E. N. Marieb, Anatomie et physiologie humaines Édition du Renouveau Pédagogique. 3. Red_White_Blood_cells.jpg, available from http, Image:Red_White_Blood_cells.jpg, pp.2009-2013, 1993.

N. Mackman, Role of Tissue Factor in Hemostasis, Thrombosis, and Vascular Development, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.6, pp.1015-1022, 2004.
DOI : 10.1161/01.ATV.0000130465.23430.74

. Anatomie, available from: www.fibromyalgiesos.com, pp.2009-2013

J. R. Kratz, Fluid mechanical forces as extrinsic modifiers of endothelial function Human Physiology 4th, Fox, Stuart I, Brown Publishers 9, Endothelial Cells In Health And Disease, pp.18-318, 2005.

N. Ferrara, R. Lin, J. Lecouter-hebbel, R. P. , and A. Solovey, Vascular bed-specific signaling and angiogenesis in Endothelial Cells In, Blood endothelial cells in Endothelial Cells In Health And Disease, pp.285-306, 2005.

S. Rafii, J. Edelberg, E. M. , V. M. Conraads, and G. , Determination of endothelial heterogeneity by the recruitment of bone marrow derived endothelial progenitors in Endothelial Cells In Endothelial progenitor cells in vascular health: Focus on lifestyle Endothelial progenitor cells and cardiovascular homeostasis: Clinical implications, Microvascular Research International Journal of Cardiology, vol.14, issue.2, pp.131-156, 2005.

H. Ait-oufellaa, E. Mauryb, and G. Offenstadt, L'endothélium : un nouvel organe Réanimation, pp.126-136, 2008.

J. R. Jacobson, S. M. Dudek, and J. G. Garcia, Differential regulation of endothelial cell barrier function in Endothelial Cells In Health And Disease Differential effects of orbital and laminar shear stress on endothelial cells, Journal of Vascular Surgery, issue.5, pp.41-869, 2005.

H. Inoguchi, The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft, Biomaterials, vol.28, issue.3, pp.486-495, 2007.
DOI : 10.1016/j.biomaterials.2006.09.020

T. Walles, Functional neointima characterization of vascular prostheses in human. The Annals of Thoracic Surgery, pp.864-868, 2004.

B. P. Helmke and P. F. Davies, The Cytoskeleton Under External Fluid Mechanical Forces: Hemodynamic Forces Acting on the Endothelium, Annals of Biomedical Engineering, vol.30, issue.3, pp.284-296, 2002.
DOI : 10.1114/1.1467926

M. B. Gorbet, M. V. Sefton, and V. Michael, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes, Biomaterials, issue.26, pp.25-5681, 2004.

T. Thom, ACC/AHA 2005 Practice Guidelines for the Management of Patients With Peripheral Arterial Disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic): A Collaborative Report from the American Association for Vascular Surgery/Society for Vascular Surgery,* Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation Vascular risk factors for Alzheimer's disease: an epidemiologic perspective, Circulation Neurobiology of aging, vol.113, issue.212, pp.85-151, 2000.

H. C. Stary, A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis : A Report From the Committee on Vascular Lesions of the Council on Arteriosclerosis, Circulation, issue.5, pp.92-1355, 1995.

J. P. Cooke, A. Zenovich, D. Taylor, and P. L. , The Diversity of Vascular Disease, Front Biosci. Journal of Vascular Surgery, vol.139, issue.8, pp.3621-3657, 2000.
DOI : 10.1073/pnas.92.10.4502

A. Cameron, Coronary Bypass Surgery with Internal-Thoracic-Artery Grafts ??? Effects on Survival over a 15-Year Period, New England Journal of Medicine, vol.334, issue.4, pp.216-220, 1996.
DOI : 10.1056/NEJM199601253340402

A. M. Seifalian, Improving the Clinical Patency of Prosthetic Vascular and Coronary Bypass Grafts: The Role of Seeding and Tissue Engineering, Artificial Organs, vol.25, issue.4, pp.307-320, 1952.
DOI : 10.1016/S1010-7940(00)00371-7

N. Chakfé, Substituts vasculaires, Annales de Chirurgie, vol.129, issue.5, pp.301-309, 2004.
DOI : 10.1016/j.anchir.2004.05.002

N. Chakfé, Impregnated Polyester Arterial Prostheses: Performance and Prospects, Annals of Vascular Surgery, vol.13, issue.5, pp.509-523, 1999.
DOI : 10.1007/s100169900291

S. E. Greenwald and C. L. Berry, Improving vascular grafts: the importance of mechanical and haemodynamic properties, The Journal of Pathology, vol.5, issue.3, pp.292-299, 2000.
DOI : 10.1002/(SICI)1096-9896(200002)190:3<292::AID-PATH528>3.0.CO;2-S

S. Sarkar, The Mechanical Properties of Infrainguinal Vascular Bypass Grafts: Their Role in Influencing Patency, European Journal of Vascular and Endovascular Surgery, vol.31, issue.6, pp.31-627, 2006.
DOI : 10.1016/j.ejvs.2006.01.006

H. Haruguchi and S. Teraoka, Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review, Journal of Artificial Organs, vol.6, issue.4, pp.227-235, 2003.
DOI : 10.1007/s10047-003-0232-x

J. M. Anderson, Biological Responses to Materials, Annual Review of Materials Research, vol.31, issue.1, pp.81-110, 2001.
DOI : 10.1146/annurev.matsci.31.1.81

R. E. Baier and R. C. Dutton, Initial events in interactions of blood with a foreign surface, Journal of Biomedical Materials Research, vol.70, issue.1, pp.191-206, 1969.
DOI : 10.1002/jbm.820030115

B. D. Ratner and S. J. Bryant, Biomaterials: Where We Have Been and Where We Are Going, Annual Review of Biomedical Engineering, vol.6, issue.1, pp.41-75, 2004.
DOI : 10.1146/annurev.bioeng.6.040803.140027

D. Falkenback, Exposure of Plasma Proteins on Dacron and ePTFE Vascular Graft Material in a Perfusion Model, European Journal of Vascular and Endovascular Surgery, vol.19, issue.5, pp.468-475, 2000.
DOI : 10.1053/ejvs.1999.1075

C. F. Scott, Mechanism of the participation of the contact system in the Vroman effect, Journal of Biomaterials Science --Polymer Edition, issue.23, pp.173-81, 1991.

