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1. GENERAL INTRODUCTION  

1.1. Background 

1.1.1. Short History of Electric Drives 

Through the centuries, “the production power” was the power of animals and slaves, 
hydro power and wind power. In the 1800s, after the invention of James Watt, it was the 
power of the steam machine. With the invention of electricity, electrical energy gradually 
came into focus. The first motors were direct current (DC) motors. At the end of 1800s, 
Nikola Tesla invented the three-phasevoltage system and the most famous motor; the 
induction motor was born. Because of many advantages over DC motors, the induction 
motors became dominant in most constant speed electric drive applications. However, 
difficulty with speed regulation was the basic disadvantage of the induction motor, and the 
main limiting factor for application in variable speed applications. 

At the beginning of 20th century, a few configurations of variable speed drives were 
used. 

1) Ward-Leonard motor-generator group. Since power conversion in such a system is 
done three times and a dc machine is included in the loop, this concept had not been broadly 
accepted in high power applications. 

2) Wound rotor induction motor. The motor speed were adjusted and “regulated” by a 
circuit connected to the rotor via set of brushes, while the stator is connected to the fixed 
frequency supply. 1) The rotor resistor control and 2) “constant power” Kramer or “constant 
torque” Scherbious configurations  [1]. 

All these drive configuration were fairly inefficient and faced a problem of reliability. 

1.1.1.1. The Early “Power Electronics” Driven ac Drives 

The first period in development of “power electronics” controlled electric drives was 
the period between 1910 and 1940. Early “power electronics” drives were based on triggered-
arc power switches, such as controlled mercury-arc rectifiers, thyratrons and ignitrons. The 
drive configurations were the electronic Kramer configuration using uncontrolled rectifier 
bridge, electronic Scherbius using rectifier-inverter configuration, Brown Boveri commutator-
less drive, thyratron motor configuration and early version of load commuted synchronous 
motor drive  [1]. In 1930s, the first cycloconvertor was used. All those topologies did not have 
broad success in industrial applications, simply because of complexity and reliability issues of 
the “power electronics” switches. 

In early 1960s, the first silicon controlled rectifier (SCR) was invented. This invention 
brought a large step in development of power electronics controlled electric drives. Kramer 
and Scherbius drive configuration, load commuted synchronous motor drives and 
cycloconvertor drives become dominant in most of high power applications. Later on, current 
sourced inverter with variable output frequency became a very competitive scheme for 
induction motor applications. Voltage source drive topologies became competitive with the 
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invention of the gate turn-off thyristors (GTO) in 1970s and insulated gate bipolar transistors 
(IGBT) in the 1980s. 

1.1.2. Present 

Today, 70 % of the world electricity production is consumed by some kind of 
controlled electric drives; traction and transportation drives, industrial drives, home appliance 
drives and so on. This indicates the importance of controlled electric drives in everyday life. 

Modern low voltage controlled electric drives are exclusively based on three-phase 
motors, either induction or permanent magnet synchronous motors  [2]- [3]. The motor is 
powered from a power converter, so-called the drive converter, having variable output voltage 
and frequency. The drive converter is supplied from low voltage industrial or distributive 
three-phase mains 230 V to 690V, 50 Hz to 60Hz. The most common converter topology is a 
cascade-connected diode front-end rectifier and voltage source pulse width modulated (PWM) 
inverter. A simplified circuit diagram is depicted in Fig.  1.1. The drive converter consists of 
an input three-phase diode rectifier (D1-D6), dc bus link with passive filter (LBUSCBUS) and 
pulse width modulated (PWM) output inverter (S1-S6). The rectifier generates dc bus voltage 
vBUS, which is further inverted in the output variable ac voltage via PWM inverter. The input 
rectifier is based on Si diodes, while the output inverter is exclusively based on IGBT devices 
 [4]. Switching frequency falls in range of few kHz up to 20kHz. The PWM inverter is 
controlled from the upper level controller using some of advanced digital control techniques. 
The control objective is the control of the motor torque and speed in closed or open loop 
control mode  [3]. 

An additional switch SB, diode DB and resistors RB, so-called brake chopper and 
resistor are used in applications with a demand for braking of the drive load (hoisting and 
large inertia applications). The braking energy is dissipated in the brake resistor RB via the 
brake chopper SB DB. This is, in fact, one of the most limiting factors for advanced high 
efficient drive applications. 

