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Abstract Probabilistic Automata. InVMCAI, conference on Verification, Model Checking
and Abstract Interpretation, Austin, Texas, 2011.

• B. Caillaud, B. Delahaye, K.G. Larsen, A. Legay, M.L. Pedersen, A. Wąsowski. Decision
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Résumé de la thèse :
Spécification Modulaire et Analyse
Compositionnelle de Systèmes
Stochastiques

0.1 Introduction

0.1.1 Contexte

De nombreux secteurs industriels dont le secteur des systèmes embarqués ont récemment
connu de profonds changements dans leur organisation. Les secteurs de l’automobile et de
l’aérospatiale en sont les principaux exemples. Dans le passé, ils étaient organisés autour de
compagnies intégrées verticalement supportant toute la chaîne de développement, du design à
l’implémentation. Aujourd’hui, les systèmes sont si gros et complexes qu’il est quasiment im-
possible qu’une même équipe ait le contrôle de toute la chaîne de design. Dans la pratique, les
systèmes complexes résultent de l’assemblage de multiplescomposants, généralement dévelop-
pés par des équipes qui travaillent indépendamment les unesdes autres, tout en étant d’accord
sur les interfaces de chaque composant. Ces interfaces spécifient à la fois les comportements
des composants et l’environnement dans lequel ils peuvent être utilisés. L’avantage principal
de cette méthodologie est de n’imposer aucune contrainte sur la façon dont les composants sont
implémentés.

Différents composants peuvent être implémentés par différentes équipes à la con-
dition que chaque équipe respecte l’interface sur laquelleelles se sont toutes mises
d’accord.

Dans la pratique, les interfaces sont généralement décrites soit par des documents textuels,
générés avec Word/Excel, soit dans des langages de modélisation tels qu’UML/XML. À
l’inverse, afin de limiter au maximum les ambiguïtés, nous proposons de baser notre raison-
nement sur des formalismes mathématiques. Le développement de formalismes mathématiques
permettant de raisonner au niveau abstrait des interfaces dans le but de déduire des propriétés
des systèmes globaux et de décrire ou (ré)utiliser des composants est un domaine de recherche
particulièrement actif, appeléraisonnement compositionnel[77]. Selon le point de vue du
“software engineering”, nécessairement orienté vers l’implémentation, les propriétés néces-
saires à une bonne théorie d’interface sont les suivantes.
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Remarque 0.1.Dans le reste du document, en fonction du contexte, plusieurs termes pourront
être utilisés pour désigner les mêmes notions : spécification = interface; implémentation =
composant.

1. Il est nécessaire de pouvoir décider si une interface admet une implémentation (aussi
appelée modèle). En particulier, il doit être possible de décider si les propriétés spéci-
fiées par l’interface sont implémentables, et de générer unetelle implémentation le cas
échéant. Dans le cadre de notre théorie, une implémentationne doit pas être vue comme
un langage de programmation mais plutôt comme un objet mathématique représentant
un ensemble de langages de programmation partageant un ensemble de propriétés. Le
fait de pouvoir décider si un composant implémente une interface est d’une importance
particulière et doit pouvoir être décidé à l’aide d’algorithmes efficaces.

Si l’on considère qu’une spécification est une représentation mathématique
d’une propriété devant être satisfaite, alors la satisfaction doit coïncider avec
le principe de vérification par implémentation.

2. Il est important de pouvoir remplacer un composant par un autre sans pour autant
modifier le comportement du système global. Au niveau des interfaces, cela correspond
au concept deraffinement. Le principe du raffinement est de permettre de remplacer,
dans n’importe quel contexte, une interface par une interface plus détaillée. Le raffine-
ment doit être garant de la substituabilité d’interface, i.e. que toute implémentation qui
satisfait le raffinement satisfait aussi le raffiné. Dans le but de limiter la complexité du
procédé de développement, il est important de pouvoir décider de l’existence d’une inter-
face raffinant deux autres interfaces. C’est le principe duraffinement partagé. Dans de
nombreux cas, on recherche laplus grande borne inférieure, i.e. le raffinement partagé
qui serait raffiné par tous les autres raffinements partagés.

3. Les systèmes de grande taille sont développés de manière concurrente pour leurs dif-
férentsaspectsou points de vuepar différentes équipes utilisant différents outils et dif-
férentes méthodes. Par exemple, ces aspects incluent les aspects fonctionnels ou les as-
pects de sécurité. Chacun d’eux nécessite des méthodes et outils différents pour l’analyse
et la conception. Pour autant, ils ne sont pas entièrement indépendants et il leur arrive
d’interagir. Le problème de traiter des aspects multiples ou encore des points de vue mul-
tiples semble donc essentiel. Notamment, cela implique queplusieurs interfaces peuvent
être associées à un même composant, en l’occurrence au moinsune par point de vue.
Ces interfaces doivent alors être traitées de manière conjonctive, et cette conjonction doit
satisfaire la propriété suivante :

Étant donnés deux points de vue, représentés par deux interfaces, toute implé-
mentation satisfaisant la conjonction de ces interfaces doit satisfaire les deux
points de vue.

4. Une bonne théorie d’interface doit comprendre, en particulier, une opération de combi-
naison reflétant la notion standard d’interaction/composition entre systèmes. D’un point
de vue pratique, l’existence d’un environnement dans lequel deux composants peuvent
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interagir, d’un point de vue compositionnel, doit être décidable. Un autre objectif, cer-
tainement plus ambitieux, est de pouvoir synthétiser un telenvironnement. Pour finir, la
composition doit satisfaire la propriété suivante :

Étant donnés deux composants satisfaisant deux interfaces, la théorie doit
assurer que la composition des deux composants satisfait lacomposition des
interfaces correspondantes.

5. Il doit être possible de vérifier si un système composé de plusieurs composants satisfait
une propriété en raisonnant uniquement sur ses composants et en appliquant le raison-
nement compositionnel.

Le développement de théories d’interface a été le sujet de nombreuses études. Aujourd’hui,
les recherches dans ce domaine se concentrent sur deux modèles : (1) lesautomates
d’interface[54], et (2) lesspécifications modales[100]. Les automates d’interface sont basés
sur des automates à entrées/sorties avec une sémantique de jeu. Ils traitent les systèmes ouverts,
leur raffinement et composition, tout en mettant l’emphase sur la compatibilité d’interfaces. Les
spécifications modales sont aussi expressives que le mu-calcul [64]. En ce sens, elles admettent
une algèbre compositionnelle plus riche, comportant des opérateurs de conjonction, composi-
tion et même résiduation. Ces deux modèles sont aujourd’huibien établis, et implémentés dans
des outils [31, 102, 4, 57].

Dès lors que les systèmes contiennent des algorithmes aléatoires, des protocoles proba-
bilistes ou encore dès lors qu’ils interagissent avec un environnement physique, des modèles
stochastiques sont nécessaires pour les représenter et lesétudier. Ce besoin est d’autant plus
présent que des demandes de tolérance aux fautes, d’analysequantitative pour connaître le
nombre de fautes que les systèmes peuvent supporter, ou encore de mesure des délais pou-
vant apparaître se font de plus en plus importants. Comme le disent Henzinger et Sifakis [77],
l’introduction des probabilités dans les théories de conception de systèmes permet de mesurer
la dépendance de ces systèmes informatiques comme c’est effectué couramment dans d’autres
sciences de l’ingénieur. Cette thèse sera donc consacrée à adapter les théories d’interface aux
systèmes stochastiques.

0.1.2 Contributions et plan de la thèse

Cette thèse présente des contributions originales pour la conception et la vérification de sys-
tèmes mixant des aspects non-déterministes et stochastiques. Nos résultats peuvent être divisés
en trois axes qui sont décrits ici.

Le premier axe d’étude concerne la généralisation des théories d’interface aux systèmes
stochastiques. Dans la même lignée que les systèmes de transition modaux [100], les Chaînes
de Markov à Intervalles (IMCs) généralisent les notions de modalités aux systèmes stochas-
tiques. Les IMCs ont été introduites par Larsen et Jonsson [86] comme un formalisme de
spécification, et donc une base pour une méthode de raffinement par étapes successives avec
laquelle les spécifications initiales sont très abstraiteset sous spécifiées, puis sont rendues de
plus en plus précises jusqu’à être concrètes. Outre le fait qu’elles ont été introduites dans le but
de servir à la spécification, les IMCs ont plutôt été utilisées dans un but d’abstractiondans le
cadre du model-checking, où l’on abstrait les modèles concrets par des modèles moins précis,
sur lesquels les propriétés sont plus faciles à prouver [43,42, 61, 89].
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De manière informelle, les IMCs étendent les Chaînes de Markov en étiquetant les transi-
tions par des intervalles de probabilités autorisées à la place de valeurs concrètes. Les implé-
mentations des IMCs sont des chaînes de Markov dont les distributions de probabilité cor-
respondent aux contraintes introduites par les intervalles. Cette définition de satisfaction/
implémentation est similaire à la notion de simulation pourles automates. Les IMCs représen-
tent un modèle efficace sur lequel le raffinement et la composition peuvent être effectués grâce
à des algorithmes efficaces relevant de l’algèbre linéaire.Malheureusement, comme nous al-
lons le voir, l’expressivité des IMCs n’est pas suffisante pour permettre de traiter à la fois la
composition logique et la composition structurelle.
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Figure 1: IMCsS1 etS2 illustrant la non-clôture par conjonction.

Soient les deux IMCsS1 et S2 données dans la figure 1.1. Elles spécifient différentes
contraintes de probabilité relatives à la tailleH et au poidsW d’une personne lambda. Lorsque
l’on tente d’exprimer la conjonctionS1 ∧ S2 en tant qu’une IMC en effectuant simplement
l’intersection des bornes des intervalles, nous obtenons le résultat suivant :z1 ≤ 1

2
, 1

6
≤ z2 ≤

1
2
,

1
8
≤ z3 et 1

6
≤ z4. Pour autant, cette construction naïve n’est pas assez précise : la distribution

(z1, z2, z3, z4) = (1
2
, 1

6
, 1

8
, 5

24
) satisfait les contraintes, mais la probabilité résultanted’atteindre

un état pour lequelH≥160, i.e. z1+z2 = 2
3
, est en dehors des bornes spécifiées parS1. Il nous

faudrait donc pouvoir exprimer des dépendances entre les probabilitész1, z2, z3 etz4 en dehors
du fait d’être une distribution de probabilité correcte (z1+z2+z3+z4 = 1). La bonne combinaison
conjonctive s’exprime avec les trois contraintes suivantes, qui ne pourraient être exprimées en
utilisant des IMCs :z1 +z2 ≤

1
2
, 1

8
≤ z3 +z4, 1

6
≤ z2 +z4. Un exemple similaire montre que

les IMCs ne sont pas non plus closes pour la composition parallèle. Pourtant, les IMCs sont
largement acceptées par la communauté scientifique en tant que théorie de spécification pour
les systèmes stochastiques [61, 89]. Il est donc intéressant d’étudier leurs propriétés ainsi que
leurs limites.

Le chapitre 2, résumé en section 0.2, présente nos résultatsconcernant les IMCs et leur
possible utilisation en tant que méthodologie de conception compositionnelle. En particulier,
nous proposons une procédure polynomiale pour vérifier qu’une IMC est consistante (C), i.e.
qu’elle admet au moins une implémentation. Nous proposons aussi une procédure exponen-
tielle permettant de vérifier sik IMCs sont consistantes entre elles, i.e. si elles admettentune
chaîne de Markov qui les satisfait toutes — uneimplémentation commune(CI). Nous prouvons
de plus que ce problème (CI) est EXPTIME-complet. Lorsquek est constant, le problème de-
vient polynomial. En particulier les deux problèmes consistant à vérifier si deux spécifications
peuvent être satisfaites par une même implémentation et à synthétiser cette implémentation
peuvent être résolus en temps polynomial. Dans [86], une relation de raffinement exhaustif
(Thorough Refinement - TR) est définie comme l’inclusion des ensembles d’implémentations.
Il est aussi défini une procédure pour vérifier TR. Nous prouvons dans ce chapitre que cette
procédure peut être implémentée en temps simplement exponentiel, et montrons que TR est
EXPTIME-complet. Pour finir, nous définissons des notions dedéterminisme pour les IMCs
et montrons que, pour les IMCs déterministes, le raffinementexhaustif coincide avec deux no-
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tions de raffinement syntactique : le raffinement faible et leraffinement fort. Il existe, pour
ces notions syntactiques, des algorithmes co-inductifs terminant en un nombre polynomial
d’itérations. La théorie des MTS supportant le raffinement,la conjonction et la composition
parallèle, les questions étudiées ici l’avaient déjà été dans le cadre des MTSs. En l’occurrence,
il avait été prouvé que les deux problèmes de CI et TR correspondants étaient eux aussi
EXPTIME-complets [10, 17]. Il est aussi prouvé, dans [86], que le formalisme des IMCs con-
tient celui des MTSs, éclairant nos résultats sous une lumière surprenante : d’un point de vue
complexité théorique, et considérant les problèmes de TR etCI, il semblerait que la généralisa-
tion de MTSs aux IMCs soit gratuite. Malheureusement, commeil a déjà été dit, les IMCs ne
sont pas suffisamment expressives pour permettre de parler de conjonction, composition par-
allèle ou encore de disjonction. Il est donc nécessaire d’enrichir ce modèle pour obtenir une
théorie de spécification qui soit fermée à la fois pour la conjonction et la composition parallèle.

Dans le chapitre 3, résumé en section 0.3, nous présentons unnouveau formalisme pour
la spécification, basé sur une extension des IMCs : les Chaînes de Markov à Contraintes
(CMC). Les CMCs autorisent des contraintes complexes sur les probabilités de transition, con-
traintes potentiellement plus expressives que les intervalles des IMCs. En ce sens, les CMCs
généralisent le formalisme moins expressif des IMCs. Dans ce chapitre, nous prouvons que
de simples contraintes linéaires suffisent à obtenir une clôture par conjonction, et que des con-
traintes polynomiales suffisent à obtenir la clôture par composition parallèle. Le formalisme
des CMCs est la première théorie de spécification pour chaînes de Markov offrant de telles
notions de clôture. Tout comme pour les IMCs, nous définissons des notions de déterminisme,
et prouvons que, sur l’ensemble des CMCs déterministes, le raffinement exhaustif peut être
approché de manière sûre par le raffinement faible et le raffinement fort. Pour finir, nous pro-
posons des réductions de l’ensemble des automates probabilistes à l’ensemble des CMCs. Ces
réductions prouvent que notre nouveau formalisme, les CMCs, est général. Pour autant, nous
prouvons que toutes les opérations et toutes les relations sur les CMCs sont calculables.

Bien que les CMCs relèvent d’un formalisme général, la notion de satisfaction associée est
basée sur le principe de vérification par implémentation [74, 105]. Il est pourtant parfois néces-
saire de décrire des propriétés en utilisant des formules logiques. Pour cela, il faut considérer
une nouvelle notion de satisfaction permettant de prendre en compte ces formules. Par exem-
ple, considérons la notion de disponibilité. Cette notion permet de représenter une mesure du
temps durant lequel un système satisfait une propriété donnée, une mesure importante lorsque
l’on conçoit des systèmes critiques. Dans le but de permettre de spécifier de telles notions,
nous avons développé une autre théorie de spécification offrant une relation de satisfaction plus
expressive.

Dans le chapitre 4, résumé dans la section 0.4, nous présentons notre troisième contribu-
tion : une théorie de spécification qui étend les contrats hypothèse/garantie, introduits dans [21].
Le paradigme d’hypothèse/garantie a été introduit pour la première fois par Abadi et Lamport
dans [3] comme un formalisme de spécification. L’avantage des contrats hypothèse/garantie tels
qu’ils sont présentés dans [21] est qu’ils sont plus généraux que la notion classique d’automates
d’interface. Dans ce chapitre, nous développons une théorie compositionnelle à base de con-
trats pour, d’un côté, des systèmes non-stochastiques, et,d’un autre côté, des systèmes stochas-
tiques. Nous associons à ce formalisme deux notions de satisfactionquantitatives: la fiabilité
et la disponibilité. De plus, nous proposons des définitionsmathématiques pour les notions de
composition, conjonction et raffinement.

Nous établissons par la suite une théorie de vérification compositionnelle pour les opéra-
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tions définies ci-dessus et les deux notions de satisfactionconsidérées. Une telle théorie permet
de raisonner sur le système complet en considérant uniquement les composants individuelle-
ment. Selon le type de contrats considérés, la théorie diffère : par exemple, nous prouvons que
si un systèmeS1 satisfait un contrat probabiliste à un niveauα, et si un systèmeS2 satisfait
un contrat probabilisteC2 à un niveauβ, alors la composition deS1 et S2 satisfait la compo-
sition deC1 et C2 à un niveau d’au moinsα + β − 1. Notre théorie est très générale : les
systèmes et les contrats sont représentés par des ensemblesd’exécutions. Pour finir, nous pro-
posons des représentations symboliques et effectives pourles contrats et les systèmes, basées
sur des automates pour représenter les ensembles, potentiellement infinis, d’exécutions. Si
l’on suppose que les hypothèses et les garanties sont représentées par des automates de Büchi,
permettant de les spécifier en utilisant des logiques comme LTL [108] ou PSL [60], nous obser-
vons que l’on peut vérifier si un système (éventuellement stochastique) satisfait une propriété de
fiabilité en utilisant des techniques classiques, implémentées dans des outils comme SPIN [127]
ou LIQUOR [35]. Nous prouvons que l’on peut vérifier la satisfaction de propriétés de disponi-
bilité en utilisant une extension des résultats présentés dans [53]. Finalement, toutes les opéra-
tions présentées pour les contrats peuvent être facilementappliquées sur leurs représentations.

Les contributions présentées ci-dessus ont pour but la conception de systèmes, et, en partie,
la vérification et la conception incrémentales. Cependant,il arrive que l’on doive vérifier des
sous-systèmes implantés dans une architecture de grande taille. Dans ce cas, la difficulté est
d’effectuer la vérification sans pour autant construire entièrement l’ensemble d’états correspon-
dant à l’architecture totale.

Dans le chapitre 5, résumé en section 0.5, nous avons étudié ce problème au travers d’un
exemple : un cas d’étude industriel appelé HCS (système de communication hétérogène), dé-
ployé pour assurer la communication en cabine dans un avion civil. La topologie de ce système
est présentée dans la figure 2.
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NAC

NAC AudioPlayer + PTPSlaveClock

Camera(F rontDoor)

Camera(Cabin)

SmokeSensor

NAC
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Figure 2: Modèle de l’exemple HCS. Les NACs effectuent l’ordonnancement des différents
messages échangés entre le serveur et les différents dispositifs représentés par les rectangles.

Le HCS est un système hétérogène qui fournit aussi bien les services de divertissement (par
exemple les services d’audio/vidéo à la demande des passagers) que les services critiques de
sécurité (par exemple l’éclairage cabine, les annonces audio, les détecteurs de fumée), mis en
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oeuvre dans des applications distribuées en parallèle, à travers différents dispositifs au sein de
l’avion, et communiquant au travers d’un réseau partagé, basé sur le protocole Ethernet. Le
système HCS doit satisfaire des exigences strictes telles que la fiabilité de la transmission des
données, la tolérance aux fautes ainsi que des contraintes sur la synchronisation des différents
périphériques. Nous avons étudié en détail une de ces propriétés : la précision de synchronisa-
tion des horloges internes entre périphériques.

Une première solution aurait été d’explorer en détail l’espace d’états du système complet et
de vérifier que la propriété est satisfaite pour toute paire de périphériques. Malheureusement,
cette approche n’est pas réalisable à cause de la complexitétrop importante du système global.
La deuxième idée considérée a été d’appliquer les techniques de model-checking statistique.
Encore une fois, la complexité trop importante du système global a fait que l’algorithme im-
plémenté n’avait toujours pas terminé après trois jours d’exécution. Pour donner un ordre de
grandeur de cette complexité, le système global est composéde plus de280 périphériques tra-
vaillant en collaboration et échangeant de l’information.Une fois mise à plat, cette architecture
génère un système comprenant plus de23000 états.

La solution que nous avons proposée est de construire uneabstraction stochastiquede
l’environnement dans lequel les deux composants considérés sont implantés, i.e. une ab-
straction des comportements des autres composants du système et de leurs interactions avec
le serveur et le périphérique choisi. Dans ce but, nous avonspremièrement identifié les interac-
tions entre deux périphériques quelconques et leur environnement, puis nous avons caractérisé
ces interactions en introduisant des distributions de probabilité sur les comportements possi-
bles de l’environnement. Ces distributions, qui remplacent l’environnement, et donc tous les
autres composants du système, sont apprises en effectuant des simulations du système global.
Ce que nous obtenons alors est un système stochastique d’unetaille très inférieure à celle du
système global, sur lequel les techniques comme le model-checking statistique sont applicables
de manière efficace (sur ce système réduit, nos algorithmes terminent en moins d’une minute).
En appliquant cette méthodologie, nous avons pu calculer des bornes sur la synchronisation
et prouver que les exigences originellement demandées par EADS ne pouvaient physiquement
pas être respectées. En plus d’améliorer l’efficacité, l’utilisation du model-checking statistique
nous a aussi permis de vérifier des propriétés qui ne pouvaient être formalisées en utilisant les
logiques temporelles classiques (par exemple, la gigue et la dérive d’horloges).

Dans [14], nous avons appliqué avec succès le concept d’abstraction stochastique dans le
cas de la vérification de propriétés d’un système hétérogènebasé sur l’Avionics Full Duplex
Switched Ethernet (AFDX)[1], une technologie clé pour les systèmes embarqués dans les
A380/A350, des avions de ligne. Les résultats que nous avonsobtenus dans ce cadre sont
plus précis que ceux de [32, 33, 118], obtenus par l’utilisation du model-checking temporel [5]
ou encore du calcul réseau [47]. Nous présenterons un bref aperçu de ces travaux dans la thèse.

0.2 Chaînes de Markov à Intervalles

Comme présenté dans la section précédente, les IMCs ont été introduites pour la première fois
par Larsen et Jonsson dans [86] en tant que formalisme de spécification pour les systèmes
stochastiques, utilisant une sémantique de chaînes de Markov (voir figure 3 pour une illustra-
tion). Pourtant, les IMCs ont été principalement utiliséescomme base pour des techniques de
raffinement par étapes, par exemple pour le model-checking [43, 42, 61, 89].
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Figure 3: Exemples de chaînes de Markov et de chaînes de Markov à intervalles.

En effet, les IMCs sont difficilement utilisables pour fairede la spécification composition-
nelle car elles manquent d’opérations de composition générales. Dans [86], Jonsson et Larsen
ont étudié en détail le raffinement pour ces modèles, mais ontlaissé de côté les aspects compo-
sitionnels et les notions de complexité. Dans le chapitre 2,nos contributions principales sont
les suivantes :

• Nous proposons dans un premier temps de répondre à un problème compositionnel —
celui de l’implémentation commune— en utilisant les IMCs. Le problème de
l’implémentation commune consiste en décider si un ensemble d’IMCs admet une chaîne
de Markov les satisfaisant toutes. Dans un cadre compositionnel, ce problème est aisé-
ment résolu en construisant la conjonction de cet ensemble d’IMCs, puis en vérifiant si
cette conjonction admet une implémentation. Malheureusement, les IMCs n’étant pas
closes par conjonction, il est impossible d’appliquer cette méthode ici. Nous proposons
donc une autre solution à ce problème, permettant de déciderl’existence d’une implé-
mentation commune, et, le cas échéant, d’en construire une.Nous prouvons que cette
procédure est exponentielle et que le problème général (avec un ensemble d’IMCs de
taille non bornée) est EXPTIME-complet.

• Dans le cas particulier d’un ensemble d’IMCs de taille bornée, nous montrons que le
problème de l’implémentation commune est polynomial. Notamment, nous montrons
que dans le cas de deux IMCs, il est possible de décider si elles admettent une implémen-
tation commune, et, le cas échéant, d’en construire une, en un temps polynomial.

• Nous proposons aussi une procédure polynomiale permettantde décider si une IMC est
consistante, i.e. si elle admet au moins une chaîne de Markovla satisfaisant.

• Par la suite, nous établissons que la procédure permettant de vérifier le raffinement ex-
haustif, présentée dans [86], peut être implémentée en temps simplement exponentiel,
et prouvons de même que le problème général du raffinement exhaustif est EXPTIME-
complet.

• Pour finir, nous définissons une notion de déterminisme pour les IMCs, et prouvons
que, sur l’ensemble des IMCs déterministes, la notion sémantique de raffinement ex-
haustif coïncide avec les notions syntactiques de raffinement faible et raffinement fort,
pour lesquelles il existe des algorithmes co-inductifs terminant en un nombre polynomial
d’itérations.
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Nos résultats sont d’un intérêt particulier, les IMCs et lesnotions de raffinement présentées
ici étant couramment utilisées dans les travaux récents [86, 89, 61]. De plus, les bornes de com-
plexité que nous proposons permettent de répondre à des problèmes restés 20 ans sans solution.
Ces résultats sont robustes quant au formalisme utilisé pour représenter les IMCs. Par exem-
ple, nous considérons que les états des IMCs sont étiquetés par un ensemble de propositions
atomiques, mais nos résultats s’étendent aisément à des ensembles d’ensembles de propositions
atomiques. De la même manière, si nos IMCs ont un unique état initial, les résultats sont aisé-
ment transférés au cas des IMCs avec une distribution de probabilité sur un ensemble d’états
initiaux.

Finalement, bien que nous proposions une solution à un problème compositionnel,
l’implémentation commune, il reste vrai que les IMCs ne permettent pas de répondre à de nom-
breux autres problèmes de la sorte. Nous proposons donc d’étendre les IMCs en un nouveau
formalisme dont le but sera d’être pleinement compositionnel. Ce sera le sujet de la prochaine
section.

0.3 Chaînes de Markov à Contraintes

Dans le chapitre 3, nous proposons une nouvelle approche pour le développement d’une théorie
compositionnelle de spécification de systèmes stochastiques. Leschaînes de Markov à con-
traintes(CMCs) sont un tel formalisme, pouvant être utilisé pour faire de la conception à base
de composants pour des systèmes stochastiques. Les CMCs sont une extension des IMCs
permettant de spécifier des contraintes riches sur les probabilités de transitions plutôt que de
simples intervalles. Nous montrons que des contraintes linéaires suffisent pour obtenir une clô-
ture par conjonction, et que des contraintes polynomiales permettent d’obtenir la clôture par
composition parallèle. Nous définissons des notions de raffinement, de consistance, de compo-
sition structurelle et de composition logique sur les CMCs,tous les ingrédients essentiels pour
obtenir une théorie de conception compositionnelle. Des exemples de chaînes de Markov et de
CMCs sont présentés dans la figure 4. Les notions de satisfaction, de raffinement faible et de
raffinement fort sont des extensions conservatrices des notions similaires sur les IMCs. En plus
de la définition de ce nouveau formalisme, nos contributionssont les suivantes :

• Nous caractérisons les différentes relations de raffinements faible et fort en terme
d’inclusion d’ensembles d’implémentations. En particulier, nous définissons une notion
de déterminisme et prouvons que, sur l’ensemble des CMCs déterministes, ces relations
coïncident avec l’inclusion des ensembles d’implémentations, aussi appelé le raffinement
exhaustif ou sémantique. Enfin, nous proposons un algorithme permettant, à partir d’une
CMC quelconqueS, de générer une CMC déterministe contenantS.

• Nous proposons une notion de composition pour les CMCs, basée sur le principe de sé-
paration des préoccupations. Selon ce principe, la composition parallèle des distributions
de probabilité est effectuée séparément de la composition des ensembles de propositions
atomiques. Cette séparation est présente dans tous les formalismes dont les automates
probabilistes sont le modèle sémantique [121, 72, 87, 79]. Nous prouvons d’ailleurs que
les automates probabilistes peuvent être représentés par des CMCs, et montrons comment
la notion traditionnelle de composition parallèle sur ce modèle peut se traduire dans notre
formalisme, en obtenant sans effort toutes les propriétés de précongruence.
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Figure 4: Deux spécifications (CMCs) et deux implémentations (MC) d’un relais optique.

• Nous proposons une opération de conjonction et la comparonsà l’opération de compo-
sition parallèle en terme d’expressivité. Nous prouvons que, lorsque l’on considère des
ensembles de propositions atomiques indépendants, la composition parallèle est toujours
un raffinement de la conjonction (le contraire étant faux). Cela permet de déduire un
ensemble de CMCs à contraintes linéaires clos pour la conjonction ET la composition.

• Nous proposons une étude de la complexité des différentes relations et opérations pour
l’ensemble des CMCs à contraintes polynomiales, une classede CMCs close pour la
conjonction et la composition parallèle en général.

• Finalement, nous montrons que les CMCs ne sont généralementpas closes par disjonc-
tion et étudions le problème de la décision de l’universalité d’une CMC.

Les CMCs représentent donc le premier formalisme compositionnel pour la spécification
de systèmes stochastiques.

0.4 Contrats (Probabilistes)

Dans [21], Benveniste et ses coauteurs ont proposé une théorie de conception basée sur les
contrats hypothèse/garantie. Un tel contrat est une structure qui, contrairement aux automates
d’interface [54, 52] et aux systèmes de transition modaux [100], autorise de séparer explicite-
ment les hypothèse faites sur un composant (les garanties) des hypothèses faites sur son envi-
ronnement (les hypothèses). Cette séparation explicite permet de définir une relationde satis-
faction plus élaborée que celles définies dans le cadre des automates d’interface ou modaux. De
plus, les auteurs de [21] utilisent pour représenter les hypothèses et les garanties une représenta-
tion permettant de s’abstraire de leur structure. De par ce fait, cette théorie permet de représen-
ter des propriétés plus élaborées que les modèles graphiques classiques.
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Dans le chapitre 4, nous développons une théorie de conception compositionnelle à base de
contrats pour deux catégories de systèmes : nous présentonsdans un premier temps une telle
théorie pour des systèmes non-déterministes et non-stochastiques, puis nous étendons cette
théorie à des systèmes non-déterministes et stochastiques. Comme dans le cadre de la véri-
fication classique non-modulaire [37, 129], la relation de satisfaction que nous présentons est
Booléenne pour les systèmes non-stochastiques et quantitative dans le cas contraire, ce qui
nous pousse à développer deux notions de contrats. De plus, nous considérons deux notions de
satisfaction différentes : lafiabilité et ladisponibilité. La disponibilité représente une mesure
du temps durant lequel un système satisfait une propriété donnée, pour toutes les exécutions
possibles du système. La fiabilité, elle, exprime une mesurede l’ensemble des exécutions du
système satisfaisant une propriété donnée. Ces deux quantités sont importantes pour la concep-
tion de systèmes critiques, par exemple. Les notions de satisfaction que nous introduisons sont
dites dépendantes des hypothèses. En effet, nous considérons que les exécutions qui ne satisfont
pas les hypothèses sont “correctes”. Cette interprétation, suggérée par nos partenaires indus-
triels, est nécessaire si l’on veut obtenir une théorie compositionnelle incluant, notamment,
l’opérateur de conjonction. Dans ce chapitre, nos principales contributions sont les suivantes :

• Nous proposons des définitions mathématiques pour la composition parallèle, la con-
jonction et le raffinement, les trois opérations essentielles permettant de traduire la plu-
part des demandes des industriels (Notamment nos partenaires des projets Européens
COMBEST [45] et SPEEDS [126]). La composition entre contrats, qui ressemble à la
composition classique entre systèmes, consiste, informellement, à construire
l’intersection des garanties et l’intersection des hypothèses. La conjonction, en revanche,
construit un contrat dont les hypothèses sont l’union des hypothèses initiales, et les
garanties les intersections des garanties initiales. Nousdirons qu’un contratC1 raf-
fine un contratC2 si les garanties deC1 contiennent celles deC2 et si les hypothèses
deC2 contiennent celles deC1. Cette définition booléenne n’est valable que pour les
contrats non-probabilistes. Une définition quantitative sera proposée pour les contrats
probabilistes.

• Nous établissons des propriétés de raisonnement compositionnel pour cette théorie, re-
liant les opérations présentées ci-dessus et les deux notions de satisfactions considérées.
Ces propriétés permettent de raisonner sur un système composé en ne s’intéressant à
ses composants qu’individuellement. Les résultats obtenus dépendent évidemment du
type de contrat et du type de notion de satisfaction considérés. Par exemple, nous mon-
trerons, dans le cadre des contrats non-probabilistes et pour la notion de fiabilité, que si
un systèmeS1 satisfait un contratC1 et qu’un systèmeS2 satisfait un contratC2, alors la
compositionS1 ∩ S2 des systèmes satisfait la compositionC1 ‖ C2 des contrats. Dans
le cadre des contrats probabilistes et toujours avec la notion de fiabilité, nous montrerons
que si un systèmeS1 satisfait un contratC1 avec un niveauα, et qu’un systèmeS2 satis-
fait un contratC2 avec un niveauβ, alors la composition des systèmesS1 ∩ S2 satisfait
la composition des contratsC1 ‖ C2 avec un niveauα + β − 1. Un exemple est donné
dans la figure 5.

• Nous proposons des représentations symboliques et effectives pour les contrats et les
systèmes. Ces représentations sont basées sur des automates permettant de représen-
ter des ensembles d’exécutions potentiellement infinis. Représenter les hypothèses et les
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Figure 5: Un exemple de contrats et de propriété de fiabilité.Pour chaque contrat, la
lettreV représente l’ensemble des variables, la lettreA représente les hypothèses et la
lettreG représente les garanties.

garanties avec des automates de Büchi, permettant de spécifier des propriétés exprimables
dans des logiques comme LTL [108] ou PSL [60], permettrait devérifier si un système
satisfait une propriété de fiabilité en utilisant des techniques classiques, déjà implémen-
tées dans des outils tels que SPIN [127] ou encore LIQUOR [35]. Nous montrerons de
plus que la satisfaction de propriétés de disponibilité peut s’effectuer en étendant les
travaux présentés dans [53]. Pour finir, nous prouverons quetoutes les opérations définies
pour les contrats peuvent être aisément effectuées sur leurreprésentations symboliques.

0.5 Abstraction Stochastique et Model-Checking d’un Sys-
tème Hétérogène de grande taille

Dans les chapitres précédents, nous nous sommes focalisés sur la conception de systèmes
et la vérification incrémentale. Dans le chapitre 5, nous nous intéressons à la vérification
d’applications évoluant à l’intérieur d’un système hétérogène. Les systèmes intégrant de mul-
tiples applications distribuées, communiquant au traversd’un réseau commun, sont rencontrés

xiv



fréquemment dans de nombreux domaines sensibles tels que l’avionique ou l’automobile. En
général, la vérification d’applications particulières dans un tel cadre est une tâche ardue et sou-
vent hors de portée des techniques de vérification exhaustive classiques. La principale difficulté
de cette vérification provient des communications réseau qui permettent à toutes les applica-
tions d’interagir entre elles, et impliquent donc une exploration exhaustive de l’espace d’états
du système complet.

Dans ce chapitre, nous proposons une solution à base de simulations, appelée model-
checking statistique [78, 122, 136]. Contrairement aux méthodes classiques de vérification ou
de tests exhaustifs, les méthodes à base de simulation ne donnent pas de résultat exact. Étant
basées sur un nombrefini de simulations, elles permettent d’évaluer une notion quantitative
de satisfaction d’une propriété donnée, tout en donnant desbornes sur la précision et sur la
confiance que l’on peut avoir en le résultat. Malheureusement, la taille du système que nous
considérons est telle que même ces méthodes basées sur un nombre fini de simulations ne sont
pas applicables. Il est en effet impossible, en un temps raisonnable, de générer suffisamment
de simulations pour donner des estimations avec une précision suffisante.

Nous proposons donc d’exploiter les connaissances de la structure du système complet pour
augmenter l’efficacité de sa vérification. L’idée est simple: plutôt que d’effectuer la vérification
sur le système complet, nous proposons d’analyser séparément chaque application dans un
environnement, appeléabstraction stochastiquedu système, qui représente les interactions avec
les autres parties du système. Cet environnement est généréen effectuant un nombre réduit de
simulations du système complet, sur lesquelles nous mesurons les caractéristiques ayant un
effet sur le comportement de l’application considérée dansle but de les remplacer par une
distribution de probabilité.

Dans ce chapitre, nous appliquons cette méthode pour analyser le système de communi-
cation hétérogène(HCS) déployé pour assurer la communication réseau dans la cabine d’un
avion de ligne. Une des propriétés critiques, que nous allons étudier dans ce chapitre, concerne
la précision de la synchronisation des horloges des différents composants. Cette propriété,
présente dans le cahier des charges du HCS, stipule que la différence entre les horloges locales
de toute paire de périphériques doit être inférieure à une borne fixée. Il semble donc impor-
tant de pouvoir générer la plus petite borne pour laquelle lapropriété de synchronisation est
satisfaite. Vu la complexité du système, il est clairement impossible d’obtenir manuellement
une telle borne. Nous proposons donc de construire un modèleformel du HCS, puis de lui ap-
pliquer des algorithmes basés sur des simulations pour calculer cette borne. La méthode est la
suivante : nous fixons une borne puis vérifions si la synchronisation est satisfaite. Selon le résul-
tat, nous diminuons ou augmentons la borne jusqu’à trouver la plus petite borne pour laquelle
la synchronisation est satisfaite. Pour que notre approchesoit fonctionnelle, nous devons nous
baser sur un outil qui soit capable de modéliser les systèmeshétérogènes ainsi que de simuler
leurs exécutions et les interactions entre composants. Nous avons choisi d’utiliser BIP [15]
(Behaviour-Interaction-Priority), un outil permettant de construire des systèmes à partir de
composants atomiques communiquant au travers d’interactions. BIP offre aussi la possibilité
de simuler les systèmes et permet, combiné avec des algorithmes de model-checking statistique,
de vérifier des propriétés complexes. Les contributions du chapitre sont les suivantes :

• Le développement, à l’aide de BIP, d’un modèle complet du HCSsur lequel nous pour-
rons étudier les exigences d’EADS quant à ce système. Ce modèle est d’une taille impor-
tante : il comprend environ300 composants atomiques et245 horloges, ce qui correspond
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Figure 6: Abstraction stochastique du protocole PTP entre le serveur et un composant.

à2468 lignes de code en BIP, soit9018 lignes de code C générées automatiquement. Une
fois linéarisé, ce système comporte environ23000 états.

• L’application de la méthode d’abstraction stochastique présentée ci-dessus au modèle
BIP du HCS dans le but d’étudier avec précision la synchronisation des horloges des
différents composants. Pour ce faire, nous avons simulé le modèle global et déduit, à
partir de ces simulations, des distributions de probabilité représentant les délais associés
à la transmission des messages du protocole de synchronisation,Precision Time Protocol
(PTP) [2]. Ces distributions de probabilité permettent d’étudier en détail l’exécution de
PTP entre le serveur central et les différents composants, un à un. Le principe est illustré
dans la figure 6.

• La mesure, à partir du modèle réduit, de bornes précises quant à la synchronisation des
horloges, pour chaque composant du système. Nous avons de plus mesuré, pour dif-
férentes bornes, la probabilité avec laquelle la synchronisation est assurée. Les exigences
d’EADS quant à la synchronisation n’étant pas satisfaites,ces informations quantitatives
ont été appréciées. Dans ce sens, nous avons proposé d’autres informations quantita-
tives : le nombre moyen, par exécution, d’erreurs de synchronisation. Finalement, nous
avons étudié l’influence de la dérive d’horloges sur la synchronisation.

xvi



Chapter 1

Introduction

Context

Several industrial sectors involving complex embedded systems have recently experienced deep
changes in their organization, aerospace and automotive being the most prominent examples.
In the past, they were organized around vertically integrated companies, supporting in-house
design activities from specification to implementation.

Nowadays, systems are tremendously big and complex, and it is almost impossible for one
single team to have the complete control of the entire chain of design from the specification
to the implementation. In fact, complex systems now result from the assembling of several
components. These many components are in general designed by teams, workingindependently
but with a common agreement on what the interface of each component should be. Such an
interface precises the behaviors expected from the component as well as the environment in
where it can be used. The main advantage is that it does not impose any constraint on the way
the component is implemented:

Several components can be implemented by different teams ofengineers providing
that those teams respect the interfaces on which all of them agree.

According to state of practice, interfaces are typically described using Word/Excel text
documents or modeling languages such as UML/XML. We insteadrecommend relying most
possibly on mathematically sound formalisms, thus best reducing ambiguities. Mathematical
foundations that allow to reason at the abstract level of interfaces, in order to infer properties
of the global implementation, and to design or to advisedly (re)use components is a very active
research area, known ascompositional reasoning[77]. Aiming at practical applicationsin fine,
the software engineering point of view naturally leads to the following requirements for a good
theory of interfaces.

Remark 1.1. In the rest of the thesis, we will use the following equivalences (depending on the
context): specification = interface; implementation = component.

1. It should be decidable whether an interface admits an implementation (a model). This
means that one should be able to decide whether the requirements stated by the interface
can be implemented. One should also be capable of synthesizing an implementation for
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such an interface. In our theory, an implementation shall not be viewed as a program-
ming language but rather as a mathematical object that represents a set of programming
languages sharing common properties. The ability to decidewhether a given component
implements a given interface is of clear importance, and this must be performed with
efficient algorithms.

If one assumes that the specification is a mathematical representation of a
property that should be satisfied, then satisfaction coincides with the so-called
implementation verification principle.

2. It is important to be able to replace a component by anotherone without modifying the
behaviors of the whole design. At the level of interfaces, this corresponds to the con-
cept ofRefinement. Refinement allows replacing, in any context, an interface by a more
detailed version of it. Refinement should entail substituability of interface implementa-
tions, meaning that every implementation satisfying a refinement also satisfies the larger
interface. For the sake of controlling design complexity, it is desirable to be able to de-
cide whether there exists an interface that refines two different interfaces. This is called
shared refinement. In many situations, we are looking for thegreatest lower bound, i.e.,
the shared refinement that could be refined by any other sharedrefinement.

3. Large systems are concurrently developed for their different aspectsor viewpointsby
different teams using different frameworks and tools. Examples of such aspects include
the functional aspect and the safety aspect. Each of these aspects requires specific frame-
works and tools for their analysis and design. Yet, they are not totally independent but
rather interact. The issue of dealing with multiple aspectsor multiple viewpoints is thus
essential. This implies that several interfaces are associated with a given component,
namely (at least) one per viewpoint. These interfaces are tobe interpreted in a conjunc-
tive way. This conjunction operation should satisfy the following property:

Given two view-points represented by two interfaces, any implementation that
satisfies the conjunction must satisfy the two view-points.

4. The interface theory should also provide a combination operation, which reflects the
standard interaction/composition between systems. In practice, one should be capable
of deciding whether there exists at least one environment inwhere two components can
work together, i.e., in where the composition makes sense. Another, but more difficult,
objective is to synthesize such an environment. Finally, the composition operation should
satisfy the following property:

Given two components satisfying two interfaces, the theorymust ensure that
the composition of the two components satisfies the composition of their cor-
responding interfaces.

5. A verification procedure. One should be capable of verifying whether a system composed
of several components satisfies a property, simply by inspecting the various components
and exploiting the compositional reasoning methodology.
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Building good interface theories has been the subject of intensive studies. Nowadays, re-
searchers concentrate on two models: (1)interface automata[54] and (2)modal specifica-
tions[100]. Interface automata is a game-based variation of input/output automata which deals
with open systems, their refinement and composition, and puts the emphasis on interface com-
patibility. Modal specifications is a language theoretic account of a fragment of the modal
mu-calculus logic [64] which admits a richer composition algebra with product, conjunction
and even residuation operators. Both models are now well established and implemented in
tools [31, 102, 4, 57].

As soon as systems include randomized algorithms, probabilistic protocols, or interact with
physical environment, probabilistic models are required to reason about them. This is exac-
erbated by requirements for fault tolerance, when systems need to be analyzed quantitatively
for the amount of failure they can tolerate, or for the delaysthat may appear. As Henzinger
and Sifakis [77] point out, introducing probabilities intodesign theories allows assessing de-
pendability of IT systems in the same manner as commonly practiced in other engineering
disciplines. Lifting interface theory to stochastic systems will be the core subject of this thesis.

Contributions

This thesis presents new contributions in designing and verifying systems mixing both non-
deterministic and stochastic aspects. Our results can be divided into three main contributions
that are described hereafter.

We start our study by trying to generalize interface theories to the stochastic setting. Gen-
eralizing the notion of Modal Transition Systems [100] to the non-functional analysis of prob-
abilistic systems, the formalism of Interval Markov Chains(IMCs) was introduced by Larsen
and Jonsson [86] as aspecificationformalism, so a basis for a stepwise-refinement like model-
ing method, where initial designs are very abstract and underspecified, and then they are made
continuously more precise, until they are concrete. Despite them being introduced with specifi-
cation in mind, IMCs have not been used for this purpose intensively. Instead more commonly
they served a dual purpose ofabstractionin model checking, where a concrete system is being
abstracted by a less precise system in order to prove the properties more easily [43, 42, 61, 89].
Informally, IMCs extend Markov Chains by labeling transitions withintervalsof allowed prob-
abilities rather than concrete probability values. Implementations of IMCs are Markov Chains
(MCs) whose probabilistic distributions match the constraints induced by the intervals. This
definition of satisfaction is similar to the notion of simulation for automata. IMCs is known
to be an efficient model on which refinement and composition can be performed with efficient
algorithms from linear algebra. Unfortunately, as we shallnow see, the expressive power of
IMCs is inadequate to support both logical and structural composition.
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Figure 1.1: IMCs showing non-closure under conjunction

Consider two IMCs,S1 andS2, in Figure 1.1 specifying different probability constraints
related to the heightH and weightW of a given person. Attempting to express the logical
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composition, also called conjunction,S1 ∧ S2 as an IMC by a simple intersection of bounds
givesz1 ≤ 1

2
, 1

6
≤ z2 ≤

1
2
, 1

8
≤ z3 and 1

6
≤ z4. However, this naive construction is too coarse:

whereas(z1, z2, z3, z4) = (1
2
, 1

6
, 1

8
, 5

24
) satisfies the constraints the resulting overall probability

of reaching a state satisfyingH≥160, i.e. z1+z2 = 2
3
, violates the upper bound1

2
specified in

S1. What is needed is the ability to express dependencies between the probabilitiesz1, z2, z3, z4
besides that of being a probability distribution (z1+z2+z3+z4 = 1). The correct conjunctive
combination is expressed by three following constraints, exceeding the expressive power of
IMCs: z1+z2≤ 1

2
, 1

8
≤z3+z4, 1

6
≤z2+z4. A similar example shows that IMCs are also not closed

under parallel composition. Despite this fact, IMCs are widely accepted as a specification
theory for stochastic systems [61, 89]. It is thus of interest to further study their properties and
limits.

In Chapter 2, we aim at advancing our knowledge of IMCs and their use in a compositional
design methodology. In particular, we propose a polynomialprocedure for checking whether
an IMC isconsistent(C), i.e. it admits an implementation as a Markov Chain. We also con-
tribute an exponential procedure for checking whetherk IMCs are consistent in the sense that
they share a Markov Chain satisfying all—acommon implementation(CI). We show that this
problem is EXPTIME-complete in general. As a special case weobserve that CI is polynomial
for any constant value ofk. In particular checking whether two specifications can be simultane-
ously satisfied, and synthesizing their shared implementation can be done in polynomial time.
In [86] a thorough refinement(TR) between IMCs is defined as an inclusion of implementation
sets, and a procedure is given that establishes TR. Here we show that this procedure can be
implemented in single exponential time, and having discussed the lower bound, show that TR
is EXPTIME-complete. Finally, we define suitable notions ofdeterminism for IMCs, and show
that for deterministic IMCs thorough refinement coincides with two simulation-like preorders
(the weak refinementandstrong refinement). For these there exist natural co-inductive algo-
rithms terminating in a polynomial number of iterations. The theory of MTS already supported
refinement, conjunction and parallel composition. Within recent years, the same questions have
been studied for MTSs, obtaining EXPTIME-completeness both for the corresponding notion
of CI [10] and of TR [17]. In [86] it is shown that IMCs properlycontain MTSs, which puts
our new results in a somewhat surprising light: in the complexity theoretic sense, and as far as
CI and TR are considered, the generalization from MTSs to IMCs does come for free. Unfor-
tunately, as we already stated, IMCs are not expressive enough to capture many requirements
of the compositional design methodology. This includes conjunction, parallel composition and
disjunction. As a consequence, it is necessary to enrich themodel of IMCs in order to obtain a
specification theory that will be closed under both conjunction and parallel composition.

In chapter 3, we propose a new specification formalism, basedon an extension of IMCs.
Constraint Markov Chains permit rich constraints on probability distributions and thus gen-
eralize prior abstractions such as IMCs. We show that linearconstraints suffice for closure
under conjunction, while polynomial constraints suffice for closure under parallel composition.
This is the first specification theory for MCs with such closure properties. Like for IMCs, we
define suitable notions of determinism and show that, for deterministic CMCs, thorough re-
finement also coincides with the weak and strong refinements.Finally, we provide reductions
from probabilistic automata to CMCs, showing that our formalism is fully general. Despite this
generality, all operators and relations are computable.