N. R. Tai, Compliance properties of conduits used in vascular reconstruction, British Journal of Surgery, vol.35, issue.11, pp.1516-1524, 2000.
DOI : 10.1046/j.1365-2168.2000.01566.x

P. Y. Ao, Development of Intimal Hyperplasia in Six Different Vascular Prostheses, European Journal of Vascular and Endovascular Surgery, vol.20, issue.3, pp.241-249, 2000.
DOI : 10.1053/ejvs.2000.1177

K. S. Cunningham and A. I. Gotlieb, The role of shear stress in the pathogenesis of atherosclerosis, Laboratory Investigation, vol.94, issue.1, pp.9-23, 2005.
DOI : 10.1038/labinvest.3700215

R. O. Darouiche, Treatment of Infections Associated with Surgical Implants, New England Journal of Medicine, vol.350, issue.14, pp.1422-1429, 2004.
DOI : 10.1056/NEJMra035415

T. W. Swain, K. D. Calligaro, M. D. Dougherty, and N. , Management of Infected Aortic Prosthetic Grafts Vascular and Endovascular Surgery, Influence of the Textile Structure on the Degradation of Explanted Aortic Endoprostheses. European Journal of Vascular and Endovascular Surgery, vol.38, issue.11, pp.27-33, 2004.

N. Chakfé, Longitudinal ruptures of polyester knitted vascular prostheses, Journal of Vascular Surgery, vol.33, issue.5, pp.1015-1021, 2001.
DOI : 10.1067/mva.2001.113493

F. Dieval, Mechanisms of Rupture of Knitted Polyester Vascular Prostheses: An In vitro Analysis of Virgin Prostheses, European Journal of Vascular and Endovascular Surgery, vol.26, issue.4, pp.429-436, 1991.
DOI : 10.1016/S1078-5884(03)00257-0

J. H. Fielder, Issues in ethics: the biomaterials crisis, IEEE Engineering in Medicine and Biology Magazine, vol.14, issue.4, pp.439-440, 1995.
DOI : 10.1109/51.395327

B. Abdessalem and S. , Influence of Crimping Textile Polyester Vascular Prostheses on the Fluid Flow Kinetics, European Journal of Vascular and Endovascular Surgery, vol.18, issue.5, pp.375-380, 1999.
DOI : 10.1053/ejvs.1999.0892

D. J. Lyman, Role of fluid dynamics on the healing of anin vivo tissue engineered vascular graft, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.56, issue.2, pp.77-389, 2006.
DOI : 10.1002/jbm.b.30436

J. Meinhart, Hyperlipidemia Coincides with Reversible Growth Impairment of Cultured Human Autologous Endothelial Cells, Endothelium, vol.105, issue.4, pp.239-246, 2002.
DOI : 10.1016/0741-5214(89)90347-9

Y. Noishiki, Age Dependency of Neointima Formation on Vascular Prostheses in Dogs, Artificial Organs, vol.6, issue.9, pp.718-728, 2000.
DOI : 10.1002/jbm.820050109

A. C. Thomas, G. R. Campbell, and J. H. Campbell, Advances in vascular tissue engineering, Cardiovascular Pathology, vol.12, issue.5, pp.271-276
DOI : 10.1016/S1054-8807(03)00086-3

S. G. Yates, The Preclotting of Porous Arterial Prostheses, Annals of Surgery, vol.188, issue.5, pp.611-622, 1978.
DOI : 10.1097/00000658-197811000-00005

Y. Huang, M. Siewe, and S. V. Madihally, Effect of spatial architecture on cellular colonization, Biotechnology and Bioengineering, vol.62, issue.1, pp.64-75, 2005.
DOI : 10.1002/bit.20703

A. L. Sieminski and K. J. Gooch, Biomaterial???microvasculature interactions, Biomaterials, vol.21, issue.22, pp.2233-2241, 2000.
DOI : 10.1016/S0142-9612(00)00149-6

Z. Zhang, Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses, Biomaterials, vol.25, issue.1, pp.177-187, 2004.
DOI : 10.1016/S0142-9612(03)00478-2

C. Simon, J. C. Palmaz, and E. Sprague, Influence of Topography on endothelialization of Stents: Clues for New designs, J Long Term Eff Med Implants, vol.10, issue.12, pp.143-51, 2000.

P. Losi, Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts, Biomaterials, vol.25, issue.18, pp.4447-4455, 2004.
DOI : 10.1016/j.biomaterials.2003.11.025

D. Mantovani, Modeling Lipid Uptake in Expanded Polytetrafluoroethylene Vascular Prostheses and Its Effects on Mechanical Properties, Artificial Organs, vol.21, issue.5, pp.334-345, 2000.
DOI : 10.1021/ac971061r

C. Xu, Electrospun Nanofiber Fabrication as Synthetic Extracellular Matrix and Its Potential for Vascular Tissue Engineering, Tissue Engineering, vol.10, issue.7-8, pp.1160-1168, 2004.
DOI : 10.1089/ten.2004.10.1160

Y. Marois, M. Sigot-luizard, and R. Guidoin, Endothelial Cell Behavior on Vascular Prosthetic Grafts, ASAIO Journal, vol.45, issue.4, pp.272-280, 1999.
DOI : 10.1097/00002480-199907000-00005

K. Yavuz, Comparison of the Endothelialization of Small Intestinal Submucosa, Dacron, and Expanded Polytetrafluoroethylene Suspended in the Thoracoabdominal Aorta in Sheep Roles of Hemodynamic Forces in Vascular Cell Differentiation, J Vasc Interv Radiol Annals of Biomedical Engineering, vol.17, issue.56, pp.33-772, 2005.

