B. Annexe, Valorisation et publications issues des travaux de thèse Articles de revues scientifiques

E. Gagnaire-renou, M. Benoit, and S. Badulin, On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. Manuscrit soumis à Journal of Fluid Mechanics le 30, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00678493

E. Gagnaire-renou, M. Benoit, and F. Ph, Ocean wave spectrum properties as derived from quasi-exact computations of nonlinear wave-wave interactions, Journal of Geophysical Research, vol.18, issue.2, pp.10-1029, 2010.
DOI : 10.1029/2009JC005665

E. Gagnaire-renou, M. Benoit, and P. Forget, MODELING WAVES IN FETCH-LIMITED AND SLANTING FETCH CONDITIONS USING A QUASI-EXACT METHOD FOR NONLINEAR FOUR-WAVE INTERACTIONS, Coastal Engineering 2008, pp.1-5, 2008.
DOI : 10.1142/9789814277426_0042

M. Benoit and E. Gagnaire-renou, Interactions vague-vague non-linéaires et spectre d'équilibre pour les vagues de gravité en grande profondeur d'eau. Actes du 18ième Congrès Français de Mécanique 2007 -Session S19 "Ondes et écoulements à surface libre, pp.27-31, 2007.

E. Gagnaire-renou, M. Benoit, and S. Badulin, On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. Annual WISE meeting (Waves In Shallow-water Environments, pp.27-30, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00678493

E. Gagnaire-renou, M. Benoit, and P. Forget, Analysis of the structure of ocean wave directional spectrum from quasi-exact computations of nonlinear wave-wave interactions, 2008.

W. Annual, Waves In Shallow-water Environments, pp.2-5, 2008.

E. Gagnaire-renou, M. Benoit, and P. Forget, Etude du rôle des interactions non-linéaires dans l'évolution d'un spectre d'états de mer en conditions instationnaires. Séminaire " Hydrodynamique et Océano-Météorologie, du CLAROM, p.29, 2007.

E. Gagnaire-renou, C. Abonnel, M. Benoit, and C. Buvat, Mesure et caractérisation des conditions de courants et de vagues dans le Raz de Barfleur (Manche) pour mieux apprécier la ressource en énergie hydrolienne, 2007.

E. Gagnaire-renou, M. Benoit, C. Buvat, and C. Abonnel, Some lessons from tidal current and wave measurements at sea. Feedback of experience and analysis of measurements, Concerted Action on Ocean Energy, vol.4, pp.16-17, 2006.

D. Nonlinear-transfer, M. , and G. , fine resolution) and applied to a JONSWAP-type spectrum with usual features (f p = 1 Hz, ? = 0.07 if f ? f p , ? = 0.09 if f > f p , ? = 3.0) combined with a cos 6 (?/2) directional distribution function, p.54

. Badulin, Time evolution of H m0 /H m0,init . GQM method : eight test-cases. DIA : Case C3.b. Comparison to the law in t ?1, p.69, 2005.

. Badulin, GQM method : eight test-cases. DIA : Case C3.b. Comparison to the law in t 1, Time, issue.11, p.70, 2005.

S. Komen, of the dissipation term S diss . a) The frequency spectrum E(f ) simulated with set III-ft and GQM at t = 6 h is considered (dotted line) A f ?4 tail is applied to this spectrum (solid line). b) S in 1992) are calculated from both spectra. c) S in + S diss . d) S nl (GQM method). e) Relative nonlinear transfer term S nl /E(f ). f) Total source term S, p.85, 1984.

. Mitsuyasu, GQM method, sets I, II and III-ft and III-it, initial case C2.a. Comparison with, p.90, 1975.

. Hwang, t = 96 h. a) GQM method, source terms II, initial case C2.a. b) A cos 2s ((? ? ? 0 )/2). c) Ewans (1998) model. d), Normalized directional spreading functioñ DFFT, 9 terms). . . . . . . . . . . . . 91, 2000.

. Hwang, Lobe ratio r lobe versus f /f p at t = 96 h. Initial case C2.a, GQM method, source terms I, I and III-ft and III-it. Comparison withb) (measurements with an airborne scanning lidar system, Fourier decomposition with 9 components D k,F F T 9 and polynomial fitting not degraded (see Fig, 10 and Table 2 of their paper)) and the Ewans, p.93, 1998.

D. Nonlinear-transfer-term, M. , and G. , and b) the GQM method (rough, medium and fine resolutions), p.110

S. Nl, (solid lines) and S in +S diss (m 2 ) (dashed lines) curves, as functions of frequency f (Hz), for different non-dimensional fetches ?. Wind speed U 10 = 30 m s ?1 , Snyder's wind input S in and GQM method for the S nl . Note the change of frequency range in the right panels, p.129

&. For-zakharov and .. Zaslavsky, Reference regimes give tangents 1/2 for Toba, 1/3 for Hasselmann, p.135

. Hasselmann, ? p with non-dimensional fetch ?, for the different sets (I, II and III), DIA and GQM methods for calculating S nl . Results are given at the final simulation time t = 24 h. Published growth curves of CERC, Kahma & Calkoen (1992) (stable and unstable) and Babanin & Soloviev, p.143, 1973.

I. Set, DIA (points) methods. Some of the SHOWEX measurements are plotted for comparison with ? = 20 ? results (green curve) : buoys X1, X3 and, p.181, 1999.

. Badulin, Exponents p ? , q ? are given for explicit dependencies on fetch (4.17). ? B and T are parameters in the corresponding energy-to-frequency relationship?Erelationship? relationship?E = ? B ? ? ?2T p . Last column is the theoretical estimate of exponent T in the energy-to-frequency relationship, p.118, 2007.

