensively used in Bioinformatics, especially in gene expression 

analysis and Microarray analysis. The application of clustering algorithms to the analysis 

of brain folding patterns is new, the behavior of existing algorithms would need to be 

studied, new algorithms suitable for this specific domain would need to be designed if 

necessary and consequently validated. 

 

In terms of the types of clusters, Lorr (Lorr and Maurice, 1983) suggested that there 

appear to be two types of clusters, compact clusters and chained clusters. For a compact 
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cluster, objects of the same cluster have high mutual similarity; usually a compact cluster 

can be presented by a representative point or center. A chained cluster is a set of data 

points in which every member is more similar to other members in the cluster. Any two 

data points in a chained cluster are reachable through a path. Refer to Fig 2.2 to have an 

intuitive understanding of these two types of clusters. 

 

 

Fig 2.2 Compact and Chained clusters 

The chained clusters are typically elongated clusters (black) due to the chaining effect. The compact 

clusters are typically more dense and round-shaped (purple). 

 

In the application of clustering analysis to the discovery of cortical folding patterns, it is 

important to define the type of clusters that we are looking for. In the context of cortical 

folding, the compact clusters would be the groups of subjects whose sulcal patterns are 

very similar to each other. The chained clusters would be the groups of subjects that are 

not as highly similar as in the compact clusters, but there exist a higher similarity among 

subjects within the group than subjects outside the group. These two types of clusters 

could both be very interesting and convey important yet different information regarding 

the nature of the dataset. 

 

Clustering algorithms can be divided into two categories: hard or crisp clustering and 

fuzzy or soft clustering. In hard clustering, each data point belongs to one single cluster; 

in fuzzy clustering, each data point belongs to two or more clusters with certain 

probabilities. Hard clustering algorithms are categorized into two kinds, hierarchical and 

partitional algorithms. Hierarchical algorithm can be further divided into agglomerative 

and divisive approaches (Gan et al., 2007). A sketch of the general structure of clustering 

algorithms is given, (see Fig 2.3). 
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Fig 2.3 Different types of clustering methods (as in (Jain et al., 1999) 

 

A partitional method constructs N clusters. That is, it classifies the data into N groups, 

which together satisfy the requirements of a partition. For this type of algorithm, each 

group must contain at least one object; and each object must belong to exactly one group. 

Partitional methods are applied if one wants to classify the objects into N clusters; N is 

usually given by the user and fixed. In general, the algorithm tries to find a “good” 

partition in the sense that objects of the same cluster should be close or related to each 

other, whereas objects of different clusters should be far apart or very different. Fig 2.4 

illustrates the principle of a partitional algorithm. When N given to the algorithm is 3, the 

data points are divided into three partitions or three classes by the algorithm.  

 

 

Fig 2.4 Cluster data using partitional algorithm 

Hypothetical data divided into three clusters by a partitional algorithm. 

 

Hierarchical algorithms, on the other hand, do not construct a single partition with N 

clusters; instead they deal with all values of N in the same run. There are two kinds of 
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hierarchical techniques: the agglomerative (bottom-up) and the divisive (top-down). 

Agglomerative algorithms begin with each element as a separate cluster and merge them 

in successively larger clusters. Divisive algorithms begin with the whole set and proceed 

to divide it into successively smaller clusters.  

 

      

Fig 2.5 Sample data distribution and the formation of agglomerative clustering tree 

 

The principle of agglomerative clustering is illustrated in Fig 2.5, where a diagram of the 

agglomerative process is shown. Groups are formed consecutively at each iteration, until 

at the last step all elements are in the same group. In divisive clustering the arrow of 

dataflow is reversed. Notice that the hierarchical tree can provide information on the data 

structure itself. From this tree we can deduce various information: points “b” and “c”, and 

points “d” and “e” are the closest pairs ; “f” is closer to the “de“ group than to the “bc” 

group ; “a” is an outlier point that was joined to the rest of the points only at the very end. 

 

 

2.2.2 Clustering analysis on cortical folding 

 

Which type of clustering algorithm is more suitable for cortical folding analysis, 

partitional or hierarchical? To make a decision we need to go back to the goal of our data 

analysis: finding patterns of folds. Brain folding is a chaotic phenomenon. As we have 

seen earlier, there is a huge variability in the patterns of folding. Not every brain in the 

data set need to belong to a particular pattern. We are looking for reasonably large groups 
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of brains that exhibit a similarity in folding. Hence, we are not trying to classify each 

brain in terms of its folding pattern. Practically, we want to be able to visually inspect the 

clusters found and validate them. This means we want to “fish out” the tightest elements 

of each of the clusters. These elements are expected to be the closest in shape, and the 

best representatives of a particular pattern of folding.  

 

To achieve this goal, we need an algorithm that can find the cluster “centers”, the tightest 

elements of a given cluster. More importantly, we want an algorithm that can discard the 

outliers. Therefore, the goal is not to divide the elements into N clusters. Agglomerative 

methods can help us achieve such a goal. This algorithm groups the tightest elements 

first; it guarantees that the outliers would only be joined at the end of the process. So if 

we only consider the clusters formed at the beginning of the clustering process, these 

outliers would be discarded automatically.  

 

The main drawback of agglomerative algorithm and of hierarchical algorithm in general, 

is that it is computationally expensive, and it cannot correct a possibly wrong grouping at 

a later step. However, for the purpose of a preliminary study, it is sufficient to provide 

some insight into the folding patterns. For a more complete study in the future, algorithm 

that is less expensive and performs reasonably well for discarding outliers could be 

further explored. Refer to Chapter Six for a more detailed discussion. 

  

In the rest of this chapter, the selection of descriptors for clustering analysis, and the 

development of a clustering algorithm dedicated to sulcal pattern analysis are discussed 

in detail. Validations of the method are then presented, followed by some interesting 

patterns found. 

 

 

2.3 The shape descriptor 

The clustering analysis starts by the selection of shape descriptors. How to represent the 

shapes is an important choice which would consequently decide the nature and quality of 
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the results. In the following, the initial effort is described first to illustrate the specific 

problems and difficulties encountered during the first try of finding patterns. Shape 

descriptors more suitable for such studies are further explored, using more sophisticated 

algorithms. 

 

2.3.1 The initial effort  

 

As a first trial of the discovery of patterns, we started by selecting a set of folds; some 

morphometric features of each fold were selected to characterize their shapes and 

relations. The central sulcus and the Sylvian fissure were selected due to the fact that they 

are among the biggest and the most stable folds (see Fig 2.6). The selected features are: 

the surface area of the two sulci, the shortest distance between the bottom of the central 

sulcus and the Sylvian fissure, and the angle between the two sulci. 

 

 

Fig 2.6 The Central Sulcus (red) and the Sylvian fissure (blue), highlighted on brain 

surfaces. 

The simple clustering algorithm K-means was used to cluster the data as a first try. K-

means is a greedy algorithm for partitioning the n samples into K clusters, so as to 

minimize the sum of the squared distances to the cluster centers (MacQueen, 1967). This 

clustering algorithm is simple, intuitive and fast, weaknesses exist however. In particular, 

it is not robust, the initialization influences the result, and the result depends on the value 

of K chosen. There is no simple solution to these problems. Furthermore, because the 
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folds are complicated 3D objects, it is very difficult to compare their forms to detect 

similarities. The result of the k-means clustering was inspected and no strong evidence 

was found to support a good clustering: no obvious pattern could be detected from the 

resulting clusters.   

 

To be able to obtain convincing clustering results, it became evident that an algorithm 

that can select the most similar folds is needed. In other words, the clusters found need to 

be compact, the corresponding sulci in the cluster would be expected to be very similar in 

shape. The identification of such highly similar subset of folds provides a better chance 

for a describable 3D folding pattern. This algorithm should also be robust and outlier-

proof. In terms of the information we use as the input to the clustering algorithm, we need 

some descriptors that can capture more precisely and more comprehensively the 

information of the 3D forms. It is difficult to choose interesting features by hand; also as 

the number of features increases we encounter the problem of the curse of dimensionality 

(Bellman, 1961). 

 

This very first try illustrates the importance of selecting a good shape descriptor, where 

comprehensive information on the cortical folds should be reliably coded. It also shows 

the special challenges of clustering on very noisy datasets, due to the huge variability that 

exists in folding patterns. This motivates the selection of the moment invariant as a shape 

descriptor, which is discussed next. This first try also motivates the design of a dedicated 

clustering algorithm which is discussed in the section after. 

 

 

2.1.1 The 3D moment invariants 

 

The 3D moment invariants have been proposed as an interesting set of descriptors for the 

study of the shape of cortical sulci because they can be computed for any topology 

(Mangin et al., 2004a). Hence they allow the management of various sulcus interruptions. 

The construction of these descriptors filters out the influence of localization, orientation 
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and scale from the 3D coordinate moments in order to obtain pure shape descriptors. 

While their theoretical derivation is complex, they can be computed in a simple and 

robust way from a black and white image defining an object. In the following, we use 

only the 12 invariants derived from the coordinate moments up to the power three.  

 

Here we give a brief insight into the computation of the 3D moment invariants. The 3D  

moments of order n = p+q+r, n∈N of a 3D density function ρ(x,y,z) are defined by 

 

 

 

For our purpose ρ(x,y,z) is equal to 1 inside the object of interest and 0 elsewhere, 

because we deal with objects defined by binary images. The moments of order higher 

than 3 are not considered in this report; but the derivation of moment invariants is 

theoretically possible for any order. By discarding moments of order higher than 3, a 

small set of global descriptors are obtained which embed simple shape information, such 

as bending, tapering, pinching etc. The derivation of the invariants aims at filtering out 

the influence of localization, orientation and scale on the 3D moments in order to obtain 

“pure shape” descriptors.   

 

This derivation is done in three steps. First, translation invariance is obtained using the 

centroid of the object as the origin of the coordinate system, leading to the definition of 

the central moments denoted by Mpqr. Second, a new set of moments invariant to scale, 

denoted by μpqr, is obtained by normalizing central moments with the suitable power of 

the volume M000: 
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Finally, the invariance to 3D rotations is derived from sophisticated group theory 

techniques usual in quantum mechanics. These techniques combine decomposition into 

harmonic polynomials and tensor calculus beyond the scope of the thesis work (Lo and 

Don, 1989). The resulting invariants turn out to be homogeneous polynomials of the 

central moments made up of several hundreds of terms. Because of various symmetries, 

we get only 12 invariants denoted by I1, I2, …, I12 in the following.  

 

For the work reported here, the moment invariant data are calculated using the software 

brainVISA (http://brainvisa.info). This data is then used as input to the clustering 

program. The invariance to scale and rotation of the descriptors provided by this 

implementation was checked elsewhere through the resampling of a couple of objects 

with 28 different orientations and several scales (Mangin et al., 2004a). The variability of 

the invariant estimation resulting from this resampling was always less than 5% (it should 

be noted that perfect invariance would be achieved only for continuous objects).  

 

 

2.3.2 3D Moment invariants as sulcal shape descriptors 

 

Some investigations are carried out to verify that the set of moment invariants is a 

reasonably good shape representation to study the folding patterns.  

 

To confirm that similar shapes lead to similar representations, we verified first that a 

small shape variation leads to a small variation of the invariants. This is mandatory for 

our clustering purpose. Our experiments consist in creating series of shapes sampling a 

continuous shape transformation. An example of the resulting behavior of the invariants 

is shown in Fig. 2.7. It is impossible to claim from these simple investigations that the 

invariants vary smoothly whatever the underlying shape, and we will see further that we 

discovered some exceptions. Nevertheless, the behavior of these invariants seems to be 

continuous in general, except for two of them. 
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Studying the variability of the invariants across brains, we noticed that I6 and I10 were 

presenting bimodal distributions for some sulci. One mode was made up of positive 

values and the other one of negative values. There is no apparent correlation between the 

shape and the sign of I6 and I10. Furthermore, we managed to create slowly changing 

series of simulated shapes giving sign changes in I6 and I10. Such a series is illustrated in 

Fig. 2.8. This series evolves from a strong S cylinder towards a flat S by shortening both 

arms simultaneously. Notice that while most of the invariants behave smoothly all over 

the evolution, I6 and I10 fluctuate unexpectedly. They change sign three times very 

rapidly. To investigate this behavior further, we designed a new series using the finest 

grain changes we could afford with our voxel-based representation (see Fig. 2.9). We 

discovered that adding only one single voxel could trigger the sign change. We do not 

know yet what kind of property would emerge if the shape space was sampled further 

with smaller voxels. The behavior of the invariant could be continuous but very chaotic. 

Therefore, for further studies, we have chosen to discard I6 and I10 from our invariant-

based representations. It should be noted that our observation of the sign change of these 

two invariants has never been reported elsewhere. 3D moment invariants, indeed, have 

mainly been considered as curiosities, because of the complexity of their derivation. 

Therefore, they were almost never used for actual applications. The invariants are made 

up of a sum of several hundreds of homogeneous polynomials of the central moments. 

This complexity is bound to hide some singularities. In fact we observed some sign 

change for a few other invariants, but for less than one percent of our total dataset. 

Therefore we decided to keep the ten remaining invariants as the basis of the 

representation used in this work. 
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Fig 2.7 The variation of moment invariants corresponding to the change in 3D 

shape.  

I1, I2, I12, I10, I6, I4 and I3 are the seven moment invariants illustrated. As the shapes vary, following a 

trend shown by the four 3D shapes on top, these invariants vary following smooth curves.  

 

 

Fig 2.8. Variation of moment invariants corresponding to the change in the 3D 

shape of the objects.  

On top, the trend of the change in shape is depicted; the upper and the lower arm of the object are shortened 

gradually. Seven out of the twelve moment invariants are drawn on the graph, notice that while the rest of 

them are smoothly changing in value when the shape change gradually, I6 and I10 change signs abruptly. 
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Fig 2.9. The variation of the moment invariants corresponding to the fine change in 

the 3D shape of the objects.  

On top, the trend of the change in shape is depicted; one voxel is removed at a time, from the lower arm of 

the object. Seven out of the twelve moment invariants are drawn on the graph, notice that while the rest of 

them are smoothly changing in value when the shape change gradually, I6 and I10 change signs abruptly. 

 

 

Fig 2.10 The distribution of different sulci.  

The data of the three sulci, the cingulate sulcus (cyan), the central sulcus (green) and the parieto-occipital 

sulcus (magenta) are plotted, using the first two axes of PCA as the X and Y coordinates. Dataset of 36 

manually labeled brains is used, respective locations of the three sulci are shown on top. 

 

A second investigation aims at verifying that the information on the shape embedded in 

the invariants can distinguish the kind of patterns that characterize the cortical folds. For 

this purpose, we merge the datasets of several sulci, and we plot the resulting dataset 

using the two first axes of a principal component analysis. In a lot of cases, the plot is 
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made up of several clouds of points corresponding to the different sulci. These clouds 

overlap more or less according to the choice of sulci. The fact that each sulcus leads to a 

consistent cloud means that the invariant-based representations can be used to cluster 

groups of folds with similar shapes. The fact that some of the clouds overlap would 

simply mean that some sulci have similar shapes. This is not a problem for achieving our 

objective. 

 

An example is shown (Fig 2.10) using three different sulci: the cingulate sulcus (cyan), 

the central sulcus (green) and the parieto-occipital sulcus (magenta). A dataset of 36 

manually labeled and normalized brains is used. Using the two first PCA axes, the three 

sulci are almost perfectly distinguished. Notice also the large variability of the cingulate 

sulcus distribution (cyan) compared to the two other sulci. The central sulcus (green) 

leads to the tightest cloud, which is consistent with the fact that this sulcus is one of the 

most stable ones. Fig 2.11 is showing that one of the sources of variability of the 

cingulate sulcus pattern is its frequent interruptions. 

 

In Fig2.11 sibling to Fig 2.10, some of the dots have been replaced by a snapshot of the 

corresponding sulcus. The points of view chosen for these snapshots correspond to the 

3D renderings of the brain shown in the box at the top. This graph further confirms that 

the moment invariants provide reliable representations of the 3D shapes of the folds that 

vary smoothly across the shape space. It is possible, indeed, to see gradual changes of the 

shape of the folds. For example, consider the cingulate sulcus: at the bottom left we see 

sulci more fragmented, while towards the top right corner, the shapes become more 

continuous. To conclude, the moment invariants can be considered as good descriptors of 

the 3D shapes of the folds. 
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Fig. 2.11 The distribution of different sulci, with the sample shapes.  

The data of the three sulci, the cingulate sulcus (cyan), the central sulcus (green) and the parieto-occipital 

sulcus (magenta) are plotted, using the first two axes of PCA as the X and Y coordinates. A normalized 

dataset of 36 manually labeled brains is used. The shapes of some samples randomly chosen are plotted. 

The corresponding locations of the three sulci are shown on top. 

 

 

2.4 The clustering algorithm for sulcal pattern discovery 

 

2.4.1 Agglomerative hierarchical clustering 

 

Once the sulcal form descriptor is determined, the next step is to design an algorithm 

dedicated to sulcal pattern analysis. Following the discussion on clustering algorithms, 

the hierarchical approach to clustering is considered suitable for finding compact clusters 

and discarding numerous outliers. This method is thus chosen for the preliminary study. 

 

There exist many agglomerative algorithms, which only differ in their definition of 

between-cluster dissimilarity (Kaufman and Rousseeuw, 1990). The most common ones 

are the nearest neighbor method (single-linkage), the furthest neighbor method 
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(complete-linkage) and the unweighted pair-group average method (average linkage). In 

the nearest neighbor method, during agglomeration, the dissimilarity between the cluster 

R and the cluster Q is the smallest dissimilarity between an object of R and an object of 

Q. On the other hand, the furthest neighbor rule uses the largest dissimilarity between an 

object of R and an object of Q. In average-linkage, the dissimilarity between clusters R 

and Q is taken to be the average of all dissimilarities d(i,j), where i is any object of R and 

j is any object of Q.  

 

The nearest neighbor rule is not always appropriate. Whenever both clusters come too 

close to each other, even when this happens at just one point, the clusters immediately 

stick together. Notice that they cannot be separated at later steps. This is called the 

chaining effect because many objects may be chained together resulting in a drawn-out 

cluster, some members of which are very far from each other. This algorithm tends to 

give elongated clusters because of the chaining effect. What we are more interested in 

here are the more round shaped clusters. 

 

The furthest neighbor rule possesses the opposite property. It tends to produce very 

compact clusters. Every member of such a cluster must be close to every other member of 

the same cluster, outlying points will not be incorporated. The resulting clusters are not 

necessarily well shaped, because clusters will not be joined when they contain at least 

one pair of too distant points. Fig 2.12A illustrates the typical clusters formed by using 

this method. 

 

 

A                                                    B 

Figure 2.12 Typical clustering result of complete-linkage and average-linkage. 
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Whereas single linkage usually leads to too few clusters which are drawn out, complete 

linkage often yields the opposite effect: many clusters with small within-cluster 

dissimilarities. As a consequence, relatively similar objects will often stay in different 

clusters for a long time, hence complete linkage is sometimes said to be space dilating. 

Single linkage will often bring rather different objects into the same cluster due to the 

chaining effect, and therefore said to be space contracting. The necessity to compromise 

between these two extremes has lead to group average linkage and other methods, which 

are space conserving (Kaufman and Rousseeuw, 1990). The group average technique is 

aimed at finding roughly ball-shaped clusters. Being rather robust, this method can even 

deal with more potato-shaped clusters, (see Fig 2.12B). 

 

In our data analysis, we want to use a robust method that is space conserving, and we 

want to find clusters with the ball-shape. So the group average method is used for the 

clustering. 

 

 

2.4.2 Merging of clusters: tight-head join  

 

Regarding the detail of the algorithm, we have N clusters at the beginning. We proceed 

by successive fusions until a single cluster is obtained containing all the objects. We start 

by constructing a dissimilarity matrix, which records the dissimilarity coefficients of the 

samples pair-wisely. Dissimilarity coefficients between objects are obtained here by the 

computation of distances. 

 

At the first step, the two closest or most similar objects are joined. In the second and all 

the subsequent steps, we will want to merge the two closest clusters. The dissimilarity 

d(R,Q) between clusters R and Q is defined as the average of all dissimilarities d(i,j), 

where i is any object of R and j is any object of Q. We update the dissimilarity matrix 

each time a new join occurs. 
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In order to extract a partitioning from a hierarchy, we have to choose an appropriate 

level. Various stopping rules were proposed to select a suitable number of clusters based 

on the distribution of clustering criteria (Mojena, 1977). Two graphs are provided to 

illustrate the idea of different stopping rule and their corresponding clusters, (see Fig 

2.13). In Fig 2.13A, two stopping rules are illustrated (the earlier stopping rule in green, 

the later stopping rule in purple). In Fig 2.13B, the two resulting cluster groups are 

presented. The green cluster groups are discarding “f” and “a”, the purple cluster groups 

are discarding only “a” instead. The cluster groups we obtain from the agglomerative 

clustering are different depending on when we stop the process.    

 

In the clustering algorithm, as discussed earlier, we want to be able to extract out the 

center elements of a given cluster. Each time a new element is added to a cluster, we 

want to guarantee that the center elements remain at the head of the cluster list. To 

achieve this goal, we need a different join algorithm, so that after each join, we reorder 

the elements of the cluster in terms of tightness. Note that this algorithm does not 

guarantee that the center elements are the tightest elements of the cluster as well. We 

consider the clusters that are formed earlier in the hierarchical process to be more 

important. For evaluation by visual inspection, we can then simply take the n elements at 

the head of the clusters.  

A        B  

Fig 2.13. Two different stopping rules.  

Depending on the stopping rule, the iteration where we stop the agglomerative or divisive process is 

different. A: Shown in green and purple are two different stopping rules. B: The clusters in green are the 

ones resulting from the green stopping rule; the purple clusters are resulting from the purple stopping rule 
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The goal is then to keep the n objects at the center of a given cluster (the objects that we 

are interested in) at the head of each cluster list. First, we define a “core” cluster to mean 

a cluster with at least C elements. We are only interested in the big enough core clusters. 

How C is chosen will be discussed later in this chapter. For now, it is enough to describe 

these core clusters to be the tight clusters of brains with a similar pattern that could not 

have occurred purely by chance.   

 

Here is how we join two clusters; we call it “tightHeadJoin”. The head is defined to be 

the C elements at the beginning of the cluster list that we are interested in. If both clusters 

have less than C elements, the elements are ordered from the most tight to the least tight; 

if both clusters have more than C elements, the cluster with the tighter head (the first C 

elements) is put in front; if one cluster has more than C elements, the other has less than 

C elements, the one with more than C elements is put in front. 

 

To reorder the head of the clusters, we start by picking out the tightest pair of the 

elements from the merged group of two clusters. These two elements are set as the new 

head. For the rest of the steps, we compare distance from the mean of the head to each 

element left in the merged group; the closest element is picked to be added to the end of 

the head to form a new head. This process is repeated until all the elements are added to 

the head. 

 

Note that in a situation depicted in Fig 2.14, this algorithm will not give the tightest 

group of elements as the head. The algorithm will give “a”, “b” and “c” as the three-

element head, while the tightest group with three elements is “d”, “c” and “e”. 

Nonetheless, the resulting head elements given by this algorithm are useful and 

interesting in the sense that the elements grouped together earlier during the hierarchical 

process are given more importance and put in front. The objects grouped earlier during 

the agglomerative process are tighter groups compared to the ones grouped later in the 

process. The subjects grouped earlier in the agglomerative process are expected to be 

interesting when we try to observe the similarity in 3D shapes of these objects. Keep in 
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mind that only the “head” of each cluster is used for further processing and evaluation, so 

only the ordering of the “head” needs to be guaranteed. 

 

 

Fig 2.14. An example distribution.  

A hypothetical data distribution to illustrate the characteristic of the “tightHeadJoin”. 

 

 

2.4.3 The stopping rule based on competition 

 

So how to pick out the most “interesting” folds? How to find the corresponding clusters 

of brains for these folds? The goal is to pick out the sulci that are most likely to exhibit 

possible patterns of interest, we are not attempting to compose an exhaustive list. 

Because the results are difficult to analyze (as discussed in section 2.3.1), the idea we use 

to carry out this selection process is a competition among the different sulci, and a 

competition among the different clusters formed at each step of the agglomerative 

clustering process. 

 

                   

A                                                                    B       

Fig 2.15. Sample distribution A and B                      

 

To have a more intuitive understanding, refer to the two distributions depicted in Fig 

2.15. To “fish out” patterns, Fig 2.15A is considered to be less interesting than Fig 
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2.15B. The reason is that from the distribution depicted in Fig 2.15B, we can observe two 

possible local distribution centers that could be corresponding to two patterns.  In terms 

of choosing the clusters for one particular sulcus, there exist many possibilities depending 

on the stopping rule. The clusters obtained change depending on when we stop the 

agglomeration process. We call the clusters found at a particular iteration of the 

agglomerative process a cluster group. 

 

The “interesting” cluster groups are defined to be the ones with tight elements within the 

cluster; and with large dissimilarity among clusters. A ratio is used to characterize the 

clusters, and different clusters from different folds compete based on this ratio. The folds 

whose clusters have the highest ratios are selected. This competition is really a selection 

based on the characteristics of the clusters; and these characteristics are described by the 

ratios. 

  

We first define the distance between two clusters to be the distance between the centers 

of each cluster. When there are more than two clusters, the distance among the clusters is 

calculated as the average pair-wise distance between cluster centers. The compactness of 

a cluster is defined as the average pair-wise distance to the median. The ratio is defined 

as the average distance divided by the average cluster compactness. The ratio allows us to 

find cluster groups whose clusters are relatively tight within a given cluster, yet the 

clusters are far from each other. The ratio r  is computed for clusters formed at each 

iteration of the agglomerative clustering process. The iteration that wins at the end is the 

one that has the highest ratio r . Notice that there could be more than one iteration 

winning. This competition is carried out among different sulci and combination of sulci. 

The sulci are then ranked according to the ratio. The winning cluster groups of the 

winning sulci are expected to have some strong patterns, and would be evaluated further.   

 

Now that the quality of the clusters found can be evaluated by the ratio introduced, we go 

back to the issue of choosing C, the size of the “head” of a cluster. C is the size of a core 

cluster as discussed in the previous section. To find this number, random sets from 
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Gaussian distribution using the covariance matrix of the original data sets are generated. 

The same competition using the random sets is then carried out. For a given C, a cluster 

group obtained with real data is considered significant only if its ratio is better than the 

best ratio obtained with the random set. This procedure is using the parametric sampling 

process (Good, 2004), the p-value of the clusters formed at each step can be estimated, 

clusters with the best p-values can be studied further. 

 

In the clustering literature, Ray and Turi (Ray and Turi, 1999) introduced a compactness-

separation-based validity measure to determine the number of clusters in k-means 

clustering. Mintra, the intracluster distance is defined as the mean square distance to the 

cluster center. Minter, the intercluster distance is defined as the square distance between 

the centers. A good clustering result should have a small Mintra and a large Minter. The 

validity measure V is defined as Mintra/Minter. V is to be minimized. The ratio used in 

the designed algorithm is the same as this compactness-separation-based validity 

measure. In our algorithm, the validity measure is used for the selection of the best 

stopping rule, instead of the selection of the best number of clusters. 

 

To determine the optimal number of clusters, C=2 up to C=number of subjects in the 

sample can be tried, the validity measure V can be calculated for each C, that gives the 

smallest V is then chosen to be the optimal cluster number. The number of clusters is 

automatically decided when the stopping rule is found. 

  

 

2.4.4 Bagging and final clusters 

 

The clustering algorithm described is not very stable, in the sense that a small change in 

the sample leads to large variations in the result. Fig 2.16 illustrates this problem. 

Relatively small variations of the sample set leads to large enough differences in the 

resulting clusters. To add stability to the clusters found by using the above algorithm, 

bagging is used. This method creates a set of clusters from a given dataset. Each group of 
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clusters is extracted from a bootstrap of the dataset. Note that the bagging technique 

improves the estimate only if the learning algorithm is unstable. It degrades the estimate 

if the algorithm is stable. As it is demonstrated that our original algorithm has stability 

issues, bagging is thus suitable to resolve this problem. 

 

 

Fig 2.16 Resulting clusters on bootstrap samples 

The three images show three different datasets generated from the original dataset by bootstrap. The 

clusters obtained are marked in different colours (black, red, blue and green). PCA is used for visualization. 

It can be observed that a slight variation of the sample leads to large enough differences in the resulting 

clusters. This difference in the clustering results is both in terms of the number of clusters found and the 

location of the clusters found. 

 

In the method validation section, it is shown that the bagging approach greatly improves 

the resulting clusters. Thus the bagging technique is integrated into the clustering 

algorithm. The resulting algorithm is summarized in the next section. 

 

Once the salient points are found from each of the bootstrap samples, they are gathered 

together as the new data points for the final clustering step. Since the salient points found 

in the bootstrap samples are very selective, for this work a simple K-means or 

aggomerative kind of algorithm is considered sufficient to find the final cluster centers. In 

the work presented in this chapter, a K-medoid algorithm is used, which is a partitional 

clustering algorithm related to the K-means algorithm. In contrast to the K-means 

algorithm, K-medoid algorithm choses real data points as centers. In this implementation, 
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Partioning Around Medoid (PAM) is used as a K-medoid clustering algorithm (Kaufman 

and Rousseeuw, 1990). The characterization of clusters in PAM is by the representatives 

of the clusters, the medoids. Compare with K-means, PAM is more robust by minimizing 

a sum of dissimilarities instead of a sum of squared Euclidean distances. A medoid is 

defined as an object of the cluster, whose average dissimilarity to all the objects in the 

cluster is minimal. A measure called Silhouette can be used to select the number of 

clusters. The Silhouette method is as follows:  

if a(i) is defined as the average dissimilarity of i with all other data points within the 

cluster, and b(i) is defined as the average dissimilarity of i with all other data points in 

another cluster which has the lowest average dissimilarity to i, the Silhouette measure s(i) 

can then be defined as 

 

                      

 

a(i) measures how i is dissimilar to its cluster; b(i) indicates how i is matched to its 

neighbouring cluster;  s(i) is a number within the range from -1 to 1, a value close to one 

indicates that i is properly clustered, a value close to -1 would indicate that i is better 

clustered to its neighbouring cluster. The average s(i) of the whole dataset thus measures 

the quality of the clustering. Using this measure, the appropriate number of final clusters 

can be estimated. 

 

 

2.4.5 The PCBB algorithm 

 

Adding all the previous steps together, we summarize here the algorithms designed for 

cortical folding analysis, named PCBB, which stands for Partial Clustering by Bootstrap 

sampling and Bagging. The steps of the algorithms are described below and summarized 

in two flow charts (Fig 2.17A and Fig 2.17B). 
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Fig 2.17A Obtaining the best partial clusters 

The simulated samples are obtained by simulating a Gaussian distribution using the covariance matrix of 

the real dataset. The hierarchical clustering is run on the real dataset and all the simulated datasets, the step 

of the agglomeration where the best ratio is obtained is considered the step where the strongest clusters can 

be found. The quality of the clusters found at this step is verified by calculating the p-value. This value is 

calculated by counting the number of times that the simulated dataset performed better than the real dataset. 

 

Step 1: (Fig 2.17A) 

Agglomerative hierarchical clustering is performed; the agglomeration process is guided by an 

objective function:  

R = ∑ compactness of the clusters formed ⁄ ∑ distance among the clusters formed     

 

In each step of the agglomeration process, R is calculated. The p-value of the clusters formed at 

each step is then estimated by a parametric sampling process. Simulated distributions are 

generated using the covariance matrix of the real data, the same clustering process is applied to 

these simulated datasets and p-value is estimated by counting the number of times the simulated 

data have a better R score than the real data. Finally the clusters with the best p-value are 

chosen as the salient points for the next step of the algorithm.  
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Fig 2.17B Obtaining the best final clusters 

 

Step 2: (Fig 2.17B) 

The process described in step 1 is performed many times on the bootstrap datasets of the original 

data. A repertoire of salient points is identified to form the new dataset. A simple K-medoid 

algorithm (PAM) is then used to find the location of the final clusters. 

 

The goal of step one is to estimate the number of clusters and their size automatically. 