S. Kudo, Effect of Fluid Force on Vascular Cell Function, Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science, vol.24, issue.4, pp.459-461, 2005.
DOI : 10.2114/jpa.24.459

K. J. Pratt, Kinetics of endothelial cell-surface attachment forces, J Vasc Surg, vol.7, issue.4, pp.591-600, 1988.

H. Gulbins, Development of an artificial vessel lined with human vascular cells, The Journal of Thoracic and Cardiovascular Surgery, vol.128, issue.3, pp.372-377, 2004.
DOI : 10.1016/j.jtcvs.2003.11.029

A. Gojova and A. I. Barakat, Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels, Journal of Applied Physiology, vol.98, issue.6, pp.98-2355, 2005.
DOI : 10.1152/japplphysiol.01136.2004

P. Fernandez, Gene Response in Endothelial Cells Cultured on Engineered Surfaces Is Regulated by Shear Stress, Tissue Engineering, vol.13, issue.7, pp.1607-1621, 2007.
DOI : 10.1089/ten.2006.0399

P. C. Georges and P. A. Janmey, Cell type-specific response to growth on soft materials, Journal of Applied Physiology, vol.98, issue.4, pp.1547-1553, 2005.
DOI : 10.1152/japplphysiol.01121.2004

H. Sonoda, Coaxial double-tubular compliant arterial graft prosthesis: Time-dependent morphogenesis and compliance changes after implantation, Journal of Biomedical Materials Research, vol.21, issue.2, pp.65-170, 2003.
DOI : 10.1002/jbm.a.10462

H. He and T. Matsuda, Newly designed compliant hierarchic hybrid vascular graft wrapped with microprocessed elastomeric film--II: Morphogenesis and compliance change upon implantation, Cell transplantation, vol.11, issue.1, pp.75-87, 2002.

T. Matsuda and H. He, Newly designed compliant hierarchic hybrid vascular grafts wrapped with a microprocessed elastomeric film--I: Fabrication procedure and compliance matching, Cell transplantation, vol.11, issue.1, pp.67-74, 2002.

H. Jun and J. West, Development of a YIGSR-peptide-modified polyurethaneurea to enhance endothelialization, Journal of Biomaterials Science, Polymer Edition, vol.61, issue.1, pp.73-94, 2004.
DOI : 10.1163/156856204322752246

H. W. Jun, L. J. Taite, and J. L. West, Nitric Oxide-Producing Polyurethanes, Biomacromolecules, vol.6, issue.2, pp.838-844, 2005.
DOI : 10.1021/bm049419y

S. Hsu, S. Sun, and D. C. Chen, Improved Retention of Endothelial Cells Seeded on Polyurethane Small-diameter Vascular Grafts Modified by a Recombinant RGD-containing Protein, Artificial Organs, vol.5, issue.12, pp.27-1068, 2003.
DOI : 10.1002/(SICI)1097-4636(19970305)34:3<361::AID-JBM11>3.0.CO;2-J

R. Y. Kannan, The Endothelialization of Polyhedral Oligomeric Silsesquioxane Nanocomposites: An In Vitro Study Cell Biochemistry and Biophysics, pp.129-136, 2006.

R. E. Unger, Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells, Biomaterials, vol.25, issue.21, pp.25-5137, 2004.
DOI : 10.1016/j.biomaterials.2003.12.040

R. E. Unger, Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes, Biomaterials, vol.26, issue.17, pp.26-3461, 2005.
DOI : 10.1016/j.biomaterials.2004.09.047

T. Ozawa, Optimal Biomaterial for Creation of Autologous Cardiac Grafts, Circulation, vol.106121, pp.176-182, 2002.

W. He, Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth, Biomaterials, vol.26, issue.36, pp.26-7606, 2005.
DOI : 10.1016/j.biomaterials.2005.05.049

S. Iwai, Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis, The Journal of Thoracic and Cardiovascular Surgery, vol.128, issue.3, pp.472-479, 2004.
DOI : 10.1016/j.jtcvs.2004.04.013

S. Iwai, Novel Tissue-Engineered Biodegradable Material for Reconstruction of Vascular Wall. The Annals of Thoracic Surgery, pp.1821-1827, 2005.

N. J. Turner, A novel hyaluronan-based biomaterial (Hyaff-11??) as a scaffold for endothelial cells in tissue engineered vascular grafts, Biomaterials, vol.25, issue.28, pp.25-5955, 2004.
DOI : 10.1016/j.biomaterials.2004.02.002

S. Lepidi, In vivo regeneration of small-diameter (2 mm) arteries using a polymer scaffold Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo, FASEB J. Cardiovascular Research, vol.20, issue.634, pp.719-730, 2004.

K. Kwon, I. , S. Kidoaki, and T. Matsuda, Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential, Biomaterials, vol.26, issue.18, pp.26-3929, 2005.
DOI : 10.1016/j.biomaterials.2004.10.007

W. He, Fabrication and Endothelialization of Collagen-Blended Biodegradable Polymer Nanofibers: Potential Vascular Graft for Blood Vessel Tissue Engineering, Tissue Engineering, vol.11, issue.9-10, pp.9-10, 2005.
DOI : 10.1089/ten.2005.11.1574

Z. Ma, Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering, Biomaterials, vol.26, issue.15, pp.2527-2536, 2004.
DOI : 10.1016/j.biomaterials.2004.07.026

R. G. Flemming, Effects of synthetic micro- and nano-structured surfaces on cell behavior, Biomaterials, vol.20, issue.6, pp.573-588, 1999.
DOI : 10.1016/S0142-9612(98)00209-9

T. Chung, Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale, Biomaterials, vol.24, issue.25, pp.24-4655, 2003.
DOI : 10.1016/S0142-9612(03)00361-2

C. R. Deible, Molecular barriers to biomaterial thrombosis by modification of surface proteins with polyethylene glycol, Biomaterials, vol.20, issue.2, pp.101-109, 1999.
DOI : 10.1016/S0142-9612(98)00001-5

S. Levesque, Modification of lipid transport through a microporous PTFE membrane wall grafted with poly(ethylene glycol), Colloids and Surfaces B: Biointerfaces, vol.25, issue.3, pp.205-217, 2002.
DOI : 10.1016/S0927-7765(01)00323-X

P. Chevallier, In vitro Biological Performances of Phosphorylcholine-Grafted ePTFE Prostheses through RFGD Plasma Techniques, Macromolecular Bioscience, vol.50, issue.9, pp.829-839, 2005.
DOI : 10.1002/mabi.200500088