 

 

 

Fig.  1.1 State of the art low voltage drive converter based on voltage source indirect AC-DC-AC 
conversion. The output voltage is pulse width modulated (PWM) having fundamental voltage that 
is adjustable in amplitude, frequency and phase. 
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1.1.3. Typical Applications of Controlled Electric Drives 

1.1.3.1. Hoisting and Lift Applications 

The first type of applications that are in the scope of this project are hoisting type 
applications. Fig.  1.2 (a) shows photography of one typical on-port rubber tyred gantry (RTG) 
crane  [5]. The hoisting drive time-power profile is sketched in Fig.  1.2 (b). When lifting the 
load, the hosting drive takes energy from the primary supply, in this case a diesel engine 
generator. When lowering the load, the drive operates in braking mode. As a diesel engine 
generator is not reversible, the braking energy cannot be pumped back into the primary power 
source. Instead, it is dissipated as heat in the brake resistor. 

 

 

(a) 

 

(b) 

Fig.  1.2 a) Rubber tyred gantry crane. b) Typical power profile of a hoisting application: lifting the load 
and acceleration (1), lifting the load at constant speed (2), lowering the load at constant speed (3) 
and lowering the load and deceleration (4). 

 

Lift applications are similar to the RTG crane applications, except for two differences. 
The mains as the primary power supply source in lift applications is reversible. This means 
that the drive braking energy can be pumped back to the mains. The lift load (cabin) is 
balanced with a counterweight. Thus, the drive operating mode depends on the load direction 
(up or down) and ratio of the load to the counterweight. 

1.1.3.2. Machines with Intermittent Load 

The second type of application to consider is industrial machines with intermittent 
load. Such applications are characterised by low ratio of average to peak power. The input 
power is highly positive when the drive accelerates, and the power is highly negative when 
the drive decelerates. During constant speed operation, the input power is normally low. Fig. 
 1.3 illustrates the time-power profile of such a drive application. Typical application is tools 
carriers in automatic milling machines  [3]. 
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Fig.  1.3 Typical power profile of a controlled electric drive applied in a machine with cycling load: 
acceleration (1), constant speed (2), and deceleration (3). 

 

1.1.3.3. Blowers and Pumps Applications 

These applications are normally the simplest controlled electric drive applications. 
Blowers and pumps do not require specific control scheme and do not require braking (at lest 
do not require fast braking). In some cases, those applications can be sensitive to the mains 
power interruptions if applied in critical process industry. 

Low power irrigation pump systems are specific application because the mains supply 
is often single-phase network. The motor is a three-phase induction motor powered from a 
three-phase PWM inverter. 

1.1.4. Remaining Technical Issues in Application of Controlled Electric Drives 

Six technical issues in application and design of modern variable speed drives can be 
identified. Those issues are still a great challenge for power electronics researchers and drive 
designers  [6]. 

1.1.4.1. Saving and Recovery of the Drive Braking Energy 

A lot of industrial and other applications, such as lifts, cranes and tooling machines are 
characterized by low balance between the input average power and peak power. Moreover, 
such applications have a demand for braking at full power. In ordinary variable speed drives, 
the mechanical energy stored in rotating mass of the motor load and the motor shaft is usually 
realized and wasted in a braking resistor. The energy losses in such applications go up 20 to 
50% of the consumed energy. In today’s energy crisis, energy efficiency has become the issue 
that needs an urgent solution  [6]. 

1.1.4.2. The Drive Ride-Through Capability 

Modern controlled electric drives are sensitive to the mains supply disturbances. The 
most frequent disturbances are voltage dips/sags. A voltage sag is defined as instantaneous 
decrease in the RMS voltage, where the decrease is in range of 10 to 90% of the nominal 
voltage, while the sag duration is in order of a half cycle up to a minute  [7]- [11]. Such a 
power interruption causes the dc bus voltage to drop below its lower limit, and then the entire 
drive system trips. The system interruptions are very costly and unacceptable when the drive 
is applied in critical process industry, oil pump systems, semiconductor and glass industry. 
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Such kind of industries have reported losses ranging from 10k$ to 1M$ per disrupting event 
 [10]. 

1.1.4.3. Quality of the Drive Input Current 

Another power quality issue, which is introduced by the drive itself, is quality of the 
drive input current. Harmonic spectra of the drive input current depends on the drive rectifier 
topology. Ordinary diode front-end rectifiers equipped with passive LC filter draws the input 
current that is distorted and rich with higher harmonics. An example set of waveforms is 
depicted in Fig.  1.4 (a). Total harmonic distortion (THD) factor can be as high as 150%, or 
even higher  [12]. 