Although CMCs are very general, their notion of satisfaction is based on the implementation
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verification principle [74, 105]. However, it is sometimes necessary to describe properties
by logical formulas. This requires a new definition of satisfaction relation. As an example
consider availability, that represents a measure of the time during which a system satisfies a
given property. This notion may play an important role when designing critical systems, but
cannot be expressed using CMCs. This motivates the development of another specification
theory with a richer satisfaction relation.

Our third contribution, presented in Chapter 4, extends thenotion of assume-guarantee con-
tracts introduced in [21]. The assume-guarantee paradigm was first proposed by Abadi and
Lamport in [3] as a specification formalism. The advantage ofassume-guarantee contracts, as
presented in [21], is that they are more general than the classical notion of interface automata.
In Chapter 4, we develop a contract-based compositional theory for both non-stochastic and
stochastic systems. In this formalism, we propose two quantitative notions of satisfaction,
namely reliability and availability. Moreover, we proposemathematical definitions for compo-
sition, conjunction and refinement. We then establish acompositional reasoning verification
theory for those operations and the two notions of satisfiability we consider. This methodology
allows to reason on the entire design by only looking at individual components. The theory
differs with the type of contracts under consideration. As an example, we will show that if a
systemS1 satisfies a probabilistic contractC1 with probabilityα and a systemS2 satisfies a
probabilistic contractC2 with probabilityβ, then their composition satisfies the composition of
C1 andC2 with probability at leastα + β − 1. The theory is fully general as it assumes that
both systems and contracts are represented by sets of runs. Finally, we propose effective and
symbolic representations for contracts and systems. Thoserepresentations rely on an automata-
based representation of possibly infinite sets of runs. Assuming that assumptions and guaran-
tees are represented with Büchi automata (which allows to specify assumptions and guarantees
with logics such as LTL [108] or PSL [60]), we observe that checking if a (stochastic) system
satisfies a reliability property can be done with classical techniques implemented in tools such
as SPIN [127] or LIQUOR [35]. We show that satisfaction of availability properties can be
checked with an extension of the work presented in [53]. Finally, we also show that operations
between and on contracts can easily be performed on the automata-based representations.

The above contributions focus on system design and, partially, on incremental design and veri-
fication. It is however sometimes required to verify subsystems within a huge architecture. The
difficulty is to conduct this verification without considering the full state-space.

In Chapter 5, we begin the study of this problem through an experiment. We consider an in-
dustrial case study that is theheterogeneous communication system(HCS for short) deployed
for cabin communication in a civil airplane. See Figure 1.2 for a topological view of the cor-
responding system architecture. HCS is an heterogeneous system providing entertainment ser-
vices (ex: audio/video on passengers demand) as well as administrative safety critical services
(ex: cabin illumination, control, audio announcements), which are implemented as distributed
applications running in parallel, across various devices within the plane and communicating
through a common Ethernet-based network, see Figure 1.2 foran illustration. The HCS system
has to guarantee stringent requirements, such as reliable data transmission, fault tolerance, tim-
ing and synchronization constraints. An important requirement that we address is theaccuracy
of clock synchronizationbetween any two devices.
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Figure 1.2: HCS example model. NACs perform scheduling of the different messages ex-
changed by the server and the devices shown as the many boxes on the diagram.

A first solution would have been to explore the entire state-space of the overall system and
verify the property on each pair of devices (as an example, between Server and Device(0, 3)
given in Figure 1.2). Unfortunately, this approach is intractable due to the high complexity of
the design. Our second idea was to apply statistical model checking. Unfortunately, due to the
complexity of the design, computing simulation was too timeconsuming and the algorithm did
not terminate in a reasonable time. To give the reader an intuitive idea about this complexity, we
mention that the system is constituted of more than280 components working in collaboration
and exchanging information. This complex architecture gives rise to a flat system with more
than23000 states.

The solution we promoted was to build astochastic abstractionof the environment where
the two components are working, i.e., an abstraction of the behaviors of the other components
and their interactions with the master and the chosen device. For doing so, we first identified
the interactions between the two devices and their environment. We then characterized these
interactions by introducing probability distributions onthe behaviors of the components. Those
distributions, which replace the environment (and hence the other components) were learnt
by conducting simulations on the entire system. The result we obtain is a smaller stochastic
system on which techniques such as statistical model checking can be applied in an efficient
manner (there the algorithm terminates in less than a minute). By applying this methodology,
we have been capable of deriving bounds on the synchronization and showing that the original
requirements made by EADS were simply falsified by their design. In addition to improving
the efficiency, the use of statistical model checking also made it possible to verify properties
that could not be formalized with classical temporal logics(example: clock drift and jitter).

In [14], we have successfully applied the stochastic abstraction concept to verify proper-
ties of anAvionics Full Duplex Switched Ethernet (AFDX)[1] heterogeneous system, a key
technology in the computer system of A380/A350 aircrafts. The results we obtained are more
accurate than those of [32, 33, 118], which were obtained by using timed model checking [5]
or network calculus [47]. We will give a brief overview of this work in the thesis.
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Chapter 2

Interval Markov Chains

2.1 Introduction

Interval Markov Chains (IMCs for short) were first introduced by Larsen and Jonsson in [86]
as a specification formalism for probabilistic systems. However, they have mainly been used
as a basis for stepwise-refinement, for example in model-checking [43, 42, 61, 89].

Indeed, IMCs are difficult to use for compositional specification due to lack of basic mod-
eling operators. In [86] Jonsson and Larsen have investigated refinement of such processes in
detail, but have left out the compositional aspects unexplored as well as the complexity aspects.

Consider the issue of combining multiple specifications of the same system. As we already
observed, it turns out that conjunction of IMCs cannot be expressed as an IMC itself. This is
caused by relative lack of expressiveness of intervals. Forinstance, consider a simple specifica-
tion of a user of coffee machine. Let the model prescribe thata typical user orders coffee with
milk with probability x ∈ [0, 0.5] and black coffee with probabilityy ∈ [0.2, 0.7] (customers
also buy tea with probabilityt ∈ [0, 0.5]). Now the vendor of the machine delivers another
specification, which prescribes that the machine is serviceable only if coffee (white or black)
is ordered with some probabilityz ∈ [0.4, 0.8] from among other beverages, otherwise it will
run out of coffee powder too frequently, or the powder becomes too old. A conjunction of
these two models would describe users who have use patterns compatible with this particular
machine. Such a conjunction effectively requires that all the interval constraints are satisfied
and thatz = x+y holds. However the solution of this constraint is not described by an interval
overx andy. This can be seen by pointing out an extrememal point, which is not a solution,
while all its coordinates take part in some solution. Sayx = 0 andy = 0.2 violates the interval
for z, while for each of these two values it is possible to select another one in such a way that
z’s constraint is also held (for example(x = 0, y = 0.4) and(x = 0.2, y = 0.2)). Thus the
solution space is not an interval overx andy. It is worth mentioning that IMCs are also not
closed under parallel composition, but this problem will beadressed in the next chapter.

This lack of closure properties for IMCs motivates us to address the problem of reasoning
about conjunction, without constructing it — the so-calledcommon implementation problem:
Given a set of IMCsS, does there exist a Markov Chain satisfying all the IMCs inS ? In
other words, is the conjunction of all the IMCs inS satisfiable ? In this chapter we aim at
advancing our understanding of algorithms and complexities for consistency, common imple-
mentation, and refinement of IMCs, in order to enable compositional modeling. In particular,
we contribute:

7



• A polynomial procedure for checking whether an IMC isconsistent(C), i.e. it admits an
implementation as a Markov Chain.

• An exponential procedure for checking whetherk IMCs are consistent in the sense that
they share a Markov Chain satisfying all—acommon implementation(CI). We show that
this problem is EXPTIME-complete.

• As a special case we observe that CI is polynomial for any constant value ofk. In particu-
lar checking whether two specifications can be simultaneously satisfied, and synthesizing
their shared implementation can be done in polynomial time.

• In [86] athorough refinement(TR) between IMCs is defined as an inclusion of implemen-
tation sets, and a procedure is given that establishes TR. Here we show that this procedure
can be implemented in single exponential time, and having discussed the lower bound,
show that TR is EXPTIME-complete.

• We define suitable notions of determinism for IMCs, and show that for deterministic
IMCs thorough refinement coincides with two simulation-like preorders (theweak re-
finementandstrong refinement). For these there exist natural co-inductive algorithms
terminating in a polynomial number of iterations.

The theory of Modal Transition Systems (MTS), was introduced by Larsen in [100] as a
specification formalism for discrete-time non-probabilistic systems. It supports refinement,
conjunction and parallel composition. Within recent years, the same questions have been stud-
ied for MTSs, obtaining EXPTIME-completeness both for the corresponding notion of CI [10]
and of TR [17]. In [86] it is shown that IMCs properly contain MTSs, which puts our new
results in a somewhat surprising light: in the complexity theoretic sense, and as far as CI and
TR are considered, the generalization from MTSs to IMCs doescome for free.

The chapter proceeds as follows. In Section 2.2 we introducethe basic known definitions.
In Section 2.3 we discuss deciding TR and other refinement procedures, expanding on the
ramifications of determinism on refinements in Section 2.4. The problems of C and CI are
addressed in Section 2.5. We close with discussing the results and a conclusion (Section 2.6).

2.2 Background

In this section, we introduce the basic definitions used throughout the chapter. In the following
we will write Intervals[0,1] for the set of all closed, half-open and open intervals included in
[0, 1].

We begin with settling notation for Markov Chains. A Markov Chain (sometimes MC
in short) is a tupleC = 〈P, po, π, A, VC〉, whereP is a set of states containing the initial
statep0, A is a set of atomic propositions,VC : P → 2A is a state valuation labeling states
with propositions, andπ : P → Distr(P ) is a probability distribution assignment such that∑

p′∈P π(p)(p′) = 1 for all p ∈ P . If the states ofP are ordered, i.e.P = {p1, . . . , pn}, then
π can be seen as a matrix in[0, 1]n×n such that the cellπkl represents the probability of going
from statepk to statepl. The probability distribution assignment is the only component that is
relaxed in IMCs:
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Figure 2.1: Examples of Markov Chains and Interval Markov Chains.

Definition 2.1 (Interval Markov Chain). An Interval Markov Chainis a tupleI = 〈Q, qo, ϕ, A,
VI〉, whereQ is a finite set of states containing the initial stateqo, A is a set of atomic propo-
sitions,VI : Q → 2A is a state valuation, andϕ :Q → (Q → Intervals[0,1]), which for each
q ∈ Q andq′ ∈ Q gives an interval of probabilities.

Instead of a distribution, as in MCs, in IMCs we have a function mapping elementary
events (target states) to intervals of probabilities. We interpret this function as a constraint
over distributions. This is expressed in our notation as follows. Given a stateq ∈ Q and a
distributionσ ∈ Distr(Q), we say thatσ ∈ ϕ(q) iff σ(q′) ∈ ϕ(q)(q′) for all q′ ∈ Q. If the
states ofQ are ordered, i.e.Q = {q1, . . . , qm}, a distributionσ ∈ Distr(Q) can be seen as a
vector in[0, 1]m such that the cellσk represents the probability of going to stateqk. We will
say that the vectorσ ∈ [0, 1]m is in ϕ(q) iff it defines a distribution, and this distribution is in
ϕ(q). Occasionally it is convenient to think about a Markov Chainas of an IMC, whose all
probability intervals are closed point intervals.

We visualize IMCs as automata with intervals on transitions. As an example consider the
IMC in Figure 2.1c. It has two outgoing transitions from the initial stateA. No arc is drawn
between two states if the probability is zero (or more precisely the interval is[0, 0]). So in the
example there is zero probability of going from stateA to A, or fromB to C, etc. Otherwise
the probability distribution over successors ofA is constrained to fall into]0.7, 1] and[0, 0.3]
for B andC respectively. StatesB andC have valuationβ, whereas stateA has valuationα, γ.
Also observe that Figure 2.1a presents a Markov Chain using the same convention, modulo
the intervals. The corresponding transition matrix is given in Figure2.1b. Remark that our
formalism does not allow “sink states”, i.e. states with no outgoing transition. However, in
order to avoid clutter in the figures, we sometimes representstates with no outgoing transitions.
They must be interpreted as states with a self-loop of probability 1.

A satisfaction relationestablishes compatibility of Markov Chains (implementations) and
IMCs (specifications). The original definition, reported below, has been presented in [86, 87].

Definition 2.2 ((Direct) Satisfaction Relation). Let C = 〈P, po, π, A, VC〉 be a MC and let
I = 〈Q, qo, ϕ, A, VI〉 be an IMC. A relationR ⊆ P × Q is called a satisfaction relation if
wheneverpR q then

• their valuation sets agree:VC(p) = VI(q) and

• there exists a probability distributionδ ∈ Distr(P ×Q) such that

1.
∑

q′∈Q δ(p
′, q′) = π(p)(p′) for all p′ ∈ P ,
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Figure 2.2: Illustration of satisfaction relations using direct and indirect redistribution of the
probability mass.

2.
∑

p′∈P δ(p
′, q′) ∈ ϕ(q)(q′) for all q′ ∈ Q, and

3. if δ(p′, q′) > 0, thenp′ R q′.

In our work, we use a slightly modified, but strictly equivalent definition using a concept of
correspondence matrix. This notion of satisfaction is more intuitively linked to the notions of
weak and strong refinement that will be presented later in this section. This definition requires
that both the states of the MC and the states of the IMC are ordered. Figure 2.2 compares the
two definitions using an example side by side.

Definition 2.3 (Satisfaction). LetC = 〈P, po, π, A, VC〉 be a MC withP = {p1, . . . , pn} and
let I = 〈Q, qo, ϕ, A, VI〉 be an IMC withQ = {q1, . . . , qm}. A relationR ⊆ P ×Q is called a
satisfaction relation if wheneverpi R qr then

• valuations ofpi andqr agree:VC(pi) = VI(qr) and

• there exists a correspondence matrix∆ ∈ [0, 1]n×m such that

1. for all pj ∈ P such thatπi,j > 0, the row∆j defines a distribution onQ,

2. the vectorπi × ∆ is inϕ(qr), and

3. if ∆j,s > 0, thenpj R qs.

In the above definition,πi × ∆ represents the classical matrix product between the vector
πi ∈ [0, 1]n and the matrix∆ ∈ [0, 1]n×m. Formally,σ = πi ×∆ is a vector in[0, 1]m such that
σs =

∑n
j=0 πi,j · ∆j,s for all 1 ≤ s ≤ m.
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We writeC |= I iff there exists a satisfaction relation containing(po, qo). In this case,C is
animplementationof I. The set of implementations ofI is written[[I]]. Figure 2.2b presents an
example of satisfaction between states1 andA. The correspondence matrix is visualized using
labels on the dashed arrows i.e. the probability mass going from state1 to 3 is distributed to
stateB andC with half going to each.

We will say that a stateq of an IMC isconsistent, if its interval constraintϕ(q) is satisfiable,
i.e. there exists a distributionσ ∈ Distr(Q) satisfyingϕ(q), soσ ∈ ϕ(q). Obviously, for a
given IMC, it is sufficient that all its states are consistentin order to guarantee that the IMC
is consistent itself—there exists a Markov Chain satisfying it. We discuss the problem of
establishing consistency in a sound and complete manner in Section 2.5.

There are three known ways of defining refinement for IMCs fromliterature: the strong re-
finement (introduced assimulationin [86]), weak refinement (introduced under the name of
probabilistic simulationin [61]), and thorough refinement (introduced asrefinementin [86]).
We will recall their formal definitions:

Definition 2.4 (Strong Refinement). Let I1 = 〈Q, qo, ϕ1, A, V1〉 andI2 = 〈S, so, ϕ2, A, V2〉 be
two IMCs such thatQ = {q1, . . . , qn} andS = {s1, . . . , sm}. A relationR ⊆ Q × S is called
a strong refinement relationif wheneverqi R sr, we have that

• their valuation sets agree:V1(qi) = V2(sr) and

• there exists a correspondence matrix∆ ∈ [0, 1]n×m such that for any vectorσ ∈ [0, 1]n,
if σ ∈ ϕ1(qi), then

1. for eachqj ∈ Q such thatσj > 0, the row∆j defines a distribution onS,

2. we haveσ × ∆ ∈ ϕ2(sr), and

3. for all qj ∈ Q andst ∈ S, if ∆j,t > 0, thenqj R st.

We say thatI1 strongly refinesI2, writtenI1 ≤S I2, iff there exists a strong refinement relation
containing(qo, so).

Intuitively the strong refinement between states ofI1 and states ofI2 requires the existence
of a single correspondence, which witnesses satisfaction for any resolution of probability con-
straint over successors inI1. Figure 2.3a illustrates such a correspondence between statesA and
α of two IMCs. The non-zero coefficients of the correspondencematrix are given by labels on
the dashed lines. It is easy to see that regardless of how the probability constraints are resolved
the correspondence matrix distributes the probability mass in a fashion satisfyingI2.

Contrasting with strong refinement, the weak refinement between states ofI1 andI2 requires
that for any resolution of probability constraint over successors inI1 there exists a correspon-
dence, which witnesses satisfaction ofI2. Thus the weak refinement achieves the weakening by
swapping the order of quantifications. Figure 2.3b illustrates such a correspondence between
statesA andα of another two IMCs. Herex stands for a value in[0.2, 1] (arbitrary choice of
probability of going to stateC). Notably, for each choice ofx there existsp ∈ [0, 1] such that
p · x ∈ [0, 0.6] and(1 − p) · x ∈ [0.2, 0.4].

Definition 2.5 (Weak Refinement). Let I1 = 〈Q, qo, ϕ1, A, V1〉 and I2 =
〈S, so, ϕ2, A, V2〉 be two IMCs such thatQ = {q1, . . . , qn} and S = {s1, . . . , sm}. A rela-
tionR ⊆ Q× S is called aweak refinement relationif wheneverqi R sr, we have that
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• their valuation sets agree:V1(qi) = V2(sr) and

• for eachσ ∈ [0, 1]n such thatσ ∈ ϕ1(qi), there exists a correspondence matrix∆ ∈
[0, 1]n×m such that

1. for eachqj ∈ Q such thatσj > 0, the row∆j defines a distribution onS,

2. we haveσ × ∆ ∈ ϕ2(sr), and

3. for all qj ∈ Q andst ∈ S, if ∆j,t > 0, thenqj R st.

We say thatI1 weakly refinesI2, written I1 ≤W I2, iff there exists a weak refinement relation
containing(qo, so).

Finally, we introduce the thorough refinement as defined in [86]:

Definition 2.6 (Thorough Refinement). IMC I1 thoroughly refinesIMC I2, written I1 ≤T I2,
iff each implementation ofI1 implementsI2: [[I1]] ⊆ [[I2]]

Thorough refinement is a semantic notion of refinement: an IMCI1 thoroughly refines an
IMC I2 iff all the implementations ofI1 are implementations ofI2. In this way, it is the finest
possible notion of refinement.

2.3 Refinement Relations

As said in the previous section, thorough refinement is the ultimate refinement relation for any
specification formalism. In our formalism, both strong and weak refinements soundly approx-
imate the thorough refinement. Indeed, since they are transitive and degrade to satisfaction
if the left argument is a Markov Chain, whenever strong or weak refinement holds, thorough
refinement also holds. However, the converse does not hold. Detailed proofs of these facts are
given in a more general setting in the next chapter. We will now discuss procedures to compute
weak and strong refinements, and then compare the granularity of these relations, which will
lead us to procedures for computing thorough refinement.
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2.3.1 Weak and Strong Refinement

Consider two IMCsI1 = 〈P, p0, ϕ1, A, V1〉 andI2 = 〈Q, q0, ϕ2, A, V2〉 with P = {p0, . . . , pn}
andQ = {q0, . . . , qm}. Informally, checking whether a given relationR ⊆ P ×Q is a weak re-
finement relation reduces to checking, for each pair(p, q) ∈ R, whether the following formula
is true: ∀π ∈ ϕ1(p), ∃∆ ∈ [0, 1]n×m such thatπ × ∆ satisfies a system of linear equations /
inequations. Since the set of vector distributions satisfying ϕ1(p) is convex, checking such a
system is exponential in the number of variables, here|P | · |Q|. As a consequence, checking
whether a relation onP × Q is a weak refinement relation is exponential in|P | · |Q|. For
strong refinement relations, the only difference appears inthe formula that must be checked:
∃∆ ∈ [0, 1]n×m such that∀π ∈ ϕ1(p), we have thatπ×∆ satisfies a system of linear equations
/ inequations. Therefore, checking whether a relation onP ×Q is a strong refinement relation
is also exponential in|P | · |Q|.

Finally, deciding whether weak (strong) refinement holds betweenI1 andI2 can be done in
the usual coinductive fashion by considering the total relationP×Q and successively removing
all the pairs that do not satisfy the above formulae. The refinement holds iff the relation we
reach contains the pair(p0, q0). The algorithm will terminate after at most|P | · |Q| iterations.
This gives an upper bound on the complexity to check strong and weak refinements. To the
best of our knowledge, the lower bound remains unknown.

2.3.2 Granularity

In [86] an informal statement is made, that the strong refinement is strictly stronger (finer) than
the thorough refinement:(≤T) ) (≤S). In [61] the weak refinement is introduced, but with-
out discussing its relations to neither strong nor thoroughrefinement. The following theorem
resolves all open issues in relations between the three:

Theorem 2.1. Thorough refinement is strictly weaker than weak refinement,which is strictly
weaker than strong refinement :(≤T) ) (≤W) ) (≤S).

Proof. The first inequality is shown by exhibiting IMCsI4 andI5 such thatI4 thoroughly, but
not weakly refinesI5: they are given in Figure 2.4.

Let M be an implementation ofI4 andR a corresponding satisfaction relation. LetP be
the set of states ofM implementingB. Each statep ∈ P either satisfiesβ1, β2 or both. Call
P1 the set of statesp ∈ P such thatp satisfiesβ1 andP2 the set of statesp ∈ P such thatp
satisfiesβ2 and notβ1. We build a satisfaction relationR′ such that, for allq ∈ M , if qRA
thenqR′ α; if q ∈ P1, thenqR′ β1; if q ∈ P2, thenqR′ β2; if qRC, thenqR′ δ1 andqR′ δ2;
and if qRD thenqR′ γ1 andqR′ γ2. By construction,R′ is a satisfaction relation, andM is
an implementation ofI5. Thus,[[I4]] ⊆ [[I5]].

However, it is impossible to define a weak refinement relationbetweenI4 andI5 : obviously,
B can neither refineβ1 norβ2: Let σ be a vector distribution admitted inB giving probability
1 to stateC. Because of the interval[0, 0.5] on the transition fromβ1 to δ1, at least0.5 must be
assigned toγ1, butC andγ1 can not be related. A similar argument shows thatB can not refine
β2.

The second inequality is shown by demonstrating two other IMCs,I3 andI2 such thatI3
weakly but not strongly refinesI2: they are given in Figure 2.3b.
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• StateA weakly refines stateα: Given a valuex for the transitionA → C, we can split

it in order to match both transitionsα
p·x
−→ δ1 andα

(1−p)·x
−−−−→ δ2. Define∆ ∈ [0, 1]3×4 as

follows :

∆ =




0 0 0 0
0 1 0 0
0 0 p (1 − p)





with

p =






0 if 0.2 ≤ x ≤ 0.4
x−0.3

x
if 0.4 < x < 0.8

0.6 if 0.8 ≤ x

∆ is a correspondence matrix witnessing a weak refinement relation betweenA andα.

• However, one cannot find a coefficientp that would work for allx. It is thus impossible
to build a strong refinement relation betweenI3 andI2.

�

2.3.3 Deciding Thorough Refinement

As weak and strong refinements are strictly stronger than thorough refinement, it is interesting
to investigate complexity of deciding TR. In [86] a procedure computing TR is given, albeit
without a complexity discussion. We close the problem of complexity class of TR as follows:

Theorem 2.2.The decision problem TR of establishing whether there exists a thorough refine-
ment between two given IMCs is EXPTIME-complete.

The upper-bound is shown by observing that the algorithm presented in [86] runs in single
exponential time. For the sake of completeness, and in orderto clarify several typesetting
inaccuracies of the original presentation, we report belowthe entire construction due to [86].
Then we analyze its complexity.

Definition 2.7 (Subset simulation). Let I1 = 〈P, p0, ϕ1, A, V1〉 andI2 = 〈Q, q0, ϕ2, A, V2〉 be
IMCs withP = {p0, . . . , pn} andQ = {q0, . . . , qm}. Let2Q = {T0, . . . , T2m}. A total relation
R ⊆ P × 2Q is a subset-simulationiff for each statep ∈ P :
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1. pRT impliesV1(p) = V2(t) for all t ∈ T and

2. for each vector distributionπ ∈ ϕ1(p) and each correspondence matrix∆1 ∈ [0, 1]n×2m

such thatsupport(∆1) ⊆ R, there exists a setT such thatpRT and for eacht ∈ T ,
there exists a vector distribution̺∈ ϕ2(t) and a correspondence matrix∆2 ∈ [0, 1]m×2m

such that

(a) if ∆2
i,j > 0 thenqi ∈ Tj, and

(b) we haveπ × ∆1 = ̺× ∆2.

Intuitively, this relation associates to every statep of I1 a sample of sets of states(Ti1 , . . . ,
Tik) of I2 that are “compatible” withp. Then, for each admissible redistribution∆1 of the
successor states ofp, it states that there exists one of the setsTi such that for each of its states
t′, there is a redistribution∆2 of the successor states oft′ that is compatible with∆1. In [86] it
is shown that the existence of a subset-simulation between two IMCs I1 andI2 is equivalent to
thorough refinement between them.

Example. Consider the IMCsI4 = 〈{A,B,C,D}, A, ϕ4, {a, b, c, d}, V4〉 andI5 = 〈{α, β1, β2,
δ1, δ2, γ1, γ2}, α, ϕ5, {a, b, c, d}, V5〉 given in Figure 2.4. They are such thatI4 thoroughly but
not weakly refinesI5 (c.f. proof of Theorem 2.1). Since thorough refinement holds, we can
exhibit a subset simulationR ⊆ P × 2Q betweenI4 and I5: Let R = {(A, {α}), (B, {β1}),
(B, {β2}), (C, {δ1, δ2}), (D, {γ1, γ2})}. We illustrate the unfolding ofR for statesA andB of
I4. The rest is left to the reader.

Consider stateA of I4.

1. We haveAR{α}, andV4(A) = a = V5(α).

2. The only distributionπ ∈ ϕ4(A) is such thatπ(B) = 1. Let for example∆1 ∈ [0, 1]4×27

be the correspondance matrix such that∆1
B,{β1}

= 1/2 and∆1
B,{β2}

= 1/2. Let{α} be
the set such thatAR{α}. Let ̺ be the distribution onQ such that̺ (β1) = ̺(β2) =
1/2. ̺ is indeed inϕ5(α). Let ∆2 ∈ [0, 1]7×27

be the correspondance matrix such that
∆2

β1,{β1}
= 1 and∆2

β2,{β2}
= 1. It is then obvious that

(a) for all t andT , if ∆2
t,T > 0, thent ∈ T , and

(b) π × ∆1 = ̺× ∆2 holds.

Consider stateB of I4.

1. We haveBR{β1} andBR{β2}. It holds thatV4(B) = b = V5(β1) = V5(β2).

2. Consider a distributionπ ∈ ϕ4(B) (for example such thatπ(C) < 1/2). Let ∆1 be an
admissible correspondance matrix. We must have∆1

C,{δ1,δ2}
= 1 and ∆1

D,{γ1,γ2}
= 1.

Consider{β1} the set such thatBR{β1} (if π(C) > 1/2 then pick up{β2} instead). Let
̺ be the distribution such that̺(δ1) = π(C) and ̺(γ1) = π(D). Sinceπ(C) < 1/2,
we have̺ ∈ ϕ5(β1). Let ∆2 be a correspondance matrix such that∆2

δ1,{δ1,δ2}
= 1 and

∆2
γ1,{γ1,γ2}

= 1. It is obvious that

(a) for all t andT , if ∆2
t,T > 0, thent ∈ T , and
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1, ǫ
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b

a

]0, 1]

]0, 1]

(b) The IMCM̂

Figure 2.5: An example of the translation from Modal Transition Systems to IMCs

(b) π × ∆1 = ̺× ∆2 holds.

The rest of the unfolding is obvious, andR is thus a subset simulation.

Given two IMCsI1 andI2, the existence of such a subset simulation betweenI1 andI2
is decidable, using a standard calculation. The algorithm works as follows: first consider the
total relation and check whether it is a subset-simulation.Then refine it, by removing violating
pairs of states, and check again until a fixpoint is reached (it becomes a subset-simulation or
it is empty). Checking whether a given relation is a subset simulation has a single exponential
complexity. Checking the second condition in the definitioncan be done in single exponential
time by solving polynomial constraints with fixed quantifiers for each pair(p, T ) in the relation.
There are at most|P | · 2|Q| such pairs, which gives a single exponential time bound for the cost
of one iteration of the fixpoint loop. There are at most|P | · 2|Q| elements in the total relation
and at least one is removed in an iteration, which givesO(|P | ·2|Q|) as the bound on the number
of iterations. Since a polynomial of two exponentials, is still a single exponential, we obtain a
single exponential time for running time of this computation.

Interestingly this tells us that all three refinements are inEXPTIME. Still, weak refinement
seems easier to check than thorough. For TR the number of iterations on the state-space of the
relation is exponential while it is only quadratic for the weak refinement. Also, the formula to
check at each step of the procedure involves a single quantifier alternation for the weak, and
three alternations for the thorough refinement.

The lower bound of Theorem 2.2 is shown by a polynomial reduction of the thorough refine-
ment problem for modal transition systems to TR of IMCs. Thatproblem is known to be
EXPTIME-complete [17].

First recall the following definitions of Modal Transition Systems and their implementa-
tions.

Definition 2.8 (Modal Transition System). A modal transition system (an MTS in short) [100]
is a tupleM = (S, s0, A,→, 99K), whereS is the set of states,s0 is the initial state, and
→⊆ S×A×S are the transitions thatmustbe taken and99K⊆ S×A×S are the transitions
thatmaybe taken. In addition, it is assumed that→⊆99K.

An implementation of an MTS is a labelled transition system,i.e., an MTS where(→) =
(99K). We say that an MTS is deadlock-free if and only if each of its states has at least one
outgoing must transition.

Consider now the following definition for refinement of MTS.
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Definition 2.9 (Refinement for MTS). A modal transition systemM = (S, s0, A,→, 99K) re-
fines another modal transition systemN = (T, t0, A,→, 99K) iff there exists a refinement rela-
tionR ⊆ S × T containing(s0, t0) such that if(s, t) ∈ R then

1. whenevert
a
→ t′ then there existss′ ∈ S such thats

a
→ s′ and(s′, t′) ∈ R

2. whenevers
a

99K s′ then there existst′ ∈ T such thatt
a

99K t′ and(s′, t′) ∈ R

A labelled transition systemimplementsa MTS if it refines it in the above sense. Thorough
refinement of MTSs is defined as inclusion of implementation sets, analogously to IMCs.

We describe here a translation of MTSs into IMCs which preserves implementations. By def-
inition, Markov chains do not allow deadlock-states. Thus consistent IMCs must not allow
deadlock-states either. As a consequence, in order to be coherent, we assume that we only
work with modal transition systems that have no deadlock-states. This is a safe assumption: it
is easy to transform two arbitrary MTSs into deadlock-free ones, without affecting the thorough
refinement between them. We present a transformation that takes any two MTS and transforms
them into MTSs without deadlocks preserving the notion of thorough refinement between them.

LetM = 〈S, s0, A,→, 99K〉 be a MTS. Let⊥ /∈ A be a new action variable, andq /∈ S be
a new state variable. Define a new MTSM⊥ = 〈S ∪ {q}, s0, A ∪ {⊥},→⊥, 99K⊥〉 as follows:
for all s, s′ ∈ S anda ∈ A, s

a
→⊥ s′ ⇐⇒ s

a
→ s′ ands

a
99K⊥ s′ ⇐⇒ s

a
99K s′. In

addition, consider the following transitions: for alls ∈ S ∪ {q}, s
⊥
→⊥ q ands

⊥
99K⊥ q. In

this way, every state ofM⊥ has at least one must outgoing transition. Moreover, it is trivial that
this transformation preserves the notion of thorough refinement. This is stated in the following
lemma:

Lemma 2.3. LetM andM ′ be two MTS. If⊥ is in neither of their sets of actions, we have

[[M ]] ⊆ [[M ′]] ⇐⇒ [[M⊥]] ⊆ [[M ′
⊥]]

We now describe the polynomial translation of MTSs without deadlock states into IMCs
which preserves implementations. The IMĈM corresponding to a MTSM = 〈S, s0, A,

→, 99K〉 is defined by the tuplêM = 〈Q, q0, A ∪ {ǫ}, ϕ, V 〉, with ǫ /∈ A, and where

• Q = S × ({ǫ} ∪ A),

• q0 = (s0, ǫ),

• for all (s, x) ∈ Q, V ((s, x)) = {x}, and

• ϕ is defined as follows: for allt, s ∈ S andb, a ∈ ({ǫ} ∪ A),

– ϕ((t, b))((s, a)) =]0, 1] if t
a
→ s,

– ϕ((t, b))((s, a)) = [0, 0] if t 6
a

99K s, and

– ϕ((t, b))((s, a)) = [0, 1] otherwise.

17



Remark that sinceǫ /∈ A, the only state that is associated to the valuationǫ is the initial
state.

The encoding is illustrated in Figure 2.5, where unreachable states are omitted.
We first state two lemmas that will be needed in order to prove the main theorem of the

section: the encoding presented above reduces the problem of checking thorough refinement
on modal transition systems to checking thorough refinementon IMCs.

Lemma 2.4. LetM = (S, s0, A,→, 99K) be an MTS andI = (SI , s
I
0, A,→) be a transition

system. We have

I |= M ⇒ [[Î ]] ⊆ [[M̂ ]]

Proof. We first recall the definition of a satisfaction relation for MTS: LetM = (S, s0, A,→
, 99K) be an MTS andI = (SI , s

I
0, A,→) be a transition system.I |= M iff there exists a

relationR ⊆ SI × S such that

1. sI
0 R s0

2. WheneversI R s, we have

(a) For alla ∈ A, s′I ∈ SI , sI
a
→ s′I in I implies that there existss′ ∈ S such that

s
a

99K s′ in M ands′I R s′.

(b) For all a ∈ A, s′ ∈ S, s
a
→ s′ in M implies that there existss′I ∈ SI such that

sI
a
→ s′I in M ands′I R s′.

Such a relation is called a satisfaction relation for MTS.

LetM = (S, s0, A,→, 99K) be an MTS andI = (SI , s
I
0, A,→) be a transition system. Let

M̂ = 〈Q, q0, A ∪ {ǫ}, ϕ, V 〉 andÎ = 〈QI , q
I
0, A ∪ {ǫ}, ϕI , VI〉 be the IMCs defined using the

above transformation. LetQ = {q0, . . . qn} andQI = {qI
0, . . . q

I
m}.

Suppose thatI |= M . There exists a satisfaction relation for MTSR ⊆ SI × S such that
sI
0 R s0. We prove that[[Î]] ⊆ [[M̂ ]].

Let T = 〈QT , q
T
0 , π

T , A, VT 〉 be an MC such thatQT = {qT
0 , . . . , q

T
k } andT ∈ [[Î ]]. As a

consequence, there exists a satisfaction relation for IMCsR1 ⊆ QT ×QI such thatqT
0 R1 q

I
0 =

(sI
0, ǫ). Define the new relationR2 ⊆ QT ×Q such thatqT R2 q = (s, x) iff there existssI ∈ SI

such thatqT R1 q
I with qI = (sI , x) andsI R s. We prove thatR2 is a satisfaction relation for

IMCs betweenT andM̂ .
Let qT

i ∈, QT , q = (s, x) ∈ Q andqI = (sI , x) ∈ QI such thatqT R1 q
I andsI R s, i.e.

qT R2 q. We have

1. SinceqT R1 q
I = (sI , x), we haveVT (qT ) = VI((sI , x)) = {x}. ThusVT (qT ) =

V ((s, x)) = {x}.

2. Let ∆1[0, 1]k×m be the correspondence matrix witnessingqT R1(sI , x), and let∆2 ∈
[0, 1]k×n such that for allqT

j ∈ QT andql ∈ Q with ql = (s′, y), if {s′I ∈ SI | s′I R s′} 6=

∅ ands
y

99K s′, then define

∆2
j,l =

∑

{qI
r=(s′

I
,y)∈QI | s′

I
R s′}

∆1
j,r

|{s′′ ∈ S | s′I R s′′ands
y

99K s′′}|
;
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Else,∆2
j,l = 0.

Recap that we suppose that all must transitions are also may transitions. The definition
above potentially gives a non-zero value to∆2

j,l, with ql = (s′, y), if there exists a may
(or must) transition froms to s′ in S labelled withy and if there exists a states′I in I such

thats′I R s′. Since there may be several statess′′ such thats
y

99K s′′, the term∆1
j,r may

appear in the definition of several coefficients∆2
j,l. Thus the fraction in the definition of

∆2
j,l.

Let qT
j ∈ QT . We prove that

∑n
l=0 ∆2

j,l = 1: By definition of∆1, we have
∑m

r=0 ∆1
j,r = 1.

∑n
l=0 ∆2

j,l =
∑

{ql=(s′,y) | ∃s′
I
, s′

I
R s′ands

y
99Ks′}

∑
{qI

r=(s′
I
,y) | s′

I
R s′}

∆1
j,r

|{s′′∈S | s′
I
R s′′ands

y
99Ks′′}|

.

Clearly, for all qI
r = (s′I , y) such that∆1

j,r > 0, the term
∆1

j,r

|{s′′∈S | s′
I
R s′′ands

y
99Ks′′}|

will

appear exactly|{s′′ ∈ S | s′I R s′′ ands
y

99K s′′}| times in the expression above. As a
consequence,

∑n
l=0 ∆2

j,l =
∑m

r=0 ∆1
j,r = 1. Finally, the row∆2

j defines a distribution on
Q.

Moreover, we prove that the distribution vectorπT
i ×∆2 is inϕ((s, x)). Letql = (s′, y) ∈

Q. By construction,ϕ((s, x)(s′, y)) is either{0}, [0, 1] or ]0, 1]. We will thus prove that
(a) if

∑k
j=0 π

T
i (j)∆2

j,l > 0, thenϕ((s, x)(s′, y)) 6= {0}; and (b) ifϕ((s, x)(s′, y)) =]0, 1],

then
∑k

j=0 π
T
i (j)∆2

j,l > 0.

(a) Suppose
∑k

j=0 π
T
i (j)∆2

j,l > 0. By definition, there must existj such thatπT
i (j) > 0

and ∆2
j,l > 0. As a consequence, by definition of∆2, there exists a transition

s
y

99K s′ in M andϕ((s, x), (s′, y)) 6= {0}.

(b) If ϕ((s, x)(s′, y)) =]0, 1], then there exists a transitions
y
→ s′ in M . As a con-

sequence, byR, there existss′I ∈ SI such thatsI
y
→ s′I in I ands′I R s′. Thus

ϕI((sI , x), (s
′
I , y)) =]0, 1]. Let qI

r = (s′I , y). By definition of∆1, we know that∑k
j=0 π

T
i (j)∆1

j,r > 0, thus there existsqT
x ∈ QT such thatπT

i (x) > 0 and∆1
x,r > 0.

Sinces′I R s′ ands
y
→ s′, we have∆2

x,l > 0, thus
∑k

j=0 π
T
i (j)∆2

j,l > 0.

Finally, if ∆2
j,l > 0 with ql = (s′, y), there existss′I ∈ SI such thats′I R s′ and∆1

j,r > 0
with qI

r = (s′I , y). By definition of∆1, we haveqT
j R1 q

I
r . As a consequence,qT

j R2 ql.

R2 satisfies the axioms of a satisfaction relation for IMCs, thus T ∈ [[M̂ ]] and finally
[[Î]] ⊆ [[M̂ ]].

�

Lemma 2.5. LetM = (S, s0, A,→, 99K) be an MTS andI = (SI , s
I
0, A,→) be a transition

system. We have

[[Î ]] ⊆ [[M̂ ]] ⇒ I |= M

Proof.
LetM = (S, s0, A,→, 99K)be an MTS andI = (SI , s

I
0, A,→) be a transition system. Let

M̂ = 〈Q, q0, A ∪ {ǫ}, ϕ, V 〉 and Î = 〈QI , q
I
0, A ∪ {ǫ}, ϕI , VI〉 be the IMCs defined by the

transformation form MTS to IMC. LetQ = {q0, . . . , qn} andQI = {qI
0, . . . , q

I
m}.
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Suppose that[[Î ]] ⊆ [[M̂ ]]. We prove thatI |= M .
Let T = 〈QT , q

T
0 , π

T , VT , A〉 be an MC withQT = {qT
0 , . . . , q

T
k } such thatT ∈ [[Î]]. As a

consequence, there exists two satisfaction relations for IMCsR1 ⊆ QT ×QI andR2 ⊆ QT ×Q
such thatqT

0 R1 q
I
0 = (sI

0, ǫ) andp0 R2 q0 = (s0, ǫ). Define the new relationR ⊆ SI × S such
that sI R s iff there existsqT ∈ QT andx ∈ ({ǫ} ∪ A) such thatqT R1 q = (sI , x) and
qT R2 q

I = (s, x). We have

1. qT
0 R1(s

I
0, ǫ) andqT

0 R2(s0, ǫ). As a consequence,sI
0 R s0.

2. LetqT
i ∈ QT , q = (s, x) ∈ Q andqI = (sI , x) ∈ QI such thatqT

i R1 q
I andqT

i R2 q and
let ∆1 ∈ [0, 1]k×m and∆2 ∈ [0, 1]k×n be the associated correspondance matrices.

(a) Lety ∈ A ands′I ∈ SI such thatsI
y
→ s′I in I. We prove that there existss′ ∈ S

such thats
y

99K s′ ands′I R s′. Let qI
r = (s′I , y).

By definition of Î, we haveϕI((sI , x), (s
′
I , y)) =]0, 1]. As a consequence,[πT

i ×
∆1]r =

∑k
j=0 π

T
i (j)∆1

j,r > 0. Thus there existsqT
j in QT such thatπT

i (j) > 0 and
∆1

j,r > 0. As a consequence, by definition of∆1, we haveqT
j R1 q

I
r = (s′I , y), thus

VT (qT
j ) = VI((s

′
I , y)) = {y}.

By definition of∆2, sinceπT
i (j) > 0, we know that

∑n
l=0 ∆2

j,l = 1. As a conse-
quence, there existsql = (s′, z) ∈ Q such that∆2

j,l > 0. By definition of∆2, we
haveqT

j R2 ql = (s′, z) and sinceVT (qT
j ) = {y}, we must havez = y.

Moreover, By definition of∆2, we know that[πT
i × ∆2]l ∈ ϕ((s, x), (s′, y)). Since

[πT
i × ∆2]l =

∑k
t=0 π

T
i (t)∆2

t,l > 0, we haveϕ((s, x), (s′, y)) 6= {0}. Thus, by

definition of M̂ , there exists a transitions
y

99K s′ in M . Finally, we have both
qT
j R1(s

′
I , y) andqT

j R2(s
′, y), thuss′I R s′.

(b) Let y ∈ A ands′ ∈ S such thats
y
→ s′ in M . We prove that there existss′I ∈ SI

such thatsI
y
→ s′I in I ands′I R s′. Let ql = (s′, y).

By definition of M̂ , we haveϕ((s, x), (s′, y)) =]0, 1]. As a consequence,[πT
i ×

∆2]l =
∑k

j=0 π
T
i (j)∆2

j,l > 0. Thus there existsqT
j in QT such thatπT

i (j) > 0

and∆2
j,l > 0. By definition of ∆2, we haveqT

j R2 ql = (s′, y), thusVT (qT
j ) =

V ((s′, y)) = {y}.

By definition of ∆1, sinceπT
i (j) > 0, we have

∑m
r=0 ∆1

j,r = 1. As a conse-
quence, there existsqI

r = (s′I , z) ∈ QI such that∆1
j,r. By definition of∆1, we have

qT
j R1 q

I
r = (s′I , z) and sinceVT (qT

j ) = {y}, we must havez = y.

Moreover, by definition of∆1 we know that[πT
i × ∆1]r ∈ ϕI((sI , x), (s

′
I , y)).

Since [πT
i × ∆1]r =

∑k
t=0 π

T
i (t)∆1

t,r > 0, we haveϕI((sI , x), (s
′
I , y)) 6= {0}.

Thus, by definition of̂I, there exists a transitionsI
y
→ s′I in I (remember thatI is

a classical transition system). Finally, we have bothqT
j R1(s

′
I , y) andqT

j R2(s
′, y),

thuss′I R s′.

Finally,R is a satisfaction relation for MTS, andI |= M

�

From the two lemmas stated above, we deduce the following theorem.
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Theorem 2.6. LetM = (S, s0, A,→, 99K) be an MTS andI = (SI , s
I
0, A,→) be a transition

system. We have

I |= M ⇐⇒ [[Î]] ⊆ [[M̂ ]]

We now define a constructionf that builds, for all implementationsC of M̂ , a correspond-
ing implementationf(C) of M :

Let M = (S, s0, A,→, 99K) be a MTS. LetM̂ = 〈S × ({ǫ} ∪ A), (s0, ǫ), {ǫ} ∪ A,ϕ, V 〉
be the transformation ofM defined as above. LetC = 〈Q, q0, A, π, V ′〉 be a MC such that
C |= M̂ for some satisfaction relation on IMCsR.

Definef(C) = (Q, q0, A,→) the transition system such thatq
a
→ q′ wheneverπ(q, q′) > 0

andV ′(q′) = {a}.
By construction, it is trivial that (1)f(C) |= M for some satisfaction relation on MTSR′

and (2)C |= f̂(C) for some satisfaction relation on IMCsR′′. These satisfaction relations are
defined as follows:qR′ swhenever there existsx ∈ {ǫ}∪A such thatqR(s, x), andqR′′(q′, x)
wheneverq = q′.

From the above construction and Theorem 2.6, we obtain the main theorem of the section:
the transformationM → M̂ preserves thorough refinement.

Theorem 2.7. LetM andM ′ be two Modal Transition Systems and̂M andM̂ ′ be the corre-
sponding IMCs defined. We have

M �T M
′ ⇐⇒ M̂ �T M̂ ′

Proof. LetM andM ′ be two MTS, and̂M andM̂ ′ the corresponding IMCs.

⇒ Suppose thatM �th M ′, and letC be a MC such thatC |= M̂ . We have by construction

f(C) |= M , thusf(C) |= M ′. By Theorem 2.6, we have[[f̂(C)]] ⊆ [[M̂ ′]], and we know

thatC |= f̂(C). As a consequence,C |= M̂ ′.

⇐ Suppose that̂M �th M̂ ′, and letI be a TS such thatI |= M . By Theorem 2.6, we have
[[Î]] ⊆ [[M̂ ]], thus by hypothesis[[Î ]] ⊆ [[M̂ ′]]. Finaly, by Theorem 2.6, we obtain that
I |= M ′.

�

Crucially the translationM → M̂ is polynomial. Thus if we had a subexponential algorithm
for TR of IMCs, we could use it to obtain a subexponential algorithm for TR of MTSs, which
is impossible according to [17]. This proves that TR of IMCs is at least EXPTIME-hard.

2.4 Determinism

Although both are in EXPTIME, deciding weak refinement is easier than deciding thorough
refinement. Nevertheless, since these two refinements do notcoincide, in general, a procedure
to check weak refinement cannot be used to decide thorough refinement. Observe that weak
refinement has a syntactic definition very much like simulation for transition systems. On the
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other hand thorough refinement is a semantic concept, just astrace inclusion for transition sys-
tems. It is well known that simulation and trace inclusion coincide for deterministic automata.
Similarly for MTSs it is known that TR coincides with modal refinement for deterministic ob-
jects. It is thus natural to define deterministic IMCs and check whether thorough and weak
refinements coincide on these objects.

In our context, an IMC is deterministic if, from a given state, one cannot reach two states
that share common atomic propositions.

Definition 2.10 (Determinism). Let I = 〈Q, q0, ϕ, A, V 〉 be an IMC.I is deterministiciff for
all statesq, r, s ∈ Q, if there exists a probability distributionσ ∈ ϕ(q) such thatσ(r) > 0 and
σ(s) > 0, thenV (r) 6= V (s).

The above definition verifies that two states that are reachable with the same admissible
distributionalways have different valuations. In a semantic interpretation, this means that there
exist no implementation ofI in which two states with the same valuations can be successors
of the same source state. One can also propose another, slightly more syntactic definition for
determinism.