Notice that the clustering is “partial”, not all data points are assigned to clusters. The goal 

here is to extract the most interesting sample points that might contain strong and 

significant patterns. We are not trying to assign each point to a pattern. Note also that the 

p-values estimated here are only used in the ranking system to pick out the most 

“interesting” clusters; they are not used to perform statistical tests. 
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Step two is using the idea of bagging, the goal is to overcome the instability of the 

clusters found in the first step. The assumption is that the first step of the clustering on 

the bootstrap samples gives the strongest clusters and eliminates most of the noise. So in 

this step a relatively simple clustering algorithm is sufficient to identify the final clusters. 

 

The strong point of the PCBB algorithm is that it is very robust, also it makes no 

assumption that the clusters span the whole data space, as all the division-based 

clustering algorithms do. When we think about our problem of finding cortical folding 

patterns here, we are aware that the cortical folding process is very complicated. The final 

folding pattern of the brain is the end product of numerous chemical and mechanical 

forces acting on the brain, very well orchestrated throughout the time of brain 

development. Here we are not trying to model the folding process and explain all the 

variability we observe in folding patterns. Instead we are trying to identify some typical 

patterns that might exist in only a part of the population, but are significant and can give 

us some insight into the folding process and certain pathologies. So partial clustering is 

more relevant for this particular problem. 

 

 

2.5 Validation of the algorithm 

 

2.5.1 Simulated datasets 

 

To evaluate the performance of the PCBB algorithm, some experiments are performed on 

simulated datasets. The procedure and results are presented below. The dataset we use as 

a model for generating the simulated dataset is a real dataset made up of 36 brains, where 

each sulcus has been reliably labelled manually by a neuroanatomist. This dataset was 

used to train the sulcus recognition system of brainVISA. We chose the moment invariant 

data of the ten biggest sulci of each hemisphere for further analysis. 
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The simulated datasets are generated as follows: take the mean and covariance matrix of 

any pair of sulci, generate a new dataset using these same parameters. This gives a 

dataset with two known clusters. Then a series of noisy datasets are generated by adding 

10, 20, 30, 40 50, 60, 70, 80, 90, 100% noise to the new dataset. The noise added follows 

a Poisson distribution, within the min and max value of the original dataset in their 

respective dimensions. The mean and covariance matrix of the real sulci are used to keep 

the simulated data close to the distribution of the real data.  

   

Both the Gaussian mixture modelling algorithm (GMM) and the PCBB algorithm are run 

on these simulated datasets. The results are evaluated in terms of the number of clusters 

found and the distance from the cluster centres found to the real centres. GMM involves 

first fitting a mixture model, usually by the expectation-maximization (EM) algorithm 

(Duda et al., 2000). Some success has been shown using the Bayesian Information 

Criterion (BIC) to choose the right number of components. However, in general, equating 

a component of GMM with a cluster is questionable (Ray and Lindsay, 2005). In our 

experiments, we use the Mclust toolbox from R to run the GMM algorithm. Mclust is a 

state-of-the-art mixture-model-based clustering tool (Fraley and Raftery, 2002, 2006). 

We did two GMM runs for each dataset. The first run allows the algorithm to optimally 

select the structure of the covariance matrices using BIC, but without the initialization of 

the proportion of noise as a prior. In the second run the real proportion of noise in the 

dataset is given as a prior to the algorithm. 

   

Two comparisons are made to evaluate the quality of the clustering. First, the distance of 

the cluster centres found to the real centres are measured. When there are more cluster 

centres found by the algorithm than the real centres, only the two clusters closest to the 

real centres are taken into consideration. Second, the numbers of cluster centres found by 

the algorithm are compared for each simulated dataset.   

 

The result is shown in Fig 2.18 below: 
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Fig 2.18 The comparison of performances 

The first column shows the boxplot of the distance of the two closest cluster centres found by the algorithm 

to the real centres. (In the box plot, within the box is the data from the first to the third quartile, the dark 

line inside the box represents the median. Below the box shows the line of the minimum, above the box the 

line of the maximum, the outliers are shown as dots.) The x-axis shows the ten simulated datasets, averages 

across the pairs of sulci, with the percentage of noise from 10 to 100 percent. The results of the PCBB 

method is shown on the first row, the results of GMM without noise correction are shown on the second 

row, and the results of GMM with noise correction are shown on the third row.   

The second column shows the histogram of the distributions of the number of centres by the three 

algorithms, the third column shows the boxplot of the number of centres for the ten different datasets from 

10% to 100% noise. 

 

Results show that the PCBB algorithm is comparable to the GMM algorithm in terms of 

locating the centres of clusters. However, in terms of estimating the number of clusters, 

PCBB is more accurate and stable than the GMM algorithm, with increasing number of 

noise in the data. Feeding the GMM a percentage of noise during initialization does not 

seem to help the performance in this case. The result shows that PCBB is more robust 

than GMM for finding clusters in this particular problem. 
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2.5.2 Real datasets 

 

The clustering experiment is run on the 36 brain dataset used for generating the simulated 

data. The sample is normalized as follows:  

Normalized sample = (sample -median) / median of the absolute deviation from the median 

 

The clusters found and their corresponding forms are observed, one example on the 

analysis of the cingulate sulcus is given here to illustrate the stability of the algorithm. In 

Fig 2.19, we observe the forms of the patterns found. The first cluster has a pattern with 

an anterior interruption, the second cluster has a pattern with a posterior interruption, and 

the third cluster appears to be continuous. These patterns found are consistent with those 

described in the atlas of Ono, which stated that around 60% of the instances of the 

cingulated sulcus have no interruption, around 24% have two segments with a posterior 

interruption or an anterior interruption, and around 16% are divided into three segments. 

It should be noted that the size of the database used prevents the detection of rare 

patterns. Therefore, larger and more comprehensive databases will be required to achieve 

a more exhaustive pattern search. 

 

 

 

Fig 2.19 The clusters of the cingulate sulcus  

The image to the left shows the salient points found with 100 bootstrap samples. The image in the middle 

shows the final cluster centres found by the clustering algorithm. The X and Y-axis are the first and second 

dimensions of the PCA. The third image shows the shapes of the cingulate sulcus of the three 

corresponding clusters. 
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Next the PCBB algorithm is performed on three real and different datasets. Moment 

invariant data of the left cingulate sulcus is used. The clusters found are shown in Fig 

2.20 below. 

 

 

Fig 2.20 The clusters found on three different datasets 

The dataset is shown using the first two axes of PCA, as the X and Y axis. The first row shows one dataset, 

the second row shows another dataset, the third row shows the dataset composed by mixing the data of the 

first and the second datasets. The first column shows the salient points found by the first part of PCBB, 

using 100 bootstrap samples. The second column shows the final cluster centres found by the second part 

of the PCBB. 

 

Here two large real datasets are used, each containing 150 brains. The sulci are 

automatically identified and labelled by brainVISA. We observe that the PCBB algorithm 

is stable over different datasets. The bagging procedure used in the second part of the 

algorithm helps to achieve greater stability.  

 

 

2.6 Folding patterns 

Some of the strongest patterns found are shown and discussed next. The method has been 

applied to the ten largest sulci (Table 2.1) of the left and right hemispheres using the 

database of 36 manually labelled brains. From these 10 sulci, all the combinations of two 

and three sulci are taken, leading to 45 pairs and 120 triplets. This constructive approach 
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allows us to look for patterns at different levels of details or at different degrees of 

resolution. The motivation for building any pair or triplet of sulci stems from the idea that 

long range interactions could occur during the folding process, either because of long 

fibre bundles or because of correlated development of different brain areas. This 

constructive process could be pushed to the extreme, where we would study the pattern 

made up by all the sulci of the brain. It should be noted, however, that extending the 

approach to bigger groups than triplets would lead to intractable combinatorial explosion. 

Therefore, in the future, this multi-resolution strategy should be more selective, for 

example, larger groups can be built only from sulci close to each other in the brain. 

 

Among the 20 sulci (of the two hemispheres), three sulci provided a set of patterns 

endowed with a p-value lower than 0.01 (the left cingulate sulcus, the left inferior 

precentral sulcus, and the left superior frontal sulcus). The sulcus providing the best p-

value (0.001 for t = 4) is the left cingulate sulcus. Results based on the three sulci where 

the strongest patterns are found are presented below. Among the pairs and triplets, some 

patterns are found as well, one of the examples is shown below.  

 

We also use another set of 150 brains, with the sulci automatically labelled. This database 

was provided by the International Consortium for Brain Mapping (ICBM) and acquired 

in the Montreal Neurological Institute of McGill University. The automatic recognition of 

the folds is less reliable but still gives reasonably good results (Riviere et al., 2002). 
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Table 2.1 The ten sulci for folding analysis 

 

 

2.6.1 The cingulate sulcus 

 

The cingulate sulcus ranks the best in p-value. Three patterns are found (refer to Fig 

2.21). The first pattern is made up of sulci presenting a large anterior interruption, a 

second pattern is made up of sulci presenting a smaller and more posterior interruption, 

and a third pattern is made up of sulci appearing continuous. It should be noted that these 

patterns can not be inferred just from the number of connected components. Indeed, the 

sulci of the third pattern are only apparently continuous: some of them are made up of 

several connected components overlapping each other when the sulcus is viewed from 

above. In fact, the moment invariants are blind to connectivity. Therefore, these three 

patterns would be interpreted more reliably in terms of shape than in terms of 

interruption. For instance, the first pattern corresponds to sulci much deeper in the 

posterior part than in the middle, while the last pattern corresponds to sulci with more 

homogeneous depth. 
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It is not an accident that the cingulate sulcus provides the best p-value. This sulcus is one 

of the sulci with very varied shapes and many interruptions. It should be noted that the 

small size of the manually labelled database used here (36 brains) prevents the detection 

of rare patterns. Therefore, much larger databases will be required to achieve a more 

exhaustive pattern enumeration. 

 

To illustrate possible applications of our pattern inference process, we use the three 

patterns obtained with this database to mine the left cingulate sulci of another database, 

here the ICBM database. We selected in this database the closest samples to each of the 

three patterns. We observed that the shapes of these samples are consistent with the 

corresponding patterns (Fig. 2.21). Note that when the anterior part of the sulcus is made 

up of two parallel folds (fourth row of Fig. 2.21), it is equivalent to a deeper sulcus for 

the moment invariants. 

 

 

Fig 2.21 The three patterns detected for the left cingulate sulcus. Row 1,3,5: the four 

tightest instances of each pattern in manually labelled database. Row 2,4,6: the four closest instances to the 

above pattern centre in automatically labelled database. 

 

To project the patterns from the first database onto the second database, we classify the 

sulci according to the closest distance to the pattern centres. This classification attributes 

14 brains to the first pattern, 97 to the second and 35 to the third. It was found that the 
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percentage of females increases gradually from 36% in the first class, to 41% in the 

second and to 49% in the third (global percentage of female is 42%). 

 

2.6.2 The inferior precentral sulcus 

 

The sulcus that has the second best p-value is the precentral sulcus. Refer to Fig 2.22, 

two patterns are found, depicted on the first and the second row, each pattern contains 

three subjects. The precentral sulci (in green) are plot on the 3D rendering of the cortex 

for the six subjects. The central sulci are plot as a reference.  

 

The first pattern (first row on Fig 2.22) is more frequent, comparing with the second 

pattern; the sulci here are more elongated. Notice however that even though all of the 

folds are long, they are not always in the same orientation. The folds of the first and the 

third subjects have different orientation compare with the second. When observing the 

second row pattern, it can be seen that they contain the upper portion of the first pattern, 

the lower portion is likely either missing or not being identified as precentral sulcus.  

 

 

Fig 2.22 The patterns of the inferior precentral sulcus 

 

Indeed, in anatomical literature, a small fissure originating from the Sylvian fissure is 

seen that is called “sulcus subcentralis anterior” (Eberstaller, 1890). This sulcus 

sometimes unite with the lower end of the central sulcus, sometimes unites with the 

precentral sulcus or the diagonal ramus of the Sylvian Fissure. This information can be 
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useful to the automatic sulcal recognition system. The anterior subcentral sulcus is 

thought to be rarely present and not used by the previous versions of the sulcal 

recognition system of BrainVISA. The result of this pattern analysis inspired the addition 

of this sulcus to the naming system of the new version (Perrot et al., 2009a).   

 

 

2.6.3 The calcarine, collateral and central sulcus 

 

This example illustrates the possibility of finding patterns in sulci groups. Here the three 

sulci concerned are: the calcarine sulcus, the collateral sulcus and the central sulcus. Two 

patterns are found (Fig 2.23), which are illustrated in colour red and green, each pattern 

contains three subjects. The overall differences between the patterns can be easier to 

observe when they are plot together. The green group has a bigger calcarine sulcus, and 

the red group has a bigger and longer collateral sulcus. With respect to the central sulcus, 

the green group has the central sulcus closer to the other two sulci. It would be interesting 

to further explore the meaning of such differences. 

 

 

Fig 2.23 The patterns of the calcarine, collateral and central sulcus 
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A: The location of the calcarine sulcus, the collateral sulcus and the central sulcus. The calcarine sulcus is 

in brown, the collateral sulcus is in blue, the central sulcus is in red. B: The subjects from the two patterns 

plot together C: The two patterns in green and red, each pattern contain 3 subjects. 

 

 

2.7 Discussion   

 

The preliminary cortical pattern analysis produces interesting results. The moment 

invariants provide stable and comprehensive description of the shapes compare with any 

specific set of measurements such as length or depth.  

 

One possible use of the patterns we found is to compare the frequency of the occurrence 

of these patterns among normal and patient datasets, to verify if we can see any 

significant difference. Similar comparisons can be carried out on other datasets for pure 

neuroscience questions: musicians versus athletes, kids with an early development on 

language versus an early development on motor-skills etc. The hypothesis to verify is that 

a certain developmental event or a certain strong specific training would leave an 

observable imprint on the cortex folding patterns. 
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Chapter Three: Patterns of folds 

 

3.1 Summary   

 

In this chapter, some new approaches are explored in the study of folding patterns. In 

terms of the similarity measure among the folds, new descriptors are used; in terms of the 

algorithms to mine the information, the type of algorithm that can handle high 

dimensional data is experimented. New information obtained, combined with that 

obtained from using the methods described in the previous chapter, allows a more 

comprehensive description of the sulcal shape. The change in the shape of the folds 

across the population can be observed, together with descriptions of the more frequent 

and characteristic patterns of the population. 

 

3.2 Introduction 

 

The work described in the previous chapter consists of finding the most frequent patterns 

in terms of cortical folding. Further study of the variability of sulci involves three 

important choices: which sulci to study or where to look in the brain; which similarity 

measure to apply; and which algorithm to use for mining the patterns. 

 

Regarding the choice of where to look among the cortical folds, new directions can be 

explored. In the work presented before, the biggest folds are chosen for pattern detection. 

The biggest folds are likely the more stable; consequently they can be more reliably 

detected. Bigger sulci are more likely to exist in any given individual, while the smaller 

folds may or may not exist in a given individual due to the high variability of folding 

patterns. The drawback or limitation of such an approach is that the important patterns 

might include the smaller folds. A more sensible approach may target the regions of the 

cortex, not restricted to the prominent sulci that are easier to be labelled according to 

traditional nomenclature. There are regions linked to functions, from the bigger regions 

such as the prefrontal region, to the smaller regions such as the Broca’s area and 
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Wernicke’s area linked to language. Indeed, the sulci of the brain are the folds that 

separate the gyri, and the gyri are where the neuronal activities are located. So to include 

the notion of a functional area, it makes sense to include at least two sulci, the sulci 

anterior and posterior to a given gyrus. As a simple example, the central sulcus and pre-

central sulcus can be grouped together, to give a better description of the pre-central 

gyrus region. When a bigger region is of interest, a group of sulci within this functional 

region can be studied. Based on this reasoning, in further exploration of cortical folding 

patterns, we decided to include a group of sulci within a chosen region of interest.  

 

Regarding the choice of the similarity measure, more possibilities can be explored. We 

used a 3D shape descriptor, the 3D moment invariant in the previous studies. While this 

descriptor can capture the form of the folds, the information is nonetheless limited since 

only ten numbers are used to describe each fold. Another interesting and more intuitive 

approach is the use of the similarity of the folds among the subjects. Each fold of a given 

subject can be characterized as the similarity to the same fold of all the other subjects in 

the data set. The characterization of the fold is much more comprehensive, since it would 

include the whole dataset. This direction is further explored in the work described in this 

chapter. 

 

Regarding the algorithm to use for pattern analysis, many new directions can be explored. 

It is important to realize, however, when the nature of the input data is changed, the 

clustering algorithm might need to be changed as well. In particular, if the approach of 

similarity measure discussed above is adopted, the dimension of the input would be very 

high. When the data dimension is high, the distance between any two data points 

becomes almost the same (Beyer et al., 1999). In such case, it becomes difficult to 

differentiate similar data points from dissimilar ones. In the mean time, clusters are 

embedded in the subspaces of high-dimensional data space; different clusters may exist in 

different subspaces (Agrawal et al., 1998). Because of these reasons, almost all 

conventional clustering algorithms fail to work well for high-dimensional data sets. 

Consequently, the algorithm used should either be able to reliably reduce the dimension, 
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or feature selection techniques should be used to select only certain features to be used in 

the final clustering. The other alternative is to use algorithms specifically designed for 

high-dimensional datasets. In this chapter, we describe how we choose the algorithm 

based on the nature of the shape description. 

 

 

3.3 Searching for a framework of patterns 

In the following, the approach of describing the cortical folds is presented, together with 

the algorithms that best suit the similarity measure. This approach is compared with the 

approach described in the previous chapter, to illustrate the type of information that can 

be discovered when applying different approaches. Some interesting results are presented 

and discussed.   

 

 

3.3.1 The Similarity measure: ICP 

 

Sophisticated shape descriptors based on 3D moment invariants have been proposed in 

the previous chapter. This approach might be limited in terms of the representation of all 

the complexity in folding patterns. Very different shapes can sometimes lead to similar 

descriptors which can disturb the clustering process. In order to overcome this weakness, 

a different approach is explored. A given sulcal shape is described by a vector of distance 

of this shape to a large number of similar shapes. This approach has been proven to be 

very efficient to compare shapes in large dimension spaces (Besl and McKay, 1992). 

Hence the representation of the sulcal set of one subject is consisting of the distances to 

the same sulcal set in all the other subjects. Each pair-wise distance is computed using the 

simple Iterated Closest Point (ICP) algorithm after affine global spatial normalization of 

the brains (Jain et al., 1999). Note that performing a global normalisation removes non-

interesting patterns induced by global differences in brain size. Our ICP implementation 

is providing the minimal distance obtained whatever the rotation between the two shapes 

(Kaufman and Rousseeuw, 1990). 
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The idea of representing each sulcus by its distance to all the other sulci in the dataset is 

illustrated in Fig 3.1. The simplest ICP algorithm is used, in which a form (data) is 

matched to another form (model) iteratively by rotation and translation (Besl and McKay, 

1992). The algorithm stops when the distance cannot be significantly improved or a given 

number of iteration has been reached. It should be noted that this algorithm has been 

extensively studied and many variations of the algorithm provide more efficient 

performance. In this preliminary study, the simplest version of the algorithm is used. It is 

however by choice that we use only rigid motion for matching in this study. It is reasoned 

that in the application of cortical pattern analysis, even the small shape differences are 

important. Consequently, the distance should faithfully reflect this difference. However, 

an affine matching could be very interesting as well, in the sense that smaller details in 

folding difference could be ignored, so that we can concentrate on more prominent 

differences. It should be kept in mind that the tuning of ICP is not only related to 

nonlinear alignment, it is also related to robustness. The estimation of the distance 

between dissimilar shapes could be less accurate compare with the distance between 

more similar shapes. However, our method does not require accurate distance estimation 

for dissimilar shapes because only the ordering is important in the algorithm used here.  

 

 

Fig 3.1: An example of the similarity measure  

As an example to illustrate the concept of the similarity measure, four sulci are used (in red) named sulcus 

1 to 4. The distance (using ICP) can be calculated for each pair of the set. For each sulcus, the distance to 

the other three sulci can be calculated. The final distance matrix can be obtained. 
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3.3.2 Algorithm to handle high dimensional data: Isomap 

 

The resulting similarity matrix obtained using the ICP algorithm could have a very high 

dimensionality, since the number of dimension is equal to the number of subjects in a 

given dataset. The curse of dimensionality is a well-known problem occurring in such 

situations (Duda et al., 2000). The dimension of data needs to be reduced before applying 

the clustering algorithms.  

 

The assumption of dimension reduction is that data points may lie on a lower dimensional 

manifold, which is embedded in the original space of higher dimension. The goal is to 

find such a lower dimensional embedding of the data, while keeping the original 

geometry of the data as much as possible.   

 

The techniques of dimension reduction could be roughly divided into two categories, the 

linear and nonlinear techniques (Van der Maaten and al, 2008). Examples of linear 

dimension reduction techniques are Principle Components Analysis (PCA) and Linear 

Discriminant Analysis (LDA). Nonlinear techniques can be further divided into three 

main types: techniques trying to preserve global properties of the original data; 

techniques attempting to preserve local properties of the original data; and techniques 

performing global alignment using some linear models. Examples of techniques 

preserving global properties are MultiDimensional Scaling (MDS), Isomap, Diffusion 

maps and Kernal PCA. Local Linear Embedding (LLE) is an example of the technique 

preserving local properties, where multi-linear PCA is used for local representation. 

Local Linear Coordination (LLC) is one of the techniques using local linear models for 

global alignment.  

 

The Isomap algorithm is chosen for this preliminary study. This algorithm has the 

computational efficiency and global optimality of Principal Component Analysis (PCA) 

and Multi-Dimensional Scaling (MDS), it also has the flexibility to learn a broad class of 
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non-linear manifolds (Tenenbaum et al., 2000). The distance between any two data points 

is measured by using the geodesic distance between the two points over the manifold. 

Despite some weaknesses that will be further discussed below, this algorithm has been 

successfully applied in artificial vision and the visualization of biomedical data (Gerber 

and al, 2010).     

 

The input of the Isomap is the distance matrix among the subjects. Linking each point to 

its K nearest neighbours, a graph is created that is supposed to describe a low 

dimensional manifold. In the Isomap algorithm, the geodesic distance is first estimated 

between points (here the sulci of each subject). The distance between two points is the 

length of the shortest path between these two points in the graph constructed. It is 

important to choose an appropriate neighbourhood size. When the neighbourhood is too 

large, too many “short-circuit” edges would be created; when the neighbourhood is too 

small, the graph becomes too sparse to approximate the geodesic paths. To our 

knowledge, there is no consensual general way to choose K whatever the problem. This is 

the main weakness of the Isomap approach. It is topologically unstable, erroneous 

connections could be created in the neighbourhood graph, as the “short-circuiting” effect 

when the K is too large. Some methods were proposed to overcome such problems such 

as removing nearest neighbours that violate local linearity of the graph (Van der Maaten 

and al, 2008). Once a matrix of geodesic distance has been computed, a simple dimension 

reduction algorithm such as MultiDimensional Scaling (MDS) can then be applied. 

 

There are different choices concerning the MDS algorithm. The classical MDS algorithm 

of Torgerson chooses a N-dimensional configuration minimizing the stress defined by: 

Σ(gij −dij)²/Σdij² , where gij denotes distances in the original dimension, and dij denotes 

pair wise distance in the low dimensional space (Borg and Groenen, 2005). Many 

variants of the classical MDS exist. They can be divided in general to two categories, the 

metric and non-metric MDS. The metric MDS generalizes the optimization procedure to 

a variety of loss functions and input matrices with different weights. It tries to find an 

embedding in a lower dimension such that distances are preserved. The non-metric MDS 
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instead try to find a non-parametric monotonic relationship between dissimilarities from 

the high to the low dimensional spaces. It is an estimation problem under ordering 

restrictions, the rank order of entries in the data is assumed to contain significant 

information. When the input data is “distance-like” but not actual Euclidean distances, or 

when we are interested in finding the patterns in the input, non-metric MDS may prove to 

be an interesting approach (Cox and Cox, 2001).       

 

In this work, the non-metric MDS (IsoMDS) as well as metric MDS are tested.  

Considering that the input similarity is an estimation of the “likeliness” of two forms, not 

an actual Euclidean distance, the ordering of the folds may be more important than the 

absolute distance. The non-metric approach may reveal important properties such as 

intrinsic patterns of distribution. 

 

While the Isomap approach has found some success, some limitations exist. It could be 

trapped in local optima. The non-Euclidean description based on Shared Nearest 

Neighbour (SNN) could be an interesting approach, where the strength of the link 

between two data points is based on the number of their shared neighbours (Ertöz et al., 

2002). Other algorithms emphasizing the preservation of local properties such as LLE 

(Roweis and Saul, 2000) could be investigated in the future. The approaches that can find 

global optimum can be further explored. One example is the Sammon mapping, an 

alternative to the classical MDS, where the scaling cost function is adapted by weighting 

on the inverse of the pair wise distance. Thus larger pair-wise distances will not be 

emphasized over smaller pair wise distances. It is reasoned that the pairs with smaller 

distances are important to the local geometry of the data (Van der Maaten and al, 2008). 

  

 

3.4 Validation of the ICP-Isomap approach 

 

The approach of ICP and Isomap for cortical folding analysis would need to be validated. 

The efficiency of the clustering algorithm PCBB presented in Chapter Two needs to be 
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verified as well based on the new approach. Below the validation is done on both 

simulated and real datasets. 

 

    

3.4.1 The suitability of ICP-Isomap for cortical pattern analysis: real dataset 

 

The efficiency of the Isomap as a dimension reduction tool is validated first, in the 

context of the study of the cortical folding patterns. Three sulci are chosen for the 

validation (Fig 3.2A): the central sulcus, the superior temporal sulcus and the cingulate 

sulcus.   

A dataset of 3∗62 shapes is generated combining the datasets of the three different sulci 

from our most recent manually labelled database (Perrot et al., 2009a). Dimension 

reduction of the ICP-based distance matrix is performed with three alternative classical 

approaches: Isomap, classical MDS and PCA. The results are shown in Fig 3.2B. 

Referring to the central sulcus (in black), one of the most stable sulcus: Isomap gives a 

dense presentation, the representation of classical MDS is less dense, and the result from 

PCA is the least dense. The same trend exists for the superior temporal sulcus (in green). 

Concerning the cingulate sulcus (in red), this trend is less obvious; Isomap organized the 

distribution into a distinctive shape. The significance in terms of real shape distribution is 

studied and presented in the section below. Considering the three sulci together, the 

Isomap algorithm separates the sulcal distribution more successfully than the other two 

methods. In conclusion, Isomap outperforms the other methods for sulcal analysis. 

 

A    B  

Fig 3.2 The comparison of dimension reduction methods  
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A: The central sulcus in red, the superior temporal sulcus in green and the cingulate sulcus in red. B: From 

left to right: the distribution using Isomap, classical MDS and PCA.  

 

 

 

3.4.2 The suitability of ICP-Isomap for cortical pattern analysis: simulated dataset 

 

The performance of the clustering algorithm is also evaluated with simulations. For each 

simulation, three subjects are picked randomly from the original database. Six random 

variations are generated for each of them. Each variation results from a random 

transformation applied to the original sulcus. This transformation is an affine 

transformation endowed with a diagonal of 1 and with 6 random numbers sampled from a 

Gaussian distribution. An example is provided in Fig. 3.3. The database of 62 central 

sulci (Perrot et al., 2009a) is used for the generation of simulated datasets. Each of them 

is composed of 3 simulated tight clusters of 7 sulci plus 41 original central sulci, leading 

to a total of 62 sulci.  

 

Additional subjects are picked randomly among the 62 minus 3 other subjects to 

complete the dataset. Ten different sets of three subjects are picked, and five different 

standard deviations ranging from 0.11 to 0.15 are used for generating the deformation. A 

total of 50 simulated datasets are obtained. For each simulation, the ICP-based distance 

matrix is computed, Isomap is used for dimension reduction (d=4, K=6).  

 

Three different clustering methods are applied: PCBB, Gaussian mixture modelling 

(GMM) and Partitioning Around Medoids (PAM). PAM is an algorithm similar to K-

means including estimation of the optimal number of clusters. In our experiments, R 

cluster toolbox is used (Crawley, 2007). The estimation of the number of clusters 

performed by PAM in this context has been shown to be reliable (refer to Chapter Two). 

GMM involves first fitting a mixture model by expectation-maximization and 

computation of posterior probabilities (Duda et al., 2000). The Bayesian Information 



78 

 

Criterion (BIC) provides the number of components. The state-of-the-art Mclust toolbox 

from R is used to run GMM (Fraley and Raftery, 2006). 

 

 

Fig 3.3 The simulated central sulcus 

Shown in grey are all the real shape of the central sulcus from the dataset superimposed. Shown in green, 

red and black are three simulated clusters. It can be seen that the variability within each cluster is different, 

however, the shapes of all three clusters follow closely the real shape of the central sulcus. During the 

alignment for the visualization of the sulcal shapes, the most neutral shape is chosen for better 

visualization.  

 

When the clustering using PCBB is carried out using the dimension-reduced similarity 

matrix of the three methods described above, it is found that Isomap provides the best 

clusters: the clusters that are tight within the group and distant among the groups. Refer 

to Fig 3.4 for the clusters found. The members of the clusters are shown in black, red and 

green respectively. Isomap algorithm consistently finds tight clusters compare with the 

other two methods. 

 

 

Fig 3.4 The comparison of dimension reduction methods on final clusters 

Left to right: the distribution using Isomap, classical MDS and PCA. The clusters shown are those found by 

running the PCBB algorithm.  
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Fig 3.5 shows the performance statistics in terms of the number of clusters found. The 

simulation has three arbitrary clusters, most of the clustering algorithms tested here found 

one or more clusters. The distribution of the number of clusters found can give an 

indication of the quality of the results, even though the data might hide other valid 

clusters in addition to the three simulated ones. It can be observed that the PCBB 

algorithm has the highest incidence of finding three clusters, PAM finds slightly less, 

GMM still less. Overall, GMM may find none, one, two or three clusters. PAM and 

GMM finds at least one cluster, their incidences of finding one of two clusters are less 

than GMM. PAM performs reasonably well compared to PCBB, however, it is less likely 

than PCBB to find all three simulated clusters.  Fig 3.6 presents one of the examples of 

the clustering results highlighting the real clusters found. The quality of clustering is 

evaluated on multiple runs. It is found that PCBB outperforms the two other methods. 

This is not so surprising when we consider the nature of these different clustering 

algorithms. PAM and GMM aim at providing a complete partitioning of the dataset. This 

goal is not always compatible with the detection of tight clusters. PCBB, on the other 

hand, is designed specifically to detect dense regions and pick out subjects from the 

dense regions. 

 

 

Fig 3.5 Comparison of algorithms: effect on the estimation of the number of clusters 

The three algorithms compared are: PCBB, PAM and GMM. The upper image presents the result on the 

number of clusters found (the simulated data has three clusters).  
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Fig 3.6 Comparison of algorithms: clusters found 

The three algorithms compared are: PCBB, PAM and GMM. An example of the clustering results is shown 

applying the three methods. The clusters found are circled. The simulated data has three clusters. 

 

 

3.5 How to look: the clusters of sulci  

Once the dimension reduced similarity matrix is obtained, the clustering can be carried 

out using the clustering algorithm PCBB discussed in the previous chapter. The 

characteristic patterns of each cluster can then be visualized. 

 

 

3.6 Where to look: the selection of folds 

As discussed in introduction, we try the approach of selecting a group of folds or sulci 

that define loosely the functional regions of the cortex. The simplest groups would 

consist of single folds; the most complex group would be consisting of all the folds in the 

cortex. There are all the possible combinations in between the two extreme cases. In the 

case of a single fold, the advantage is that the resulting patterns are easier to be visualized 

and interpreted; the disadvantage is that some interesting patterns could be overlooked. In 

the case of the folds of the whole brain, the advantage is that the information is the most 

comprehensive and complete, the obvious disadvantage is that the difficulty in visual 

interpretation of the results. Here we try to find a compromise between the two extreme 

cases. We attempted to define regions of neurological significance, instead of arbitrarily 

selecting regions of a certain size.  
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3.7 Results 

The database of 62 central sulci (Perrot et al., 2009a) is used for the clustering analysis. 

Once the lower dimension representation similarity matrices are obtained, clustering can 

be carried out using PCBB as described in the previous Chapter. Clustering was applied 

to 32 regions (sulcal sets) using PCBB. Group of clusters with scores below 0.05 were 

collected for the dictionary. 13 sets of the left hemisphere and 12 sets of the right 

hemisphere passed the threshold.  

 

In the following sections, some of the most representative results are briefly presented 

and discussed. Refer to Chapter Five for a more complete representation and discussion 

of the results. 