J. G. Alves, A saturation-dependant dissipation source function for windwave modelling applications, 2000.

J. G. Alves and . Banner, Performance of a Saturation-Based Dissipation-Rate Source Term in Modeling the Fetch-Limited Evolution of Wind Waves, Journal of Physical Oceanography, vol.33, issue.6, pp.1274-1298, 2003.
DOI : 10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2

J. H. Alves, M. L. Banner, and &. I. Young, Revisiting the Pierson???Moskowitz Asymptotic Limits for Fully Developed Wind Waves, Journal of Physical Oceanography, vol.33, issue.7, pp.1301-1323, 2003.
DOI : 10.1175/1520-0485(2003)033<1301:RTPALF>2.0.CO;2

D. G. Andrews and . Mcintyre, On wave-action and its relatives, Journal of Fluid Mechanics, vol.60, issue.04, pp.647-664, 1978.
DOI : 10.1063/1.1761819

F. A. Ardhuin and . Boyer, Numerical modelling of sea states : validation of spectral shapes, Navigation, vol.54, issue.216, pp.55-71, 2006.

F. Ardhuin, B. Chapron, and &. F. Collard, Observation of swell dissipation across oceans, Geophysical Research Letters, vol.75, issue.C12, pp.660710-1029, 2009.
DOI : 10.1029/2008GL037030

URL : https://hal.archives-ouvertes.fr/hal-00321581

F. Ardhuin, F. Collard, B. Chapron, P. Queffeulou, J. Filipot et al., Spectral wave dissipation based on observations : a global validation, Proceedings of Chinese-German Joint Symposium on Hydraulics and Ocean Engineering, pp.391-400, 2008.

F. Ardhuin, T. H. Herbers, and &. W. O-'reilly, A Hybrid Eulerian???Lagrangian Model for Spectral Wave Evolution with Application to Bottom Friction on the Continental Shelf, Journal of Physical Oceanography, vol.31, issue.6, pp.31-1498, 2001.
DOI : 10.1175/1520-0485(2001)031<1498:AHELMF>2.0.CO;2

F. Ardhuin, T. H. Herbers, W. C. O-'reilly, and &. P. Jessen, Swell Transformation across the Continental Shelf. Part II: Validation of a Spectral Energy Balance Equation, Journal of Physical Oceanography, vol.33, issue.9, pp.1940-1953, 2003.
DOI : 10.1175/1520-0485(2003)033<1940:STATCS>2.0.CO;2

F. Ardhuin, T. H. Herbers, G. P. Van-vledder, K. P. Watts, R. Jensen et al., Swell and Slanting-Fetch Effects on Wind Wave Growth, Journal of Physical Oceanography, vol.37, issue.4, pp.908-931, 2007.
DOI : 10.1175/JPO3039.1

F. Ardhuin, W. C. O-'reilly, T. H. Herbers, and &. P. Jessen, Swell Transformation across the Continental Shelf. Part I: Attenuation and Directional Broadening, Journal of Physical Oceanography, vol.33, issue.9, pp.1921-1939, 2003.
DOI : 10.1175/1520-0485(2003)033<1921:STATCS>2.0.CO;2

A. V. Babanin, M. Banner, I. Young, and &. M. Donelan, Wave-Follower Field Measurements of the Wind-Input Spectral Function. Part III: Parameterization of the Wind-Input Enhancement due to Wave Breaking, Journal of Physical Oceanography, vol.37, issue.11, pp.2764-2775, 2007.
DOI : 10.1175/2007JPO3757.1

A. V. Babanin, D. Chalikov, I. Young, and &. I. Savelyev, Predicting the breaking onset of surface water waves, Geophysical Research Letters, vol.36, issue.7, pp.10-1029, 2007.
DOI : 10.1029/2006GL029135

A. V. Babanin and . Soloviev, Field Investigation of Transformation of the Wind Wave Frequency Spectrum with Fetch and the Stage of Development, Journal of Physical Oceanography, vol.28, issue.4, pp.563-576, 1998.
DOI : 10.1175/1520-0485(1998)028<0563:FIOTOT>2.0.CO;2

A. V. Babanin and . Soloviev, Variability of directional spectra of wind-generated waves, studied by means of wave staff arrays, Marine and Freshwater Research, vol.49, issue.2, pp.89-101, 1998.
DOI : 10.1071/MF96126

S. I. Badulin, A. V. Babanin, D. Resio, and &. V. Zakharov, Weakly turbulent laws of wind-wave growth, Journal of Fluid Mechanics, vol.151, pp.339-378, 2007.
DOI : 10.1175/1520-0485(1980)0102.0.CO;2

S. I. Badulin, A. V. Babanin, D. Resio, &. V. Zakharov, A. V. Borisov et al., Numerical verification of weakly turbulent law of wind wave growth. IUTAM Symposium on Hamiltonian Dynamics , Vortex Structures, Turbulence, Proceedings of the IUTAM Symposium held in Moscow, pp.175-190, 2006.

S. I. Badulin and . Caulliez, Significance of laboratory observations for modeling wind-driven seas, Geophysical Research Abstracts, EGU General Assembly, vol.11, pp.2009-2021, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00438396

S. I. Badulin, A. O. Korotkevich, D. Resio, and &. V. Zakharov, Wave-wave interactions in wind-driven mixed seas, Proceedings of the Rogue Waves 2008 Workshop, pp.77-86, 2008.