J. M. Chupa, Vascular cell responses to polysaccharide materials:, Biomaterials, vol.21, issue.22, pp.2315-2322, 2000.
DOI : 10.1016/S0142-9612(00)00158-7

E. F. Ritter, Heparin coating of vascular prostheses reduces thromboemboli, Surgery, vol.122, issue.5, pp.888-892, 1997.
DOI : 10.1016/S0039-6060(97)90329-9

M. V. Sefton, Does surface chemistry affect thrombogenicity of surface modified polymers?, Journal of Biomedical Materials Research, vol.44, issue.4, pp.447-459, 2001.
DOI : 10.1002/1097-4636(20010615)55:4<447::AID-JBM1036>3.0.CO;2-5

S. T. Kumar and L. K. Krishnan, A Stable Matrix for Generation of Tissue-Engineered Nonthrombogenic Vascular Grafts, Tissue Engineering, vol.8, issue.5, pp.763-770, 2002.
DOI : 10.1089/10763270260424123

P. R. Sreerekha and L. K. Krishnan, Cultivation of Endothelial Progenitor Cells on Fibrin Matrix and Layering on Dacron/Polytetrafluoroethylene Vascular Grafts, Artificial Organs, vol.76, issue.4, pp.242-249, 2006.
DOI : 10.1023/A:1016162706391

A. L. Koenig, V. Gambillara, and D. W. Grainger, Correlating fibronectin adsorption with endothelial cell adhesion and signaling on polymer substrates, Journal of Biomedical Materials Research, vol.200, issue.1, pp.20-37, 2003.
DOI : 10.1002/jbm.a.10316

B. Randone, Dual Role of VEGF in Pretreated Experimental ePTFE Arterial Grafts, Journal of Surgical Research, vol.127, issue.2, pp.70-79, 2005.
DOI : 10.1016/j.jss.2004.09.005

J. G. Meinhart, Enhanced Endothelial Cell Retention on Shear-Stressed Synthetic Vascular Grafts Precoated with RGD-Cross-Linked Fibrin, Tissue Engineering, vol.11, issue.5-6, pp.5-6, 2005.
DOI : 10.1089/ten.2005.11.887

C. C. Larsen, The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function, Biomaterials, vol.27, issue.28, pp.27-4846, 2006.
DOI : 10.1016/j.biomaterials.2006.05.009

K. P. Walluscheck, Improved endothelial cell attachment on ePTFE vascular grafts pretreated with synthetic RGD-containing peptides, European Journal of Vascular and Endovascular Surgery, vol.12, issue.3, pp.321-330, 1996.
DOI : 10.1016/S1078-5884(96)80251-6

C. Li, A. Hill, and M. Imran, In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide, Journal of Biomaterials Science, Polymer Edition, vol.26, issue.7, pp.875-891, 2005.
DOI : 10.1163/1568562054255754

V. Gauvreau, Engineering Surfaces for Bioconjugation:?? Developing Strategies and Quantifying the Extent of the Reactions, Bioconjugate Chemistry, vol.15, issue.5, pp.1146-1156, 2004.
DOI : 10.1021/bc049858u

L. Mirenghi, Growth of human endothelial cells on plasma-treated polyethyleneterephthalate surfaces, Journal of Materials Science: Materials in Medicine, vol.11, issue.5, pp.327-331, 2000.
DOI : 10.1023/A:1008929902205

P. A. Ramires, Plasma-treated PET surfaces improve the biocompatibility of human endothelial cells, Journal of Biomedical Materials Research, vol.5, issue.3, pp.535-539, 2000.
DOI : 10.1002/1097-4636(20000905)51:3<535::AID-JBM31>3.0.CO;2-P

P. Chevallier, Ammonia RF???Plasma on PTFE Surfaces: Chemical Characterization of the Species Created on the Surface by Vapor???Phase Chemical Derivatization, The Journal of Physical Chemistry B, vol.105, issue.50, pp.105-12490, 2001.
DOI : 10.1021/jp011607k

F. R. Pu, Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro, Biomaterials, vol.23, issue.11, pp.23-2411, 2002.
DOI : 10.1016/S0142-9612(01)00377-5

H. Chen, Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer, Biomaterials, vol.26, issue.35, pp.7418-7424, 2005.
DOI : 10.1016/j.biomaterials.2005.05.053

V. Gauvreau and G. Laroche, Micropattern Printing of Adhesion, Spreading, and Migration Peptides on Poly(tetrafluoroethylene) Films To Promote Endothelialization, Bioconjugate Chemistry, vol.16, issue.5, 2005.
DOI : 10.1021/bc049717s

L. Gagne, G. Rivera, and G. Laroche, Micropatterning with aerosols: Application for biomaterials, Biomaterials, vol.27, issue.31, 2006.
DOI : 10.1016/j.biomaterials.2006.06.006

L. Bordenave, In vitro endothelialized ePTFE prostheses: Clinical update 20 years after the first realization, Clinical Hemorheology and Microcirculation, vol.33, issue.3, pp.227-234, 2005.

K. J. Pawlowski, Endothelial cell seeding of polymeric vascular grafts, Frontiers in Bioscience, vol.9, issue.1-3, pp.1412-1433, 2004.
DOI : 10.2741/1302

S. T. Rashid, Engineering of bypass conduits to improve patency, Cell Proliferation, vol.12, issue.5, pp.351-366, 2004.
DOI : 10.1067/mva.1990.20844

A. K. Tassiopoulos and H. P. Greisler, Angiogenic mechanisms of endotheliazation of cardiovascular implants: a review of recent investigative strategies, Journal of Biomaterials Science -Polymer Edition, issue.11, pp.11-1275, 2000.