 

3.7.1 The Cingulate region 

 

The cingulate region is found to have the strongest clusters. In this study, the strategy is 

changed from using the single sulcus to the Cingulate region, which includes the 

cingulate sulcus and the smaller sulci around it (paracingulate sulcus, intralimbic sulcus, 

and superior and inferior rostral sulcus). Essentially all the sulci around the corpus 

callosum ventral and dorsal to the cingulate sulcus are taken into account. Compared with 

the clustering on the cingulate sulcus alone, the clustering on the region can reveal 

different and more comprehensive information on variability. Some of the potential 

labelling ambiguities can be further investigated, for example, the labelling of the 

intralimbic sulcus, the paracingulate sulcus, and the superior and inferior rostral sulcus. 

 

The resulting clusters of the cingulate region are shown in Fig 3.7. Five patterns are 

found. Notice that the purple pattern has a parallel segment on top, which may 

correspond to the paracingulate sulcus. Across the patterns, this paracingulate sulcus 

takes a varied appearance. At the posterior end, the curvature appears to be slightly 

different for the five patterns. The cyan pattern is relatively curved; while the blue pattern 

is more flat. Compared with the results obtained from Chapter Two on the cingulate 
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sulcus, the position of the interruption is not as clear on the regional clustering results. 

The interruptions might be filled up by another fold not labelled as the cingulate sulcus. It 

is thus interesting to approach the clustering analysis using both of the method from 

chapter Two and from this chapter. 

 

 

Fig 3.7 The clusters found on the Cingulate region 

One example of the sulcal set is shown first. Then for each pattern, three aligned subjects are superimposed 

in order to highlight the areas of stability making up the patterns. The left cingulate region is highly 

variable. The key features are (1) the development of the intracingulate sulcus (long shallow fold at the 

bottom of violet pattern), (2) the development of the paracingulate sulcus (series of small folds at the top of 

red pattern), (3) the interruptions of the cingulate sulcus and (4) the shape of the anterior part of the region. 

The posterior part is relatively stable. 

 

Such clustering analysis promotes the further investigation of certain issues. Refer to Fig 

3.7, the pattern 1 (the purple pattern) shows a possible intracingulate sulcus ventral of a 

less “heavy” cingulate. This observation also leads to the question: is it possible that 

when paracingulate is prominent, the cingulate becomes intracingulate? This subject will 

be further discussed in Chapter Five. In pattern 2 (the red pattern), it can be observed 

that, compare with pattern 1, the paracingulate is more broken and more likely becoming 

vertical to the cingulate sulcus. The anterior region tends to be heavier as well. In pattern 

3 (the grey pattern), the interruptions of the paracingulate sulcus can be observed. The 

pattern 4 (the cyan pattern) may have a more curved posterior. 
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3.7.2 The Central Sulcus 

 

The central sulcus is discussed here as an example of the sulci or sulcal regions where 

clusters cannot be found due to the homogeneity of the variability. Using both 

approaches, the 3D moment invariant or the ICP-Isomap approach, when clustering with 

PCBB, no clusters can be found. 

 

It is realized that from this approach of clustering alone it is not straightforward to deduce 

some simple characteristics. When observing the shape of the central sulcus, it is clear 

that even though the shape variability is less than the cingulate sulcus, variability still 

exist. In such cases when clusters cannot be found, it would be interesting to observe the 

variability in a more systematic fashion.  

 

 

3.7.3 The inferior frontal region 

 

The result of the inferior frontal region is shown here to illustrate the potential and 

limitation of such a regional approach. In the regions of the cortex where the folding is 

highly variable, the results could be difficult to interpret by visual inspection. 

 

The clusters of the inferior frontal region are shown in Fig 3.8. The Inf-Inter frontal gyrus 

is made up of the intermediate precentral and intermediate, marginal, orbitary and inferior 

frontal sulci. Three patterns are found. The main difference among the three patterns 

shown here lies in the different configurations of the intermediate frontal sulcus. The 

violet and the cyan patterns show small and split intermediate frontal sulcus, the red 

pattern shows a large and transverse pattern instead. Notice that the red pattern shows a 

configuration more parallel to the Sylvian valley compare with the other two patterns, 

which are more perpendicular to the Sylvian valley. This observation is in agreement 

with the hypothesis of sulcal roots in terms of the orientations of the sulci, where the 

units of sulcal roots are organized in a system of meridians and parallels of the cortical 
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surface (Regis et al., 2005). While these patterns are interesting, the interpretation of the 

patterns could become very subjective. When defining the region for study, it is thus 

important to keep the region relatively small in highly variable regions.  

 

 

 Fig 3.8 The inferior frontal region 

The main difference among the three patterns shown here lies in the different configurations of the 

intermediate frontal sulcus (small and split: violet, large: red, large and transverse: cyan). 

 

 

3.8 Discussions 

 

New dimensions have been explored in the following three directions: the selection of 

cortical region for pattern search, data presentation and the algorithm for analysis. 

Regions of interest are defined where all the sulci within the region can be studied, so the 

analysis is not restricted to a single sulcus but a group of sulci. Each sulcus is presented 

as its distance to all the other sulci in the dataset, and the algorithm to reduce the 

dimension of the data is explored. Validation is done to ensure that this new approach is 

suitable to the study of cortical folding. It is also validated that the clustering algorithm 

PCBB developed in Chapter Two is suitable for pattern search using this new approach. 

 

The results are adding new patterns in addition to those found in Chapter Two. The 

definition of region however, should be carefully selected. The highly variable region 

should not be large, so that local variations can be studied in detail. When the region is 

large and the folding very variable, the folding patterns found could be very difficult to 

be reliably described. Note that the results presented in this chapter are preliminary, the 

main goal is to validate the methods chosen for sulcal analysis.  
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In the study presented in this chapter and the previous one, we noticed that a huge 

difference exists in terms of the degree of variability among different folds. For example, 

the cingulate sulcus is very different across individuals, while the central sulcus is very 

stable and quite similar across the population. Indeed, the strongest clusters are found 

when studying the cingulate sulcus, while no strong clusters are found when studying the 

central sulcus. This leads to the question that, regarding the more stable folds, is there a 

way to describe their shape variability? In the next chapter, an interesting alternative is 

found when no strong clusters exist. In the attempt to give a more comprehensive 

description of the folding distribution, we try to establish a framework where a more 

general description can be given. This would complement the description based on 

clusters alone. 
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Chapter Four:  Handedness in the folds 

 

4.1 Summary   

 

In this chapter, the methods developed in the previous chapters are applied to a 

neuroscience issue with interesting discoveries. In this study, we investigate the possible 

manifestation of handedness in cortical folding patterns. Three populations are studied: 

the right-handers, the left-handers and the hand-converters: lefthanders who were forced 

to use their right hand for writing. The investigation focuses on the central sulcus, one of 

the most stable and prominent sulcus that separate the motor and somatosensory areas of 

the cortex (Penfield and Boldrey, 1937). Anatomical MRI images are used; brain folds 

are extracted automatically using the BrainVisa software platform (Mangin et al., 

2004b). The difference in terms of shapes among the central sulcus of all subjects are 

calculated, this information is further reduced in data dimension using Isomap. 

 

A strikingly simple morphological trait of the central sulcus was discovered which can be 

described as the more or less centred position of the hand “notch” or “knob”, where 

hand knob corresponds to the well-established functional motor hand area (Yousry et al., 

1997). The notch position can shift along the central sulcus, the location can be from 

around the middle of the fold moving upwards (dorsally). Also observed is a second 

“knob” below the hand knob. When the hand knob position moves upwards, the second 

lower knob is becoming more prominent and moves upwards as well. 

    

The two hemispheres are found to be different in terms of the shape of the central sulcus. 

The left central sulcus of the three populations (the left-handers, the right-handers and 

the hand-converters) has a characteristic “two-knob” pattern, i.e. the hand knob and a 

second knob below. The right central sulcus, on the other hand, has a characteristic 

“one-knob” pattern, containing a prominent hand knob; the second lower knob is very 

weak or missing. 
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The shape of the left central sulcus for both the left-handers and the hand-converters are 

found to be statistically different to the right-handers (right-hander vs. left-hander: 

p=0.002; right-hander vs. hand-converter: p=0.02). On the right hemisphere, the central 

sulcus of the converters has a tendency to be different to the left-handers (p=0.06), the 

right-handers has a tendency to be different to the left-handers as well (p=0.15). The 

hand knob position of the left-handers is more centred than that of the right-handers for 

both hemispheres.  

 

The study provides insights into handedness and the effect of converting hand use. The 

results also reveal the exciting potential of such algorithmic approaches in the analysis 

of cortical folding patterns. In the following, the study of handedness is introduced, 

methods are described, and results are then presented. The chapter concludes with 

discussion and future work. 

  

 

4.2 Introduction 

Brain asymmetry is a fascinating topic with a huge amount of research behind. Humans, 

dogs and chickens alike are not perfectly symmetrical, in terms of anatomy as well as 

behaviour. It is shown that dogs wag their tails to the left when facing an unfamiliar 

dominant dog, while wagging their tails to the right when facing their owners. Marmoset 

monkeys, which communicate using bird-like calls, opened the left side of the mouth 

wider when expressing fear, and opened the right side of the mouth wider when making 

social contacts. Similarly in humans, the left side of the mouth is more prominent for 

emotional expression, while the right side of the mouth more for speech (Corballis, 

2009). 

 

Handedness and language are two of the most prominent examples of brain asymmetry or 

laterality in humans, with much research being done. Language laterality can be 

measured reliably, while the cause is still unclear. In terms of handedness, exactly how 

and why the brains of the left-handers are different from that of the majority right-
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handers is an intriguing question that many are trying to decode and understand (Sun et 

al., 2006). Various researches are conducted to investigate the behavioural, physiological, 

and anatomical differences between the left-handers and the right-handers. The left-

handedness is found to be linked to a spectrum of conditions, ranging from schizophrenia 

to special talents, passing through birth defects, shorter life span, dyslexia and autism, to 

mention just a few (Coren, 1990). The consequence of being left-handed is not well 

understood, neither is the cause. Many hypotheses are proposed, from purely genetic 

(Annett, 1972; McManus, 1985) to mainly environmental (Provins, 1997). While it is 

more accepted today that there are genetic factors involved in handedness, it is not clear 

how important is the role of the environment. 

 

Not that long ago the left-handers were trained to switch the hand use in many cultures, 

especially for writing, due to the belief that left-handedness is awkward and abnormal. A 

Newspaper story on the 20th November 1922 under the title “Left-handedness is cured 

among pupils” reported: An intensive campaign to cure left-handers among pupils in 

local schools here [Elizabeth, New Jersey, USA] has resulted in a reduction from 250 to 

66 since 1919 (Coren, 1990).  

 

While it is astonishing to read the story today, the converters, the left-handers that were 

forced to change their hand use, make up an interesting population to study the 

consequences of a specific learning experience on the brain, both in terms of anatomy 

and in terms of behaviour. It should be kept in mind that the majority of the individuals 

who have a past history of shifting hands do not result in a change in handedness 

classification. The action of switching hands is found to lead to either an increase of the 

use of both hands, or to a tolerance for the use of the contralateral limb (Porac et al., 

1990). 

   

Studying the anatomical difference of different populations is one of the ways to further 

our understanding of handedness and brain asymmetry in general. In this quest, the brain 

shape and folding patterns represent a unique opportunity. Brain folds to accommodate 
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the growth while the fibre connections are maturing (Van Essen, 1997; Welker, 1988). 

Brain folding patterns are incredibly variable from one individual to another. For a more 

detailed introduction to cortical folding, refer to Chapter One. The variability in cortical 

folding might be partly due to genetics, and partly due to the fact that each individual has 

a unique environmental growing experience from the first day of embryo development. 

Many studies are conducted on brain anatomy and folding morphology. For example, the 

difference between the left-handers and the right-handers in terms of the hemispheric 

size, the size and shape of the corpus callosum, the folding patterns of the regions around 

the Sylvian fissure, the size of the motor and somatosensory areas, the cerebellum and the 

basal ganglia are studied, just to name a few (Jäncke and Steinmetz, 2003). 

 

Among the many sulci of the human cortex, the central sulcus has been a subject of many 

interesting investigations (Amunts et al., 1996; Yousry et al., 1997). It marks the well-

known separation of the motor and the somatosensory regions anterior and posterior of 

the central sulcus, where the famous homunculus is mapped (Penfield and Boldrey, 1937) 

refer to Fig 4.1a for an example. Penfield also observed and hypothesized that the motor 

sensory strips were arranged in horizontal strips extending from precentral to postcentral 

sulci, through the central sulcus (Penfield and Jasper, 1954). This observation is 

confirmed in animal experiments (Murphy et al., 1978). Among the huge variability of 

sulcal folding patterns that exist, the central sulcus is one of the most stable and one of 

the easiest to identify. The central sulcus can be observed appearing around 20-21 weeks 

of gestation, and it attains its more definitive curvature in the eighth month of gestation 

(Ono et al., 1990).  
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Fig 4.1a The functional organization of the central region  

A The homunculus of Penfield: figurines drawn on the left hemisphere (Penfield and Jasper, 1954) 
B The functional subdivision of the precentral gyrus 1, Tongue; 2, lips; 3, face; 4, thumb; 5, index finger; 6, 
middle finger; 7, ring finger; 8, little finger; 9, hand; 10, wrist; 11, elbow; 12, shoulder; 13, trunk; 14, 
proximal leg (Tamraz and Comair, 2006) 
 

 

In anatomical literature, the central sulcus is described as a two-piece structure by Broca, 

and a three-piece structure by Testut-Laterjet and Paturet. The two-piece structure of 

Broca consists of the superior and the inferior genu. The superior knee is directed 

anteriorly, and that of the inferior knee posteriorly. In the three-piece model, the upper 

and lower knees (genou supérieur and inférieur) are anteriorly directed, and the middle 

knee (genou moyen) is posteriorly directed. The upper knee is always well-defined, while 

the lower knee is more variable and less well-defined (Ono et al., 1990). Refer to Fig 

4.1b about the two/three-piece structure. Talairach and Tournoux described the form of 

the central sulcus as “step-like” or a “zigzag” (Talairach and Tournoux, 1993). At the 

level of the Sylvian fissure, anterior to the central sulcus, a small sulcus called the sulcus 

subcentralis anterior (anterior subcentral sulcus) can be seen in some cases. This small 

sulcus may unite with the lower end of the central sulcus in some cases, and frequently it 

may unite with the precentral sulcus. In some cases a posterior subcentral sulcus can be 

observed posterior to the central sulcus (Eberstaller, 1890).  

 



92 

 

 

Fig 4.1b The structure model of the central sulcus. 

In the two-piece model of Broca, the superior knee is directed anteriorly, and the inferior knee is directed 
posteriorly. In the three-piece model of Testut-Laterjet and Paturet, the upper and lower knees are 
anteriorly directed, the middle knee is posteriorly directed (Ono et al., 1990). 
 

Functional MRI studies reveal that the hand motor area is located at the middle genu 

(number 2 in Fig 4.1b) of the central sulcus in a portion of the precentral gyrus that 

displays a characteristic “knob” or “knuckle”. This “knob” which has either an omega 

shape (90%) or an epsilon shape (10%) can be reliably observed in the axial plane 

(Yousry et al., 1997). It has also been shown that the cortical representation of the 

sensory hand area is located along the anterior bank of the postcentral gyrus at a 

characteristic curve of the central sulcus immediately posterior to the motor hand area 

(Boling et al., 2008).  

 

The precentral gyrus in between the central sulcus and the precentral sulcus is the motor 

region. The functional subdivision of the precentral gyrus can be defined in four parts: 

the inferior face region, the middle hand-arm region, the superior trunk region and the 

paracentral leg-foot region. It is interesting to note that the depth of the central sulcus 

corresponding to these four regions are different: the face level (first 3cm) is averaging 

15mm, the hand-arm region roughly to its midpoint is averaging 17mm, the trunk region 

averages 12mm due to the annectant gyrus (the PPFPM) that reduces the depth, the 

interhemispheric leg portion reaches at most 13mm (Tamraz and Comair, 2006). The 

hand-arm region is thus the deepest section of the central sulcus. The profile of the depth 

could be corresponding to the timing of apparition of the sulcus, the deeper being earlier. 

The depth could be affected during later differential growth as well.  
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It should be kept in mind that despite the fact that the central sulcus is relatively simple 

and stable, the actual shape from one individual to another is still extremely variable, 

refer to Fig 4.2 for some examples. With respect to the converters, the action of 

converting the hand use for a prolonged period of time is expected to leave certain 

anatomical trace around the hand motor and sensory areas of the brain. A related recent 

study reveals that the converters have anatomical changes both on the surface area of the 

central sulcus and in the deep structure such as the putamen (Kloppel et al., 2010).   

 

 

Fig 4.2 A negative cast of the central sulcus of three subjects  

The left and right central sulci of the three subjects are highlighted in red, the hand knob position is marked 
in blue stars. 
 

Tools such as magnetic resonance imaging (MRI) allow us to study the anatomy of the 

brain noninvasively, refer to chapter One for a more detailed introduction. Our 

contribution in this work is to use computer algorithms to discover new information in 

terms of the 3D shape of the central sulcus.  
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4.3 Material and Methods 

In this section, the datasets used are described in detail, followed by the methods used for 

the measure of similarity among the subjects. The algorithm used for dimension 

reduction of the similarity matrix is then presented; finally the visualization algorithm 

used for obtaining the summary of sulcal forms is discussed.  

 

 

4.3.1 Datasets 

Two datasets are used. In the first dataset, 31 ‘converted’ left-handers (mean age 40, 

range 24-56 years; 22m, 12f) are compared with 19 consistent age and sex matched right-

handed (mean age 34, range 22-59 years; 17 males, 6 females) and 16 similar left-handed 

subjects (mean age 36, range 25-56 years; 12 males, 6 females). Individuals were only 

labelled as a ‘converted’ left-hander, if the subjects and their parents clearly recollected 

that writing commenced with the left hand at school, but was switch to the right. Data 

from these participants were reported in a previous study (Kloppel et al., 2010), which 

lists all inclusion and exclusion criteria. All subjects gave written informed consent and 

the local Ethics Committee approved the experimental procedures. The Edinburgh 

handedness inventory (Oldfield, 1971) was used in which a score of –100 reflects 

extreme left-handedness and +100 extreme right-handedness. The second dataset contains 

the subjects from the training base of the Brainvisa software (Perrot et al., 2009a).  

 

Additional information regarding the family history of the hand converters is available 

for the hand converters (Kloppel et al., 2010). The impact of family history on sulcal 

forms is investigated.  

 

For the first database, high-resolution structural MRI was performed on a 3T system 

(TRIO; Siemens, Erlangen, Germany) with a T1-weighted FLASH 3D sequence (TR = 

15 ms, TE = 4.92 ms, flip angle 25°, 192 slices, slice thickness = 1 mm, matrix: 256 x 

256 mm). For the second database, the 62 healthy subjects come from 6 different 

scanners and research protocols (Perrot et al., 2009a). An expert confirmed that the 
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software correctly identified the central sulcus. To control for the influence of variable 

brain size the central sulcal representations are all normalized to the linear standard 

Talairach reference frame (by a 9 parameter affine transformation). The right central sulci 

were flipped relative to the inter-hemispheric plane to allow asymmetry studies. 

 

The information concerning the number of left-handers, right-handers and hand 

converters in each of the two datasets are listed in Table 4.1. Since the first dataset has 

much less right-handers than the left-handers and hand converters, in some analysis the 

subjects from the second dataset are added to the first to balance the number of left-

handers and right-handers. The detail is further explained in 4.3.3. Note that some 

subjects of the base set are of unknown handedness, so a general 10% left-hander is 

estimated. We are interested in understanding the effect of input data size and data 

composition (in terms of percentage of each population in the input data) on the final 

analysis results. The second dataset (mostly right-handed individuals) provides an 

opportunity to vary the percentage of right-handers in the dataset. It provides also a 

bigger dataset for analysis.  

 

The central sulci of all subjects of the first dataset are extracted and automatically 

labelled by BrainVisa. For the second dataset, all central sulcus are manually labelled by 

an expert. The central sulcus is described as a list of 3D points.  

 

 

Table 4.1 Handedness Information of the Two Datasets  

 

The distances among the central sulcus of different subjects are calculated using the 

Iterated Closest Point (ICP) algorithm. This efficient algorithm iteratively aligns one 
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sulcus relative to another through successive rotations and translations. The iterations are 

driven by minimization of the average distance between shifted and target sulci. For each 

pair of sulci, the ICP algorithm is applied twice before and after sulcal role switches. The 

smallest residual distance across the two alignments is used as a similarity measure. A 

distance matrix is obtained. The Isomap algorithm combined with isoMDS (refer to 

Chapter Three for detail) is then used to reduce the dimension of the distance matrix. 

Statistical tests are performed on the dimension reduced distance matrix. Weighted 

SPAM is used to visualize the shape of the central sulcus. In the following, each step is 

discussed in more detail.  

 

 

4.3.2 Sulcal similarity measure 

 

The ICP algorithm is applied for calculating the distance or similarity of two sulci. Many 

variants of the classical ICP algorithm exists, here the simple rigid alignment is used for 

the estimation of similarity. This choice is made since the simple alignment is estimated 

to capture the most prominent variation of two forms. Based on the fact that little prior 

knowledge is known in terms of how the forms of the two sulci involved would vary, a 

rigid alignment for this preliminary study is deemed most appropriate.  

 

Using the ICP algorithm, a distance matrix is obtained. The dimension of this matrix is 

twice the number of subjects in the dataset, since both the left hemisphere and the flipped 

right hemisphere are used. For each subject, there are N numbers specifying its distance 

to the N sulci in the dataset.  

 

The resulting distance matrix is not symmetrical. This matrix needs to be processed to be 

made symmetrical for further analysis. Some simple approaches to obtain a symmetrical 

distance matrix experimented are:  take the sum of the distance from A to B and the 

distance from B to A; take the maximum of the distances A to B and B to A; or take the 
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minimum of the distances A to B and B to A. These approaches provide different 

information and will be explored in the following sections. 

 

 

4.3.3 Dimension reduction with Isomap 

 

Isomap is a powerful algorithm for the analysis of high-dimensional datasets (refer to 

Chapter Three for detail). Here, the algorithm is used to reduce the dimension for further 

analysis and visualization. In the Isomap algorithm, two parameters need to be specified: 

the dimension and the neighbourhood size. In this work, the final Isomap-reduced 

similarity matrices of dimension one are used for statistical analysis. The dimension two 

distance matrices are also obtained for visual inspection in terms of the forms. 

 

 

4.3.4 Visualization of the forms using weighted SPAM 

 

We would like to have a reliable method to study the folding variability as well. In this 

study, we chose to explore further the information hidden in the Isomap reduced lower 

dimension representation. When the dimension is reduced to one or two, the folds can be 

easily ordered and visualized. Visual inspection is important in this type of exploratory 

analysis to ensure the quality of the algorithm. For example, using Isomap with data 

dimension reduction to one, each sulcus is represented by one number. Usually, moving 

from one extreme to the other of the axis, the corresponding shape of the individual 

sulcus is changed gradually. Visual inspection can provide important information 

regarding this gradual change of form. 

 

To ensure that the hypothesis in terms of sulcal shape based on visual inspection is 

objective, we developed a technique highlighting the specific shape variability underlying 

this feature of the axis. For this purpose, we adapted the classical Statistical Probability 

Anatomical Map (SPAM) strategy consisting in averaging images after alignment (Evans 



98 

 

and D.L.Collins, 1997). Several averaged sulci can be computed at regularly spaced 

intervals along the Isomap axis, we call the strategy the weighted SPAM. For any specific 

location, the closer a sulcus is to this location, the more its shape contributes to the 

average image. The weight of this contribution follows an exponential decay relative to 

the square of the distance to the location. Hence, each average image provides a good 

representation of the shape of the sulci around the corresponding location in the axis.     

 

The technique of weighted SPAM can be used to visualize one dimensional as well as 

two dimensional similarities. In the first dimension, more prominent characteristics in 

terms of the folds are expected. While in the second or higher dimensions, progressively 

more details are expected. In a comprehensive description of the folds, different 

dimensions are expected to reveal different information. The sulcal forms obtained using 

weighted SPAM are summarized in the section below. 

 

 

4.4 Results 

 

The results are presented in six different sections. Section one presents the distance 

matrix representation; section two presents the outlier selection process and results; 

section three presents the algorithmic parameter selection results; section four presents 

the analysis of individual sulcal forms; section five presents the analysis and visualization 

of statistically summarized sulcal forms; section six concludes with the results of 

statistical analysis.  

 

 

4.4.1 Distance matrix composition 

 

Two approaches of composing the distance matrix discussed in the method section are 

compared: the minimum distance and the maximum distance. The resulting distributions 

of the original distance matrix for the two approaches are shown in Fig 4.3A. 
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A  

B   

Fig 4.3 Data distribution before and after outlier removal and correction 

A: First row: the minimum distance before (left) and after (right) outlier removal. Subjects "Ls2295" and 
"flip-Rs1351" are considered as outliers. Second row: the maximum distance before (left) and after (right) 
outlier removal. PCA is used for plotting the sample points. Subjects "Ls2295", "flip-Rs1351" and "flip-
Rs1573" are considered as outliers. 
B: From left to right: Ls2295 before correction; Ls2295 after correction; Rs1351 

 

It is difficult to judge from the PCA distribution which method is better. It is likely that 

these approaches provide different information regarding the similarities among the sulci. 

Minimum distance contains less outlier compared to the maximum distance approach. 

This is likely due to the fact that there are frequently branches and even interruptions on 

the central sulcus. The minimum difference approach can in a sense overlook these 

details and match the main form. The maximum approach, on the other hand, would 

emphasize these differences. The minimum approach is used in further analysis in this 

study, to focus on the study of the main shape difference of the central sulcus. 

 

 

4.4.2 Outlier selection 

 

It is important to remove outliers once the similarity matrix is constructed, before Isomap 

analysis is carried out. The presence of outliers might skew the final result, since this 
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method is sensitive to noise. Outlier subjects are selected by choosing sample points that 

are outside the three times the standard deviation range, from the average distance to the 

whole set. The distribution of the dataset after the outliers are removed is displayed in Fig 

4.3A. The distributions are more homogenous after the removal of the outliers. The 

shapes of the outliers are verified to ensure the ICP and PCA combined method of 

identifying outliers is effective, which are displayed in Fig 4.3B. In the final analysis, the 

minimum distance is used, subjects Ls2295 is corrected and Rs1351 removed as outlier.  

 

 

4.4.3 The choice of K 

Here dimension one is used for preliminary study and visual comparison of results. The 

neighbourhood size k is chosen to be 7 and 14 as 10% of the whole datasets One and the 

combination of One and Two. The effect of k on the final statistics is discussed in section 

4.4.6.5.  

 

 

4.4.4 Results in terms of the position of the hand knob 

 

The forms of all central sulci from dataset One and Two (refer to Table 4.1) are 

presented in Fig 4.4, using the axis specified by Isomap. Note that at the two extremities, 

interrupted sulci are found. At the left extremity the interruption is more ventrally 

located, while at the right extremity it is more dorsally located. Three parallel lines are 

drawn to aid in visualization. Around the middle line, it can be observed that the hand 

knob has a tendency to move dorsally from the left to the right of the Isomap axis. This 

tendency is further clarified using weighted SPAM.  

 

Results are obtained using only Dataset One and the combination of Dataset One and 

Two are investigated. In both cases, the real sulci and the weighted SPAMs are shown 

(see Fig 4.5 and Fig 4.6). The gradual change in shape from one extreme to the other 
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along the axis can be clearly seen in both cases. The weighted SPAM helps in the 

visualization of the location of the knob. The hand knob moves up while a lower knob 

appears, moving from the left to the right of the axis. Notice that in the case of the 

combination of datasets (Fig 4.6), the right extreme of the Isomap axis is more populated, 

which provides a smoother form transition in terms of the SPAM visualization. The 

characteristic of the location of the hand knob moving upwards from the left to the right 

of the axis is consistent. Moreover, as the hand knob moves up, a ventral second knob 

becomes more evident as well.   

 

 

Fig 4.4 The central sulci aligned along the Isomap axis 

The two datasets are mixed to generate the Isomap. Plot here is the central sulci of all subjects along the 
axis defined by Isomap in one dimension. The two extremity sulci are highlighted in red and green 
respectively. The red sulcus is depicted at top left in another orientation. The red sulcus has a ventral 
interruption, the green sulci has a dorsal interruption. 
 

The exact functional role of the lower knob is unknown. Further investigation is needed 

also to investigate the correlation between the positions of the upper and the lower knob. 

Dataset Two contains mostly right-handers; it can be observed that the right extreme of 

the Isomap axis is more populated in the presence of this dataset. It is likely that the right-

handers exhibit a more double-knob configuration, with the first knob pushed more 

upwards, and the second knob becomes more prominent. The results presented on the 

next section when the handedness groups are studied separately would reveal more detail.  

 



102 

 

 

Fig 4.5 Hand knob position moving dorsally from left to right along the Isomap axis.  

 (Top) First, all the sulci were aligned to a template sulcus in order to obtain similar orientations across the 
whole set. Then each sulcus was translated along the antero-posterior brain axis proportionally to its 
Isomap coordinate. Note the outlier sulcus located at the extreme left of the axis corresponding to an 
atypical interrupted central sulcus (this sulcus is also presented from a different viewpoint below to make 
this clearer). (Lower) Local averages of the central sulci were computed at regularly spaced positions to 
clarify shape variability coded on the Isomap axis. 
 

 

Fig 4.6 Hand knob position of Dataset One combined with Dataset Two 

Analogous to Fig 4.5, the combination of dataset One and Two are used instead. Note that a second 
interrupted sulcus has been pushed to the extreme right of the axis. 
 

 

 

4.4.5 Results in terms of hemispheric asymmetry and handedness 

 

The sulci of different groups are then plot separately, refer to Fig 4.7. Dataset One is 

analyzed; the sulci of different handedness groups on the two hemispheres are plot along 

the Isomap axis. The shift in sulcal shape from one hemisphere to another for each 

handedness group can be compared easily. The SPAM of the median of the form of 

different handedness groups on the two hemispheres are plot also, which aid in 
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summarizing the characteristic shape of each sub-group (Fig 4.7, last row). In Fig 4.8, the 

same information is plot on the combination of dataset One and Two.  

 

It can be observed that the SPAM of the right hemisphere has a more characteristic single 

knob, while the left hemisphere has a more double knob characteristic. The median shape 

of the dominant hemisphere for hand (right hemisphere for left-handers and left 

hemisphere for right-handers) are more different among the three groups, and the median 

shape located more away from the centre of the Isomap axis. This can be more easily 

observed on the SPAM images when the median shapes of different subgroups are plot 

on the same axes (Fig 4.7, last row). The right central sulcus of the left-handers (cyan) is 

located more towards the left extremity of the Isomap axis, the left central sulcus (green) 

of the right-handers is more towards the right extremity of the axis. The left central sulcus 

of the left-handers (red) and the right central sulcus of the right-handers (purple) cannot 

be distinguished by their median shape, notice that on the SPAM summaries of Fig 4.7 

and Fig 4.8, these two forms are at the same location, towards the middle of the axis. 

When the hand converters are concerned, it can be observed that their right central sulcus 

(dark blue) is shifted to be towards the centre of the axis, the median form quite similar to 

the right-handers (purple) on the right hemisphere. The left central sulcus of the 

converters (orange), on the other hand, is more shifted towards the right extreme of the 

axis, where the average from of the left central sulcus of the right-handers (green) is 

located.      

 

It is interesting to observe that the average form of the non-dominant central sulcus 

(purple, red) tend to be located towards the centre of the Isomap axis; the dominant ones 

(green, cyan) tend to be shifted towards the extremities. However, depending on 

handedness or hemisphere, the direction in shape shift is not the same. For the right-

handers on the left hemisphere (green), the shift is towards the right, where a 

characteristic “double knob” configuration is observed, as discussed in the previous 

section. For the left-handers on the right hemisphere (cyan), the shift is towards the left of 

the axis where the “single knob” configuration is observed. Considering the hand 
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converters, their left central sulcus is moved away from the centre towards the right of the 

axis (to be more like the right-handers); their right central sulcus is more like that of the 

right-handers as well. This shows the evidence of a “neutral zone” towards the centre of 

the Isomap axis, which represents a “neutral form”. More use of the dominant hand 

(either due to genetics or environment or both) induces a shift away from this “neutral 

shape”. More on this observation will be explored in the discussion. 