The mains current harmonics cause additional heating and stress of the distribution 
transformers, power factor correction capacitors and neutral line in low voltage distribution 
network. Electromagnetic interference (EMI) with communication network and sensitive 
equipment is a critical issue too. To avoid or at least minimize those problems, advanced 
controlled electric drive converters have to comply with the input current harmonics 
limitations defined by international standards  [13]. 

1.1.4.4. Quality of the Drive Converter DC Bus Voltage 

The dc bus voltage is the intermediate voltage in the conversion path from the mains 
supply to the motor terminal. To achieve full motor voltage without distortion, it is important 
to provide sufficient dc bus voltage without significant fluctuation and ripple. Moreover, the 
higher dc bus voltage the better performance of the motor current and torque control  [3]. 

The ordinary diode rectifier provides the dc bus voltage that is lower than the mains 
phase-to-phase peak voltage. The voltage ripple at 6th harmonic of the mains frequency is 
significant too. An example set of waveforms is depicted in Fig.  1.4 (a). The motor voltage, 
therefore, is not well controlled in case that the drive operates in full speed mode. This causes 
distortion of the motor flux and ripple in the motor torque. Negative effects of that are well 
known: oscillations and mechanical stress of the load machine, noise and vibrations. 

1.1.4.5. Single Phase Supply with or without the Drive De-rating 

Operation of three-phase variable speed drives on single-phase supply is an 
application issue to be considered too. Single-phase supply could be due to the mains 
degradation when one of three phases is disconnected. In that case the drive rectifier is 
supplied with one phase-to-phase voltage. From the rectifier side it is nothing other than a 
single-phase supply. Another application example is rural single-phase supply network or 
specific drive applications, such as irrigation and small water supply systems. 

Ordinary single-phase supplied diode front-end rectifiers draw an input current that is 
distorted and rich with higher harmonics. An example set of waveforms is depicted in Fig.  1.4 
(b). The current peak is 5 to 10 times greater than the first harmonic current. This causes 
significant losses in the dc bus capacitor and input rectifier bridge. To be able to continuously 
operate under such conditions, the drive power has to be reduced to less than 40% of the drive 
rated power. 

1.1.4.6. Smoothing of the Drive Peak Power 

Some controlled drive applications are characterized by low ratio of the average to 
peak power. Typical examples are lifts and hosting applications, and industrial tolling 
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machines having intermittent load. Fig.  1.5 shows waveforms of the mains current iMAINS and 
dc bus voltage vBUS of an example controlled electric drive application. Peak power is 5500W 
for 0.8s, while minimum power is 500W for 1.6 s. It gives the ratio of average to peak power 
of 0.31. Thus, the drive cabling, fuses and contactors have to be over-sized by factor of 3. 
This type of load may also cause fluctuation and flicker in weak supply networks  [14]. In lift 
applications the peak to average power ratio could be greater than 10, as reported in  [15]. 

 

(a) 

 

(b) 

Fig.  1.4 Waveforms of the mains current, voltage and the dc bus voltage. a) Three-phase supply, 
PLOAD=5500W, the current scale [10A/div]. b) Single phase supply, PLOAD=4000W, the current 
scale [20A/div]. 

 

 

Fig.  1.5 Waveforms of the mains current iMAINS [20A/div] and the dc bus voltage vBUS [100V/div]. The 
drive load is cycling between 500W and 5500W at period of 2.2s with duty cycle of 30%. The 
average power is approximately 31% of the peak power. 

 

1.2. Literature Overview 

1.2.1. Regenerative Drives Based on Back to Back and Matrix Converter 

Most of the existing regenerative controlled electric drive solutions belong to two 
groups; back to back PWM rectifiers  [16], and so-called direct (matrix) converters,  [17],  [18]. 
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Fig.  1.6 shows simplified circuit diagram of voltage source back-to-back and matrix drive 
converters. The drive takes energy from the mains whenever operates in motoring mode, and 
pumps the energy back to the mains whenever operates in breaking mode. The main 
disadvantage of such solutions is the fact that functionality and reliability of the drive is 
strongly linked to the mains reliability. Simple speaking, any power interruption of the mains 
is reflected on the drive. The drive is disabled whenever the mains is interrupted for longer 
than the mains cycle (20ms). Moreover, these drives have a high power demand during 
acceleration and deceleration (low ratio of average to peak power). This modulated input 
power produces additional losses and disturbances (flicker) in the weak supply mains. 