Y. J. Van-der-zijpp, A. A. Poot, and J. Feijen, Endothelialization of Small-Diameter Vascular Prostheses, Archives of Physiology and Biochemistry, vol.7, issue.2071, pp.415-427, 2003.
DOI : 10.1016/S0142-9612(96)00154-8

A. Tiwari, Tissue Engineering of Vascular Bypass Grafts: Role of Endothelial Cell Extraction, European Journal of Vascular and Endovascular Surgery, vol.21, issue.3, pp.193-201, 2001.
DOI : 10.1053/ejvs.2001.1316

B. A. Nasseri, Dynamic Rotational Seeding and Cell Culture System for Vascular Tube Formation, Tissue Engineering, vol.9, issue.2, pp.291-299, 2003.
DOI : 10.1089/107632703764664756

S. Hsu, The effect of dynamic culture conditions on endothelial cell seeding and retention on small diameter polyurethane vascular grafts, Medical Engineering & Physics, vol.27, issue.3, pp.267-272, 2005.
DOI : 10.1016/j.medengphy.2004.10.008

S. V. Pislaru, Magnetic Forces Enable Rapid Endothelialization of Synthetic Vascular Grafts, Circulation, vol.114, issue.1_suppl, pp.314-318, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.001446

H. Gulbins, Seeding of Human Vascular Cells onto Small Diameter Polyurethane Vascular Grafts, The Thoracic and Cardiovascular Surgeon, vol.54, issue.2, pp.102-107, 2006.
DOI : 10.1055/s-2005-865916

H. Yu, Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivo, Journal of Vascular Surgery, vol.38, issue.3, pp.557-563, 2003.
DOI : 10.1016/S0741-5214(03)00334-3

M. Deutsch, Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts, Journal of Vascular Surgery, vol.49, issue.2, pp.352-362, 2009.
DOI : 10.1016/j.jvs.2008.08.101

H. R. Laube, Clinical experience with autologous endothelial cells seeded polytetrafluoroethylene coronary artery bypass grafts. The Journal of thoracic and cardiovascular surgery, pp.134-141, 2000.
DOI : 10.1067/mtc.2000.106327

URL : http://dx.doi.org/10.1067/mtc.2000.106327

D. Gabbieri, Aortocoronary Endothelial Cell-Seeded Polytetrafluoroethylene Graft: 9-Year Patency, The Annals of Thoracic Surgery, vol.83, issue.3, pp.1166-1174, 2007.
DOI : 10.1016/j.athoracsur.2006.09.016

M. S. Baguneid, Tissue engineering of blood vessels, British Journal of Surgery, vol.38, issue.3, pp.282-290, 2006.
DOI : 10.1002/bjs.5256

K. Yow, Tissue engineering of vascular conduits, British Journal of Surgery, vol.5, issue.6, pp.652-661, 2006.
DOI : 10.1002/bjs.5343

L. Bordenave, P. Menu, and C. Baquey, Developments towards tissue-engineered, small-diameter arterial substitutes, Expert Review of Medical Devices, vol.5, issue.3, pp.337-347, 2008.
DOI : 10.1586/17434440.5.3.337

URL : http://www.hal.inserm.fr/inserm-00279868/file/Bordenave.pdf

C. Williams and T. M. Wick, Perfusion Bioreactor for Small Diameter Tissue-Engineered Arteries, Tissue Engineering, vol.10, issue.5-6, pp.5-6, 2004.
DOI : 10.1089/1076327041348536

M. Baguneid, Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes, Biotechnology and Applied Biochemistry, vol.39, issue.2, pp.151-157, 2004.
DOI : 10.1042/BA20030148

C. B. Weinberg and E. Bell, A blood vessel model constructed from collagen and cultured vascular cells, Science, vol.231, issue.4736, pp.397-400, 1986.
DOI : 10.1126/science.2934816

C. L. Cummings, Properties of engineered vascular constructs made from collagen, fibrin, and collagen???fibrin mixtures, Biomaterials, vol.25, issue.17, pp.25-3699, 2004.
DOI : 10.1016/j.biomaterials.2003.10.073

S. Cho, Enhancement ofin vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor, Journal of Biomedical Materials Research Part A, vol.6, issue.2, pp.76-252, 2006.
DOI : 10.1002/jbm.a.30535

A. Abed, A Biocompatible Polysaccharide Hydrogel???Embedded Polypropylene Mesh for Enhanced Tissue Integration in Rats, Tissue Engineering Part A, vol.14, issue.4, pp.519-527, 2008.
DOI : 10.1089/tea.2007.0134

L. Heureux and N. , A completely biological tissue-engineered human blood vessel, FASEB J, vol.12, issue.1, pp.47-56, 1998.

L. Heureux and N. , Human tissue-engineered blood vessels for adult arterial revascularization, Nature Medicine, vol.76, issue.3, pp.361-366, 2006.
DOI : 10.1038/nm1364

M. Heinonen, O. Oila, and K. Nordstrom, Current Issues in the Regulation of Human Tissue-Engineering Products in the European Union, Tissue Engineering, vol.11, issue.11-12, pp.11-12, 2005.
DOI : 10.1089/ten.2005.11.1905

Y. Tomizawa, Endothelialization and Functional Neointima on Vascular Grafts in Humans. The Annals of Thoracic Surgery, pp.1465-1465, 2005.

T. O. Daniel, Thrombotic Microangiopathies, 2005.
DOI : 10.1046/j.1523-1755.2001.00935.x

G. Rifle, C. Mousson, and P. Hervé, Endothelial Cells in Organ Transplantation: Friends or Foes?, Transplantation, vol.82, issue.Supplement 1, pp.4-5, 2006.
DOI : 10.1097/01.tp.0000231368.36476.4a

URL : https://hal.archives-ouvertes.fr/inserm-00473157

M. Prager, Collagen versus gelatin-coated Dacron versus stretch polytetrafluoroethylene in abdominal aortic bifurcation graft surgery: Results of a seven-year prospective, randomized multicenter trial, Surgery, vol.130, issue.3, pp.408-414, 2001.
DOI : 10.1067/msy.2001.115904

B. Tschoeke, Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold, Tissue Engineering Part A, vol.15, issue.8, pp.15-16, 2009.
DOI : 10.1089/ten.tea.2008.0499

L. Zhang, A novel small-diameter vascular graft: In vivo behavior of biodegradable three-layered tubular scaffolds, Biotechnology and Bioengineering, vol.51, issue.10, pp.1007-1015, 2008.
DOI : 10.1002/bit.21629