 

Another observation is that the spread of the sulcal forms are different for the dominant 

and non-dominant hemispheres. Consider the right-handers, the form of the right central 

sulcus (purple) is more evenly spread over the Isomap axis, while the left central sulcus 

(green) is found more dense towards the right of the axis. For the left-handers, the form 

distribution of the dominant hemisphere (cyan) is denser towards the left of the axis, 

compared to the non-dominant hemisphere (red). Such a shift in density cannot be clearly 

observed in the case of the hand converters.     

 

Fig 4.7 Population localization along the Isomap axis 

Fig 4.5 is plotted as a transparent background. Note the fact that the forced dextral group is double the size 
of the natural handedness groups Lower: Local average sulcus computed for the median location of each 
population. Colour code: Cyan: left-handed, right hemisphere; Blue: converters, right hemisphere; Purple: 
right-handed, right hemisphere; Red: left-handed, left hemisphere; Yellow: converters, left hemisphere; 
Green: right-handed, left hemisphere 
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Fig 4.8 Population localization along the Isomap axis for dataset One and Two 
combined 

The additional database charts include right-handed and left-handed subjects, which are colour-coded 
correspondingly. Colour code: Cyan: left-handed, right hemisphere; Blue: converters, right hemisphere; 
Purple: right-handed, right hemisphere; Red: left-handed, left hemisphere; Yellow: converters, left 
hemisphere; Green: right-handed, left hemisphere 
 
 
The SPAMs of the Isomap of dimension two are shown in Fig 4.9. It can be observed that 

in the dimension from left to right, the same trend exists as that of the 1D Isomap. 

Concerning the other dimension from top to bottom, another trend can be implied. The 

hand knob is changed from smaller to be more prominant, while the position of it remains 

the same, and not sliding up or down. Another interesting observation is that while the 

hand knob becomes more profound, the sulci form is becoming more flat, especially 

regarding the two extremities of the form. 
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Fig 4.9 The 2D weighted SPAM 

A: the 2D weighted SPAM B: The first three rows and columns correspond to the weighted SPAM at 
different coordinates as in A, the fourth row and the fourth column correspond to the first three rows and 
columns merged together for easy comparison. 
 

 

4.4.6 Statistical analysis 

 

4.4.6.1 The difference of the three groups 

Statistical analyses are carried out to study the difference of the three groups, the left-

handers, the right-handers and the hand converters. Looking at the left hemisphere, it is 

discovered that the shape of the central sulcus are significantly different between the left-

handers and the right-handers (p=0.002). The right-handers, compared to the left-handers, 

have a more prominent “two-knob” structure, with the hand-knob shifting upwards and 

the lower knob more profound. The “two-knob” configuration might reflect the fact that 

the left hemisphere is the dominant hemisphere for both language and hand for the right-

handers. The converters have the shape pattern statistically similar to the left-handers 

(p=0.22), and statistically different from the right-handers (p=0.02). 

 

On the right hemisphere, it is discovered that the shape of the central sulcus is not 

significantly different for the left-handers and the right-handers, even though the 

tendency exist (p=0.15). However, there also is a strong tendency for the converters to be 

different from the left-handers (p=0.06), making them very similar to the right-handers 
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(p=0.56). Refer to Fig 4.10 for a comparison of the sulcal forms of the three groups on 

the two hemispheres.  

 

The asymmetry index of the form is simply calculated as (r-l). The right-handers are 

found to be asymmetrical in form (p=0.0002). The converters are found to be 

asymmetrical in form (p=0.03). The left-handers are not asymmetrical. 

 

Fig 4.10 The analysis of form of the central sulcus of the three groups on the two 
hemispheres 

The box plot of sulcal form of the three handedness groups on the two hemispheres. The colour-coding is 
the same as Fig 4.5, namely: Cyan: left-handed, right hemisphere; Blue: converters, right hemisphere; 
Purple: right-handed, right hemisphere; Red: left-handed, left hemisphere; Yellow: converters, left 
hemisphere; Green: right-handed, left hemisphere 
 
 

 

4.4.6.2 The correlation of various measures to shape 

 

The correlation of sulcal form with various measures such as the length, the surface area, 

the depth and the thickness of the central sulcus are studied. The thickness here refers to 

thickness of the cortical mantle on both sides of the sulcus. The form is found to be not 

correlated to surface, depth and thickness on both hemispheres. The length is found to be 

correlated to form (p=0.05) on the left hemisphere, but not correlated on the right 
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hemisphere. This correlation on the left hemisphere is anticipated since the right-handers 

are known to have a longer and larger left central sulcus.  

 

It is verified that the algorithm indeed captured a unique shape characteristic, not a by-

product of other parameters such as the length or the surface area. 

 

4.4.6.3 Handedness correlates in length 

 

The stability of left central sulcus shape of converters contrasts with the flipped 

asymmetry of surface area observed in the previous study with the same population 

(Kloppel S et al., 2010). To complement Klöppel et al. study, we similarly tested 

handedness correlates for central sulcus length and depth asymmetries and found no 

effect with depth (we used the index (2*(r-l)/(r+l)). However, the length asymmetry 

indices replicated the surface area flipped effect. The length asymmetry index 

distributions of the natural handedness populations are different (p=0.002), confirming a 

previous study (Mangin JF et al., 2004). The length indices of forced and natural right-

handers cannot be distinguished (p>0.5) however converters differ significantly from left-

handers (Wilcoxon, n=31/16, p=0.02). In order to obtain greater insight, we also tested 

whether the absolute length of the central sulcus is different between populations after 

affine spatial normalization into a standardised (Talairach) space. The only differences in 

length found were in the left hemisphere in the two naturally handed populations 

(p=0.01), and also on the left, between converters and lefthanders (p=0.06). Natural left-

handers have a shorter left hemispheric sulcus. No significant differences were found in 

terms of absolute sulcal surface area or depth. 

 

 

4.4.6.4 The influence of family history 

 

Additional information regarding family history of handedness for the hand converters is 

provided. The analysis of the influence of family history on the shape of the central 
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sulcus is carried out.  Compared to the right-handers on the left hemisphere, converters 

without family history (p=0.08) are less different than converters with family history 

(p=0.01) in sulcal form. It is also found that the asymmetry index is stronger (p=0.05) for 

converters without family history than those with family history (p=0.9). 

 

On the left hemisphere the converters with family history (median:-1.8) tend to be more 

similar to left-handers (median:-0.06). The median of converters without family history is 

1.7, the median of right-handers is at 4.35 respectively. The corresponding medians on 

the right hemisphere are as follows: -2.83 for left-handers, -1.4 for converters with family 

history, -0.8 for converters without family history, and -0.47 for right-handers (Table 

4.2). 

 

 

Table 4.2 Statistics of converter with or without history  

 

 

4.4.6.5 Data distribution and parameter selection 

 

The distribution pattern of the dataset is studied to decide the statistical tests to use. This 

provides an opportunity to observe the behaviour of parameter selection related to 

statistical results. The distribution of the data is deviated from Gaussian (Kolmogorov-

Smirnov test, p=0.66), the Wilcoxon test results were consequently used for analysis.  

 

The effect of varying the neighbourhood parameter K is explored (K = 4, 5, 6, 7, 8, 9, 10, 

15, 20, 25, 30, 35). The goal is to study the behaviour of the Isomap using various 

neighbourhood sizes. It is also important as a verification of the impact of neighbourhood 
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size on the resulting p-values. Does changing the neighbourhood size affect the resulting 

p-value on the difference of form among the handedness groups? To what extent is this 

variation?  

 

The resulting p-values using various neighbourhood sizes are displayed graphically in 

Fig 4.11. For these experiments, the dataset with the whole Set One is used. Both the 

classical multidimensional scaling (CMDS) and the Isometric MDS (isoMDS) methods 

are used; the statistical results of running the Wilcoxon test are shown. The groups 

studied are the left-handers and right-handers on the left and right hemisphere. 

 

The results show that varying the neighbourhood size has little impact on the conclusion 

for the tests that are already statistically different. For the difference on form between the 

right-handers and left-handers on the left hemisphere, the p-value remains significant 

with various neighbourhood sizes, with the minimum around k=7. For the difference on 

form between the right-handers and left-handers on the right hemisphere, the p-value 

remains not significant with various neighbourhood sizes. The isoMDS and CMDS 

approach produce similar trends in variation of p-values. The isoMDS approach, 

however, provides lower p-values in general.  

 

 

Figure 4.11 Neighbourhood size and p-value 

The lines present the evolution of p-value while varying the neighbourhood size k. The red and violet lines 
present the Isomap using classical and isometric MDS for dimension reduction, both on the difference 
between the form of left-handers and right-handers on the left hemisphere. The green and cyan lines present 
the Isomap using classical and isometric MDS for dimension reduction, both on the difference between the 
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form of left-handers and right-handers on the right hemisphere. The minimum for the violet and the red line 
are both at k=8. 
 
 
4.4.6.6 Influence of data composition on the results  

The central sulcus of the left-handers, the right-handers and the hand converters are 

expected to be not completely identical. The percentage of each group in the dataset 

could have an impact on the resulting Isomap reduced similarity measures. When the 

majority of subjects in the dataset are from one group, the Isomap may focus on the 

difference within the group. Some experiments are performed to better understand the 

behaviour of Isomap with different percentage of right-handers in the whole dataset. The 

two original datasets (Table 4.1) are mixed (Refer to Table 4.3) for the study of the 

impact of data composition on the statistical results.  

 

Dataset Total # subjects # left-handed + 

converters 

# right-handed % right-handed 

Whole Set 1 66 47 19 29% 

Set1 + half of Set2 97 Estimated 49 Estimated 48 Estimated 50% 

Set 1 + whole Set 2 128 53 75 58% 

 

Table 4.3 Handedness Information of Mixing the Two Datasets 

Row 1 and 3: the dataset One and the combination of set One and Two. Row 2: the new experimental 
dataset with more right-handers added to increase the total percentage of right-handers  
 

The three datasets form interesting samples with different percentage of left-handers in 

the set. It is likely that when there are equal amount of left-handers and right-handers in 

the dataset, the Isomap can capture the most difference between these two groups. When 

one of the handedness groups outnumbers the other one, the focus could be partly shifted 

to the difference within the majority handedness group. To further investigate, statistics is 

done on comparing the form of the central sulcus of the lefthanders and the right-handers 

on the left hemisphere, where known significant difference is found between these two 

groups. The resulting p-value could be an indication of the focus of Isomap on 

differentiating the forms of different handedness groups. It can be observed that the p-
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value is the most significant (0.0009) for set1 combined with set 2, where there are 

roughly equal amount of left-handers and right-handers. When the percentage of the 

right-handers increased to 58%, the p-value increased slightly (0.006). When the 

percentage of right-handers is 30%, the p-value is 0.002.  

 

This experiment confirms the influence of data composition on the results. Choosing a 

balanced dataset with equal amount of the subjects from different groups could give more 

focus on discovering the differences among the groups. 

 
 
 
4.5 Discussion  

The discussion is divided into three sections due to the interdisciplinary nature of the 

work. The first section focuses on the insights gained on handedness and cortical 

development, in the second section some computational and algorithmic issues are 

discussed, the third section concludes by discussing the future directions. 

   

4.5.1 Insights in Neuroscience 

 

The intriguing neuroscience issue we tried to investigate here is: if and how are the hand 

converters changed following the hand conversion experience? Cortical folding is used as 

a vehicle to study these questions; in particular the study focuses on the central sulcus 

due to its functional regional specificity.  Can the event of switching hands leave a trace 

on gross brain anatomy? Twin study reveals that while the variability in tertiary folds is 

mainly due to environmental factors, primary folds such as the central sulcus are 

determined more genetically (Lohmann et al., 1999). Indeed, gyrification (cortical 

folding) is a rather stable property suitable for comparisons across long time spans 

(Francis et al., 2006). Such study may provide further insights on brain development. Are 

certain anatomical traits more responsive to learning? How normal development can be 

affected by early intensive learning?  Regarding brain asymmetry, do the two 

hemispheres react differently facing the same learning experience? 
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Regarding the effect of handedness on the anatomy of the central sulcus, some 

differences are revealed in terms of the surface and the depth of the central sulcus, where 

the central sulcus is found to be bigger on the dominant hemisphere (Amunts et al., 1996; 

Csernansky et al., 2008; Mangin et al., 2004a; White et al., 1994), Other studies found no 

difference in terms of depth (White et al., 1997). In the study of the depth, it should be 

kept in mind that an observer-independent depth measure needs to be used such as in the 

work of Cykowski et al (Cykowski et al., 2008). When the depth is estimated based on 

the measures directly from the 2D slices, this measure could become arbitrary since the 

depth depends on the direction of the tissue slicing.  

 

In this study, it is revealed that the shape of the central sulcus of the left-handers is 

consistently different from the right-handers; this difference is not affected by later 

prolonged training as in the case of converting the hand use. A trend of shape change for 

the converters can be observed on both hemispheres, but such change does not reach 

statistical significance. The characteristic shape of the left central sulcus can be described 

as a “two-knob” configuration, while the right central sulcus can be described more as a 

“one-knob” configuration.  

 

This differential configuration might be due to the fact that language centre in the human 

brain is lateralized. In most of the individuals, the language is localized to the left 

hemisphere. The position of the second knob of the central sulcus may be related to 

language lateralization.  

 

Concerning the shape of the central sulcus of the converters, the results suggest that 

developmental events leave different yet observable traces on the two hemispheres. On 

the left-hemisphere, where the central sulcus of the right-handers and that of the left-

handers are found to be statistically different (p=0.002), the shape of the central sulcus of 

the converters remains similar to the left-handers and different from the right-handers. On 

the right-hemisphere, where the central sulcus of the right-handers and that of the left-
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handers are found to be not statistically different (p=0.15), the shape of the central sulcus 

of the converters has a tendency to be different to the left-handers compared to the right-

handers (p=0.06) This difference is not only in terms of the shape change, but also in 

terms of the change in the variability of shape within the group. 

 

The results reveal interesting insights with respect to plasticity. The change of human 

brain can be observed at the scale from hours to years. Grey matter change can be 

observed several days to several months after consistent training such as juggling 

(Draganski et al., 2004); and central sulcus folding pattern is observed to be flattened 

years after amputation (Dettmers et al., 1999). The cortical folding pattern is an example 

of such a more stable trait. The stability of such traits may prove to be useful in the 

diagnosis of problems of early abnormal development. In a more general sense, such 

traits can be used to study how genetic interact with environmental factors such as 

learning in shaping our anatomy and behaviour. 

 

The converters were forced to write in school with their non-preferred right hand, the 

results here show that inborn mechanisms sculpt the shape of the human central sulcus, 

while environmental mechanisms modify only its length, on the left hemisphere. Forcing 

the conversion of hand use does not modify "hand knob” location along the left central 

sulcus, but results in a more right-handed pattern of sulcus length asymmetry. Thus, the 

shape of the central sulcus, once established, is resistant to mechanisms of use-dependent 

plasticity during childhood. However, behavioural constraints during the critical period of 

learning to write modify sulcus length. In this specific case the sulcus shape reflects early 

developmental mechanisms and the sulcus size later environmental effects. 

Characterising normal variation of cortical morphology provides a means of 

systematically correlating behaviour with cortical development. 

 

It can be observed that for both the right-handers and the left-handers, the distribution of 

the sulcal shape is more clustered on their dominant hemisphere for hand use. The non-

dominant hemisphere exhibits greater spread (Fig 4.7, 4.8). When the converters are 
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concerned, they have a different distribution pattern compared to the left-handers on both 

hemispheres. If we assume that the shape of the central sulcus on the non-dominant 

hemisphere is less influenced by the impact of hand use, the shape on the non-dominant 

hemisphere could be then considered more ‘in-born” and less influenced by 

environmental variations such as hand use. Future genetic analysis could be carried out 

correlating with the sulcal forms of the non-dominant hemisphere.   

 

The higher variability in sulcal form might be more “in-born”, the hand usage changes 

this distribution from more uniform to be more clustered. This might explain the 

difference of shape distribution observed on the two hemispheres of the converters. On 

both hemispheres, the distribution of form has a tendency (not significant) to be shifted 

towards the pattern of the right-hander (Fig 4.7, 4.8). The experience of converting hand 

use then is most likely to be a more complex activity beyond simply change the writing 

hand from the left to the right.  

 

Concerning family history, the converters with family history tend to differ more than 

those without family history when compared to the right-handers on the left hemisphere. 

On the right hemisphere, the converters with family history tend to be more similar to the 

left-handers than those without family history. In summary, the converters with family 

history seem to resist the change in the shape of the central sulcus on both hemispheres. 

The results suggest that left-handedness has degrees, which is shown in the degree of 

resistance to change of shape. Concerning the nature of handedness, Woo and Pearson 

suggested that handedness might be a continuous variable (Woo and Pearson, 1927) 

instead of a categorical one consisting of left-handers, right-handers and ambidextrous 

individuals. There are also some functional studies supporting this hypothesis.  

 

Concerning the anatomy of the central sulcus, it is interesting that the algorithm placed 

two interrupted central sulcus at the left and right extremities (Fig 4.4). Furthermore, the 

positions of the interruption are very different. At the left extreme, the interruption is at 

the inferior part of the sulcus; at the right extreme, the interruption is at the superior part 
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of the sulcus. This change in the position of interruption may be related to the change of 

the location of the hand knob. 

 

The interruptions are generally very rare, in about 1% of the cases only (Ono et al., 

1990). The interruption is believed to be caused by a non-operculated deep convolution. 

Broca observed that there are three bridges connecting the precentral and the postcentral 

gyri (Broca and Pozzi, 1888), and he termed them the pli de passage frontopariétal 

supérieur (PPFPS), the pli de passage frontopariétal moyen (PPFPM) and the pli de 

passage frontopariétal inférieur (PPFPI). The PPFPS is found at the interhemispheric 

fissure, corresponding to the paracentral lobule. The PPFPM is described as a bulge into 

the central sulcus at the level of the middle knee of the central sulcus. The PPFPI 

separates the central sulcus from the Sylvian fissure, corresponding to the subcentral 

gyrus. Cunningham confirmed the observation of Broca by describing a deep annectant 

gyrus between the pre- and postcentral gyrus. In rare cases, the PPFPM arises completely 

to the cortical surface, cutting the central sulcus into two separate parts (Cunningham, 

1892). 

 

The PPFPM is functionally linked to the hand knob region, both in hand motor activation 

(Boling et al., 1999), and hand sensory functions (Alkadhi and Kollias, 2004; Boling et 

al., 2008), the functional implication of the PPFPI is less clear. Even though the “classic” 

relatively straight lower knee is described (Rademacher et al., 2001), Fesl (Fesl et al., 

2003) reports the existence of from two to four additional curves in this region, most 

commonly (69%) two additional curves. Boling et al (Boling et al., 2002) demonstrated 

that the tongue sensory area is within the triangular region situated at the base of the 

postcentral gyrus, superior to the sylvan fissure.  

 

The two cases of interruption observed in this study might be the result of the lower 

(ventral) or upper (dorsal) extremities of the Pli de Passages Fronto-Pariétal Moyen 

(PPFPM) arising to the cortical surface. Historically, Wagner first described such 

interruption of the Rolandic fissure in the right hemisphere, in the brain of a celebrated 
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physician (Wagner, 1862). Broca found it in that of “an idiot, who was known to suffer 

from a large number of severe anomalies” (Broca and Pozzi, 1888). More recently, a case 

of a normal male with PPFPM rising to the surface on the left hemisphere is studied (Fig 

4.12). The PPFPM is found to completely segregate the primary motor (M1) finger from 

the M1 elbow representation, the M1 wrist representation was consistently split by the 

PPFPM into a medial and lateral activation cluster (Alkadhi and Kollias, 2004). The 

interruptions might reveal developmental events (Regis et al., 2005), thus being an 

important characteristic of the central sulcus in terms of hemispheric asymmetry and 

function.  

 

 

Fig 4.12 Examples of central sulcus interruptions,  from (Alkadhi and Kollias, 2004) 

The left image: the image of pli de passage fronto-pariétal moyen provided by Wagner (Wagner, 1862); the 
right image: the image of the two hemispheres of the subject studied (Alkadhi and Kollias, 2004). The 
connecting gyrus is marked by an arrow; the opposite side is marked by an asterisk.  
 

From Fig 4.4, it can be observed that the positions of the upper and lower extremes of the 

hand knob are corresponding to the positions of the two interruptions. However, the hand 

knob and the PPFPM may be closely related, especially based on the fact that functional 

studies reveal consistent mapping of hand motor (Boling et al., 1999) and sensory 

(Alkadhi and Kollias, 2004; Boling et al., 2008) functions to the PPFPM.   

 

Assuming that the cortical folding patterns are related to functionality (the relevance of 

cortical folding to functional regions is discussed in Chapter One), the anatomical 

information found in this study could be useful for functional analysis. For example, 
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based on the knowledge that the hand knob could move along the central sulcus, more 

precise functional localization of the hand motor region could be possibly achieved by 

taking into account the individual location of the hand knob.  

 

To conclude, it is confirmed in this study that the converters are differentially changed 

from the left-handers by prolonged training. On the left hemisphere, while the 

characteristic shape of the left-handers is preserved, the consistent use of the right hand 

might be the cause of the elongation of the left central sulcus. On the right hemisphere, 

however, the impact of the lack of use or change of use of the left hand on the sulcal 

shape is much less profound. There is a not significant but possible weak change in the 

shape of the sulcus towards the “neutral shape” of the non-dominant hemisphere found at 

the middle of the Isomap axis, while the sulcal length remains the same. In one sense, the 

“more use” of the right hand and the “less use” of the left hand leave different traces on 

the left and right hemispheres of the brain. 

 

This is the first time that a behavioural trait is associated with a shape-based mesoscopic 

feature of specific cortical folds. The sulcal shape analysis in hand converters shows that 

certain developmental processes are stable and unaffected by mechanisms of late, use-

dependent plasticity. It should be possible to establish a dictionary of stable and variable 

shape-based features associated with each cortical fold, using the Isomap or similar 

technique, to provide a reference for comparison with brain developmental diseases. A 

normal morphometric description at a mesoscopic level would then lead to a series of 

endophenotypes that could provide stable markers of maldevelopment for gene 

association studies. Additionally, the cortical folding concomitants of local functional 

cortical changes associated with environment-dependent behavioural variability lend 

themselves to much more precise definition with potential prognostic implications. 

 

 

4.5.2 Insights on approaches and methods 

 



119 

 

Through this analysis, insights are gained on some important issues: the choice of the 

similarity measure, the outlier identification, and the percentage of different populations 

in the data input. 

 

The choice of the similarity measure influences the resulting similarity matrix. In this 

analysis, the minimum measure is chosen considering the difficulty of the reliable 

matching of branches in central sulcus. When a distance is calculated, it is desirable that 

the main piece of the sulcus is given the priority, while the details such as branches affect 

less the result. It is also observed that the maximum measure finds more outliers. In the 

future studies, the maximum measure can be used to find outliers, while the minimum 

measure can be used for the discovery of patterns. 

 

It is confirmed in this analysis that ICP distance is efficient in identifying outliers in 

terms of sulcal shape. The identified outliers can be confirmed by further visual 

inspection. When corrections are needed in terms of cortical labelling, the corrections can 

be further verified by the updated ICP distance distribution. 

  

Regarding the influence of the input data composition on the final results, using the 

Isomap approach, it is found that when a particular population out-numbers the others, 

more details within this population are revealed; while the other minor populations would 

be given less focus. The term population here can be corresponding to handedness groups 

such as left-handers and right-handers; it can also be corresponding to the majority 

patterns and the rarer patterns of a given sulcus. It is observed that for comparison 

between two populations, the number of subjects from each population affects the results. 

When possible, it would be interesting to “zoom-in” to a minor population to be able to 

explore it in more detail. One limiting factor is the size of the input data; the minor 

population must reach a certain size for reliable data analysis. 

 

The weighted SPAM proves to be a very useful tool for the interpretation of the results. 

While the statistical tests give quantitative measures of the difference between groups, it 
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does not provide visual information on the forms. Using weighted SPAM, the forms can 

be perceived directly; the results of statistical tests can be further verified; visual 

interpretations of folding patterns can be carried out more easily as well.  

 

In this study, the combination of algorithms proves to be a powerful tool for the analysis 

of 3D sulcal shapes. This approach provides a unique opportunity to analyze the central 

sulcus of multiple subjects simultaneously. Interesting characteristics difficult to detect 

even by human experts can be proposed using this approach. This is illustrated in the 

finding of the new “one-knob” vs. “two-knob” patterns that separates the left from the 

right hemisphere. It should be noted that the change from a “one-knob” to a “two-knob” 

pattern is gradual, the discussion of patterns of the two hemispheres are based on 

statistical probability distributions. For a given individual, the possibility to have a “two-

knob” configuration on the right hemisphere is not excluded.  

 

 

4.5.3 Future work 

 

Further cytoarchitectonic studies and the study of underlying fibre bundles could be 

carried out in the future to clarify if and how the gross anatomical changes are related to 

the physiological and connectional differences. Further functional MRI studies based on 

previous work (Kim et al., 1993) could be designed to further verify the relation between 

the positioning of the hand notch on the 3D form of the central sulcus. The relation of the 

existence of the second notch to language, arithmetic and sensori-motor activities could 

be further explored.  

 

The difference in terms of asymmetry between the left-handers and the right-handers 

could be due to both genetic and environmental factors. Young children might learn to be 

right-handed by imitation and living in a right-handed environment, where toys and tools 

are designed for the right-handed (Coren, 1990). Study of the central sulci of infants 

would shed some light on the importance of later environmental factors related to living 
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in a “right-handed world”.  It would be interesting to study the shape of the central sulci 

of infants to understand better when the asymmetry started. The pericentral cortex region 

is already well developed at birth (Ono et al., 1990). It would be also valuable to study 

other species such as the chimpanzees to know if this type of asymmetry is unique to 

humans. 

 

In addition to the central sulcus, studies can be carried out focusing on different parts of 

the brain, for example, the language areas, the corpus callosum and the Perisylvian region 

where interesting results have been found (Jäncke and Steinmetz, 2003). Different patient 

populations can be compared based on their anatomy; this will be of particular interest for 

the better understanding of certain pathologies.  

 

The results obtained in this study invite many interesting further investigations. The 

current study uses mainly 1D Isomaps, more dimensions can be explored. Observing the 

forms of the central sulcus, it can be deduced that some individuals have a simpler and 

smoother stair shape, while others have a more wavy shape, there are still others with 

more branches than usual. Application of more dimensions of Isomap, SPAM and 

eventually different clustering algorithms could unveil more traits with further biological 

or pathological implications. 

 

Finally, this work is an example of what “computer vision” can contribute to the analysis 

of cortical folding patterns. The term “computer vision” is used here in the sense that 

instead of using the human eye, the computer “eye” is used to explore the shape space 

attempting to understand the difference among the three populations. For the human eye, 

it is hard to go beyond some relatively simple shape descriptors. Manually, solely based 

on visual analysis by human experts, these characteristics are difficult to be detected. 

Even when such characteristics are found, they are hard to be characterized and to be 

analyzed systematically and quantitatively. Moreover, here it is demonstrated that 

computer algorithms have the power to analyze hundreds of brains simultaneously and 

infer interesting characteristics without any prior domain-specific knowledge. The same 
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task is overwhelming for human, even for experienced neuroanatomists. This approach 

open doors to further collaboration among the domains of neuroanatomy, and 

neuroscience in general, with the domains of datamining and computer vision.  
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Chapter Five: Sample Dictionary of Folds 

 

5.1 Summary 

In this chapter, the example dictionary is presented, using various approaches and 

methods detailed in Chapters Two and Three. Some selected regions are studied; 

interesting variability patterns found are discussed. The implications and usage of such 

dictionary and the potential applications are discussed in Chapter Six. 

 

5.2 Dictionary of patterns 

 

Several regions are chosen for this preliminary analysis of folding patterns. Namely: the 

region of the central sulcus, the region of the cingulate sulcus, the region of the superior 

temporal sulcus, the Broca’s area, and the superior frontal region. Finally, some 

combinations of regions are explored. This is a preliminary systematic study of folding 

patterns, based on computerized automatic analysis developed in this thesis work. The list 

of regions can be expanded in future work. In the following, the method used for this 

analysis is summarized; the regions and their patterns are then introduced.  

 

5.3 Analysis and clustering methods 

 

The approach introduced in Chapters Two and Chapter Three are used in this analysis. 

The dataset consists of 62 brains manually labelled (Perrot et al., 2009a), which serve as 

the training base of BrainVISA. The definition of the sulci is illustrated in Fig 5.1. Both 

hemispheres are used; the right hemisphere is flipped to match the orientation of the left 

hemisphere for analysis. The similarity measure among the folds is calculated using the 

ICP algorithm. In terms of the distance measure in this analysis, both the maximum and 

the minimum distance are used. As discussed in Chapter Four, these two approaches 

could reveal different information regarding the folds. Combination of Isomap and 

IsoMDS is then applied to reduce the dimension of the distance matrix to two for 
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clustering analysis using PCBB; the dimension is also reduced to one for visualization 

using SPAM. The dimension two is chosen for the clustering analysis in this preliminary 

study so that the quality of the clustering results can be assessed by visual inspection. We 

target the patterns that can be observed visually in this work. It is reasoned that higher 

dimension images might hide details not observable in 2D visualization. Future targeted 

analysis can further explore the complexity of higher dimensions. 

 

It should be noted that the SPAM images are produced given a threshold, so that the 

resulting images do not have holes regarding the central sulcus, refer to Chapter Four for 

detail. When a certain fold does not appear in the SPAM image, it could be due to the fact 

that the folds are not aligned. For this analysis the same threshold is used for all the 

regions analyzed. When a specific sub-region is absent in the SPAM image, it could be 

that the sub-region is absent of folds, it could also mean that the folds are not aligned at 

the sub-region. To prevent false interpretation of the SPAM images, the images of real 

sulci corresponding to the sub-region of the SPAMs should be consulted before drawing 

conclusions.    
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Fig 5.1 The nomenclature of the sulci (Perrot et al., 2009a) 

 

 

5.4 The region of the central sulcus 

 

The anatomy of the region of the central sulcus is discussed in detail in Chapter Four, 

where anatomical traits are linked to behaviour. It was found that there exist two typical 

configurations, the “single knob” and the “double knob” configurations. Furthermore, on 

the left hemisphere, the right-handers tend to have the double-knob configuration, while 

the left-handers tend to have the single knob configuration. Such form characteristics is 

relatively stable and is not changed by later learning events such as the switching of hand 

use in the hand converters.  

 

The definition of the central sulcus in this study uses the combination of central sulcus 

(S.C.) and sylvian central sulcus (S.C. sylvian) in the version of the current automatic 

naming system of BrainVISA. The interruptions towards the bottom of the central sulcus 

is documented to be rare (around 4%) (Eberstaller, 1890; Ono et al., 1990). Refer to Fig 

5.1 for the definitions of these two sulci. Note that this image shows the SPAMs used for 

the automatic recognition system of BrainVISA, obtained using a different approach 

compared to the current work (Perrot et al., 2009a). To conform to the classical definition 
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of the central sulcus, here the continuous piece is used, including the portion of S.C. 

sylvian. The goal is to study the sulcal anatomy of the region and its characteristic 

variations. It should be noted that such study can give further hint to the system of 

nomenclature used for automatic recognition. For example, when the definition of the 

central sulcus is including two pieces (S.C. and S.C.sylvian), as in the automatic sulcus 

recognition model, the SPAM image of the (Fig 5.1) shows two separate pieces. How 

often in a given dataset that such interruption exists? What is the most typical 

configuration of the region of the central sulcus? The results of the current analysis may 

provide additional information.    

 

Refer to Fig 5.2, the SPAM images are shown, it can be seen that the sulci of different 

subjects are relatively evenly distributed along the Isomap axis. The trend of evolution 

from the left to the right of the Isomap axis goes from the “single knob” to “double-knob” 

configuration as discussed in Chapter Four. Observe the real forms at each Isomap 

coordinates (Fig 5.2 E, G), it can be seen that even though the central sulcus is a 

relatively stable sulcus, huge variability in form still exists. Without the aid of the Isomap 

organization and the SPAM images, the evolution of the position of the hand knob cannot 

necessarily be detected.  
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Fig 5.2 The Isomap of the central sulcus 

The position of the central sulcus on the whole brain is illustrated in the first row. A/C: The isomap of the 

central sulcus using maximum/minimum distance. The sulci are superimposed on the SPAM, according to 

their relative positions. B/D: The SPAM of the central sulcus using maximum/minimum distance. The 

forms at the two extremities are coloured blue and red respectively. E/G: The SPAM using 

maximum/minimum distance is plot as a transparent background; superimposed on top of each SPAM of 

sulcus is the real sulcus with its coordinate the closest to the SPAM coordinate. F/H: the SPAM of B/D at 

the left (red) and right (blue) extremities of the Isomap are superimposed on each other.  