Definition 2.11 (Strong Determinism). Let I = 〈Q, q0, ϕ, A, V 〉 be an IMC.I is strongly de-
terministiciff for all statesq, r, s ∈ Q, if there exist a probability distributionσ ∈ ϕ(q) such
thatσ(r) > 0 and a probability distribution̺ ∈ ϕ(q) such that̺ (s) > 0, thenV (r) 6= V (s).

This definition differs from Definition 2.10 in that it requires that, from a given stateq,
one cannot possibly reach two statesr ands with the same set of propositions, even using two
different distributions (implementations).

Checking weak determinism requires solving a cubic number of linear constraints: for
each state check the linear constraint of the definition—oneper each pair of successors of a
state. Checking strong determinism can be done by solving only a quadratic number of linear
constraints—one per each successor of each state. Luckily,due to the convexity of the set of
admissible distributions in a state, these two notions coincide for IMCs, so the more efficient,
strong determinism can be used in algorithms. However, we will see in Chapter 3 that these
notions differ when considering more expressive specifications.

Theorem 2.8.An IMC I is deterministic iff it is strongly deterministic.

Proof. It directly follows from the definitions that strong determinism implies weak determin-
ism. We prove that if an IMCI is not strongly deterministic, then it is not weakly deterministic
either.

Let I = 〈Q, q0, ϕ, A, V 〉 be an IMC. If I is not strongly deterministic, there exist two
admissible distributions on next states forq: σ and̺ ∈ ϕ(q) such thatσ(r) > 0, σ(s) = 0,
̺(r) = 0, ̺(s) > 0 andV (r) = V (s). In order to prove thatI is not weakly deterministic, we
build a distributionγ that we prove correct w.r.t the interval specifications, i.e. γ ∈ ϕ(q), and
such thatγ(r) > 0 andγ(s) > 0.

Sinceσ(r) > 0, there existsa > 0 such thatϕ(q)(r) = [0, a] or [0, a[. Moreover, since
̺(s) > 0, there existsb > 0 such thatϕ(q)(s) = [0, b] or [0, b[. Let c = Min(a, b), and define
γ(q′) = σ(q′) for all q′ /∈ {r, s}, γ(r) = σ(r)−c/2, andγ(s) = c/2. By construction,γ ∈ ϕ(q)
and we haveγ(r) > 0 andγ(s) > 0. As a consequence,I is not weakly deterministic.

Finally, an IMCI is strongly deterministic iff it is also weakly deterministic.
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Figure 2.6: An IMCI whose semantics cannot be captured by a deterministic IMC

�

It is worth mentioning that deterministic IMCs is a strict subclass of IMCs. Figure 2.6
shows an IMCI whose set of implementations cannot be represented by a deterministic IMC.

We now state the main theorem of the section that shows that for deterministic IMCs, the
weak refinement, and indeed also the strong refinement, correctly capture the thorough refine-
ment. The proof of this theorem is postponed to Section 3.6 inChapter 3, where it will be given
in a more general setting.

Theorem 2.9. Let I andI ′ be two deterministic IMCs with no inconsistent states. It isequiv-
alent to say that (1)I thoroughly refinesI ′, (2) I weakly refinesI ′ and (3)I strongly refines
I ′.

2.5 Common Implementation and Consistency

We now turn our attention to the problem of implementation ofseveral IMC specifications by
the same probabilistic system modeled as a Markov Chain. We start with defining the problem:

Definition 2.12 (Common Implementation (CI)). Givenk > 1 IMCs Ii, i = 1 . . . k, does there
exist a Markov ChainC such thatC |= Ii for all i?

Somewhat surprisingly we find out that, similar to the case ofTR, the CI problem is not
harder for IMCs than for modal transition systems. The following theorem summarizes our
main result about CI:

Theorem 2.10. Deciding the existence of a common implementation betweenk IMCs is
EXPTIME-complete.

We will establish lower and upper bound for common implementation. We will then use these
results to solve the consistency problem.

To establish a lower bound for common implementation, we propose a reduction from the
common implementation problem for modal transition systems (MTS). This latter problem
has recently been shown to be EXPTIME-complete when the number of MTS is not known
in advance and PTIME-complete otherwise [10]. For a set of modal transition systemsMi,
i = 1 . . . k, translate eachMi, into an IMCM̂i, using the same rules as in Section 2.3. It turns
out that the set of created IMCs has a common implementation if and only if the original modal
transition systems had. Thus the following theorem.

Theorem 2.11.LetMi be MTSs fori = 1, . . . , k. We have

∃I∀i : I |= Mi ⇐⇒ ∃C∀i : C |= M̂i,
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whereI is a transition system,C is a Markov Chain and̂Mi is the IMC obtained with the
transformation defined in Section 2.3.3.

Proof. ⇒: LetMi be MTSs fori = 1, . . . , k. Let I be a TS such that∀i, I |= Mi. We prove
that there exists a MCC such that∀i, C |= M̂i.

Let 1 ≤ i ≤ k. SinceI |= Mi, we have, by Theorem 2.6, that[[Î]] ⊆ [[
̂̂
Mi]].

Moreover, by definition,[[Î ]] 6= ∅. Thus there exists a MCC ∈ [[Î]], and∀i, C |= M̂i.

⇐: LetMi be MTSs fori = 1, . . . , k. LetM be a MC such that∀i,M |= M̂i. We prove that
there exists a TSI such that∀i, I |= Mi.

Let 1 ≤ i ≤ k. SinceC |= M̂i, we have, by the transformationf defined in Section 2.3.3,
thatf(C) |= Mi. As a consequence, we have that∀i, f(C) |= Mi. �

As for TR, since the translation is polynomial, the problem of CI for IMCs has to be at least
EXPTIME-hard (otherwise it would give a sub-EXPTIME algorithm for CI of MTSs).

To address the upper bound we first propose a simple construction to check if there exists a CI
for two IMCs. We start with the definition ofconsistency relationthat witnesses a common
implementation between two IMCs.

Definition 2.13. Let I1 = 〈Q1, q
1
0, ϕ1, A, V1〉 andI2 = 〈Q2, q

2
0, ϕ2, A, V2〉 be IMCs. The rela-

tion R ⊆ Q1 ×Q2 is a consistency relationon the states ofI1 andI2 iff, whenever(u, v) ∈ R
then

• V1(u) = V2(v) and

• there exists a̺ ∈ Distr(Q1 ×Q2) such that

1. ∀u′ ∈ Q1 :
∑

v′∈Q2
̺(u′, v′) ∈ ϕ1(u)(u

′) ∧ ∀v′ ∈ Q2 :
∑

u′∈Q1
̺(u′, v′) ∈

ϕ2(v)(v
′), and

2. ∀(u′, v′) ∈ Q1 ×Q2 st. ̺(u′, v′) > 0, then(u′, v′) ∈ R.

We now prove that the existence of a consistency relation is equivalent to the existence of a
common implementation between two IMCs.

Theorem 2.12.Let I1 = 〈Q1, q
1
0, ϕ1, A, V1〉 andI2 = 〈Q2, q

2
0, ϕ2, A, V2〉 be IMCs withQ1 =

{q1
0, . . . , q

1
n} andQ2 = {q2

0, . . . , q
2
m}. I1 andI2 have a common implementation iff there exists

a consistency relationR such thatq1
0 R q2

0.

Proof. ⇒: Assume that there exists a MCC = 〈P, p0, π, A, VC〉, with P = {p0, . . . , pk}, such
thatC |= I1 andC |= I2. This implies that there exists satisfaction relationsR1 ⊆ P ×Q1 and
R2 ⊆ P ×Q2 such thatp0 R1 q

1
0 andp0 R2 q

2
0 .

Let R ⊆ Q1 × Q2 the relation such thatq1 R q2 iff there existsp ∈ P such thatpR1 q1
andpR2 q2. We prove thatR is a consistency relation relatingq1

0 andq2
0. Indeed(q1

0, q
2
0) ∈ R

because by definition ofC, we havep0 R1 q
1
0 andp0 R2 q

2
0. Let (q1, q2) ∈ R andpi ∈ P such

thatpi R1 q
1 andpi R2 q

2.

1. ByR1 andR2, V1(q
1) = VC(pi) = V2(q

2).
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2. Let∆1 and∆2 be the correspondance matrices witnessingpi R1 q
1 andpi R2 q

2. Define
̺ ∈ Distr(Q1 ×Q2) such that for all1 ≤ l ≤ n and1 ≤ r ≤ m,

̺(q1
l , q

2
r) =

k∑

j=0

πi,j∆
1
j,l · ∆

2
j,r. (2.1)

By definition of∆1 and∆2, we have
∑

1 ≤ l ≤ n
1 ≤ r ≤ m

̺(q1
l , q

2
r) = 1, and̺ is indeed a

distribution onQ1 ×Q2.

Let q1
l ∈ Q1.

m∑

r=0

̺(q1
l , q

2
r) =

m∑

r=0

k∑

j=0

πi,j · ∆
1
j,l · ∆

2
j,r

=

k∑

j=0

πi,j · ∆
1
j,l · (

m∑

r=0

∆2
j,r)

=
∑

1≤j≤k | πi,j>0

πi,j · ∆
1
j,l by definition of∆2

∈ ϕ1(q
1)(q1

l ) by definition of∆1.

Similarly, for all q2
r ∈ Q2,

∑n
l=0 ̺(q

1
l , q

2
r) ∈ ϕ2(q

2)(q2
r).

3. Letq1
l ∈ Q1 andq2

r ∈ Q2 be states such that̺(q1
l , q

2
r) > 0. Then at least one term in Eq.

(2.1) is positive. Thus, there exists1 ≤ j ≤ k such that∆1
j,l · ∆

2
j,r > 0. This implies that

both factors are positive, and by definition of∆1 and∆2, we have that(pj, q
1
l ) ∈ R1 and

(pj, q
2
r) ∈ R2 and thereforeq1

l R q2
r .

This proves thatR is a consistency relation.

⇐: Assume that there exists a consistency relationR relatingq1
0 andq2

0. We now construct
a common implementationC, such thatC |= I1 andC |= I2; we prove the former first. Let
C = 〈P, p0, π, A, VC〉 such that

• P = {(q1, q2) ∈ Q1 ×Q2 | q1 R q2} = {p0, . . . , pk};

• p0 = (q1
0 , q

2
0);

• VC((q1, q2)) = V1(q
1) = V2(q

2) by definition ofR;

• For eachpi, pj ∈ P with pi = (q1, q2) andpj = (q1
l , q

2
r), let πi,j = ̺(q1

l , q
2
r), where̺ is

the distribution witnessing the membership of(q1, q2) in R.

To show satisfaction betweenC and I1, defineRs ⊆ P × Q1 the relation such thatp =
(q1, q2)Rs q

1′ iff q1 = q1′. We now prove thatRs is a satisfaction relation betweenC andI1.
Let pi = (q1, q2) ∈ P such that(q1, q2)Rs q

1.

1. By definition ofC, VC(pi) = V1(q
1).
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Figure 2.7: IMCsI6, I7, andI8

2. Let ∆ ∈ [0, 1]k×n be the correspondance matrix derived as follows:∆j,l = 1 if pj =
(q1

l , q
2
t ) for somet and 0 else.

(a) Letpj ∈ P .
n∑

l=0

∆j,l = 1 by definition.

(b) Let q1
l ∈ Q1.

k∑

j=0

πi,j∆j,l =
∑

pj∈P | pj=(q1
l
,v′)

̺(pj)

=

m∑

r=0

̺(q1
l , q

2
r)

∈ ϕ1(q
1)(q1

l ) by definition ofR .

(c) Let pj = (q1
l , q

2
r) ∈ P andq1

t ∈ Q1 such that∆j,t > 0. Thenq1
l = q1

t and by
definition,(q1

l , q
2
r)Rs q

1
l .

ThusRs is a satisfaction relation, andC |= I1. Analogously, it can be shown thatC |= I2.
FinallyC is a common implementation ofI1 andI2. �

The consistency relation can be computed in polynomial timeusing a standard coinductive
fixpoint iteration, where pairs violating Definition 2.13 are successively removed fromQ1×Q2.
Each iteration requires solving a polynomial number of linear equation systems, which can be
done in polynomial time [93]. For the general problem of common implementation ofk IMCs,
we can extend the above definition of consistency relation tothek-ary relation in the obvious
way, and the algorithm becomes exponential in the number of IMCs k, as the size of the state
space

∏k
i=0 |Qi| is exponential ink.

As a side effect we observe that, exactly like for modal transition systems, CI becomes
polynomial for any constant value ofk, i.e. when the number of components to be checked is
bounded by a constant.

Example. Consider the three IMCs in Figure 2.7. We construct a consistency relationR for
k = 3. The triple(A, 1, α) is in the relationR witnessed by the distribution̺ that assigns
1
6

to (B, 2, β), 1
6

to (C, 2, β), 1
3

to (D, 3, γ), 1
6

to (E, 4, δ), and 1
6

to (E, 4, ǫ). The triples that
are given positive probability by̺ are also in the relation each by the distribution assigning
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probability 1 to itself. A common implementationC = 〈P, p0, π, A, VC〉 can be constructed
as follows: P = {q|q ∈ R}, p0 = (A, 1, α), VC(p) is inherited fromI6, I7, and I8, and
π(p)(p′) = ̺(p′), where̺ is the distribution witnessing thatp ∈ R.

Consistency. A related problem is the one of checking consistency of a single IMC I, i.e.
whether there exists a MCM such thatM |= I.

Definition 2.14 (Consistency (C)). Given an IMCI, does it hold that[[I]] 6= ∅?

It turns out that, in the complexity theoretic sense, this problem is easy:

Theorem 2.13.The problem C, of deciding whether a single IMC is consistentcan be solved
in polynomial time.

Given an IMCI = 〈Q, q0, ϕ, A, V 〉, this problem can be solved by constructing a consis-
tency relation overQ×Q (as if searching for a common implementation ofQ with itself). Now
there exists an implementation ofI iff there exists a consistency relation containing(q0, q0).
Obviously, this can be checked in polynomial time.

The fact that C can be decided in polynomial time casts an interesting light on the ability
of IMCs to express inconsistency. On one hand, one can clearly specify inconsistent states
in IMCs (simply by giving intervals for successor probabilities that cannot be satisfied by any
distribution). On the other hand, this inconsistency appears to be local. It does not induce
any global constraints on implementations; it does not affect consistency of other states. In
this sense IMCs resemble modal transition systems (which atall disallow expressing inconsis-
tency), and are weaker thanmixed transition systems[48, 9]. Mixed transition systems relax
the requirement of modal transition systems, not requiringthat(→) ⊆ (99K). It is known that
C is trivial for modal transition systems, but EXPTIME-complete for mixed transition systems
[11]. Clearly, with a polynomial time C, IMCs cannot possibly express sophisticated global
behaviour inconsistencies in the style of mixed transitionsystems, where the problem is much
harder.

We conclude the section by observing that,given the IMCI = 〈Q, q0, ϕ, A, V 〉, with Q =
{q0, . . . , qn}, and a consistency relationR ⊆ Q × Q, it is possible to derive aprunedIMC
I∗ = 〈Q∗, q∗0, ϕ

∗, A, V ∗〉 that contains no inconsistent states and accepts the same set of imple-
mentations asI. The construction ofI∗ is as follows:Q∗ = {q ∈ Q|(q, q) ∈ R}, q∗0 = q0,
V ∗(q∗) = V (q∗) for all q∗ ∈ Q∗, and for allq∗1 , q

∗
2 ∈ Q∗, ϕ∗(q∗1)(q

∗
2) = ϕ(q∗1)(q

∗
2).

Theorem 2.14.Consider an IMCI and its pruned IMCI∗. We have[[I]] = [[I∗]].

Proof. By construction, the IMCI∗ is a restriction ofI. As a consequence, it is obvious that
every implementation ofI∗ is also an implementation ofI. Thus,[[I∗]] ⊆ [[I]].

Moreover, if there exists an implementationC = 〈P, p0, π, A, VP 〉 of I = 〈Q, q0, ϕ, A, V 〉
such that a statep ∈ P statisfies a stateq ∈ Q, it is obvious that there also exists a consistency
relationR betweenI andI that includesq. Indeed there will exist a̺ ⊆ Distr(Q×Q) satisfying
the constraints ofq: π(p). As a consequence, all the states belonging to a satisfaction relation
for I will be states ofQ∗. Thus all the satisfaction relations forI will also be satisfaction
relations forI∗. Finally, we have[[I]] ⊆ [[I∗]].

�
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Figure 2.8: An IMC and its pruned version

Example. Consider the IMCI in Figure 2.8a. Building a consistency relation, we see that
(1, 1) is in the relation witnessed by the distribution assigning probability 0.8 to (2, 2) and0.2
to (4, 4). This probability distribution "avoids" the inconsistentstate(3, 3); this state does not
admit a probability distribution. Likewise,(2, 2) and(3, 3) are in the relation, witnessed by the
distributions that gives probability 1 to(2, 2) and(3, 3), respectively.
I∗ is shown in Figure 2.8b.

In the next chapter, we present a more general algorithm for pruning, that does not involve
constructing a consistency relation.

2.6 Conclusion and Related Work

This chapter provides new results for IMCs [86, 124, 34, 69] that is a specification formalism
for probabilistic systems. We have studied the expressiveness and complexity of three refine-
ment preorders for IMCs. The results are of interest as existing works on IMCs often use one
of these preorders to compare specifications (for abstractions) [86, 89, 61]. We have estab-
lished complexity bounds and decision procedures for theserelations, closing a 20 years old
left open problem in the seminal work on IMCs [86]. Finally, we have studied the common im-
plementation problem that is to decide whether there existsan implementation that can match
the requirements made by two or more specifications. Our solution is constructive in the sense
that it can build such a common implementation.

Our results are robust with respect to simple variations of IMCs. For example sets of sets
of propositions can be used to label states, instead of sets of propositions. This extends the
power of the modeling formalism, which now can not only express abstractions over probability
distributions, but also over possible state valuations. All our results easily translate to this
setting without any changes to the complexity classes. Similarly an initial distribution, or even
an interval constraint on the initial distribution, could be used instead of the initial state in IMCs
(and MCs) without affecting the results. Finally, the setting we propose here only considers
MCs and IMCs sharing the same sets of atomic propositions. This setting could easily extend
to MCs / IMCs with distinct sets of atomic propositions, as will be done in the next chapter.

There exists many other specification formalisms for describing and analyzing stochastic
systems; the list includes process algebras [79, 8, 103] or logical frameworks [73, 129]. We
believe that IMCs is a good unification model for such formalisms. A logical representation
is suited for conjunction, but nor for refinement and vice-versa for process algebra. As an
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example, it is not clear how one can synthesize a MC (an implementation) that satisfies two
Probabilistic Computation Tree Logic formulas.

IMCs and their extensions have been used as specification formalisms for stochastic sys-
tems. Unfortunately, as we already stated, IMCs are not expressive enough to capture many
requirements of the compositional design methodology. This includes conjunction, parallel
composition and disjunction. Conjunction allows solving several problems, notably common
implementation. The solution promoted in this chapter provides a methodology in order to
solve the common implementation problem for a set of IMCs without explicitly computing
their conjunction. However, there are also problems usually solved using conjunction that the
methodology presented in this chapter cannot solve. As an example, the problem of deciding
whether the common implementations of two given specifications are also implementations
of a third specification cannot be addressed using IMCs. In the same way, the methodology
presented in this chapter does not allow us to reason on parallel composition and thus on in-
cremental design. Disjunction, which allows to select between the requirements of many spec-
ifications remains an open problem. This operation is of importance for any procedure that
would use IMCs as a symbolic representation for possibly infinite sets of MCs. Using such
symbolic representation in a fixed point computation, one would have to decide whether the
union of two IMCs is refined by another IMC. It is thus necessary to enrich the model of IMCs
in order to obtain a specification theory that will be closed under both conjunction and parallel
composition. This will be the subject of the next chapter.
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Chapter 3

Constraint Markov Chains

3.1 Introduction

In the previous chapter, we have introduced IMCs that is a specification theory for stochastic
systems. One of the main drawbacks of this model is that it is not closed under conjunction
and composition, two requirements for a good interface theory. One way to approach this
problem could be to work with two types of specifications: IMCs for refinement and structural
composition, and a probabilistic logic such as PCTL [73] on which a logical conjunction is
naturally defined. Such a solution is clearly non satisfactory. Indeed, it is not clear how one can
synthesize a MC (an implementation) that satisfies two PCTL formulas. It is also not possible
to structurally compose two PCTL formulas.

In this chapter, we promote a new approach to the problem: we developConstraint Markov
Chains(CMCs for short) as a new specification formalism that can be used as a foundation for
component-based design of probabilistic systems. CMCs area further extension of IMCs al-
lowing rich constraints on the next-state probabilities from any state. Whereas linear constraints
suffice for closure under conjunction, polynomial constraints are necessary for closure under
parallel composition. We provide constructs for refinement, consistency checking, logicaland
structural composition of CMC specifications – all indispensable ingredients of a compositional
design methodology.

The notions of satisfaction and strong/weak refinements forCMCs conservatively extend
similar notions for IMCs [61, 86], presented in Chapter 2. Wecharacterize these relations in
terms of implementation set inclusion. In particular, in the main theorem, we prove that for
deterministic CMCs weak and strong refinements are completewith respect to implementation
set inclusion. In addition, we provide a construction, which for any CMCS returns a deter-
ministic CMC ̺(S) containing the models ofS. Refinement relations are not complete for
non-deterministic CMCs, but one can show that the weak refinement is more likely to coincide
with implementation set inclusion in such a context. We showthat refinement between CMCs
with polynomial constraints can be decided in essentially single exponential time.

In CMCs, each state is also labelled with a set of subsets of atomic propositions. Those
propositions represent properties that should be satisfiedby the implementation. The idea be-
ing that the satisfaction relation ensures that an implementation matches at least one of the
subsets. This allows the specification to make additional assumptions on the behaviors of the
implementation. Hence, at the level of specification, our model presents choices on subsets of
actions. However these choices are independent from the probabilistic ones in the sense that
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any CMC whose states are labelled with a set of subsets of atomic propositions can be turned
to an equivalent (in terms of set of implementations) CMC whose states are labeled with a sin-
gle subset of atomic propositions. There, choices between the subsets of actions disappear. It
is thus not surprising that our notion of parallel composition is following the widely accepted
principle of separation of concerns. The idea is to separate parallel composition of proba-
bility distributions from synchronization on sets of actions. This separation can be found in
probabilistic specification theories that have probabilistic automata as an underlying semantic
model [121, 72, 87, 79]. In fact, we show how probabilistic automata can be represented as
CMCs, and how the traditional notions of parallel composition on such model can be derived
in our framework with precongruence properties obtained for free. This latter result shows that
CMCs capture computational structure of known models and operators, laying down a basis
for studying shared properties of many probabilistic automata based languages. As already
mentioned, we exemplify this by showing how precongruence properties for composition of
probabilistic automata and known refinements can be obtained by reductions to CMCs.

We also compare the expressivity of the operation of parallel composition and the one of
conjunction. It turns out that for independent sets of valuations, composition refines conjunc-
tion, but the opposite is not true. This result allows to isolate a class of CMCs and CMCs
operations that is closed under linear constraints. Finally, we also show that CMCs are not
closed under disjunction and we discuss the problem of deciding whether a CMC is universal.

Structure of the chapter. In Section 3.2, we introduce the concept of CMCs and a satisfaction
relation with respect to Markov Chains. Consistency, refinement and conjunction are discussed
in Section 3.3. Structural composition is introduced in Section 3.4 where we also compare the
operation to conjunction. Disjunction and universality are discussed in Section 3.5. In Section
3.6, we introduce deterministic CMCs and show that, for thisclass of CMCs, strong and weak
refinements coincide with inclusion of implementation sets. Section 3.7 discusses the class of
polynomial CMCs, which is the smallest class of CMCs closed under all the compositional
design operations. Section 3.9 concludes the chapter with related and future work.

3.2 Constraint Markov Chains

Since we aim at building a compositional specification theory, it may be of interest to consider
structures with possibly different sets of atomic propositions. In order to take care of this
possibility, we propose the following operations on sets ofatomic propositions. LetA,B be
sets of propositions withA ⊆ B. Therestriction ofW ⊆ B toA is given byW↓A≡ W ∩ A.
If T ⊆ 2B, thenT↓A≡ {W↓A| W ∈ T}. ForW ⊆ A define theextension ofW to B as
W↑B≡ {V ⊆ B | V ↓A= W}, so the set of sets whose restriction toA isW . Lift it to sets of
sets as follows: ifT ⊆ 2A thenT ↑B≡ {W ⊆ B | W↓A∈ T}. LetM,∆ ∈ [0, 1]n×k be two
matrices andx ∈ [0, 1]1×k be a vector. We writeMij for the cell inith row andjth column of
M , Mp for thepth row ofM , andxi for the ith element ofx. Finally, ∆ is acorrespondence
matrix iff 0 ≤

∑k
j=1 ∆ij ≤ 1 for all 1 ≤ i ≤ n.

We recall the definition for Markov Chains, allready introduced in Chapter 2. Markov
Chains act as models in our specification formalism.

Definition 3.1 (Markov Chain). C = 〈Q, o,M,A, V 〉 is a Markov Chainif Q is a finite set of
states containing the initial stateo, A is a set of atomic propositions,V :Q → 2A is a state
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Figure 3.1: Two specifications (CMCs) and two implementations (MCs) of an optic relay

valuation. Assuming that the states inQ are ordered, i.e.Q = {q1, . . . , qn}, M ∈ [0, 1]n×n

is a probability transition matrix:
∑n

j=1Mij = 1 for i = 1, . . . , n. The cellMij defines the
probability of the transition from stateqi to stateqj .

Like in Chapter 2, our formalism does not allow “sink states”, i.e. states with no outgoing
transition. However, in order to avoid clutter in the figures, we sometimes represent states
with no outgoing transitions. They must be interpreted as states with a self-loop of probability
1. We now introduceConstraint Markov Chains(CMCs for short), a finite representation for
a possibly infinite set of MCs. Roughly speaking, CMCs generalize MCs in that, instead of
specifying a concrete transition matrix, they only constrain probability values in the matrix.
Constraints are modelled using acharacteristic function, which for a given source state and a
distribution of probabilities of leaving the state evaluates to 1 iff the distribution is permitted by
the specification. Similarly, instead of a concrete valuation function for each state, aconstraint
on valuationsis used. Here, a valuation is permitted iff it is contained inthe set of admissible
valuations of the specification.

Definition 3.2 (Constraint Markov Chain). A Constraint Markov Chainis a tupleS = 〈Q, o, ϕ,
A, V 〉, whereQ is a finite set of states containing the initial stateo, A is a set of atomic
propositions,V :Q→ 22A

is a set of admissible state valuations. Assuming that the states inQ
are ordered, i.e.Q = {q1, . . . , qk}, ϕ :Q → [0, 1]k → {0, 1} is a constraint functionsuch that
if ϕ(j)(x) = 1 then thex vector is a probability distribution:x ∈ [0, 1]k and

∑k
i=1 xi = 1.

As introduced in Chapter 2,Interval Markov Chains(IMCs for short) [86] are CMCs whose
constraint functions are represented by intervals, so for all 1 ≤ i ≤ k there exist constantsαi,
βi such thatϕ(j)(x) = 1 iff ∀1 ≤ i ≤ k, xi ∈ [αi, βi].
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Example. Two parties, a customer and a vendor, are discussing a designof a relay for an
optical telecommunication network. The relay is designed to amplify an optic signal transmitted
over a long distance over an optic fiber. The relay should haveseveral modes of operation,
modelled by four dynamically changing properties and specified by atomic propositionsa, b, c,
ande:

Atomic propositions in the optic relay specifications

a ber≤ 10−9 bit error rate lower than 1 per billion bits transmitted

b br > 10Gbits/s The bit rate is higher than 10 Gbits/s.

c P < 10W Power consumption is less than 10 W.

e Standby The relay is not transmitting.

The customer presents CMCS1 (Figure 3.1a) specifying the admissible behaviour of the
relay from their point of view. States are labelled with formulas characterizing sets of valua-
tions. For instance,”(a + b + c ≥ 2) ∧ (e = 0)” at state2 of S1 representsV1(2) = {{a, b},
{b, c}, {a, c}, {a, b, c}}, wherea, b, c, ande range over Booleans. State 1 specifies a standby
mode, where no signal is emitted and only marginal power is consumed. State 2 is the high
power mode, offering a high signal/noise ratio, and hence a high bitrate and low error rate, at
the expense of a high power consumption. State 3 is the low power mode, with a low power
consumption, low bitrate and high error rate. The customer prescribes that the probability of
the high power mode (state 2) is higher than0.7. The vendor replies with CMCS2 (Figure
3.1b), which represents possible relays that they can build. Because of thermal limitations, the
low power mode has a probability higher than0.2.

A stateu of S is (directly)reachablefrom a statei if there exists a probability distribution
x ∈ [0, 1]k with a nonzero probabilityxu, which satisfiesϕ(i)(x).

We relate CMC specifications to MCs implementing them, by extending the definition of
satisfaction presented in Chapter 2 to observe the valuation constraints and the full-fledged con-
straint functions. Crucially, like in Chapter 2 and in [86],we abstract from syntactic structure of
transitions—a single transition in the implementation MC can contribute to the satisfaction of
more than one transition in the specification, by distributing its probability mass against several
transitions. Similarly many MC transitions can contributeto the satisfaction of just one spec-
ification transition. The concept is strictly the same as defined for IMCs in Chapter 2. Again,
this definition is slightly different but strictly equivalent to the definition used in [86]. Unlike
in [86], our definition is a particular case of the refinement relations that will be presented later
in this section.

Definition 3.3 (Satisfaction Relation). LetC= 〈{1, . . . , n}, oC ,M,AC , VC〉 be a MC andS=
〈{1, . . . , k}, oS, ϕ, AS, VS〉 be a CMC withAS ⊆ AC . ThenR ⊆ {1, . . . , n} × {1, . . . , k} is a
satisfaction relationbetween states ofC andS iff wheneverpRu then

1. their valuations are compatible:VC(p)↓AS
∈ VS(u), and

2. there exists a correspondence matrix∆ ∈ [0, 1]n×k such that

• for all 1 ≤ p′ ≤ n withMpp′ 6= 0,
∑k

j=1 ∆p′j = 1,

• ϕ(u)(Mp × ∆) holds, and

• if ∆p′u′ 6= 0 thenp′ Ru′.
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(b) Weak refinement for initial states ofS3 andS4

Figure 3.3: Examples of refinement and satisfaction for CMCs

We write C |= S iff there exists a satisfaction relation relatingoC and oS, and callC an
implementationof S. The set of all implementations ofS is given by[[S]] ≡ {C | C |= S}.
Rows of∆ that correspond to reachable states ofC always sum up to 1. This is to guarantee
that the entire probability mass of implementation transitions is allocated. For unreachable
states, we leave the corresponding rows in∆ unconstrained.C may have a richer alphabet
thanS, in order to facilitate abstract modelling: this way an implementation can maintain local
information using internal variables. Algorithms to decide satisfaction are particular cases of
algorithms to deciderefinementbetween CMCs. See the next section.

Example. We illustrate the concept of correspondence matrix betweenSpecificationS1 (given
in Figure 3.1a) and ImplementationC2 (given in Figure 3.1d). The CMCS1 has three outgoing
transitions from state 1 but, due to constraint function in1, the transition labelled withx1

cannot be taken (the constraint impliesx1 = 0). The probability mass going from state 1 to
states 2 and 3 inC2 corresponds to the probability allowed byS1 from its state1 to its state2;
The redistribution is done with the help of the matrix∆ given in Figure 3.3a. Theith column
in ∆ describes how big fraction of each transition probability (for transitions leaving 1) is
associated with probabilityxi in S1. Observe that the constraint functionϕ1(1)(0, 0.8, 0.2) =
ϕ1(1)((0, 0.7, 0.1, 0.2)× ∆) is satisfied.

CMC semantics follows the Markov Decision Process (MDP) tradition [124, 34]. The MDP
semantics is typically opposed to the Uncertain Markov Chain semantics, where the probability
distribution from each state is fixed a priori.
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States of CMCs are labeled with a set of subsets of atomic propositions. A single set of
propositions represents properties that should be satisfied by the implementation. A set of sets
models a choice of properties, with the idea being that the satisfaction relation ensures that
an implementation matches at least one of the subsets. This allows the specification to make
additional assumptions on the behaviors of the implementation. For an implementation, in
each state the discrete choice of proposition set and the probabilistic choice of successor are
independent.

It turns out that any CMC whose states are labelled with a set of subsets of atomic proposi-
tions can be turned into an equivalent (in terms of sets of implementations) CMC whose states
are labeled with sets that contains a single subset of atomicpropositions. Hence working with
sets of subsets of valutations is a kind of modeling sugar that can be removed with a transfor-
mation to thesingle valuation normal form.

Definition 3.4. We say that a CMCS = 〈{1, . . . , k}, o, ϕ, A, V 〉 is in Single Valuation Normal
Form if all its admissible valuation sets are singletons (|V (i)| = 1 for each1 ≤ i ≤ k).

More precisely every consistent CMC with at most one admissible valuation in the initial state
can be transformed into the normal form preserving its implementation set by using the follow-
ing polynomial algorithm.

The normalization algorithm basically separates each state u with m possible valuations
intom statesu1, . . . , um, each with a single admissible valuation. Then the constraint function
is adjusted, by substituting sums of probabilities going tothe new states in place of the old
probabilities targetingu. The transformation is local and syntax based. It can be performed in
polynomial time and it only increases the size of the CMC polynomially. We will writeN (S)
for a result of normalization ofS.

Definition 3.5 (Normalization). Let S = 〈{1, . . . , k}, o, ϕ, A, V 〉 be a CMC. If there exists a
functionN : {1, . . . , k} → 2{1,...,m} such that

(a) {1, . . . , m} = ∪i∈{1,...,k}N (i);

(b) For all 1 ≤ i 6= j ≤ k, N (i) ∩ N (j) = ∅;

(c) ∀1 ≤ i ≤ k, |N (i)| = |V (i)|;

If, moreover,|V (o)| = 1, the normalization ofS is the CMCN (S) = 〈{1, . . . , m}, o′, ϕ′, A, V ′〉
such thatN (o) = {o′} and

1. ∀1 ≤ j ≤ m, |V ′(j)| = 1;

2. ∀1 ≤ i ≤ k, V (i) = ∪u∈N (i)V
′(u);

3. ∀1 ≤ i ≤ k, ∀u, v ∈ N (i), u 6= v ⇐⇒ V ′(u) 6= V ′(v);

4. ∀1 ≤ j ≤ m,

ϕ′(j)(x1, . . . xm) = ϕ(N−1(j))(
∑

u∈N (1)

xu, . . . ,
∑

u∈N (k)

xu).
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Figure 3.4: Illustration of normalization.

By construction,N (S) is in single valuation normal form. Moreover, ifS is consistent, then a
functionN satisfying the conditions above exists.

The following example illustrates the normalization algorithm.

Example. Consider the CMCS = 〈{1, 2, 3, 4}, 1, ϕ, {a, b, c, d, e}, V 〉 given in Figure 3.4a.
Since states2 and 3 have two subsets of atomic propositions,S is not in single valuation
normal form. Define the following normalisation function

N :






1 → {1}

2 → {2, 2′}

3 → {3, 3′}

4 → 4

The result of applying the normalisation algorithm toS is the CMCN (S) = 〈{1, 2, 2′, 3, 3′,
4}, 1, ϕ′, {a, b, c, d, e}, V ′〉 given in Figure 3.4b. Following the algorithm, States2 and3 of S
have been each separated into two states with a single subsetof atomic propositions. The
constraint function of state1 usesy2 + y2′ andy3 + y3′ instead ofx2 andx3 respectively.

As expected, the above algorithm builds a CMC in single valuation normal form that has
the exact same set of implementations as the initial CMC.

Theorem 3.1.LetS = 〈{1, . . . k}, o, ϕ, A, V 〉 be a consistent CMC. If|V (o)| = 1, then for all
MCC, we haveC |= S ⇐⇒ C |= N (S).

Proof. Let S = 〈{1, . . . , k}, o, ϕ, A, V 〉 be a consistent CMC such that|V (o)| = 1. LetS ′ =
N (S) = 〈{1, . . . , m}, o′, ϕ′, A, V ′〉 andN : {1, . . . , k} → 2{1,...,m} the associated function.

⇒ LetC = 〈{1, . . . , n}, oC,M,AC , VC〉 be a MC such thatC |= S. LetR be the associated
satisfaction relation. LetR′ ⊆ {1, . . . , n} × {1, . . . , m} such thatpRu ⇐⇒ VC(p) ∈
V ′(u) andpRN−1(u). We will show thatR′ is a satisfaction relation. Letp, u such that
pR′ u.

1. By definition, we haveVC(p) ∈ V ′(u).
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2. We havepRN−1(u). Let ∆ ∈ [0, 1]n×k be the associated correspondence matrix.
Define∆′ ∈ [0, 1]n×m such that∆′

q,v = ∆q,N−1(v) if Vp(q) ∈ V ′(v) and0 else. As
every coefficient of∆ appears once and only once in the same row of∆′, it is clear
that∆′ is a correspondence matrix. Moreover,

(a) If q is such thatMpq 6= 0, then
∑m

j=1 ∆′
q,j =

∑k
i=1 ∆q,i = 1 ;

(b) For all 1 ≤ i ≤ k,
∑

j∈N (i)([Mp × ∆′]j) = [Mp × ∆]i. As a consequence,
ϕ′(u)(Mp × ∆′) = ϕ(N−1(u))(Mp × ∆) holds.

(c) If q, v are such that∆′
q,v 6= 0, then∆q,N−1(v) 6= 0 andVC(q) ∈ V ′(v), thus

qR′ v.

Finally,R′ is a satisfaction relation. It is easy to see thatop R
′ o′. As a consequence, we

haveC |= N (S).

⇐ Let C = 〈{1, . . . , n}, oC,M,AC , VC〉 be a MC such thatC |= N (S). Let R be the
associated satisfaction relation. LetR′ ⊆ {1, . . . , n} × {1, . . . , k} such thatpR′ u ⇐⇒
∃j ∈ N (u) s.t. pR j. We will show thatR′ is a satisfaction relation. Letp, u such that
pR′ u.

1. We haveVC(p) ∈ V (u) = ∪j∈N (u)V
′(j).

2. Let j ∈ N (u) such thatpR j, and let∆ ∈ [0, 1]n×m be the associated correspon-
dence matrix. Define∆′ ∈ [0, 1]n×k such that∆′

q,v =
∑

i∈N (v) ∆q,i. It is clear that

for all q,
∑k

v=1 ∆′
q,v =

∑m
r=1 ∆qr. Thus∆′ is a correspondence matrix. Moreover,

(a) If q is such thatMpq 6= 0, then
∑k

i=1 ∆′
q,i =

∑m
r=1 ∆q,r = 1 ;

(b) For all 1 ≤ i ≤ k, [Mp × ∆′]i =
∑

r∈N (i)([Mp × ∆]r). As a consequence,
ϕ(u)(Mp × ∆) = ϕ′(j)(Mp × ∆′) holds.

(c) If q, v are such that∆′
q,v 6= 0, then there existsr ∈ N (v) such that∆q,r 6= 0,

thusqR′ v.

Finally,R′ is a satisfaction relation. It is easy to see thatoC R′ o. As a consequence, we
haveC |= S.

�

Crucially, note that this algorithm cannot be applied to IMCs. Indeed, normalization intro-
duces a linear complexity in the constraint functions, as can be seen in Item 4 of Definition 3.5.
Finally, normalization obviously preserves determinism.

3.3 Consistency, Refinement and Conjunction

In this section, we study the consistency problem that is to decide whether a CMC admits
at least an implementation. Then we propose algorithms in order to check refinement and
implementation set inclusion. Finally, we propose a methodology to compute the conjunction
of two CMCs.
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Figure 3.5: Illustration of the pruning algorithm.

3.3.1 Consistency

A CMC S is consistentif it admits at least one implementation. We now discuss how to decide
consistency. A stateu of S is valuation consistentiff V (u) 6= ∅; it is constraint consistent
iff there exists a probability distribution vectorx ∈ [0, 1]1×k such thatϕ(u)(x) = 1. It is
easy to see that ifeach stateof S is both valuation and constraint consistent thenS is also
consistent. However, inconsistency of a state does not imply inconsistency of the specification.
Indeed, an inconsistent state could be made unreachable by forcing the probabilities to reach it
to zero. The operations presented later in this chapter may introduce inconsistent states, leaving
a question if a resulting CMC is consistent. In order to decide whetherS is inconsistent, state
inconsistencies are propagated throughout the entire state-space using apruning operatorβ that
removes inconsistent states fromS. The resultβ(S) is a new CMC, which may still contain
some inconsistent states. We defineβ formally.

Definition 3.6 (Pruning operator (β)). LetS = 〈{1, . . . , k}, o, ϕ, A, V 〉. The pruning operator
β is defined as follows:

• If o is locally inconsistent then letβ(S) = ∅.

• If S does not contain locally inconsistent states thenβ(S) = S.

• Else proceed in two steps. First fork′ < k define a functionν : {1, . . . , k} → {⊥, 1, . . . ,
k′}, which will remove inconsistent states. All inconsistent states are mapped to⊥. For
all 1 ≤ i ≤ k takeν(i) = ⊥ iff [(V (i) = ∅) ∨ (∀x ∈ [0, 1]k, ϕ(i)(x) = 0)]. All remain-
ing states are mapped injectively into{1, . . . , k′}: ν(i) 6= ⊥ =⇒ ∀j 6= i, ν(j) 6= ν(i).
Then letβ(S) = 〈{1, . . . , k′}, ν(o), ϕ′, A, V ′}, whereV ′(i) = V (ν−1(i)) and for all
1 ≤ j ≤ k′ the constraintϕ′(j)(y1, . . . , yk′) is: ∃x1, . . . , xk such that

[
ν(q)=⊥ ⇒ xq =0

]
∧
[
∀1≤ l≤k′ : yl =xν−1(l)

]
∧
[
ϕ(ν−1(j))(x1, . . . , xk)

]

The constraint makes the inconsistent states unreachable,and then⊥ is dropped as a state.

The operator is applied iteratively, until a fixpoint is reached. S is consistent iff the resulting
CMC β∗(S) contains at least one state. The following example illustrates the pruning algo-
rithm.

Example. Consider the CMCS = 〈{1, 2, 3, 4}, 1, ϕ, {a, b, c}, V 〉 given in Figure 3.5a. Define
ϕ as following :ϕ(1)(x) = (x2 ≤ 0.3) ∧ (x2 + x3 = 1), ϕ(2)(x′) = (x′4 = 1). The constraint
of States3 and4 are not relevant for this example.
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State4 is obviously not valuations consistent. States1, 2 and 3 are all valuations and
constraint consistent. As a consequence, the first step of the pruning algorithm will only mark
state4 as inconsistent. For this, define the following function

ν :






1 → 1

2 → 2

3 → 3

4 →⊥

Then defineβ(S) = 〈{1, 2, 3}, 1, ϕ′, {a, b, c}, V ′〉 such that, after reduction,ϕ′(1)(y) =
(y2 ≤ 0.3) ∧ (y2 + y3 = 1), andϕ′(2)(y′) = ∃x′4, (x′4 = 0) ∧ (x′4 = 1). β(S) is given in
Figure 3.5b.

Obviously, State2 of β(S) is now constraint inconsistent:ϕ′(2)(y′) is not satisfiable. We
thus apply another time the pruning operatorβ in order to remove State2. This time we obtain
a consistent CMCβ∗(S), given in Figure 3.5c.

The fixpoint ofβ, and thus the entire consistency check, can be computed using a quadratic
number of state consistency checks. The complexity of each check depends on the constraint
language chosen. The following proposition shows that pruning preserves the set of implemen-
tations.

Proposition 3.2. LetS = 〈{1, . . . , k}, o, ϕ, A, V 〉} be a CMC andβ∗(S) = limn→∞ βn(S) be
the fixpoint ofβ. For any MCC, we have (1)C |= S ⇐⇒ C |= β(S) and (2)[[S]] = [[β∗(S)]].

Proof. Let S = 〈{1, . . . , k}, o, ϕ, A, V 〉 be a CMC (with at least an inconsistent state) and
C = 〈{1, . . . , n}, oC,M,AC , VC〉 be a MC. LetS ′ = 〈{1, . . . , k′}, o′, ϕ′, A, V ′〉 = β(S). If
β(S) is empty, then bothS andβ(S) are inconsistent.

Consider a functionν for removing inconsistent states (one exists because thereare in-
consistent states), such thatk′ < k and for all 1 ≤ i ≤ k, ν(i) = ⊥ ⇐⇒ [(V (i) =
∅) ∨ (∀x ∈ [0, 1]k, ¬ϕ(i)(x))] andν(i) 6= ⊥ ⇒ ∀j 6= i, ν(j) 6= ν(i). We first prove that
C |= S ⇐⇒ C |= β(S).

⇒ Suppose thatC |= S. Then there exists a satisfaction relationR such thatoC R o. Define
the relationR′ ⊆ {1, . . . , n}×{1, . . . , k′} such thatpR′ v iff there existsu ∈ {1, . . . , k}
such thatpRu andν(u) = v. It is clear thatoC R′ o′. We prove thatR′ is a satisfaction
relation. Letp, u, v such thatpRu andν(u) = v.

– As ν(u) 6= ⊥, we have by definition thatV ′(v) = V (u), thusVC(p)↓A∈ V ′(v).

– Let ∆ ∈ [0, 1]n×k be the correspondence matrix witnessingpRu. Let ∆′ ∈
[0, 1]n×k′

such that∆′
qw = ∆qν−1(w). It is clear that∆′ is a correspondence ma-

trix. We first show that

∀u′ ∈ {1, . . . , k}, (ν(u′) = ⊥) ⇒

(∀q ∈ {1, . . . , n}, ∆qu′ = 0).
(3.1)

Let u′ ∈ {1, . . . , k} such thatν(u′) = ⊥, and suppose that there existsq ∈
{1, . . . , n}, ∆qu′ 6= 0. As ∆ is a correspondence matrix, we haveqRu′. Thus
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VC(q) ↓A∈ V (u′), which means thatV (u′) 6= ∅, and there exists∆′′ such that
ϕ(u′)(Mq × ∆′′). Thus, there existsx ∈ [0, 1]1×k such thatϕ(u′)(x). As a conse-
quence, we cannot haveν(u′) = ⊥, which is a contradiction, thus (3.1).

We now prove thatR′ satisfies the axioms of a satisfaction relation.

1. Let p′ ∈ {1, . . . , n} such thatMpp′ 6= 0. This implies, by definition, that∑k
j=1 ∆p′j = 1. We have

∑k′

j=1 ∆′
p′j =

∑
r∈{1,...,k} | ν(r)6=⊥ ∆p′r.

By (3.1),
∑

r∈{1,...,k} | ν(r)6=⊥ ∆p′r =
∑k

r=1 ∆p′r = 1.

2. Let y = Mp × ∆′ ∈ [0, 1]1×k′

andx = Mp × ∆ ∈ [0, 1]1×k. We know that
ϕ(u)(x) holds. Moreover, by (3.1), ifν(q) = ⊥, thenxq = 0, and for all
l ∈ {1, . . . , k′}, yl = xν−1(l). Clearly, this implies thatϕ′(v)(Mp × ∆′) holds.

3. Let p′, v′ ∈ {1, . . . , n} × {1, . . . , k′} such that∆′
p′v′ 6= 0. We have∆′

p′v′ =
∆p′ν−1(v′) 6= 0, thus there existsu′ ∈ {1, . . . , k} such thatp′ Ru′ andν(u′) =
v′. Finally p′ R′ v′.

Finally,R′ is a satisfaction relation such thatoC R′ o′, thusC |= β(S).

⇐ Conversely, the reasoning is the same, except that we now build ∆ from ∆′ saying that
∆qv = 0 if ν(v) = ⊥ and∆qv = ∆′

qν(v) otherwise.

We have proved thatβ is implementations-conservative, thus the fixpoint ofβ verifies the
same property.

�

3.3.2 Refinement

Comparing specifications is central to stepwise design methodologies. Systematic comparison
enables simplification of specifications (abstraction) andadding details to specifications (elabo-
ration). Usually specifications are compared using arefinementrelation. Roughly, ifS1 refines
S2, then any model ofS1 is also a model ofS2.

We will now introduce two notions of refinement for CMCs that extend two well known
refinements for IMCs [86, 61], that we introduced in Chapter 2. We not only generalize these
refinements, but, unlike [86, 61], we also characterize themin terms of implementation set
inclusion – also calledthorough refinement– and computational complexity. We will prove
that the ordering we obtain between the three refinement relations is the same as the one we
obtained in Chapter 2. We then propose algorithms to computethese refinements for CMCs.