 

 

 

 

(a) 

 

 

 

(b) 

Fig.  1.6 a) Voltage source back to back regenerative controlled electric drive. b) Voltage source matrix 
drive converter. 

 

1.2.2. Regenerative Drives Based on the Energy Storage Concept 

A block diagram of a regenerative drive based on energy storage concept is given in 
Fig.  1.7. The drive system consists on an ordinary diode front-end converter equipped with an 
energy storage device  [19]- [24]. This concept has come into focus recently with broad 
application of new electro-chemical double layer capacitors (EDLC), so-called ultra-
capacitors  [26]. An ultra-capacitor is electro-chemical capacitor having two porous electrodes 
made of activated carbon that are separated by a separator and impregnated with electrolyte 
 [26]. Thanks to large specific surface (2000m2/g) of activated carbon electrodes, the specific 
capacitance and energy are much higher than for standard electrolytic capacitors. In addition, 
the specific peak power of the ultra-capacitors is much higher than peak power of the existing 
electro-chemical batteries. Flywheel energy storage is usefully used in such a drive concept 
too  [24]. 

The kinetic energy of the drive rotating masse, so-called braking energy is stored into 
the ultra-capacitor during the drive braking sequence. During the next motoring sequence, the 
energy is restored from the ultra-capacitor and realized on the drive. The first commercial 
applications of the ultra-capacitor based regenerative drives were traction and hybrid car 
drives  [27]- [29]. General purpose variable speed drive with such an energy saving concept 
could be used in lift and hoisting applications, tooling machines having high demand for 
frequent and fast start/stop sequence, and many other application having a demand for 
braking. In  [5], such a drive concept is analyzed and successfully applied on the rubber tyred 
gantry (RTG) crane. As reported in  [5], the fuel saving is 30% to 40%. Moreover, the diesel 
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gen-set can be re-sized and smaller unit could be used. The same drive concept has been 
proposed for building lift applications  [20],  [15]. The ultra-capacitor as the energy storage for 
short term UPS function or extension of the drive ride-through capability is applied in critical 
industrial applications  [21],  [22]. 

 

 

Fig.  1.7 Controlled electric drive based on an ordinary drive converter with parallel connected energy 
storage and emergency power supply device.  

 

Unlike electrochemical battery, the ultra-capacitor state of charge strongly depends on 
the capacitor terminal voltage. The capacitor voltage varies a lot when the capacitor is 
charged/discharged. That means the ultra-capacitor cannot be connected directly to the drive 
dc bus, because the voltage adaptation and matching between the ultra-capacitor and dc bus. 
To achieve flexibility and high efficiency, a dc-dc power converter is used as a link between 
the ultra-capacitor and the drive  [30]- [42]. 

Most of dc-dc converter topologies are based on the ordinary two-level single-phase or 
multiphase interleaved topologies  [5],  [30]- [35]. The main drawback of these topologies is the 
switches voltage rating. The switches are rated on the full dc bus voltage. As the dc bus 
voltage may go up to 800V, even more, the switches are rated on 1200V. This becomes an 
issue if the converter switching frequency is quite high; let us say above 20kHz. Switching 
losses become quite significant. It causes degradation in the conversion efficiency and 
additional difficulties in the converter thermal design. Two-level dc-dc converter with soft 
switching has been presented in  [36]. This solution offers lower switching losses. However, 
since the converter operates in discontinuous conduction mode (DCM), the peak current and 
ripple current are significantely greater than one that operates in continuous conduction mode 
(CCM). This causes a problem of the inductor losses, particularly the core losses. Moreover, 
additional losses on the ultra-capacitor internal resistance cannot be neglected if the output 
current is not well filtered. Isolated dc-dc converter topologies with soft switching have been 
analyzed in  [37],  [38]. These topologies are attractive solutions when ratio of the dc bus 
voltage to the ultra-capacitor voltage is high, greater than 2. If the ratio is lower than 2, the 
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efficiency is lower than that of a non-isolated ordinary topology. Three-level converters are 
well adopted solution in applications with high input voltage and relatively high switching 
frequency  [39]-  [40]. The switches are stressed on half of the total dc bus voltage. This allow 
us to use lower voltage rated switches having better switching and conduction performance 
compared to the switches rated on the full blocking voltage. Therefore, the converter overall 
performances, including cost and efficiency, can be significantly improved compared to two-
level converters, especially when the switching frequency is above 20kHz or MOSFETs are 
used  [41].  