B. Zavan, Neoarteries grown in vivo using a tissue-engineered hyaluronanbased scaffold, FASEB J, pp.8-107284, 2008.

S. Cottin-bizonne, Les polym??res synth??tiques r??sorbables : caract??ristiques et applications pour les proth??ses art??rielles, RBM-News, vol.21, issue.4, pp.62-75, 1999.
DOI : 10.1016/S0222-0776(99)80048-0

M. F. Gonzalez, R. A. Ruseckaite, and T. R. Cuadrado, Structural changes of polylactic-acid (PLA) microspheres under hydrolytic degradation, Journal of Applied Polymer Science, vol.16, issue.8, pp.1223-1230, 1999.
DOI : 10.1002/(SICI)1097-4628(19990222)71:8<1223::AID-APP2>3.0.CO;2-I

A. P. Gupta and V. Kumar, New emerging trends in synthetic biodegradable polymers ??? Polylactide: A critique, European Polymer Journal, vol.43, issue.10, pp.4053-4074, 2007.
DOI : 10.1016/j.eurpolymj.2007.06.045

H. Kim, H. Lee, and J. C. Knowles, Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration, Journal of Biomedical Materials Research Part A, vol.2, issue.3, pp.79-643, 2006.
DOI : 10.1002/jbm.a.30866

D. Chitkara, Biodegradable Injectable In Situ Depot-Forming Drug Delivery Systems, Macromolecular Bioscience, vol.288, issue.12, pp.977-990, 2006.
DOI : 10.1002/mabi.200600129

M. Zilberman, K. D. Nelson, and R. C. Eberhart, Mechanical properties andin vitro degradation of bioresorbable fibers and expandable fiber-based stents, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.46, issue.2, pp.74-792, 2005.
DOI : 10.1002/jbm.b.30319

J. Stitzel, Controlled fabrication of a biological vascular substitute, Biomaterials, vol.27, issue.7, pp.1088-1094, 2006.
DOI : 10.1016/j.biomaterials.2005.07.048

X. Zong, Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials, vol.26, issue.26, pp.5330-5338, 2005.
DOI : 10.1016/j.biomaterials.2005.01.052

J. Lunt, Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, pp.145-152, 1998.

K. A. Athanasiou, G. G. Niederauer, and C. M. , Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers, Biomaterials, vol.17, issue.2, pp.93-102, 1996.
DOI : 10.1016/0142-9612(96)85754-1

C. Chen, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, vol.24, issue.7, pp.1167-1173, 2003.
DOI : 10.1016/S0142-9612(02)00466-0

M. Zilberman, N. D. Schwade, and R. C. Eberhart, Protein-loaded bioresorbable fibers and expandable stents: Mechanical properties and protein release, Journal of Biomedical Materials Research, vol.33, issue.1, pp.69-70, 2004.
DOI : 10.1002/jbm.b.20026

O. Martin and L. Avérous, Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer, vol.42, issue.14, pp.42-6209, 2001.
DOI : 10.1016/S0032-3861(01)00086-6

Y. Zhu, -lactic acid) Surface toward Improving Its Cytocompatibility to Human Endothelial Cells, Biomacromolecules, vol.4, issue.2, pp.446-452, 2003.
DOI : 10.1021/bm025723k

URL : https://hal.archives-ouvertes.fr/hal-00109342

P. B. Van-wachem, Adhesion and spreading of cultured endothelial cells on modified and unmodified poly(ethylene terephthalate): a morphological study, Biomaterials, issue.8, pp.10-532, 1989.

C. S. Wong, Polyethyleneterephthalate Provides Superior Retention of Endothelial Cells During Shear Stress Compared to Polytetrafluoroethylene and Pericardium. Heart, Lung and Circulation, pp.15-371, 2006.

I. Horcas, : A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, vol.78, issue.1, p.78, 2007.
DOI : 10.1063/1.2432410

C. Xu, In vitro study of human vascular endothelial cell function on materials with various surface roughness, Journal of Biomedical Materials Research, vol.25, issue.1, pp.71-154, 2004.
DOI : 10.1002/jbm.a.30143

E. Gagnon, Human vascular endothelial cells with extended life spans: In vitro cell response, protein expression, and angiogenesis, Angiogenesis, issue.1, pp.5-21, 2002.

J. C. Palmaz, Influence of stent design and material composition on procedure outcome, Journal of Vascular Surgery, vol.36, issue.5, pp.1031-1039, 2002.
DOI : 10.1067/mva.2002.129113

E. Cenni, Evaluation of endothelial cell integrins after in vitro contact with polyethylene terephthalate, Journal of Materials Science: Materials in Medicine, vol.12, issue.4, pp.345-349, 2001.
DOI : 10.1023/A:1011203322367

R. Y. Kannan, Current status of prosthetic bypass grafts: A review, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.39, issue.1, pp.74-570, 2005.
DOI : 10.1002/jbm.b.30247

S. François, Effect of Polyester Prosthesis Micro-Texture on Endothelial Cell Adhesion and Proliferation. Trends Biomater, Artif. Organs, vol.22, issue.2, pp.89-99, 2008.

A. C. Duncan, Effect of laser modified surface microtopochemistry on endothelial cell growth, Colloids and Surfaces B: Biointerfaces, vol.54, issue.2, pp.150-159, 2007.
DOI : 10.1016/j.colsurfb.2006.09.013

C. Sarra-bournet, A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications, Journal of Physics D: Applied Physics, vol.39, issue.16, pp.3461-3469, 2006.
DOI : 10.1088/0022-3727/39/16/S03

F. Yang, Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds, Biomaterials, vol.27, issue.28, pp.4923-4933, 2006.
DOI : 10.1016/j.biomaterials.2006.05.028

T. Yokota, In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding, The Journal of Thoracic and Cardiovascular Surgery, vol.136, issue.4, pp.900-907, 2008.
DOI : 10.1016/j.jtcvs.2008.02.058

H. Tsuji, Electrospinning of Poly(lactic acid) Stereocomplex Nanofibers, Biomacromolecules, vol.7, issue.12, pp.3316-3320, 2006.
DOI : 10.1021/bm060786e

O. E. Teebken and A. Haverich, Tissue Engineering of Small Diameter Vascular Grafts, European Journal of Vascular and Endovascular Surgery, vol.23, issue.6, pp.475-485, 2002.
DOI : 10.1053/ejvs.2002.1654

S. François, A poly(l-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses, Acta Biomaterialia, vol.5, issue.7, pp.2418-2428, 2009.
DOI : 10.1016/j.actbio.2009.03.013

E. W. Fischer, H. J. Sterzel, and G. Wegner, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Colloid & Polymer Science, issue.11, pp.251-980, 1973.