The strong refinement between IMCs, by Jonsson and Larsen [86], extends to CMCs in the
following way:

Definition 3.7 (Strong Refinement). LetS1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 andS2 = 〈{1, . . . ,
k2}, o2, ϕ2, A2, V2〉 be CMCs withA2 ⊆ A1. A relationR ⊆ {1, . . . , k1}×{1, . . . , k2} is a
strong refinement relationbetween states ofS1 andS2 iff whenevervRu then

1. their valuations are compatible:V1(v)↓A2⊆ V2(u), and

2. there exists a correspondence matrix∆ ∈ [0, 1]k1×k2 such that, for all probability distri-
bution vectorsx ∈ [0, 1]1×k1, if ϕ1(v)(x) holds then
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• xi 6= 0 ⇒
∑k2

j=1 ∆ij = 1,

• ϕ2(u)(x× ∆) holds, and

• if ∆v′u′ 6= 0 thenv′ Ru′.

We say that CMCS1 strongly refines CMCS2 , writtenS1 �S S2, iff o1 R o2 for some strong
refinement relationR.

Strong refinement imposes a “fixed-in-advance” correspondence matrix regardless of the
probability distribution satisfying the constraint function. In contrast, theweak refinement,
which generalizes the one proposed in [61] for IMCs, allows choosing a different correspon-
dence matrix for each probability distribution satisfyingthe constraint:

Definition 3.8 (Weak Refinement). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 andS2 = 〈{1, . . . ,
k2}, o2, ϕ2, A2, V2〉 be CMCs withA2 ⊆ A1. The relationR ⊆ {1, . . . , k1} × {1, . . . , k2} is a
weak refinement relationiff whenevervRu then

1. their constraints are compatible:V1(v)↓A2⊆ V2(u), and

2. for any distributionx∈ [0, 1]1×k1 satisfyingϕ1(v)(x), there exists a matrix∆ ∈ [0, 1]k1×k2

such that

• for all S1 states1 ≤ i ≤ k1, xi 6= 0 =⇒
∑k2

j=1 ∆ij = 1,

• ϕ2(u)(x× ∆) holds, and

• If ∆v′u′ 6= 0, thenv′ Ru′.

We say that CMCS1 (weakly) refines CMCS2, written S1 � S2, iff o1 R o2 for some weak
refinement relationR.

Example. Figure 3.3b illustrates a family of correspondence matrices parametrized byγ, wit-
nessing the weak refinement between initial states ofS3 andS4 (defined in Figures 3.2a–3.2b).
The actual matrix used in proving the weak refinement dependson the probability distribution
vectorz that satisfies the constraint functionϕ3 of state(1, 1). Takeγ = 0.7−z22

z23
if z22≤0.7 and

γ = 0.8−z22

z23
otherwise. It is easy to see thatϕ3((1, 1))(z) impliesϕ4(1)(z×∆).

The following theorem shows that weak refinement implies implementation set inclusion.

Theorem 3.3(Soundness of weak refinement). LetS1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 andS2 =
〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be two CMCs. IfS1 � S2, then we have[[S1]] ⊆ [[S2]].

Proof.
SinceS1 � S2, there exists a weak refinement relationR ⊆ {1, . . . , k1}×{1, . . . , k2} such

thato1 R o2. ConsiderC = 〈{1, . . . n}, oC ,M,AC , VC〉 such thatC |= S1. By definition, we
haveoC |= o1 and there exists a satisfaction relationR′ ⊆ {1, . . . , n} × {1, . . . , k1} such that
oC R′ o1.
Let R′′ ⊆ {1, . . . , n} × {1, . . . , k2} such thatpR′′ u ⇐⇒ ∃v ∈ {1, . . . , k1} with pR′ v and
vRu. Let’s show thatR′′ is a satisfaction relation. First, it is clear thatA2 ⊆ A1 ⊆ AC .
Now, considerp, u such thatpR′′ u. By definition, there existsv such thatpR′ v andvRu.
SinceVC(p)↓A1∈ V1(v) andV1(v)↓A2∈ V2(u), we haveVC(p)↓A2∈ V2(u).
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We now build a correspondence matrix∆′′ that satisfies the axioms of Definition 3.3. Let
x = Mp ∈ [0, 1]1×n and∆′ ∈ [0, 1]n×k1 be a correspondence matrix witnessingp |= v. Let
y = x × ∆′ ∈ [0, 1]1×k1. By definition of∆′, we haveϕ1(v)(y). Let ∆ ∈ [0, 1]k1×k2 be the
correspondence matrix witnessingv � u and define∆′′ = ∆′ × ∆ ∈ [0, 1]n×k2. By Lemma
3.5,∆′′ is also a correspondence matrix. We prove that∆′′ satisfies the axioms of Definition
3.3.

1. Let 1 ≤ p′ ≤ n such thatMpp′ 6= 0. As a consequence,
∑k1

j=1 ∆′
p′j = 1. We want to

prove that
∑k2

j=1 ∆′′
p′j = 1.

k2∑

j=1

∆′′
p′j =

k2∑

j=1

(

k1∑

q=1

∆′
p′q · ∆qj)

=

k1∑

q=1

∆′
p′q · (

k2∑

j=1

∆qj)

Let q such that∆′
p′q 6= 0. It is then clear thatyq ≥ Mpp′ · ∆′

p′q > 0. As ∆ is a witness of

v � u, we have
∑k2

j=1 ∆qj = 1. Finally, this implies that
∑k2

j=1 ∆′′
p′j = 1.

2. By construction,ϕ2(u)(Mp × ∆′′) holds.

3. Let p′, u′ such that∆′′
p′u′ 6= 0. By construction, it is clear that there existsv′ such that

∆′
p′v′ 6= 0 and∆v′u′ 6= 0. By definition of∆′ and∆, this implies thatp′ R′ v′ andv′ Ru′,

thusp′ R′′ u′.

From 1-3, we can conclude thatR′′ is a satisfaction relation. SinceoC R′′ o2, we haveC ∈ [[S2]]
and[[S1]] ⊆ [[S2]].

�

Since strong refinement implies weak refinement by construction, it also holds that strong
refinement imply implementation set inclusion. In Section 3.6, we shall see that the converse
holds for a particular class of CMCs. However, this is not thecase in general: strong refinement
is strictly stronger than weak refinement, which is strictlystronger than implementation set
inclusion. Formally, we have the following proposition.

Proposition 3.4. There exist CMCsSa, Sb, Sc andSd such that

• Sa weakly refinesSb, andSa does not strongly refineSb;

• [[Sc]] ⊆ [[Sd]], andSc does not weakly refineSd.

Proof.
We provide separate constructions for the two items of this theorem:

1. Consider the CMCsSa andSb given in Figures 3.6a and 3.6b respectively. CallXa (resp.
Xb) the stateX in Sa (resp.Sb). We first show that there exists a weak refinement relation
R such thatSa � Sb, with 1a R 1b. We then show that there exists no strong refinement
relation betweenSa andSb.
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1

2 3 4

{{A}}

x4x2

{{B}} {{C}} {{D}}

x3

ϕa(1)(x1, x2, x3, x4) = (x1 = 0)∧

(x2 + x3 ≥ 0.7) ∧ (x3 + x4 ≥ 0.2)∧

(x2 + x3 + x4 = 1)

(a) CMCSa

2 543

1 {{A}}

y2 y5

y3 y4

{{B}} {{C}} {{C}} {{D}}

ϕb(1)(y1, y2, y3, y4, y5) = (y1 = 0)∧

(y2 + y3 ≥ 0.7) ∧ (y4 + y5 ≥ 0.2)∧

(y2 + y3 + y4 + y5 = 1)

(b) CMCSb

Figure 3.6: CMCsSa andSb.

∆x =




1 0 0 0 0

0 1 0 0 0

0 0 γ (1 − γ) 0

0 0 0 0 1




∆ =




1 0 0 0 0

0 1 0 0 0

0 0 a (1 − a) 0

0 0 0 0 1




Figure 3.7: Correspondence matrices forSa � Sb.

(a) LetR = {(1a, 1b), (2a, 2b), (3a, 3b), (3a, 4b), (4a, 5b)}. We show thatR is a weak
refinement relation. We first focus on building the correspondence matrix for the
couple(1a, 1b). Let x be a “valid” valuation of the outgoing transitions of1a. Let
γ = 0.7−x2

x3
if x2 ≤ 0.7 and 0.8−x2

x3
otherwise. Asx satisfiesϕa(1a), we have

0 ≤ γ ≤ 1. Consider the correspondence matrix∆x given in Figure 3.7.

It is easy to see that for all valuationx satisfyingϕa(1a), ϕb(1b)(x × ∆x) also
holds. The correspondence matrices for the other pairs inR are trivial since there
are no outgoing transitions from those states. ThusR is a weak refinement relation
betweenSa andSb.

(b) Suppose that there exists a strong refinement relationR′ such that1a R
′ 1b. Let

∆ be the correspondence matrix associated to1a R
′ 1b. Since2a, 3a and4a can all

be reached from1a with an admissible transition, the sum of the elements in the
corresponding rows in∆ must be one. From the valuations of the states, we obtain
that∆ is of the type given in Figure 3.7, witha ≥ 0.

Moreover, ifR′ is a strong refinement relation, then we have that for all valuation
x satisfyingϕa(1a), ϕb(1b)(x× ∆) also holds.

Let x1 = (0, 0.6, 0.1, 0.3) andx2 = (0, 0.8, 0.1, 0.1). Bothx1 andx2 satisfyϕa(1).
If there exists a strong refinement, this implies thatϕb(1)(x1×∆) andϕb(1)(x2×∆)
also hold. However,ϕb(1)(x1 × ∆) = 1 implies thata ≥ 1 andϕb(1)(x2 × ∆)
implies thata ≤ 0.

It is thus impossible to find a unique correspondence matrix working for all the
“valid” valuations of the outgoing transitions of1a. As a consequence, there cannot
exist a strong refinement relationR′ such that1a R

′ 1b.
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2

1

x3 x4

3 4

{{A}}

{{C}} {{D}}

{{B}}

1

ϕc(2)(x1, x2, x3, x4) = (x1 = x2 = 0)∧

((x3 = 1 ∧ x4 = 0) ∨ (x3 = 0 ∧ x4 = 1))

(a) CMCSc

4 5

1 {{A}}

{{C}} {{D}}

1 1

2 3

y3y2

{{B}} {{B}}

ϕd(1)(y1 , y2, y3, y4, y5) = (y1 = y4 = y5 = 0)∧

((y2 = 1 ∧ y3 = 0) ∨ (y2 = 0 ∧ y3 = 1))

(b) CMCSd

Figure 3.8: CMCsSc andSd.

2. Consider the CMCsSc andSd given in Figures 3.8a and 3.8b. It is easy to see thatSc and
Sd share the same set of implementations. However, due to the constraints, State2 of Sc

cannot refine any state ofSd. As a consequence,Sc cannot refineSd.

�

So our refinement relations for CMCs can be ordered from finestto coarsest: the strong refine-
ment, the weak refinement, and the implementation set inclusion. As the implementation set
inclusion is theultimaterefinement, checking finer refinements is used as a pragmatic syntax-
driven, but sound, way of deciding it.

As we shall see in the next paragraphs, the algorithms for checking weak and strong refine-
ments are polynomial in the number of states, but the treatment of each state depends on the
complexity of the constraints. For the case of implementation set inclusion, the algorithm is
exponential in terms of number of states. Checking implementation set inclusion seems thus
harder than checking weak or strong refinement. In Section 3.6, we will propose a class of
CMCs for which strong and weak refinements coincide with implementation set inclusion.

We now briefly discuss algorithms for checking implementation set inclusion and refinements.
We start with algorithms for checking weak and strong refinements between two CMCsS1 =
〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉. Let n = max(k1, k2).
Checking whether a relationR ⊆ {1, . . . , k1}×{1, . . . , k2} is a strong (resp. weak) refinement
relation reduces to checking, for all(i, j) ∈ R, the validity of the followingrefinement formu-
las: ∃∆, ∀x, ϕ1(i)(x) ⇒ ϕ2(j)(x×∆)∧

∧
i′(
∑

j′ ∆i′j′ = 1)∧
∧

i′,j′(i
′Rj′ ∨∆i′j′ = 0) for the

strong refinement, and∀x, ϕ1(i)(x) ⇒ ∃∆, ϕ2(j)(x×∆)∧
∧

i′(
∑

j′ ∆i′j′ = 1)∧
∧

i′,j′(i
′Rj′∨

∆i′j′ = 0) for the weak refinement. Strong and weak refinements can be decided by iterated
strengthening ofR with refinement formulas, starting fromR0 = {(i, j)|V1(i) ↓A2⊆ V2(j)},
until either(o1, o2) 6∈ R, in which caseS1 does not strongly (resp. weakly) refineS2, or R is
found to be a strong (resp. weak) refinement.

The exact complexity of the algorithm depends on the type of constraints that are used in
the specifications. As an example, consider that all the constraints inS1 andS2 are polynomial
of degreed with less thank bound variables – we shall see that polynomial constraints is
the least class under which CMCs are closed. There, decidingrefinement formulas can be
done by quantifier elimination. When the number of quantifieralternations is constant, the
cylindrical algebraic decomposition algorithm[27, 28], implemented in Maple [135], performs
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this quantifier elimination in time double exponential in the number of variables. Consequently,

refinement can be checked inO(n222n2

) time.
However, considering constraintsϕ contain only existential quantifiers, quantifier alterna-

tion is either one or two for strong refinement and exactly onefor weak refinement. There
are quantifier elimination algorithms that have a worst casecomplexity single exponential only
in the number of variables, although they are double exponential in the number of quantifier
alternations [16]. Thanks to these algorithms, deciding whetherR is a strong (resp. weak)
refinement relation can be done in time single exponential inthe number of statesn and in the
number of bound variables appearing in the constraintsk: O(n2sP (n,k)dP (n,k)) whereP is a
polynomial.

We now turn to the case of implementation set inclusion. In [86], Larsen and Jonsson proposed
an algorithm for solving such problem for the case of IMCs considering that we generalize the
constraints. This algorithm has been analyzed in more detail in Chapter 2. It directly extends
to CMCs. The main difference with the algorithms for solvingweak and strong refinements is
that the algorithm for implementation set inclusion is exponential in the number of states of the
two CMCs.

Finally, let us mention that lower-bounds for the strong andweak refinement checking
remain open problems. In Chapter 2, we have shown that implementation set inclusion is
EXPTIME-hard for IMCs, hence providing a lower bound also for CMCs.

3.3.3 Conjunction

Conjunction, also calledlogical composition, combines requirements of several specifications.
One of the most important uses of conjunction is the so-called common implementation prob-
lem, that we introduced in Chapter 2. This problem consists in deciding wether there exists an
implementation that will satisfy all the elements of a set ofCMCs, and eventually computing
one such implementation. As we will see later, it can be done by computing the conjunction of
all the considered CMCs and checking wether it is consistent.

Definition 3.9 (Conjunction). LetS1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 andS2 = 〈{1, . . . , k2}, o2,
ϕ2, A2, V2〉 be CMCs. The conjunction ofS1 and S2, written S1 ∧ S2, is the CMCS =
〈{1, . . . , k1}×{1, . . . , k2}, (o1, o2), ϕ, A, V 〉withA = A1∪A2, V ((u, v)) = V1(u)↑A ∩V2(v)↑A,
and

ϕ((u, v))(x1,1, x1,2, . . . , x2,1, . . . , xk1,k2) ≡

ϕ1(u)(
∑k2

j=1 x1,j , . . . ,
∑k2

j=1 xk1,j)∧

ϕ2(v)(
∑k1

i=1 xi,1, . . . ,
∑k1

i=1 xi,k2).

Conjunction may introduce inconsistent states and thus itsuse should normally be followed by
applying the pruning operatorβ∗. As already stated in the introduction, the result of conjoining
two IMCs is not an IMC in general, but a CMC whose constraint functions are systems of linear
inequalities. Figure 3.2b depicts a CMCS3 expressing the conjunction of IMCsS1 andS2 (see
Figures 3.1a–3.1b). The constraintz2,3 + z3,3≥0.2 in state(1, 1) cannot be expressed as an
interval.

In order to build correspondence matrices for a conjunction, we need to define the following
operation⊗ on matrices: if∆ ∈ [0, 1]k×q and∆′ ∈ [0, 1]k×r are two correspondence matrices,
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we define∆′′ = ∆⊗∆′ by ∆′′ ∈ [0, 1]k×(q·r) and∆′′
i(j,n) = ∆ij ·∆

′
in. As stated in the following

lemma, this operation preserves the structure of correspondence matrices.

Lemma 3.5. Let∆ ∈ [0, 1]k×q and∆′ ∈ [0, 1]k×r be two correspondence matrices. The matrix
∆′′ = ∆ ⊗ ∆′ is a correspondence matrix.

Proof. Let 1 ≤ i ≤ k and(j, n) ∈ {1, . . . q} × {1, . . . r}. We have∆′′
i(j,n) = ∆ij · ∆′

in. Thus,

∑

(j,n)∈{1,...q}×{1,...r}

∆′′
i(j,n) =

q∑

j=1

r∑

n=1

∆′′
i(j,n)

=

q∑

j=1

r∑

n=1

∆ij · ∆
′
in

=

q∑

j=1

∆ij

r∑

n=1

∆′
in ≤ 1.

�

As expected, conjunction of two specifications coincides with their greatest lower bound
with respect to the weak refinement (also calledshared refinement).

Theorem 3.6.LetS1, S2 andS3 be three CMCs. We have (a)((S1∧S2) � S1)and((S1∧S2) �
S2) and (b) if(S3 � S1) and(S3 � S2), thenS3 � (S1 ∧ S2).

Proof.
LetS1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉,S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 andS3 = 〈{1, . . . ,

k3}, o3, ϕ3, A3, V3〉 be three CMCs.

(a) LetS1 ∧ S2 = S = 〈{1, . . . , k1} × {1, . . . , k2}, o, ϕ, A, V 〉.

Let R ⊆ ({1, . . . , k1} × {1, . . . , k2}) × {1, . . . , k1} such that(u, v)Rw ⇐⇒ u =
w. We will prove thatR is a strong refinement relation. Letu ∈ {1, . . . , k1} and
v ∈ {1, . . . , k2}. We have(u, v)Ru. By definition ofS, we also haveV ((u, v))↓A1=
(V1(u)↑A ∩V2(v)↑A)↓A1⊆ V1(u).

Let ∆ ∈ [0, 1]k1·k2×k1 such that∆(i,j),i = 1 and∆(i,j),k = 0 if k 6= i. By definition, we
have∀(i, j),

∑k1

k=1 ∆(i,j),k = 1. As a consequence,∆ is correspondence matrix. We now
prove that it satisfies the axioms of a satisfaction relationfor (u, v)Ru.

(a) If x ∈ [0, 1]1×k1·k2 is such thatϕ((u, v))(x), it implies by definition that
ϕ1(u)(

∑k2

j=1 x1,j, . . . ,
∑k2

j=1 xk1,j) = ϕ1(u)(x× ∆) holds.

(b) If ∆(u′,v′),w′ 6= 0, we have by definitionu′ = w′ and(u′, v′)Ru′.

From (a) and (b), we conclude thatR is astrong refinement relation.
Since(o1, o2)R o1, we haveS1 ∧ S2 � S1. By symmetry, we also haveS1 ∧ S2 � S2.

(b) Suppose thatS3 � S1 andS3 � S2. By definition, there exist two refinement relations
R1 ⊆ {1, . . . , k3} × {1, . . . , k1} andR2 ⊆ {1, . . . , k3} × {1, . . . , k2} such thato3 R1 o1

ando3 R2 o2. LetS1 ∧ S2 = S = 〈{1, . . . , k1} × {1, . . . , k2}, o, ϕ, A, V 〉.
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Let R ⊆ {1, . . . , k3} × ({1, . . . , k1} × {1, . . . , k2}) such thatuR(v, w) ⇐⇒ uR1 v
anduR2w. We now prove thatR is a weak refinement relation.

Consideru, v, w such thatuR(v, w).

(a) By definition, we haveV3(u)↓A1⊆ V1(v) andV3(u)↓A2⊆ V2(w). As a consequence,
V3(u)↓A⊆ V ((v, w)).

(b) Let x ∈ [0, 1]1×k3 such thatϕ3(u)(x). Consider the correspondence matrices∆ ∈
[0, 1]k3×k1 and∆′ ∈ [0, 1]k3×k2 given byuR1 v anduR2w for the transition vector
x. Let∆′′ ∈ [0, 1]k3×k1·k2 = ∆⊗∆′. By Lemma 3.5,∆′′ is a correspondence matrix.
We now prove that it satisfies the axioms of a refinement relation foruR(v, w).

i. Let 1 ≤ i ≤ k3 such thatxi 6= 0. By definition of ∆ and ∆′, we have∑k1

j=1 ∆ij = 1 and
∑k2

q=1 ∆′
iq = 1. By construction,∑

(j,q)∈{1,...,k1}×{1,...,k2}
∆′′

i(j,q) = (
∑k1

j=1 ∆ij) · (
∑k2

q=1 ∆′
iq) = 1.

ii. By definition of ∆ and∆′, bothϕ1(v)(x × ∆) andϕ2(w)(x × ∆′) hold. Let
x′ = x×∆′′. It is clear thatx×∆ = (

∑k2

j=1 x
′
1,j , . . . ,

∑k2

j=1 x
′
k1,j) andx×∆′ =

(
∑k1

i=1 x
′
i,1, . . . ,

∑k1

i=1 x
′
i,k2

). As a consequence,ϕ((v, w))(x× ∆′′) holds.

iii. Let u′, v′, w′ such that∆′′
u′(v′,w′) 6= 0. By construction, this implies∆u′v′ 6= 0

and∆′
u′w′ 6= 0. As a consequence,u′ R1 v

′ andu′R2w
′, thusu′ R(v′, w′).

From (i) - (iii), we conclude thatR is a weak refinement relation. Sinceo3 R(o1, o2), we
haveS3 � (S1 ∧ S2).

�

In fact, as follows from the later results of Section 3.6, theset of implementations of a
conjunction of twodeterministicspecificationsS1 andS2 coincides with the intersection of
implementation sets ofS1 andS2 (the greatest lower bound in the lattice of implementation
sets).

3.4 Compositional Reasoning

Let us now turn tostructuralcomposition. In our theory, as we already said in the introduction
and after presenting CMCs, choices regarding the set of valuations and stochastic choices are
independent from each others. This property of the model naturally leads to a definition of the
parallel composition operator based on the principle ofseparation of concerns. The idea is that
probabilistic behaviours are composed separately from thesynchronization of the sets of state
valuations. This allows realizing probabilistic composition as a simple product of independent
distributions.

Remark 3.1. The principle of separation of concerns is intensively usedin the definition of par-
allel composition for many systems that mix stochastic and non-deterministic choices. Among
them, one can cite many theories for probabilistic process algebra [121, 87]. Similar princi-
ples are also applied for continuous time stochastic models, in a slightly different setting based
on CTMCs [79]. In Section 3.8, we shall see that our structural composition covers the one of
probabilistic automata.
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Figure 3.9: Parallel composition and synchronization of CMCs

Following the separation of concerns principle, components are composed first into a prod-
uct (or effectively just a vector of independent entities),and then synchronized by constraining
their behaviour. This design is both simple and expressive:it allows applying diverse synchro-
nization mechanisms, beyond just matching inputs to outputs. Moreover it elegantly exploits
the prior knowledge on logical composition, as the synchronization operator turns out to be
realizable using conjunction.

We start by discussing how systems and specifications can be composed in a non-
synchronizing way, then we introduce a notion of synchronization.

3.4.1 Independent parallel composition

The non-synchronizingindependentcomposition is largely just a product of two MCs (or
CMCs).

Definition 3.10 (Parallel Composition of MCs). Let C1 = 〈{1, . . . , n1}, o1,M
′, A1, V1〉 and

C2 = 〈{1, . . . , n2}, o2,M
′′, A2, V2〉 be two MCs withA1∩A2 = ∅. The parallel composition of

C1 andC2 is the MCC1 ‖ C2 = 〈{1, . . . , n1} × {1, . . . , n2}, (o1, o2),M,A1 ∪ A2, V 〉 where:
M ∈ [0, 1](n1×n2)×(n1×n2) is such thatM(p,q)(r,s) = M ′

pr · M ′′
qs, andV ((p, q)) = V1(p)∪ V2(q).

And in general for CMCs:

Definition 3.11 (Parallel Composition of CMCs). Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and
S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be CMCs withA1 ∩ A2 = ∅. The parallel composition of
S1 andS2 is the CMCS1 ‖ S2 = 〈{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ, A1 ∪ A2, V 〉, where
ϕ((u, v))(z1,1, z1,2, . . . z2,1, . . . , zk1,k2) = ∃x1, . . . , xk1 , y1, . . . , yk2 ∈ [0, 1] such that∀(i, j) ∈
{1, . . . , k1}×{1, . . . , k2} we havezi,j = xi ·yj andϕ1(u)(x1, . . . , xk1) = ϕ2(v)(y1, . . . , yk2) =
1, andV ((u, v)) = {Q1 ∪Q2 | Q1 ∈ V1(u), Q2 ∈ V2(v)}.

It is worth mentioning that IMCs are not closed under composition. Consider IMCsS and
S ′ given in Figure 3.9a and their compositionS ‖ S ′ given in Figure 3.9b. Assume first that
S ‖ S ′ is an IMC. As a variablezij is the product of two variablesxi andyj, if S ‖ S ′ is an IMC,
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then one can show that the interval forzij is obtained by computing the products of the bounds
of the intervals over whichxi andyj range. Hence, we can show thatz11 ∈ [0, 1/2], z12 ∈
[0, 1/3], z21 ∈ [1/6, 1], z22 ∈ [0, 2/3]. Let [a, b] be the interval for the constraintzij , it is easy
to see that there exists implementationsI1 of S1 andI2 of S2 such thatI1 ‖ I2 satisfies the
constraintzij = a (resp.zij = b). However, while each bound of each interval can be satisfied
independently, some points in the polytope defined by the intervals and the constraint

∑
zij = 1

cannot be reached. As an example, considerz11 = 0, z12 = 1/3, z21 = 1/3, z22 = 1/3. It is
clearly inside the polytope, but one cannot find an implementationI of S ‖ S ′ satisfying the
constraints given by the parallel composition. Indeed, having z11 = 0 implies thatx1 = 0 and
thus thatz12 = 0.

In order to build correspondence matrices for a composition, we need to define the following
operation⊙ on matrices: if∆ ∈ [0, 1]k×q and∆′ ∈ [0, 1]r×s are two correspondence matrices,
we define∆′′ = ∆ ⊙ ∆′ by ∆′′ ∈ [0, 1](k·r)×(q·s) and∆′′

(i,j)(n,p) = ∆in · ∆′
jp. As stated in the

following Lemma, this operation preserves the structure ofcorrespondence matrices.

Lemma 3.7. Let∆ ∈ [0, 1]k×q and∆′ ∈ [0, 1]r×s be two correspondence matrices. The matrix
∆′′ = ∆ ⊙ ∆′ is a correspondence matrix.

Proof.
Let (i, j) ∈ {1, . . . k}×{1, . . . r} and(n, p) ∈ {1, . . . q}× {1, . . . s}. We have∆′′

(i,j)(n,p) =
∆in · ∆′

jp. Thus,

∑

(n,p)∈{1,...q}×{1,...s}

∆′′
(i,j)(n,p) =

q∑

n=1

s∑

p=1

∆in · ∆′
jp

= (

q∑

n=1

∆in) · (
s∑

p=1

∆′
jp)

≤ 1.

�

The following theorem shows that the weak refinement is a precongruence with respect to
parallel composition. Remark that the same is also true for strong refinement.

Theorem 3.8. If S ′
1, S

′
2, S1, S2 are CMCs thenS ′

1�S1 andS ′
2�S2 impliesS ′

1 ‖S
′
2 � S1 ‖S2,

so the weak refinement is a precongruence with respect to parallel composition. Consequently,
for any MCsC1 andC2 we have thatC1 |=S1 ∧ C2 |=S2 impliesC1‖C2 |= S1 ‖S2.

Proof.
Let S ′

1 = 〈{1, . . . , k′1}, o
′
1, ϕ

′
1, A

′
1, V

′
1〉, S

′
2 = 〈{1, . . . , k′2}, o

′
2, ϕ

′
2, A

′
2, V

′
2〉, S1 = 〈{1, . . . ,

k1}, o1, ϕ1, A1, V1〉, S2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be four CMCs. SupposeS ′
1 � S1 and

S ′
2 � S2.

Let S = 〈{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ, A, V 〉 = S1 ‖ S2 andS ′ = 〈{1, . . . , k′1} ×
{1, . . . , k′2}, (o

′
1, o

′
2), ϕ

′, A′, V ′〉 = S ′
1 ‖ S

′
2.

By definition, there exist two weak refinement relationsR1 andR2 such thato′1 R1 o1 and
o′2 R2 o2. DefineR such that(u′, v′)R(u, v) ⇐⇒ u′ R1 u andv′ R2 v. Consider now such
(u′, v′) and(u, v). We prove thatR satisfies the axioms of a refinement relation between(u′, v′)
and(u, v).
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1. We have(V ′((u′, v′)))↓A= {Q ⊆ 2A′

| ∃Q1 ∈ V ′
1(u

′), Q2 ∈ V ′
2(v

′), Q = Q1 ∪Q2}↓A=
{Q ⊆ 2A | ∃Q1 ∈ V ′

1(u
′), Q2 ∈ V ′

2(v
′), Q = Q1↓A1 ∪Q2↓A2}. Thus(V ′((u′, v′)))↓A⊆

V ((u, v)).

2. Letz′ ∈ [0, 1]1×k′

1·k
′

2 such thatϕ′(u′, v′)(z′). We now build the correspondence matrix∆
witnessing(u′, v′)R(u, v). Consider the correspondence matrices∆1 and∆2 given by
u′R1 u andv′ R2 v for the transition vectorz′. Define∆ = ∆1 ⊙ ∆2 ∈ [0, 1]k

′

1·k
′

2×k1·k2.
By Lemma 3.7,∆ is a correspondence matrix. Moreover, sinceϕ′(u′, v′)(z′) holds, there
existsx′ ∈ [0, 1]1×k′

1 andy′ ∈ [0, 1]1×k′

2 such that∀i, j, z′(i,j) = x′i · y
′
j andϕ′

1(u
′)(x′) and

ϕ′
2(v

′)(y′).

(a) Let (u′′, v′′) ∈ {1, . . . , k′1} × {1, . . . , k′2} such thatz(u′′,v′′) 6= 0. By definition of
x′ and y′, this implies thatx′u′′ 6= 0 and y′v′′ 6= 0. Thus

∑k1

j=1 ∆1u′′j = 1 and∑k2

j=1 ∆2v′′j = 1.

∑

(r,s)∈{1,...,k1}×{1,...,k2}

∆(u′′,v′′)(r,s) =

∑

(r,s)∈{1,...,k1}×{1,...,k2}

∆1u′′r · ∆2v′′s

=

k1∑

r=1

k2∑

s=1

∆1u′′r · ∆2v′′s

= (

k1∑

r=1

∆1u′′r) · (
k2∑

s=1

∆2v′′s) = 1.

(b) Let z = z′ × ∆ ∈ [0, 1]1×k1·k2. Remark thatz = (x′ × ∆1) ⊗ (y′ × ∆2).

Let x = x′ × ∆1 andy = y′ × ∆2. Sinceu′ R1 u andv′R2 v, we haveϕ1(u)(x)
andϕ2(v)(y). Thusϕ(u, v)(z′ × ∆).

(c) Letu′′, v′′, u′′′v′′′ such that∆(u′′,v′′)(u′′′,v′′′) 6= 0. By definition, it implies that∆1u′′u′′′ 6=
0 and∆2v′′v′′′ 6= 0, and as a consequence(u′′, v′′)R(u′′′, v′′′).

From (a),(b),(c), we conclude thatR is a weak refinement relation. Since(o′1, o
′
2)R(o1, o2), we

haveS ′ � S.
The proof of the second part of the theorem is similar, and left to the reader. Remark that

this proof easily adapts to the case of strong refinement.
�

3.4.2 Synchronization

As alphabets of composed CMCs have to be disjoint, the composition does not synchro-
nize the components on state valuations like it is typicallydone for other (non-probabilistic)
models. However, synchronization can be introduced by conjoining the composition with a
synchronizer—a single-state CMC whose valuation function relates the atomic propositions of
the composed CMCs.
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Example. CMCS ‖ S ′ of Figure 3.9b is synchronized with the synchronizerSync given in Fig-
ure 3.9c.Sync removes fromS ‖ S ′ all the valuations that do not satisfy(a = d) ∧ (b = ¬c).
The result is given in Figure 3.9d. Observe that an inconsistency appears in State(1, 1). In-
deed, there is no implementation of the two CMCs that can synchronize in the prescribed way.
In general inconsistencies like this one can be uncovered byapplying the pruning operator,
which would return an empty specification. So synchronizersenable discovery of incompati-
bilities between component specifications in the same way asit is known for non-probabilistic
specification models.

Synchronization is associative with respect to composition, which means that the order of syn-
chronization and composition is inessential for final functionality of the system.

Theorem 3.9. Let S1, S2 and S3 be three CMCs with pairwise disjoint sets of propositions
A1, A2 andA3. LetSync123 be a synchronizer overA1 ∪ A2 ∪ A3 and letSync12 be the same
synchronizer with its set of propositions restricted toA1 ∪ A2. The following holds[[[((S1 ‖
S2) ∧ Sync12) ‖ S3] ∧ Sync123]] = [[(S1 ‖ S2 ‖ S3) ∧ Sync123]].

Proof.
Let S1, S2 andS3 be three CMCs with disjoint sets of atomic propositionsA1, A2 andA3.

Let Sync123 = 〈{1}, 1, ”λx.x = 1”, A1 ∪ A2 ∪ A3, VSync〉 be a synchronizer betweenA1, A2

andA3. ConsiderSync12 = 〈{1}, 1, ”λx.x = 1”, A1 ∪A2, VSync↓A1∪A2〉. We want to prove that
[[[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123]] = [[[S1 ‖ S2 ‖ S3] ∧ Sync123]].

We first prove the following statement. LetS1 andS2 be two CMCs with disjoint sets
of atomic propositionsA1 andA2. Let Sync1 be a synchronizing vector onA1. We have
(S1 ‖ S2) ∧ Sync1 = (S1 ∧ Sync1) ‖ S2.

First, remember that synchronizers are single state CMCs, with a single transition taken
with probability1. As a consequence, computing the conjunction with a synchronizer preserves
the structure of any CMC. The only change lies in the sets of valuations.

Let p be a state ofS1 andq be a state ofS2. We have(V1(p) ∪ V2(q)) ∩ VSync1
↑A1∪A2=

(V1(p) ∩ VSync1
) ∪ V2(q). As a consequence, the valuations of(S1 ∧ Sync1) ‖ S2 are the same

as the valuations of(S1 ‖ S2) ∧ Sync1.
By monotony of conjunction, we have(S1 ‖ S2) ∧ Sync12 � (S1 ‖ S2). By Theorem 3.8,

it implies that[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123 � [S1 ‖ S2 ‖ S3] ∧ Sync123, and finally
[[[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123]] ⊆ [[[S1 ‖ S2 ‖ S3] ∧ S123]].

We now prove that[S1 ‖ S2 ‖ S3] ∧ Sync123 � [((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123. By
monotony of conjunction, we have[S1 ‖ S2 ‖ S3]∧Sync123 � [S1 ‖ S2 ‖ S3]∧Sync12∧Sync123.
Moreover, by the statement proved above, we have[S1 ‖ S2 ‖ S3] ∧ Sync12 � ((S1 ‖ S2) ∧
Sync12) ‖ S3. As a consequence, we have[S1 ‖ S2 ‖ S3] ∧ Sync123 � [((S1 ‖ S2) ∧ Sync12) ‖
S3] ∧ Sync123, and thus[[[S1 ‖ S2 ‖ S3] ∧ Sync123]] ⊆ [[[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123]].

�

Finally, synchronized composition also supports component-based refinement in the style
of Theorem 3.8:

Theorem 3.10.If S ′
1, S

′
2, S1, S2 are CMCs,Sync is a synchronizer andS ′

1�S1 ∧ S ′
2�S2 then

(S ′
1‖S

′
2) ∧ Sync � (S1‖S2) ∧ Sync.

Consequently, a modeller can continue independent refinement of specifications under synchro-
nization, knowing that the original synchronized specification will not be violated.
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3.4.3 Comparison of conjunction and parallel composition

We now compare conjunction and composition with respect to implementation set inclusions.
We shall see that if the two operations are defined on CMCs withindependent sets of valu-
ations, then composition refines conjunction; the oppositedoes not hold. We first show that
composition refines conjunction.

Theorem 3.11.LetS1 andS2 be consistent CMCs withA1 ∩ A2 = ∅. It holds thatS1 ‖S2 �
S1∧S2.

Proof. Let S1 ‖ S2 = 〈{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ
‖, A, V ‖〉 and S1 ∧ S2 =

〈{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ
∧, A, V ∧〉, whereA = A1 ∪ A2. We build a refinement

relationR on ({1, . . . , k1} × {1, . . . , k2}) × ({1, . . . , k1} × {1, . . . , k2}) as(u, v)R(u′, v′) if
and only ifu = u′ andv = v′.

Let (u, v) ∈ {1, . . . , k1} × {1, . . . , k2} such that(u, v)R(u, v). We now show thatR is a
refinement relation:

1. By construction, we have thatV ‖((u, v)) = {Q1 ∪ Q2 | Q1 ∈ V1(u), Q2 ∈ V2(v)}.
Moreover, sinceA1 ∩ A2 = ∅, we have thatV ∧((u, v)) = V1(u)↑A ∩V2(v)↑A= {Q1 ∪
Q2 | Q1 ∈ V1(u), Q2 ∈ V2(v)}. ThusV ‖((u, v)) = V ∧((u, v)).

2. Let z = (z1,1, z1,2, . . . , zk1,k2) ∈ [0, 1]k1·k2 such thatϕ‖((u, v))(z) holds. Define the
correspondence matrix∆ ∈ [0, 1](k1·k2)×(k1·k2) as the matrix with∆(u,v),(u,v) = 1 if zu,v 6=
0 and 0 otherwise. Observe thatz × ∆ = z.

• Trivially, by construction, for all(i, j) ∈ {1, . . . , k1} × {1, . . . , k2} such thatzi,j 6=
0, we have that

∑
i′,j′ ∆(i,j),(i′,j′) = 1.

• We prove thatϕ∧((u, v))(z) holds: By hypothesis,ϕ‖((u, v))(z) holds. Thus,
by definition, there existx ∈ [0, 1]k1 andy ∈ [0, 1]k2 such thatϕ1(u)(x) holds,
ϕ2(v)(y) holds and for alli ∈ {1, . . . , k1} andj ∈ {1, . . . , k2}, we havezi,j =

xi · yj. As a consequence, we have
∑k1

i=1 zi,j = yj for all j ∈ {1, . . . , k2} and∑k2

j=1 zi,j = xi for all i ∈ {1, . . . , k1}. Since bothϕ1(u)(x) andϕ2(v)(y) hold, we
have thatϕ∧((u, v))(z × ∆) holds.

• By construction of∆, ∆(u,v),(u′,v′) 6= 0 implies thatu = u′ andv = v′, and therefore
implies(u, v)R(u′, v′).

We conclude thatR is a refinement relation, and(o1, o2)R(o1, o2). Thus,S1 ‖S2 � S1∧S2. �

A direct consequence of the above theorem is that any model ofthe composition is a model
for the conjunction, i.e.,[[S1 ‖S2]] ⊆ [[S1∧S2]]. We now show that the opposite inclusion does
not hold.

Theorem 3.12.LetS1 andS2 be consistent CMCs withA1 ∩A2 = ∅. It holds that[[S1∧S2]] 6⊆
[[S1 ‖S2]].

Proof. We establish the proof by providing in Figure 3.10 CMCsS1 andS2 and a MCI, such
thatI |= S1 ∧ S2 andI 6|= S1 ‖ S2.

The common structure of conjunction and parallel composition is shown in Figure 3.11.
However the constraint function is not equal: we haveϕ∧(1, 1)(z) ≡ z2,2 + z2,3 = z2,2 + z3,2 =
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Figure 3.11: Common structure of conjunction and parallel composition

0.6∧ z3,2 + z3,3 = z2,3 + z3,3 = 0.4 andϕ‖(1, 1)(z) ≡ z2,2 = 0.36∧ z2,3 = z3,2 = 0.24∧ z3,3 =
0.16. I will satisfy the conjunction, but not the parallel composition, since the probability mass
0.4 of going to state2 in I, can not be distributed to(2, 2) of S1 ‖ S2.

�

Remark 3.2. Crucially, a conjunction of two MCs is not a MC, but a proper CMC, while
parallel composition of MCs results in a new MC.

3.5 Disjunction and Universality

In this section we show that CMCs are not closed under disjunction. We then solve theuniver-
sality problem, that is the problem of deciding whether a CMCs admits any implementation.

3.5.1 On the Existence of a Disjunction of CMCs

In this section we discuss the problem of computing a CMCS whose models are the union
of the models accepted by two other CMCsS1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 and S2 =
〈{1, . . . , k2}, o2, ϕ2, A2, V2〉. In general, such a CMC may not exist. Indeed, assume thatS1

andS2 have independent initial state valuations, and that the constraint functions ofo1 ando2

do not share the same set of satisfying probability vectors.The initial stateo of any specifica-
tion representing the union could take valuations admissible according too1 and a distribution
according too2 (but noto1). That is, we can not express that, depending on the valuation of the
initial state of the implementation, a certain constraint should be chosen.

However, ifS1 andS2 have the same initial state valuation, i.e.,V1(o1) = V2(o2), then we
can construct the disjunction explicitly. LetS1 ∨ S2 = 〈Q, 0, ϕ, A, V 〉 where
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• Q = {1, . . . , k1} ∪ ({1, . . . , k2} ∪ {0},

• A = A1 ∪A2,

• V (0) = V1(o1) = V2(o2), andV (u) = V1(u) if u ∈ {1, . . . , k1}, V (v) = V2(v) if
v ∈ {1, . . . , k2},

• The constraint functionϕ :Q → [0, 1]k1+k2+1 → {0, 1} is given by

ϕ(0)(x0, x1, . . . , xk1, x1′ , . . . , xk′

2
) ≡

(
k1∑

i=1

xi = 1 ∧ ϕ1(o1)(x1, . . . , xk1)

)

∨




k′

2∑

i=1′

xi = 1 ∧ ϕ2(o2)(x
′
1, . . . , xk′

2
)





ϕ(i)(x0, x1, . . . , xk1 , x1′ , . . . , xk′

2
) ≡

k1∑

i=1

xi = 1 ∧

ϕ1(o1)(x1, . . . , xk1), i ∈ {1, . . . , k1}

ϕ(j)(x0, x1, . . . , xk1, x1′ , . . . , xk′

2
) ≡

k′

2∑

i=1′

xi = 1 ∧

ϕ2(o2)(x
′
1, . . . , xk′

2
), j ∈ {1, . . . , k2}

By construction, the so defined disjunction ofS1 andS2, S1 ∨ S2, is such that its set of
implementations is the union of the sets of implementationsof S1 andS2.

Theorem 3.13.Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 andS2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉
be two CMCs such thatV1(o1) = V2(o2). It holds that

[[S1]] ∪ [[S2]] = [[S1 ∨ S2]].

3.5.2 The Universality Problem for CMCs

We study the universality problem for CMCs, i.e., the problem of deciding whether a CMCS
admits any model defined on a given set of atomic propositionsA. For doing so we simply
check whether the universal CMCUnivA representing all these models thoroughly refinesS.
The CMCUnivA is formally defined asUnivA = 〈{1}, 1, ϕ, A, V 〉, whereϕ(1)(x) ≡ 1 and
V (1) = 22A

.

Theorem 3.14. Let UnivA = 〈{1}, 1, ϕ, A, V 〉 be the universal CMC on the set of atomic
propositionsA and letI = 〈{1, . . . , n}, o,M,AI , VI〉 be any implementation such thatA ⊆ AI .
We have thatI |= UnivA.
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Figure 3.12: CMCsS andSx

Proof. Construct the relationR = {1, . . . , n}×{1}. We show thatR is a satisfaction relation:
Let i ∈ {1, . . . , n} such thatiR 1.

1. It is clear thatVI(i)↓A∈ V (1) = 22A

.

2. ConsiderMi. We build a correspondence matrix∆ ∈ [0, 1]n×1 such that∆j1 = 1 if
Mij > 0, and 0 else.

• By construction,∆j1 = 1 for all j such thatMij > 0.

• SinceMi × ∆ = 1, ϕ(1)(Mi × ∆) holds.

• Let i′ such that∆i′,1 > 0. By construction ofR, i′ R 1.

We conclude thatR is a satisfaction relation, sinceoR 1, and thus,I |= UnivA. �

We now switch to the problem of deciding whether the union of two CMCsS1 andS2

is universal. This is a more intriguing problem as we have seen that CMCs are not closed
under union. As a solution to this problem, we propose astate-extendednotion that consists in
creating a new initial state with a new special valuationx /∈ A and then redistribute the entire
probability mass to the original initial state. Formally, we propose the following definition.

Definition 3.12. For a CMCS = 〈{1, . . . , k}, o, ϕ, A, V 〉 and a valuationx /∈ A, we define
the state-extended CMCSx = 〈{1, . . . , k, o′}, o′, ϕ′, A′, V ′〉 where

• A′ = A ∪ {{x}},

• V ′(o′) = {x} andV ′(i) = V (i) for all i ∈ {1, . . . , k}, and

• ϕ′(o′)(x) ≡ xo = 1 andϕ′(i)(x) ≡ ϕ(i)(x1, . . . , xk) ∧ xo′ = 0 for all i ∈ {1, . . . , k}.

An example is given in Figure 3.12. The union of the state-extended versions ofS1 and
S2 can now be computed and compared to the state-extended version of UnivA. It is obvious
that all the implementations of the state-extended versionof a given CMCC are state-extended
versions of implementations ofC.
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Figure 3.13: A CMCT whose set of implementations cannot be represented with a determin-
istic CMC

3.6 Deterministic CMCs

Clearly, if all implementations of a specificationS1 also implement a specificationS2, then the
former is a proper strengthening of the latter. Indeed,S1 specifies implementations that break
no assumptions that can be made about implementations ofS2. Thus, as it was previously said
in Chapter 2, implementation set inclusion – also calledthorough refinement– is a desirable
refinement for specifications. Unfortunately, this problemis still open for CMCs, and, as we
have said, the weak and the strong refinement soundly approximate it. Had that approximation
been complete, we would have had an effective decision procedure for implementation set
inclusion. In this section, we argue that, as proven for IMCsin Chapter 2, this indeed is
the case for an important subclass of specifications:deterministic CMCs. The definition for
determinism is the same as the notion of strong determinism for IMCs introduced in Chapter 2.
A CMC S is deterministiciff for every statei, states reachable fromi have pairwise disjoint
admissible valuations:

Definition 3.13. LetS = 〈{1, . . . , k}, o, ϕ, A, V 〉 be a CMC.S is deterministiciff for all states
i, u, v ∈ {1, . . . , k}, if there existsx ∈ [0, 1]k such that(ϕ(i)(x) ∧ (xu 6= 0)) andy ∈ [0, 1]k

such that(ϕ(i)(y) ∧ (yv 6= 0)), then we have thatV (u) ∩ V (v) = ∅.

In Figures 3.1a and 3.1b, bothS1 andS2 are deterministic specifications. In particular states2
and3, reachable from1 in both CMCs, have disjoint constraints on valuations. On the other
hand, the CMCT given in Figure 3.13 is non-deterministic. Indeed, for States2 and3, which
can both be reached from State1, we have thatVT (2) ∩ VT (3) = {{a, c}} 6= ∅.

Deterministic CMCs are less expressive than non-deterministic ones, in the sense that the
same implementation sets cannot sometimes be expressed. Consider again the CMCT given in
Figure 3.13. It is such that its set of implementations cannot be represented by a deterministic
CMC. Indeed, any merging of States2 and3 in T would result in a CMC that accepts models
where one can loop on valuation{a, c} and then accept valuation{a} with probability1. Such
a model cannot be accepted byT .

Proposition 3.15.Conjunction and composition preserve determinism.

Determinism of a CMC with polynomial constraints can be decided in single exponential
time in the number of states. The problem becomes polynomialwhen restricting constraints
to linear inequalities. Consider a CMCS = 〈{1, . . . , k}, o, ϕ, A, V 〉 with linear constraints of
the formϕ(i)(x) = x × Ci ≤ bi. SinceS is deterministic, for each statesi, j such thati < j,
we must have thatV (i) ∩ V (j) 6= ∅ implies for allk, {x | x × Ck ≤ bk ∧ xi = 0} = ∅ or
{y | y×Ck≤bk ∧ yj =0} = ∅. This can be decided in polynomial time using Fourier-Motzkin
elimination [119].
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We now present a determinization algorithm that can be applied to any CMCS whose
initial state is a single valuation set. This algorithm relies on normalizing the specification
first, and otherwise applies an algorithm which resembles determinization of automata (a sub-
set construction). The result of the algorithm is a new CMC refined byS. Consequently the
implementation set of the result includes the one ofS (see Theorem 3.16 below ). This weak-
ening character of determinization resembles the known determinization algorithms for modal
transition systems [18].