S. I. Badulin, A. N. Pushkarev, D. Resio, and &. V. Zakharov, Self-similarity of wind-driven seas, Nonlinear Processes in Geophysics, vol.12, issue.6, pp.891-946, 2005.
DOI : 10.5194/npg-12-891-2005

URL : https://hal.archives-ouvertes.fr/hal-00302664

M. L. Banner, I. S. Jones, and &. J. Trinder, Wavenumber spectra of short gravity waves, Journal of Fluid Mechanics, vol.76, issue.-1, pp.321-344, 1989.
DOI : 10.1017/S0022112058000550

M. L. Banner and . Young, Modeling Spectral Dissipation in the Evolution of Wind Waves. Part I: Assessment of Existing Model Performance, Journal of Physical Oceanography, vol.24, issue.7, pp.1550-1570, 1994.
DOI : 10.1175/1520-0485(1994)024<1550:MSDITE>2.0.CO;2

T. P. Barnett, On the generation, dissipation, and prediction of ocean wind waves, Journal of Geophysical Research, vol.24, issue.1103, pp.513-529, 1968.
DOI : 10.1029/JB073i002p00513

F. Becq, Extension de la modélisation spectrale des états de mer vers le domaine côtier, 1998.

M. Benoit, Evaluation of methods to compute the non-linear quadruplet interactions for deep-water wave spectra, Proc. 5th Int. Symp. on Ocean Wave Measurement and Analysis (WAVES 2005), 2005.

M. Benoit, IMPLEMENTATION AND TEST OF IMPROVED METHODS FOR EVALUATION OF NONLINEAR QUADRUPLET INTERACTIONS IN A THIRD GENERATION WAVE MODEL, Coastal Engineering 2006, pp.526-538, 2006.
DOI : 10.1142/9789812709554_0046

M. &. Benoit and . Gagnaire-renou, Interactions vague-vague non-linéaires et spectre d'équilibre pour les vagues de gravité en grande profondeur d'eau, Proc. 18th Congrès Français de Mécanique, 2007.

M. &. Benoit and . Lafon, A nearshore wave atlas along the coasts of france based on the numerical modelling of wave climate over 25 years, Proc. 29th Int. Conf. on Coastal Eng., Lisbonne (Portugal), pp.714-726, 2004.

M. Benoit, F. Marcos, and &. F. Becq, Development of a Third Generation Shallow-Water Wave Model with Unstructured Spatial Meshing, Coastal Engineering 1996, pp.465-478, 1996.
DOI : 10.1061/9780784402429.037

M. Benoit, F. Marcos, F. Becq, and &. P. Thellier, Tomawac v1.0 -note de validation, Tech. rep., EDF R&D -LNHE, 1996.

J. Bidlot, S. Abdalla, and &. P. Janssen, A revised formulation for ocean wave dissipation in CY25R1, 2005.

N. Booij, R. C. Ris, and &. L. Holthuijsen, A third-generation wave model for coastal regions: 1. Model description and validation, Journal of Geophysical Research: Oceans, vol.29, issue.C5, pp.7649-7666, 1999.
DOI : 10.1029/98JC02622

M. &. Bottema and . Van-vledder, Effective fetch and non-linear four-wave interactions during wave growth in slanting fetch conditions, Coastal Engineering, vol.55, issue.3, pp.261-275, 2008.
DOI : 10.1016/j.coastaleng.2007.11.001

C. Bretschneider, The generation and decay of wind waves in deep water, Transactions, American Geophysical Union, vol.28, issue.3, pp.381-389
DOI : 10.1029/TR033i003p00381

L. P. Cavaleri and . Malanotte-rizzoli, Wind wave prediction in shallow water: Theory and applications, Journal of Geophysical Research, vol.14, issue.C11, pp.961-10975, 1981.
DOI : 10.1029/JC086iC11p10961

L. Cavaleri, Wave modelling ??? The state of the art, Progress in Oceanography, vol.75, issue.4, p.75, 2007.
DOI : 10.1016/j.pocean.2007.05.005

M. Donelan, M. Skafel, H. Graber, P. Liu, D. Schwab et al., On the growth rate of wind???generated waves, Atmosphere-Ocean, vol.18, issue.3, pp.457-478, 1992.
DOI : 10.1017/S0022112068001503

M. A. Donelan, J. Hamilton, and &. W. Hui, Directional Spectra of Wind-Generated Waves, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.315, issue.1534, pp.315-509, 1985.
DOI : 10.1098/rsta.1985.0054

M. A. Donelan and . Pierson-jr, Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry, Journal of Geophysical Research, vol.9, issue.C2, pp.92-4971, 1987.
DOI : 10.1029/JC092iC05p04971

T. Elfouhaily, B. Chapron, K. Katsaros, and &. D. Vandemark, A unified directional spectrum for long and short wind-driven waves, Journal of Geophysical Research: Oceans, vol.289, issue.4, pp.781-796, 1997.
DOI : 10.1029/97JC00467

K. C. Ewans, Observations of the Directional Spectrum of Fetch-Limited Waves, Journal of Physical Oceanography, vol.28, issue.3, pp.495-512, 1998.
DOI : 10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2

J. Ewing, Une m??thode num??rique de pr??diction de vagues pour l'Atlantique Nord, Deutsche Hydrographische Zeitschrift, vol.98, issue.6, pp.241-261
DOI : 10.1007/BF02225707

P. Forget, M. Saillard, and &. P. Broche, Observations of the sea surface by coherent L band radar at low grazing angles in a nearshore environment, Journal of Geophysical Research, vol.13, issue.6, pp.10-1029, 2006.
DOI : 10.1029/2005JC002900

G. Z. Forristall and . Ewans, Worldwide Measurements of Directional Wave Spreading, Journal of Atmospheric and Oceanic Technology, vol.15, issue.2, pp.440-469, 1998.
DOI : 10.1175/1520-0426(1998)015<0440:WMODWS>2.0.CO;2

E. Gagnaire-renou, M. Benoit, and &. P. Forget, MODELING WAVES IN FETCH-LIMITED AND SLANTING FETCH CONDITIONS USING A QUASI-EXACT METHOD FOR NONLINEAR FOUR-WAVE INTERACTIONS, Coastal Engineering 2008, pp.496-508, 2008.
DOI : 10.1142/9789814277426_0042

E. Gagnaire-renou and M. Benoit, Forget, in press : Ocean wave spectrum properties as derived from quasi-exact computations of nonlinear wave-wave interactions, J. Geophys. Res, pp.10-1029, 2009005665.