X. Cao, DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends, Thermochimica Acta, vol.406, issue.1-2, pp.115-127, 2003.
DOI : 10.1016/S0040-6031(03)00252-1

N. Passerini and D. Q. Craig, An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC, Journal of Controlled Release, vol.73, issue.1, pp.111-115, 2001.
DOI : 10.1016/S0168-3659(01)00245-0

L. T. Lim, R. Auras, and M. Rubino, Processing technologies for poly(lactic acid) Progress in Polymer Science, pp.33-820, 2008.

F. Massines, The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas and Polymers, pp.35-49, 2001.

J. Rahel and D. M. Sherman, The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure, Journal of Physics D: Applied Physics, vol.38, issue.4, pp.547-554, 2005.
DOI : 10.1088/0022-3727/38/4/006

Y. Wei and J. W. Hutchinson, Interface strength, work of adhesion and plasticity in the peel test, International Journal of Fracture, vol.93, pp.315-333, 1998.
DOI : 10.1007/978-94-017-2854-6_16

J. A. Odell, Degradation of polymer solutions in extensional flows, Macromolecules, vol.23, issue.12, pp.3092-3103, 1990.
DOI : 10.1021/ma00214a011

D. Garlotta, A Literature Review of Poly(Lactic Acid), Journal of Polymers and the Environment, vol.9, issue.2, pp.63-84, 2001.
DOI : 10.1023/A:1020200822435

B. Gupta, N. Revagade, and J. Hilborn, Poly(lactic acid) fiber: An overview. Progress in Polymer Science, pp.455-482, 2007.

M. Day, A. Nawaby, and X. Liao, A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites, Journal of Thermal Analysis and Calorimetry, vol.30, issue.3, pp.623-629, 2006.
DOI : 10.1007/s10973-006-7717-9

S. W. Shalaby and K. J. Burg, Absorbable and Biodegradable Polymers, Advances in Polymeric Biomaterials, vol.1, 2003.
DOI : 10.1201/9780203493014

Y. Rabin and H. C. Ottinger, Dilute Polymer Solutions: Internal Viscosity, Dynamic Scaling, Shear Thinning and Frequency-Dependent Viscosity, Europhysics Letters (EPL), vol.13, issue.5, pp.423-428, 1990.
DOI : 10.1209/0295-5075/13/5/008

B. H. Stuart, Surface plasticisation of poly(ether ether ketone) by chloroform, Polymer Testing, vol.16, issue.1, pp.49-57, 1997.
DOI : 10.1016/S0142-9418(96)00026-8

L. Fambri, Biodegradable fibres of poly(l-lactic acid) produced by melt spinning, Polymer, vol.38, issue.1, pp.79-85, 1997.
DOI : 10.1016/S0032-3861(96)00486-7

E. A. Duek, C. A. Zavaglia, and W. D. Belangero, In vitro study of poly(lactic acid) pin degradation, Polymer, vol.40, issue.23, pp.40-6465, 1999.
DOI : 10.1016/S0032-3861(98)00846-5

A. Suzuki, D. Mizuochi, and T. Hasegawa, Superstructure and mechanical properties of poly(L-lactic acid) microfibers prepared by CO2 laser-thinning, Polymer, vol.46, issue.15, pp.46-5550, 2005.
DOI : 10.1016/j.polymer.2005.04.047

H. Li and M. A. Huneault, Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer, pp.48-6855, 2007.

A. K. Agrawal and R. Bhalla, Advances in the Production of Poly(Lactic Acid) Fibers. A Review, Journal of Macromolecular Science, Part C: Polymer Reviews, vol.22, issue.4, pp.479-503, 2003.
DOI : 10.1016/0032-3861(80)90315-8

C. Ton-that, Surface characterisation of ultraviolet-ozone treated PET using atomic force microscopy and X-ray photoelectron spectroscopy Surface Science, pp.433-435, 1999.

M. Strobel and C. S. Lyons, The role of low-molecular-weight oxidized materials in the adhesion properties of corona-treated polypropylene film, Journal of Adhesion Science and Technology, vol.18, issue.1, pp.15-23, 2003.
DOI : 10.1163/156856189X00245

M. Strobel, Analysis of air-corona-treated polypropylene and poly(ethylene terephthalate) films by contact-angle measurements and X-ray photoelectron spectroscopy, Journal of Adhesion Science and Technology, vol.6, issue.4, pp.429-443, 1992.
DOI : 10.1163/156856192X00764

E. M. Liston, L. Martinu, and M. R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, Journal of Adhesion Science and Technology, vol.7, issue.10, pp.1091-1127, 1993.
DOI : 10.1163/156856193X00600

G. Borcia, C. A. Anderson, and N. M. Brown, Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form. Plasma Sources Science and Technology, pp.335-344, 2003.

E. Njatawidjaja, Hydrophilic modification of expanded polytetrafluoroethylene (ePTFE) by atmospheric pressure glow discharge (APG) treatment, Surface and Coatings Technology, vol.201, issue.3-4, pp.3-4, 2006.
DOI : 10.1016/j.surfcoat.2005.12.017

Z. Wang, Evaluation of biodegradable synthetic scaffold coated on arterial prostheses implanted in rat subcutaneous tissue, Biomaterials, vol.26, issue.35, pp.7387-7401, 2005.
DOI : 10.1016/j.biomaterials.2005.05.058

V. J. Chen and P. X. Ma, The effect of surface area on the degradation rate of nanofibrous poly(l-lactic acid) foams, Biomaterials, issue.20, pp.27-3708, 2006.