Definition 3.14. LetS = 〈{1, . . . , k}, o, ϕ, A, V 〉 be a consistent CMC in the single valuation
normal form. Letm < k and h : {1, . . . , k} → {1, . . . , m} be a surjection such that (1)
{1, . . . , k} = ∪v∈{1,...,m}h

−1(v) and (2) for all 1 ≤ i 6= j ≤ k, if there exists1 ≤ u ≤
k and x, y ∈ [0, 1]k such that(ϕ(u)(x) ∧ xi 6= 0) and (ϕ(u)(y) ∧ yj 6= 0), then(h(i) =
h(j) ⇐⇒ V (i) = V (j)); otherwiseh(i) 6= h(j). A deterministic CMC forS is the CMC
̺(S) = 〈{1, . . . , m}, o′, ϕ′, A, V ′〉 whereo′ = h(o), ∀1 ≤ i ≤ k, V ′(h(i)) = V (i), and for
each1 ≤ i ≤ m,

ϕ′(i)(y1, . . . , ym) = ∃x1, . . . , xk,∨

u∈h−1(i)

[(∀1 ≤ j ≤ m, yj =
∑

v∈h−1(j)

xv) ∧ ϕ(u)(x1, . . . , xk)].

Theorem 3.16.LetS be a CMC insingle valuation normal form, we haveS � ̺(S).

Proof. Let S = 〈{1, . . . , k}, o, ϕ, A, V 〉 be a CMC in single valuation normal form. Let
̺(S) = 〈{1, . . . , m}, o′, ϕ′, A, V ′〉 be a determinization ofS andh : {1, . . . , k} → {1, . . . , m}
the associated projection.

DefineR ⊆ {1, . . . , k} × {1, . . . , m} such thatuR v ⇐⇒ h(u) = v. We will show that
R is a strong refinement relation. Letu, v such thatuR v.

1. By definition, we haveh(u) = v, thusV ′(v) = V (u).

2. Let∆ ∈ [0, 1]k×m such that∆i,j = 1 if h(i) = j and0 else.∆ is clearly a correspondence
matrix.

(a) Letx ∈ [0, 1]k such thatϕ(u)(x). For all1 ≤ j ≤ m, we haveyj =
∑

i∈h−1(j) xi

andϕ(u)(x), thusϕ′(v)(x × ∆). Moreover, for all1 ≤ i ≤ k,
∑m

j=1 ∆i,j = 1 by
construction.

(b) If ∆u′,v′ 6= 0, thenh(u′) = v′ and thusu′ R v′.

Finally, R is a strong refinement relation andoR o′, thusS strongly refines̺ (S). As strong
refinement implies weak refinement, we also haveS � ̺(S).

�

We now state the main theorem of the section, and one of the central results of the chapter:
the weak refinement is complete with respect to implementation set inclusion for deterministic
CMCs in single valuation normal form (recall that it is soundfor all CMCs):

Theorem 3.17.Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 andS2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉
be two consistent and deterministic CMCs in single valuation normal form withA2 ⊆ A1. We
have[[S1]] ⊆ [[S2]] ⇒ S1 � S2.
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We suppose that the CMCs we consider in this proof are pruned.Moreover we only consider
CMCs in single valuation normal form. Given two CMCsS1 andS2 such that[[S1]] ⊆ [[S2]], we
prove thatS1 � S2. The proof is structured as following.

1. • We define the relationR betweenS1 andS2.

R = {(v, u) | ∀I, ∀p ∈ I, p |= v ⇒ p |= u}

We consideru andv such thatvRu and prove thatR satisfies Axiom(1) of the
refinement relations.

• Axiom (2) of the weak refinement relations : Given a distributionX on the outgoing
transitions ofv, we must find a correspondence matrix∆ satisfying Axioms2(a),
2(b) and2(c) of the refinement relation :

– We consider a distributionX on the outgoing transitions fromv and we build
a MC I satisfyingS1 such that the outgoing probabilities of the statevI are
exactlyX.

– This leads tovI |= u and gives a correspondence matrix∆2, which we will
take as our correspondence matrix∆.

– By definition, ∆ satisfies the axioms2(a) and 2(b) of the weak refinement
relations.

2. As ∆ comes from a satisfaction relation, the axiom2(c) of the refinement relation is
not so immediate. It tells us that if a coefficient∆v′u′ is not 0, then there exists an
implementationI and a statev′I such thatv′I |= v′ andv′I |= u′. What we need is that for
all implementationsI ′ and statep′ such thatp′ |= v′, we havep′ |= u′. The rest of the
proof is dedicated to proving that this statement being false leads to a contradiction.

Assuming there existsI ′ andp′ such thatp′ |= v′ andp′ 6|= u′, we build an implementation
Î from I andI ′ such that the statev′ of Î is syntactically equivalent to the statep′. We
then prove that this statev′ of Î still satisfies the stateu′ of S2 because it is a successor
of v andS2 is deterministic. As the statev′ of Î is syntactically equivalent to the statep′

of I ′, this means thatp′ |= u′, which is a contradiction.

We now go through the mathematical foundations of this proof.

Proof.
Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A1, V1〉 andS2 = 〈{1, . . . , k2}, o2, ϕ2, A2, V2〉 be two con-

sistent and deterministic CMCs in single valuation normal form such thatA2 ⊆ A1 and
[[S1]] ⊆ [[S2]].
First, remark thatS1 � S2 ⇐⇒ S ′

1 = 〈{1, . . . , k1}, o1, ϕ1, A2, V1↓A2〉 � S2. It is thus safe to
suppose thatA1 = A2. Similarly, if I = 〈. . . , , AI , VI〉 is a MC, we haveI |= S1 ⇐⇒ I ′ =
〈. . . , , A1, VI↓A1〉 |= S1. As a consequence, it is also safe to suppose that implementations have
the same set of atomic propositions asS1 andS2.
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1. Let R ⊆ {1, . . . , k1} × {1, . . . , k2} such thatvRu iff for all MC I and statep of I,
p |= v ⇒ p |= u. As we consider pruned CMCs, there exist implementations for all
states.

Considerv andu such thatvRu.

(a) By definition ofR, there exists a MCI and a statep of I such thatp |= v andp |= u.
ThusVI(p) ∈ V1(v) andVI(p) ∈ V2(u). AsS1 andS2 are in single valuation normal
form,V1(v) andV2(u) are singletons, soV1(v) = V2(u).

(b) Considerx ∈ [0, 1]1×k1 such thatϕ1(v)(x) and build the MCI = 〈{1, . . . , k1}, o1,
M,A1, V

′
1〉 such that for all1 ≤ w ≤ k1,

• V ′
1(w) is the only valuationT such thatV1(w) = {T};

• If w 6= v, the lineMw is any solution ofϕ1(w). One exists becauseS1 is
pruned;

• Mv = x.

When necessary, we will address statew of I aswI to differentiate it from statew
of S1. We will now build the correspondence matrix∆.

I clearly satisfiesS1 with a satisfaction relationR1 = Identity, andvI |= v. By
hypothesis, we thus havevI |= u. ConsiderR2 the satisfaction relation such that
vI R2 u and∆2 the corresponding correspondence matrix. Let∆ = ∆2.

(c) As a consequence,

i. ∀1 ≤ i ≤ k1, xi 6= 0 ⇒
∑k2

j=1 ∆ij = 1;

ii. ϕ2(u)(x× ∆) holds;

2. Letv′ be a state ofS1 such that Ifxv′ 6= 0 and∆v′u′ 6= 0. By definition ofI and∆, we
havev′I |= v′ andv′I |= u′. We want to prove that for all implementationsI ′ and statep′

in I ′, p′ |= v′ impliesp′ |= u′.

Suppose this is not the case. There exists an implementationI ′ = 〈{1, . . . , n}, o′,M ′, A1,
V ′〉 and a statep′ of I ′ such thatp′ |= v′ andp′ 6|= u′. LetR′ be the correspondence matrix
witnessingp′ |= v′.

Consider the MĈI = 〈{1, . . . , k1, k1+1, . . . , k1+n}, oI , M̂ , A1, V̂ 〉. Intuitively, the first
k1 states correspond toI and the nextn states toI ′. The statev′I will be the link between
the two and its outgoing transitions will be the ones ofp′. Define

• M̂ij = Mi,j if 1 ≤ i, j ≤ k1 andi 6= v′

• M̂v′j = 0 if 1 ≤ j ≤ k1

• M̂ij = 0 if 1 ≤ i ≤ k1 andi 6= v′ andj > k1

• M̂v′j = m′
p′,j−k1

if j > k1

• M̂ij = 0 if i > k1 and1 ≤ j ≤ k1

• M̂ij = m′
i−k1,j−k1

if i > k1 andj > k1.
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M ′
p′

I ′

I

v′I

(b) The MCÎ

• V̂ (i) = V ′
1(i) if i ≤ k1

• V̂ (i) = V ′(i− k1) if i > k1

We want to prove thatv′
bI

satisfiesu′. This should imply thatp′I′ also satisfiesu′, which is
absurd.

Consider the relation̂R between the states of̂I and the states ofS1 defined as follows :

R̂ ={(q, w) ∈ R1 | q 6= v′}∪

{(q, w) | (q − k1)R
′w}∪

{(v′, w) | p′ R′w}

Intuitively, R̂ is equal toR1 for the statesq ≤ k1, exceptv′, and equal toR′ for the states
q > k1. The states related tov′

bI
are the ones that were related top′ with R′.

We will show thatR̂ is a satisfaction relation between̂I andS1.

Let q, w such thatqR̂w. For all the pairs whereq 6= v′
bI
, the conditions of the satisfaction

relation obviously still hold because they held forR1 if q ≤ k1 and forR′ otherwise. It
remains to check the conditions for the pairs whereq = v′

bI
.

Considerw such thatv′
bI
R̂w.

(a) Because(v′I) and (p′I′) are both implementations ofv′, it is clear thatV̂ (v′
bI
) =

V̂ (p′). As p′R′w, we know thatV ′(p′) ∈ V1(w). Thus,V̂ (v′
bI
) ∈ V1(w).

(b) Consider the correspondence matrix∆′ given byp′ R′w. Let ∆̂ ∈ [0, 1](k1+n)×k1

such that̂∆ij = 0 if i ≤ k1, and∆̂ij = ∆′
(i−k1)j otherwise.
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i. We want to show that if̂M(v′
bI
)(w′) 6= 0, then

∑k1

j=1 ∆̂w′j = 1. We know that

M̂(v′
bI
)(w′) = 0 if w′ ≤ k1. Takew′ > k1 such that̂M(v′

bI
)(w′) 6= 0. Then we know

that M̂(v′
bI
)(w′) = M ′

p′(w′−k1)
. BecauseR′ is a satisfaction relation, it implies

that
∑k1

j=1 ∆′
(w′−k1)j

= 1. Thus,
∑k1

j=1 ∆̂w′j =
∑k1

j=1 ∆′
(w′−k1)j

= 1.

ii. We want to show now thatϕ1(w)(M̂v′
bI
× ∆̂) holds. Let1 ≤ j ≤ k1. We have

MM̂v′
bI
× ∆̂tj =

k1+n∑

l=1

M̂(v′
bI
)l · ∆̂lj

= 0 +
k1+n∑

l=k1+1

M̂(v′
bI
)l · ∆̂lj

=
n∑

l=1

M ′
p′l · ∆

′
lj = [M ′

p′ × ∆′]j

As a consequence,̂Mv′
bI
× ∆̂ = M ′

p′ × ∆′. Since∆′ is a witness ofp′ R′w,

ϕ1(w)(M ′
p′ × ∆′) holds. So doesϕ1(w)(M̂v′

bI
× ∆̂).

iii. We want to show that if̂M(v′
bI
)q 6= 0 and∆̂qw′ 6= 0, thenqR̂w′. We only need

to considerq > k1 (since otherwisêM(v′
bI
)q = 0) andw′ such that∆̂qw′ 6= 0.

In this case,̂M(v′
bI
)q = M ′

p′(q−k1) 6= 0 and∆′
(q−k1)w′ 6= 0. As ∆′ is a witness of

p′ R′w, it has to be that(q − k1)R
′w′, which implies, by definition of̂R, that

qR̂w′.

Finally Î satisfiesS1, and in particular,v
bI |= v. As vRu, it implies thatv

bI |= u. As a
consequence, there exists∆′′ ∈ [0, 1](k1+n)×k2 such thatϕ2(u)(M̂vbI

× ∆′′).

(A) Consideru′′ 6= u′ such thatV2(u
′′) = V2(u

′). Due to determinism ofS2, and to the
fact thatu′ is accessible fromu, we have[M̂vbI

× ∆′′]u′′ = 0. SinceM̂(vbI
)(v′

bI
) 6= 0

andM̂(vbI
)(v′

bI
) · ∆

′′
(v′

bI
)u′′ is part of[M̂vbI

× ∆′′]u′′ , we must have∆′′
(v′

bI
)u′′ = 0.

(B) Consideru′′′ such thatV (u′′′) 6= V (u′). It is clear that∆′′
(v′

bI
)u′′′ = 0 since∆′′ is

witnessing satisfaction between̂I andS2.

(C) Moreover, we know that̂M(vbI
)(v′

bI
) 6= 0. Thus,

∑k2

j=1 ∆′′
v′

bI
j = 1.

According to (A) and (B), the only non-zero value in the sum in(C) must be∆′′
(v′

bI
)u′ .

Since∆′′ is witnessinĝI |= S2, this means thatv′
bI
|= u′.

By construction,v′
bI

andp′ only differ by state names. This contradicts the assumption
thatp′ 6|= u′. Thusv′Ru′, andR is a weak refinement relation.

Finally, we have by hypothesis that[[S1]] ⊆ [[S2]], which implies thato1 R o2.
�

62



Since any consistent CMC with a single valuation in initial state can be normalized, Theorem
3.17 holds even ifS1 andS2 are not in single valuation normal form, but only have a single val-
uation in the initial state. Thus, weak refinement and the implementation set inclusion coincide
on the class of deterministic CMCs with at most single valuation in the initial state. Finally,
Theorem 3.17 also holds for strong refinement. Indeed, the following theorem states that weak
and strong refinements coincide on the class of deterministic CMCs.

Theorem 3.18.LetS1 = 〈{1, . . . , k1}, o1, ϕ1, A, V1〉 andS2 = 〈{1, . . . , k2}, o2, ϕ2, A, V2〉 be
two deterministic CMCs in normal form. If there exists a weakrefinement relationR such that
S1 RS2, thenR is also a strong refinement relation.

We start with the following lemma, which is a direct consequence of the notion of de-
terminism. It states that correspondence matrices associated to a satisfaction relation for a
deterministic CMC have at most one non-zero value per row.

Lemma 3.19. LetS = 〈{1, . . . , k}, oS, ϕ, A, VS〉 be a deterministicCMC in single valuation
normal form. LetC = 〈{1, . . . , n}, oC,M,A, VC〉 ∈ [[S]] and a satisfaction relationR such
that oC R oS. Let p ∈ {1, . . . , n} and u ∈ {1, . . . , k} such thatpRu, and let∆ be the
associated correspondence matrix. We have

∀p′ ∈ {1, . . . , n}, Mpp′ 6= 0 ⇒ |{u′ ∈ {1, . . . , k} | ∆p′u′ 6= 0}| = 1.

Let S1 = 〈{1, . . . , k1}, o1, ϕ1, A, V1〉 andS2 = 〈{1, . . . , k2}, o2, ϕ2, A, V2〉 be two deter-
ministic CMCs in normal form such thatS1 � S2 with a weak refinement relationR. We prove
thatR is in fact a strong refinement relation.

Proof.
Let v ∈ {1, . . . , k1} andu ∈ {1, . . . , k2} such thatvRu.

1. By hypothesis,V1(v) ⊆ V2(u);

2. We know that for allx ∈ [0, 1]k1 satisfyingϕ1(v), there exists a correspondence matrix
∆x satisfying the axioms of a (weak) refinement relation. We will build a correspondence
matrix∆0 that will work for all x. Let p ∈ {1, . . . , k1}.

• If for all x ∈ [0, 1]k1, ϕ1(v)(x) ⇒ xp = 0, then let∆0
p = (0, . . . , 0).

• Else, considerx ∈ [0, 1]k1 such thatϕ1(v)(x) andxp 6= 0. By hypothesis, there
exists a correspondence matrix∆x associated tovRu. Let ∆0

p = ∆x
p . By Lemma

3.19, there is a singleu′ ∈ {1, . . . , k2} such that∆x
pu′ 6= 0. Moreover, by definition

of ∆x, we know that
∑k2

r=1 ∆x
pr = 1, thus∆x

pu′ = 1.

Suppose there existsy 6= x ∈ [0, 1]k1 such thatϕ1(v)(y) andyp 6= 0. Let ∆y be the
associated correspondence matrix. As forx, there exists a uniqueu′′ ∈ {1, . . . , k2}
such that∆y

pu′′ 6= 0. Moreover∆y
pu′′ = 1. Let x′ = x × ∆x andy′ = y × ∆y.

By definition, bothϕ2(v)(x
′) andϕ2(y

′) hold, x′u′ 6= 0 andy′u′′ 6= 0. As ∆x
pu′ =

∆y
pu′′ = 1, we haveV2(u

′) ∩ V2(u
′′) 6= ∅. By hypothesis,S2 is deterministic, thus

u′ = u′′.
As a consequence, we have∆x

p = ∆y
p, so∀z ∈ [0, 1]k1, (ϕ1(v)(z) ∧ (zp 6= 0)) ⇒

∆z
p = ∆0

p.

Finally, consider∆0 defined as above. Letx ∈ [0, 1]k1 such thatϕ1(v)(x). We have
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(a) xi 6= 0 ⇒ ∆0
i = ∆x

i ⇒
∑k2

j=1 ∆0
ij = 1;

(b) x× ∆0 = x× ∆x, thusϕ2(v)(x× ∆0) holds;

(c) If ∆0
v′u′ 6= 0, then there existsy ∈ [0, 1]k1 such thatϕ1(v)(y) and∆0

v′u′ = ∆y
v′u′ ,

thusv′ Ru′.

Finally,R is a strong refinement relation.
�

Finally, we remark that the above results on completeness for deterministic specifications
carry over to IMCs, proving Theorem 2.9 of Chapter 2. These results also translate to refine-
ments of [86] and [61], which are special cases of our refinements. Completeness properties
for these refinements were open problems until now.

Discussion: A weaker Definition of Determinism. The notion of determinism presented here
may look too strong. Indeed, it assumes that, from a given state i, one cannot reach two states
u andv that share common sets of valuations. The assumption is madeindependently of the
distributions used to reach the two states, i.e., it may be the case that there exists no distribution
in where bothu and v can be reached simultaneously. As presented in Chapter 2, there is
another natural way to solve the problem: consider a weaker version of determinism, that
would be equivalent to the notion of determinism introducedin Chapter 2. More precisely, we
say that a CMCS = 〈{1, . . . , k}, o, ϕ, A, V } is weakly deterministic if whenever there exists
x ∈ [0, 1]k and statesi, u, v such thatϕ(i)(x) andxu > 0 andxv > 0, we haveV (u)∩V (v) = ∅.
This version of determinism is weaker than the one given in Definition 3.13. Indeed, only states
that can be reached by the same distribution should have disjoint sets of valuations.

In Chapter 2, it is proven that the two notions coincide for the particular case of IMCs.
However, this is not the case for CMCs because the constraintdo not necessarily allow only
convex solutions.

Moreover, though this notion seems reasonable, the CMCsSc andSd given in Figures 3.8a
and 3.8b are both weakly deterministic, andSc thoroughly but not weakly refinesSd. Hence
working with this weaker, but natural, version of determinism does not close the gap between
weak and thorough refinements.

3.7 Polynomial CMCs

It is not surprising that CMCs are closed under both logical and structural compositions. In-
deed, CMCs do not make any assumptions on constraint functions. There are however many
classes of constraints that are practically intractable. While this chapter is mainly concerned
with the development of the theoretical foundations for CMCs, we now briefly study classes of
CMCs for which operations on constraints required by our algorithms can be managed quite
efficiently.

A first candidate could be linear constraints, which is the obvious generalization of interval
constraints. Unfortunately, linear constraint CMCs are not closed under structural composition.
Indeed, as we have seen in Section 3.4 the composition of two linear constraints leads to a
polynomial constraint. However, what is more interesting is that polynomial constraintsare
closed under both logical and structural composition and that these operations do not increase
the quantifier alternations since they only introduce existential quantifiers. Hence, one can
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claim that CMCs with polynomial constraints and only existential quantifiers are certainly the
smallest extension of IMCs closed under all operations.

From the algorithmic point of view, working with polynomialconstraints should not be
seen as an obstacle. First, we observe that algorithms for logical and structural composition
do not require any complex operations on polynomials. The refinement algorithms (presented
in Section 3.3) are polynomial in the number of states, and each iteration requires a quanti-
fier elimination. This procedure is known to be double exponential in general, but there exist
efficient single exponential algorithms [27, 28] when quantifier alternations are fixed. Those al-
gorithms are implemented in Maple [135]. The pruning operation is polynomial in the number
of states, but each iteration also requires an exponential treatment as one has to decide whether
the constraints have at least a solution. Again, such problem can be solved with efficient algo-
rithms. Finally, determinizing a CMC can be performed with aprocedure that is similar to the
determinization procedure for finite-state automata. Sucha procedure is naturally exponential
in the number of states.

Remark 3.3. In Section 3.4, it was shown that, assuming independent setsof valuations, par-
allel composition is refined by conjunction. We have also observed that the conjunction or
disjunction of two linear constraints remains linear, but that composition may introduce poly-
nomial constraints. From an implementation point of view itmay thus be more efficient to
work with linear constraints only. For doing so, one can simply approximate composition with
conjunction.

3.8 On the relation with Probabilistic Automata

CMCs are a newcomer in a long series of probabilistic modeling languages and abstractions
for them. Throughout the chapter we have indicated that manyof our results directly translate
to simpler abstractions, like IMCs. We shall now further discuss this foundational aspect of
CMCs, showing how they subsume a few established notions of refinement and composition
for probabilistic automata (and for process algebra based on them).

Below we write Dist(S) for the set of all probability distributions over a finite setS. Given
two setsS andT and a probability distributionα ∈ Dist(S×T ), we denote the marginal distri-
bution overS asαs,T =

∑
t∈T αs,t, and similarly forT . We say thatϕ is anon-deterministic dis-

tribution constraintover setI if all solutionsx of ϕ are point distributions, i.e.∃i. xi = 1. Write
[ i
S

] to denote a particular point distribution for which[ i
S

]i = 1. Notice that non-deterministic
distribution constraints model a non-deterministic choice of an element fromS. They will be
used to encode non-determinism in CMCs.

A probabilistic automaton (PA for short) [121] is a tupleS = (S,Act,→, s1), whereS is a
finite set of states,→⊆ S×Act×Dist(S) is a finite transition relation ands1 ∈S is the initial
state. Thederived combined transition relationof S is given by−→c ∈ S ×Act×Dist(S). If
π ∈ Dist(S) and̺ ∈ Dist(T ) thenπ⊗̺ denotes the unique independent product distribution
such that(π⊗̺)s,t = πs · ̺t.

We say thatt a
−→c̺ iff ̺ is a convex linear combination of vectors from̺= {̺i | t

a
−→̺i},

so̺ = ̺×λ, whereλ is a distribution vectorλ ∈ [0, 1]|̺|. We interpret̺ as a matrix, where
ith column is a distribution̺i.

Consider two PAS = (S,Act,→S, s0) andT = (T,Act,→T , t0). For a binary relation
R ⊆ S×T we define a derived relationR∗ ⊆ Dist(S)×Dist(T ) such thatπR∗̺ iff there exists
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Figure 3.14: Reducing a PA to CMC. Thereπ̂ denotes a distribution constraint, which has a
unique solutionπ.

a distributionα ∈ Dist(S × T ) and (1)αq,T =πq for all q∈S, (2)αS,r =̺r for all r∈T and (3)
αs,t 6=0 impliessRt.

Definition 3.15 (Simulation [121]). A relationR ⊆ S×T is a simulationiff (s, t)∈R implies
that whenevers a

−→π for a distributionπ, thent a
−→̺ for distribution̺ such thatπR∗̺.

R is a probabilisticsimulation iff (s, t) ∈ R implies that ifs a
−→π then t a

−→c̺ for some
distribution̺, andπR∗̺.

Let A ⊆ Act be the subset of actions on whichS andT should synchronize. Theparallel
compositionof S andT is a PAS ‖ T = (S × T,Act,→, (s0, t0)), where→ is the largest
transition relation such that(s, t) a

−→π ⊗ ̺ if: a ∈ A ands a
−→Sπ andt a

−→T̺, or

a /∈ A ands a
−→Sπ and̺ = [ t

T
], or

a /∈ A andπ = [ s
S

] andt a
−→T̺.

3.8.1 Reduction from Simulation

We now propose a linear encoding of PAs into CMCs, which reduces simulation and composi-
tion of PAs to refinement and composition of CMCs (see Fig. 3.14). LetS=({s1, . . . , sk},Act,
→, s0) be a PA. And letl be the number of reachable action-distribution pairs, soΩS =

{(a1, π1), . . . , (al, πl)} = {(a, π) | ∃s ∈ S. s a
−→π}. The corresponding CMC iŝS =

({1, . . . , 2k+l}, 1, ϕ̂,Act∪⊥, V̂ }) , where⊥ /∈ Act. Ŝ has three kinds of states. Type-1
states,1 . . . k, correspond directly to states ofS. Distributions leaving these states model a
non-deterministic choice. Type-2 states,k + 1, . . . , 2k, model a possibility that a component
remains idle in a state. Type-3 states,2k+1, . . . , 2k+l model the actual distributions ofS.

V̂ assigns value{∅} to type-1 states and value{{⊥}} to type-2 states. For type-3:̂V (2k +
i′) = {{ai′}} for 1 ≤ i′ ≤ l. The distribution constraints are as follows:

ϕ̂(i)(x) if i is type-1 andx = [ k+i
1..2k+l

] or si
ai′−−→πi′ ∧ x= [ 2k+i′

1..2k+l
] for 1≤ i′≤ l.

ϕ̂(k + i)(x) if k+ i is type-2 andx= [ i
1..2k+l

].

ϕ̂(2k + i′)(x) if 2k + i′ is type-3 andx = πi′ .

We can now relate simulation of PA to refinement of CMCs:

Theorem 3.20.T simulatesS iff Ŝ strongly refineŝT.
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We begin by demonstrating a lemma about non-deterministic distribution constraints.
We say that a constraint is a single-point constraint, if it is only satisfied by a unique

distribution. Observe that all constraints in the encodingpresented in Section 3.8 are non-
deterministic distribution constraints or single-point constraints.

Lemma 3.21.Letϕ andψ be single-point constraints. If for eachx ∈ [0, 1]1×k1 such thatϕ(x)
holds, there exists a correspondence matrix∆x ∈ [0, 1]k1×k2 such thatψ(x × ∆x) holds then
there exists a correspondence matrix∆ ∈ [0, 1]k1×k2 such that for allx ∈ [0, 1]1×k1 we have
thatϕ(x) =⇒ ψ(x× ∆).

The lemma holds trivially because there is only one distribution satisfyingϕ.

Lemma 3.22.Letϕ (respectivelyψ) is a non-deterministic distribution constraint over{1, . . . ,
k1} (respectively{1, . . . , k2}). Then if for each distribution vectorx satisfyingϕ there ex-
ists a correspondence matrix∆x ∈ [0, 1]k1×k2 such thatψ(x × ∆x) holds then there ex-
ists a correspondence matrix∆ ∈ [0, 1]k1×k2 such that for allx ∈ [0, 1]1×k1 we have that
ϕ(x) =⇒ ψ(x× ∆).

Proof. Letx be such thatϕ(x) holds (then there exists1 ≤ i ≤ k1 such thatxi = 1). There is a
finite number of such vectors. Letxi denote the one that has 1 on theith position. Take∆ such
that∆i = (∆xi)i (the witness from the lemma assumption) ifxi satisfiesϕ and∆i = 01×k2

otherwise.
Now for eachxi satisfyingϕ we have thatxi × ∆ = xi × ∆xi and thenϕ(xi) =⇒

ψ(xi × ∆xi) ⇐⇒ ψ(xi × ∆). �

Corollary 3.23. For any two probabilistic automataS andT we have that̂S strongly refineŝT
iff Ŝ weakly refineŝT.

Lemma 3.24. For any two probabilistic automataS and T such thatT simulatesS we have
that Ŝ weakly refineŝT.

Proof. (sketch) LetR ⊂ S × T be the relation witnessing the simulation ofS by T. Consider a
relationQ as follows:

Q1 = {(i, j) | i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}, (si, tj) ∈ R}

Q2 = {(k1 + i, k2 + j) | i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}, (si−k1, tj−k2) ∈ R}

Q3 = {(2k1 + i′, 2k2 + j′) | i′ ∈ {1, . . . , l1}, j
′ ∈ {1, . . . , l2}, (ai, πi) ∈ ΩS, (aj, ̺j) ∈ ΩT ,

ai = aj, (πi, ̺i) ∈ R∗}

Q = Q1 ∪Q2 ∪Q3

It is easy to show thatQ is a weak refinement. First observe that valuations always match
for pairs inQ. The valuation is empty for bothS andT in Q1, it is {⊥} in Q2, and{ai} in Q3.

For a pair in(i, j) ∈ Q1 a distribution vectorx satisfying the constraint ofS is always a
point distribution. Ifxk1+i = 1, take∆k1+i,k2+j = 1 and zero otherwise. Ifx2k1+i′ = 1 take
∆2k1+i′,2k2+j′ = 1 and zero otherwise, wherej′ is such thattj′

ai′−−→̺j′ andπi′R
∗̺j′.

For a pair(k1 + i, k2 + j) ∈ Q2 take∆i,j = 1, and zero otherwise.
For a pair(2k1 + i′, 2k2 + j′) ∈ Q3 take∆ such that for(i, j) ∈ {1, . . . , k1} × {1, . . . , k2}

we have∆ij = αij/xi, or zero ifxi = 0, whereα is the distribution witnessingπi′R
∗̺j′. �

67



Lemma 3.25. For any two probabilistic automataS andT such that̂S strongly refineŝT we
have thatT simulatesS.

Proof. (sketch) Assume that̂S strongly refineŝT is witnessed by a relationR ⊆ {1, . . . , 2k1 +
l1} × {1, . . . , 2k2 + l2}. Show that a relationQ = {(si, tj) ∈ S × T | (i, j) ∈ R, i ∈
{1, . . . , k1}, j ∈ {1, . . . , k2}} is a simulation relation.

In the crucial point of the proof considerαsi,tj = ∆i,j · πi′(si), whereπi′ is a distribution
being the only solution of a point constraint for statei′ ∈ {2k1, . . . , 2k2 + l1}. �

Theorem 3.20 follows as a corollary from the above two lemma and the Corollary 3.23.
Another, very similar, but slightly more complicated, encoding exists, for which weak re-

finement coincides withprobabilisticsimulation. It will be presented at the end of this section.
The same encoding is used to characterize parallel composition of PAs using parallel com-

position of CMCs.

Theorem 3.26.For two PAsS andT over the same set of synchronizing actions Act and a set

A ⊆ Act we have that̂S ‖ T is isomorphic to

((Ŝ ‖ T̂[a′/a]a∈Act) ∧ SA) [a/(a,a′); a/(a,⊥′); a/(⊥,a′)]a∈Act

whereSA is a synchronizer over Act⊥ × Act′⊥′ defined by

(∀a∈A. a⇐⇒ a′) ∧ (∀a /∈A. (a=⇒⊥′) ∧ (a′ =⇒⊥)).

ExpressionS[a′

1/a1; . . . ; a′

n/an]a1,...,an∈Act denotes a substitution, substituting a primed ver-
sion of nameai for each occurrence inai, for all actions inAct.

Interestingly, the precongruence property for the parallel composition of PAs is obtained
for free as a corollary of the above two reduction theorems and Thm. 3.8. Similarly, we obtain
precongruence with probabilistic simulation using a suitable encoding—a good example how
CMCs can be used to study properties of simpler languages in ageneric way.

3.8.2 Encoding Probabilistic Simulation

We now present another encoding of PAs into CMCs, which aims at capturing probabilistic
simulation (as opposed to simulation).

Consider a PAS = (S,Act,→, s1), whereS = {s1, . . . , sk}. Let {(s1, a1), . . . , (s
l, al)} =

{(s, a) | s∈S ∧ a∈Act}. The corresponding CMC is

Š = ({1, . . . , 2k + l}, 1, ϕ̌,Act ∪ ⊥, V̌ }),

where⊥ is a fresh symbol not inAct . We have three types of states (see Figure 3.15). Type-
1 states,{1, . . . , k}, correspond directly to states{s1, . . . , sk}—their distribution constraints
encode the non-deterministic choice of action. Type-2 states,{k+1, . . . , 2k}, represent ability
of a state to be idle. We will use them in parallel composition. Type-3 states,{2k+1, . . . , 2k+
l}, encode choice of a probability distribution as a linear combination of distributions allowed
by the automaton.

The valuation functions are given by:

V̌ (i) = {∅} for 1 ≤ i ≤ k,

V̌ (k + i) = {{⊥}} for 1 ≤ i ≤ k,

V̌ (2k + i′) = {{ai′}} for 1 ≤ i′ ≤ l.
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Figure 3.15: An attempt to visualize the second encoding.πa
∗ denotes a constraint expressing

a probability vector that is a linear combination of all probability distributions labeled bya.
Below this is formalized asϕ(2k + i′)(x).

and

ϕ̌(i)(x) is xk+i = 1 or ∃1≤ i′≤ l. x2k+i′ =1 ∧ si′ = si

for 1≤ i≤k (type-1 states),

ϕ̌(k + i)(x) is xi = 1

for 1≤ i≤k (type-2 states),

ϕ̌(2k + i′)(x) is ∃λ ∈ Dist(1, . . . , |π|). x = πλ

for 1≤ i′≤ l (type-3 states),

whereπ = {π | sj aj

−−→π}. Technically speakingπ is a matrix, whose columns are distributions
π. We write|π| for the number of columns inπ. Additionally x is implicitly required to be a
probability distribution over{1, . . . , 2k + l}.

Observe thaťS is only polynomially larger thanS.

Lemma 3.27(Soundness). For any two probabilistic automataS and T such thatŠ weakly
refinesŤ, we have thaťT probabilistically simulatešS.

Proof. Let S = (S,Act,→S, s1) and T = (T,Act,→T , t1), with S = {s1, . . . , sk1} and
T = {t1, . . . , tk2}. In the proof we writěϕ to refer to the constraint function ofŠ, andˇ̺ to refer
to the constraint function of̌T. Also l1 andl2 are used to refer to the number of combinations
of state-action of respectively̌S and Ť. Finally qi andrj are used to range over states inS
(respectively inT ), whensi andtj are bound to some concrete value.

LetR ∈ {1, . . . , 2k1 + l1}×{1, . . . , 2k2 + l2} be a weak refinement relation betweenŠ and
Ť, witnessing the assumption of the lemma. The proof proceedsby showing that

Q = {(si, tj) | (i, j) ∈ R ∧ 1 ≤ i ≤ k1 ∧ 1 ≤ j ≤ k2}

is a probabilistic simulation relation betweenS andT.
We apply the usual coinductive proof technique. Take(si, tj) ∈ Q. Let π ∈ Dist(S) be

such thatsi
a
−→π, and(si′, ai′) = (si, a).1

By construction of the encoding we know that any probabilitydistributionx satisfying
ϕ(i)(x) is a point distribution, andx such thatx2k+i′ = 1 is possible. So consider such a

1The equality bindsi′ to be the index of(si, a) on the list of state-action pairs in the encoding ofS.
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distributionx. Since(i, j) ∈ R we know that there exists a correspondence matrix∆ ∈
[0, 1]2k1+l1×2k2+l2 such thatψ(j)(x×∆) holds. Moreoverx×∆ must be a point distribution by
construction of the encoding. So(x× ∆)2k2+j′ = 1 for some1 ≤ j′ ≤ l2. And, by refinement
again, we get that valuation functions for both2k1 + i′ and for2k2 + j′ both return{{a}} and
that(2k1 + i′, 2k2 + j′) ∈ R.

But Ť is also constructed using the encoding, so it necessarily isthat tj
a
−→̺ for some̺ ∈

Dist(T ).
Observe thatϕ(2k1 + i′)(π) holds, becauseπ is always a convex linear combination of a set

of vectors containing it. Since(2k1 + i′, 2k2 + j′) ∈ R, there exists a correspondence matrix
∆′ ∈ [0, 1]2k1+l1×2k2+l2 such thatψ(2k2 + j′)(π × ∆′) holds. The latter implies thatπ × ∆′ is
a linear combinations of vectors in̺= {̺ | tj

a
−→̺}.

It remains to show thatπR∗(π × ∆′). Takeαqi,qj
= πi · ∆′

ij. We first argue thatα ∈

Dist(S × T ). Clearlyπi∆
′
ij ∈ [0, 1] for all i, j. Also

∑k1

i=1

∑k2

j=1 πi∆
′
ij =

∑k1

i=1 πi = 1 (the
former because each row of a correspondence matrix sums up to1).

Considerαqi,T =
∑k2

j=1 αqi,tj =
∑k2

j=1 πi ·∆′
ij = πi

∑k2

j=1 ∆′
ij = πi as required byπR∗(π×

∆′).
Now considerαS,rj

=
∑k1

i=1 αsi,rj
=
∑k1

i=1 πi ·∆′
ij = (π×∆′)j as required byπR∗(π×∆′).

Now if αqi,rj
6= 0 then∆′

ij 6= 0, which in turn with refinement of2k2+j′ by 2k1+ i′ implies
that(i, j) ∈ R, and furthermore(si, sj) ∈ Q by construction, as required byπR∗(π×∆′). This
finishes the proof.

�

Lemma 3.28(Completeness). For any two probabilistic automataS andT such thatT proba-
bilistically simulatesS, we have thaťS weakly refinešT.

Proof. Let S = (S,Act,→S, s1) and T = (T,Act,→T , t1), with S = {s1, . . . , sk1} and
T = {t1, . . . , tk2}. LetQ ⊆ S × T be the probabilistic simulation relation betweenS andT,
witnessing the assumption of the lemma.

The proof proceeds by showing that a relationR ⊆ {1, . . . , 2k1 + l1} × {1, . . . , 2k2 + l2}
is a weak refinement relation betweenŠ andŤ.

Take the following candidate forR:

R1 = {(i, j) | (si, tj) ∈ Q}

R2 = {(k1 + i, k2 + j) | (si, tj) ∈ Q}

R3 = {(2k1 + i′, 2k2 + j′) | (si, tj) ∈ R ∧ si = si′ ∧ tj = tj
′

}

R = R1 ∪R2 ∪ R3

We apply the usual coinductive proof technique.
Case 1. Take(i, j) ∈ R1 andx satisfyingϕ(i)(x). We know thatx can only be a point-

distribution. Ifxk1+i = 1 then we take∆ such that∆k1+i,k2+j = 1 (and∆ is zero for all other
cells). Clearly∆ is a correspondence matrix. Moreoverx × ∆ is a point distribution with 1
on (k2 + j)th position, soψ(j)(x× ∆) holds by construction of the encoding (see first case in
encoding of constraints). Also(k1 + i, k2 + j) ∈ R2 since(si, tj) ∈ Q.

If x2k1+i′ = 1 then it means thatsi
V̌ (i)
−−−→π for someπ and actionV̌ (i). But then, since

(si, tj) ∈ Q, it is possible thattj
V̌ (i)
−−−→c̺,for some distribution̺ . Let j′ be such thattj = tj

′
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andaj′ = V̌ (i). Take a correspondence matrix∆ such that∆2k1+i′,2k2+j′ = 1 (and∆ is zero
for all other cells). We have thatx × ∆ is a point distribution with 1 on2k2 + j′th position,
soψ(j)(x× ∆) holds by construction of encoding resulting inj (see first case in encoding of
constraints). Also(2k1 + i′, 2k2 + j′) ∈ R3 ⊆ R by definition ofR3.

Case 2. Take(k1 + i, k2 + j) ∈ R2. The argument is almost identical to the first subcase in
Case 1. We omit it here.

Case 3. Take(2k1 + i′, 2k2 + j′) ∈ R3 andx satisfyingϕ(2k1 + i′)(x). Let si = si′ and
tj = tj

′

. By R3 we know that(si, tj) ∈ Q. By construction of the encodingsi
V̌ (2k1+i′)
−−−−−−→x

and furthermoretj
V̌ (2k1+i′)
−−−−−−→c̺, where̺ = ̺ × λ for some probability distributionλ ∈

Dist(1, . . . , |̺|). Clearlyψ(2k2 + j′)(̺) = 1. It remains to check thatπ can be correspon-
dence to̺ .

To this end consider a correspondence matrix∆ such that

∆ij =

{
αsi,tj/xi if xi 6= 0 andi ≤ k1, j ≤ k2

0 otherwise

Now (x×∆)j =
∑2k1+l1

i=1 xi∆ij =
∑k1

i=1 xi ·αsi,tj/xi =
∑k1

i=1 αsi,tj = αS,tj = ̺j by xR∗̺
(this discussion only holds forj ≤ k2, but the remaining cells are zero, which is easy to argue
for. Also somewhat sloppily we ignored the possibilty of division by zero – indeed it cannot
happen since forxi = 0 we said that∆ij is simply zero). Effectivelyx× ∆ = ̺, so it satisfies
ψ(2k2 + j′). Valuations obviously match.

Moreover if∆ij 6= 0 thenαsi,tj 6= 0. then(si, tj) ∈ Q and then(i, j) ∈ R1 ⊆ R, which
finishes the proof. �

Theorem 3.29 is a corollary from Lemmas 3.27 and 3.28.

Theorem 3.29.T probabilistically simulatesS iff Š weakly refinešT.

Similarly, we obtain precongruence with probabilistic simulation using a suitable encod-
ing.

3.9 Related Work and Concluding Remarks

In this chapter, we have presented CMCs—a new model for representing a possibly infinite
family of MCs. Unlike the previous attempts [86, 61], our model is closed under many de-
sign operations, including composition and conjunction. We have studied these operations as
well as several classical compositional reasoning properties, showing that, among others, the
CMC specification theory is equipped with a complete refinement relation (for deterministic
specifications), which naturally interacts with parallel composition, synchronization and con-
junction. We have also demonstrated how our framework can beused to obtain properties for
less expressive languages, by using reductions.

Two recent contributions [61, 90] are related to our work. Fecher et al. [61] propose a model
checking procedure for PCTL [36] and Interval Markov Chains(other procedures recently ap-
pear in [34, 69]), which is based on weak refinement. However,our objective is not to use
CMCs within a model checking procedure for probabilistic systems, but rather as a specifica-
tion theory.

Very recently Katoen and coauthors [90] have extended Fecher’s work toInteractiveMarkov
Chains, a model for performance evaluation [80, 82]. Their abstraction uses the continuous
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time version of IMCs [89] augmented with may and must transitions, very much in the spirit
of [100]. Parallel composition is defined and studied for this abstraction, however conjunction
has been studied neither in [61] nor in [90].

Over the years process algebraic frameworks have been proposed for describing and ana-
lyzing probabilistic systems based on Markov Chains (MCs) and Markov Decision Processes
[79, 8, 103]. Also a variety of probabilistic logics have been developed for expressing proper-
ties of such systems, e.g., PCTL [73]. Both traditions support refinement between specifications
using various notions of probabilistic simulation [61, 86]and, respectively, logical entailment
[81]. Whereas the process algebraic approach favors structural composition (parallel com-
position), the logical approach favors logical composition (conjunction). Neither of the two
supportsbothstructural and logical composition.

There are many directions in which we can still contribute both for IMCs and CMCs.
First, it would be interesting to see whether the results presented in Chapter 2 extend to
the continuous-time model of [89, 90]. Another interestingfuture work would be to extend
these results to other specification formalisms for systemsthat mix both stochastic and non-
deterministic aspects. Among them, one finds probabilisticautomata [112] where weak/strong
refinement would be replaced by (probabilistic) simulation[121, 87].

It would also be of interest to design, implement and evaluate efficient algorithms for pro-
cedures outlined both in this chapter and in Chapter 2. Defining a quotient relation for CMCs,
presumably building on results presented in [101], seems animportant next step. The quoti-
enting operation is of particular importance for componentreuse [116, 113, 114, 25, 115]. One
could also investigate applicability of our approach in model checking procedures, in the same
style as Fecher and coauthors have used IMCs for model checking PCTL [61].

Another interesting direction consists in using CMCs or IMCs as abstraction models for
solving stochastic games, following the approach initiated by Larsen et al in [49]. We could
also propose to use our IMCs or CMCs in an abstraction-based probabilistic model checking
procedure [42, 96, 71]. For this purpose, it would be important to study the logical fragment
that can be expressed using CMCs.

We should also mix our results with those recently obtained for timed specifications [50,
23, 22], hence leading to the first theory for specification oftimed probabilistic systems [98].

In the spirit of [56], it would be interesting to extend our composition operation by con-
sidering products of dependent probability distributions. Finally, one should propose a more
quantitative version of the refinement operation like this will be done for contracts in Chap-
ter 4.
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Chapter 4

Probabilistic contracts: a compositional
reasoning methodology for the design of
stochastic systems

4.1 Introduction

In [21], Benveniste et al. have proposed a component-based design theory calledcontracts. An
assume-guaranteecontract is a structure that, contrary to interface automata [54, 52] and modal
transition systems [100], allows to distinguish hypotheses on a component (guarantees) from
hypotheses made on its environment (assumptions). This explicit separation allows defining a
more elaborate satisfaction relation than the ones defined for interface or modal theories. More-
over, the authors of [21] use a language theoretic abstraction of systems behavior to represent
both assumptions and guarantees, hence allowing to represent more general properties than the
classical graphical-based models.

In this chapter we will focus on developing a contract-basedcompositional theory for two
classes of systems, that are (1) non-stochastic and possibly non-deterministic, and (2) stochas-
tic and possibly non-deterministic. As in classical non-modular verification [37, 129], the sat-
isfaction relation will be Boolean for non-stochastic systems and quantitative otherwise, hence
leading to two notions of contracts. In addition, we will consider two notions of satisfaction,
namelyreliability andavailability. Availability is a measure of the average time during which
a system satisfies a given property, for all possible runs of the system. In contrast, reliability
is a measure of the set of runs of a system that satisfy a given property. Both quantities play
an important role when designing, for instance, mission-critical systems. Our notion of satis-
faction is assumption-dependent in the sense that runs thatdo not satisfy the assumptions are
considered to be “correct”. This interpretation, which hasbeen suggested by many industrial
partners, is needed to propose compositional design operations such as conjunction.

Aside from the satisfaction relation, any good contract-based theory should also support the
following requirements.

1. Refinement and shared refinement. Refinementof contracts expresses inclusion of sets of
models, and therefore allows to compare contracts.

2. Structural composition.The contract theory should also provide a combination operator
on contracts, reflecting the standard composition of modelsby, e.g.parallel product.
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3. Logical composition/conjunction.Different aspects of systems are often specified by
different teams. The issue of dealing with multiple aspectsor multiple viewpoints is thus
essential. It should be possible to represent several contracts (viewpoints) for the same
system, and to combine them in a logical/conjunctive fashion.

The theory should also support incremental design (contracts can be composed/conjunct in any
order) and independent implementability (composable contracts can always be refined sepa-
rately) [55].

We propose mathematical definitions for composition, conjunction and refinement. It is in
fact known that most of industrial requirements1 for component-based design translate to those
operations. Composition between contracts, which mimics classical composition for systems,
consists in taking the intersection between the assumptions and the intersection between the
guarantees. Conjunction produces a contract whose assumptions are the union of the original
ones and guarantees are the intersection of the original ones. We say that a contract refines
another contract if it guarantees more and assumes less. Thedefinition is Boolean for non-
probabilistic systems and quantitative otherwise.

We also establish acompositional reasoning verificationtheory for those operations and
the two notions of satisfiability we consider. This methodology allows to reason on the entire
design by only looking at individual components. The theorydiffers with the type of contracts
under consideration. As an example, we will show that if a non-stochastic systemS1 reliably
satisfies2 a contractC1 and a non-stochastic systemS2 reliably satisfies a contractC2, then the
composition of the two systems reliably satisfies the composition of the two contracts. When
moving to stochastic systems, we will show that ifS1 satisfiesC1 with probabilityα andS2

satisfiesC2 with probabilityβ, then their composition satisfies the composition ofC1 andC2

with probability at leastα + β − 1. The theory is fully general as it assumes that both systems
and contracts are represented by sets of runs.