H. Günther, S. Hasselmann, and &. P. Janssen, The WAM model cycle 4 (revised version), Tech. Rep. Deutsch. Klimatol. Rechenzentrum, vol.4, 1992.

T. S. Hara and . Belcher, Wind forcing in the equilibrium range of wind-wave spectra, Journal of Fluid Mechanics, vol.470, pp.223-245, 2002.
DOI : 10.1017/S0022112002001945

N. K. Hashimoto and . Kawaguchi, Extension and modification of discrete interaction approximation (dia) for computing nonlinear energy transfer of gravity wave spectrum, Proc. 4th Int. Symp. on Ocean Waves Measurement and Analysis, pp.530-539, 2001.

N. Hashimoto, H. Tsuruya, and &. Y. Nakagawa, NUMERICAL COMPUTATIONS OF THE NONLINEAR ENERGY TRANSFER OF GRAVITY-WAVE SPECTRA IN FINITE WATER DEPTHS, Coastal Engineering Journal, vol.40, issue.01, pp.23-40, 1998.
DOI : 10.1142/S0578563498000030

D. J. Hasselmann and . Bösenberg, Field measurements of wave-induced pressure over wind-sea and swell, Journal of Fluid Mechanics, vol.41, issue.-1, pp.391-428, 1991.
DOI : 10.1017/S0022112072000783

D. E. Hasselmann, M. Dunkel, and &. J. Ewing, Directional Wave Spectra Observed during JONSWAP 1973, Journal of Physical Oceanography, vol.10, issue.8, pp.1264-1280, 1980.
DOI : 10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2

K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory, Journal of Fluid Mechanics, vol.7, issue.04, pp.481-500, 1962.
DOI : 10.1017/S0022112062000373

K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum, Journal of Fluid Mechanics, vol.3, issue.03, pp.385-398, 1963.
DOI : 10.1017/S002211206300032X

K. Hasselmann, On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irrevesibility, Journal of Fluid Mechanics, vol.12, issue.02, pp.273-281, 1963.
DOI : 10.1017/S0022112063000239

K. Hasselmann, On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorol, pp.107-127, 1974.

K. Hasselmann, D. B. Ross, P. Müller, and &. W. Sell, A Parametric Wave Prediction Model, Journal of Physical Oceanography, vol.6, issue.2, pp.200-228, 1976.
DOI : 10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2

K. Hasselmann, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogh. Zeitschr, issue.A8, p.12, 1973.

S. K. Hasselmann and . Hasselmann, A symmetrical method of computing the nonlinear transfer in a gravity wave spectrum. Hamburger Geophysikalische Einzelschriften, 1981.

S. K. Hasselmann and . Hasselmann, Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Spectrum. Part I: A New Method for Efficient Computations of the Exact Nonlinear Transfer Integral, Journal of Physical Oceanography, vol.15, issue.11, pp.1369-1377, 1985.
DOI : 10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2

S. Hasselmann, K. Hasselmann, J. H. Allender, and &. T. Barnett, Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models, Journal of Physical Oceanography, vol.15, issue.11, pp.1378-1391, 1985.
DOI : 10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2

H. P. Hersbach and . Janssen, Improvement of the Short-Fetch Behavior in the Wave Ocean Model (WAM), Journal of Atmospheric and Oceanic Technology, vol.16, issue.7, pp.884-892, 1999.
DOI : 10.1175/1520-0426(1999)016<0884:IOTSFB>2.0.CO;2

K. K. Herterich and . Hasselmann, A similarity relation for the nonlinear energy transfer in a finite-depth gravity-wave spectrum, Journal of Fluid Mechanics, vol.15, issue.01, pp.215-224, 1980.
DOI : 10.1175/1520-0485(1975)005 2.0.CO;2

Y. Hisaki, Directional distribution of the short wave estimated from HF ocean radars, Journal of Geophysical Research, vol.17, issue.C12, pp.10-1029, 2007.
DOI : 10.1029/2007JC004296

L. H. Holthuijsen, Observations of the Directional Distribution of Ocean-Wave Energy in Fetch-Limited Conditions, Journal of Physical Oceanography, vol.13, issue.2, pp.191-207, 1983.
DOI : 10.1175/1520-0485(1983)013<0191:OOTDDO>2.0.CO;2

S. V. Hsiao and . Shemdin, Measurements of wind velocity and pressure with a wave follower during Marsen, Journal of Geophysical Research: Oceans, vol.10, issue.C14, pp.9841-9849, 1983.
DOI : 10.1029/JC088iC14p09841

P. A. Hwang and . Wang, Field Measurements of Duration-Limited Growth of Wind-Generated Ocean Surface Waves at Young Stage of Development*, Journal of Physical Oceanography, vol.34, issue.10, pp.2316-2326, 2004.
DOI : 10.1175/1520-0485(2004)034<2316:FMODGO>2.0.CO;2

P. H. Hwang, D. W. Wang, E. J. Walsh, W. B. Krabill, and &. R. Swift, Airborne Measurements of the Wavenumber Spectra of Ocean Surface Waves. Part I: Spectral Slope and Dimensionless Spectral Coefficient*, Journal of Physical Oceanography, vol.30, issue.11, pp.2753-2767, 2000.
DOI : 10.1175/1520-0485(2001)031<2753:AMOTWS>2.0.CO;2

P. H. Hwang, D. W. Wang, E. J. Walsh, W. B. Krabill, and &. R. Swift, Airborne Measurements of the Wavenumber Spectra of Ocean Surface Waves. Part II: Directional Distribution*???, Journal of Physical Oceanography, vol.30, issue.11, pp.2768-2787, 2000.
DOI : 10.1175/1520-0485(2001)031<2768:AMOTWS>2.0.CO;2

M. Isobe, K. Kondo, and &. K. Horikawa, Extension of MLM for estimating directional wave spectrum. Symp. on Description and Modelling of Directional Seas, DHI and MMI, pp.1-15, 1984.