 

The pericentral region is usually stable in morphology; the variability observed is much 

lower than in the other regions of the brain. In such case of a more homogeneous sulcus, 

finding clustering patterns is relatively difficult. In the clustering analysis introduced in 

Chapter Two using moment invariants, no clusters could be found. No clusters could be 

found neither using the approach introduced in Chapter Three. However, the clustering 

analysis of Chapter Three is based on analyzing the central sulcus of the left hemisphere 
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alone. Here, when both the left and the right central sulci are included, some clusters 

could finally be revealed. 

 

Clusters are found using the minimum distance approach; the maximum distance 

approach gives no clusters. The two clusters found are likely representing the typical 

forms of the two hemispheres (Fig 5.3). The SPAMs of the clusters are obtained by 

weighting on the distance to the centre of the cluster. It is similar to the method of 

obtaining the 1D SPAMs, except that 2D data are used. The final result is plot at the 

cluster center in the 1D SPAM for visualization. The red cluster has a more characteristic 

single knob configuration, while the black cluster has a more characteristic double knob 

configuration. The relative positions of the hand knob on the two clusters can be 

compared when the two cluster forms are superimposed on each other (Fig 5.3 D). As 

discussed in Chapter Four, for the right-handers (estimated 95% in the dataset used for 

this analysis), the left hemisphere has a more typical “double-knob” pattern (the black 

pattern), and the right hemisphere has a more typical “single-knob” pattern (the red 

pattern). The plot of the data distribution with the information of the location of the 

clusters found conveys further information concerning the clusters (Fig 5.3 B). The black 

and the red clusters are located at the two extremities of the distribution. These clusters 

are not very strong, the black cluster is found mainly due to the low probability of finding 

a group of subjects relatively similar and not at the centre of the distribution. Keep in 

mind that the PCBB algorithm aims at detecting the regions where the distribution is 

unlikely dense.     

 

Fig 5.3 The clusters of the central sulcus 

A: The locations of the clusters found are indicated along the Isomap axis. B: The locations of the clusters 

are plot on the distribution of the whole dataset. C: the real sulcal shapes of the subject at the centre of the 

clusters are plot, superimposed with the SPAM forms as in A. D: the SPAM forms are superimposed for 

easier comparison.  



129 

 

 

The SPAM of the central sulcus of the whole dataset can be generated as well (where 

each sulcus is given the same weight), which convey information of the most common 

form of the sulcus. Refer to Fig 5.4, the SPAM forms at various locations of the Isomap 

can be used for comparison with the average form. It can be seen that the average form 

(Fig 5.4 A) is in the middle of the form variations (plot in transparent). Notice that the 

variation of single or double knob can be observed when the central sulcus is viewed in a 

standard angle (Fig 5.4 B). When the angle is changed to facilitate the observation of the 

depth (Fig 5.4 C), it can be observed that the variation of the depth profile is much less 

prominent compared to the variability of the curvatures.  

 

As discussed in Chapter Four, there exist three pli de passage through the central sulcus, 

the pli de passage frontopariétal superior, moyen and inferior (Broca and Pozzi, 1888). 

The superior and inferior genoux of the central sulcus is likely corresponding to the 

superior and inferior frontal sulci (Dejerine, 1895). Further detailed studies need to be 

carried out relating the pli de passage and the position of the hand knob. If the shallowest 

point in the depth profile is corresponding to the PPFPM (Broca and Pozzi, 1888), it is 

likely that the PPFPM and the position of the hand knob are two separate features of the 

central sulcus. While it is observed here that the hand knob position can move up and 

down along the central sulcus, the position of the pli de passage frontopariétal moyen 

(PPFPM) is supposed to be very stable (White et al., 2002). The PPFPM is thus likely 

corresponding to the very stable bottom of the hand knob, while towards the top of the 

central sulcus the variability increases, this variability manifests in terms of the position 

of the hand knob observed towards the surface. This is in agreement with the sulcal roots 

theory of the more primitive and more stable bottom or “roots” of the sulci. The 

variability in terms of the shape or curvature, on the other hand, conveys additional 

information on the accumulative genetic and environmental influence during 

development till adulthood. 
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Fig 5.4 The SPAM of the whole dataset 

A: The SPAM of the whole dataset is plot. B: the forms along the Isomap axis are plot as transparent, 

superimposed on the whole dataset SPAM as in A. C: as in B with a different angle 

 

As the analysis carried out in Chapter Four, the forms of the left and the right 

hemispheres can be plot. Refer to Fig 5.5, the left hemisphere is plot in green, and the 

right hemisphere plot in red. It is confirmed that the left hemisphere has a tendency 

towards the right extreme of the Isomap axis, while the right hemisphere exhibit the 

tendency towards the left extreme of the Isomap axis. 

 

 

Fig 5.5 The comparison of the two hemispheres of the central sulcus 

A: the central sulci of the left hemisphere B: the central sulci of the right hemisphere 

 

Since the precentral gyrus is the functional motor region, the patterns of the combination 

of the central sulcus and the precentral sulcus are studied next. This could reveal the 

pattern of the precentral gyrus, as well as the sulcal variability of the precentral region.  
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Fig 5.6 The SPAM and fold distribution of the precentral gyrus 

A/C: The isomap of the precentral gyrus using maximum/minimum distance. The sulci are superimposed 

on the SPAM, according to their relative positions. Notice that at the two extremities there are much less 

sulci compared to the centre. B/D: The SPAM of the precentral gyrus using maximum/minimum distance. 

The forms at the two extremities are coloured blue and red respectively. E/F: the highlighted SPAMs at the 

extremes of B/D are superimposed 

 

The analysis using both the maximum and the minimum distances provide consistent 

results. The SPAM images along the Isomap axis are produced. Refer to Fig 5.6 B 

(maximum distance used), in terms of the form of the precentral sulcus, from left to right 

of the axis, the intermediate precentral sulcus changes orientation from more parallel to 

more perpendicular with respect to the central sulcus. Such change in orientation 

observed might be related to the underlying architecture and the orientation of the fibre 

bundles. It is also important to notice the distribution of sulcal forms along the Isomap 

axis. The majority of the forms are located from the fourth to the seventh of the 

coordinates, while the forms towards the two extremities are rarer. 

 



132 

 

The trend described is less obvious using the minimum distance (Fig 5.6D). While the 

trend of the intermediate precentral sulcus is evident, that of the superior region is not. 

Notice the trend of single to double knob observed on the central sulcus cannot be 

deduced here. The strength and orientation of the intermediate precentral sulcus appear to 

be a dominating feature when the region is concerned. 

 

To investigate the sulcal shape in more detail, individual folds along the Isomap axis can 

be studied. Refer to Fig 5.7, when the sulci located at the coordinates of the SPAM are 

plot, more details of the shape evolution can be studied. Based on individual variations, it 

can be confirmed that the intermediate precentral sulcus changes orientation from the left 

to the right of the axis. The superior region of the precentral sulcus is more variable in 

terms of shape and interruptions, which is harder to be captured by Isomap of 1D. 

Nonetheless, from left to right of the axis, the superior portion of the precentral sulcus is 

not only more continuous but also more profound or “heavier” using maximum distance 

(Fig 5.7 A). This evolution of the trait of the superior precentral sulcus is confirmed 

related to the change of position and orientation of the intermediate precentral sulcus.  

 

 

Fig 5.7 The SPAM of the precentral region with the corresponding sulcal forms 
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A/C: The SPAM using maximum/minimum distance is plot as a transparent background, superimposed on 

top of each SPAM of sulcus is the real sulcus with its coordinate the closest to the SPAM coordinate. B/D: 

The SPAM using maximum/minimum distance, plot here for comparison. 

 

Clustering is carried out on the maximum and minimum based distance. The results are 

illustrated in Fig 5.8. Two clusters are found using the minimum distance, and two 

different clusters are found using the maximum distance. The black cluster is stronger 

than the red cluster statistically, i.e. it is more likely that the black group forms a cluster 

compared with the red group. Overall, the trend of change of orientation of the 

intermediate precentral sulcus can be observed. 

 

 

Fig 5.8 The clusters of the precentral gyrus 

A/E: The locations of the clusters found are indicated along the Isomap axis, maximum/minimum distance 

is used. B/F: the real sulcal shapes of the subject at the centre of the black cluster in A/E are plot, 

superimposed with the SPAM of the black cluster. C/G: the real sulcal shapes of the subject at the centre of 

the red cluster in A/E are plot, superimposed with the SPAM of the red cluster. D/H: the SPAM forms of 

the clusters in A/E are superimposed for easier comparison. I/J : The locations of the clusters in A/E are 

plot on the distribution of the whole dataset. K/L : the clusters of B and G/ C and F are superimposed for 

comparison.  

 

In Fig 5.9 the average form of the precentral region as a whole is plot, it can be observed 

that the inferior portion of the precentral sulcus is not as thin as the superior portion. This 

indicates a greater variability in the inferior portion of the sulcus. This effect is likely due 

to the variability in terms of orientation of the intermediate precentral sulcus discussed 



134 

 

above. When comparing the average form with the forms at the two extremes of the 

Isomap (Fig 5.9 B), this variability in the orientation becomes more evident. 

 

Fig 5.9 Global form of the precentral gyrus 

A: the average from of the precentral region. B: the two extremes of the Isomap SPAM forms in red and 

blue are superimposed on the average form. 

  

Another interesting direction for pattern analysis is the study of asymmetry by comparing 

the folding patterns of the two hemispheres. In Fig 5.10, the samples from the two 

different hemispheres are plot in different colours, using minimum and maximum 

distances. In Fig 5.10 D and H, the average forms of the two hemispheres are plot 

together for comparison. It can be observed that on the left hemisphere (in green), 

compared to the right hemisphere (in red), the intermediate precentral sulcus is more 

parallel in orientation to the central sulcus, and the superior precentral region is more 

likely to be lighter and interrupted. Such asymmetry may be related to hemisphere 

specific functionalities such as language and handedness. Further investigation taking 

into account functional and fibre tracking information would be needed to further the 

understanding of such interesting anatomical variability. 
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Fig 5.10 The two hemispheres of the precentral gyrus 

A/E: the SPAM of the precentral region using maximum/minimum distance B/F: the sulci of the left 

hemisphere are plot in green against a grey background of SPAM using maximum/minimum distance; 

C/G: the sulci of the right hemisphere are plot in green against a grey background of SPAM using 

maximum/minimum distance; D/H: the sulci of both hemispheres are plot against a grey background of 

SPAM using maximum/minimum distance. 

 

One of the possible applications of the automated analysis introduced in this work is to 

deduce cortical folding models based on folding variability. The Isomap approach 

proposes a possible framework for the organization of sulci, the clustering results provide 

information on the frequent folding patterns observed which are unlikely due to chance. 

Clinicians and researchers without extensive knowledge in anatomy of cortical folding 

can gain insights into the folding variability utilising such analysis tools. The folding 



136 

 

pattern analysis presented in this work provides a starting point for further understanding 

of the folding variability and the underlying causes of such variability.  

 

 

Fig 5.11 The variability model of the precentral region 

The green arrow indicates the direction of change, the blue and orange squares indicate the regions of 

interest, for the observation of change in sulcal patterns. Three brains are given as examples of the typical 

patterns, the brain surface is plot together with the sulci to facilitate the localization of the sulci of interest. 

 

Fig 5.11 presents an example of such folding variability model of the precentral sulcus. 

From the observations of the sulcal patterns along the Isomap axis discussed above, it can 

be deduced that when the intermediate precentral sulcus becomes more perpendicular to 

the central sulcus, the superior portion of the precentral sulcus tends to become more 

prominent and continuous. This is an example of a more systematic understanding of 

folding variability, beyond a simple categorization based on interruptions and 

characteristic shapes, such as that introduced in Ono. Furthermore, since such 

understanding is gained through the analysis of 3D sulcal forms, the depth information is 

implicitly included, so it is not solely based on surface morphology.  
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The main difference between such deduced variability model and the development-

related model such as the sulcal roots model is that this approach aims at summarizing 

the outcome of the gyrification dynamics, not at deducing the origins of sulcal formation. 

Combining these two types of models leads to important and interesting insights 

concerning the folding dynamics. Such variability model is deduced here not as a 

definitive hypothesis, but as an example to illustrate the possibilities being opened using 

systematic analysis of the variability of 3D folding patterns, where a large number of 

subjects can be analyzed simultaneously and automatically. Such model can be (and is 

expected to be) modified based on the number and nature of the input data, as well as the 

algorithms used for analysis. 

 

5.5 The region of the cingulate sulcus 

 

Switching from the lateral to the medial surface, the Cingulate region is analyzed, which 

includes the cingulate sulcus (or callosomarginal fissure) and the smaller sulci 

surrounding it:  the paracingulate sulcus, the intralimbic (or intracingulate) sulcus, the 

superior and inferior rostral sulcus. The focus of many anatomical and functional studies 

is on the cingulate and paracingulate sulci; here the whole region is studied, in the hope 

of finding not only the patterns concerning the cingulate and paracingulate structure 

alone, but also how the surrounding smaller sulci change with respect to the cingulate 

sulcus.  

 

The cingulate sulcus is a primary sulcus that is present in both hemispheres in normal 

subjects. It appears around 16-19 weeks of gestation (Hori, 2006), together with the 

parieto-occipital and the calcarine sulcus, before the appearance of the central sulcus. 

Historically, the study of the sulcal pattern of the cingulate sulcus (CinS) is carried out by 

the early anatomists such as Eberstaller (Eberstaller, 1890). The caudal end of the CinS 

(the marginal ramus) is located just behind the medial portion of the central sulcus (Fig 

5.12). The CinS follows the corpus callosum; at the rostral end the fusion with the 

superior rostral sulcus (SRS) is possible. This fusion with the SRS could occur rostral or 
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ventral to the cingulate sulcus (Paus, 1996). Interruption is one of the important features 

of the CinS. According to Ono’s atlas, around 60% of the instances of this sulcus have no 

interruption, around 24% have two segments with a posterior interruption or an anterior 

interruption, and around 16% are divided into three segments (Ono et al., 1990). One or 

two branches could be extended from the CinS, a caudal branch right after the marginal 

ramus and a rostral branch. Tertiary sulci can also be observed: the paracingulate sulcus 

(PCS) and the intralimbic sulcus. The PCS occurs in 30-60% of the individuals, while the 

occurrence of the intralimbic sulcus is very rare (6% on the right side and 4% on the left 

side) (Paus, 1996). 

 

 

Fig 5.12 The cingulate sulcus and the surrounding functional organizations  

A: the traditional nomenclature of the cingulate region (Grey’s Anatomy) B/C: examples of the regional 

sulci used in this analysis (the combination of cingulate, paracingulate, rostral and intralimbic sulcus) 

 

In terms of the left-right asymmetry, the left CinS is found to have interruptions less 

frequently than the right CinS. The left CinS has fewer branches as well. Concerning the 

paracingulate sulcus, it is found to be present more frequently in the left hemisphere in 

the work of Paus (Paus, 1996). This asymmetry is also presented in Weinberg (1905), but 

it is not observed in Ono. The cases of prominent and absent PCS are found to be more 

frequent in females (Paus, 1996). 

 

The more developed PCS in the left hemisphere is hypothesized to be related to language 

lateralization, the left paracingulate cortex is activated in fMRI studies of word 

generation in humans (Paus, 1996). More recent study of the anterior cingulate and the 

paracingulate region shows that the PCS morphology is related to executive functions 

(Fornito, 2004). It is found that a leftward asymmetry, compared with rightward 

asymmetric patterns, is related to both verbal and spatial task engaging executive 
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cognitive processes. It is thus possible that the leftward PCS asymmetry represents an 

efficient configuration for executive cognitive processes. This leftward asymmetry is less 

frequent in neuropsychiatric populations (Fornito et al., 2008) and early-onset male with 

schizophrenia (Provost and al, 2003). These interesting studies revealed that the 

anatomical variations of the cingulate region are related to functional variations. The 

accurate mapping of function to this region is likely dependent on the accurate 

description of the underlying anatomical variability. 

 

Fig 5.12 illustrates the traditional nomenclature of the region, two examples of the 

definition of the sulci included in this analysis is given. Refer to Fig 5.13 for the 

summary of the shape analysis at the cingulate region. Using maximum and minimum 

distance measures, different SPAM images are obtained. Despite local differences, the 

overall shape evolution is similar. At one extreme, the paracingulate structure is much 

more prominent than at the other extreme. Moreover, as the paracingulate structure 

becomes more prominent, the anterior and rostral region of the cingulate is becoming 

heavier as well, this is more evident regarding the maximum distance (Fig 5.13 B, E). As 

the paracingulate structure becomes heavier, the anterior and rostral cingulate structure is 

pushed more towards the corpus callosum as well.  

 

 

Fig 5.13 The Isomap of the cingulate region 
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A/C: The SPAM of the cingulate region using maximum/minimum distance. The sulci are superimposed on 

the SPAM, according to their relative positions. Notice that at the two extremities there are much less sulci 

compared with the centre. B/D: The SPAM of the cingulate region using maximum/minimum distance. The 

forms at the two extremities are coloured blue and red respectively. E/F: The two extremities of B/D are 

superimposed for easier comparison. 

 

For a better understanding of the actual sulcal shapes at various positions on the Isomap 

axis, refer to Fig 5.14.  From the top to the bottom of the axis, the evolution from more to 

less prominent paracingulate structure can be confirmed. The correlation between the 

more prominent paracingulate structure and the more prominent anterior and rostral 

structure can be observed as well. The change in number and position of interruptions of 

the cingulate sulcus cannot be reliably observed here. The main trend captured here 

appears to be the relative “heaviness” between the cingulate and paracingulate sulci. 

When the paracingulate is very prominent, the cingulate sulcus becomes weaker. When 

the paracingulate sulcus is missing or consisting of small vertical pieces, the cingulate 

sulcus becomes heavier. As the paracingulate structure gets more prominent (regardless 

of orientation and continuity), the presence of the superior and the inferior rostral sulcus 

becomes more likely, the cingulate sulcus or the rostral sulcus appear to be more 

advanced towards the parolfactory area as well.    
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Fig 5.14 The SPAM of the cingulate region with the corresponding sulcal forms 

A/B: The SPAM using maximum/minimum distance is plot as a transparent background, superimposed on 

top of each SPAM of sulcus is the real sulcus with its coordinate the closest to the SPAM coordinate. The 

form of the real sulcus thus provides more detailed information of the sulcal form at each coordinates.  

 

The clustering analysis using PCBB method described in Chapter Two is used. Three 

clusters are found using the maximum distance measure (Fig 5.15). Notice that the 

clusters span the Isomap axis. The black cluster has a heavier configuration on the 

anterior region; overall its paracingulate structure is more prominent as well. 

 

 

 

Fig 5.15 The clusters of the cingulate region 

The three clusters found applying PCBB clustering algorithm to maximum distance. A: The SPAM image 

is plot as a transparent background, the three clusters found are coloured orange, purple and blue 

respectively. B: The three clusters found are superimposed to facilitate comparison among the shape of the 

three clusters C: the location of the three clusters related to the whole dataset distribution  

 

Based on the SPAM analysis and the cluster analysis, a variability model can be deduced 

emphasizing the relative position and heaviness of the cingulate and paracingulate sulcus 
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(Fig 5.16). While the paracingulate region is prominent (towards the top of the axis), the 

cingulate region is very weak; this characteristic is reversed towards the bottom of the 

axis. When the paracingulate region becomes prominent, the paracingulate sulcus tends 

to become continuous. Some examples of the sulci of the cingulate region superimposed 

on brain surfaces are shown at the right of Fig 5.16. The detail regarding the interruption 

and orientation of the paracingulate structure cannot be reached in the current analysis. 

One possible reason is the limitation in Isomap dimension. It should be emphasized, 

however, that the current analysis takes into account the whole 3D shape of the sulci, 

including sulcal depth, while the interruption pattern described by Ono is mainly based 

on surface anatomy. The interruptions are not necessarily linked to sulcal depth or 

“heaviness” of the folds, thus it is not surprising that the current analysis does not find 

variability patterns based on interruptions.  

 

 

Fig 5.16 The variability model for the cingulate region     

The green arrow indicates the direction of change. For the top to the bottom of the Isomap axis, the orange 

boxes emphasize the “heaviness” change in the paracingulate region; the blue boxes emphasize the changes 

in the anterior cingulate region in terms of both “heaviness” and curvature. At the right end three examples 

are given illustrating the relative change in “heaviness” of the paracingulate sulcus relative to the cingulate 

sulcus. 

 

One possible region of variation in labelling is that of the intralimbic, the cingulate and 

the paracingulate sulci. The intralimbic (or intracingulate) sulcus is defined as a sulcus 

starting at the anterior part of the corpus callosum and joining the middle part of the 
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cingulate sulcus (Paus, 1996). Following the analysis above, when paracingulate is 

prominent, the cingulate becomes weaker. Refer to Fig 5.16, at the top extreme of the 

Isomap axis, the cingulate could become very weak and shallow. Does a weak cingulate 

structure corresponds to the intracingulate sulcus? In other words, when paracingulate is 

unusually prominent, should the cingulate be labelled as intracingulate and the 

paracingulate as the cingulate? Indeed, if the cingulate sulcus is the main sulcus 

separating the Brodmann areas 32 and 24, when a parallel configuration exists where the 

paracingulate is much more prominent than the cingulate, the paracingulate might be 

properly labelled as the cingulate (Regis, 1994). Our variability model of the cingulate 

region in this work assumes the dorsal sulcus in a parallel configuration to be the 

paracingulate, regardless the strength of the ventral counterpart. The paracingulate 

region, by definition, corresponds to the dorsal portion of the anterior cingulate (AC) 

cortex where the Brodmann areas 24b’, 24c’ and 32’ are located, it is a relative expansion 

of the limbic and the paralimbic anterior AC cortex (Brodmann areas 24 and 32) (Fornito, 

2004). Refer to Fig 5.17 B and C for the definition and the Brodmann Areas of the 

region. Refer to Fig 5.17 B, area 32 occupies the gyrus between the cingulate and the 

paracingulate sulcus. Areas 6aα and 6aβ are above the paracingulate sulcus. The area 6aβ 

corresponds to pre-SMA (Supplementary Motor Area), while the area 6aα corresponds to 

SMA proper (Crosson and al, 1999). A portion of medial area 8 may be present as well. 

 

To investigate further this question regarding the labelling of the cingulate, paracingulate 

and the intracingulate sulcus, two subjects are chosen, one with prominent paracingulate 

structure, the other with prominent cingulate structure. The sulci of the two subjects are 

superimposed for easier comparison (Fig 5.17A). There is a possibility that the 

intracingulate structure corresponds to a weak cingulate, when no additional branch 

towards the corpus callosum can be observed. However, the automatic alignment used 

here is not necessarily optimal, so no reliable conclusions can be drawn. Further study 

related to the relative positions of the sulci in Talairach is needed to clarify this issue, 

combining with further architectonic and functional activation information.   
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Fig 5.17 The cingulate regions of two subjects superimposed. 

A: The cingulate regions of two subjects are chosen, the purple case corresponds to a prominent 

paracingulate structure with a weak cingulate structure; the grey case consists of a prominent cingulate 

structure with a weak paracingulate structure. B: The paracingulate region (Crosson and al, 1999) C: The 

Brodmann areas (Brodmann, 1909) 

 

The configuration of the two hemispheres are compared (Fig 5.18), no clear asymmetry 

regarding the whole cingulate region can be observed. Clusters are found only on the left 

hemisphere, the results are illustrated in Fig 5.19. The general evolution in terms of the 

relative heaviness of the cingulate and the paracingulate regions can be observed as well 

among the clusters. The fact that clusters are found only on the left hemisphere but not on 

the right infers a difference in sulcal form distribution among the two hemispheres. The 

hemispheric asymmetry is thus likely to be related to the variation in sulcal form density 

distribution, not as simple as a shift in form, as observed for the region of the central 

sulcus. 
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Fig 5.18 The cingulate region by hemisphere 

The left hemisphere is plot in green, and the right hemisphere plot in red. The opposite hemisphere is 

superimposed in transparent for easier comparison. 

 

 

Fig 5.19 Clusters found on the left hemisphere  

A/B: clusters found on the left hemisphere using the minimum/maximum distance; C/D: the SPAM of the 

clusters corresponding to A/B. 



146 

 

 

5.6 The region of the superior temporal sulcus 

 

The region of the superior temporal sulcus (STS) is highly variable. It is appearing 

around 20-23 weeks of gestation, together with the central sulcus (Hori, 2006). 

Interruptions are one of the features described in (Ono et al., 1990). Compared to the left 

STS, the right STS is found to be more likely continuous (36% continuous on right STS 

vs. 28% continuous on left STS). The left STS is more likely to be broken into four 

segments (24%) compared to the right STS (0%). The anterior end of the STS is found to 

be extending lateral, medial, at or far posterior to the temporal pole. The left and right 

hemispheres are found to be distinctive in this characteristic as well. Various connections 

are found, such as the connection with the Sylvian fissure, the intraparietal sulcus, and 

the inferior temporal sulcus.  

 

Some systematic anatomical analysis of STS was carried out (Ochiai et al., 2004) based 

on the sulcal root model. The sulcal roots of the STS are illustrated in Fig 5.20 A. 

Different sulcal roots (STs. Ant, STs.mid, STs. Post, STs horizontal, STs.ter.asc.ant and 

STs.ter.asc.post) corresponding to the “plis de passage” in this region are described. It is 

found that the generic model proposed using the “pli de passage” is consistent, and 

further asymmetry between the two hemispheres is observed (Ochiai et al., 2004). 

 

 

Fig 5.20 The sulcal roots and “plis de passage” of the STS complex 

A: the pli de passage in the STS region, from T. Ochiai et al. (Ochiai et al., 2004) B: two examples of the 

STS used in the current analysis 
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The superior temporal sulcus is a region extensively studied for functional activations. 

The anterior STS is found to be related to voice and sentence processing, spatial 

awareness and biological motion processing; the middle part related to word 

comprehension; and the posterior part related to spatial and motion processing, face 

processing, social perception and the Theory of Mind activities (Hein and Knight, 2008). 

The functional activity in the STS region is linked to various systems such as the visual, 

auditory and the limbic systems, connections to and from the frontal lobe, the parietal 

lobe and the deeper structures such as the amygdale and striatum have been observed. 

Abnormalities in this region have been linked to pathologies such as autism (Redcay, 

2008; Zilbovicius and al, 2006). Anatomical studies linking the form of the STS to 

symptoms has also been demonstrated as discussed in Chapter One (Plaze et al., 2009), 

where the shape of the STS is linked to the nature of auditory hallucination in 

schizophrenia.  

 

Refer to Fig 5.20 B for examples of STS analyzed, and refer to Fig 5.21 for the Isomap 

analysis of the STS region. The prominent feature found by Isomap is a gradual opening 

of the posterior “fork” of the STS. At the top of the Isomap axis, the posterior region of 

the STS (anterior and posterior terminal ascending sulci of STS) forms a wide “fork”, 

either the anterior or the posterior terminal ascending portion can be broken off the main 

STS branch. At the bottom of the axis, these two pieces are much closer to each other. 

When observing the two extremities of the SPAM superimposed on each other, another 

interesting characteristic can be observed at the anterior end: as the “fork” closes, the 

external (surface) of the anterior STS is rotated dorsally compared to the bottom of the 

sulci. This trend observed can be seen more clearly on Fig 5.21 E, F, G and H, where the 

corresponding sulci of each SPAM coordinate along the Isomap axis are plot. Notice that 

from the top to the bottom of the axis, the posterior opening is diminishing, while the 

anterior portion is also getting longer and heavier, with the external part of the sulci 

rotated more dorsally. The change of the angle of the anterior end is more easily observed 

on the SPAM based on minimum distance in this case (Fig 5.21 F).      
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Fig 5.21 The isomap of the superior temporal sulcus 

A/C: The isomap of the superior temporal sulcus (STS) using maximum/minimum distance. The sulci are 

superimposed on the SPAM, according to their relative positions. Notice that at the two extremities there 

are much less sulci compare with the centre. B/D: The SPAM of the STS using maximum/minimum 

distance. The forms at the two extremities are coloured blue and red respectively. E/F: The SPAM using 

maximum/minimum distance is plot as a transparent background; superimposed on top of each SPAM is 

the real sulcus with its coordinate the closest to the SPAM coordinate. The form of the real sulcus thus 

provides more detailed information of the sulcal form at each coordinates. G/H: The two extremities of 

B/D are superimposed for comparison. 

 

Next, the clustering analysis is carried out. Refer to Fig 5.22, three clusters are found 

using both maximum and minimum distances. The three clusters follow the trend 

observed above, especially the degree of “opening” of the “fork” at the posterior of the 

STS. The anterior change of angle can be clearly observed in Fig 5.22 F and J. While the 

anterior angle changes, the anterior piece tends to be broken off the main branch as well, 

this interruption is likely due to the operculation of the anterior pli de passage (Fig 5.20). 

Compare with the anterior part of the STS, the posterior part is much more variable. 
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Consider for instance Fig 5.22 G, H and K. Even when the “opening” of the “fork” is 

similar in degree according to the SPAM images, the actual folds can be very different in 

configuration (consider the red cluster in Fig 5.22 G and K).  

 

 

Fig 5.22 The clusters of the superior temporal sulcus 

A/C: the clusters found using maximum/minimum distance B/D:  the location of the three clusters related 

to the whole dataset distribution using the maximum/minimum distance E/I : the clusters of A/C 

superimposed together for easier comparison F,G,H: the three clusters of A with the real sulcal shape 

superimposed J,K : the three clusters of C with the real sulcal shape superimposed       
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Fig 5.23 The left and right hemisphere of the superior temporal sulcus 

A/B: the left (green) and right (red) hemisphere using maximum/minimum distance measure, the 

hemispheres are superimposed along the Isomap axis for easier comparison 

 

Finally, the hemispheric asymmetry of the STS is studied (Fig 5.23). A strong asymmetry 

is observed, the left hemisphere is located more towards the bottom of the axis where the 

“fork” is closing; the right hemisphere is located more towards the top of the axis where 

the fork is opening wider. It is interesting to notice that the region between the upper fork 

of STS and the Sylvian fissure is corresponding to the Planum Temporale (PT), part of 

the Broadmann area 22 where the Wernicke’s area is located. Hemispheric asymmetry 

has been observed in PT, the region is larger on the left hemisphere. Refer to Chapter 

One or Fig 5.24B for the corresponding Brodmann areas. Refer to Fig 5.23, the left 

hemisphere STS (green) shows a closing of the “fork”, this also indicates an enlargement 

of the region directly above the upper “fork”, where PT is located. This analysis also 

shows that when the PT region is enlarged on the left hemisphere, the anterior end is also 

elongated and rotated, following the Isomap analysis on shape (Fig 5.21). This anterior 

piece may correspond to the relative configuration of Brodmann area 38 related to 22, 

where BA 38 is now known to contain at least 7 subspaces according to cytoarchitectonic 
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studies. This area is among the earliest affected by Alzheimer’s disease and one of the 

earliest involved at the start of temporal lobe seizures (Ding and al, 2009). 

 

Based on the above analysis, a variability model of the STS can be proposed which is 

illustrated in Fig 5.24A. The model emphasizes on two regions of interest, at the anterior 

and the posterior end respectively. The variability at the anterior end is related to the 

angle of rotation and the length (the blue region), the variability at the posterior end is 

related to the opening of the ascending “fork”, the anterior and posterior terminal 

ascending sulci of the STS (the orange region). The variability of the closing of the angle 

of the “fork” can also be interpreted as the possible enlargement of the region directly 

above the upper fork, approximately corresponding to the ventral border of Planum 

Temporale. To be more certain of this aspect of enlargement of the region another 

analysis including both the STS and the Sylvian fissure should be carried out. The “fork” 

itself could be related to BA 40, 39 and 37, the temporo-parieto-occipital area.  BA 40 is 

involved in meaning and phonology of reading, and damage to BA 39 plays a role in 

semantic aphasia (Stoeckel and al, 2009). Assuming the significance of morphology in 

brain function, further studies linking such sulcal variability of STS to function should be 

very interesting. 