Most of the control methods presented in the literature are focused on hybrid electric 
vehicle and power sources  [14],  [27]- [29],  [32]- [35],  [43]- [47]. Only a few publications are 
focused on control of the ultra-capacitor based electric drives  [5],  [21]- [22]. 

1.2.3. The Mains Current Harmonics and Related Issues 

The energy storage based electric drives provide a more efficient way to save braking 
energy and improve global efficiency and reliability of the controlled electric drive systems 
 [48]. The input current quality, however, remains an unsolved challenging issue. In the last 
decade, numerous different solutions for this problem have been proposed and discussed in 
literature. 

Single-switch three-phase continuous conduction mode (CCM) boost rectifier is a 
solution that offers numerous advantages compared to the ordinary diode front-end rectifier 
 [49]- [51]. The rectifier output current is constant and therefore the mains current is 2π/3 
square waveform with THD of approximately 30%. The dc bus voltage is actively controlled 
and boosted above the mains phase to phase peak voltage. The low frequency voltage ripple is 
small and it could be neglected compared to that of the diode rectifier. A variant of the CCM 
boost rectifier is discontinuous conduction mode (DCM) boost rectifier  [52]- [55]. This 
topology offers lower THD of the input current than CCM boost rectifier (10-15% in 
comparison to 30%). 

A common disadvantage of the single-switch boost topologies is power rating of the 
semiconductor switches. The switches are rated for the full dc bus voltage and full rectifier 
current. Generally speaking, a semiconductor switches’ performance; conduction and 
switching strongly depend on the switch voltage rating and the switch technology. Lower 
voltage rating means lower conduction losses, better switching performance, higher efficiency 
and lower cost. For example, let us consider a 400V three-phase rectifier. The dc bus voltage 
is 700 to 800V. For the ordinary single-switch boost converter, the switch and boost diode 
voltage rating is 1000V to 1200V. For this voltage rating, 1200V IGBT and 1200V fast diode 
are used. In this case, maximum switching frequency is limited by the switching performance 
of the IGBT and the diode. To reduce switching losses, soft switching techniques can be used 
 [56]- [58]. However, the soft switching techniques require additional active switches, diodes 
and passive resonant circuits, which make the circuit more complex and expensive. 

Double-boost rectifiers employ two interleaved active switches and boost diodes. The 
switches and diodes are rated for half dc bus voltage and full rectifier current. As a result, the 
conversion losses are slightly lower in comparison to the single-switch boost rectifier  [59]. 
The boost inductor is approximately 25% that of the single-switch topology. 

A dc side shunt active filter, applied on a single-phase diode rectifier has been 
analysed in  [60]. The filter circuit is connected on the rectifier dc side, and as such it is simple 
and cost effective in comparison to the state of the art ac side connected active filters. This 
approach could be extended to three-phase rectifiers, wherein the input current THD can be 
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reduced to approximately 30%. The main disadvantage of such a filtering concept is high 
current stress and low efficiency. The first reason for this is an additional diode in the main 
current path. The current that circulates between the dc filter and dc bus capacitor is a few 
time greater than the mains current. Hence, losses of the filter and dc bus capacitor are 
significant. 

The electronic smoothing inductor (ESI) has been proposed and analysed in  [61]- [63]. 
An auxiliary low voltage dc-dc converter is serially connected between the rectifier and the dc 
bus capacitor. The rectifier current is actively controlled to be constant or pseudo-constant. 
The input current THD is approximately 30%, the same as that of the CCM single-switch 
boost rectifier. A key advantage of the ESI concepts is that the auxiliary dc-dc converter is 
rated on full current and a fraction (normally 20%) of the dc bus voltage. Hence, the auxiliary 
converter losses are quite small. The entire rectifier efficiency can go above 98%  [63]. The 
main disadvantage of the ESI is that the dc bus average voltage is not controlled and it is 
slightly lower than the rectifier average voltage. 

The concept of a third harmonic injection method for three-phase diode rectifiers is 
well presented in monograph  [64]. Although the harmonic injection method is simple, it does 
not have broad application in conventional industrial rectifiers. The main reason for this lays 
in the need for bulky passive elements, mainly coupling transformers. The overall efficiency 
is not sufficiently high as required by the applications. 