P. A. Janssen, Wave-Induced Stress and the Drag of Air Flow over Sea Waves, Journal of Physical Oceanography, vol.19, issue.6, pp.745-754, 1989.
DOI : 10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2

P. A. Janssen, Quasi-linear Theory of Wind-Wave Generation Applied to Wave Forecasting, Journal of Physical Oceanography, vol.21, issue.11, pp.1631-1642, 1991.
DOI : 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2

P. A. Janssen, The Interaction of Ocean Waves and Wind, 2004.
DOI : 10.1017/CBO9780511525018

A. O. Jenkins and . Phillips, A simple formula for nonlinear wave-wave interaction, Int. J. Offshore Polar Engng, vol.11, issue.2, pp.81-86, 2001.

K. K. Kahma, A Study of the Growth of the Wave Spectrum with Fetch, Journal of Physical Oceanography, vol.11, issue.11, pp.1503-1515, 1981.
DOI : 10.1175/1520-0485(1981)011<1503:ASOTGO>2.0.CO;2

K. K. Kahma and . Calkoen, Reconciling Discrepancies in the Observed Growth of Wind-generated Waves, Journal of Physical Oceanography, vol.22, issue.12, pp.1389-1405, 1992.
DOI : 10.1175/1520-0485(1992)022<1389:RDITOG>2.0.CO;2

S. A. Kitaigorodskii, Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process, Bull. Acad. Sci. USSR, Geophys. Ser., Engl. Transl, vol.1, pp.105-117, 1962.

S. A. Kitaigorodskii, On the Theory of the Equilibrium Range in the Spectrum of Wind-Generated Gravity Waves, Journal of Physical Oceanography, vol.13, issue.5, pp.816-827, 1983.
DOI : 10.1175/1520-0485(1983)013<0816:OTTOTE>2.0.CO;2

K. A. Komatsu and . Masuda, A new scheme of nonlinear energy transfer among wind waves: RIAM method-algorithm and performance-, Journal of Oceanography, vol.17, issue.Heft 3, pp.509-537, 1996.
DOI : 10.1007/BF02239052

G. J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann et al., Dynamics and modelling of ocean waves, p.pp, 1994.
DOI : 10.1017/CBO9780511628955

G. J. Komen, S. Hasselmann, and &. K. Hasselmann, On the Existence of a Fully Developed Wind-Sea Spectrum, Journal of Physical Oceanography, vol.14, issue.8, pp.1271-1285, 1984.
DOI : 10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2

A. O. Korotkevich, A. N. Pushkarev, D. Resio, and &. V. Zakharov, Numerical verification of the weak turbulent model for swell evolution, European Journal of Mechanics - B/Fluids, vol.27, issue.4, pp.361-387, 2008.
DOI : 10.1016/j.euromechflu.2007.08.004

V. P. Krasitskii, On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves, Journal of Fluid Mechanics, vol.71, issue.-1, pp.1-20, 1994.
DOI : 10.1017/S0022112085002488

V. N. Kudryavtsev, V. K. Makin, and &. B. Chapron, Coupled sea surface-atmosphere model: 2. Spectrum of short wind waves, Journal of Geophysical Research: Oceans, vol.289, issue.C4, pp.7625-7639, 1999.
DOI : 10.1029/1999JC900005

I. V. Lavrenov, Effect of Wind Wave Parameter Fluctuation on the Nonlinear Spectrum Evolution, Journal of Physical Oceanography, vol.31, issue.4, pp.861-873, 2001.
DOI : 10.1175/1520-0485(2001)031<0861:EOWWPF>2.0.CO;2

I. V. Lavrenov, A Numerical Study of a Nonstationary Solution of the Hasselmann Equation, Journal of Physical Oceanography, vol.33, issue.3, pp.499-511, 2003.
DOI : 10.1175/1520-0485(2003)033<0499:ANSOAN>2.0.CO;2

I. V. Lavrenov, Wind-waves in oceans : dynamics and numerical simulations, 2003.
DOI : 10.1007/978-3-662-05146-7

R. W. Lin and . Perrie, On the mathematics and approximation of the nonlinear wavewave interactions. Nonlinear ocean waves, W. Perrie Advances in Fluid Mechanics, pp.61-88, 1998.

P. Liu, D. Schwab, and &. J. Bennett, Comparison of a Two-Dimensional Wave Prediction Model with Synoptic Measurements in Lake Michigan, Journal of Physical Oceanography, vol.14, issue.9, pp.1514-1518, 1984.
DOI : 10.1175/1520-0485(1984)014<1514:COATDW>2.0.CO;2

P. C. Liu and . Ross, Airborne Measurements of Wave Growth for Stable and Unstable Atmospheres in Lake Michigan, Journal of Physical Oceanography, vol.10, issue.11, pp.1842-1853, 1980.
DOI : 10.1175/1520-0485(1980)010<1842:AMOWGF>2.0.CO;2

C. D. Long and . Resio, Wind wave spectral observations in Currituck Sound, North Carolina, Journal of Geophysical Research, vol.170, issue.C5, pp.10-1029, 2007.
DOI : 10.1029/2006JC003835

M. S. Longuet-higgins, D. E. Cartwright, and &. N. Smith, Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra, proceedings of a conference, pp.111-136, 1963.