Our last contribution is to propose effective and symbolic representations for contracts and
systems. Those representations rely on an automata-based representation of possibly infi-
nite sets of runs. Assuming that assumptions and guaranteesare represented with Büchi au-
tomata (which allows to specify assumptions and guaranteeswith logics such as LTL [108] or
PSL [60]), we observe that checking if a (stochastic) systemsatisfies a reliability property can
be done with classical techniques implemented in tools suchas SPIN [127] or LIQUOR [35].
We show that satisfaction of availability properties can bechecked with an extension of the
work presented in [53]. Finally, we also show that operations between and on contracts can
easily be performed on the automata-based representations.

4.2 Preliminaries

In this section, we recap some definitions and concepts related to automata theory. We then
introduce some notations and concepts that will be used in the rest of the chapter.

Let Σ be an alphabet. A finite word overΣ is a mappingw : {0, . . . , n − 1} → Σ.
An infinite word (or ω-word) w over Σ is a mappingw : N → Σ. An automaton is a tu-
ple A = (Σ, Q,Q0, δ, F ), whereΣ is a finite alphabet,Q is a set ofstates, Q0 ∈ Q is the

1Example: those of the European projects COMBEST [45] and SPEEDS [126].
2“Reliably satisfy” means that all the runs that satisfy the assumption must satisfy the guarantee.
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set of initial states, δ : Q × Σ → 2Q is a transition function(δ : Q × Σ → Q if the au-
tomaton is deterministic), andF ⊆ Q is a set ofacceptingstates. Afinite run of A on a
finite wordw : {0, . . ., n − 1}→Σ is a labeling̺ : {0, . . ., n}→Q such that̺ (0) ∈ Q0, and
(∀0≤ i≤n− 1)(̺(i + 1) ∈ δ(̺(i), w(i))). A finite run̺ is acceptingfor w if ̺(n) ∈ F . An
infinite runof A on an infinite wordw : N→Σ is a labeling̺ : N→Q such that̺ (0) ∈ Q0, and
(∀0≤ i)(̺(i+1) ∈ δ(̺(i), w(i)). An infinite run̺ is acceptingfor w with the Büchi condition
if inf (̺) ∩ F 6= ∅, whereinf (̺) is the set of states that are visited infinitely often by̺. We
distinguish between finite-word automata that are finite automata accepting finite words, and
Büchi automata [29] that are finite automata accepting infinite words. A finite-word automaton
accepts a finite wordw if there exists an accepting finite run forw in this automaton. A Büchi
automaton accepts an infinite wordw if there exists an accepting infinite run forw in this au-
tomaton. The set of words accepted byA is called thelanguage accepted byA, and is denoted
by L(A). Finite-word and Büchi automata are closed under intersection and union. Inclusion
and emptiness are also decidable. Both finite-word and Büchiautomata are closed under com-
plementation and, in both cases, the construction is known to be exponential. However, the
complementation operation for Büchi automata requires intricate algorithms that not only are
worst-case exponential, but are also hard to implement and optimize (see [130] for a survey).

Let N∞ = N ∪ {ω} be the closure of the set of natural integers andNn = [0 . . . n − 1] the
interval ranging from0 ton− 1. LetV be a finite set ofvariablesthat takes values in adomain
D. A stepσ : V → D is a valuation of variables ofV . A run onV is a sequence of valuations
of variables ofV . More precisely, a finite or infinite run is a mappingw : Nn → V → D,
wheren ∈ N∞ is the length ofw, also denoted|w|. Let ε be the run of length0. Given a
variablev ∈ V and a timei ≥ 0, the value ofv at time i is given byw(i)(v). Givenw a
finite run onV andσ a step on the same variables,w.σ is the run of length|w| + 1 such that
∀i < |w|, (w.σ)(i) = w(i) and(w.σ)(|w|) = σ. The set of all finite (respectively infinite)
runs onV is denoted by[V ]∗ (respectively[V ]ω). The set of finite and infinite runs onV is
denoted[V ]∞ = [V ]∗ ∪ [V ]ω. Denote[V ]n (respectively[V ]≤n) the set of all runs onV of
length exactlyn (respectively not greater thann). Thecomplementof Ω ⊆ [V ]∞ is given by
¬Ω = [V ]∞ \ Ω. Theprojectionof w on V ′ ⊆ V is the runw ↓V ′ such that|w ↓V ′| = |w|
and∀v ∈ V ′, ∀n ≥ 0, w ↓V ′ (n)(v) = w(n)(v). Given a runw′ onV ′, the inverse-projection
of w′ on V is the set of runs defined byw′ ↑V = {w ∈ [V ]∞ | w ↓V ′= w′}. A systemover
V is a pair(V,Ω), whereΩ is a set of (finite and/or infinite) runs onV . Let S = (V,Ω)
andS ′ = (V ′,Ω′) be two systems. Thecompositionof S andS ′, denoted(V,Ω) ∩ (V ′,Ω′),
is given by(V ∪ V ′,Ω′′) with Ω′′ = Ω ↑V ∪V ′

∩Ω′ ↑V ∪V ′

. The complementof S, denoted
¬S, is given by¬S = (V,¬Ω). The restriction of systemS = (V,Ω) to runs of length not
greater thann ∈ N∞ (respectively exactlyn) is the systemS|≤n = (V,Ω∩ [V ]≤n) (respectively
S|n = (V,Ω ∩ [V ]n)). In Section 4.4, it will be assumed that systems can respondto every
possible input on a set of probabilistic variables. Such systems are said to bereceptiveto those
variables. GivenU ⊆ V , a set of distinguished variables, systemS = (V,Ω) is U-receptive
if and only if for all finite runw ∈ Ω ∩ [V ]∗ and for all input̺ : U → D, there exists a step
σ : V → D such thatσ ↓U= ̺ andw.σ ∈ Ω. GivenU ⊆ V ∩ V ′, two U-receptive systems
S = (V,Ω) andS ′ = (V ′,Ω′) areU-compatible if and only ifS ∩ S ′ isU-receptive.

A symbolic transition systemoverV is a tupleSymb = (V,Qs, T, Qs0), whereV is a set of
variables defined over afinitedomainD,Qs is a set of states (a state is a mapping fromV toD),
T ⊆ Qs ×Qs is the transition relation, andQs0 ⊆ Qs is the set of initial states. A run ofSymb
is a possibly infinite sequence of statesqs0qs1 . . . such that for eachi≥0 (qsi, qs(i+1)) ∈ T
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and qs0 ∈ Qs0. A symbolic transition system for a system(V,Ω) is a symbolic transition
system overV whose set of runs isΩ. Operations of (inverse) projection and intersection easily
extend from systems to their symbolic representations (such representation may not exist).
Let BA = (Σ, Q,Q0, δ, F ⊆ Q) be an automaton such thatΣ is a mappingV → D. The
synchronous productbetweenBA andSymb is the automatonBBA×Symb = (∅, Q′, Q′

0, δ
′, F ′),

whereQ′ = Qs × Q, Q′
0 = Qs0 × Q0, (a′, b′) ∈ δ′((a, b), ∅) iff (a, a′) ∈ T andb′ ∈ δ(b, a),

F ′ = {(a, b) ∈ Q′|b ∈ F}. Each state in the product is a pair of states: one forSymb and
one forBA. If we do not take the information fromBA into account, a run of the product
corresponds to a run ofSymb.

4.3 Non-Probabilistic Contracts

In this section, we introduce the concept of contract for non-stochastic systems. We also study
compositional reasoning for such contracts. We will present the theory in the most general
case by assuming that contracts and systems are given by (pair of) possibly infinite sets of
runs [21]. In practice, a finite representation of such sets is required and there are many ways
to instantiate our theory depending on this representation. At the end of the section, we will
give an example of such a representation. More precisely, wewill follow a successful trend in
Model Checking and use automata as a finite representation for systems and contracts. We will
also derive effective algorithms based on this symbolic representation.

4.3.1 Contracts

We first recap the concept ofcontract[20], a mathematical representation that allows to distin-
guish between assumptions made on the environment and properties of the system.

Definition 4.1 (Contract). A contract overV is a tupleC = (V,A,G), whereV is the set of
variables ofC, systemA = (V,ΩA) is theassumptionand systemG = (V,ΩG) is theguarantee.

The contractC is said to be incanonical formif and only if ¬A ⊆ G. As we shall see
in Section 4.3.2, the canonical form is needed to have uniform notions of composition and
conjunction between contracts.

We now turn to the problem of deciding whether a system satisfies a contract. A system that
satisfies a contract is animplementationof the contract. There are two types of implementation
relations, depending on the property captured by a contract. A first possible interpretation is
when the contract represents properties that are defined on runs of the system. This includes
safety properties. In this context, a system satisfies a contract if and only if all system runs that
satisfy the assumption are included in the guarantee. This applies to reliability properties, and
a system implementing a contract in this way is said toR-satisfythe contract. Another possible
interpretation is when the contract represents propertiesthat are defined on finite prefixes of the
runs of the system and when one wants to evaluate how often thesystem satisfies the contract.
We will say that a systemA-satisfiesa contract with levelm (0 ≤ m ≤ 1) if and only if for
each of its runs, the proportion of prefixes of system runs that are either in the guarantee or
in the complement of the assumption is greater or equal tom. This concept can be used to
checkaverage safenessor reliability, i.e., to decide for each run whether the average number
of positions of the run that do satisfy a local condition is greater or equal to a given threshold.
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Figure 4.1: Illustration of mean-availability.

Definition 4.2 (R-Satisfaction). SystemS = (U,Ω) R-satisfies contractC = (V,A,G) up to
timet ∈ N∞, denotedS |=R(t) C, if and only ifS|≤t ∩A ⊆ G.

Discussion.In this chapter, we assume that runs that do not satisfy the assumptions are “good”
runs, i.e., they do not need to satisfy the guarantee. In our theory, assumptions are thus used
to distinguish runs that must satisfy the property from those that are not forced to satisfy the
property. There are other interpretations of the paradigm of assume/guarantee in which the runs
that do not satisfy the assumptions are considered to be bad.We (and our industrial partners)
believe that our definition is a more natural interpretationas there is no reason to eliminate runs
on which no assumption is made. Another advantage of this approach, which will be made
more explicit in Section 4.4, is that this interpretation allows to define a conjunction operation
in the stochastic case.

The definition of A-satisfiability is more involved and requires additional notations. The
objective is to compute an invariant measure of the amount oftime during which the system
satisfies a contract. This relation can be combined withdiscounting3, which allows to give
more weight to faults that arise in the early future. Letw ∈ [V ]∞ be a (finite or infinite)
run andC = (V,A,G) be a contract. We define the functionϕC

w : N|w| → {0, 1} such that
ϕC

w(n) = 1 ⇐⇒ w[0,n] ∈ G ∪ ¬A. If we fix an horizon in timet ∈ N∞ and adiscount factor
d≤1, defineDt,d

C (w) = 1
t

∑t
i=0 ϕ

C
w(i) if d = 1 andDt,d

C (w) = 1−d
1−dt+1

∑t
i=0 d

iϕC
w(i) if d < 1.

Dt,d
C (w) is the mean-availability until positiont along the execution corresponding tow with

discount factord. The concept is illustrated in Figure 4.1. A-Satisfaction can now be defined.

Definition 4.3 (A-Satisfaction). A systemS = (U,Ω) A-satisfies at levelm contractC =

(V,A,G) until positionk with discount factord, denotedS |=A(k)
d,m C, iff:

min
w∈(S↑U∪V )|k

Dk,d
C↑U∪V (w) ≥ m if k < ω

inf
w∈(S↑U∪V )|k

lim inf
t→k

Dt,d
C↑U∪V (w) ≥ m if k = ω.

3Discounting is a concept largely used in many areas such as economy.
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It is easy to see that the limit in Definition 4.3 converges, sinceDt,d
C ≥ 0. In Section 4.3.4 we

will propose techniques to check satisfiability for contracts that are represented with symbolic
structures.

In the rest of the section, we propose definitions for composition, conjunction, and re-
finement. We also study compositional verification with respect to these definitions and the
satisfaction relations we considered above.

4.3.2 Compositional reasoning

In this section, we first define operations between and on contracts and then propose a com-
positional reasoning framework for contracts. We start with the definition forcompositionand
conjunction. Composition between contracts mimics classical composition between systems at
the abstraction level. Informally, it consists in taking the intersection between the assumptions
and the intersection between the guarantees. Conjunction is a more intriguing operation that
has no translation at the level of systems; it consists in producing a contract whose assump-
tions are the union of the original ones and guarantees are the intersection of the original ones.
Roughly speaking, the conjunction of two contracts represents their common requirements.

Definition 4.4. Let Ci = (Vi, Ai, Gi) with i = 1, 2 be two contracts in canonical form. We
define

• Theparallel compositionbetweenC1 andC2, denotedC1 ‖ C2, to be the contract(V1 ∪
V2, A1 ∩A2 ∪ ¬(G1 ∩G2), G1 ∩G2).

• TheconjunctionbetweenC1 andC2, denotedC1 ∧ C2, to be the contract(V1 ∪ V2, A1 ∪
A2, G1 ∩G2).

It is easy to see that both conjunction and composition preserve canonicity.

Discussion. As pointed out in [20], the canonical form is needed to have uniform notions
of composition and conjunction between contracts. Indeed,consider two contractsC1 =
(V, ∅, [V ]∞) andC2 = (V, ∅, ∅). Observe thatC1 is in canonical form andC2 is not. As-
sume also that any system can satisfy bothC1 andC2. The parallel composition betweenC1

andC2 is the contract(V, [V ]∞, ∅). This contract can only be satisfied by the empty system.
Consider now the contractC ′

2 = (V, ∅, [V ]∞), which is the canonical form forC2. It is easy
to see that the composition betweenC1 andC ′

2 is satisfied by any system. Non-canonical
contracts can also be composed. Indeed, the composition of two non-canonical contracts
C1 = (V1, A1, G1) andC2 = (V2, A2, G2) is given by the following formulaC1 ‖nc C2 =
(V1 ∪ V2, (A1 ∪ ¬G1) ∩ (A2 ∪ ¬G2), G1 ∩ G2). Observe that this composition requires one
more complementation operation, which may be computationally intensive depending on the
data-structure used to representedA andG (see Section 4.3.4).

We now turn to the definition ofrefinement, which leads to a preorder relation on contracts.

Definition 4.5. We say thatC1 refinesC2 up to timet ∈ N∞, denotedC1 �(≤t) C2, if it
guarantees more and assumes less, for all runs of length not greater thant: A1 ↑V1∪V2⊇
(A2 ↑V1∪V2)|≤t and(G1 ↑V1∪V2)|≤t ⊆ G2 ↑V1∪V2 .
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Property 4.1. By a simple inspection of Definitions 4.4 and 4.5, one observes that both con-
junction and composition are associative, i.e.,C1 ‖ (C2 ‖ C3) = (C1 ‖ C2) ‖ C3 and
C1 ∧ (C2 ∧ C3) = (C1 ∧ C2) ∧ C3 (incremental design). ConsiderC2 ‖ C3 (respectively,
C2 ∧ C3). We also observe that ifC1 �(≤t) C2, then(C1 ‖ C3) �(≤t) (C2 ‖ C3) (respectively,
(C1 ∧ C3) �(≤t) (C2 ∧ C3)) (independent implementability).

It is interesting to see that the conjunction of two contracts coincide with theirgreatest
lower boundwith respect to refinement preorder. Thus the following theorem.

Theorem 4.2.Consider two contractsC1 andC2, we have that

• C1 ∧ C2 �(≤t) C1 andC1 ∧ C2 �(≤t) C2, and

• for eachC such thatC �≤t C1 andC �≤t C2, we haveC �≤t (C1 ∧ C2).

4.3.3 Compositional Verification

In this chapter,compositional verificationrefers to a series of results that allow to deduce
correctness of a global system by observing its atomic components only. We start with the
following theorem for reliability.

Theorem 4.3([20]). ConsiderS1, S2 two systems andC1,C2 two contracts in canonical form.
The following propositions hold for allt ∈ N∞:

• S1 |=R(t) C1 andS2 |=R(t) C2 implies that(S1 ∩ S2) |=R(t) (C1 ‖ C2);

• S1 |=R(t) C1 andS1 |=R(t) C2 iff S1 |=R(t) (C1 ∧ C2);

• S1 |=R(t) C1 andC1 �(≤t) C2 implies thatS1 |=R(t) C2.

The above theorem can thus be used to deduce satisfaction w.r.t. to conjunction or compo-
sition without computing the result of these operations explicitly. The double implication in
the second item of the theorem is valid as conjunction is not defined at the level of systems.
The theorem can also be used to decide satisfaction on a refined contract without performing
any computation. By combining the definitions of composition, conjunction, refinement, and
Theorem 4.3, we get the following corollary.

Corollary 4.4. LetS be a system andC1, C2, C3 be three contracts in canonical form. We have
the following results.

• S |=R(t) C1 ‖ (C2 ‖ C3) iff S |=R(t) (C1 ‖ C2) ‖ C3;

• S |=R(t) C1 ∧ (C2 ∧ C3) iff S |=R(t) (C1 ∧ C2) ∧ C3;

• If C1 �(≤t) C2 andS |=R(t) (C1 ‖ C3) (respectively,S |=R(t) (C1 ∧ C3)), thenS |=R(t)

(C2 ‖ C3) (respectively,S |=R(t) (C2 ∧ C3)).

We now switch to the case of availability. We propose the following theorem that, for ex-
ample, gives a lower bound on availability for conjunction and disjunction without computing
them explicitly.
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Theorem 4.5. ConsiderS1 andS2 two systems andC1, C2 two contracts in canonical form.
Letd ≤ 1 be a discount factor. The following propositions hold for all t ∈ N∞:

• S1 |=
A(t)
d,m1

C1 andS2 |=
A(t)
d,m2

C2 implies that(S1 ∩ S2) |=
A(t)
d,m1+m2−1 (C1 ‖ C2);

• S1 |=
A(t)
d,m1

C1 andS1 |=
A(t)
d,m2

C2 implies thatS1 |=
A(t)
d,m1+m2−1 (C1 ∧ C2);

• S1 |=
A(t)
d,m C1 andC1 �

(≤t) C2 implies thatS1 |=
A(t)
d,m C2.

The above theorem is an extension of Theorem 4.3 to the case ofavailability. It is interesting
that the double implication in item two of Theorem 4.3 does not remain valid in this extension.
This is because of the definition of availability. Observe that the last item of Theorems 4.3 and
4.5 also stands ifC1 andC2 are not in canonical form. Observe also that Theorem 4.5 calls
for a direct extension of Corollary 4.4 to the case of availability. Before we give the proof
for Theorem 4.5 and discuss the extension, we first recap the following classical algebraic
properties.

Property 4.6. ConsiderV ⊆ V ′ ⊆ V ′′ three sets of variables andE andE ′′ two sets of runs
overV andV ′′ respectively. We have:

(E ↑V ′

) ↑V ′′

= E ↑V ′′

; (4.6:1)

(E ↑V ′′

) ↓V ′ = E ↑V ′

; (4.6:2)

(E ′′ ↓V ′) ↓V = E ↓V ; (4.6:3)

w ∈ E ′′ ⇒ w ↓V ∈ E ′′ ↓V ; (4.6:4)

w ∈ E ⇒ w ↑V ′

⊆ E ↑V ′

. (4.6:5)

We now give the proof of Theorem 4.5.

Proof of Theorem 4.5.
For the sake of simplicity, we will consider thatk = ω. The proofs fork < ω are simpler

versions of those presented here. We consider the three items of the theorem.

1. LetS = (U,Ω) = S1 ∩ S2 andC = (V,A,G) = C1 ‖ C2. SinceC1 andC2 are contracts
in canonical form, we haveG1 = G1 ∪ ¬A1 andG2 = G2 ∪ ¬A2. Similarly, since
composition preserves canonicity, we haveG = G ∪ ¬A.

Considerw ∈ ((S1 ↑U1∪U2 ∩S2 ↑U1∪U2) ↑U∪V )|k. Letw1 = w ↓U1∪V1 andw2 = w ↓U2∪V2 .
By (4.6:4), we have
w1 ∈ (((S1 ↑U1∪U2) ↑U∪V ))|k ↓U1∪V1 . By (4.6:1) and (4.6:2), this implies thatw1 ∈
(S1 ↑U1∪V1)|k. Similarly, we also havew2 ∈ (S2 ↑U2∪V2)|k.

Considert ≤ k andi ≤ t. By definition, ifϕC↑U∪V

w (i) = 0, thenw[0,i] /∈ G ↑U∪V . By
(4.6:5), we deduce[(w1[0,i] /∈ G1 ↑

U1∪V1) ∨ (w2[0,i] /∈ G2 ↑
U2∪V2)]. As a consequence,

ϕC↑U∪V

w (i) ≥ ϕC1↑U1∪V1

w1
(i) + ϕC2↑U2∪V2

w2
(i) − 1
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⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (w) ≥D(t,d)

C1↑U1∪V1
(w1)

+D
(t,d)

C2↑U2∪V2
(w2) − 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1)

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(w2)

− 1.

By hypothesis, we have






lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1) ≥ m1

lim inf
t→k

D
(t,d)

C2↑U2∪V2
(w2) ≥ m2.

As a consequence,

lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥ m1 +m2 − 1.

Finally,

∀w ∈ (S ↑U∪V )|k, lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥m1 +m2

− 1

⇒ inf
w∈(S↑U∪V )|k

lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥m1 +m2

− 1.

�

2. LetC = (V,A,G) = C1 ∧C2. SinceC1 andC2 are contracts in canonical form, we have
G1 = G1 ∪¬A1 andG2 = G2 ∪¬A2. Similarly, since conjunction preserves canonicity,
we haveG = G ∪ ¬A.

Considerw ∈ (S1 ↑U1∪V )|k. Letw1 = w ↓U1∪V1 andw2 = w ↓U1∪V2 . By (4.6:4), we have
w1 ∈ ((S1 ↑U1∪V ))|k ↓U1∪V1 . By (4.6:2), this implies thatw1 ∈ (S1 ↑U1∪V1)|k. Similarly,
we also havew2 ∈ (S1 ↑U1∪V2)|k.

Considert ≤ k andi ≤ t. By definition, ifϕC↑U1∪V

w (i) = 0, thenw[0,i] /∈ G ↑U1∪V . By
(4.6:5), we deduce[(w1[0,i] /∈ G1 ↑U1∪V1) ∨ (w2[0,i] /∈ G2 ↑U1∪V2)]. As a consequence,

ϕC↑U1∪V

w (i) ≥ ϕC1↑U1∪V1

w1
(i) + ϕC2↑U1∪V2

w2
(i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U1∪V (w) ≥D(t,d)

C1↑U1∪V1
(w1)

+D
(t,d)

C2↑U1∪V2
(w2) − 1
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⇒ lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1)

+ lim inf
t→k

D
(t,d)

C2↑U1∪V2
(w2)

− 1.

By hypothesis, we have






lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1) ≥ m1

lim inf
t→k

D
(t,d)

C2↑U1∪V2
(w2) ≥ m2.

As a consequence,
lim inf

t→k
D

(t,d)

C↑U1∪V (w) ≥ m1 +m2 − 1.

Finally,

∀w ∈ (S1 ↑
U1∪V )|k, lim inf

t→k
D

(t,d)

C↑U1∪V (w) ≥m1 +m2

− 1

⇒ inf
w∈(S1↑U1∪V )|k

lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥m1 +m2

− 1.

�

3. Considerw ∈ (S1 ↑
U1∪V2)|k. Letw′ ∈ w ↑U1∪V1∪V2 andw1 = w′ ↓U1∪V1. By (4.6:1) and

(4.6:2), we havew1 ∈ (S1 ↑U1∪V1)|k.

Consider nowt ≤ k and i ≤ t. By definition,ϕC1↑U1∪V1

w1
(i) = 1 ⇐⇒ w1[0,i] ∈

(G1 ∪¬A1) ↑U1∪V1 . By hypothesis,((G1 ∪ ¬A1) ↑V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑V1∪V2)|≤k.
Thus, by (4.6:5), ((G1 ∪ ¬A1) ↑U1∪V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑U1∪V1∪V2)|≤k.
If ϕC1↑U1∪V1

w1
(i) = 1, then

w1[0,i] ∈ ((G1 ∪ ¬A1) ↑
U1∪V1)|≤k

⇒ w1[0, i] ↑
U1∪V1∪V2⊆ ((G1 ∪ ¬A1) ↑

U1∪V1∪V2)|≤k

⇒ w1[0, i] ↑
U1∪V1∪V2⊆ ((G2 ∪ ¬A2) ↑

U1∪V1∪V2)|≤k

⇒ w′
[0,i] ∈ (G2 ∪ ¬A2) ↑

U1∪V1∪V2

⇒ w′
[0,i] ↓U1∪V2∈ (G2 ∪ ¬A2) ↑

U1∪V1∪V2↓U1∪V2 by (4.6:4)

⇒ w[0,i] ∈ (G2 ∪ ¬A2) ↑
U1∪V2 by (4.6:2)

⇒ ϕC2↑U1∪V2

w (i) = 1.

Thus,
∀t ≤ k, ∀i ≤ t, ϕC2↑U1∪V2

w (i) ≥ ϕC1↑U1∪V1

w1
(i)

⇒ ∀t ≤ k, Dt,d

C2↑U1∪V2
(w) ≥ Dt,d

C1↑U1∪V1
(w1)

⇒ lim inf
t→k

Dt,d

C2↑U1∪V2
(w) ≥ lim inf

t→k
Dt,d

C1↑U1∪V1
(w1).
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By hypothesis,
lim inf

t→k
Dt,d

C1↑U1∪V1
(w1) ≥ m.

As a consequence,

∀w ∈ (S1 ↑
U1∪V2)|k, lim inf

t→k
Dt,d

C2↑U1∪V2
(w) ≥ m

⇒ inf
w∈(S1↑U1∪V2)|k

lim inf
t→k

Dt,d

C2↑U1∪V2
(w) ≥ m.

�

Theorem 4.4 also extends to the case of availability. Hence,we have the following corollary

Corollary 4.7. LetS be a system andC1, C2, C3 be three contracts in canonical form. We have
the following results.

• S |=A(k)
d,m C1 ‖ (C2 ‖ C3) iff S |=A(k)

d,m (C1 ‖ C2) ‖ C3;

• S |=A(k)
d,m C1 ∧ (C2 ∧ C3) iff S |=A(k)

d,m (C1 ∧ C2) ∧ C3;

• If C1 �(≤t) C2 andS |=A(k)
d,m C1 ‖ C3 (respectively,S |=A(k)

d,m C1 ∧ C3), thenS |=A(k)
d,m

(C2 ‖ C3) (respectively,S |=A(k)
d,m (C2 ∧ C3)).

4.3.4 Effective algorithms/representations

We proposesymbolicandeffectiveautomata-based representations for contracts and systems.
Those representations are needed to handle possibly infinite sets of runs with a finite memory.
We will be working with variables defined over afinite domainD. According to our theory,
a symbolic representation is effective for an assumption (resp. a guarantee) if inclusion is
decidable and the representation is closed under complementation (needed for refinement),
union, and intersection. A representation is effective fora system (that is not an assumption or
a guarantee) if it is closed under intersection and (inverse) projection, and reliability/availability
are decidable.

We assume that systems that are not assumptions or guarantees are represented withsym-
bolic transition systems(see Section 4.2 for properties) and that assumptions and guarantees
are represented with either finite-word or Büchi automata. Let C = (V,A,G) be a contract,
a symbolic contractfor C is thus a tuple(V,BA,BG), whereBA andBG are automata with
L(BA) = A andL(BG) = G. Observe that there are systems and contracts for which there
exists no symbolic representation.

Since both finite-word and Büchi automata are closed under complementation, union and
intersection, it is easy to see that the composition and the conjunction of two symbolic contracts
is still a symbolic contract. Moreover, since inclusion is decidable for those automata, we
can always check whether refinement holds. We now focus on thesatisfaction relations. We
distinguish between R-Satisfiability and A-Satisfiability. We consider a symbolic contractC =
(V,BA,BG) and a symbolic transition systemSymb = (V,Qs, T, Qs0).
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• Reliability . When considering R-satisfaction, we will assume thatBA andBG are Büchi
automata. It is conceptually easy to decide whetherSymb R-satisfiesC. Indeed, follow-
ing results obtained for temporal logics [131, 132], implemented in theSPINtoolset [127],
this amounts to check whether the Büchi automaton obtained by taking the synchronous
product betweenSymb and¬(BG ∪¬BA) is empty. Observe that assumptions and guar-
antees can also be represented by logical formalisms that have a translation to Büchi au-
tomata – this includesLTL [108] andETL[134]. The theory generalizes to other classes
of infinite word automata closed under negation and union andother logical formalisms
such asCTL[40] or PSL[60].

• Availability with level m and discount factor d . In [53], de Alfaro et al. proposed
DCTL, a quantitative version of the CTL logic [40]. DCTL has the same syntax as CTL,
but its semantics differs : in DCTL, formulas and atomic propositions take values be-
tween0 and1 rather than in{0, 1}. Let ϕ1 andϕ2 be two DCTL formulas, the value
of ϕ1 ∧ ϕ2 (resp.ϕ1 ∨ ϕ2) is the minimum (resp. maximum) between the values ofϕ1

andϕ2. The value of∀ϕ1 (resp. ∃ϕ1) is the minimum (resp. maximum) valuation of
ϕ1 over all the runs. In addition to its quantitative aspect, DCTL also allows to discount
on the value of the formula as well as to compute its average (△d operator, whered is
the discount : see the semantics withd = 1 andd < 1 page6 of [53]) on a possibly
infinite run. We assume thatBA andBG arecompletefinite-word automata and show
how to reduce A-satisfaction to the evaluation of a DCTL property. Our first step is to
computeSymb′, the synchronous product betweenSymb andBG ∪ ¬BA. The resulting
automaton can also be viewed as a symbolic transition systemwhose states are labelled
with a propositionp which is true if the state is accepting and false otherwise. In fact,
finite sequences of states ofSymb′ whose last state is accepting are prefixes of runs of
Symb that satisfyBG ∪ ¬BA. Hence, checking whetherSymb A-satisfiesC boils down
to compute the minimal average to seep = 1 in Symb′. Our problem thus reduces to the
one of checking for each initial state ofSymb′ whether the value of the DCTL property
∀△d p is greater or equal tom.

4.4 Probabilistic Contracts

We now extend the results of the previous section to systems that mix stochastic and non-
deterministic aspects. As for the previous section, all ourresults will be developed assuming
that contracts and systems are represented by sets of runs and then an automata-based repre-
sentation will be proposed.

Consider a system whose set of variables isU . Our way to mix stochastic and
non-deterministic information consists in assuming that,at any moment of time, the value of a
set of variablesP are chosen with respect to a given probability distribution. The value of the
variables inU \ P are chosen in a non-deterministic manner. From the point of view of com-
positional reasoning, it matters whether variables inP are local to a given system or global and
shared by all the systems. Indeed, without going to the details, dealing with local probabilis-
tic variables would require to handle conditional probabilities in composition and conjunction
operations. To simplify the problem, we assume that variables inP are global and shared by
all the systems involved in the design. Remark that one can already model a lot with global
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variables. Classically, the idea is to view some of the variables as “don’t care” in the systems
in where they do not matter. Without loss of generality, we also assume that for a given system,
the value of the non-deterministic variables remain the same for the initial position of all the
runs. This allows to select the initial value of the variables of the run by using the probability
distribution only.

We will assume that systems are receptive onP . Due to this property, one can see that
runs of a system on a set of variablesU with P ⊆ U are runs onP in where each po-
sition is augmented with an assignment for the variables inU \ P . In addition, we sup-
pose that, in a given position, the probability to select thenext values of the variables in
P is independent from the non-deterministic choice. This is done by assuming the exis-
tence of a unique probability distributionP over [P ]ω and extending it to[P ]∗ as follows:
∀w ∈ [P ]∗, P(w) =

∫
{w′∈P ω | w<w′}

P(w′)dw′, where< is the prefix order on runs.

Remark 4.1. Our model of computation is clearly not as powerful as MarkovDecision Pro-
cesses (MDPs). Indeed, in an MDP, at any given moment of time,the choice of the values of
variables inU \ P may influence the distribution on the next values of variables inP . As we
assume a unique global distribution on the set of runs, the choice of the values of the variables
in U \P does not influence the probability distribution that is fixedin advance and only depend
on the probabilistic choices.

Before defining relations between systems and contracts, itis first necessary to define a
probability measure on the set of runs of the system. By hypothesis, this measure has been
defined on the set of runs overP and we have to lift it to runs onU . As the system is receptive
on P , one could think that the measure directly extends to the runs of the system. This is
actually not true. Indeed, one can associate several different values of the non-deterministic
variables to a given run of the stochastic variables. This problem can be solved with the help of
a scheduler that, in a given moment of time, associates a unique value to each non-deterministic
variable with a given value of the probabilistic variables.In practice, systems are not defined
as sets of runs but rather as symbolic objects, e.g., Markov Decision Processes, that generate
runs from a set of initial states. In such context, the resolution of the non-determinism is
incremental. The process starts from an initial value of theprobabilistic variables to which is
associated a unique value of the non-deterministic variables. Then, at any moment of time and
for any run, the scheduler associates a unique non-deterministic choice to a given value of the
probabilistic variables. As the system is receptive onP , a scheduler basically associates to
any position of any run onP a value for the non-deterministic variables in order to retrieve a
run of the system. This is sufficient to define a probability measure on subsets of runs of the
system. The assignments can either depend (1) on the last position of the run, in which case the
scheduler is said to be memoryless, or (2) on a prefix of the run, in which case the scheduler is
said to be history-dependent.

We now propose a general definition of the “effect of a scheduler”,i.e., computing a subset
of runs ofS receptive onP and on which a probability measure can be defined. Characterizing
the effect of the scheduler is enough to reason on compositional design. This is different from
the application of the scheduler itself, i.e, the choice made at a given position. Consider a
systemS = (U,Ω). From a definition point of view, since the system is receptive onP , the
effect of a schedulerf can be characterized by a mapping from every finite (or infinite) runw
on probabilistic variablesP to a runf(w) of S which coincides withw for every probabilistic
variable. This can be formalized with the following definition.
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Definition 4.6 (Scheduler). A schedulerf of systemS = (U,Ω), with P ⊆ U , is a
monotonous mapping[P ]∗ → Ω such that for allw ∈ [P ]∗, f(w) ↓P= w. The set of schedulers
corresponding to a systemS is denoted bySched(S).

For simplicity of the presentation, we use the term scheduler to refer either to the resolution
of the non-determinism in a given position (which will be needed in Section 4.4.3) of the run
or to the effect of applying the scheduler to generate a subset of runs of the system whose
probability measure is defined. Letf be a scheduler defined on a finite set of runs of length
k. To be coherent with classical definitions of schedulers that resolve non-determinism starting
from the initial set of states, we have to suppose thatf is causal. More precisely, given a run of
lengthk + 1, this means thatf cannot change the non-deterministic assignments to the prefix
of lengthk of the run. Formally,∀w,w′ ∈ [P ]∗, w < w′ ⇒ f(w) < f(w′). In practice, this is a
natural assumption that is only emphasized as it will be usedin the proofs.

The above theory is illustrated in Figure 4.2. Figure 4.2a presents the set of runs of a
probabilistic variablep that can take two values:1 and 2. Figure 4.2b presents the set of
runs of a system whose unique probabilistic variable isp. The runs colored in dark are those
selected by the schedulers. One can see that the probabilitymeasure of these runs is1 =
0.24 + 0.06 + 0.28 + 0.42, while the measure on all runs is1.76. The reason is that probability
values are duplicated due to non-determinism. As an example, from the statep : 1, n : 5, the
probability thatp = 2 in the next step is0.2. However, this probability is duplicated because
p : 2 can either be associated ton : 0 or ton : 5. The scheduler will choose between those two
values. For doing so, it may use the history of the run.

.3 .7

.8 .2 .6.4

p : 1

.24

p : 1

.06

p : 2

.28 .42

p : 2p : 1

p : 2

(a) Set of runs for a probabil-
ity variablep and its probabil-
ity distribution.

.24 .06 .06

.2.8 .2

.28 .28 .42.42

.4.4 .6.6

p : 1, n : 0 p : 2, n : 0 p : 2, n : 5 p : 1, n : 0 p : 1, n : 5 p : 2, n : 0 p : 2, n : 5

p : 2, n : 5p : 1, n : 5

f .3 .7

(b) Set of runs with a probabilistic variablep and a
non-deterministic variablen, and a schedulerf

.3 .7f

.8 .2 .6.4

p : 1, n : 0

.24

p : 2, n : 0

.06

p : 1, n : 5

.28

p : 2, n : 0
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p : 1, n : 5 p : 2, n : 5

(c) Measure on the sets of runs af-
ter applying the schedulerf

Figure 4.2: Illustration of a scheduler defining a probability measure on a set of executions
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4.4.1 Probabilistic contracts

We will say that a contractC = (V,A,G) is aprobabilistic contractiff P ⊆ V , i.e. iff its set
of variables contains all the probabilistic variables. We now turn to the problem of deciding
whether a systemS = (U,Ω) satisfies a probabilistic contractC = (V,A,G). As it was already
the case for non-probabilistic contracts, we will distinguish R-Satisfaction and A-Satisfaction.

In Section 4.3, R-Satisfaction was defined with respect to a Boolean interpretation: either
the system R-satisfies a contract or it does not. When moving to the probabilistic setting, we
can give aquantitativedefinition for R-Satisfaction that is:for any scheduler, is the probability
to satisfy the contract greater or equal to a certain threshold?

Definition 4.7 (P-R-Satisfaction). A systemS = (U,Ω) R-satisfies a probabilistic contract
C = (V,A,G) for runs of lengthk (k ∈ N∞) with levelα, denotedS ||=R(k)

α C, iff

inf
f∈Sched(S↑U∪V )

(P([f([P ]k) ∩ (G ∪ ¬A) ↑U∪V ] ↓P ) ≥ α.

Observe that, as for the non-probabilistic case, we consider that runs that do not satisfy the
assumption are good runs. In addition to the motivation given in Section 4.3.1, we will see
that using such an interpretation is needed when considering the conjunction operation (see the
observation after Theorem 4.8).

Though A-Satisfaction was already qualitative, we now haveto take into account the prob-
abilistic point of view: instead of considering the minimalvalue of the mean-availability for all
runs of the system, we now consider theminimal expected valueof the mean-
availability for all schedulers.

Definition 4.8 (P-A-Satisfaction). A systemS = (U,Ω) A-satisfies a probabilistic contract
C = (V,A,G) for runs of lengthk (k ∈ N∞) with levelα and discount factord, denoted
S ||=A(k)

d,α C, iff

inf
f∈Sched(S↑U∪V )

∫

w∈[P ]k
P(w) · F (w)dw ≥ α

with

F (w) =

{
Dk,d

C↑U∪V (f(w)) if k < ω

lim inft→k D
t,d
C↑U∪V (f(w)) if k = ω.

4.4.2 Operations on probabilistic contracts and Compositional reasoning

We now leverage the compositional reasoning results of Section 4.3.2 to probabilistic contracts.
We consider composition/conjunction and refinement separately.

Composition and Conjunction

Composition and conjunction of probabilistic contracts isdefined as for non-probabilistic con-
tracts (see Definition 4.4). We thus propose an extension of Theorems 4.3 and 4.5 which takes
the probabilistic aspects into account.
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Theorem 4.8 (P-R-Satisfaction). Consider three systemsS = (U,Ω), S1 = (U1,Ω1) and
S2 = (U2,Ω2) and two probabilistic contractsC1 = (V1, A1, G1) andC2 = (V2, A2, G2) that
are in canonical form. We have the following results:

1. Composition. Assume thatS1 and S2 are P -compatible. If S1 ||=
R(k)
α C1 and

S2 ||=
R(k)
β C2, thenS1 ∩ S2 ||=

R(k)
γ C1 ‖ C2 with γ ≥ α + β − 1 if α + β≥1 and 0 oth-

erwise.

2. Conjunction. Assume thatS is P -receptive. IfS ||=R(k)
α C1 and S ||=R(k)

β C2, then

S ||=R(k)
γ C1 ∧ C2 with γ ≥ α + β − 1 if α+ β≥1 and 0 otherwise.

Remark that the choice ofγ in Theorem 4.8 is tight: this bound is matched in many cases. We
first state a classical algebraic property, which in fact justifies the choice forγ in the theorem,
and two lemmas that will be needed in the proof of Theorem 4.8.We then present the proof.

Property 4.9. LetE1 andE2 be two sets of runs overP . We have:

P(¬(E1 ∩E2)) ≤ P(¬E1) + P(¬E2)

⇒ 1 − P(E1 ∩ E2) ≤ (1 − P(E1)) + (1 − P(E2))

⇒ P(E1 ∩ E2) ≥ P(E1) + P(E2) − 1. (4.9:1)

We now propose the two lemmas.

Lemma 4.10.ConsiderS = (U,Ω) a P-receptive system,f ∈ Sched(S) a scheduler ofS and
U ′ a set of variables. IfP ⊆ U ′ ⊆ U , then we have:

f ↓U ′:

{
[P ]∞ → S ↓U ′

w 7→ f(w) ↓U ′

}
∈ Sched(S ↓U ′).

Proof. Let f ′ = f ↓U ′. By definition,f ′ : [P ]∗ → S ↓U ′. Consider noww ∈ [P ]∗ and
w′ < w. Sincew′ < w, we havef(w′) < f(w). As a consequence,f ′(w′) < f ′(w). Moreover,
f(w) ↓P= w andP ⊆ U ′, thus by (4.6:3), (f(w) ↓U ′) ↓P= w.

�

Lemma 4.11.ConsiderS = (U,Ω) a P-receptive system,f ∈ Sched(S) a scheduler ofS and
U ′ andU ′′ two sets of variables. IfP ⊆ U ′ ⊆ U , P ⊆ U ′′ ⊆ U andU ′ ∪ U ′′ = U , then

∀w ∈ (P )∞, f ↓U ′ (w) ∩ f ↓U ′′ (w) = {f(w)}.

Proof.
Let w′ = f ↓V ′ (w) andw′′ = f ↓V ′′ (w). w, w′ andw′′ are such that∀i ∈ N, ∀v ∈

V ′, f(w)(i)(v) = w′(i)(v) and∀i ∈ N, ∀v ∈ V ′′, f(w)(i)(v) = w′′(i)(v). Moreover, because
w′ andw′′ are both projections off(w), ∀i ∈ N, ∀v ∈ V ′ ∩ V ′′, f(w)(i)(v) = w′(i)(v) =
w′′(i)(v).
Now, considerw0 ∈ f ↓V ′ (w)∩ f ↓V ′′ (w). Sincew0 ∈ (f ↓V ′ (w)) ↑V , we havew0 ↓V ′= w′.
Thus∀i ∈ N, ∀v ∈ V ′, w0(i)(v) = w′(i)(v) = f(w)(i)(v).
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Similarly, sincew0 ∈ (f ↓V ′′ (w)) ↑V , we have∀i ∈ N, ∀v ∈ V ′, w0(i)(v) = w′′(i)(v) =
f(w)(i)(v).
Finally,∀i ∈ N, ∀v ∈ V = V ′ ∪ V ′′, w′′(i)(v) = f(w)(i)(v), thusw′′ = f(w).

�

We now give the proof of Theorem 4.8

Proof of Theorem 4.8.
We separately prove the two items of the theorem.

1. LetS = (U,Ω) = S1∩S2 andC = (V,A,G) = C1 ‖ C2. SinceC1 andC2 are in canonical
form and since composition preserves canonicity, we will consider thatG1 = G1 ∪¬A1,
G2 = G2 ∪ ¬A2 andG = G ∪ ¬A.

Considerf ∈ Sched(S ↑U∪V ). SinceS1 andS2 are P-compatible,f is defined over
all runs in [P ]k. Moreover, sinceS = (S1 ↑U1∪U2) ∩ (S2 ↑U1∪U2), we have(f ∈
Sched((S1 ↑U1∪U2) ↑U∪V )) ∧ (f ∈ Sched((S2 ↑U1∪U2) ↑U∪V )). By (4.6:1), we obtain

(f ∈ Sched(S1 ↑
U∪V )) ∧ (f ∈ Sched(S2 ↑

U∪V )).

Let f1 = f ↓U1∪V1 andf2 = f ↓U2∪V2 . By Lemma 4.10, we have

{
∧

(f1 ∈ Sched((S1 ↑
U∪V ) ↓U1∪V1))

(f2 ∈ Sched((S2 ↑
U∪V ) ↓U2∪V2))

Thus, by (4.6:2),

(f1 ∈ Sched(S1 ↑
U1∪V1) ∧ (f2 ∈ Sched(S2 ↑

U2∪V2)).

Consider noww ∈ [P ]k. If f1(w) ∈ G1 ↑U1∪V1 , then by (4.6:5) and (4.6:1), f1(w) ↑U∪V ⊆
G1 ↑U∪V . Similarly, if f2(w) ∈ G2 ↑U2∪V2 , then f2(w) ↑U∪V ⊆ G2 ↑U∪V . As a
consequence,f1(w) ↑U∪V ∩f2(w) ↑U∪V ⊆ (G1 ∩ G2) ↑U∪V , and, by Lemma 4.11,
f(w) ∈ (G1 ∩G2) ↑U∪V . As a consequence,

E1︷ ︸︸ ︷
[f1([P ]k) ∩G1 ↑

U1∪V1] ↓P ∩

E2︷ ︸︸ ︷
[f2([P ]k) ∩G2 ↑

U2∪V2 ] ↓P

⊆ [f([P ]k) ∩G ↑U∪V ] ↓P︸ ︷︷ ︸
E

.

This implies, by (4.9:1), thatP(E) ≥ P(E1) + P(E2) − 1. Moreover, by hypothesis,

{
P(E1) ≥ α

P(E2) ≥ β.

Thus,P(E) ≥ α+ β − 1 and

∀f ∈ Sched(S ↑U∪V ),

P([f([P ]k) ∩G ↑U∪V ] ↓P ) ≥ α + β − 1.
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⇒ inf
f∈Sched(S↑U∪V )

P([f([P ]k) ∩G ↑U∪V ] ↓P ) ≥

α + β − 1.

2. We will useC = (V,A,G) = C1 ∧ C2. SinceC1 andC2 are in canonical form and since
conjunction preserves canonicity, we will consider thatG1 = G1∪¬A1,G2 = G2∪¬A2

andG = G ∪ ¬A.

Considerf ∈ Sched(S ↑U∪V ). SinceS is P-receptive,f is defined over all runs in[P ]k.

Let f1 = f ↓U∪V1 andf2 = f ↓U∪V2 . By Lemma 4.10, we have

{
∧

(f1 ∈ Sched((S ↑U∪V ) ↓U∪V1))

(f2 ∈ Sched((S ↑U∪V ) ↓U∪V2))

Thus, by (4.6:2),

(f1 ∈ Sched(S ↑U∪V1) ∧ (f2 ∈ Sched(S ↑U2∪V2)).

Consider noww ∈ [P ]k. If f1(w) ∈ G1 ↑U∪V1 , then by (4.6:5) and (4.6:1), f1(w) ↑U∪V ⊆
G1 ↑U∪V . Similarly, if f2(w) ∈ G2 ↑U∪V2, then f2(w) ↑U∪V ⊆ G2 ↑U∪V . As a
consequence,f1(w) ↑U∪V ∩f2(w) ↑U∪V ⊆ (G1 ∩ G2) ↑U∪V , and, by Lemma 4.11,
f(w) ∈ (G1 ∩G2) ↑U∪V . As a consequence,

E1︷ ︸︸ ︷
[f1([P ]k) ∩G1 ↑

U∪V1] ↓P ∩

E2︷ ︸︸ ︷
[f2([P ]k) ∩G2 ↑

U∪V2] ↓P

⊆ [f([P ]k) ∩G ↑U∪V ] ↓P︸ ︷︷ ︸
E

.

This implies, by (4.9:1), thatP(E) ≥ P(E1) + P(E2) − 1. Moreover, by hypothesis,

{
P(E1) ≥ α

P(E2) ≥ β.

Thus,P(E) ≥ α+ β − 1 and

∀f ∈ Sched(S ↑U∪V ),

P([f([P ]k) ∩G ↑U∪V ] ↓P ) ≥ α + β − 1

⇒ inf
f∈Sched(S↑U∪V )

P([f([P ]k) ∩G ↑U∪V ] ↓P ) ≥

α + β − 1.

�
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Remark 4.2. Consider two contracts(A1, G1) and (A2, G2) such thatA1 ⊂ G1, A2 ⊂ G2

and (A1 ∪ A2) ∩ (G1 ∩ G2) = ∅. It is easy to see that any system will reliably satisfy both
contracts with probability1. According to an interpretation where one considers that runs that
do not satisfy assumptions are bad runs, the probability that a system satisfies the conjunction
is always0. With our interpretation, there are situations where this probability is strictly higher
than0: those where there are runs that do not belong toA1 or A2.

Let us now consider to the case of P-A-Satisfaction. we propose the following theorem.