Single-phase supplied three-phase controlled electric drives and related application 
issues are not often treated in the literature. Single-phase supplied rectifier with passive LC dc 
bus filter and three-phase pulse width modulated (PWM) inverter is the most common 
solution in low power low cost applications. The dc bus capacitor is a large electrolytic 
capacitor, while the inductor is small or even absent. Such a rectifier works as peak detecting 
circuit; the dc bus voltage is charged to the peak mains voltage and the mains current is a train 
of narrow pulses. Apart the fact that such a rectifier is simple, cost effective and robust, the 
drive manufactures do not recommended it because of a few serious limitations: 

-The input current is distorted, with peaks that are 5 to 10 times of the fundamental 
RMS current. The total harmonic distortion factor is as high as 150%, or even higher. The 
power factor is low. 

-A bulky dc bus capacitor is necessary to keep the dc bus voltage ripple acceptably 
low. 

-A filter inductor must be used to limit peak of the input current. The inductance value 
is however limited because the dc bus voltage quickly decays with the inductance. 

-The dc bus voltage is reduced in comparison to three-phase supplied drive. Hence, 
available motor voltage is reduced too. 

-The drive life time is limited by the dc bus capacitor life time (the capacitor is the 
most stressed component). 

-The drive may be de-rated by 50% when single-phase supplied, which means higher 
installation cost per kW. 

Single-phase single-switch and double-boost rectifier is the most popular solution in 
applications that require boosted dc bus voltage and sinusoidal or pseudo-sinusoidal input 
current,  [65],  [66]. This topology is often used in low power supplies such as PC and small 
telecom supplies. In variable speed drives, however, this is rarely used topology because cost, 
size and efficiency. 
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Split-capacitor three-leg rectifier/inverter is used in low cost low power variable speed 
drive applications, such as air-conditioning and home appliance applications  [67],  [68]. This 
topology offers the lowest count of the active and passive components in comparison to the 
other solutions. However, two drawbacks make this topology inappropriate in high power 
industrial applications; 1) The dc bus capacitor current stress at low frequency, and 2) the 
output current ripple. 

1.2.4. Smoothing of the Input Peak Power 

The problem of the peak power filtering and voltage fluctuation in weak distribution 
supply in public transportation is briefly analysed in  [14]. The peak power and braking issue 
in lift application has been analysed  [15]. Ultra-capacitor based energy storage has been 
proposed as a solution. Control aspects have been briefly presented in  [14]. 

1.3. The Dissertation Objective 

The objective of this dissertation is to identify and discuss some of the remaining 
technical issues in application of advanced controlled electric drives. Then, a solution or set of 
solutions for the problems that are identified have to be proposed, analysed, discussed and 
validated by simulation and set of experiments. Three sub-objectives can be summarized as 
follows. 

1.3.1. Parallel Connection of Energy Storage Device and Controlled Electric Drive 

The first objective is to analyse the existing solutions of parallel connected energy 
storage device and controlled electric drive. The system operating modes have to be analysed 
in details and critical points clearly identified. Important properties of the ultra-capacitor as 
energy storage device for power conversion application have to be discussed too. Then, an 
appropriate topology of the interface dc-dc converter has to be proposed. Finally, the entire 
conversion system should be modelled and a new control scheme proposed. The proposed 
solution(s) has to be competitive with state of the art solutions regarding efficiency, cost, size 
of active and passive components and heat sink, and dynamic performances of the dc bus 
voltage control, the ultra-capacitor state of the charge control and the ultra-capacitor current 
control. 

1.3.2. The Mains Current Harmonics, DC Bus Voltage Control and Single Phase 
Supply 

State of the art solutions of three-phase diode boost rectifiers have to be analysed and 
disadvantages clearly identified. A new topology for three-phase diode boost rectifier has to 
be proposed, analysed, discussed and verified by simulations and set of experiments. The 
proposed solution(s) has to be competitive with state of the art solutions regarding efficiency, 
size of passive components including heat sink, cost and dynamic performances of the voltage 
and rectifier current control. 
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1.3.3. Energy Storage and Power Factor Correction Device for Electric Drive 
Applications 

Last but not least is to merge the solutions of  1.3.1 and  1.3.2 into one generic solution 
that intents to solve all the six technical issues mentioned in section  1.1.4. Analyses, 
discussion and verification by simulations and experiments have to be done. The solution has 
to be competitive with state of the art solutions regarding efficiency, size, cost and dynamic 
performances of the overall system. 

1.4. The Dissertation Organization 

The dissertation is organised in five parts. Each part presents one or set of similar 
technical problems as well as a new solution for those problems. Each part consists of one or 
more logically organised chapters. 

1.4.1. Part One: General Introduction 

In the first part, a general introduction is given. Background of controlled electric 
drives is given, typical applications of controlled electric drives are discussed and remaining 
applications issues are identified. An overview of the literature is given, and objectives of the 
dissertation are also given. 