A. H. Lygre and . Krogstad, Maximum Entropy Estimation of the Directional Distribution in Ocean Wave Spectra, Journal of Physical Oceanography, vol.16, issue.12, pp.52-2060, 1986.
DOI : 10.1175/1520-0485(1986)016<2052:MEEOTD>2.0.CO;2

D. Masson, On the Nonlinear Coupling between Swell and Wind Waves, Journal of Physical Oceanography, vol.23, issue.6, pp.1249-1258
DOI : 10.1175/1520-0485(1993)023<1249:OTNCBS>2.0.CO;2

A. Masuda, Nonlinear Energy Transfer Between Wind Waves, Journal of Physical Oceanography, vol.10, issue.12, pp.2082-2093, 1980.
DOI : 10.1175/1520-0485(1980)010<2082:NETBWW>2.0.CO;2

A. Masuda, Nonlinear energy transfer between random gravity waves. Waves Dynamics and Radio Probing of the Ocean Surface, pp.136-149, 1986.
DOI : 10.1007/978-1-4684-8980-4_3

J. W. Miles, On the generation of surface waves by shear flows, Journal of Fluid Mechanics, vol.215, issue.02, pp.185-204, 1957.
DOI : 10.1103/PhysRev.91.784

J. Monbaliu, J. Hargreaves, J. Carretero, H. Gerritsen, and &. R. Flather, Wave modelling in the PROMISE project, Coastal Engineering, vol.37, issue.3-4, pp.379-407, 1999.
DOI : 10.1016/S0378-3839(99)00035-6

J. Monbaliu, R. Padilla-hernández, J. C. Hargreaves, J. C. Carretero-albiach, W. Luo et al., The spectral wave model, WAM, adapted for applications with high spatial resolution, Coastal Engineering, vol.41, issue.1-3, pp.41-62, 2000.
DOI : 10.1016/S0378-3839(00)00026-0

W. A. Perrie and . Resio, A Two-Scale Approximation for Efficient Representation of Nonlinear Energy Transfers in a Wind Wave Spectrum. Part II: Application to Observed Wave Spectra, Journal of Physical Oceanography, vol.39, issue.10, pp.2451-2476, 2009.
DOI : 10.1175/2009JPO3947.1

H. Pettersson and . Url, Wave growth in a narrow bay, pp.951-53, 2004.

O. Phillips, The equilibrium range in the spectrum of wind-generated waves, Journal of Fluid Mechanics, vol.none, issue.04, pp.426-434, 1958.
DOI : 10.1007/BF02277929

O. M. Phillips, On the generation of waves by turbulent wind, Journal of Fluid Mechanics, vol.107, issue.05, pp.415-417, 1957.
DOI : 10.1063/1.1721204

O. M. Phillips, The dynamics of the upper ocean, 1977.

O. M. Phillips, Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, Journal of Fluid Mechanics, vol.123, issue.-1, pp.505-531, 1985.
DOI : 10.1175/1520-0485(1980)010 2.0.CO;2

W. J. Pierson and . Moskowitz, A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, Journal of Geophysical Research, vol.69, issue.24, pp.5181-5190, 1964.
DOI : 10.1029/JZ069i024p05181

W. J. Plant, A relationship between wind stress and wave slope, Journal of Geophysical Research, vol.3, issue.C3, pp.1961-1967, 1982.
DOI : 10.1029/JC087iC03p01961

V. Polnikov, Nonlinear Energy Transfer through the Spectrum of Gravity Waves for the Finite Depth Case, Journal of Physical Oceanography, vol.27, issue.8, pp.1481-1491, 1997.
DOI : 10.1175/1520-0485(1997)027<1481:NETTTS>2.0.CO;2

V. G. Polnikov, Numerical solution of the kinetic equation for surface gravity waves, Izv. Atmos. Ocean. Phys, vol.26, issue.2, pp.168-176, 1990.

V. G. Polnikov and . Farina, On the problem of optimal approximation of the four-wave kinetic integral, Nonlinear Processes in Geophysics, vol.9, issue.5/6, pp.497-512, 2002.
DOI : 10.5194/npg-9-497-2002

URL : https://hal.archives-ouvertes.fr/hal-00302158

W. Press, S. A. Teukolsky, W. T. Vetterling, and &. B. Flannery, Numerical recipes in FORTRAN : the art of scientific computing, 1992.

A. N. Pushkarev, D. Resio, and &. V. Zakharov, Weak turbulent approach to the wind-generated gravity sea waves, Physica D: Nonlinear Phenomena, vol.184, issue.1-4, pp.29-63, 2003.
DOI : 10.1016/S0167-2789(03)00212-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.563.5682

A. N. Pushkarev, D. Resio, and &. V. Zakharov, Second generation diffusion model of interacting gravity waves on the surface of deep fluid, Nonlinear Processes in Geophysics, vol.11, issue.3, pp.329-342, 2004.
DOI : 10.5194/npg-11-329-2004

URL : https://hal.archives-ouvertes.fr/hal-00302341

A. N. Pushkarev and . Zakharov, On conservation of the constants of motion in the models of nonlinear wave interaction, Proceedings of the Sixth International Workshop on Wave Hindcasting and Forecasting, pp.456-469, 2000.

D. T. Resio, C. E. Long, and &. C. Vincent, Equilibrium-range constant in windgenerated wave spectra, J. Geophys. Res, vol.109, p.1029, 1018.

D. T. Resio and . Perrie, A numerical study of nonlinear energy fluxes due to wave-wave interactions Part 1. Methodology and basic results, Journal of Fluid Mechanics, vol.113, issue.-1, pp.603-629, 1991.
DOI : 10.1175/1520-0485(1989)019 2.0.CO;2

D. T. Resio and . Perrie, A two-scale approximation for efficient representation of nonlinear energy transfers in a wind wave spectrum, 2008.