Theorem 4.12(P-A-Satisfaction). Consider three systemsS = (U,Ω), S1 = (U1,Ω1) and
S2 = (U2,Ω2) and two probabilistic contractsC1 = (V1, A1, G1) andC2 = (V2, A2, G2) that
are in canonical form. We have the following results:

1. Composition. Assume thatS1 and S2 are P -compatible. If S1 ||=
A(k)
d,α C1 and

S2 ||=
A(k)
d,β C2, thenS1 ∩ S2 ||=

A(k)
d,γ C1 ‖ C2 with γ ≥ α + β − 1 if α + β≥1 and 0 oth-

erwise.

2. Conjunction. Assume thatS is P -receptive. IfS ||=A(k)
d,α C1 and S ||=A(k)

d,β C2, then

S ||=A(k)
d,γ C1 ∧ C2 with γ ≥ α+ β − 1 if α + β≥1 and 0 otherwise.

Proof.
For the sake of simplicity, we will consider thatk = ω. The proofs fork < ω are simpler

versions of the ones presented here. We consider the two items of the theorem.

1. LetS = (U,Ω) = S1 ∩ S2 andC = (V,A,G) = C1 ‖ C2.SinceC1 andC2 are in canonical
form and since composition preserves canonicity, we will consider thatG1 = G1 ∪¬A1,
G2 = G2 ∪ ¬A2 andG = G ∪ ¬A.

Considerf ∈ Sched(S ↑U∪V ). SinceS1 andS2 are P-compatible,f is defined over
all runs in [P ]k. Moreover, sinceS = (S1 ↑U1∪U2) ∩ (S2 ↑U1∪U2), it is clear that(f ∈
Sched((S1 ↑U1∪U2) ↑U∪V )) ∧ (f ∈ Sched((S2 ↑U1∪U2) ↑U∪V )). Thus, by (4.6:1),

⇒ (f ∈ Sched(S1 ↑
U∪V )) ∧ (f ∈ Sched(S2 ↑

U∪V )).

Let f1 = f ↓U1∪V1 andf2 = f ↓U2∪V2 . By Lemma 4.10, we have

⇒

{
∧

(f1 ∈ Sched((S1 ↑
U∪V ) ↓U1∪V1))

(f2 ∈ Sched((S2 ↑
U∪V ) ↓U2∪V2))

Thus, by (4.6:2),

(f1 ∈ Sched(S1 ↑
U1∪V1) ∧ (f2 ∈ Sched(S2 ↑

U2∪V2)).

Considerw ∈ [P ]k, t ≤ k andi ≤ t. If ϕC↑U∪V

f(w) (i) = 0, thenf(w)[0,i] /∈ G ↑U∪V . By
(4.6:5) and (4.6:2), we deduce that[(f1(w)[0,i] /∈ G1 ↑U1∪V1) ∨ (f2(w)[0,i] /∈ G2 ↑U2∪V2)].
As a consequence,
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ϕC↑U∪V

f(w) (i) ≥ ϕC1↑U1∪V1

f1(w) (i) + ϕC2↑U2∪V2

f2(w) (i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (f(w)) ≥D(t,d)

C1↑U1∪V1
(f1(w))

+D
(t,d)

C2↑U2∪V2
(f2(w))

− 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (f(w)) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(f2(w))

− 1.

As a consequence,∀w ∈ [P ]k,

lim inf
t→k

D
(t,d)

C↑U∪V (f(w)) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(f2(w))

− 1

⇒

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f(w))dw ≥

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U1∪V1
(f1(w))dw

+

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U2∪V2
(f2(w))dw

− 1.

By hypothesis, we have






∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U1∪V1
(f1(w))dw ≥ α

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U2∪V2
(f2(w))dw ≥ β.

Thus,∀f ∈ Sched(S ↑U∪V ),

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f(w))dw ≥ α + β − 1

2. LetC = (V,A,G) = C1∧C2.SinceC1 andC2 are in canonical form and since conjunction
preserves canonicity, we will consider thatG1 = G1 ∪ ¬A1, G2 = G2 ∪ ¬A2 and
G = G ∪ ¬A.
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Considerf ∈ Sched(S ↑U∪V ). SinceS is P-receptive,f is defined over all runs in[P ]k.
Let f1 = f ↓U∪V1 andf2 = f ↓U∪V2 . By Lemma 4.10, we have

⇒

{
∧

(f1 ∈ Sched((S ↑U∪V ) ↓U∪V1))

(f2 ∈ Sched((S ↑U∪V ) ↓U∪V2))

Thus, by (4.6:2)

(f1 ∈ Sched(S ↑U∪V1) ∧ (f2 ∈ Sched(S ↑U∪V2)).

Considerw ∈ [P ]k, t ≤ k andi ≤ t. If ϕC↑U∪V

f(w) (i) = 0, thenf(w)[0,i] /∈ G ↑U∪V . By
(4.6:5) and (4.6:2), we deduce that[(f1(w)[0,i] /∈ G1 ↑U∪V1) ∨ (f2(w)[0,i] /∈ G2 ↑U∪V2)].
As a consequence,

ϕC↑U∪V

f(w) (i) ≥ ϕC1↑U∪V1

f1(w) (i) + ϕC2↑U∪V2

f2(w) (i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (f(w)) ≥D(t,d)

C1↑U∪V1
(f1(w))

+D
(t,d)

C2↑U∪V2
(f2(w))

− 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (f(w)) ≥ lim inf
t→k

D
(t,d)

C1↑U∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U∪V2
(f2(w))

− 1.

As a consequence,∀w ∈ [P ]k,

lim inf
t→k

D
(t,d)

C↑U∪V (f(w)) ≥ lim inf
t→k

D
(t,d)

C1↑U∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U∪V2
(f2(w))

− 1

⇒

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f(w))dw ≥

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U∪V1
(f1(w))dw

+

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U∪V2
(f2(w))dw

− 1.

By hypothesis, we have
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∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U∪V1
(f1(w))dw ≥ α

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U∪V2
(f2(w))dw ≥ β.

Thus,∀f ∈ Sched(S ↑U∪V ),

∫

w∈[P ]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f(w))dw ≥ α + β − 1

�

We now discuss the incremental design property. In fact, as Property 4.1 is independent
from the systems and because of Theorems 4.8 and 4.12, we directly obtain extensions to the
availability case for the two first items of Theorems 4.4 and 4.7. More precisely, we have the
following results.

Theorem 4.13.Consider three probabilistic contractsC1, C2, C3 and a systemS. Assume that
S ||=R(k)

α1
C1, S ||=R(k)

α2
C2, S ||=R(k)

α3
C3. Let γ = α1 + α2 + α3 − 2 if α1 + α2 + α3 > 2 and0

otherwise. We have

• S ||=R(k)
γ C1 ‖ (C2 ‖ C3) iff S ||=R(k)

γ (C1 ‖ C2) ‖ C3.

• S ||=R(k)
γ C1 ∧ (C2 ∧ C3) iff S ||=R(k)

γ (C1 ∧ C2) ∧ C3.

Theorem 4.14.Consider three probabilistic contractsC1, C2, C3 and a systemS. Assume that
S ||=A(k)

d,α1
C1, S ||=A(k)

d,α2
C2, S ||=A(k)

d,α3
C3. Let γ = α1 + α2 + α3 − 2 if α1 + α2 + α3 > 2 and0

otherwise. We have

• S ||=A(k)
d,γ C1 ‖ (C2 ‖ C3) iff S ||=A(k)

d,γ (C1 ‖ C2) ‖ C3.

• S ||=A(k)
d,γ C1 ∧ (C2 ∧ C3) iff S ||=A(k)

d,γ (C1 ∧ C2) ∧ C3.

Refinement

We consider refinement for probabilistic contracts. Contrary to the case of non-probabilistic
contracts, we will distinguish between R-Satisfaction andA-Satisfaction.

Following our move from R-Satisfaction to P-R-Satisfaction, we propose the notion of
P-Refinementthat is the quantitative version of the refinement we proposed in Section 4.3.
We have the following definition.

Definition 4.9 (P-Refinement). A probabilistic contractC1 = (V1, A1, G1) P-Refines a prob-
abilistic contractC2 = (V2, A2, G2) for runs of lengthk (k ∈ N∞) with levelα, denoted
C1 �

R(k)
α C2, iff

∀f ∈ Sched((G1 ∪ ¬A1) ↑
V1∪V2),

P([f([P ]k) ∩ (G2 ∪ ¬A2) ↑
V1∪V2 ] ↓P ) ≥ α.
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ConsiderC2 ‖ C3 (respectively,C2 ∧ C3). If C1 �R(k)
α C2, then(C1 ‖ C3) �R(k)

α (C2 ‖ C3)

(respectively,(C1∧C3) �
R(k)
α (C2∧C3)). Observe that P-Refinement is not a preorder relation.

As a consequence, conjunction is not a greatest lower bound with respect to P-Refinement.
Quantitative refinement is compatible with the definition ofP-R-Satisfaction, which brings the
following result.

Theorem 4.15.Consider aP -receptive systemS = (U,Ω) and two probabilistic contracts
Ci = (Vi, Ai, Gi) for i = 1, 2. If (G1 ∪ ¬A1) isP -receptive and prefix-closed, then

S ||=R(k)
α C1 ∧ C1 �

R(k)
β C2 ⇒ S ||=R(k)

α+β−1 C2.

Before giving the proof of the theorem, we propose the following Lemma, which proves
the existence of corresponding schedulers in two P-receptive systems.

Lemma 4.16. ConsiderS = (U,Ω) andS ′ = (U,Ω′) two systems over the same set of vari-
ablesU . If S andS ′ are P-receptive and ifS ′ is prefix-closed, then for allf ∈ Sched(S), there
existsf ′ ∈ Sched(S ′) such that

∀w ∈ [P ]∗, f(w) ∈ S ′ ⇒ f ′(w) = f(w).

Proof.
Considerf ∈ Sched(S) and letf ′ : [P ]∗ → S ′ such that :






f ′(ε) = ε

f ′(w.σ) = f(w.σ) if f(w.σ) ∈ S ′

f ′(w.σ) = f ′(w).σ′ s.t.f ′(w).σ′ ∈ S ′ andσ′ ↓P = σ.

First of all, sinceS ′ is prefix-closed, iff(w) ∈ S ′, then for allw′ < w, f(w′) ∈ S ′, and as
a consequencef ′(w′) = f(w′). Moreover, sinceS ′ is P-receptive, iff ′(w) ∈ S ′, then for all
σ ∈ P → D, there existsσ′ ∈ U → D such thatσ′ ↓P = σ andf ′(w).σ′ ∈ S ′. This ensures
that the definition off ′ is coherent.
We will now prove by induction thatf ′ ∈ Sched(S ′).

• f ′(ε) = ε satisfies the prefix property.

• Letw ∈ [P ]k andw′ < w. Suppose thatf ′(w′) < f ′(w). Letσ ∈ P → D.

– If f(w.σ) ∈ S ′, thenf ′(w.σ) = f(w.σ) and∀w′′ < w, f ′(w′′) = f(w′′). Sincef
is a scheduler, we havef(w′) < f(w.σ).

– Else,f ′(w.σ) = f ′(w).σ′ and as a consequence,f ′(w′) < f ′(w) < f ′(w).σ′.

�

We now give the proof for Theorem 4.15

Proof of Theorem 4.15.
Considerf ∈ Sched(S ↑U∪V2). By Lemma 4.10, there existsf ′ ∈ Sched(S ↑U∪V1∪V2) such

thatf ′ ↓U∪V2= f . Let f1 = f ′ ↓U∪V1. By Lemma 4.10, we havef1 ∈ Sched(S ↑U∪V1). Lemma
4.16 states that there existsf ′

2 ∈ Sched((G1 ∪ ¬A1) ↑U∪V1∪V2) such that∀w ∈ [P ]∗, f ′(w) ∈
(G1 ∪ ¬A1) ↑U∪V1∪V2⇒ f ′

2(w) = f ′(w). Let f2 = f ′
2 ↓V1∪V2 . By Lemma 4.10, we have

f2 ∈ Sched((G1 ∪ ¬A1) ↑V1∪V2 .
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Considerw ∈ [P ]k. If f1(w) ∈ (G1∪¬A1) ↑
U∪V1 , then by (4.6:5), f ′(w) ∈ (G1∪¬A1) ↑

U∪V1∪V2

⇒ f ′
2(w) = f ′(w). Moreover, iff2(w) ∈ (G2 ∪ ¬A2) ↑ V1 ∪ V2, then by (4.6:5), f ′

2(w) ∈
(G2 ∪ ¬A2) ↑U∪V1∪V2 . Thus,

f ′(w) ∈ (G2 ∪ ¬A2) ↑
U∪V1∪V2

⇒ f(w) ∈ (G2 ∪ ¬A2) ↑
U∪V2 by (4.6:4).

As a consequence, let

E1 =[f1([P ]k) ∩ (G1 ∪ ¬A1) ↑
U∪V1 ] ↓P

E2 =[f2([P ]k) ∩ (G2 ∪ ¬A2) ↑
V1∪V2 ] ↓P

E =[f([P ]k) ∩ (G2 ∪ ¬A2) ↑
U∪V2] ↓P

We haveE1 ∩E2 ⊆ E.
This implies, by (4.9:1), thatP(E) ≥ P(E1) + P(E2) − 1. Moreover, by hypothesis,

{
P(E1) ≥ α

P(E2) ≥ β.

Thus,P(E) ≥ α + β − 1 and∀f ∈ Sched(S ↑U∪V2),

P([f([P ]k) ∩ (G2 ∪ ¬A2) ↑
U∪V2] ↓P ) ≥ α + β − 1

�

P-A-satisfaction and quantitative refinement are orthogonal measures. Indeed,
P-A-satisfaction measures the infimal expected availability of a system for all schedulers, while
quantitative refinement measures the infimal set of traces ofa probabilistic contract that corre-
sponds to another probabilistic contract. In such context,the minimal schedulers for the two
notions may differ. We propose the following result, which links P-A-Satisfaction with the
definition of refinement proposed for non-probabilistic contracts.

Theorem 4.17.Consider aP -receptive systemS = (U,Ω) and two probabilistic contracts
Ci = (Vi, Ai, Gi) for i = 1, 2. If S ||=A(k)

d,α C1 andC1 �(≤k) C2, thenS |=A(k)
d,α C2.

Proof.
For the sake of simplicity, we will consider thatk = ω. The proof fork < ω is a simpler

version of the one presented here.

Considerf ∈ Sched(S ↑U∪V2). By Lemma 4.10, there existsf ′ ∈ Sched(S ↑U∪V1∪V2) such
thatf ′ ↓U∪V2= f . Let f1 = f ′ ↓U∪V1. By Lemma 4.10, we also havef1 ∈ Sched(S ↑U∪V1).
Consider noww ∈ [P ]k, t ≤ k andi ≤ t. By definition,ϕC1↑U∪V1

f1(w) (i) = 1 ⇐⇒ f1(w)[0,i] ∈

(G1 ∪ ¬A1) ↑U∪V1. By hypothesis,

((G1 ∪ ¬A1) ↑
V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑

V1∪V2)|≤k.

Thus, by (4.6:5),

((G1 ∪ ¬A1) ↑
U∪V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑

U∪V1∪V2)|≤k.
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If ϕC1↑U∪V1

f1(w) (i) = 1, then

f1(w)[0,i] ∈ ((G1 ∪ ¬A1) ↑
U∪V1)|≤k

⇒ f1(w)w[0, i] ↑U∪V1∪V2⊆ ((G1 ∪ ¬A1) ↑
U∪V1∪V2)|≤k

⇒ f1(w)w[0, i] ↑U∪V1∪V2⊆ ((G2 ∪ ¬A2) ↑
U∪V1∪V2)|≤k

⇒ f ′(w)[0,i] ∈ (G2 ∪ ¬A2) ↑
U∪V1∪V2

⇒ f ′(w)[0,i] ↓U∪V2∈ (G2 ∪ ¬A2) ↑
U∪V1∪V2↓U∪V2 by (4.6:4)

⇒ f(w)[0,i] ∈ (G2 ∪ ¬A2) ↑
U∪V2 by (4.6:2)

⇒ ϕC2↑U∪V2

f(w) (i) = 1.

Thus,
∀t ≤ k, ∀i ≤ t, ϕC2↑U∪V2

f(w) (i) ≥ ϕC1↑U∪V1

f1(w) (i)

⇒ ∀t ≤ k, Dt,d

C2↑U∪V2
(f(w)) ≥ Dt,d

C1↑U∪V1
(f1(w))

⇒ lim inf
t→k

Dt,d

C2↑U∪V2
(f(w)) ≥ lim inf

t→k
Dt,d

C1↑U∪V1
(f1(w)).

By hypothesis,
lim inf

t→k
Dt,d

C1↑U∪V1
(f1(w)) ≥ α.

As a consequence,

∀w ∈ [P ]k, lim inf
t→k

Dt,d

C2↑U∪V2
(f(w)) ≥ m

⇒

∫

w∈[P ]k
P(w) · lim inf

t→k
Dt,d

C2↑U∪V2
(f(w))dw ≥ m.

Finally,∀f ∈ Sched(S ↑U∪V2),
∫

w∈[P ]k
P(w) · lim inf

t→k
Dt,d

C2↑U∪V2
(f(w))dw ≥ m

�

We now briefly discuss independent implementability in the probabilistic case. For P-R-
Satisfaction, the property is defined with respect to P-Refinement. For P-A-satisfaction we
use the notion of refinement introduced for non-probabilistic contracts. We have the following
theorem, whose proof is a direct consequence of Theorems 4.8, 4.12, 4.15 and 4.17.

Theorem 4.18.LetS be aP -receptive system andC1, C2 andC3 be three probabilistic contracts
such thatC1 and C3 are P -compatible, andC2 and C3 are alsoP -compatible. We have the
following results.

• Assume that(G1 ∪ ¬A1) is prefix-closed andP -receptive. If C1 �R(k)
α C2 and

S ||=R(k)
β (C1 ‖ C3) (respectively,S ||=R(k)

β (C1 ∧ C3)), thenS ||=R(k)
γ (C2 ‖ C3) (respectively,

S ||=R(k)
γ (C2 ∧ C3)), with γ ≥ α + β − 1 if α + β ≥ 1 and0 else.

• If C1 �(≤k) C2 and S ||=A(k)
d,α (C1 ‖ C3) (respectively,S ||=A(k)

d,α (C1 ∧ C3)), then

S ||=A(k)
d,α (C2 ‖ C3) (respectively,S ||=A(k)

d,α (C2 ∧ C3)).

97



f2

b
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SystemS1

b = a ∧ ¬f1

f2f1

b

c

d

SystemS2

d = (b ∨ c) ∧ ¬f2

A1 : ”true” A2 : ”true”

G1 : ”�(b = a ∧ ¬f1)” G2 : ”�(d = (b ∨ c) ∧ ¬f2))”

(a) SystemsS1 andS2 and probabilistic contractsC1 andC2.

d = ((a ∧ ¬f1) ∨ c)
∧¬f2

a b

f1

f2

c

S2

S1 b = a ∧ ¬f1

V = {f1, f2, a, b, c, d}

A : true

G : �((b = a ∧ ¬f1)

∧(d = (b ∨ c) ∧ ¬f2))

(b) SystemsS1 ∩ S2 and probabilistic contractC1 ‖ C2.

Figure 4.3: Reliability : Example

An illustration

The objective of this chapter is to introduce the theoretical foundations for contracts and their
stochastic extensions. Deliverable5.1.1 of the SPEEDS project (available at [126]) shows the
interest of industrials for our methodology and discusses other examples for the case of non-
stochastic contracts. Also, the work in [66], which can be subsumed by our contribution, has
been applied to an interesting case study. We now present a simple example that illustrates the
approach.

Consider the systems and contracts given in Figure 4.3. Assume that∀i ∈ N,P(f1(i) =

1) = 10−3 and P(f2(i) = 1) = 2.10−3. It is easy to show thatS1 ||=
R(50)
(1−10−3)50 C1 and

S2 ||=
R(50)

(1−2.10−3)50 C2. It is however more difficult to deduce the probability for which S1 ∩ S2

satisfies the contractC1 ‖ C2. Thanks to Theorem 4.8, we know that this probability is at
least(0.999)50 + (0.998)50 − 1 = 0.86. ConsideringC3 = ({f1, f2, a, c, d}, ”true”, ”�(d =

((a∧¬f1)∨c)∧¬f2)”), it is clear thatC1 ‖ C2 �
R(50)
1 C3, which implies thatS1∩S2 |=

R(50)
0.86 C3.
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4.4.3 Effective algorithms/representations

The constructions are similar to those given in Section 4.3.4. We assume the reader to be famil-
iar with the concepts of (discrete) Markov Chains and turn-based Markov Decision Processes
(else, see [24, 117, 24, 46] for an introduction and references). Roughly speaking, a Markov
Chain is a symbolic transition system whose states are labeled with valuations for variables in
P and whose transitions are labeled by probabilities. The labelling by probabilities follows a
probability distribution, i.e., for a given state, the sum of the probability values for all outgoing
transitions must be less or equal to one. In a given state, onepicks up the next valuation for
the probability variables, i.e., the next state. The probability to pick up a valuation is the value
given on the transition that links the current state to the next chosen one. There is a special state
called”init” from where one has to chose the first value. The concept of representingP with
a Markov Chain is illustrated in Figure 4.5a, whereP = {b} andD = {0, 1}. In this example,
the probability that a run starts withb = 0 is 1/2. The probability that a run starts with the
prefix (b = 0)(b = 1)(b = 0) is given by(1/2) × (1/4) × (1/3) = 1/24.

Let C = (V,BA,BG) be a symbolic contract andSymb = (V,Qs, T, Qs0) be a symbolic
transition system. We consider a setP ⊆ V of probabilistic variables. We assume that the
distribution overP is symbolically represented with a Markov Chain. At each state, we have
a probability distribution over the possible set of valuations for the variables. The Markov
chain is finitely-branching asD is finite. Observe that each state ofSymb can be split into
two states, one for the valuations of the non-probabilisticvariables followed by one for the
valuations of the probabilistic variables. The result is a new symbolic systemSymb′′ where
one first evaluatesV \ P and thenP .

Example. The split is illustrated in Figure 4.4. Consider the stateX = {a = 1, b = 0, c = 1}
in the system given in Figure 4.4a. This state can be split into two states,A = {a = 1, c = 1}
andE = {b = 0}. The stateY = {a = 1, b = 1, c = 1} can be split intoB = {a = 1, c = 1}
andF = {b = 1}. In the split, there will be transitions fromA to E and fromB to F . Any
transition fromX (resp.Y ) toY (resp.X) will now be fromE (resp.F ) toB (resp.A). SinceA
andB have the same label and successors, they can be merged, whichgives the split in Figure
4.4b.

It is easy to see that we can use the Markov Chain that represents the probability distribution
in order to “transform” the transitions from a non-deterministic variable state ofSymb′′ into
a probability distribution over the probabilistic variable states simply by synchronizing the
two systems. By doing so,Symb′′ becomes aturn-based Markov Decision Process(MDP).
Recall that a turn-based MDP mixes both non-determinism andprobabilities. In our setting,
non-determinism thus comes from the choice of the values forthe non-probabilistic variables,
while probabilities arise when evaluating variables inP . The transitions from states that are
labeled with probabilistic variables are thus non-deterministic (since one has to pick up the next
values for the non-probabilistic variables). Transitionsfrom states that are labeled with non-
probabilistic variables form a probability distribution on the possible values of the probabilistic
variables. In this context, a run for the MDP is simply an alternance of valuations of the non-
probabilistic and the probabilistic variables.

Example. The concept of turn-based Markov Decision Process resulting from the product of a
split and a Markov Chain forP is illustrated in Figure 4.5. Observe that the state{a = 1, c =
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a : 1
b : 1
c : 1

a : 1
b : 0
c : 1

(a) A symbolic transition systemSymb for V = {a, b, c}, where
the domain ofa, c is {1} and the domain ofb is {0, 1}, b is the
probabilistic input and the set of runs is given by((a = 1, b =
1, c = 1) ∪ (a = 1, b = 0, c = 1))ω.

a : 1
c : 1

b : 0

b : 1

(b) The splitSymb′′ for Symb.

Figure 4.4: A symbolic transition system and its split.

1/2

1/2

3/4

2/3

1/4

1/3
init

b : 1

b : 0

(a) A Markov Chain for the distribution over
variables in P.

a : 1
c : 1

a : 1
c : 1

a : 1
c : 1

1/4

1/3

1/2

1/2
b : 1

b : 0

3/4

2/3

(b) A MDP for the product between the Markov chain in Fig-
ure 4.5a and the transition system in Figure 4.4b.

Figure 4.5: The product of a split symbolic transition system with a Markov Chain.

1} has been duplicated. Indeed, according to the Markov Chain in Figure 5.(a), the probability
to select{b = 0} in the first step is not the same as the one to select it after thefirst step.

Assuming that the combination of the system with the distribution can be represented with a
MDP, we now briefly discuss P-R-Satisfaction and P-A-Satisfaction. Aschedulerfor a Markov
Decision Process [36] is a mechanism that, in a non-deterministic state, selects the successor
state without taking predecessors into account. This definition matches the one we proposed in
Definition 4.6. In this context, we have the following methodology.

• P-R-Satisfaction. Assuming thatBA andBG are Büchi automata, P-R-Satisfaction can
be checked with the technique introduced in [129, 51, 30] (which requires a determiniza-
tion step from Büchi to deterministic Rabin [111]) and implemented in theLIQUOR
toolset [35]. Indeed, this technique allows to compute the minimal probability for a
Markov decision process to satisfy a property which is representable with a Büchi au-
tomaton. We can thus consider assumptions and guarantees represented with logical
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formalisms that have a translation to Büchi automata, e.g.,ETL [134].

• P-A-Satisfaction with level m and discount factor d. The DCTL logic can also be
interpreted over MDPs. The definition of synchronous product easily extends to MDPs.
The product between a MDP and an automaton can be interpretedas a MDP. We can thus
use the labelling technique with propositions that was proposed for the non-probabilistic
case (assuming that the states of the automaton have also been split (see the split for
transition system)). For a given scheduler (which transforms the MDP into a Markov
chain), we can compute theexpected valuefor the formula△d p. We then compute
the minimum between the expected values for all schedulers and check whether it is
greater thanm. More details about model checking DCTL over MDPs can be found in
Section 2.2 of [53]. The overall formula we model check is∀E[△d p], whereE states
for “expected value”.

4.5 Some Related Work

In this section, we compare our work with related work on contracts, process algebra, modal
automata, and interface automata.

In [20], Benveniste et al. have presented a contract theory where availability, effective
representations, and stochastic aspects are not considered. Other definitions of contracts have
been proposed in [109, 67] and in [66], where the mathematical theory of [20] is recast in a
reactive synchronous language setting. In [107], Pace and Schneider study the satisfaction
of contracts that combines deontic and temporal concepts. Composition for such contracts is
studied in [63, 62].

Works on behavioral types in process algebras bear commonalities with contract theories.
In a similar way, the probabilistic contract theory must be compared with stochastic process
algebras [103, 8]. In both cases, the main difference is thatcompositional reasoning is possible
only in contract theories thanks to the fact that contracts are implications where an assumption
implies a guarantee. A second major difference with processalgebras, is that contract theories
are general and can be instantiated in many different effective automata-based settings. This
covers many logical frameworks (CTL [40], LTL [108], PCTL [73], PSL [60],. . . ) for specify-
ing properties of components.

In [100], Larsen proposedmodal specificationsthat correspond todeterministic modal au-
tomata, i.e., automata whose transitions are typed withmayandmustmodalities. A modal
specification thus represents a set of models; informally, amust transition is available in every
component that implements the modal specification, while a may transition needs not be. The
components that implement modal specifications are prefix-closed languages, or equivalently
deterministic automata. As contracts, modal specifications support both refinement, conjunc-
tion, and composition operations. Moreover, modal specifications support a quotient operation
which is the adjunct of parallel composition [114]. The theory has recently been extended to
the timed setting [23, 22]. However, contrary to contracts,modal specifications do not allow an
explicit treatment of assumptions and guarantees. It is also known that modal specifications are
not more expressive than nu-calculus [64], while the theoryof contracts is general and could
potentially embed any type of property. Finally, aside fromsome attempts that we present in
the next paragraph, there is no stochastic extension for modal specifications.
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In Chapters 2 and 3, we have presented two specification formalisms for stochastic systems:
Interval Markov Chains and Constraint Markov Chains. Both IMCs and CMCs are meant to
provide a modeling language that allows designing, evolving and reusing components. How-
ever, contrary to the theory we present in this chapter, IMCsand CMCs do not allow an explicit
treatment of assumption and guarantees. Moreover, they aregraphical-based models, which
is easy to use in a design setting. Unfortunately, they do notembed any notion of complex
memory such as unbounded stack. Hence they are not capable ofmodeling calls and returns in
software. The formalism we present in this chapter is more general, as it provides, for exam-
ple, quantitative notions of satisfaction and refinement. Unfortunately, this generality comes
with a cost: the operations involved in the assume-guarantee probabilistic contracts formalism
are more complex than the equivalent operations for CMCs or IMC, often involving union and
complementation.

In interface automata [54, 52], an interface is representedby an input/output automaton
[104], i.e., an automaton whose transitions are labeled withinput or outputactions. The se-
mantics of such an automaton is given by a two-player game: anInput player represents the
environment, and anOutputplayer represents the component itself. Interface automata do not
encompass any notion of model, because one cannot distinguish between interfaces and imple-
mentations. Alternatively, properties of interfaces are described in game-based logics,e.g., ATL
[6], with a high-cost complexity. The game-based interpretation offers a more elaborated ver-
sion of the composition operation than our contracts approach. More precisely, the game-based
interpretation offers anoptimistictreatment of composition: two interfaces can be composed if
there exists at least one environment (i.e., one strategy for the Input player) in which they can
interact together in a safe way (i.e., whatever the strategyof the Output player is). This is re-
ferred as compatibility of interfaces. However, contrary to contracts, interface automata do not
allow an explicit treatment of assumptions and guarantees and there is no stochastic extension.

Another assume-guarantee approach for the verification of systems consists in decomposing
the system into sub-systems and choosing an adequate assumption for a particular decompo-
sition (see [44] for a survey). As we already said, those works clearly differ from ours. First,
they have to find a decomposition of the system in sub-systems, and second, they do not sup-
port compositional design operators (conjunction, refinement). Our work is much related to
the work by Basu et al. [19] on the BIP toolset [26]. In their work, they do consider a much
more elaborated composition operation. However, they do not consider conjunction, avail-
ability (they mostly restrict themselves to safety properties), and stochastic aspects. Finally,
[97] presents assume-guarantee verification in which both assumption and guarantees are rep-
resented with finite probabilistic automata. Like IMCs and CMCs, probabilistic automata are
graphical-based models, hence less general than the model we provide in this chapter. Though
quantitative notions of satisfaction are proposed for safety properties, they do not consider
availability.

4.6 Achievements and Future Work

In this chapter we have proposed a new theory for (probabilistic) contracts, which extends the
one we developed for the European projectSPEEDS[126]. Our contributions are : (1) a theory
for reliability and availability, (2) a treatment of the stochastic aspects and (3) a discussion on
effective symbolic representations.
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In addition to implementation, there are various other directions for future research. A
first direction is to develop a notion of quantitative refinement that is compatible with P-A-
satisfaction. We also plan to consider other symbolic representations such as visibly pushdown
systems [65]. Considering such representations will require new DCTL model checking algo-
rithms. We also plan to extend our results to the continuous-time setting, which would also
require a new DCTL algorithm based on the results in [12, 70, 106]. Considering the case of
dependent probability distributions like in [56] is also a challenging issue. Finally, it would
be interesting to define another satisfaction for contracts. Indeed, in this chapter, effective al-
gorithms to check satisfaction of probabilistic contractsrely on formal exhaustive techniques
[129]. Unfortunately, improvements in developments of formal methods do not seem to fol-
lows the increasing complexity in system design. In the nextchapter, we will propose statistical
model checking [137, 136, 123, 39] that is a scalable solution to this problem. The idea of the
approach is to simulate the system and deduce whether it satisfies the property with some de-
gree of confidence. Up to now statistical model checking algorithms have only been used to
verify properties of stochastic system; it would be of interest to adapt the technique to the satis-
faction of a probabilistic contracts. Unfortunately our contract formalism would be out of scope
of existing statistical model checking algorithms. Indeed, these algorithms assume that all the
samples are generated from the same distribution while our contracts allow non-deterministic
aspects and hence build on several distributions.
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Chapter 5

Statistical Abstraction and
Model-Checking of Large Heterogeneous
Systems

5.1 Introduction

In the previous chapters, we have mainly focused on system design and incremental verifica-
tion. In this chapter, we are interested in verifying applications working within an heteroge-
neous system. Systems integrating multiple heterogeneousdistributed applications commu-
nicating over a shared network are typical in various sensitive domains such as aeronautic or
automotive embedded systems. Verifying the correctness ofa particular application inside such
a system is known to be a challenging task, which is often beyond the scope of existing exhaus-
tive validation techniques. The main difficulty comes from network communication which
makes all applications interfering and therefore forces exploration of the full state-space of the
system.

A solution to this problem would be to use a test-based approach. After the computer sys-
tem is constructed, it is tested using a number oftest caseswith predicted outcomes. Testing
techniques have shown effectiveness in bug hunting in many industrial problems. Unfortu-
nately, testing is not a panacea. Indeed, since there is, in general, no way for a finite set of test
cases to cover all possible scenarios, errors may remain undetected.

This lack of accuracy has motivated the development of new algorithms that combine test-
ing techniques with algorithms coming from the statisticalarea. Those techniques, also called
Statistical Model Checking techniques(SMC) [78, 122, 136], can be seen as a trade-off between
testing and formal verification. The core idea of the approach is to conduct some simulations
of the system and verify if they do satisfy the property. The results are then used together with
algorithms from the statistic area in order to decide whether the system satisfies the property
with some probability. Statistical model checking techniques can also be used to estimate the
probability that a system satisfies a given property [78, 68]. Of course, in contrast with an
exhaustive approach, a simulation-based solution does notguarantee a result with 100% confi-
dence. However, it is possible to bound the probability of making an error. Simulation-based
methods are known to be far less memory and time intensive than exhaustive ones, and are
sometimes the only option [138, 84]. Statistical model checking gets widely accepted in var-
ious research areas such as software engineering, in particular for industrial applications, or
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even for solving problems originating from systems biology[41, 85]. There are several reasons
for this success. First, it is very simple to implement, understand and use. Second, it does not
require extra modeling or specification effort, but simply an operational model of the system,
that can be simulated and checked against state-based properties. Third, it allows to verify
properties [38, 39, 13] that cannot be expressed in classical temporal logics.

Unfortunately, SMC is also not a panacea and many important classes of systems are still
out of its scope. Among them, one finds systems integrating multiple heterogeneous distributed
applications communicating over a shared network. Those applications, also calledheteroge-
neous systemsare typical in various sensitive domains such as aeronauticor automotive em-
bedded systems. Verifying the correctness of a particular application (also called subsystem,
or combination of components) within such a system is known to be a challenging task, which
is often beyond the scope of any validation technique. The main difficulty comes from net-
work communication which makes all applications interfering and therefore forces to explore
the full state-space of the system. One could hope that statistical model checking provides an
alternative solution to this problem. Unfortunately, there are many cases where the design is so
complex that it is even impossible to generate enough simulations for the algorithm to terminate
in a decent time while providing estimates with sufficient accuracy.

We propose to exploit the structure of the system in order to increase the efficiency of the
verification process. The idea is conceptually simple: instead of performing an analysis of the
entire system, we propose to analyze each application separately, but under some particular
context/execution environment. This context is astochastic abstractionthat represents the
interactions with other applications running within the system and sharing the computation and
communication resources. We propose to build such a contextautomatically by simulating
the entire system and learning the probability distributions of key characteristics impacting the
functionality of the given application.

The overall contribution of this chapter is an application of the above method on an indus-
trial case study, theheterogeneous communication system(HCS for short) deployed for cabin
communication in a civil airplane. HCS is a heterogeneous system providing entertainment ser-
vices (e.g., audio/video on passengers demand) as well as administrative services (e.g., cabin
illumination, control, audio announcements), which are implemented as distributed applica-
tions running in parallel, across various devices within the plane and communicating through
a common Ethernet-based network. The HCS system has to guarantee stringent requirements,
such as reliable data transmission, fault tolerance, timing and synchronization constraints. An
important requirement, which will be studied in this chapter, is theaccuracy of clock synchro-
nizationbetween different devices. This latter property states that the difference between the
clocks of any two devices should be bounded by a small constant, which is provided by the
user and depends on his needs. Hence, one must be capable of computing the smallest bound
for which synchronization occurs and compare it with the bound expected by the user. Un-
fortunately, due to the large number of heterogeneous components that constitute the system,
deriving such a bound manually from the textual specification is an unfeasible task. In this
chapter, we propose a formal approach that consists in building a formal model of the HCS,
then applying simulation-based algorithms to this model inorder to deduce the smallest value
of the bound for which synchronization occurs. We start witha fixed value of the bound and
check whether synchronization occurs. If yes, then we make sure that this is the best one. If
no, we restart the experiment with a new value.

At the top of our approach, there should be a tool that is capable of modeling heteroge-
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neous systems as well as simulating their executions and theinteractions between components.
In this chapter, we propose to use the BIP toolset [15] for doing so. BIP (Behaviour-Interaction-
Priority) supports a methodology for building systems from atomic components encapsulating
behavior, that communicate through interactions, and coordinate through priorities. BIP also
offers a powerful engine to simulate the system and can thus be combined with a statistical
model checking algorithm in order to verify properties. Ourfirst contribution is to study all
the requirements for the HCS to work properly and then derivea model in BIP. Our second
contribution is to study the accuracy of clock synchronization between several devices of the
HCS. In HCS the clock synchronization is ensured by thePrecision Time Protocol(PTP for
short) [2], and the challenge is to guarantee that PTP maintains the difference between a master
clock (running on a designated server within the system) andall the slave clocks (running on
other devices) under some bound. Since this bound cannot be pre-computed, we have to verify
the system for various values of the bound until we find a suitable one. Unfortunately, the full
system is too big to be analyzed with classical exhaustive verification techniques. A solution
could be to remove all the information that is not related to the devices under consideration.
This is in fact not correct as the behavior of the PTP protocolis influenced by the other appli-
cations running in parallel within the heterogeneous system. Our solution to this state-space
explosion problem is in two steps (1) we will build a stochastic abstraction for a part of the PTP
application between the server and a given device; the stochastic part will be used to model
the general context in which PTP is used, (2) we will apply statistical model checking on the
resulting model.

Thanks to this approach, we have been able to derive precise bounds that guarantee proper
synchronization for all the devices of the system. We also computed the probability of sat-
isfying the property for smaller values of the bound, i.e., bounds that do not satisfy the syn-
chronization property with probability1. Being able to provide such information is of clear
importance, especially when the best bound is too high with respect to the user’s requirements.
We have observed that the values we obtained strongly dependon the position of the device in
the network. We also estimated the average proportion of failures per simulation for bounds
that are smaller than the one that guarantees synchronization. Checking this latter property has
been made easy because BIP allows us to reason on one execution at a time. Finally, we have
also considered the influence of clock drift on the synchronisation results. The experiments
highlight the generality of our technique, which could be applied to other versions of the HCS
as well as to other heterogeneous applications.

The chapter is structured as follows. Section 5.2 briefly introduces the theory of statistical
model checking. Section 5.3.1 describes the methods and tool we use in order to model and
abstract the HCS. The case study and its modelization are then described in Section 5.4. In
Section 5.5, we give details of the experiments we perform onthe HCS, while the results of
these experiments are presented in Section 5.6. Section 5.7briefly presents another application
of the methodology presented in the chapter. Finally, Section 5.8 concludes the chapter and
discusses future work.

5.2 An Overview of Statistical Model Checking

Consider a stochastic systemS and a propertyϕ. Statistical model checkingrefers to a series
of simulation-based techniques that can be used to answer two questions: (1)Qualitative: Is
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the probability thatS satisfiesϕ greater or equal to a certain threshold? and (2)Quantitative:
What is the probability thatS satisfiesϕ? Contrary to numerical approaches, the answer is
given up to some correctness precision. In the rest of the section, we survey several statistical
model checking techniques. LetBi be a discrete random variable with a Bernoulli distribution
of parameterp. Such a variable can only take2 values (0 and1) with Pr[Bi = 1] = p and
Pr[Bi = 0] = 1 − p. In our context, each variableBi is associated with one simulation of the
system. The outcome forBi, denotedbi, is 1 if the simulation satisfiesϕ and0 otherwise.

5.2.1 Qualitative Answer using Statistical Model Checking

The main approaches [136, 122, 92, 91, 139] proposed to answer the qualitative question are
based onhypothesis testing. Let p = Pr(ϕ), to determine whetherp ≥ θ, we can testH :
p ≥ θ againstK : p < θ. A test-based solution does not guarantee a correct result but
it is possible to bound the probability of making an error. The strength(α, β) of a test is
determined by two parameters,α andβ, such that the probability of acceptingK (respectively,
H) whenH (respectively,K) holds, called a Type-I error (respectively, a Type-II error ) is less
or equal toα (respectively,β). A test hasideal performanceif the probability of the Type-I
error (respectively, Type-II error) is exactlyα (respectively,β). However, these requirements
make it impossible to ensure a low probability for both typesof errors simultaneously (see
[136] for details). A solution is to use anindifference region[p1, p0] (with θ in [p1, p0]) and to
testH0 : p≥ p0 againstH1 : p≤ p1. We now sketch two hypothesis testing algorithms.

Single Sampling Plan.
To testH0 againstH1, we specify a constantc. If

∑n
i=1 bi is larger thanc, thenH0 is

accepted, elseH1 is accepted. The difficult part in this approach is to find values for the pair
(n, c), called asingle sampling plan (SSP in short), such that the two error boundsα andβ
are respected. In practice, one tries to work with the smallest value ofn possible so as to
minimize the number of simulations performed. Clearly, this number has to be greater ifα
andβ are smaller but also if the size of the indifference region issmaller. This results in an
optimization problem, which generally does not have a closed-form solution except for a few
special cases [136]. In his thesis [136], Younes proposes a binary search based algorithm that,
givenp0, p1, α, β, computes an approximation of the minimal value forc andn.

Sequential probability ratio test. The sample size for a single sampling plan is fixed in
advance and independent of the observations that are made. However, taking those observations
into account can increase the performance of the test. As an example, if we use a single plan
(n, c) and them > c first simulations satisfy the property, then we could (depending on the error
bounds) acceptH0 without observing then−m other simulations. To overcome this problem,
one can use thesequential probability ratio test (SPRT in short)proposed by Wald [133]. The
approach is briefly described below.

In SPRT, one has to choose two valuesA andB (A > B) that ensure that the strength of
the test is respected. Letm be the number of observations that have been made so far. The test
is based on the following quotient:

p1m

p0m

=
m∏

i=1

Pr(Bi = bi | p = p1)

Pr(Bi = bi | p = p0)
=
pdm

1 (1 − p1)
m−dm

pdm

0 (1 − p0)m−dm
, (5.1)
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wheredm =
∑m

i=1 bi. The idea behind the test is to acceptH0 if p1m

p0m
≥ A, andH1 if p1m

p0m
≤ B.

The SPRT algorithm computesp1m

p0m
for successive values ofm until eitherH0 orH1 is satisfied;

the algorithm terminates with probability1[133]. This has the advantage of minimizing the
number of simulations. In his thesis [136], Younes proposeda logarithmic based algorithm
SPRT that givenp0, p1, α andβ implements the sequential ratio testing procedure.

Computing ideal valuesAid andBid for A andB in order to make sure that we are working
with a test of strength(α, β) is a laborious procedure. In his seminal paper [133], Wald showed
that if we defineAid ≥ A = (1−β)

α
andBid ≤ B = β

(1−α)
, then we obtain a new test whose

strength is(α′, β ′) such thatα′ + β ′ ≤ α + β. This means that eitherα′ ≤ α or β ′ ≤ β. In
practice, we often find that both inequalities hold.

5.2.2 Quantitative Answer using Statistical Model Checking

In [78, 99] Peyronnet et al. propose an estimation procedureto compute the probabilityp for
S to satisfyϕ. Given aprecisionδ, Peyronnet’s procedure, which we call PESTIMATION,
computes a value forp′ such that|p′ − p|≤δ with confidence1 − α. The procedure is based
on theChernoff-Hoeffding bound[83]. Let B1 . . . Bm bem discrete random variables with a
Bernoulli distribution of parameterp associated withm simulations of the system. Recall that
the outcome for each of theBi, denotedbi, is 1 if the simulation satisfiesϕ and0 otherwise.

Let p′ = (
∑m

i=1 bi)/m, then Chernoff-Hoeffding bound [83] givesPr(|p′ − p| > δ) < 2e−
mδ2

4 .
As a consequence, if we takem≥ 4

δ2 log( 2
α
), thenPr(|p′ − p|≤δ) ≥ 1 − α. Observe that if the

valuep′ returned by PESTIMATION is such thatp′≥θ − δ, thenS |= Pr≥θ with confidence
1 − α.

5.2.3 Playing with Statistical Model Checking Algorithms

The efficiency of the above algorithms is characterized by the number of simulations needed
to obtain an answer. This number may change from executions to executions and can only
be estimated (see [136] for an explanation). However, some generalities are known. For the
qualitative case, it is known that, except for some situations, SPRT is always faster than SSP.
Whenθ = 1 (resp. θ = 0) SPRT degenerates to SSP; this is not problematic since SSP is
known to be optimal for such values. PESTIMATION can also be used to solve the qualitative
problem, but it is always slower than SSP [136]. Ifθ is unknown, then a good strategy is to
estimate it using PESTIMATION with a low confidence and then validate the result with SPRT
and a strong confidence.

5.3 Validation Method and the BIP Toolset

We first present the method we use in order to abstract our casestudy. Then we describe the
tool used for the modelization: BIP.

5.3.1 Validation Method: Stochastic Abstraction

Consider a system consisting of a set of distributed applications running on several comput-
ers and exchanging messages on a shared network infrastructure. Assume also that network
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communication is subject to given bandwidth restrictions as well as to routing and scheduling
policies applied on network elements. Our method attempts to reduce the complexity of valida-
tion of a particular application of such system by decoupling the timing analysis of the network
and functional analysis of each application.

We start by constructing a model of the whole system. This model must be executable,
i.e., it should be possible to obtain execution traces, annotated with timing information. For
a chosen application, we then learn the probability distribution laws of its message delays
by simulating the entire system. The method then constructsa reduced stochastic model by
combining the application model where the delays are definedaccording to the laws identified
at the previous step. Finally, the method applies statistical model-checking on the resulting
stochastic model.

Our models are specified within the BIP framework [15]. BIP isa component-based frame-
work for construction, implementation and analysis of systems composed of heterogeneous
components. In particular, BIP fulfills all the requirements of the method suggested above, that
are, models constructed in BIP are operational and can be thoroughly simulated. BIP models
can easily integrate timing constraints, which are represented with discrete clocks. Probabilistic
behaviour can also be added by using external C functions.

The BIP framework is implemented within the BIP toolset [26], which includes a rich set
of tools for modeling, execution, analysis (both static andon-the-fly) and static transformations
of BIP models. It provides a dedicated programming languagefor describing BIP models.
The front-end tools allow editing and parsing of BIP programs, and generating an interme-
diate model, followed by code generation (in C) for execution and analysis on a dedicated
middleware platform. The platform also offers connectionsto external analysis tools. A more
complete description of BIP is given in the next section.

5.3.2 An Overview of BIP

The BIP framework, presented in [15], supports a methodology for building systems from
atomic components. It usesconnectors, to specify possible interaction patterns between com-
ponents, andpriorities, to select amongst possible interactions. In BIP, data and their transfor-
mations can be written directly in C.

Atomic components are finite-state automata extended with variables and ports. Ports are
action names, and may be associated with variables. They areused for synchronization with
other components. Control states denote locations at whichthe components await for synchro-
nization. Variables are used to store local data.

We provide in Figure 5.1 an example of an atomic component, namedRouter, that models
the behavior of a network router. It receives network packets through an input port and delivers
them to the respective output port(s), based on the destination address of the packets. The port
srvRecvacts as an input port, whiles0, s1, s2, s3, andsubNetSendact as output ports. The port
tick is used for modeling time progress and specific timing constraints. The control locations
areRECV, SEND, SEND0, SEND1, SEND2, SEND3, SENDINGandGAP, with RECVbeing
the initial location. It also has the variablest, p, to_0, to_1, to_2, to_3, to_sub, to_all,frame,
and parameterframeGap.

A transition is a step from a control location to another, guarded by a Boolean condition
on the set of its variables, labeled by a port. An example transition is from the initial location
RECVto SEND, which is executed when an interaction including portsrvRecvtakes place, the
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Figure 5.1: An atomic component: Router.

default guard beingtrue. On execution, the internal computation step is the execution of the C
routineroute(), followed by the reset of the variablet.