1.4.2. Part Two: Parallel Connected Energy Storage Device for Controlled Electric 
Drives 

In the second part of the dissertation, the ultra-capacitor as an energy storage device 
for advanced power conversion application is discussed. Then, the concept of parallel-
connected energy storage device for controlled electric drives is presented and discussed. The 
presented solution solves the first two technical issues mentioned in the introduction; 1) 
saving of the drive braking energy and 2) Extension of the drive ride-through time. 

The ultra-capacitor as an energy storage device is discussed in chapter  2. The basic 
operating principle of the ultra-capacitors is described. As an electric device, the ultra-
capacitor can be modeled for two purposes; analysis of the electric circuit dynamic behavior 
(analysis and synthesis of the control) and thermal behavior of the ultra-capacitor. Those two 
modeling aspects are discussed in the second part of chapter 2. Finally, the ultra-capacitor 
losses versus frequency of the excitation current are discussed and losses model is proposed. 

In chapter  3, a controlled regenerative electric drive using the ultra-capacitor as energy 
storage device is discussed. The basic operating modes are described. Then, the ultra-
capacitor design and selection guidelines are given. The conversion losses and efficiency 
versus size of the ultra-capacitor are discussed. The system cost versus the conversion 
efficiency is also briefly discussed. 

Chapter  4 presents a three-level dc-dc converter that is employed as a link between the 
variable speed drive and the ultra-capacitor. The converter operating principle is discussed 
and advantages of such a topology are clearly identified. Design guidelines are given. Finally, 
a design example is presented at the end of the chapter. 

Modelling and control aspects are discussed in chapter  5. Firstly, some modelling 
technique theory is presented. Thereafter a non-linear and linearzed model of the dc-dc 
converter is developed. The dc bus circuit model is discussed too. Finally, a non-linear and 
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small signal linear model of the entire conversion system is developed. The model is verified 
by Matlab/Simulink simulations. In the second party of chapter 5, a new control scheme is 
presented and discussed. Control of the ultra-capacitor current and the voltage balancing error 
is presented. The presented control is experimentally validated. The results are discussed. 
Then, control of the ultra-capacitor voltage and the dc bus voltage is presented and analysed. 
The controllers’ synthesis procedure is given in details. The designed control system is 
validated by simulations and set of experiments. 

In chapter  6, the solution presented is compared with state of the art solutions. At first, 
concept of the ultra-capacitor based regenerative electric drive is compared to back-to-back 
and matrix converters. Then, the three-level dc-dc converter is compared with state of the art 
topologies. Three parameters are compared: 1) properties of the active switches (IGBTs and 
diodes), 2) properties of the passive components (the output filter inductor and input filter 
capacitor) and 3) the conversion losses. Control aspects are also discussed and compared. 

1.4.3. Part Three: Three-terminal Power Factor Correction and Voltage Control 
Device 

In the third part, the three-terminal power factor and the dc bus voltage control device 
is presented is discussed. The presented solution solves the following three technical issues: 
1) the mains current harmonics, 2) the dc bus voltage control and 3) single-phase supply. 

Background and state of the art of active rectifier topologies is given in chapter  7. A 
novel half-dc-bus-voltage rated boost rectifier is briefly presented. 

The new half-dc-bus-voltage rated boost rectifier is presented in chapter  8. Structure 
of the topology is analysed in detail. A design example is given and the new topology is 
experimentally validated. The results are discussed. 

Modelling and control aspects of the new topology are discussed in chapter  9. 
Nonlinear and small signal models are developed. Those models are verified by 
Matlab/Simulink simulations. The control scheme is given and the controllers’ synthesis 
procedure discussed. 

Single phase operation of the presented boost rectifier is analysed in chapter  10. 
Critical design points are discussed. 

Chapter  11 is gives a comparison of the presented boost rectifier versus state of the art 
solutions. 

1.4.4. Part Four: Three-terminal Energy Storage and PFC Device for Controlled 
Electric Drives 

In the fourth part, a three-terminal energy storage and PFC device for controlled 
electric drives is presented and discussed. The presented solution intents to solve all six 
technical issues mentioned in the introduction: 1) Saving and recovery of the drive braking 
energy, 2) Extension of the drive ride-through time, 3) The mains current harmonics, 4) The 
dc bus voltage control, 5) Single-phase supply and 6) The mains peak power shaving 
function. 