D. T. Resio, J. Pihl, B. Tracy, and &. C. Vincent, Nonlinear energy fluxes and the finite depth equilibrium range in wave spectra, Journal of Geophysical Research: Oceans, vol.3, issue.12, pp.6985-7000, 2001.
DOI : 10.1029/2000JC900153

R. C. Ris, Spectral modelling of wind waves in coastal areas, 1997.

D. B. Ross, On the use of aircraft in the observation of one-and two-dimensional ocean wave spectra. Ocean Wave Climate, pp.253-267, 1978.

D. Schwab, J. Bennett, P. Liu, and &. M. Donelan, Application of a simple numerical wave prediction model to Lake Erie, Journal of Geophysical Research, vol.10, issue.C3, pp.3586-3592, 1984.
DOI : 10.1029/JC089iC03p03586

R. L. Snyder, F. W. Dobson, J. A. Elliot, and &. R. Long, Array measurements of atmospheric pressure fluctuations above surface gravity waves, Journal of Fluid Mechanics, vol.32, issue.-1, pp.1-59, 1981.
DOI : 10.1017/S0022112062001160

R. W. Stewart, The air-sea momentum exchange. Boundary-Layer Meteorol, pp.151-167, 1974.

H. U. Sverdrup and . Munk, Wind, sea, and swell : theory of relations for forecasting, 1947.

S. Bibliographie and . Group, Ocean wave modelling, 1985.

M. Tanaka, Verification of Hasselmann's energy transfer among surface gravity waves by direct numerical simulations of primitive equations, Journal of Fluid Mechanics, vol.444, pp.199-221, 2001.
DOI : 10.1017/S0022112001005389

Y. Toba, Local balance in the air-sea boundary processes, Journal of Oceanography, vol.18, issue.3, pp.109-121, 1972.
DOI : 10.1007/BF02333333

Y. Toba, Local balance in the air-sea boundary processes. II. partition of wind stress to waves and current, J. Oceanogr. Soc. Japan, vol.29, pp.70-75, 1973.

Y. Toba, Local balance in the air-sea boundary processes, Journal of the Oceanographical Society of Japan, vol.29, issue.5, pp.209-220, 1973.
DOI : 10.1007/BF02108528

Y. Toba, Stochastic Form of the Growth of Wind Waves in a Single-Parameter Representation with Physical Implications, Journal of Physical Oceanography, vol.8, issue.3, pp.494-507, 1978.
DOI : 10.1175/1520-0485(1978)008<0494:SFOTGO>2.0.CO;2

Y. Toba, Wind-wave strong wave interactions and quasi-local equilibrium between wind and wind sea with the friction velocity proportionality. Nonlinear ocean waves, W. Perrie, Advances in Fluid Mechanics, vol.17, pp.1-59, 1997.

H. L. Tolman, Effects of Tides and Storm Surges on North Sea Wind Waves, Journal of Physical Oceanography, vol.21, issue.6, pp.766-781
DOI : 10.1175/1520-0485(1991)021<0766:EOTASS>2.0.CO;2

H. L. Tolman, Effects of Numerics on the Physics in a Third-Generation Wind-Wave Model, Journal of Physical Oceanography, vol.22, issue.10, pp.1095-1111, 1992.
DOI : 10.1175/1520-0485(1992)022<1095:EONOTP>2.0.CO;2

H. L. Tolman, User manual and system documentation of WAVEWATCH-III version 2.22, Tech. Rep, vol.222, 2002.

H. L. Tolman, Inverse modeling of discrete interaction approximations for nonlinear interactions in wind waves, Ocean Modelling, vol.6, issue.3-4, pp.405-422, 2004.
DOI : 10.1016/j.ocemod.2003.09.002

H. L. Tolman and . Chalikov, Source Terms in a Third-Generation Wind Wave Model, Journal of Physical Oceanography, vol.26, issue.11, pp.2497-2518, 1996.
DOI : 10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2

H. L. Tolman, V. M. Krasnopolsky, and &. D. Chalikov, Neural network approximations for nonlinear interactions in wind wave spectra: direct mapping for wind seas in deep water, Ocean Modelling, vol.8, issue.3, pp.253-278, 2005.
DOI : 10.1016/j.ocemod.2003.12.008

B. D. Tracy and . Resio, Theory and calculation of the nonlinear energy transfer between sea waves in deep water, WES Rep, vol.11, 1982.

D. Trizna, R. Bogle, J. Moore, and &. C. Howe, Observation by HF radar of the Phillips resonance mechanism for generation of wind waves, Journal of Geophysical Research, vol.14, issue.2, pp.4946-4956, 1980.
DOI : 10.1029/JC085iC09p04946

A. J. Van-der-westhuysen, Advances in the spectral modelling of wind waves in the nearshore, 2008.

A. J. Van-der-westhuysen, M. Zijlema, and &. J. Battjes, Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water, Coastal Engineering, vol.54, issue.2, pp.151-170, 2007.
DOI : 10.1016/j.coastaleng.2006.08.006

G. P. Van-vledder, Extension of the Discrete Interaction Approximation for Computing Nonlinear Quadruplet Wave-Wave Interactions in Operational Wave Prediction Models, Ocean Wave Measurement and Analysis (2001), pp.540-549, 2001.
DOI : 10.1061/40604(273)56

G. P. Van-vledder, The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models, Coastal Engineering, vol.53, issue.2-3, pp.223-242, 2006.
DOI : 10.1016/j.coastaleng.2005.10.011

G. P. Van-vledder, T. Herbers, R. Jensen, D. Resio, and &. B. Tracy, Modelling of Non-Linear Quadruplet Wave-Wave Interactions in Operational Wave Models, Coastal Engineering 2000, pp.797-811, 2000.
DOI : 10.1061/40549(276)62

K. Wahle, H. Günther, and &. H. Schiller, Neural network parameterisation of the mapping of wave spectra onto nonlinear four-wave interactions. Ocean Modelling, pp.48-55, 2009.