Composite components allow defining new components from sub-components (atomic or
composite). Components are connected through flat or hierarchical connectors, which relate
ports from different sub-components. Connectors represent sets of interactions, that are, non-
empty sets of ports that have to be jointly executed. They also specify guards and transfer
functions for each interaction, that is, the enabling condition and the exchange of data across
the ports of the interacting components.

To NAC top−lines

From NAC top−lines
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subNetSend
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Figure 5.2: Composite Component: Server.

Figure 5.2 shows a composite componentServer. It contains atomic componentsservice0
· · · servicen, FrameReceiver, and composite componentsClassifierandNAC. TheNAC con-
tains aRouterand aClassifier. The connectors are shown by lines joining the ports of the
components.

Priorities are used to select amongst simultaneously enabled interactions. They are a set of
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rules, each consisting of an ordered pair of interactions associated with a condition. When the
condition holds and both interactions of the correspondingpair are enabled, only the one with
higher-priority can be executed.

The architecture of a generic device is shown in Figure 5.3.

From Device/NAC

To Device/NAC

To DeviceFrom Device
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send
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send
recv

send
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rn

subNetSendsubNetRecv

srvSend

srvRecv

F rameReceiver

service0

servicen

NAC Classifier

Figure 5.3: A device component.

5.4 Case Study: Heterogeneous Communication System

The case study concerns a distributed heterogeneous communication system (HCS) providing
an all electronic communication infrastructure to be deployed, typically for cabin communica-
tion in airplanes or for building automation. The HCS systemcontains various devices such as
sensors (video camera, smoke detector, temperature, pressure, etc.) and actuators (loudspeak-
ers, light switches, temperature control, signs, etc.) connected through a wired communication
network to a common server. The server runs a set of services to monitor the sensors and
to control the actuators. The devices are connected to the server using network access con-
trollers (NAC) as shown for an example architecture in Figure 5.4. An extended star-like HCS
architecture with several daisy chains of NACs and devices is presented in Figure 5.5.

The system-wide HCS architecture is highly heterogeneous.It includes hardware compo-
nents and software applications ensuring functions with different characteristics and degree of
criticality e.g, audio streaming, device clock synchronisation, sensor monitoring, video surveil-
lance. It also integrates different communication and management protocols between compo-
nents. The HCS system has to guarantee stringent requirements, such as reliable data trans-
mission, fault tolerance, timings and synchronization constraints. For example, the latency for
delivering alarm signals from sensors, or for playing audioannouncements should be smaller
than certain predefined thresholds. Or, the accuracy of clock synchronization between different
devices, should be guaranteed under the given physical implementation of the system.

The HCS case study poses challenges that require component-based design techniques,
since it involves heterogeneous components and communication mechanisms, e.g. streaming
based on the data-flow paradigm as well as event driven computation and interaction. Its model-
ing needs combination of executable and analytic models especially for performance evaluation
and analysis of non-functional properties.
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Figure 5.4: HCS Example Model.

We have modeled an instance of the HCS system in BIP. As shown in Figure 5.4, the
system consists of oneServerconnected to a daisy chain of four NACs, addressed0 · · · 3, and
several devices. Devices are connected in daisy chains withthe NACs, the length of each chain
being limited to four in our example. For simplicity, devices are addressed(i, j), wherei is
the address of the NAC andj is the address of the device. The model contains three types of
devices, namelyAudio Player, Video CameraandSmoke Sensor. The devices connected to
NAC(0) and NAC(2) have similar topology. The first two daisy-chains consist of onlyAudio
Player devices. The third daisy-chain ends with aSmoke Sensor, and the fourth daisy-chain
consists of just oneVideo Camera. The devices connected to NAC(1) and NAC(3) have exactly
the same topology, consisting of severalAudio Playerand oneSmoke Sensordevices.

The system depicted in Figure 5.4 contains58 devices in total. The BIP model contains297
atomic components,245 clocks, and its state-space is of order23000. The size of the BIP code
for describing the system is2468 lines, which is translated to9018 lines in C. A description of
the key components of the HCS is given hereafter.

5.4.1 Server

The server runs various applications including: 1) PTPMasterClock, that runs the PTP master-
clock protocol between the server and the devices in order tokeep the device clocks synchro-
nized with the master-clock. The protocol exchanges PTP packets of size 512 bits between the
server and the devices, and runs once every 2 minutes. 2)AudioGenerator, that generates audio
streams to be playbacked by theAudio Playerdevices. It generates audio streams at 32kHz
with 12 bit resolution (audio chunks). We have assumed that 100 audio chunks are sent in a
single frame over the network, (that gives the size of an audio frame to be 1344 bits) at the
rate of 33 frames per second. 3)SmokeDetectorservice that keeps track of the event packets
(size 736 bits) sent from theSmoke Sensor, and 4)VideoSurveillanceservice for monitoring
theVideo Cameras. In addition, the server needs to handle the scheduling and routing of the
generated Ethernet packets over the communication backbone. The scheduling and routing of
the packets is handled by the NAC component.
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Figure 5.5: Heterogeneous Communication System (HCS).

5.4.2 Network Access Controller (NAC)

The NACs perform the data routing from the server to the subnet devices and vice versa. A
NAC essentially consists of arouter (as shown in Figure 5.1 in Section 5.3.2), that transmits the
packets from the server to the devices, and aclassifier(see Figure 5.6), that sends the packets
from the devices to the server. The classifier enforces a scheduling on the packets to be sent,
based on their types. As a result, packets may be queued up in the NACs adding to their delay
en route to the server. Hence, the scheduling policy in the classifier plays an important role in
the transmission delay of the packets.

To Server
From Devices
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recv1
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recv4

recv5

recv6 Scheduler

In Out

Figure 5.6: Component: Classifier

We have implemented and tested two scheduling schemes. The first scheduling policy is
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based on static priorities of the packets. The second policy, called weighted fair queuing mixed
with priorities, is introduced in order to give a fair share of the bandwidth of the network to
each type of packets.

Fixed priorities. With this algorithm, the packets transfered on the network are classified
in four categories that are (1) PTP, (2) Audio, (3) Events and(4) video. The PTP packets
are exchanged in the process of the PTP synchronization. They will be further detailed in
Section 5.5.1. Audio packets are sent from the server to the audio devices. A priori, since
these packets are going from the server to the devices, they will not have to be scheduled – the
scheduling is done by the server before sending the packets.Events packets are sent by smoke
detectors to the server. Finally, Video packets correspondto traffic between video camera
devices and the server.
It is possible to classify these packets by order of importance. The highest priority goes to PTP
packets. Indeed, they need to be transmitted as fast as possible because they are critical for the
synchronization of the system. Audio and Events packets maybe critical in case of a punctual
problem during the flight: if a fire is detected, then the information has to be transmitted as soon
as possible to the server. On the other hand, if a critical problem is detected, the passengers
have to be informed without delay. Finally, the Video packets are less critical.
One can use this classification to define scheduling in the NACs by following the order of
importance it defines. This is the principle of fixed priorities: use as many FIFO buffers to
store the incoming packets as there are levels of priorities. When several buffers are ready to
send, empty first the one with the highest priority, then the next, etc...

Unfortunately, if the network is flooded by high-priority packets, then the low-priority pack-
ets are never sent. This problem may be solved by using another scheduling algorithm that we
now present.

Weighted fair queuing (WFQ). Weighted fair queuing (WFQ) is a scheduling algorithm that
allocates to each data flow a share of the total data rate of thephysical links. In WFQ, as in
fixed priorities, the packets are classified in categories. Each category has its own FIFO buffer
in the switches. The difference with fixed priorities is thatfor WFQ, each category is given a
weight that will not act has a priority but has a regulation ofthe data flow: Consider a physical
link of data rateR. If there areN active categories with weightsw1, w2, . . . wN , meaning that
their buffers are non-empty, the WFQ scheduler will ensure that the category numberi achieves
an average data rate of

R · wi

w1 + w2 . . .+ wN
.

In practice, a scheduler will keep a dynamic information on the data rate of each category of
packets, and will only transmit packets corresponding to a category for which the current data
rate is under the specified rate. What we have implemented is amodified version of WFQ
called WFQ mixed with priorities.

WFQ mixed with priorities. In this version, packets are both assigned a weight and an
order of priority. Moreover, we fix a size for the window over which each category must
satisfy its allocated rate. This means that packets of a sizemuch smaller than the window may
sometimes be transfered with a higher rate than allocated, provided that the average rate on

115



the total window is still respected. The priorities are added in order to partially resolve non-
determinism in the scheduling: when several packets can be transmitted without violating the
rates, the one with the highest priority is sent first.

The main drawback of WFQ mixed with priorities is that the delays of packets within one
category can have a high variance. Indeed, the packets of a category with a high priority may
be sent at the beginning of a window, introducing low delays for them. Once the “quota” is
reached, however, all the remaining packets have to wait forthe next window before being
sent, introducing a high delay.

5.4.3 Device

Each device run one or more services which either generate packets for the server, or consumes
packets generated from the server. As devices are connectedin daisy chains, they also perform
routing of packets, hence each device provides a NAC functionality. Services modeled in our
example areAudio Player, PTPSlaveClock, Smoke SensorandVideo Camera. Video frames
are generated at a rate of 25 frames per second, the size of thevideo frames being given as a dis-
tribution. Separate distributions are provided for high-resolution camera (with mean frame size
of 120 kb) and for the low-resolution camera (with mean framesize of 30kb). The architecture
of a generic device is shown in Figure 5.3 in Section 5.3.2.

5.4.4 Complexity of the modeling

Table 5.1 gives an overview about the number and the complexity of model components defined
in BIP. The columns are as follows:S is the number of control locations;Vd is the number of
discrete variables (can be Boolean or arbitrary type like a frame or an array of frames);Vt is
number of clocks;C is the clock range;Size is the approximated size of the state-space; and
Number is the number of occurrences of the module in the example.

5.5 Experiments on the HCS

One of the core applications of the HCS case study is the PTP protocol, which allows the syn-
chronization of the clocks of the various devices with the one of the server. It is important that
this synchronization occurs properly, i.e., that the difference between the clock of the server and
the one of any device is bounded by a small constant. Studyingthis problem is the subject of
this section. Since the BIP model for the HCS is extremely large (number of components, size
of the state space, ...), there is no hope to analyse it with anexhaustive verification technique.
Here, we propose to apply our stochastic abstraction. Givena specific device, we will proceed
in two steps. First, we will conduct simulations on the entire system in order to learn the prob-
ability distribution on the communication delays between this device and the server. Second,
we will use this information to build a stochastic abstraction of the application on which we
will apply statistical model checking. We start with the stochastic abstraction for the PTP.

5.5.1 The Precision Time Protocol IEEE 1588

The Precision Time Protocol [2] has been defined to synchronize clocks of several computers
interconnected over a network. The protocol relies on multicast communication to distribute a
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Component type Name S Vd Vt C Size Number

Atomic

Router 8 7 1 5-120 211 63

Forwarder 4 1 1 5-120 28 -

FrameReceiver 2 1 1 5-120 27 -

MasterClock 3 1 1 0-2000 212 1

AudioGenerator 2 1 1 0-3125 213 1

SmokeDetector 3 1 1 0-300 210 4

VideoGenerator 3 1 1 0-40000 216 2

Compound

NAC - - - - 234 63

Server - - - - 286 1

Audio Player - - - - 244 52

Camera - - - - 250 2

SmokeSensor - - - - 251 4

HCS System - - - - 23122 1

Table 5.1: State-space estimation.

reference time from an accurate clock (the master) to all other clocks in the network (the slaves)
combined with individual offset correction, for each slave, according to its specific round-trip
communication delay to the master. The accuracy of synchronization is negatively impacted by
the jitter (i.e., the variation) and the asymmetry of the communication delay between the master
and the slaves. Obviously, these delay characteristics arehighly dependent on the network
architecture as well as on the ongoing network traffic.

We present below the abstract stochastic model of the PTP protocol between a device and
the server in the HCS case study. The model consists of two (deterministic) application com-
ponents respectively, the master and the slave clocks, and two probabilistic components, the
media, which are abstraction of the communication network between the master and the slave.
The former represent the behaviour of the protocol and are described by extended timed i/o-
automata. The latter represent a random transport delay andare simply described by proba-
bilistic distributions. Recap that randomization is used to represent the context, i.e., behaviors
of other devices and influence of these behaviors on those of the master and the device under
consideration.

The time of the master process is represented by the clock variableθm. This is considered
the reference time and is used to synchronize the time of the slave clock, represented by the
clock variableθs. The synchronization works as follows. Periodically, the master broadcast a
syncmessage and immediately after afollowUp message containing the timet1 at which the
syncmessage has been sent. Timet1 is observed on the master clockθm. The slave records
in t2 the reception time of thesyncmessage. Then, after the reception of thefollowUp, it
sends a delayrequestmessage to the master and records its emission timet3. Both t2 andt3
are observed on the slave clockθs. The master records ont4 the reception time of therequest
message and sends it back to the slave on thereply message. Again,t4 is observed on the

117



!followUp(t1)

?request

[x = P ]x := 0

!sync

t1 := θm

t4 := θm

!reply(t4)

?followUp(t1)

t2 := θs

?sync

!request

t3 := θs

?reply(t4)

θs := θs − o

o := (t2 + t3 − t1 − t4)/2

̺1

̺2

sync, followUp, reply

request

Figure 5.7: Abstract stochastic PTP between the server and adevice.

master clockθm. Finally, upon reception ofreply, the slave computes the offset between its
time and the master time based on(ti)i=1,4 and updates its clock accordingly. In our model, the
offset is computed differently in two different situations. In the first situation, which is depicted
in Figure 5.7, the average delays from master to slave and back are supposed to be equal i.e.,
µ(̺1) = µ(̺2). In the second situation, delays are supposed to be asymmetric, i.e.,µ(̺1) 6=
µ(̺2). In this case, synchronization is improved by using an extraoffset correction which
compensate for the difference, more precisely,o := (t2 + t3 − t1 − t4)/2 + (µ(̺2)− µ(̺1))/2.
This offset computation is an extension of the PTP specification and has been considered since
it ensures better precision when delays are not symmetric (see Section 5.5).

Encoding the abstract model of timed i/o-automata given in Figure 5.7 in BIP is quite
straightforward and can be done with the method presented in[15]. The distribution on the
delay is implemented as a new C function in the BIP model. It isworth mentioning that, since
the two i/o automata are deterministic, the full system depicted in Figure 5.7 is purely stochas-
tic.

The accuracy of the synchronization is defined by the absolute value of the difference be-
tween the master and slave clocks|θm − θs|, during the time. Our aim is to check the (safety)
property of bounded accuracyϕ∆, that is,always|θm−θs| ≤ ∆ for arbitrary fixed non-negative
real∆.

Finally, a simpler version of this protocol is considered and analyzed in Section 5.5.2. In
that study, delay components have been modeled using non-deterministic timed i/o automata
as well and represent arbitrary delays bounded in some intervals[L,U ]. It is shown that, if the
clock drift is negligible, the best accuracy∆⋆ that can be obtained using PTP is respectively
U−L

2
in the symmetric case, andU1+U2−L1−L2

4
in the asymmetric case. That is, the property of

bounded accuracy holds trivially iff∆ ≥ ∆∗.
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5.5.2 Parametric Precision Estimation for PTP

We introduce hereafter an analytic method to estimate the precision achieved within one round
of the PTP protocol, depending on several (abstract) parameters such as the initial difference
and the bounds (lower, upper) on the allowed drift of the two clocks, the bounds (lower, upper)
of the communication delay between the master and the slave,etc.
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t1m t5m
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Figure 5.8: One round of the PTP protocol.

The difference between the master and the slave clocks afterone PTP round can be de-
termined from a system of arithmetic non-linear constraints extracted from the model of the
protocol and communication media. Let us consider one complete round of the protocol as de-
picted in Figure 5.8. The first two axes correspond to the (inaccurate) clocks of the master and
slave respectively. The third axis correspond to a perfect reference clock. Using the notation
defined on the figure we can establish several constraints relating initial and final values of the
master and slave clocks (θm, θs, θ

′
m, θ

′
s), timestamps (t1, t2, t3, t4), offset (o), communication

delays(L1, U1, L2, U2), reference dates (a1, a
′
1, a2, a2, a4) as follows:

• initial constraints and initial clock differenceα
θm − θs = α, θm = t1m, θs = t1s

• evolution of the master clock is constrained by some maximaldrift ǫm
(1 − ǫm)(a4 − a1) ≤ t4m − t1m ≤ (1 + ǫm)(a4 − a1)
(1 − ǫm)(a5 − a4) ≤ t5m − t4m ≤ (1 + ǫm)(a5 − a4)

• evolution of the slave clock is constrained by some maximal drift ǫs
(1 − ǫs)(a2 − a1) ≤ t2s − t1s ≤ (1 + ǫs)(a2 − a1)
(1 − ǫs)(a3 − a2) ≤ t3s − t2s ≤ (1 + ǫs)(a3 − a2)
(1 − ǫs)(a5 − a3) ≤ t5s − t3s ≤ (1 + ǫs)(a5 − a3)

• communication delays, forward(L1, U1) and backward(L2, U2)
L1 ≤ a2 − a1 ≤ U1

L1 ≤ a3 − a′1 ≤ U1

L2 ≤ a4 − a3 ≤ U2

L1 ≤ a5 − a4 ≤ U1

• internal master delay(l, u) for sending thefollowUpaftersync
l ≤ a′1 − a1 ≤ u
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• offset computation and final clocks values
o = (t2s + t3s − t1m − t4m)/2, θ′m = t5m, θ′s = t5s − o

This system of constraints encodes precisely the evolutionof the two clocks within one
round of the protocol. The synchronization achieved correspond to the differenceθ′m − θ′s. We
analyze different configurations and we obtain the following results:

1. symmetric delaysL1 = L2 = L, U1 = U2 = U , no drift ǫm = ǫs = 0

−
U − L

2
≤ θ′m − θ′s ≤

U − L

2

2. symmetric delaysL1 = L2 = L, U1 = U2 = U , no master driftǫm = 0

−
U − L

2
−
ǫs(5U − L+ u)

2
≤ θ′m − θ′s ≤

U − L

2
+
ǫs(2U + 2L+ u)

2

3. asymmetric delays, no driftǫm = ǫs = 0

−
U2 − L1

2
≤ θ′m − θ′s ≤

U1 − L2

2

4. asymmetric delays, no master driftǫm = 0

−
U2 − L1

2
−
ǫs(3U1 + 2U2 − L1 + u)

2
≤ θ′m − θ′s ≤

U1 − L2

2
+
ǫs(2U1 + 2L2 + u)

2

We remark that, in general, the precision achieved does not depend on the initial difference
between the two clocks. Nevertheless, it is strongly impacted by the communication jitter,
which is, the differenceU − L in the symmetric case and differencesU2 − L1, U1 − L2 in the
asymmetric case.

Moreover, we remark that in the asymmetric case, the lower and upper bounds are not
symmetrici.e., the precision interval obtained is not centered around 0. The bounds of the
interval suggest us an additional offset correction:

δo =
(U2 − U1) + (L2 − L1)

4

which will shift the interval towards 0. For example, using this additional correction we obtain
in the case of asymmetric delays with no drift better precision:

−
(U2 + U1) − (L1 + L2)

4
≤ θ′m − θ′s ≤

(U1 + U2) − (L1 + L2)

4
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5.5.3 Model Simulations

In this section, we describe our approach to learn the probability distribution over the delays.
Consider the server and a given device. In a first step, we run simulations on the system
and measure the end-to-end delays of all PTP messages between the selected device and the
server. For example, consider the case of delayrequestmessages and assume that we made
33 measures. The result will be a series of delay values and, foreach value, the number of
times it has been observed. As an example, delay5 has been observed3 times, delay19 has
been observed30 times. The probability distribution is represented with a table of33 cells. In
our case,3 cells of the table will contains the value5 and30 will contain the value19. The
BIP engine will select a value in the table following a uniform probability distribution. This
method is used both for the fixed priority scheduling and for the weighted fair queuing mixed
with priorities.

According to our experiments,2000 delay measurements are enough to obtain an accurate
estimation of the probability distribution. Indeed, from astatistics point of view, a sample con-
sisting of 2000 values is more than enough in order to learn accurately a probability distribution
without having to apply kernel methods [125, 88, 120] or bootstraping [58, 59]. In the case of
fixed priorities, we have observed that it is possible to conduct4000 measurements without be-
ing too time-consuming. Indeed, each simulation for4000 measurements takes approximately
40 minutes on a Pentium 4 running under a Linux distribution.In this case, we have thus con-
ducted4000 measurements. In the case of weighted fair queuing mixed with priorities, since
the scheduling algorithm is more complex, only2000 measurements have been performed for
each delay. Indeed, in this case, each simulation for2000 measurements takes approximately 3
hours on the same Pentium 4.

Regardless of the scheduling algorithm, we have observed that the value of the distribution
clearly depends on the position of the device in the topology. This is shown in Figure 5.9 for
fixed priorities and Figure 5.10 for weighted fair queuing mixed with priorities. In both figures,
the solid plot shows the distribution of delays from Device(0,3) to the server and the dashed
plot shows the delay from Device(3,3)to the server.

It is worth mentioning that running one single simulation allowing 4000/2000 measure-
ments of the delay of PTP frames requires running the PTP protocol with an increased fre-
quency i.e., the default PTP period (2 minutes) being far toobig compared with the period for
sending audio/video packets (tens of milliseconds). Therefore, we run simulations where PTP
is executed once every 2 milliseconds and, we obtain 4000/2000 measurements by simulating
approximately 8/4 seconds of the global system lifetime. Each simulation uses microsecond
time granularity.

5.6 Experiments on Precision Estimation for PTP

Three sets of experiments are conducted. The first one is concerned with the bounded accuracy
property (see Section 5.5.1). In the second one, we study average failure per execution for a
given bound. Finally, we study the influence of drift on the results. We do these experiments
for the two scheduling policies described in Section 5.4.2.
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Figure 5.9: Delay distribution for Device(0,3) and Device(3,3) using fixed priorities for 4000
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Figure 5.11: Probability of satisfying the bounded accuracy property for a bound∆ = 50µs
and the asymmetric version of PTP.

5.6.1 Property 1: Synchronization

Our objective is to compute the smallest bound∆ under which synchronization occurs properly
for any device.

Experiment 1. We start with an experiment that shows that the value of the bound depends
on the place of the device in the topology. For doing so, we use∆ = 50µs as a bound and
then compute the probability for synchronization to occur properly for all the devices. For
the sake of presentation, we will only report on a sampled setof devices:(0, 0), (0, 3), (1, 0),
(1, 10), (2, 0), (2, 3), (3, 0), (3, 3), but our global observations extend to any device. We use
PESTIMATION with a confidence of0.1. We first report the results we obtained using the fixed
priority scheduling algorithm. Then we compare these results to the ones obtained for weighted
fair queuing mixed with priorities, for several configurations of the weights and window size.
Fixed Priorities: The results, which are reported in Figure 5.11, show that theplace in the
topology plays a crucial role. Device(3, 3) has the best probability value and Device(2, 0) has
the worst one. All the results in Figure 5.11 have been conducted on the model with asymmetric
delays. For the symmetric case, the probability values are much smaller. As an example, for
Device(0, 0), it decreases from0.388 to 0.085. The above results have been obtained in less
than4 seconds.
Forweighted fair queuing mixed with priorities , we have selected three different configura-
tions of the weights in order to give a hint of the different behavior we obtain. Since we want
to study bounded accuracy, it is legitimate to always give a higher priority to PTP packets. As a
consequence, all the studied configurations give a higher weight to PTP packets. We have also
selected two distinct window size. Indeed, the size of the window can have some importance
when it is either close to the size of the packets or much bigger. All the experiments have thus
been done both for a window of1.5ms and for a window of100ms.

The first (resp. second, third) configuration gives a weight3 (resp. 5, 8) to PTP pack-
ets, while giving weight2 to audio and events packets, and weight1 to video packets. It will
be referred as 3:2:2:1 (resp. 5:2:2:1, 8:2:2:1). For this configurations, the results of bounded
accuracy for a bound∆ = 50µs are given in Figure 5.12a for the window of1.5ms and in
Figure 5.12b for the window of100ms. The results for similar experiments are given in Fig-
ures 5.12c and 5.12d for configuration 5:2:2:1 and in Figures5.12e and 5.12f for configuration
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Precision 10−1 10−2 10−3

Confidence 10−5 10−10 10−5 10−10 10−5 10−10

PESTIMATION
4883 9488 488243 948760 48824291 94875993

17s 34s 29m 56m > 3h > 3h

SSP
1604 3579 161986 368633 16949867 32792577

10s 22s 13m 36m > 3h > 3h

SPRT
316 1176 12211 22870 148264 311368

2s 7s 53s 1m38s 11m 31m

Table 5.2: Number of simulations / Amount of time required for PESTIMATION, SSP and
SPRT.

8:2:2:1.
From these results, we observe that the different weights given to PTP packets do not seem

to influence a lot the bounded accuracy. The reason for this isthat weighted fair queuing
allocates to each types of packet a bandwidth that is function of their weight. Since PTP
packets are very small, they do not need a very high bandwidthto be almost always transmitted
without delay. As a consequence, increasing the size of the bandwidth allocated to them has
almost no impact on bounded accuracy. However, we also observe that the size of the window
has some impact on bounded accuracy. Indeed, the prioritiesthat are mixed with weighted
fair queuing ensure that, while respecting the bandwidth allocation, PTP packets are always
transmitted first. However, once the “quota” of PTP packets has been reached, the other types
of packets are all transmitted – creating a gap in the transmission of PTP packets. The largest
the window, the largest this gap will be. This gap will greatly influence synchronization and
thus bounded accuracy.

Experiment 2. As a second experiment, we have used SPRT and SSP to validate the proba-
bility value found by PESTIMATION with a higher degree of confidence. Table 5.2 compares
the computation times of SPRT, SSP and Estimation. The results presented are computed for
Device(0, 0) with fixed priorities, but they are representative of the results for all the experi-
ments presented here, both forfixed priorities andWFQ mixed with priorities . We observe
that SPRT is faster than SSP and PESTIMATION.

Experiment 3. The next step was to estimate the best bound. For doing so, foreach device
we have repeated the previous experiments for values of∆ between10µs and120µs for fixed
priorities and between10µs and140µs for weighted fair queuing mixed with priorities.
For fixed priorities , Figure 5.13 gives the results of the probability of satisfying the bounded
accuracy property as a function of the bound∆ for the asymmetric version of PTP. The figure
shows that the smallest bound which ensure synchronizationfor any device is105µs (for De-
vice (3, 0)). However, devices(0, 3) and(3, 3) already satisfy the property with probability1
for ∆ = 60µs.
For WFQ mixed with priorities , the results are presented in Figure 5.14. In this case, we
observe that the smallest bound ensuring synchronization for any device is125µs regardless of
the configuration and window size. It is the exact bound for Device (3, 3). Still, some devices

124



 0

 0.2

 0.4

 0.6

 0.8

 1

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Probability of bounded accuracy

(a) Probability of satisfying bounded accu-
racy for configuration 3:2:2:1 and a window
of 1.5ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Probability of bounded accuracy

(b) Probability of satisfying bounded accu-
racy for configuration 3:2:2:1 and a window
of 100ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Probability of bounded accuracy

(c) Probability of satisfying bounded accu-
racy for configuration 5:2:2:1 and a window
of 1.5ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Probability of bounded accuracy

(d) Probability of satisfying bounded accu-
racy for configuration 5:2:2:1 and a window
of 100ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Probability of bounded accuracy

(e) Probability of satisfying bounded accu-
racy for configuration 8:2:2:1 and a window
of 1.5ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

(0,0) (0,3) (1,0) (1,10) (2,0) (2,3) (3,0) (3,3)

Device

Probability of bounded accuracy

(f) Probability of satisfying bounded accu-
racy for configuration 8:2:2:1 and a window
of 100ms.

Figure 5.12: Probability of satisfying the bounded accuracy property for a bound∆ = 50µs
and weighted fair queuing mixed with priorities.
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Figure 5.13: Probability of satisfying the bounded accuracy property as a function of the bound
∆ for the asymmetric version of PTP.

Precision 10−1 10−2 10−3

Confidence 10−5 10−10 10−5 10−10 10−5 10−10

SSP / SPRT
110 219 1146 2292 11508 23015

1s 1s 6s 13s 51s 1m44s

Table 5.3: Number of simulations / Amount of time required for PESTIMATION and SSP.

(Device(0, 0) and Device(0, 3) for instance) already satisfy the property with probability 1 for
∆ = 65µs.

Experiment 4. Table 5.3 shows, for Device (0,0) and fixed priorities, a comparison of the
time and number of simulations required for PESTIMATION andSSP with the same degree of
confidence. Once again, these results are representative ofthe results obtained for all devices
and scheduling policies.

Experiment 5. The above experiments have been conducted assuming simulations of 1000
BIP interactions and66 rounds of the PTP protocol. Since each round of the PTP takes two
minutes, this also corresponds to132 minutes of the system’s life time. We now check whether
the results remain the sames if we lengthen the simulations and hence system’s life time. Fig-
ures 5.15a and 5.15b show, for Devices(0, 0) and(3, 0) respectively, the probability of syn-
chronization for various values of∆ and various length of simulations (1000, 4000, 8000 and
10000 (660 minutes of system’s life time) steps) forfixed priorities . For WFQ mixed with
priorities , the same results are presented in Figures 5.15c and 5.15d inthe case of configuration
8:2:2:1. These results are representative of all the other configurations. We used PESTIMA-
TION with a precision and a confidence of0.1. The best bounds do not change. However, the
longest the simulations are, the more the probability tendsto be either0 or 1 depending on the
bound.
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racy as a function of the bound for configu-
ration 5:2:2:1 and a window of1.5ms.
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Figure 5.14: Probability of satisfying bounded accuracy asa function of the bound for weighted
fair queuing mixed with priorities.
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Figure 5.15: Evolution of the probability of satisfying thebounded accuracy property with the
length of the simulations.

5.6.2 Property 2: Average failure

In the previous experiments, we have computed the best boundto guarantee the bounded accu-
racy property. It might be the case that the bound is too high regarding the user’s requirements.
In such case, using the above results, we can already report on the probability for synchro-
nization to occur properly for smaller values of the bound. We now give a finer answer by
quantifying the average number of failures in synchronization that occurper simulationwhen
working with smaller bounds. For a given simulation, theproportion of failuresis obtained by
dividing the number of failures by the number of rounds of PTP. We will now estimate, for a
simulation of1000 steps (66 rounds of the PTP), the average value for this proportion.

Experiment 1. As a first experiment, we have measured (for each device) thisproportion on
1199 simulations with a synchronization bound of∆ = 50µs. Each of these measures takes
about6 seconds.
For fixed priorities , as an example, we obtain average proportions of0.036 and0.014 for De-
vice(0, 0) using the symmetric and asymmetric versions of PTP respectively. As a comparison,
we obtain average proportions of0.964 and0.075 for Device(3, 0). The average proportion of
failures with the bound∆ = 50µs and the asymmetric version of PTP is given in Figure 5.16.
For WFQ mixed with priorities , the results are presented in Figure 5.17 for all the studied
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Figure 5.16: Average proportion of failures for a bound∆ = 50µs and the asymmetric version
of PTP.

configurations. Once again, we observe that the configuration of the weights does not have a
strong influence on the average proportion of failures. However, the size of the window does
not influence the average proportion of failures either.

Experiment 2. The first experiment was then generalized to other values of the bound. Fig-
ure 5.18 gives the average proportion of failures as a function of the bound forfixed priorities .
Figure 5.19 presents the results for the three configurations and two window sizes forWFQ
mixed with priorities .

The above experiment gives, for several value of∆ and each device, the average propor-
tion of failures with respect to1199 simulations. We have also used PESTIMATION with
confidence of0.1 and precision of0.1 to verify that this value remains the same whatever the
number of simulations is. The result was then validated using SSP with precision of10−3 and
confidence of10−10. Each experiment took approximately two minutes.

Experiment 3. Finally, we have conducted experiments to check whether theresults still
stand for longer simulations. Figures 5.20a and 5.20b present the results forfixed priorities ,
for Device (0,0) and Device (3,0) respectively. Figures 5.20c and 5.20d present the results
for Device (0,0) and Device (3,0) usingWFQ mixed with priorities , with the configuration
8:2:2:1 and a window of100µs. Observe that the average proportion of failures never changes
with the length of the simulation, which confirms that using simulations of length 1000 is fully
representative of the system.

5.6.3 Clock Drift

We have considered a modified version of the stochastic PTP model with drifting clocks. Drift
is used to model the fact that, due to the influence of the hardware, clocks of the master and
the device may not progress as the same rate. In our model, drift is incorporated as follows:
each time the clock of the server is increased by1 time unit, the clock of the device is increased
by 1 + ε time units, withε ∈ [−10−3, 10−3]. Using this modified model, we have re-done the
experiments of the previous sections and observed that the result remains almost the same. This
is not surprising as the value of the drift significantly smaller than the communication jitter, and
therefore it has less influence of the synchronization. A drift of 1 time unit has a much higher
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Figure 5.17: Average proportion of failures for a bound∆ = 50µs and weighted fair queuing
mixed with priorities.
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Figure 5.18: Average proportion of failures as a function ofthe bound∆ for the asymmetric
version of PTP.

impact on the probability. As an example, for Device(0, 0), it goes from a probability of0, 387
to a probability of0, 007 in the case of fixed priorities. It is worth mentioning that exhaustive
verification of a model with drifting clocks is not an easy task as it requires to deal with complex
differential equations. When reasoning on one execution ata time, this problem is avoided.

5.7 Another case study: the AFDX Network

In this section, we briefly introduce another application ofthe methodology presented in this
chapter. A full description is available in [14].

As we have already seen, the evolution of avionics embedded systems and the number of in-
tegrated functions in civilian aircrafts implied a huge increase in the quantity of data exchanged
and thus in the number of connections between functions. TheAircraft Data Networks used
until now had either point to point connections, which incurred a high cost in aircraft pro-
duction as well as increase of weight, or mono transmitter buses with very low performances
(100Kbits/s).

The HCS architecture presented in the previous sections is asolution to this problem. How-
ever, HCS also has drawbacks. As an example, there is a strongneed for synchronization
between the devices. As we have seen, studying synchronization in the HCS architecture is not
easy. A different solution to this problem would be to use theAvionics Full Duplex Switched
Ethernet (AFDX)[1]. Because of the property they guarantee – reliability and determinism,
AFDX networks offer synchronization for free.

In AFDX reliability is achieved with redundancy while determinism with the definition of
Virtual Links (VL), which put constraints on the allowed traffic. A network is deterministic if
we can guarantee an upper bound for the time a message needs tobe delivered to its destina-
tion. For AFDX such upper bounds can be provided with analytical methods [47]. The bounds
obtained are over approximations of the worst case and the analysis can only be performed on
very abstract models [33]. There is thus the need for new methods that will guarantee more
realistic upper bounds on more realistic models.

In [14], we have proposed such a method. More precisely, our contributions are the follow-
ing.

1. Model of the network. We propose a BIP model for AFDX architecture. To the best

131



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  20  40  60  80  100  120  140

Bound

Proportion of failure

(0,0)
(0,3)
(1,0)

(1,10)
(2,0)
(2,3)
(3,0)
(3,3)

(a) Average proportion of failures as a func-
tion of the bound for configuration 3:2:2:1
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(c) Average proportion of failures as a func-
tion of the bound for configuration 5:2:2:1
and a window of1.5ms.
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Figure 5.19: Average proportion of failures for a bound∆ = 50µs and weighted fair queuing
mixed with priorities.
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Figure 5.20: Evolution of the average proportion of failures with the length of the simulations.

of our knowledge, this is the first complete, fully operational and timing accurate, model
of AFDX developed using a formal framework. One shall observe that our construction
can be adapted to more complex network topologies.

2. Verification. We then examine thelatency requirementsproperty in AFDX, i.e., we
check that the total delivery time for packets on virtual links is smaller than some pre-
defined values. The difficulty is that our model of AFDX is constituted of many BIP
components – this is needed to obtain an accurate model of thenetwork. Combining
these components leads to a system that is too big (in terms ofstates) to be analyzed
by classical verification techniques such as model checking. In order to overcome the
problem, we suggest to abstract some of these components with probability distributions,
hence producing another BIP model of the network that is a stochastic abstraction of the
original one. We then apply statistical model checking to estimate a value of the bound
for which the requirement is satisfied with probability 1. This is an important feature as
correct upper bounds are mandatory for certification. We also show that one can use our
approach to compute the probability that the latency requirement is satisfied for a given
value of the bound. This latest feature is of interest to adapt/reconfigure the network for
better average performances.

We are not the first to propose the use of formal methods to analyze AFDX networks. Other
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models are either performance models built within network simulators or timed automata mod-
els, restricted to few functionalities or describing very simple network configuration. The work
of [7] focused on redundancy management and identified several issues occuring in the presence
of particular network faults. Alternatively, [32, 33, 118]deal with computing bounds for end-
to-end delays in AFDX networks. The papers [32, 33] report experiments using three analysis
methods: network calculus, stochastic simulation using QNAP2 and timed model-checking us-
ing Uppaal. The results confirm the well-established knowledge about these methods. Network
calculus [47] provides pessimistic, unreachable bounds. Network stochastic simulation provide
reachable bounds, however, these bounds hardly depend on the simulation scenario considered
and can be too optimistic. Timed model-checking [5] provides exact bounds, however, it suffers
from state explosion due to model complexity, and hence, cannot scale to realistic networks.
Finally, the work in [118] provides a method for compositional analysis of end-to-end delays. It
is shown that, to measure delays for a given virtual link, it is enough to consider only the traffic
generated by the virtual links influencing, i.e., which share paths within the network. This ob-
servation allows toslicethe network and therefore to reduce the complexity of any forthcoming
analysis. However (1) our model is more detailed and easier to extend/modify due to the use of
the component-based design approach and (2) we are capable to retrieve stochastic information
on the network.

This second experiments suggests that our stochastic abstraction method can be automa-
tized and hence further developed.

5.8 Achievements and Future work

The contributions of this chapter are twofolds: (1) the modeling of the HCS using the BIP
framework, and (2) a verification method and experimental results obtained on this case study.

We have proposed a complete method for modeling and abstracting an industrial case study
using the BIP toolset [15]. Due to the size of the HCS, we propose a stochastic abstraction
of the global model in order to verify properties using statistical model checking. Thanks
to this approach, we have been able to reduce the size of the model and to derive precise
bounds that guarantee proper synchronization for all the devices of the system. This technique
is fully general and can be applied to other case studies.As an example, we have showed in
Section 5.6.3, that the bounds we obtain for synchronization still hold on a modified model with
drifting clocks – this property could not easily be verified by classical verification techniques.
In Section 5.7, we have also applied the method to an AFDX network [14].

We now illustrate a key feature of our approach. We consider the HCS example introduced
in Section 5.4. Assume that we are interested in verifying properties of the subsystem com-
posed of (1) the server, and (2) one arbitrary device. Our approach consists in abstracting away
the rest of the system. Our technique proceeds by first simulating the entire heterogeneous
system in order to compute the stochastic abstraction. Thisis done by an on-the-fly generation
of executions/simulations of the system resulting from thecomposition of the many compo-
nents that participate to the design. When performing this computation, one has to resolve the
non-determinism that arises from the composition of the components. This is generally done
by random choices using uniform distributions among enabled choices. The key observation
relevant to statistics is that, the mixing of those many random effects result in smooth distribu-
tions characterizing the random behaviors of the subsystems ((1),(2)) of interest. Furthermore,
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the particular form for the random choices performed duringthe simulation does not really
influence the resulting stochastic behavior of the stochastic abstraction — this relies on argu-
ments of convergence toward so-calledstable distributions[140]. Our approach is thus clearly
different from those who would have artificially characterized the stochastic behavior of the
subsystems.

Several directions can be considered as future work. First,we computed many simulations
in order to learn the probability distributions of the delays for PTP packets. This is necessary
if we want to produce a stochastic abstraction whose distributions are accurate estimations of
the real distributions. In the case of systems of a higher order complexity, we cannot always
assume that it will be possible to generate as many simulations as needed. However, there are
techniques from the statistics area (for example kernel methods [125, 88, 120], wavelets [88]
or bootstraping [58, 59]) that could enable us to reason on a smaller number of simulations,
and still produce a reasonable approximation of the stochastic abstraction. Second, our exper-
iments highly depend on the ESTIMATION algorithm, which is potentially computationally
expensive. We could adapt Bayesian statistical model checking [85] in order to improve the
efficiency of ESTIMATION. Preliminary results are given in [141]. Third, it would be of inter-
est to integrate statistical model checking and BIP in a toolthat would be used to design and
analyse probabilistic systems in a compositional way. Thisis not an easy task because of the
requirements of statistical model checking that the systems must be fully probabilistic, which
may be a big obstacle to compositionality. Moreover, it would be of interest to extend statis-
tical model checking in order to verify more complex properties like Availability, presented in
Chapter 4 or unbounded properties [92, 91, 139, 110]. Finally, such a tool could be used, for
example, to verify satisfaction of probabilistic contracts.
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Chapter 6

Conclusion

In this thesis, we have presented new results for the design and verification of systems that mix
both non-deterministic and stochastic aspects.

Our first main contribution was to lift the interface theories to the stochastic setting. We
started with new results on the expressiveness and complexity of three refinement preorders for
Interval Markov Chains. Those results are of clear importance as existing works on IMCs often
use one of these preorders to compare specifications [86, 89,61]. We also proposed a construc-
tive solution to the common implementation problem, i.e. the problem of deciding whether
there exists an implementation satisfying all the specifications in a given set. It is worth men-
tioning that these results are robust and still hold on simple variations of IMCs. As an example,
one can use sets of sets of propositions to label the states instead of sets of propositions. We
can also use an initial distribution instead of an initial state. However, even though IMCs are
an attractive formalism, they are not powerful enough to capture all the good requirement for
an interface theory (composition, conjunction, disjunction). This motivates the development of
Constraint Markov Chains, the first complete compositionalspecification theory for stochastic
systems. CMCs are an extension of IMCs, which allows complexconstraints on the transition
probabilities instead of simple intervals. We have provided definitions for satisfaction and re-
finement, which extend those proposed for IMCs. In addition,we have designed algorithms for
consistency checking and structural and logical composition. Moreover, we have provided a
comparison between the structural and logical operators. More precisely, we have shown that
conjunction acts as an abstraction for composition. We havealso observed that the conjunc-
tion or disjunction of two linear constraints remains linear, but that composition may introduce
polynomial constraints. From an implementation point of view it may thus be more efficient
to work with linear constraints only. For doing so, one can simply approximate composition
with conjunction. Finally, we provide reductions from probabilistic automata to CMCs, show-
ing that our formalism is fully general. Despite this generality, all operators and relations are
computable.

There are various research directions to continue this work. Some of them have already been
presented in Section 3.9. The most promising directions aretwofolds: We think it is important
implement and evaluate the algorithms proposed in these twochapters. Extending CMCs to
the continuous-time setting seems a natural next step. Indeed, Continuous-time Markov Chains
(CTMCs) are one of the most important semantical models for real-time probabilistic systems.
CTMCs have been widely used in performance and dependability analysis, their applications
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ranging from Markovian queuing networks to calculi for systems biology [75, 94, 76, 95].

Our second main contribution is a new theory for (probabilistic) contracts, which extends
the work of [21]. First, we have proposed new notions for satisfaction of both probabilistic
and non-probabilistic contracts: reliability and availability.Reliability is a classical notion as it
gives a measure of the sets of runs of a system that satisfies a given property. In contrast, avail-
ability is a new notion, measuring the amount of time during which a system satisfies a given
property. Both notions play an important role in the design of mission-critical systems. Second,
the theory has been adapted in order to treat stochastic aspects. In this way, the probabilistic
assume guarantee contracts theory allows considering systems evolving in a stochastic environ-
ment. Finally, we have proposed effective symbolic representations of contracts and systems.
These representations are based on automata representing possibly infinite sets of runs. We
have showed that if assumptions and guarantees are represented with Büchi automata, check-
ing reliability satisfaction and refinement can be done withclassical techniques.

In addition to what has already been discussed in Section 4.6, we believe that the main
direction for future work is on the implementation. The non-probabilistic setting could be
implemented in the SPIN toolset [127], while the LIQUOR toolset [35] seems more appropriate
for the probabilistic approach.

Finally, our most promising contribution may be our study ofthe EADS HCS. We propose a
new simulation-based technique for verifying applications running within the HCS, which is the
cabin communication system of an airplane. Our technique starts by performing simulations
of the system in order to learn the context in where the application is used. Then, it creates
a stochastic abstraction for the application, which takes the context information into account.
This smaller model can be verified using efficient techniquessuch as statistical model checking.
This technique has been applied to verify the clock synchronization protocol i.e., the application
used to synchronize the clocks of all computing devices within the system.

The important lessons we learnt from this experiment are that (1) probabilities can be used
as a concise representation of the context in where a given subsystem is running, and (2) sim-
ulations combined with statistics make verification and validation faster and more general. We
thus believe that the concept of stochastic abstraction should be further formalized, automa-
tized, and developed. We are also convinced that statistical model checking algorithms can be
made more efficient by taking the methodology used to design the system into account. Study-
ing stochastic abstraction and improving statistical model checking algorithms are the two main
directions for future research.

Thestochastic abstractionshall be obtained by simulating the entire design (system level
model) in order to learn the environment in where the subsystem under consideration is running.
Generating simulations of a complex design may take time. Wethus suggest to use techniques
from the statistical area to better exploit the simulationsin generating an accurate estimate
of the distribution. Stochastic abstraction may also be combined with classical abstraction
techniques, especially when memory has to be considered in the design.

We also suggest to improve the efficiency of statistical model checking algorithms in two
ways. First, as the system is assumed to be “well-designed”,one can postulate that the prop-
erty under verification should rarely be falsified. This means that we are trying to compute
probabilities of violation that should be very close to0. Statistical model checking algorithms
should address this issue in an efficient manner. This is actually not the case. Also, due to
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her engineering knowledge about the system, the designer may guess some prior knowledge
regarding the probability for the system to violate the property. This information could be used
to improve the efficiency of statistical model checking.

One of the recurrent difficulties with formal verification techniques is the development of
specific tools and the acceptance of the underlying technology, by engineers, as part of their
design process. To ensure that our approach is accepted by industrials, we will collaborate
with an industrial partner who develops tools for designingheterogeneous systems. At the very
beginning of our study, the experiments will be conducted with academic tools such as the BIP
toolset [15, 26] used for EADS and AFDX in Chapter 5. According to EADS designers, the
language of BIP is expressive enough to “mimic” the concreteimplementation of the HCS.
However, the experiment could not have been conducted without the help of EADS designers
who validated our mathematical model of the system. In orderto cope with other case studies,
we will have to integrate our technology in the tool chain of industrials. Such an integration
creates new difficulties. As an example, it requires to be able to jointly simulate models of
different parts of the system, possibly expressed using different formalisms. Fortunately, cor-
responding so-called “co-simulation” (also called “hosted simulation”) technologies (see [128]
for an illustration) have been recently developed by tool vendors (such our industrial partner)
to cope with this problem. We plan to integrate this technology and extend it to a more general
context. Another major difficulty will be to provide feedback to the user in case her require-
ments are not satisfied.
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Abstracts

Abstract. This thesis presents new contributions in the design and verification of systems
mixing both non-deterministic and stochastic aspects. Our results can be divided into three
main contributions. First, we generalize interface theories to the stochastic setting. We build
upon the known formalism of Interval Markov Chains to develop Constraint Markov Chains,
the first fully compositional specification theory for stochastic systems. Second, we extend
the notion of assume-guarantee contracts and develop a contract-based theory for stochastic
systems, proposing quantitative notions for satisfactionand refinement. Finally, we propose a
methodology for the verification of complex systems. This methodology is based on a stochas-
tic abstraction of the environment where two components areworking, allowing to verify the
components individually. Combined with statistical modelchecking, this methodology is suc-
cessfully applied to the verification of an industrial case study.

Résumé. Cette thèse présente des contributions originales pour la conception et la vérification
de systèmes non-déterministes et stochastiques. Nos résultats sont divisés selon trois lignes
directrices. Premièrement, nous généralisons la théorie des interfaces au cas stochastique, en
s’appuyant sur le formalisme classique des chaînes de Markov à intervalles pour construire la
première théorie de spécification compositionnelle pour systèmes stochastiques : les chaînes de
Markov à contraintes. Deuxièmement, nous étendons la notion de contrats hypothèse-garantie
et développons une théorie compositionnelle à base de contrats pour systèmes stochastiques,
pour laquelle nous proposons des notions quantitatives de raffinement et de satisfaction. Fi-
nalement, nous proposons une méthodologie pour la vérification de systèmes complexes, basée
sur une abstraction stochastique. Cette méthodologie, combinée avec le model-checking statis-
tique, est appliquée avec succès à un cas d’étude industriel.
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