 

 

Fig 5.24 The variability model of the superior temporal sulcus 
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A: the variability model of STS B: The definition of the Brodmann areas are illustrated (detail refer to 

Chapter One)  

 

5.7 The Broca’s area 

 

The Broca’s area is explored; the sulci included in this analysis are the diagonal ramus, 

the ascendant ramus and the anterior ramus of the Sylvian fissure, the anterior inferior 

frontal sulcus and the inferior frontal sulcus (F.C.L.r.diag, F.C.L.r.asc, F.C.L.r.ant, 

S.F.inf.ant and S.F.inf). It is a region of wide interest because of its connection to 

language production. The definition of the region by a group of sulci is illustrated in Fig 

5.25, with an example of the region.  

 

 

Fig 5.25 The definition of the sulci of the Broca’s area 

A: the definition of the sulci (as Fig 5.1); B: the Broca’s area defined by the sulci. The definition of the 

Broca’s area by a group of sulci: F.C.L.r.diag, F.C.L.r.asc, F.C.L.r.ant, S.F.inf and S.F.inf.ant. 

 

The Broca’s area is consisted of Brodmann Areas (BA) 44 and 45 (Fig 5.24 B). The 

F.C.L.r.asc generally separates BA 44 and 45. BA 44 is more involved in phonological 

and syntactic processing, also music perception. BA 45 is the triangular area (or pars 

triangularis) of the inferior frontal gyrus, it surrounds the F.C.L.r.ant and bounded 

caudally by the F.C.L.r.asc. The Broca’s area is traditionally viewed as receiving 

afferents mainly from Wernicke’s area through the arcuate fasciculus (part of the superior 

longitudinal fasciculus). Recent evidences suggest that the arcuate fasciculus connects the 
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posterior brain areas with the Broca’s area through a relay-station in the premotor/motor 

areas (Bernal and Ardila, 2009).   

 

 

Fig 5.26 The analysis of the sulci around the region of Broca’s area 

A/D: The isomap of the Broca’s area using maximum/minimum distance. The sulci are superimposed on 

the SPAM, according to their relative positions. Notice that at the two extremities there are much less sulci 

compare with the centre. B/E: The SPAM of the Broca’s area using maximum/minimum distance. The 

forms at the two extremities are coloured blue and red respectively. C/F: The SPAM using 

maximum/minimum distance is plot as a transparent background; superimposed on top of each SPAM is 

the real sulcus with its coordinate the closest to the SPAM coordinate. The form of the real sulcus thus 

provides more detailed information of the sulcal form at each coordinates. G/H: The two extremities of B/E 

are superimposed for comparison.  

 

The same methods are applied to study this region with results presented in Fig 5.26. 
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The complexity of this region increases compared to the regions analyzed before, the 

deduction of variability models becomes difficult. From the Isomaps, certain trends can 

nonetheless be observed.  Refer to Fig 5.26, from the left to the right of the axis, the 

inferior frontal sulcus (S.F.inf) becomes less “heavy” or prominent and its orientation 

appears to be changing. Notice that the SPAM images show this trend, even though the 

image is not a precise summary of the shape. From the left to the right of the axis, as the 

relative “heaviness” and orientation of S.F.inf changes, the folds of the region become 

less “loose” and more compact as well. Further functional analysis with respect to the 

trend found would be very interesting. 

 

The results of the clustering are shown in Fig 5.27. Two clusters are found. The red 

cluster shows a longer S.F.inf compare to the black cluster.   

 

 

 

 

Fig 5.27 The clusters of the sulci of the Broca’s area 

A: The locations of the clusters found are indicated along the Isomap axis, minimum distance is used. B: 

the real sulcal shapes of the subject at the centre of the black cluster in A is plot, superimposed with the 

SPAM of the black cluster. C: the real sulcal shapes of the subject at the centre of the red cluster in A are 

plot, superimposed with the SPAM of the red cluster. D: the SPAM forms of the clusters in A are 

superimposed for easier comparison. E: The locations of the clusters in A are plot on the distribution of the 

whole dataset. 

 

While these first results with Broca’s area worth further exploration, we realize the 

possibility that because of the wide inter-individual variability, the behaviour of the ICP 

was more questionable than for the simpler groups of folds mentioned before. One of the 



155 

 

consequences is that the global alignment of the whole population toward the most 

neutral subject is not reliable. We need to explore further the consequences on the Isomap 

organization described here. Our future research program to overcome this difficulty is 

described in the last chapter. 

 

 

 

5.8 The prefrontal region 

 

The folds of the prefrontal region are analyzed. To aid in analysis, two sets of sulci are 

analyzed, called the smaller and larger superior frontal region. The smaller region 

contains the superior precentral sulcus, the marginal precentral sulcus, the superior 

frontal sulcus, the median frontal sulcus, and the transverse frontopolar sulcus. The larger 

region contains all the sulci of the smaller region, plus the intermediate frontal sulcus. 

The definitions of the regions are illustrated in Fig 5.28. 

 

 

Fig 5.28 The definition of the smaller and larger superior frontal region 

A/B: examples of the smaller superior frontal region; C/D: examples of the larger superior frontal region. 

The smaller region contains the superior precentral sulcus, the marginal precentral sulcus, the superior 

frontal sulcus, the median frontal sulcus, and the transverse frontopolar sulcus. The larger region contains 

all the sulci of the smaller region, plus the intermediate frontal sulcus. 

 

5.8.1 The smaller superior frontal region 

 

The results of the smaller region are shown in Fig 5.29. It can be observed that the 

complexity and variability of this region is higher compared to those analyzed above; 

finding a trend in sulcal shape becomes extremely difficult for human eye. A dominant 

trend that can still be observed is concerning the more or less “heavy” posterior portion, 
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around the superior precentral sulcus. This relative heaviness of the posterior region is 

also related to the total extent of sulcal complexity and heaviness of the region as a whole 

(Fig 5.29 B and C). In summary, from the top towards the bottom of the Isomap axis, the 

total heaviness and complexity increases, the superior precentral sulcus appears to 

elongate and is oriented more towards the frontal region, away from the central sulcus.   

 

The clusters found in this region are illustrated in Fig 5.30. From the top to the bottom of 

the Isomap axis, the typical form of the clusters become heavier in general, the elongation 

of the superior precentral sulcus (the vertical posterior piece) can be observed as well. It 

should be noted that labelling error could exist regarding the superior and intermediate 

frontal sulcus, due to the complexity in this region. The introspection of each brain could 

clarify this issue. 

 

 

Fig 5.29 The analysis of the sulci around the region of the superior frontal area 

A/D: The isomap of the superior frontal area using maximum/minimum distance. The sulci are 

superimposed on the SPAM, according to their relative positions. Notice that at the two extremities there 

are much less sulci compare with the centre. B/E: The SPAM of the superior frontal area using 

maximum/minimum distance. The forms at the two extremities are coloured blue and red respectively. C/F: 

The SPAM using maximum/minimum distance is plot as a transparent background; superimposed on top of 

each SPAM of sulcus is the real sulcus with its coordinate the closest to the SPAM coordinate. The form of 

the real sulcus thus provides more detailed information of the sulcal form at each coordinates. G/H: The 

two extremities of B/E are superimposed for comparison.    
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Fig 5.30 The clusters of the superior frontal area 

Three clusters are found which are coloured green, yellow and purple respectively on the Isomap SPAM 

map. The more precise shape at the cluster centres are then plot, the subject is chosen as that the closest to 

the centre of the clusters found. 

 

5.8.2 The larger superior frontal region 

 

The results of the larger superior frontal region are illustrated in Fig 5.31. Using the 

maximum distance (Fig 5.31 A, B, E and F), an interesting trend can be observed. In 

contrast to the results obtained using the smaller superior frontal region, here from the top 

to the bottom of the Isomap axis, the overall complexity and “heaviness” appear to be 

decreasing, while the superior precentral sulcus appears to be somehow elongating. The 

reduction in complexity from the top to the bottom of the axis appears to be partly due to 

the less complex intermediate frontal sulcus. 

 

Refer to Fig 5.32 for the variability model of the superior frontal region. Here it is 

demonstrated that the definition of the region for shape analysis would influence the 

results. When the larger superior frontal region is studied, the dominant variability factor 

found is the “heaviness” of the intermediate frontal sulcus. When a smaller region is 

investigated, where the intermediate frontal sulcus is excluded, the “heaviness” of the 

superior precentral sulcus became the main factor for variability. In a sense, when we 

zoom into a region, the variability can be analyzed in more detail. 
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Fig 5.31 The analysis of the bigger superior fontal region 

A/C: the isomap of the region using maximum/minimum distance B/D: the SPAM as in A/C with the real 

folds superimposed in the SPAM image E/G: the clusters found using the maximum/minimum distance 

F/H: the clusters of E/G plot together for easier comparison 
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A  

 

B  

 

Fig 5.32 Variability models for the superior frontal region 

A/B: The variability model of the smaller/larger superior frontal region 
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5.9 The combinations: CS and cingulate 

 

Finally, a combination of the sulci is analyzed to illustrate the potential of more 

comprehensive analysis. The advantage of such analysis is that relative positions of the 

sulci relatively far apart can be studied, the complexity of such analysis is beyond simple 

visual inspection. As an example, the combination of the cingulate region and the central 

sulcus is analyzed, the definition of the region is illustrated in Fig 5.33. 

 

 

Fig 5.33 The combination of central sulcus and the cingulate region 

 

The results are presented in Fig 5.34 and Fig 5.35. Similar trend related to the heaviness 

of the paracingulate region is found here, from the left to the right of the Isomap axis, the 

paracingulate structure is more prominent. Regarding the central sulcus, it is interesting 

to notice that from the left to the right of the axis, the angle between the central sulcus 

and the cingulate sulcus is diminishing. In other words, at the left extreme of the axis, the 

central sulcus is more perpendicular to the cingulate sulcus; towards the right extreme, 

the central sulcus is more parallel to the cingulate sulcus. In one sense, when the 

paracingulate structure becomes heavier, the cingulate is pushed towards the corpus 

callosum, which explains why the angle between the central sulcus and the cingulate 

sulcus is changed. This trend can be observed also when the two extremities are 

superimposed together (Fig 5.34 F). 

 

The clustering results are presented in Fig 5.35 B and C. The hemispheric asymmetry in 

the region is plot in Fig 5.35 E, no clear asymmetry can be observed.  
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The variability model is summarized in Fig 5.36. Two regions of interest are the orange 

one representing the change in angle of the central sulcus with respect to the cingulate 

sulcus; the blue region draws attention to the change in heaviness of the paracingulate 

structure. 

 

 

 

Fig 5.34 The Isomap analysis of the combination of the central sulcus and the 
cingulate region 

A: the distribution of the sulci superimposed on the SPAM images, minimum distance is used here, similar 

results are obtained using maximum distance. B: the SPAM images with the two extremes highlighted C: 

the same as B with a change of point of view to facilitate the observation of the central sulcus D/E: same as 

B/C, with the real sulci superimposed on the SPAM images F: the two extremities of the Isomap axis as in 

B are superimposed to facilitate comparison 
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Fig 5.35 The clustering and asymmetry analysis of the combination of the central 
sulcus and the cingulate region 

A: the SPAM images using maximum distance B: the clusters found using maximum distance, in black and 

red C: The clusters of B superimposed for comparison D: the real sulci plot on the SPAM images E: the 

sulci of the left (green) and right (red) hemispheres superimposed   

 

 

Fig 5.36 The variability model of the central sulcus with the cingulate region 
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Chapter Six: Discussion on Folding Analysis 

 

6.1 Summary 

 

In this chapter, the potentials of cortical pattern analysis, new data representation and 

interesting directions to further explore in the future is discussed. The example dictionary 

is presented in Chapter Five, using various approaches and methods detailed in Chapters 

Two and Three. The implications and usage of such dictionary and the potential 

applications are discussed in this chapter. 

 

6.2 Introduction 

 

Brain folding patterns are explored in this work, using algorithmic approaches. As 

discussed in Chapter One, the nature of this work is multi-disciplinary. Refer to the 

simple diagram in Fig 6.1, computer algorithms are used to solve specific problems in 

brain cortical folding. The results of such study can provide insight into the brain folding 

process; the results can also consequently provide insight into algorithm development.  

 

 

Fig 6.1 The diagram of the interaction among domains 

 

Many factors play important roles in the analysis of cortical folding. In particular, the 

choice of the sulci or region of interest, the shape descriptor, the similarity measure, the 

clustering algorithm and the dataset used for analysis all impact the final results. These 
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five factors will be discussed in more detail below. The chapter concludes by the 

discussion of the use of such a dictionary and the future of cortical folding analysis in 

general.  

 

6.3 The implications of sulcal analysis 

 

The implication of the sulcal analysis is two-fold. On one hand, the pattern of cortical 

folding is studied systematically. Many of the knowledge gained through this process can 

be further used in other applications, such as automatic sulcal recognition or diagnosis of 

certain pathologies. On the other hand, the process of designing algorithms for cortical 

analysis provides useful insights to the design of algorithms in general.  

 

6.3.1 Sulcal analysis and brain development 

 

The results of cortical folding analysis can provide insights to the automatic naming 

system, for example, in the case of the inferior precentral sulcus (refer to Fig 2.26 of 

Chapter Two). A pattern is consistently observed that consists of a shorter precentral 

sulcus, with the lower portion sometimes connected to another sulci (examples are the 

anterior subcentral sulcus, the diagonal ramus of the Sylvian Fissure). The automatic 

naming system may take into account this type of knowledge in terms of frequent 

patterns of the folds. This approach may lead to improved performance in automatic fold 

recognition. A more detailed analysis is presented below on the section of the analysis of 

the precentral gyrus. 

 

More generally, the sulcal analysis can be used to verify existing hypothesis. For 

example, the sulcal roots theory (Regis et al., 2005) provides a systematic framework to 

study folding variability. Using the approach of brain folding analysis described in this 

work, such framework can be further explored. One possible direction for further study is 

the variability related to the sulcal roots model. At certain regions such as the pericentral 

region, the two-piece configuration of the central sulcus as the configuration of the sulcal 
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roots (the central sulcus with an interruption) can be rarely observed in adults (around 

1%) (Ono et al., 1990). At other regions such as the prefrontal regions however, the 

interruptions are very frequent in adult brains, so that the sulcal roots pieces can be 

observed. Such analysis of the difference between adult folding patterns and the sulcal 

roots model provides information on region-specific variability. Why some regions 

resemble more the configuration of the sulcal roots with interruptions, while other folds 

become more typically continuous with few interruptions?  

 

The folds formed earlier are more likely to be continuous than those formed later in 

development. The local resemblance to the sulcal roots, or the local degree of variability 

may correspond to the relative timing of the appearance of the sulcal roots. It would be 

interesting to explore further such region specific difference in variability, which may 

give insights into the timing and nature of brain development in general.  

 

One possible use of the results of such systematic analysis is the deduction of possible 

sulcal variability models based on the analysis by Isomap, combined with the knowledge 

of the clusters. With the aid of the pattern dictionary, the very complex cortical folding 

can be analyzed by not only experienced neuroanatomists. Researchers and clinicians 

with less experience in sulcal anatomy can deduce hypothesis on sulcal patterns, and 

further test them. Some examples of the sulcal variability models are presented in 

Chapter Five.     

 

Related to the timing of the appearance of the sulcal roots, the study of adult folding 

patterns can be extended to add the patterns of foetus or children at different age, to 

further understand the onset and nature of variability. The advantage of the method of 

cortical pattern analysis described in this work is that it is observer-independent and 

automated. It provides the possibility to detect patterns sometimes beyond the 

comprehension of human inspection alone, as in the case of the analysis of central sulcus 

presented in Chapter Four. 
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Such cortical pattern analysis can also provide possible landmark for normal versus 

abnormal brain development. When a certain pattern found rarely in normal populations 

becomes exceedingly frequent in certain pathologies, such an incidence could help with 

diagnosis. In a similar sense, if a gradual change in certain folding pattern can be 

observed, such as in the case of handedness and the form and length of the central sulcus 

discussed in Chapter Four, such information can be further used to monitor change during 

learning or treatment in the case of pathology. 

 

6.3.2 Algorithmic development and knowledge discovery  

 

Switching from neuroscience to computer science, it is demonstrated through this work 

that algorithmic development is not a stand-alone process. Based on the specific 

questions being investigated, the algorithms need to be changed to adapt to the question. 

In the first part of the work, we try to find dense clusters that would become the 

representative patterns of a given sulcus or a group of sulci. An algorithm is designed 

specifically for this purpose. It is later realized that there exist a varied degree of 

variability among the sulci. Certain sulci are very stable, so that no dense clusters can be 

found in these cases. To give a summary of the forms of such stable sulci, the algorithm 

needs to be changed. Eventually, the information regarding the sulci produced by 

different algorithmic approaches can be combined to give a more comprehensive 

description of the cortical folding patterns. This is an ongoing and dynamic process.   

 

6.4 The main factors in the analysis of cortical folding 

 

6.4.1 Folding groups and region of interest  

 

Two different approaches towards sulcal analysis are experimented in this work. In the 

first approach, the biggest sulci are chosen (refer to Chapter Two for detail). These sulci 

also correspond to the deepest or mostly primary sulci in the sense that they appear 

earlier in brain development. These sulci are chosen because they are among the most 
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reliably labelled sulci and they can be found in the great majority of individuals, unlike 

the case of the smaller sulci. The combination of two or three of these sulci is also 

analyzed, following the reasoning that there would likely be fibre bundles connecting 

these sulci. 

 

The major drawback of such an approach is that it does not emphasize the gyrus, which is 

the functional entity of the cortical convolution. Furthermore, the exhaustive combination 

of two or three of the major sulci is still doable, but this approach quickly leads to an 

explosion in computation when smaller sulci are concerned. More specific strategies need 

to be used. This leads to the second approach introduced in Chapter Three. Instead of 

choosing the most interesting sulci, the most interesting regions of the cortex are chosen. 

These regions can be as small as one single sulcus or as large as the whole brain. Most of 

the regions chosen are referring to the gyrus instead of the sulcus. The number of sulci is 

inferred by the region chosen. 

 

These two approaches can find different patterns. There exist many further possibilities. 

For example, the sulci can be grouped by timing (from primary to tertiary), by depth, by 

surface area or by length. It would be interesting to verify if the depth corresponds to 

timing, this is expected to be generally true, but exceptions might exist. In the work on 

sulcal roots (Regis et al., 2005), the emphasis is on developmental timing, sulcal 

structure, variability and stability, the work of sulcal pits (Lohmann and von Cramon, 

2000), on the other hand, is more based on sulcal depth. These two approaches yield 

similar maps. With the pattern analysis tools developed in this thesis work, the 

interconnections and differences of these two approaches can be further explored. 

 

The regions of known functional correlations (such as the Broca’s area and the Wernike’s 

area) or known anatomical connectivity through fibre bundles can be explored together.  

In the cases when known link in specific pathologies exist, these regions can be 

combined as well. One such example is the cingulate region and orbital frontal region 

known to be linked in the obsessive compulsory disorders (Shim and al, 2009). Finally, 
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of course, when no constrain in computational power and time exists, a pure exploratory 

approach can be taken, when exhaustive combinations of regions can be explored in 

sequence without any prior knowledge.      

 

Another approach worth investigation in the future is clustering analysis on unlabelled 

sulci. This approach would break the limitations of the traditional naming system. 

Interesting patterns concerning pieces of different sulci can be found, which may carry 

biological or neurological significance. Such an approach applied to large databases 

could reveal patterns beyond the reach of the anatomists using the classical nomenclature. 

This objective will have to deal with combinatorial explosion. In brainVISA, each brain, 

indeed, is made up of more than 500 elementary folds. These folds are different for each 

brain. A sulcus of the traditional nomenclature is usually made up by several of these 

elementary folds, some representing the stem of the sulcus and the others representing the 

branches. The number of elementary folds for a particular sulcus varies from one brain to 

another, because one given sulcus can be broken or interrupted in various ways. 

Therefore, inferring some reproducible patterns across a large set of folds will be a 

challenge.  

 

Note that such analysis can be carried out on the raw data as well (Toews et al., 2010). In 

feature-based morphometry, folding patterns can be discovered using volumetric 

imagery.  

 

6.4.2 Shape descriptor and Similarity definition 

 

To describe the cortical folding, the first and more traditional approach is to use a shape 

descriptor. The simplest descriptors that can be used include the depth, length, the surface 

area and the number of connected components of the folds. The three-dimensional 

moments invariant to translation, rotation and scaling used in this work is originally 

developed to analyse simple shapes such as that of the thalamus of the brain (Poupon, 



169 

 

1999). The application of 3D moment invariant to the analysis of complex cortical 

folding shapes is validated in this study.     

 

In the second part of the study, a new way to describe the shape is introduced. Instead of 

using sophisticated shape descriptors for each shape, the similarity among all the shapes 

in the population is calculated. This different approach goes beyond the description of 

each single shape, the group closeness in shape is used which may embed more 

comprehensive information concerning the individual related to the whole population. 

The results using the two approaches can both bring useful information to cortical folding 

analysis.  

 

As discussed in Chapter One, other methods exist that can extract the top or the bottom of 

the cortical folding for further analysis. In our approach, we used the three-dimensional 

form of the folds. However, the top (external) or bottom of the sulci could embed 

important and different information. Our algorithmic approach can be used to carry out 

pattern analysis on the top or bottom of the sulci only. 

 

In addition to the sulci line at the top or bottom of the fold, indeed, lines at different depth 

can be taken out for systematic pattern analysis. For example, when comparing the results 

of sulcal roots and sulcal pits models, an interesting question to ask is: is there an optimal 

depth which corresponds to a maximal fit between the two models?  

 

Other than depth, another important factor in cortical folding is the sulcal direction. In the 

sulcal roots model, it is further proposed that the folding follows a grid system (Regis et 

al., 2005). The sulcal direction related to sulcal patterns can be further explored. In the 

study of folding orientation, the simplest approach is to use the most stable folds (for 

example the cingulate and central sulcus) as reference directions for the calculation of a 

direction index. This index could be calculated globally, locally, or in a more region 

specific sense (Clouchoux et al., 2010). 
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As discussed in Chapter One, the gyrification index (GI) is useful in the study of cortical 

folding and its relation to certain pathologies. In a similar sense, the extent of folding can 

be measured as to which extent a certain sulcus is stretched flat or being distorted or 

“wrinkled”. Two folds with the same surface area may be more or less smooth. The 

Isomap study introduced in Chapter Four hinted the importance of such a measure. The 

extent of such folding can be observed in the Isomap analysis in two dimensions 

presented in Chapter Four (Fig 4.9). A further index dedicating the extent of folding can 

be added to the pattern description. The higher dimensions of Isomap can be 

systematically studied as well, to reveal possible additional information. 

 

For patterns concerning more than one sulcus, the surface area of the gyri in between can 

be calculated. This adds another parameter to the pattern definition. Systematic 

comparison of asymmetry of folding patterns between the two hemispheres can be carried 

out. Other possible systematic comparisons include the analysis on gender and age. Such 

comparison can be expanded when other information are available. 

 

While moment invariants discussed in Chapter Two turned out to be a good description 

of the complex shapes made up by the folds, they cannot describe certain details like 

branches that only weakly contribute to the coordinate moments. Therefore, in the future, 

a complementary approach based on non linear registration of images could be 

developed, where the main difference is removed, the focus can be on details such as the 

variability of the sulcal branches.  

 

 

6.4.3 Clustering algorithms and approaches 

 

In this section, the more general framework of clustering algorithm development is 

discussed. The algorithms developed and used are put into this general framework. The 

close link between cortical folding phenomenon and the “right” algorithm or algorithms 

to study such a phenomenon is further discussed.  
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6.4.3.1 Clustering algorithms 

 

The definition of data clustering is itself vague; one of the definitions is as follows: “for a 

given set of data points and similarity measure, we regroup the data such that objects in 

the same clusters are similar, and objects in different clusters are distinct” (Jain et al., 

1999).  More intuitively, clustering is an exploratory process, a way to summarize the 

information in the dataset, so that an improved understanding can be achieved. 

 

The major difficulties or challenges of clustering are mainly in three domains: how to 

find clusters with differing size, shape and densities; how to handle noise and outliers; 

and how to determine the number of clusters. These three issues are not independent, 

many times a given clustering algorithm excels in resolving one of the issues while fails 

in resolving the others. Indeed, there is a trade-off among the three issues. The “best” 

algorithm is ultimately based on an understanding of the specific real-life question(s) we 

are trying to solve by clustering analysis.     

 

Clustering algorithms can be roughly put into six different categories: centre-based, 

density-based, grid-based, graph-based, search-based, and model-based (Gan et al., 

2007). This is a conceptual categorization; a given clustering algorithm can belong to 

more than one category. These approaches are discussed very briefly below, the 

advantage and disadvantage based on the three issues mentioned above are discussed. 

 

In the centre-based approach, the goal is to find clusters each represented by its centre. 

Examples of such algorithms are K-means and Expectation Maximization (EM) as a 

generalization of the K-means algorithm (Duda et al., 2000). This type of algorithms can 

find clusters of variable sizes, but cannot deal with arbitrary shape clusters easily. The 

PCBB algorithm can be put into this category, a cluster is represented by its centre.  
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In the density-based approach, the goal is to find dense regions. By definition, it is 

difficult for such an approach to find clusters of different densities. However, this 

approach can find clusters of arbitrary shapes, it is usually robust and the number of 

clusters is automatically decided by defining the dense regions. The algorithm DBSCAN 

belongs to this category, where the density of a point is obtained by counting the number 

of points in a region of specified radius (Gan et al., 2007). BRIDGE, an algorithm 

combining DBSCAN with K-means is another example (Gan et al., 2007). The PCBB 

algorithm designed in this work can be put in this category as well since the goal is to 

find local dense regions.  

 

The grid-based approach is related to the density-based approach. A grid structure is 

created to partition the data into finite number of cells for further density-based 

clustering. Such an approach allows reduction in computational complexity. The 

advantages and disadvantages are similar to that of the density-based approach, the 

number of cluster is determined automatically, the clusters can be of arbitrary shapes, but 

the density of the clusters cannot be different. 

 

In the graph-based approach, graph or hyper-graph is constructed; the data points are the 

graph nodes linked in a specific manner. The goal of the clustering algorithm becomes 

that of graph partitioning. The algorithm Chameleon can be grouped into this category 

where the K-nearest neighbour graph is generated and partitioned, and then a hierarchical 

clustering schema is used to combine sub-clusters (Gan et al., 2007). Compared to the 

density-based approaches, the definition of cluster can be more comprehensive; examples 

include clusters as dense regions, or homogenous regions. The definition of a cluster and 

how it will affect the clustering results will be discussed further below.          

 

In the search-based approach, clustering is considered as an optimization problem. While 

algorithms such as k-means or fuzzy k-means can find local optimums, algorithms such 

as simulated annealing, Tabu search or genetic algorithms can go beyond local optimum 

(Michalewicz and Fogel, 2004). 
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Compared to the model-based approach, the other categories (centre-based, density-

based, grid-based, graph-based and search-based) are considered as heuristics. In the 

model-based approach, data is considered to be generated by a finite mixture of 

underlying probability distributions. The models are used for clustering to optimize the fit 

between the data and the model. The clustering problem becomes the estimation of 

parameters of the assumed mixture model. In the end, both the model-based approach and 

heuristics face the same challenge: how to find a “good” clustering algorithm in the 

heuristics approach; or how to perform a “good” model selection in the probability 

framework. 

 

In a more general sense, clustering algorithm development could take two routes: rule-

based or model-based. Today, these two approaches are very often combined to solve 

specific problems. However, a somehow more philosophical separation exists between 

these two approaches. Does Nature follow mathematical models or very elementary rule-

based computer programs such as that of the Turing Machine (a theoretical machine that 

can manipulate one input symbol on an infinite tape at a given time step) (Turing, 1948)? 

Simple models such as cellular automata can be used for such exploration of natural 

phenomenon (Wolfram, 2002). Schmidhuber asked the question: “is God a 

Mathematician or a Programmer?”(Schmidhuber, 1997). In the understanding of nature, 

both approaches reach interesting findings such as the morphogenesis of natural patterns. 

Some authors (for example (Wolfram, 2002)) argue, however, that a mathematical 

approach cannot explain the whole complexity of natural systems while rule-based 

computer heuristics (such as the genetic algorithms and the cellular automata approach) 

may have a better chance.  

 

In our study, we tried to combine both approaches, although the emphasis is on 

heuristics. In the future, both approaches separately, or the combination of the two, can 

be used for more discoveries. Next, the approach of applying clustering algorithms to the 

study of cortical folding is discussed. 
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6.4.3.2 Clustering algorithms on cortical folding 

 

The first and arguably the most important step of the clustering process is the definition 

of a cluster. By doing this, an assumption is made on the kind of clusters that can be 

found on a dataset. Indeed, the definition of the kind of cluster that we try to find can be 

very different. For example, the clusters can be defined as: compact groups with high 

mutual similarity within the group; or chained clusters where the group members can be 

just loosely linked. The clusters can be defined as regions of Gaussian distributions in 

noisy data, or can be defined as regions of homogeneous density in sparsely populated 

background. The definition of a cluster decides the desired outcome. The algorithm can 

consequently be designed or selected based on the definition of the cluster.    

 

The definition of the type of cluster should be based on the specificity of the real data 

upon which the clustering analysis would be carried out. The data in this work, the 

cortical folding, would surely be different from the distribution of bacteria culture or gene 

expression data. Blindly applying clustering algorithms regardless the domain specificity 

leads to failure. So the first step of selecting a clustering algorithm in this work is the 

careful observation of the distribution patterns of different sulci. Such study is done as 

discussed in Chapter Two, it is found that the cortical folding distribution is very varied. 

For the less homogenous sulci such as the cingulate sulcus, the distribution resembles 

random homogeneous distribution with dense islands, for the less variable sulci such as 

the central sulcus, the distribution resembles random homogeneous distribution without 

any dense islands. In the case of very noisy datasets such as these, a particularly robust 

algorithm is needed. It is also likely more sensible to define clusters as the dense islands 

of arbitrary shape instead of regions of Gaussian distributions. The PCBB algorithm is 

consequently designed to find such dense regions in noisy data. 

 

An interesting question to ask is: what does such data distribution pattern tell us about the 

biological nature of cortical folding?  Indeed, distribution as mixture of Gaussians is 
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observed in many Biological phenomenons, such as the size of different bacteria species 

in a cell culture dish. On the other hand, many more complex systems such as geological 

systems exhibit non-Gaussian distributions. Why a mixture of cortical folds does not 

exhibit a mixture of Gaussian distribution pattern? In the 1952 paper of Turing (Turing, 

1952), it is proposed that pattern might grow from an initially nearly homogeneous state 

due to instability. The result of small initial instability could result in the emergence of 

patterns as a consequence of the breakdown of symmetry and homogeneity. The observed 

final distribution pattern could be close to or very different from homogeneous. 

 

Linking data distribution with genetics, a Gaussian distribution pattern may hint the 

existence of simple genetic control for expression, such as the case when one gene is 

involved in determining the size of a given bacteria population. When complex irregular 

distributions are observed, it is possible that there are more genetic or environmental 

factors involved that interact with each other in gene expression. In the case of cortical 

folding, a huge variability in shape and pattern can be observed. This variability is likely 

due to interactions of multiple genetic and environmental factors.  In the Turing 

morphogen model (Turing, 1952), the reaction-diffusion of two factors, the activator and 

the inhibitor morphogens, can cause pattern formation. An interesting study exploring the 

cortical pattern formation using Turing morphogens is discussed in Chapter One (Lefevre 

and Mangin, 2010). In real life, a group of such morphogens are likely to be involved in 

sulcal pattern formation. In addition, such morphogens can be genetic or environmental, 

further adding complexity to the process. 

 

It is possible that in certain pathologies where genetic abnormalities are known, the 

cortical folding pattern distribution would change from that of the normal population. 

The folding abnormality can be difficult to detect visually; the abnormal folding 

distribution of the dataset as a whole may be observed more easily. Such change in 

distribution can be reflected in the shift of locations of the dense regions. Another 

possible change is in the nature of distribution, for instance a shift from non-Gaussian to 

Gaussian pattern of distribution would hint a shift in the dynamics of folding.  
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To conclude, the definition of clusters should be determined by careful observation of the 

distribution of the cortical folding patterns. Different clustering algorithms can be used 

based on the kind of clusters we are trying to find. A combination of clustering 

algorithms can be used to give a more comprehensive description of the data. 