E. J. Walsh, D. W. Hancock, I. , D. E. Hines, R. N. Swift et al., An Observation of the Directional Wave Spectrum Evolution from Shoreline to Fully Developed, Journal of Physical Oceanography, vol.19, issue.5, 1989.
DOI : 10.1175/1520-0485(1989)019<0670:AOOTDW>2.0.CO;2

W. Group, The WAM Model???A Third Generation Ocean Wave Prediction Model, Journal of Physical Oceanography, vol.18, issue.12, pp.1775-1810, 1988.
DOI : 10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2

D. W. Wang and . Hwang, Evolution of the Bimodal Directional Distribution of Ocean Waves*, Journal of Physical Oceanography, vol.31, issue.5, pp.1200-1221, 2001.
DOI : 10.1175/1520-0485(2001)031<1200:EOTBDD>2.0.CO;2

K. P. Watts, Fetch-limited wind wave generation on the continental shelf, Naval Postgraduate School, 2003.

D. J. Webb, Non-linear transfers between sea waves, Deep Sea Research, vol.25, issue.3, pp.279-298, 1978.
DOI : 10.1016/0146-6291(78)90593-3

G. B. Whitham, Linear and nonlinear waves, 1974.
DOI : 10.1002/9781118032954

L. Yan, An improved wind input source term for third generation ocean wave modelling, Tech. Rep, vol.8, 1987.

I. Young, S. Hasselmann, and &. K. Hasselmann, Computations of the Response of a Wave Spectrum to a Sudden Change in Wind Direction, Journal of Physical Oceanography, vol.17, issue.9, pp.1317-1338, 1987.
DOI : 10.1175/1520-0485(1987)017<1317:COTROA>2.0.CO;2

I. R. Young, On the measurement of directional wave spectra, Applied Ocean Research, vol.16, issue.5, pp.283-294, 1994.
DOI : 10.1016/0141-1187(94)90017-5

I. R. Young, The determination of confidence limits associated with estimates of the spectral peak frequency, Ocean Engineering, vol.22, issue.7, pp.669-686, 1995.
DOI : 10.1016/0029-8018(95)00002-3

B. Young and I. R. , Wind Generated Ocean Waves, 1999.

I. R. Young, Directional spectra of hurricane wind waves, Journal of Geophysical Research, vol.12, issue.8, pp.10-1029, 2006.
DOI : 10.1029/2006JC003540

I. R. Young and . Babanin, The form of the asymptotic depth-limited wind wave frequency spectrum, Journal of Geophysical Research, vol.12, issue.7, pp.10-1029, 2006.
DOI : 10.1029/2005JC003398

I. R. Young and . Van-vledder, A Review of the Central Role of Nonlinear Interactions in Wind-Wave Evolution, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.342, issue.1666, pp.505-524, 1993.
DOI : 10.1098/rsta.1993.0030

I. R. Young, L. A. Verhagen, and &. M. Banner, A note on the bimodal directional spreading of fetch-limited wind waves, Journal of Geophysical Research, vol.342, issue.12, pp.773-778, 1995.
DOI : 10.1029/94JC02218

V. E. Zakharov, 1966 : Problems of the theory of nonlinear surface waves, Budker Institute for Nuclear Physics

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Journal of Applied Mechanics and Technical Physics, vol.10, issue.no. 4, pp.190-194, 1968.
DOI : 10.1007/BF00913182

V. E. Zakharov, Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid, European Journal of Mechanics - B/Fluids, vol.18, issue.3, pp.327-344, 1999.
DOI : 10.1016/S0997-7546(99)80031-4

V. E. Zakharov, Theoretical interpretation of fetch limited wind-drivensea observations, Nonlinear Processes in Geophysics, vol.12, issue.6, pp.1011-1020, 2005.
DOI : 10.5194/npg-12-1011-2005

URL : https://hal.archives-ouvertes.fr/hal-00302682

V. E. Zakharov, G. Falkovich, and &. V. Lvov, Kolmogorov spectra of turbulence. Part I, 1992.

V. E. Zakharov and . Filonenko, Energy spectrum for stochastic oscillations of the surface of a fluid, Soviet Phys. Dokl, vol.160, pp.1292-1295, 1966.

V. E. Zakharov, A. O. Korotkevich, A. N. Pushkarev, and &. D. Resio, Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation, Physical Review Letters, vol.99, issue.16, p.99, 2007.
DOI : 10.1103/PhysRevLett.99.164501

V. E. Zakharov and . Pushkarev, Diffusion model of interacting gravity waves on the surface of deep fluid, Nonlinear Processes in Geophysics, vol.6, issue.1, pp.1-10, 1999.
DOI : 10.5194/npg-6-1-1999

URL : https://hal.archives-ouvertes.fr/hal-00301922

V. E. Zakharov and . Zaslavsky, Integrals of input and dissipation in the weak-turbulence theory of wind-generated waves, Izv. Atmos. Ocean. Phys, vol.18, issue.10, pp.1066-1076, 1982.

V. E. Zakharov and . Zaslavsky, Kinetic equation and Kolmogorov spectra in the weak-turbulence theory of wind waves, Izv. Atmos. Ocean. Phys, vol.18, issue.9, pp.970-980, 1982.

V. E. Zakharov and . Zaslavsky, Shape of spectrum of energy carrying components of a water surface in the weak-turbulence theory of wind waves, Izv. Atmos. Ocean. Phys, vol.19, issue.3, pp.207-212, 1983.

V. E. Zakharov and . Zaslavsky, Dependence of wave parameters on the wind velocity, duration of its action and fetch in the weak-turbulence theory of water waves, Izv. Atmos. Ocean. Phys, vol.19, issue.4, pp.300-306, 1983.