HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation

Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos

Abstract : In this thesis, we investigate the capabilities of Ant Colony Optimization (ACO) metaheuristic to solve combinatorial and multi-objective optimization problems. First, we propose a taxonomy of ACO algorithms proposed in the literature to solve multi-objective problems. Then, we studydifferent pheromonal strategies for the case of mono-objective multidimensional knapsackproblem. We propose, finally, a generic ACO algorithm to solve multi-objective problems. Thisalgorithm is parameterised by the number of ant colonies and the number of pheromonestructures. This algorithm allows us to evaluate and compare new and existing approaches in thesame framework. We compare six variants of this generic algorithm on the multi-objectivemultidimensional knapsack problem
Document type :
Complete list of metadata

Cited literature [64 references]  Display  Hide  Download

Contributor : Abes Star :  Contact
Submitted on : Monday, June 27, 2011 - 1:33:13 PM
Last modification on : Thursday, April 28, 2022 - 3:15:09 PM
Long-term archiving on: : Wednesday, September 28, 2011 - 2:25:20 AM


Version validated by the jury (STAR)


  • HAL Id : tel-00603780, version 1


Inès Alaya. Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos. Ordinateur et société [cs.CY]. Université Claude Bernard - Lyon I; Université de la Manouba (Tunisie), 2009. Français. ⟨NNT : 2009LYO10060⟩. ⟨tel-00603780⟩



Record views


Files downloads