 

 

6.4.4 ICP 

 

We recently realized that because of the amount of variability observed with a group of 

sulcus like Broca’s area, a better control of the quality of the ICP alignment was 

mandatory. For instance, combining the actual sulci used in Fig. 5.26 with the complete 

brains, we realized a shift in orientation from the left to the right of the Isomap. 

Furthermore, some of the individual alignments with the template brain were spurious 

because either ICP yielded a local minimum or the two sulcus groups are too different to 

be aligned correctly. Future work will aim at overcoming these difficulties following 

alternative research directions: 

 

• Adding a low variability sulcus like central sulcus to the group to impose the 

 global orientation; 

• Using local alignments to compute the local SPAM rather than the alignment to 

 the template (we think that ICP alignment is more robust when dealing with 

 similar shapes); 

• Using more robust ICP algorithms; 

• Controlling the matrix of pair wise alignments globally to introduce some 

 regularization. 

 

 

6.4.5 Datasets 
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The datasets used in part determines the patterns that would be found. Many factors are 

important in the selection and preparation of datasets, and would consequently determine 

the outcome. The size and the type of the datasets (patient versus normal, animal versus 

human etc) are some of the important factors. In the future, many more datasets should be 

used in pattern analysis to get a more comprehensive dictionary of patterns. The datasets 

can be mixed to increase the statistical power; however, caution should be taken before 

mixing to ensure that the datasets are compatible. When different populations are used for 

pattern analysis, the patterns obtained would be different. Another issue is the method to 

reliably compare the patterns or clusters obtained. 

 

 

6.5 Future directions 

 

In the future, different directions can be taken. For instance, other datasets could be used 

for the same type of analysis. It is important to confirm the results on other datasets, the 

nature of the input may change the results as well. In Fig 6.2, another dataset containing 

486 brains is analyzed. This database was processed by brainVISA first, and then the 

branches of the central sulci were unselected manually. The resulting Isomap confirms 

our results, the hand knob moves upwards from the left to the right of the axis. With this 

higher number of brains, the Isomap organization looks almost perfect (a neighbourhood 

of 10 brains is used to define the nearest neighbour graph). This database is part of a 

pedigree study (collaboration with P. Kochunov) that will allow addressing the genetics 

underlying the hand knob feature. Preliminary results tend to show that the hand knob 

location is heritable. 
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Fig 6.2 The analysis of the central sulcus of a dataset containing 972 adult sulci 

(courtesy P. Kochunov) 

 

 

Fig 6.3 The isomap of the central sulcus of a dataset of infants (courtesy F. Leroy, J. 

Dubois, L. Hertz-Pannier and G. Dehaene-Lambertz) 

A: the left (magenta) and right (green) hemispheres superimposed B: all the sulci plot together C/D: similar 

to A/B, the point of view is changed to the bottom instead of the surface of the brain 

 

 

It is also interesting to study the sulcal forms during development. Fig 6.3 illustrates the 

preliminary images of the analysis of the central sulcus of infants, aged from 1 to 6 

months. The higher position of the hand knob can be observed (Fig 6.3 B) from the 

surface, but not from the bottom (Fig 6.3 D). This is likely due to the stability at the 

bottom of the sulci as discussed in Chapter Four and Chapter Five concerning the central 
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sulcus. The investigation could be extended to children of various ages and especially 

backward in time: recent advances provide similar central sulcus representations in 

highly premature babies (courtesy J. Dubois and P. Hüppi). Finally some comparative 

studies performed in collaborations with the groups of W. Hopkins and P. Kochunov lead 

to similar observations with chimps and other primates.    

 

We also tested to which extent our method is robust enough to provide the same 

qualitative results without any manual correction. 250 brains from the Localizer database 

of Neurospin were processed by A. Moreno and P. Pinel, from the group of S. Dehaene. 

They applied the automatic sulcus recognition of brainVISA. We processed the resulting 

500 central sulci, 10 of them being discarded by the outlier detection mechanism. The 

SPAM of the resulting one dimensional Isomap can be visualized below (Fig. 6.4) and fit 

perfectly the previous ones. 

 

Ideally, such sulcal form analysis should be combined with functional data and fibre 

bundle data. Fig 6.4 and Fig 6.5 illustrate preliminary such results. The functional SPAM 

highlighted in Fig.6.4 proves that the hand knob keeps its status of landmark for the hand 

motor area whatever its location along the central sulcus. The language activation extent 

seems correlated to the size of the second lower knob that we supposed associated with 

the language system. Further analyses are required to confirm this association at the 

individual level. Indeed, a bias could be introduced by differences in the quality of 

alignment from one side to the other side of the Isomap. More in depth work is needed, 

these images are only shown here to illustrate the many exciting directions that can be 

taken using the automatic sulcal pattern analysis methods developed in this work. 
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Fig 6.4 Functional activation SPAM superimposed on central sulcus SPAM along 

the Isomap axis of the central sulcus (250 brains, localizer protocol, courtesy P. Pinel 

and S. Dehaene).  

The green SPAM is related to the right hand motor activation, the orange SPAM is related to silent reading 

involving part of the motor language system, maybe an area controlling the larynx. The functional SPAMs 

are obtained using the isomap coordinate of the left central sulcus as individual weight when averaging 

individual activations and the individual alignment used for the left central sulcus relative to the template 

sulcus. Therefore the functional SPAM should be interpreted as group studies for population with similar 

left central sulcus shape. 

 

 

 

 

Fig 6.5 The fibre bundles surrounding the cingulate sulcus of two subjects 

It can be seen that even though in both cases interruptions can be observed. A closer look at the underlying 

fibre connection reveals that the interruptions are likely due to different configurations of the underlying 

fibre architecture (courtesy P. Guevara and C. Poupon). 
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6.6 Conclusion 

 

As illustrated in the sample dictionary (details refer to Chapter Five), description of the 

variability can be more systematic, and results on large datasets can be obtained 

automatically. Such analysis adds to the valuable work such as that of Ono (Ono et al., 

1990), using modern imaging and computational techniques.  

 

Based on the expanded pattern dictionary, hypothesis of folding mechanism can be 

further verified. It might inspire new hypothesis based on the expanded information. As 

our understanding of cortical folding variability gets more complete, more insights can be 

gained, models can be refined and expanded. 

 

Genetic factors (when patterns are linked to genetic diseases, twins, families) in the 

folding process can be further tested. Landmark for development and change (in the study 

of plasticity, development and aging) can be established. Such pattern analysis may help 

with diagnosis and the monitoring of treatment. Finally, such cortical folding analysis can 

be combined with the information of fibre bundles beneath, functional data and 

information from behavioural experiments. Development can be systematically studied in 

longitudinal studies to reveal the timing of cortical pattern formations. 

 

Indeed, the cortical folding patterns can be landmarks for the past (developmental 

abnormality, in-born traits), the present (benchmark for treatment and change) and the 

future (in early diagnosis). 
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APPENDIX A:  RÉSUMÉ 

 

                                    Trouver des motifs dans les plissements corticaux 

 

Résumé 

 

Le contexte de cette thèse est l’étude de la variabilité des plissements du cortex. 

L’objectif principal est la conception d’algorithmes permettant de découvrir des motifs 

spécifiques à une sous-population d’individus. Le but final est de réaliser un dictionnaire 

de ces motifs et de les associer à des particularités cognitives ou architecturales, voire à 

des pathologies.  Deux stratégies de clustering sont proposées pour mettre en évidence de 

tels motifs. La première repose sur des descripteurs de formes globaux correspondant 

aux invariants de moment 3D, la seconde repose sur l’estimation d’une matrice de 

distances entre chaque paire d’individus. Un algorithme de clustering dédié est conçu 

pour détecter les motifs les plus fréquents de manière robuste. Une technique de 

réduction de dimension est utilisée pour mettre en évidence les transitions entre motifs au 

sein de la population. Les méthodes algorithmiques proposées sont utilisées pour étudier 

la forme du cortex sensori-moteur d’une population de gauchers contrariés. Des résultats 

originaux sur le lien entre la forme du sillon central et la latéralité manuelle sont mis en 

évidence. Les méthodes développées sont ensuite utilisées pour construire le premier 

dictionnaire des motifs observés dans les plissements corticaux issu d’une approche 

algorithmique. 

Le reste du résumé est organisé comme suit: La première section propose une 

introduction aux domaines les plus pertinents pour ce travail; la seconde section introduit 

une première approche de clustering fondée sur des descripteurs de forme; la troisième 

section explore les approches fondées sur le calcul de distances entre paires de sillons; La 

section 4 applique les méthodes mises au point à l’étude des corrélats de la latéralité 

manuelle sur la forme du sillon central, illustrant le potentiel des méthodes proposées; la 

section 5 comprend la discussion des divers aspects de l'analyse de la morphologie du 
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cortex et la section 6 présente les premières pages du dictionnaire que nous souhaitons 

construire à plus long terme. 
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1. Introduction  

 

Dans cette section, un aperçu général est donné aux domaines de préoccupation 

fondamentale pour cette thèse: le phénomène du plissement cortical et la morphométrie 

informatisée de ces plis à partir de données d'imagerie par résonance magnétique. 

 

1.1 Plissement cortical du cerveau  

 

Le voyage commence avec le processus de plissement cortical. Ce processus de 

plissement, mystérieux et fascinant, n'est pas encore bien compris. Est-ce que les 

plissements corticaux contiennent des informations sur l'organisation fonctionnelle du 

cerveau humain? Dans la forme des plis, peut-on observer un motif caractéristique de 

certaines maladies neurologiques? Il existe une foule de connaissances éparses sur le 

sujet accumulées par les études détaillées de générations de neuroanatomistes. Grâce aux 

progrès récents des logiciels dédiés à la reconnaissance automatique des sillons corticaux, 

les questions concernant les plissements corticaux peuvent maintenant être revisitées à 

partir de bases de données incluant un grand nombre de cerveaux (Mangin et al., 2004c). 

 

Il est fascinant de regarder les représentations 3D des plissements du cerveau. Comme l'a 

dit Welker: "le plus frappant, intéressant, encore mal compris des caractères 

morphologiques des hémisphères cérébraux chez les mammifères correspond aux 

dispositions diverses et complexes des circonvolutions corticales et des sillons" (Welker, 

1988). Chaque cerveau est différent et aucun d'entre eux ne ressemble exactement à ceux 

des livres d’anatomie (des exemples sont présentés dans la figure 1).  L’énorme 

variabilité entre ces plissements est manifeste. 
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Fig. 1. La variabilité des plissements du cortex 

Hémisphères droits de trois personnes, les plis corticaux du lobe frontal sont mis en évidence selon la 

nomenclature traditionnelle. 

Historiquement, certains ont beaucoup douté de la signification des formes des 

plissements du cortex : «semblable à la boucle de l'intestin grêle qui semblait ne présenter 

aucun ordre particulier» (Edwin Clarke, 1973). Dans le début des années 1800 l'attention 

a été attirée par Gall et ses disciples sur l’idée de localiser certaines facultés mentales 

dans des gyri spécifiques (Clarke, 1968). La phrénologie est maintenant du passé, mais 

cette initiative a conduit à de nombreuses études descriptives des circonvolutions 

cérébrales. De nombreuses observations suggèrent que la morphologie des plissements 

peut être liée à la connectivité et aux fonctions cérébrales (Welker, 1988). Il est donc 

intéressant d'explorer davantage les modèles de plissement extraits des images IRM  avec 

des méthodes de calcul plus modernes et automatisées, et d’essayer de lier ces modèles à 

des fonctions, des comportements ou des pathologies. 

Les études actuelles de la variabilité des plis corticaux s’appuient principalement sur des 

caractéristiques morphométriques simples, telles que la longueur ou la profondeur des 

sillons ou des gyri standards. La description la plus détaillée de la variabilité des sillons a 

été proposée dans l'atlas de Ono (Ono et al., 1990). Cet atlas ne repose pas sur un seul 

individu, mais sur vingt cerveaux différents. Pour chaque sillon, les auteurs proposent 

une liste de motifs observés et leurs fréquences. Ces modèles sont définis par exemple en 

tenant compte de la variabilité des interruptions des sillons. D'une certaine manière, 

l'objectif initial du travail de thèse est d'automatiser le travail effectué par Ono. Nous 

voulons découvrir des motifs stables pour un sous-ensemble de la population. En outre, 

nous voulons trouver des liens entre ces motifs et l’organisation fonctionnelle du cortex.  

 

Un système de nomenclature standard a été mis en place pour décrire les circonvolutions 

de la surface du cerveau humain (Anatomica, 1983; Clemente, 1985; Ono et al, 1990.), 

(fig. 2 pour un exemple). Malheureusement, en raison de l'énorme variabilité qui existe 

entre les individus, la réalisation d'une conception unifiée de la description des sillons et 

des circonvolutions est extrêmement difficile. Un exemple intéressant d’une tentative de 

compréhension systématique des sillons et des circonvolutions est le modèle des racines 
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sulcales, des entités élémentaires correspondant aux premières ébauches des plis 

supposées stables à travers les sujets (Regis et coll., 2005). Ce modèle générique permet 

des analogies entre les motifs de l’ensemble des individus, voire même des études 

comparatives à travers les espèces. Il nécessite néanmoins encore des validations croisant 

des données issues de l’étude du développement cérébral, de l’architecture corticale 

intrinsèque au manteau cortical et de sa connectivité. 

 

Fig 2 gyri et sillons, un exemple de la présentation du livre du texte de la nomenclature. 

Gray's Anatomy: les bases anatomiques de Médecine et Chirurgie (édition britannique 38e éd.) 

 

1.2 Les théories sur le mécanisme de plissement cor tical   

 

Il a d'abord été proposé que la sulcation est due à l'expansion du cortex limitée par le 

crâne et les ganglions de la base (LeGrossClark, 1945). Il fut découvert par la suite que 

l'élimination d'une grande quantité des structures corticale et sous-corticale du cerveau 

d’un mouton n’affecte pas la taille et l'organisation des sillons (Barron, 1950), invalidant 

cette hypothèse. Van Essen (Van Essen, 1997) propose que les connexions neuronales qui 
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se développent pendant le deuxième trimestre de grossesse produisent des tensions qui 

attirent fortement les régions interconnectées juqu’à les rapprocher grâce aux plis. 

D’autres théories du plissement mettent l’accent sur des facteurs mécaniques tels que la 

croissance différentielle des couches corticales (Todd, 1982). Les facteurs génétiques 

jouent probablement un rôle crucial dans la forme des plissements du cortex. Un contrôle 

génétique du développement cortical a ainsi été proposé (Rakic, 1988) et des liens 

importants entre les plissements du cortex et la cytoarchitecture ont été confirmés (Fischl 

et al, 2008.).  

 

1.3 Approches informatiques pour étudier le plissem ent cortical 

 

Les progrès récents de l'imagerie du cerveau à partir de la résonance magnétique (IRM) 

fournissent de précieuses informations concernant le plissement cortical. Par exemple, il 

est possible d’étudier la dynamique du plissement chez un sujet impliqué dans une étude 

longitudinale. Cette dynamique peut également être simulée : la simulation informatique 

d’un modèle morphogénétique (Toro et Burnod, 2005) a été proposée pour tenter de 

préciser l'importance relative des facteurs mécaniques et génétiques dans les plissements 

du cortex. Une autre approche intéressante pour expliquer la cohérence et la variabilité du 

plissement cortical s’appuie sur un modèle phénoménologique (Lefèvre et Mangin, 

2010). L'étude suggère que des interactions non linéaires régies par un modèle de type 

reaction/diffusion suffisent à expliquer à la fois la stabilité de l’organisation générale des 

plissements et la variabilité issues de l’interruption de certains sillons.  

Grâce à des approches algorithmiques, plusieurs cadres organisationnels génériques ont 

maintenant été proposés en ce qui concerne les schémas de plissement cortical. Dans le 

modèle des racines sulcales inspiré du développement (Regis et coll., 2005), la variabilité 

observée dans le plissement cortical adulte est expliquée sur la base de gyri plus ou moins 

enfouis dans les sillons (les plis de passage). De ce fait, une autre approche qui repose sur 

les maxima de profondeur des plissements principalement induits par ces plis de passage 

conduit au modèle des « sulcals pits » qui est très similaire au précédent (Lohmann et al., 

2008 ; Im et al., 2010).  
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Une façon de permettre la comparaison des plissements du cortex et de la morphologie à 

travers les sujets est d'abord d'aligner les surfaces corticales. Cette approche permet de 

comparer l'épaisseur corticale et la surface des structures lobaires ou gyrales, mais aussi 

la géométrie des plissements du cortex. Un index est souvent utilisé pour quantifier 

l'ampleur du plissement, l'indice de gyrification (IG). L'IG a d'abord été défini comme le 

rapport entre les longueurs des contours coronaux 2D du cerveau incluant et excluant les 

sillons (Zilles et al., 1988). Des versions 3D globales ou locales sont aujourd’hui utilisées 

en routine. Une multitude d’autres paramètres morphologique peuvent être utilisés 

lorsque les sillons ont été identifiés au sein du plissement : la longueur, la profondeur, la 

surface et l'ouverture des sillons (Mangin et al., 2004b, Kochunov et al., 2005). 

 

L'étude de la morphologie corticale apporte de la lumière sur de nombreuses questions 

importantes. En particulier, des résultats pertinents ont été mis en évidence dans quatre 

domaines: les anomalie du développement, le vieillissement, la plasticité, et la relation de 

la génétique au développement des plissements. Dans cette thèse, un lien intéressant 

concernant le développement du cortex et sa plasticité sera mis en évidence. 

 

 

2. Clusters de plis  

 

Dans cette section, le concept de l'aide d'algorithmes de clustering pour analyser les 

plissements du cortex est introduit. L'effort de sélection du descripteur de forme 

approprié et le développement d'un algorithme de clustering spécifique à l'analyse des 

plissements du cortex sont décrits.  

 

2.1 Définition 

 

Tout d'abord, nous avons besoin de définir les motifs de plissement cortical que nous 

recherchons. Dans une étude préliminaire, ces motifs sont vaguement définis comme un 
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groupe de cerveaux qui montrent un trait caractéristique qui les distingue des autres 

cerveaux. Cette caractéristique pourrait être basée sur la surface du pli, le degré de 

courbure, le nombre et la position des interruptions, etc.  Puisque ce type d'apprentissage 

non supervisé sur la forme des plis n'a jamais été réalisé systématiquement avant, nous 

n'avons pas une définition claire. Il est également très probable qu’aucun ensemble 

restreint de paramètres (angle, longueur, profondeur, topologie…) ne permette de 

caractériser la totalité des motifs intéressants.  

 

2.2 Méthodes de clustering 

Nous discutons maintenant de la méthode qui peut être utilisée pour découvrir des motifs 

répondant à la définition ci-dessus. Il s’agit a priori d’un problème de clustering, c’est-à-

dire 

un problème de classification non supervisée. Cette situation se distingue de 

l'apprentissage supervisé par le fait qu'il n'y a pas d'exemples a priori à apprendre pour 

guider la méthode. Ce type d’analyse est souvent effectué lorsque peu d'information a 

priori est disponible sur les données. Le clustering est une composante essentielle du 

monde de l'exploration de données qui peut parfois permettre de découvrir des 

informations utiles (Berry et Linoff, 2000).  

 

Un grand nombre d'algorithmes de classification existe dans la littérature de différents 

domaines : la reconnaissance des formes, l'intelligence artificielle, le traitement d'images, 

les statistiques et mathématiques appliquées, la psychologie et la biologie. Dans chaque 

domaine, un ensemble d'algorithmes ont tendance à dominer pour des raisons historiques 

et pratiques. Par exemple, l'approche hiérarchique est plus utilisée dans la communauté 

de l'intelligence artificielle, alors que l'approche basée sur un modèle est plus utilisée 

dans la communauté statistique. Bien que de nouvelles avancées soient régulièrement 

présentées dans le développement d'algorithmes de clustering, les défis demeurent. Une 

partie de la raison est que les problèmes spécifiques à un domaine nécessitent souvent 

l'utilisation d'algorithmes spécialement conçus, les algorithmes de clustering généraux ne 

sont en effet souvent pas suffisants. Le comportement des situations de la vie réelle est 
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toujours complexe et imprévisible, et exige des solutions plus sophistiquées ou plus 

spécifiques.  

 

Il n'y a pas de technique de regroupement universellement applicable pour découvrir la 

variété des structures présentes dans les ensembles de données multidimensionnelles. 

Une technique donnée ne met en évidence qu’un type de structures, car les algorithmes 

de regroupement contiennent souvent des hypothèses implicites ou explicites sur la forme 

des clusters. Par exemple, il y a des clusters compacts et des clusters chaînés. Les 

membres d’un cluster compact ont deux à deux une grande similarité mutuelle; 

habituellement un cluster compact peut être représenté par un centre. En revanche, un 

cluster chaîné est constitué d’une série de points dans laquelle chaque membre n’est très 

semblable qu’à quelques autres points. Ces deux types de clusters sont intéressants même 

s’ils mettent en évidence des informations différentes.  

   

De nombreux algorithmes de classification existent. Une taxonomie usuelle consiste à 

distinguer les approches hiérarchiques des approches partitionnelles (Gan et al., 2007). 

Les méthodes partitionnelles sont appliquées lorsque l'on veut classer les objets en N 

groupes. Les algorithmes hiérarchiques, quant à eux, ne construisent pas une seule 

partition mais des partitions emboîtées pour tous les N possibles. 

 

Quel type d'algorithme de clustering est le plus adapté à l'analyse des plissements du 

cortex ? Pour prendre une décision, nous devons revenir sur notre objectif initial: trouver 

des motifs de plis. Nous recherchons des groupes de cerveaux de taille raisonnable qui 

présentent une similitude dans leurs plissements. Par conséquent, nous ne cherchons pas à 

classer chaque cerveau. En outre, notre idée intuitive d’un motif correspond a priori à un 

cluster compact. Finalement, au regard de l’incroyable variabilité des plissements, il 

semble impératif de disposer d’une technique très robuste au bruit. Il est probable que les 

motifs les plus clairs que nous allons chercher à mettre en évidence ne s’appliquent qu’à 

une minorité de cerveaux. Notre idée initiale était en effet que des motifs purs 

correspondent à des situations biologiques extrêmes, où le nombre de phénomènes 
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impliqués dans le plissement local est faible, et qui ne sont valables que pour un nombre 

restreint d’individus. 

 

2.3 Les descripteurs de forme   

 

Les moments invariants 3D ont été proposés comme des descripteurs intéressants pour 

l'étude de la forme des sillons corticaux, car ils peuvent être calculés pour n'importe 

quelle topologie (Mangin et al., 2004). Par conséquent, ils permettent la gestion des 

fréquentes interruptions des sillons. La construction de ces descripteurs les rend 

insensibles à la localisation, à l'orientation et à l’échelle des objets. On peut donc les 

considérer comme des descripteurs de la forme « pure ». Bien que leur dérivation 

théorique soit complexe, ils peuvent être calculés de manière simple et robuste à partir 

d'une image en noir et blanc définissant un objet. Dans la suite, nous utilisons seulement 

les 12 invariants calculés à partir des moments de coordonnées d’ordre inférieur ou égal à 

trois. Notez néanmoins que le calcul des moments invariants est théoriquement possible 

pour n'importe quel ordre. Il est malheureusement relativement difficile de se faire une 

idée intuitive des informations de formes codées par ces invariants car ils s’agit de 

polynomes complexes des moments. Pour le travail présenté ici, les invariants d’un sillon 

ou d’un groupe de sillons sont calculés en utilisant BrainVISA (http://brainvisa.info) pour 

chaque individu avant d’être utilisés pour le clustering.  

 

Des études préalables ont été menées pour vérifier que l'ensemble des 12 moments 

invariants utilisé est une représentation raisonable de la forme d’un sillon. Il était en 

particulier important de s’assurer qu’une petite variation de la forme ne conduit pas à une 

grande modification des invariants, car cette propriété n’est pas garantie par leur 

construction. Notre approche très pragmatique du problème a consisté à créer des séries 

de formes échantillonées correspondant à une déformation régulière d’une forme simple. 

De multiples expériences de ce type ont montré que les invariants varient lentement pour 

les formes explorées, mis à part deux d'entre eux qui peuvent changer de signe lors de 

l’ajout d’un seul voxel et présentent une distribution bimodale pour certains sillons. Ils 
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ont donc été supprimés de notre représentation. Ce type de phénomène existe peut-être 

pour des formes rares pour les autres invariants, mais il n’était pas problématique pour 

notre objectif qui vise essentiellement à découvrir quelques motifs afin de tester leur 

signification biologique. 

 

Une deuxième étude visait à vérifier que les informations sur la forme pure intégrées dans 

les invariants peuvent distinguer les formes qui caractérisent différents sillons corticaux. 

Pour ce but, nous avons réuni à de nombreuses reprises plusieurs grands sillons pour un 

grand groupe d’individus, et nous avons réalisé à chaque fois une analyse en composante 

principale (Fig. 3). Dans beaucoup de cas, les premiers axes de l’ACP montrent que les 

invariants séparent les sillons. On observe parfois des recouvrements mais ce n’est pas 

étonnant car certains sillons ont des formes similaires. Le fait que chaque sillon conduise 

à un nuage relativement compact implique que les représentations à base d’invariants 

peuvent être utilisées pour rechercher des motifs.  

 

2.4 L'algorithme de clustering pour la découverte d e motifs sulcaux   

 

Au vu des impératifs mentionnés ci-dessus, il semble assez évident que l'approche 

hiérarchique du clustering est la plus adaptée à notre volonté de trouver des clusters 

compacts noyés au sein de nuages de points très hétérogènes. Cette méthode est donc 

choisie dans la phase qui suit. 

 

Pour trouver la règle permettant d’arrêter le processus d'agglomération hiérarchique au 

niveau le plus intéressant, une méthode spécifique a été conçue. Elle s’appuie sur la 

génération d’un grand nombre de nuages de points aléatoires engendrés par une 

distribution gaussienne estimée à partir des données réelles. L’idée sous jacente est que la 

découverte d’un ensemble de motifs intéressant doit invalider l’hypothèse que la 

distribution des points résulte d’une simple gausienne. Un ratio classique entre la 

compacité des clusters et leur éloignement permet de caractériser un ensemble de motifs. 

Les distributions de ce ratio sur les ensembles aléatoires sont utilisées pour sélectionner 
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le niveau de l’arbre procurant la meilleure configuration, c’est-à-dire celle qui s’éloigne 

le plus des distributions observées dans les ensembles aléatoires. 

 

Fig. 3 Les invariants de moment ont un pouvoir discriminant entre les formes des sillons. 

Les données de trois sillons, le sillon cingulaire (cyan), le sillon central (vert) et le sillon pariéto-occipital 

(magenta) sont plottées en utilisant les deux premiers axes d’une ACP appliquée au vecteur d’invariants 

normalisé (36 cerveaux étiquetés manuellement sont utilisés). Les formes de certains sillons choisis au 

hasard sont superposées à l’ACP. Un exemple de chaque sillon est proposé pour un cerveau. 

 

Fig. 4A Obtenir les meilleurs clusters partiels 

Les échantillons simulés sont obtenus en échantillonant une distribution gaussienne estimée à partir de la 

matrice de covariance des données réelles. La classification hiérarchique est exécutée sur l'ensemble de 
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données réelles et tous les ensembles de données simulées. L'étape de l'agglomération dotée du meilleur 

rapport compacité/éloignement obtenu est séléctionnée. La qualité des clusters trouvée à cette étape est 

définie par le calcul d’une p-valeur. Cette valeur est calculée en comptant le nombre de fois que l'ensemble 

de données simulées donne de meilleurs résultats que les données réelles. 

La résistance finale des clusters trouvés est fondée sur une p-valeur calculée en comptant 

le nombre de fois où les jeux aléatoires sont plus performants que l'ensemble de données 

réelles. Ces groupes sont appelés clusters partiels (figure 4A). Un algorithmes de 

bootstrap est ensuite utilisé pour augmenter la stabilité de l'algorithme (cf figure 4B). Le 

procédé décrit dans l'étape 1 est réalisé à plusieurs reprises sur des sous-ensembles des 

données d'origine. Les centres des clusters obtenus sont conservés pour procéder à un 

second niveau de clustering relativement aisé généralement réalisé avec l’algorithme K-

medoid associé à la méthode PAM pour estimer le nombre de clusters. 
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Fig. 4B Robustification à l’aide d’un bootstrap 

 

 

2.5 Validation de l'algorithme de clustering  

 

Pour évaluer la performance de l'algorithme PCBB, plusieurs expériences ont été 

effectuées sur des ensembles de données simulées. Les ensembles de données simulées 

sont générés comme suit. Choisir une paire de sillons de façon aléatoire. Générer pour 

chaque sillon un cluster tiré d’une distribution Gaussienne estimée à partir de la 

distribution de ce sillon. Cela donne un ensemble de données avec deux clusters connus. 

Ajouter du bruit pour créer une suite de données simulées de plus en plus bruitées. Le 

bruit ajouté suit une distribution de Poisson, dont les valeurs minimale et maximale 

correspondent au jeu de données d'origine.  

Deux algorithmes sont exécutés sur ces ensembles de données simulées : une méthode 

classique de Modèle de Mélange Gaussiens (GMM, Duda et al., 2000) et l'algorithme 

PCBB. Les résultats sont évalués en fonction du nombre de clusters trouvés et la distance 

entre les centres trouvés et les véritables centres. Le nombre de gaussienne du GMM est 

estimé à partir  du critère d'information bayésien (BIC). Pour nos expériences, nous 

utilisons la boîte à outils Mclust de R pour évaluer le GMM (Fraley et Raftery, 2002, 

2006). Nous testons en fait deux variantes de GMM. Une approche classique est une 

variante où la méthode est informée de la proportion de bruit ajoutée aux données.  

 

Deux comparaisons sont effectuées pour évaluer la qualité d’analyse. Tout d'abord, la 

distance entres les centres trouvés et les véritables centres est calculée. Quand il y a plus 

de centres trouvés par l'algorithme que de centres réels, seuls les deux groupes les plus 

proches des centres réels sont pris en considération. Deuxièmement, les nombres de 

clusters trouvés par chaque algorithme sont comparés au valeurs réelles.  

 

Le résultat est montré dans la figure 5 ci-dessous. Les résultats montrent que l'algorithme 

PCBB est comparable à l'algorithme de GMM en termes de localisation des centres des 

clusters. Toutefois, en termes d'estimation du nombre de clusters, PCBB est plus précis et 
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plus stable que l'algorithme de GMM lorsque le bruit augmente. Informer le GMM du 

pourcentage de bruit lors de l'initialisation ne semble pas améliorer les performances. Le 

résultat montre que PCBB est plus robuste que GMM pour ce problème particulier.  

 

2.6 Résultats en utilisant l'algorithme PCBB 

 

La recherche de motifs est réalisée sur l’ensemble de 36 cerveaux déjà utilisé pour 

générer les données simulées pour la validation. Un deuxième ensemble de données 

composé de 150 cerveaux est aussi utilisé pour vérifier la reproductibilité des résultats. 

Un exemple de clustering obtenu pour le sillon cingulaire est représenté (Fig. 6). 

 

Un premier motif est constitué de sillons présentant une grande interruption antérieure, 

un second motif est constitué de sillons présentant une interruption plus petite et plus 

postérieure, et un troisième modèle est constitué de sillons continus. Il convient de noter 

que ces motifs ne peuvent être déduits simplement du nombre de composantes connexes. 