H. Tsuji, Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications, Macromolecular Bioscience, vol.4, issue.7, pp.569-597, 2005.
DOI : 10.1002/mabi.200500062

N. A. Weir, Processing, annealing and sterilisation of poly-l-lactide, Biomaterials, vol.25, issue.18, pp.3939-3949, 2004.
DOI : 10.1016/j.biomaterials.2003.10.076

J. Park, D. Kim, and S. Kim, Nondestructive evaluation of interfacial damage properties for plasma-treated biodegradable poly(p-dioxanone) fiber/poly(l-lactide) composites by micromechanical test and surface wettability, Composites Science and Technology, vol.64, issue.6, pp.64-847, 2004.
DOI : 10.1016/j.compscitech.2003.09.009

J. S. Loo, C. P. Ooi, and F. Y. Boey, Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation, Biomaterials, vol.26, issue.12, pp.26-1359, 2005.
DOI : 10.1016/j.biomaterials.2004.05.001

S. J. Lee, In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application, Journal of Biomedical Materials Research Part A, vol.37, issue.4, pp.999-1008, 2007.
DOI : 10.1002/jbm.a.31287

W. Li, Fabrication and characterization of six electrospun poly(??-hydroxy ester)-based fibrous scaffolds for tissue engineering applications, Acta Biomaterialia, vol.2, issue.4, pp.377-385, 2006.
DOI : 10.1016/j.actbio.2006.02.005

M. Khil, Novel fabricated matrix via electrospinning for tissue engineering, Journal of Biomedical Materials Research, vol.20, issue.1, pp.72-117, 2005.
DOI : 10.1002/jbm.b.30122

J. J. Stankus, Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization, Biomaterials, vol.28, issue.17, pp.2738-2746, 2007.
DOI : 10.1016/j.biomaterials.2007.02.012

M. J. Smith, Suture-reinforced electrospun polydioxanone???elastin small-diameter tubes for use in vascular tissue engineering: A feasibility study, Acta Biomaterialia, vol.4, issue.1, pp.58-66, 2008.
DOI : 10.1016/j.actbio.2007.08.001

M. M. Hossain, A. S. Herrmann, and D. Hegemann, Plasma Hydrophilization Effect on Different Textile Structures, Plasma Processes and Polymers, vol.65, issue.144, pp.299-307, 2006.
DOI : 10.1002/ppap.200500152

H. U. Poll, U. Schladitz, and S. Schreiter, Penetration of plasma effects into textile structures, Surface and Coatings Technology, vol.142, issue.144, pp.142-144, 2001.
DOI : 10.1016/S0257-8972(01)01055-6

S. F. Miralaï, Electrical and Optical Diagnostics of Dielectric Barrier Discharges (DBD) in He and N2 for Polymer Treatment. Plasmas and Polymers, pp.63-77, 2000.

M. Crombez, Improving arterial prosthesis neo-endothelialization: Application of a proactive VEGF construct onto PTFE surfaces, Biomaterials, vol.26, issue.35, pp.26-7402, 2005.
DOI : 10.1016/j.biomaterials.2005.05.051

Y. Ishii, A novel bioengineered small-caliber vascular graft incorporating heparin and sirolimus: Excellent 6-month patency, The Journal of Thoracic and Cardiovascular Surgery, vol.135, issue.6, pp.1237-1246, 2008.
DOI : 10.1016/j.jtcvs.2007.09.077

K. Vallières, É. Petitclerc, and G. Laroche, Covalent Grafting of Fibronectin onto Plasma-Treated PTFE: Influence of the Conjugation Strategy on Fibronectin Biological Activity, Macromolecular Bioscience, vol.64, issue.5, pp.738-745, 2007.
DOI : 10.1002/mabi.200600267

K. Vallières, É. Petitclerc, and G. Laroche, On the ability of imatinib mesylate to inhibit smooth muscle cell proliferation without delaying endothelialization: An in vitro study, Vascular Pharmacology, vol.51, issue.1, 2009.
DOI : 10.1016/j.vph.2009.02.003

S. Saha and P. Saha, The biomedical industry and the need for tort reform, IEEE Engineering in Medicine and Biology Magazine, vol.22, issue.4, pp.154-155, 2003.
DOI : 10.1109/MEMB.2003.1237518

S. Saha and P. S. Saha, Biomedical Research: Some Ethical Challenges, Critical Reviews?? in Biomedical Engineering, vol.28, issue.3-4, pp.5-6, 1998.
DOI : 10.1615/CritRevBiomedEng.v28.i34.320

L. W. Kraiss, Fluid flow activates a regulator of translation, p70/p85 S6 kinase, in human endothelial cells, Am J Physiol Heart Circ Physiol, vol.278, issue.5, pp.1537-1544, 2000.

M. J. Pearce, Shear Stress Activates Cytosolic Phospholipase A2(cPLA2) and MAP Kinase in Human Endothelial Cells, Biochemical and Biophysical Research Communications, vol.218, issue.2, pp.500-504, 1996.
DOI : 10.1006/bbrc.1996.0089

K. Ley, Shear-dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate, Blood, vol.73, issue.5, pp.1324-1330, 1989.

N. F. Azevedo, Shear Stress, Temperature, and Inoculation Concentration Influence the Adhesion of Water-Stressed Helicobacter pylori to Stainless Steel 304 and Polypropylene, Applied and Environmental Microbiology, vol.72, issue.4, pp.2936-2941, 2006.
DOI : 10.1128/AEM.72.4.2936-2941.2006

L. Yang, ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-??-activated vascular endothelium under flow, Blood, vol.106, issue.2, pp.584-592, 2005.
DOI : 10.1182/blood-2004-12-4942

P. Relkin, Microcalorimétrie à balayage DSC -Application agroalimentaire, T.d. l'Ingénieur, 2006.

H. Paqueton and J. Ruste, Microscopie électronique à balayage -Principe et équipement, 2006.

H. Paqueton and J. Ruste, Microscopie électronique à balayage -Images, applications et développements, 2006.

A. Red, Dissoudre 10mM d'Amplex Red dans du DMSO (MW=257,25, donc 5mg dans 1944?L de DMSO) et aliquoter MUP (en bleu) : à faire au dernier moment : Peser la plus petite quantité de MUP et ajuster le volume de tampon pour avoir une concentration de 0, p.6