En effet, les sillons du troisième motif ne sont continues qu’en apparence: certains d'entre 

eux sont constitués de plusieurs composantes connexes qui se chevauchent les uns les 

autres lorsque le sillon est vu de dessus. En fait, les moments invariants sont aveugles à la 

topologie. Par conséquent, ces trois motifs seraient interprétées de manière plus fiable en 

termes de forme que sur le plan de l'interruption. Par exemple, le premier motif 

correspond à des sillons beaucoup plus profonds dans la partie postérieure que dans le 

milieu, tandis que le dernier motif correspond à une profondeur des sillons plus 

homogène. 
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Figure 5 Performance de plusieurs algorithmes de clustering sur une simulation   

La première colonne indique le boxplot de la distance entre les deux centres les plus proches trouvés par 

l'algorithme et les vrais centres. (La boîte à moustaches contient les données du second et du troisième 

quartile, la ligne sombre à l'intérieur de la boîte représente la médiane, les moustaches indiquent les minima 

et les maxima, et les valeurs aberrantes sont représentées par des points.) L'axe des abscisses correspond à 

l’augmentation du pourcentage de bruit de 10 à 100 pour cent. Les résultats de la méthode PCBB sont 

indiqués sur la première ligne, les résultats de GMM sans correction du bruit sont indiqués sur la deuxième 

ligne, et les résultats de GMM avec correction du bruit, sont indiqués sur la troisième ligne. La deuxième 

colonne montre l'histogramme de la distribution du nombre de centres pour les trois algorithmes, la 

troisième colonne indique le boxplot du nombre de centres. 
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Fig 6. Les trois motifs détectés pour le sillon cingulaire gauche. 

Ligne 1,3,5: les quatre cas les plus centraux du motif dans la base de données manuellement étiquetées. 

Ligne 2,4,6: les quatre cas les plus proches dans une base de données automatiquement étiquetées. 

 

3. Des modèles de la variabilité des plis  

 

Dans cette section, de nouvelles approches sont explorées pour l'étude de la variabilité 

des plissements. En particulier, de nouveaux descripteurs de formes sont utilisés. Ils 

correspondent simplement à des mesures de similarité fondées sur une distance entre 

paires de sillons. Cette approche est couplée avec une méthode de réduction de 

dimension, « l’isomap », qui permet d’appréhender les modes de variabilité les plus 

importants pour un sillon donné. Cette démarche complète celle qui consiste à faire 

émerger des motifs fréquents et permet d’aboutir à une description très riche de la 

variabilité des formes d’un sillon. En effet cette description permet de comprendre les 

transitions progressives qui permettent de passer d’un motif à un autre. 

 

3.1 Passer des motifs à des modèles du plissement c ortical  

 

Les travaux décrits dans la section précédente consistent à trouver les motifs les plus 

fréquents en termes de plissements du cortex. Ces travaux ont montré qu’une étude de la 

variabilité des sillons implique trois choix importants: quels sillons étudier, quelle mesure 
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de similarité utiliser pour comparer deux sillons, et quel algorithme utiliser pour extraire 

une structure intéressante à partir de ces mesures de similarité. 

 

En ce qui concerne le choix de l'endroit où chercher parmi les sillons corticaux, deux 

nouveaux angles peuvent être explorés. Dans le travail présenté dans la première partie, 

les plus grands plissements avaient été choisis pour la détection de motifs. Ce sont 

probablement les plus stables, et par conséquent ils peuvent être définis de manière plus 

fiable. Les plus grands sillons sont en effet supposés exister chez tous les individus, 

tandis que les plis plus petits peuvent ne pas exister chez un individu donné en raison de 

la forte variabilité du processus de plissement. L'inconvénient ou la limitation d'une telle 

approche est que les petits plis secondaires recèlent probablement une mine 

d’information du fait de leur grande variabilité. Une approche qui ciblerait non pas un 

sillon mais une région complète du cortex pourrait donc s’avérer plus intéressante. En 

outre, elle permettrait parfois de lever un certain nombre d’ambiguïtés au cours de la 

phase d’étiquetage des sillons qui viennent perturber l’interprétation des motifs mis en 

évidence. 

La vision actuelle de l’organisation du cortex associe à chaque fonction un réseau de 

localisations. Chacune de ces localisations correspond à une région spécifique du cortex 

traversée par un certain nombre de plis.  Les associations de ce type les plus anciennes 

sont les aires de Broca et de Wernicke associées au language. En général, ces régions ne 

sont pas associées à un sillon mais plutôt à un gyrus considéré comme un module 

fonctionnel siège de l’activité cérébrale. Il nous a donc semblé tentant d’étudier la forme 

de régions du cortex à travers la forme de l’ensemble des sillons les délimitant. Par 

exemple, le sillon central et le sillon précentral peuvent être regroupés pour constituer 

une description de la forme du gyrus précentral associé aux structures motrices. Sur la 

base de ce raisonnement, nous avons décidé d'étudier la forme de groupes de sillons de ce 

type.  

 

En ce qui concerne le choix de la mesure de similarité, d'autres possibilités peuvent être 

explorées. Nous avons juqu’à présent utilisé des descripteurs de forme 3D, les invariants 
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de moment 3D. Bien que ces descripteurs puissent capturer une partie de la forme des 

plis, l'information codée était toutefois limitée car nous n’avons utilisé que dix invariants. 

Une autre approche intéressante et plus intuitive est l'utilisation de similarités calculées 

directement entre sillons. Chaque sillon peut être caractérisé par ses similarités plus ou 

moins importantes avec les sillons de tous les autres sujets. La caractérisation du sillon 

est beaucoup plus complète qu’avec des descripteurs de forme génériques, car elle 

s’appuie sur une base de formes similaires. Elle peut donc contenir des subtilités difficiles 

à coder autrement.  

 

En ce qui concerne l'algorithme à utiliser pour l'analyse, de nombreuses nouvelles 

orientations peuvent être explorées. Il est important de réaliser, cependant, que lorsque la 

nature des données d'entrée est modifiée, l'algorithme de clustering peut avoir besoin 

d'être changé. En particulier, si l'approche du vecteur de mesures de similarité discutée ci-

dessus était adoptée, la dimension de l'entrée serait très élevée. Quand la dimension des 

données est élevée, la distance entre deux points de données quelconques devient presque 

constante (Beyer et al., 1999). Dans ce cas, il est difficile de faire émerger des clusters de 

manière robuste (Agrawal et al, 1998.). Pour ces raisons, presque tous les algorithmes de 

clustering classiques ne fonctionnent pas bien pour les ensembles de données de grande 

dimension. Par conséquent, l'algorithme utilisé doit être en mesure soit de réduire la 

dimension globalement, soit de procéder à une sélection des dimensions les plus 

intéressantes pour le clustering. Une alternative est néanmoins d'utiliser un des rares 

algorithmes spécialement conçus pour les ensembles de données de grande dimension.  

 

3.2 La mesure de similarité  

 

Nous avons déjà évoqué que la description fondée sur les 10 invariants 3D est trop 

limitée pour bien représenter toute la complexité des plissements. Des formes très 

différentes peuvent générer des descripteurs presques similaires, ce qui perturbe la 

recherche de motifs stables. Afin de surmonter cette faiblesse, une approche différente est 

explorée ici. Une forme de sillon est décrite par un vecteur de distances de cette forme à 
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un grand nombre de formes semblables. Chaque paire de distance est calculée en utilisant 

l’algorithme « Iterated Closest Point » (ICP), après normalisation spatiale affine globale 

du cerveau. Notez que le but de cette normalisation globale est de supprimer d’éventuels 

motifs induits par des différences globales de taille du cerveau. Notre mise en œuvre de 

l’ICP calcule la distance moyenne quadratique minimale obtenue quelle que soit la 

rotation appliquée pour tenter d’aligner les deux formes.  

 

L'idée de représenter chaque sillon par sa distance à l'ensemble des autres sillons dans le 

jeu de données est illustrée dans la figure 7. Le plus simple algorithme ICP est utilisé : 

une forme (donnée) est adaptée à une autre forme (modèle) de façon itérative par rotation 

et translation (Besl et McKay, 1992). L'algorithme s'arrête lorsque la distance moyenne 

de la forme mobile au modèle ne peut plus être considérablement diminuée ou lorsqu’un 

nombre maximum d'itérations a été atteint. Il convient de noter que cet algorithme a été 

largement étudié et que de nombreuses améliorations en ont été proposées que ce soit 

pour gagner en efficacité de calcul ou en robustesse, ou pour l’utiliser avec des 

transformations non rigides. Dans notre étude, nous nous sommes contentés de la version 

la plus simple pour plusieurs raisons. 

 Notre but initial étant de défricher l’intérêt potentiel d’une analyse des motifs corticaux, 

nous ne cherchons pas à atteindre l’exhaustivité dans leur cartographie. L’approche 

fondée sur un recalage rigide nous a paru suffisante pour montrer l’intérêt de la démarche 

si elle met en évidence quelques motifs intéressants. Nous avons préféré cette approche à 

une approche intégrant des degrés de liberté affines du fait de la normalisation globale 

utilisée comme préalable. Des différences de tailles perdurant après la normalisation 

globale pourraient être particulièrement intéressantes d’un point de vue neurosciences. 

Nous avons renoncé dans un premier temps à la tentation des approches non linéaires 

essentiellement pour des raisons de temps de calcul,  mais il est clair que dans le futur 

nous définirons la notion de motif sulcal par rapport à un ensemble de transformations 

possibles pour recaler les sillons, dans l’esprit usuel utilisé pour définir un invariant. Le 

travail décrit par la suite considère seulement l’ensemble des transformations rigides. 
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Nous n’avons également pas jugé nécessaire de mettre en œuvre les raffinements 

proposés dans la littérature pour améliorer la robustesse de l’ICP vis-à-vis des minima 

locaux. En effet, nous verrons par la suite que les seules distances véritablement utilisées 

par notre méthode sont les distances faibles obtenues entre formes voisines.  L’ICP 

s’avère naturellement robuste lorsqu’on l’applique avec deux formes très similaires, les 

difficultés ne surviennent en effet que lorsque deux formes diffèrent de façon importante. 

Mais dans ce dernier cas notre seul besoin est d’obtenir une distance élevée, ce qui arrive 

quel que soit le minimum local.  

 

Figure 7: Un exemple de la mesure de similarité 

A titre d'exemple pour illustrer le concept de la mesure de similarité, quatre sillons sont utilisés (en rouge) 

appelé modèle 1 à 4. La distance (par ICP) peut être calculée pour chaque paire de l'ensemble. Pour chaque 

motif, la distance aux trois autres modèles peut être calculée. Elle donne ici une idée sur l’existence de 

deux groupes. 

 

3.3 Algorithme pour gérer des données de grande dim ension   

 

La matrice de distance obtenue en utilisant l'algorithme ICP peut avoir une dimension 

très élevée, puisque le nombre de dimensions est égal au nombre de sujets. La 

« malédiction de la dimensionnalité » est un problème bien connu survenant dans ce 

genre de situations (Duda et al., 2000). La dimension de la matrice doit donc être réduite 

avant d'appliquer les algorithmes de clustering standard. 

 

La légitimité de la réduction de dimension est que les points de données évoluent 

probablement dans un espace (ou une variété) de dimension bien inférieure à la 
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dimension des vecteurs de distances qui décrivent ces points. L'objectif est donc de 

construire un tel sous espace préservant au maximum la répartition spatiale initiale des 

données. L'algorithme Isomap a été choisi pour cette étude préliminaire, mais de 

nombreuses alternatives pourraient être explorées à l’avenir. L’algorithme Isomap a 

l'efficacité de calcul et l'optimalité globale de l'analyse en composantes principales (ACP) 

et du Multi-Dimensional Scaling (MDS). Il a également la possibilité d'apprendre une 

large classe de variétés non-linéaire (Tenenbaum et al., 2000). Cet algorithme utilise le 

MDS appliqué à des distances géodésiques entre les points. Ces distances sont estimées 

comme les plus courts chemins dans un graphe des plus proches voisins pour la similarité 

initiale. En dépit de quelques faiblesses, cet algorithme a été appliqué avec succès dans la 

vision artificielle et la visualisation de données biomédicales (avis 2008).  

Un des intérêts des approches de type isomap réside dans le peu de paramètres à régler. 

En ce qui concerne l’isomap, il y en a essentiellement un, le nombre de plus proches 

voisins utilisé pour construire le graphe dont découlent les distances géodésiques. 

Lorsque le voisinage est trop grand, des « court-circuits » risquent d’être créés ; lorsque 

le voisinage est trop petit, les chemins dans le graphe sont trop rares pour procurer une 

bonne approximation de l’espace sous-jacent. À notre connaissance, il n'existe pas de 

manière consensuelle de choisir K quel que soit le problème. C'est la principale faiblesse 

de l'approche Isomap. Cet algorithme est « topologiquement instable » : des connexions 

erronées peuvent être créés dans le graphe de voisinage. Certaines méthodes ont 

néanmoins été proposées pour surmonter ces problèmes comme la suppression des 

voisins les plus proches qui violent la linéarité locale du graphe (Van der Maaten and al, 

2008), mais nous n’avons pas eu le temps de les considérer.  

 

Une fois la matrice de distance géodésique calculée, un algorithme de réduction de 

dimension simple telle que le Multidimensional Scaling (MDS) peut être utilisé. Nous 

avons en fait surtout utilisé le MDS non-métrique (IsoMDS)  qui préserve l’ordre du 

voisinage plutôt que les distances, dans la mesure où notre mesure de similarité n’est pas 

une véritable distance. 
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3.4 Validation de l'approche ICP-Isomap 

 

Combiner l'ICP et l’Isomap pour l'analyse des plissements du cortex nécessite une 

validation. L'efficacité de l'algorithme de clustering PCBB présenté dans la deuxième 

section a été vérifiée. La validation est effectuée sur des ensembles de données simulés et 

réels. 

 

3.4.1 La pertinence de l'ICP-Isomap pour l'analyse du cortex: ensemble 

de données simulées 

 

La performance de l'algorithme de clustering est d’abord évaluée à partir de simulations 

générées en utilisant le sillon central. Pour chaque simulation, trois sujets sont choisis au 

hasard dans la base de données originale. Six variations aléatoires sont générées pour 

chacun d'eux par transformation affine. Un exemple est fourni dans la figure. 8. La base 

de données centrale de 62 sillons (Perrot et al., 2009) est utilisée pour la génération de ces 

ensembles de données simulées. Chacun d'eux est composé de 3 clusters simulés 

compacts incluant chacun 7 sillons auxquels sont ajoutés 41 autres sillons centraux de la 

base, conduisant à un total de 62 sillons. 

 

Figure 8 Les sillons centraux simulés : Chaque cluster est indiqué par une couleur et est superposé 

au reste de l’ensemble. On peut voir que la variabilité au sein de chaque cluster est différente, mais que les 

formes des trois groupes suivent de près la forme du sillon central graine. Pour ces visualisations, tous les 

sillons ont été alignés avec le sillon le plus neutre, celui qui minimise la distance moyenne à l’ensemble. 
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Lorsque le clustering en utilisant PCBB est réalisé après une ACP, un MDS ou l’Isomap, 

il est constaté qu’Isomap offre les meilleurs clusters: des clusters compacts éloignés les 

uns des autres (Fig. 9 pour les clusters trouvés).  

 

Figure 9 La comparaison des méthodes de réduction de dimension sur les clusters 

simulés. De gauche à droite: la distribution en utilisant Isomap, MDS classique et ACP. Les groupes 

représentés sont ceux trouvés en exécutant l'algorithme PCBB. La couleur des sillons correspond à celle de 

la figure 8. 

Les résultats sont évalués en fonction du nombre de clusters trouvés. Un cluster détecté 

est considéré comme un succès si la distance de son centre au centre du cluster simulé le 

plus proche est dans le rayon de ce cluster. Le rayon est défini comme la médiane des 

distances au centre. Les clusters supplémentaires constatés ne sont pas pénalisés, car il est 

possible que les données réelles contiennent des clusters. Les trois algorithmes comparés 

sont: PCBB, PAM (K-medoid) et GMM (se reporter à la section 2 pour plus de détails). Il 

est constaté que PCBB surpasse les deux autres méthodes. Ce n'est pas si surprenant 

quand on considère la nature de ces différents algorithmes de clustering. L’objectif de 

PAM et de GMM est de fournir une partition complète de l'ensemble de données. Cet 

objectif n'est pas toujours compatible avec la détection des clusters compacts. PCBB, 

d'autre part, est conçu spécifiquement pour détecter ce type de clusters. 

 

 

3.4.2 La pertinence de l'ICP-Isomap pour l'analyse du cortex: données 

réelles 

 

Une combinaison de trois sillons est choisie pour une étude de l'efficacité de l'approche 

ICP-Isomap. L'algorithme Isomap sépare mieux les distributions de ces sillons que les 
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deux autres méthodes. En outre, le sillon le moins variable, le sillon central, est 

représenté comme un nuage compact. 

 

 

Figure 10 La comparaison des méthodes de réduction de dimension 

A: Le sillon central en noir, le sillon temporal supérieur en vert et le sillon cingulaire en rouge 

B: De gauche à droite: la distribution en utilisant Isomap, MDS classique et de l'PCA. 

3.4.3 Un exemple de clustering sur une région 

La Fig. 11 illustre les clusters trouvés sur la région cingulaire en utilisant l'approche 

enchaînant ICP, isomap et PCBB. Le groupe de sillons utilisé vise à élucider la variabilité 

de la partie frontale de la face interne du cortex qui cause beaucoup de soucis 

d’interprétation. 

 

 

Figure 11 Les clusters trouvés sur la région cingulaire 

Un exemple de la région s est affiché en premier. Ensuite, pour chaque motif, trois sujets alignés se 

superposent afin de mettre en évidence les domaines de stabilité. La région cingulaire gauche est très 

variable. Les principales caractéristiques permettant d’interpréter ces motifs sont (1) le développement 

important du sillon appelé « intracingulaire » (peu profond en bas dans le motif violet), (2) le 

développement important du sillon « paracingulaire » (série de petits plis en haut dans le motif rouge), (3) 
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les interruptions du sillon cingulaire et (4) la forme de la partie antérieure de la région. La partie postérieure 

est relativement stable. 

 

3.5 Visualisation des formes à l'aide de SPAMs  

 

Quand il n'y a pas de motifs évidents dans un ensemble de données, ce qui est en fait 

fréquent, nous aimerions disposer d’une alternative pour étudier la variabilité des 

plissements individuels. Quand la dimension de l’isomap est réduite à un ou deux, 

l’organisation des plis peut facilement être visualisée et souvent interprétée. En outre, 

cette inspection visuelle est importante dans une analyse exploratoire comme la notre 

pour s’assurer de la qualité des résultats. Par exemple, en utilisant une isomap de 

dimension un, chaque sillon est représenté par un nombre unique, une coordonnée. En 

général, lorsqu’on passe d'une extrémité à l'autre de l'axe de l’isomap, la forme des 

sillons change progressivement. L'inspection visuelle peut souvent suffir à deviner la 

nature de ce changement graduel de la forme.  

 

Afin de s'assurer que les hypothèse alors formulées sont objectives, nous avons 

développé une technique permettant de mettre en évidence les changements de forme qui 

prévalent dans l’organisation de l’isomap. À cette fin, nous avons adapté la stratégie 

classique de la communauté qui consiste à moyenner des images à travers les individus 

après les avoirs alignées. On parle de Cartes Anatomiques Statistiques Paramétriques 

(SPAM, Evans et DL Collins, 1997). L’alignement réalisé pour nos moyennes est celui 

calculé par l’ICP relativement au sillon le plus neutre de l’ensemble, c'est-à-dire celui qui 

minimise la distance moyenne à l’ensemble des sillons. De tels sillons « moyens » 

peuvent être calculés localement en les répartissant régulièrement le long de l'axe Isomap. 

Pour une position donnée, on calcule une moyenne pondérée de sorte qu’un sillon 

contribue plus ou moins à la moyenne en fonction de sa distance à la position 

sélectionnée dans l’isomap. Le poids de cette contribution correspond à une décroissance 

exponentielle par rapport au carré de la distance à l'emplacement. Un paramètre d’échelle 

est réglé de sorte que chaque sillon ne contribue essentiellement qu’aux deux SPAM 

situées directement à sa droite et à sa gauche dans l’isomap. Ainsi, chaque image 
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moyenne fournit une bonne représentation de la forme des sillons autour de 

l'emplacement correspondant sur l'axe.  

 

 

4. Un exemple d’application en neurosciences  

 

Dans cette section, les méthodes développées dans les sections précédentes sont 

appliquées à un problème de neurosciences : les conséquences éventuelles de la latéralité 

manuelle dans la forme du sillon central. Trois populations sont étudiées: les droitiers, les 

gauchers et les gauchers contrariés : des gauchers qui ont été contraints d'utiliser leur 

main droite pour écrire. Le sillon central est un des sillons les plus stables. Il sépare le 

cortex moteur du cortex somatosensoriel (Penfield et Boldrey, 1937), (fig. 12A). Il est 

extrait automatiquement dans l’ensemble des IRM à l'aide du logiciel BrainVisa (Mangin 

et al, 2004b.). Les algorithmes décrits précédemment permette de résumer la variabilité 

de la forme du sillon central de la population à travers un axe de dimension 1 fourni par 

l’isomap. 

 

Deux ensembles de données sont utilisés. Dans le premier ensemble de données, 31 

gauchers contrariés sont comparés à 19 droitiers et 16 gauchers. Les individus sont 

considérés comme des gauchers contrariés si les sujets et leurs parents se rappellent 

clairement que l'écriture a commencé avec la main gauche à l'école, mais que le sujet a 

ensuite été forcé d’utiliser la main droite. Les détails sur les participants ont été décrits 

dans une étude précédente (Klöppel et al., 2010), qui répertorie tous les critères 

d'inclusion et d'exclusion. Pour corriger un éventuel biais lié au faible nombre de droitiers 

dans cette première base de données, elle est ensuite combinée avec une seconde base de 

données contenant essentiellement des droitiers. Cette deuxième série de données est la 

base d’apprentissage du système actuel de reconnaissance des sillons de BrainVISA 

(Perrot et al., 2011). 

 

Nous avons d’abord découvert un trait morphologique frappant et très simple du sillon 
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central, qui peut être décrit comme la position plus ou moins centrée de la « bosse » de 

main. Cette bosse de la main correspond de manière bien établie au siège de la motricité 

de la main (Yousry et al ., 1997). (La Fig. 12B illustre la définition de la bosse de la 

main, la fig13 montre comment la position de l'encoche se déplace le long du sillon 

central dans l’isomap). Nous avons également observé une deuxième "bosse" sous la 

bosse de main. Lorsque la position de la bosse de la main se déplace vers le haut, la 

deuxième bosse inférieure devient plus imposante. Des résultats très similaires sont 

obtenus lorsque le premier jeu de données est combiné avec la deuxième série de 

données, comme illustré sur la fig14.  

 

Les deux hémisphères sont différents en termes de forme du sillon central. Le sillon 

central gauche des trois populations (les gauchers, les droitiers et les gauchers contrariés) 

présente généralement le motif à « deux bosses », c'est à dire la bosse de la main plus une 

deuxième bosse en dessous. Le sillon central droit, en revanche, correspond plutôt au 

motif « une-bosse », contenant une bosse de la main de premier plan, la deuxième bosse 

inférieure étant quasi inexistante. (cf fig15, pour l'analyse sur le premier jeu de données, 

et fig16 pour l'analyse sur le jeu de données combiné). 

 

 

Figure 12 L'homonculus et la bosse de la main 

A: L'homonculus de Penfield: figurines dessinées sur l'hémisphère gauche (Penfield et Jasper, 1954) 

B: Les sillons centraux gauche et droit de trois sujets sont surlignés en rouge ; la position de la bosse de la 

main est marquée avec des étoiles bleues. 
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Figure 13 positions de la bosse de main selon l'axe Isomap. 

(HAut) Tout d'abord, tous les sillons ont été alignés sur un sillon modèle afin d'obtenir des orientations 

similaires dans l'ensemble. Ensuite, chaque sillon a été translaté dans l'axe antéro-postérieure du cerveau 

proportionnellement à sa coordonnée dans l’Isomap. Notez le sillon atypique situé à l'extrême gauche de 

l'axe correspondant à un sillon central ainterrompu (ce sillon est également représenté à partir d'un point de 

vue différent ci-dessous pour rendre l’interruption plus claire). (Bas) Des moyennes locales des sillons 

centraux ont été calculées à des positions régulièrement espacées de manière à préciser la variabilité de 

forme codée par l'axe Isomap. 

 

 

Figure 14 positions de la bosse de main d'un ensemble de données combinée  

Analogue à la figure précédente avec le jeu de données combiné. Notez qu'un second sillon interrompu a 

été poussé à l'extrême droite de l'axe. 
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Fig 15 localisation de chaque population le long de l'axe Isomap 

La Fig 13 est représentée en transparence. En bas: Les moyennes locales calculées pour les positions 

médianes de chaque population. Code couleur: Cyan: gaucher, hémisphère droit; Bleu: gaucher contrarié, 

hémisphère droit; Violet: droitier, hémisphère droit; Rouge: gaucher, hémisphère gauche; Jaune: gaucher 

contrarié, hémisphère gauche; Vert: droitier, hémisphère gauche 

 

Que l’ont considère les gauchers ou les gauchers contrariés, la forme de leur sillon 

gauche diffère significativement de celle des droitiers (droitiers vs gauchers: p = 0,002; 

droitier vs gauchers contrariés: p = 0,02). En ce qui concerne l’hémisphère droit, le sillon 

central des gauchers contrariés a tendance à être différent de celui des gauchers (p = 

0,06), et les droitiers ont tendance à être différent des gauchers (p = 0,15) . On peut 

également noter que le sillon de l’hémisphère dominant des gauchers et des droitiers 

s’écarte de la zone neutre centrale dans deux directions opposées (p=0,0002). 

 

Des études antérieures avaient que des asymétries de la taille du sillon central 

permettaient de distinguer les gauchers des droitiers. Toutefois, personne ne savait si 

cette tendance devait être attribuée à des facteurs innés ou à la plasticité induite par les 

expériences et les influences environnementales. Dans notre étude, nous avons montré 

que les mécanismes innés sculptent la forme du sillon central, alors que l'expérience ne 

fait que modifier sa longueur. Chez les gauchers contrariés, en effet, l'asymétrie de la 

longueur du sillon central que nous avons calculée est typique des droitiers. En revanche, 
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les résultats évoqués ci-dessus montrent que l'emplacement de la «bosse de main » dans 

le sillon gauche, qui s’est avérée corrélée avec la latéralité manuelle, ne change pas chez 

les gauchers contrariés. Nous avons même mis en évidence que cet stabilité de la forme 

était encore plus forte chez les huit gauchers contrariés dont au moins un des parents était 

gaucher. Ainsi, la morphologie du cortex chez l'adulte combine des informations sur 

l’inné et sur l’acquis.  

 

 

Fig 16 localisation des populations le long de l'axe Isomap (pour les deux bases combinées ) 

Le code de couleur utilisé pour la base supplémentaire indique les gauchers et les droitiers. Code couleur: 

Cyan: gaucher, hémisphère droit; Bleu: gaucher contrarié, hémisphère droit; Violet: droitier, hémisphère 

droit; Rouge: gaucher, hémisphère gauche; Jaune: gaucher contrarié, hémisphère gauche; Vert: droitier, 

hémisphère gauche 

 

 

5. Discussion sur l'analyse des plissements  

 

Dans cette section, nous évoquons le potentiel de l’analyse des motifs des sillons et des 

nouvelles représentations des données fournies par l’isomap. Nous indiquons également 
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quelques perspectives. Quelques pages de notre futur dictionnaire sont présentées pour 

finir.  

 

De nombreux facteurs jouent un rôle important dans l'analyse des plissements du cortex. 

En particulier, le choix des sillons ou des régions d'intérêt, les descripteurs de forme, la 

mesure de similarité, l'algorithme de clustering et l'ensemble de données utilisé pour 

l'analyse. Il faudra encore du temps pour peaufiner chacun de ces choix. La limpidité des 

résultats complètement inattendus mis en évidence pour le sillon central met néanmoins 

en évidence le potentiel de notre démarche. Il faut noter que l’équipe de Neurospin a 

exploré l’impact de la latéralité sur le sillon central pendant des années en passant 

complètement à coté des différences de forme que nous avons découvertes. L’assymétrie 

mise en évidence est elle aussi complètement inédite. Les quelques pages du dictionnaire 

présentées par la suite mette en évidence d’autres caractéristiques de formes de nature 

très similaires à celle découverte sur le sillon central. Nous espérons donc qu’elles 

pourront également être associées à des particularités cognitives voire à des pathologies 

développementales.  

 

Outre ce type d’applications aux neurosciences, nous avons également fait émerger que 

les descriptions de la variabilité très synthétiques fournies par nos motifs et les premières 

dimensions de l’isomap permettent d’avancer sur les aspects propres à la nomenclature 

des sillons. Nous avons à plusieurs reprise observé que certains motifs étaient induits par 

des faiblesses de la nomenclature actuelle, mais aussi des erreurs manifestes lors de 

l’utilisation de cette nomenclature pour étiqueter des configurations atypiques. Certains 

motifs résultent quant à eux d’insuffisances du système de sur-segmentation des 

plissements utilisé par brainVISA avant l’étiquetage des sillons. L’ensemble de ces 

observations va donc permettre d’améliorer la nomenclature actuelle. Il est également 

probable que la description synthétique de la variabilité fournie par les premières 

dimensions de l’isomap puisse être injectée dans l’a priori Bayésien utilisé dans le dernier 

modèle conçu pour reconnaître automatiquement les sillons (Perrot et al., Med. Image 

Analysis, 2011). 
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6. Exemple de dictionnaire des motifs des plissemen ts 

 

Nous illustrons ici le type d’information que nous pensons utiliser pour réaliser notre 

dictionnaire, en nous focalisant sur quelques régions exemples : le gyrus précentral, la 

région du sillon cingulaire, la région du sillon temporal supérieur, l’aire de Broca, et des 

régions frontales supérieures. Nous évoquons également la possibilité de combiner 

plusieurs régions. 

Il s'agit bien sur d'une étude préliminaire qui pourra être systématisée pour l’ensemble du 

cortex. 

 

6.1 La région précentrale  

 

La fig17 montre que l’isomap révèle que le premier mode de variabilité de la forme du 

gyrus précentral réside dans l’orientation du sillon précentral intermédiaire. 

 

 

Figure 17 Variabilité des plissements du gyrus précentral 

A: L’isomap du gyrus précentral. Les sillons et les SPAM locales sont associés afin d’indiquer la 

localisation de ces dernières dans la distribution. Notez que la distribution est beaucoup moins dense 
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lorsqu’on s’éloigne de la partie centrale, la forme des SPAMs les plus extrêmes est donc à considérer avec 

précaution. 

B. Les SPAMs locales Les formes aux deux extrémités sont de couleur bleu et rouge respectivement. C: 

Les SPAMs extrêmes sont superposées. D: Les SPAMs des deux motifs détectés par PCBB localisés sur 

l'axe Isomap 

 

6.2 La région cingulaire 

 

Les résultats de l'analyse de cette région sont présentés dans la figure 18. Le premier 

mode de variabilité est capturé par l’Isomap. Il s’agit selon nous de l’ampleur relative des 

développements des sillons cingulaires et paracingulaires. Les SPAMs des trois motifs 

trouvés par PCBB sont également représentés. 

 

6.3 Le sillon temporal supérieur (STS ) 

 

Le premier mode de variation capturé correspond à «l’ouverture» des deux branches 

postérieures du STS (fig19). Les implications de cette variabilité en termes de fonction et 

le comportement mériteraient d'être approfondies. 
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Figure 18 Variabilité des plissements de la région cingulaire (cette figure correspond au 

mode de présentation introduit dans la figure précédente) 

 

 

Figure 19 Variabilité des plissement du sillon temporal supérieur (STS)  

 

7. Conclusion  

 

Comme l'illustre notre étude, la description de la variabilité des formes des plissements 

du cortex peut être systématisée. Notre démarche permet d’obtenir des résultats sur de 

grands ensembles de données. Elle va permettre de prolonger le travail initié par Ono 

(ref) à une échelle susceptible d’engendrer une description exhaustive des modes de 

variabilités importants. Nous disposons déjà à Neurospin de plusieurs milliers de 

cerveaux utilisables avec cet objectif. La multiplication des bases de données publiques 

devrait rapidement encore étendre cette base. 

 

Les facteurs génétiques (lorsque des motifs sont liés à des maladies génétiques, des 

jumeaux, des familles) dans le processus de plissement vont pouvoir être évalués. 

Réduire la complexité de la variabilité de la forme d’un sillon à quelques dimensions va 

considérablement clarifier les études de la plasticité, du développement et du 

vieillissement. Nous espérons faire émerger de la forme des sillons un nouveau potentiel 

en termes de biomarqueurs. Enfin, nous espérons intégrer dans l’analyse des plissements 
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du cortex des informations issues des faisceaux de fibres et des données. Le 

développement cérébral pourra être étudié systématiquement dans les études 

longitudinales et révéler la chronologie associée à la différentiation des motifs.  
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