In chapter  12, the concept of the three-terminal energy storage and PFC device for 
controlled electric drives is discussed and necessary theoretical analysis is given. Some 
aspects of the system design are given. 
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Modelling aspects and control scheme are discussed in chapter  13. The entire power 
conversion system consisting of the input boost rectifier, dc link, the ultra-capacitor interface 
dc-dc converter and the PWM inverter is modelled. Then, a new control scheme is proposed. 
The control scheme is validated by Matlab/Simulink simulation and set of experiments 
performed on a laboratory industrial prototype. The results are presented and discussed in 
chapter  14. 

1.4.5. Part Five: Concluding Remarks and Conclusions 

The dissertation work and contribution are discussed in chapter  15. Final concluding 
remarks and perspectives are given in chapter  16. 
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PART TWO:  PARALLEL CONNECTED 

ENERGY STORAGE DEVICE FOR 
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2. AN ULTRA -CAPACITOR AS ENERGY STORAGE DEVICE FOR 
POWER CONVERSION APPLICATIONS  

2.1. The Ultra-Capacitors 

An electric capacitor is a passive dynamic one-terminal electric device. In this context, 
dynamic means the device terminal voltage to current ratio is not a constant and linear. The 
voltage and current are linked via a differential equation which is in the general case a 
nonlinear equation. As that, the electric capacitor has capability to store energy as electric 
charge, more precisely as electric field between the capacitor plates. There are three different 
types of capacitors, namely electrostatic, electrolytic and electrochemical capacitors. In this 
dissertation, the electrochemical capacitors, so-called the ultra-capacitors are considered only. 

Ultra-capacitors are different from the other type of capacitors mainly because their 
specific capacitance, [F/dm3] and energy density, [kJ/dm3] are several orders of magnitudes 
larger than that of electrolytic capacitors. In comparison to electrochemical batteries, the 
energy density is lower while the power density is larger than that of conventional batteries. 
Cycling capability is also significantely better compared to batteries. TABLE  2-1 compares 
the most important properties of the ultra-capacitor versus batteries and other type of 
capacitors. 

TABLE  2-1: Properties of the existing energy storage devices. 

  Capacitors Ultra-capacitors Electro-chemical batteries 

Energy density [Wh/kg] ~0.1 1-6 (*) ~100 

Peak power density [kW/kg] 104 2-20 0.1-0.5 

Number of cycle 1010 106 ~103 

Life time [years] ~10 ~15 ~5 

* Based on technological trends, the energy density will in near future be increased by 
a factor of 10 or more. 

2.1.1. Short History of the Ultra-capacitors 

The double-layer capacitor effect was discovered and described by Helmholtz in 1879 
 [69]- [73]. Almost a century after that, a first ultra-capacitor was patented by Standard Oil 
Company in 1966. A decade after NEC developed and commercialized this device in 1978 
 [69]- [73]. The first high power ultra-capacitor was developed for military applications by the 
Pinnacle Research Institute in 1982  [69]- [73]. Ten years after, in 1992, the Maxwell 
Laboratory had started development of DoE ultra-capacitors for hybrid electric vehicles. 
Today, the ultra-capacitors are commercially available from a number of manufacturers  [74]. 

Today, the ultra-capacitors are composed of two electrodes separated by a porous 
membrane, the so-called a separator. The separator and the electrodes are impregnated by a 
solvent electrolyte. The electrodes are made of porous material such as activated carbon or 
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carbon nano-tubes  [69]- [73]. Typical specific surface area of the electrode is about 2000m2/g. 
Such a large surface area and very thin layer of the charges, in order of nm gives specific 
capacitance of up to 250F/g  [69]- [73]. Rated voltage of the ultra-capacitor cell is determined 
by the decomposition voltage of the electrolyte. Typical cell voltage is 1 to 2.8V, depending 
on the electrolyte technology  [69]- [73]. To obtain higher working voltage, which is 
determined by the application, a number of cells must be series-connected into one capacitor 
module. 

Ultra-capacitors as energy storage devices have found very wide application in power 
conversion due to their advantages over the conventional capacitors and electro-chemical 
batteries; high energy and power density, high efficiency, high cycling capability and long 
life. 

2.1.2. Overview of Different Technologies 

Fig.  2.1 shows taxonomy of the existing types of electrochemical capacitors. Whole 
family of the ultra-capacitors can be divided into two groups: electric double layer capacitors 
(EDLC) and pseudo-capacitors. A combination between the EDLC and pseudo-capacitors is 
group of hybrid capacitors. The EDLC group consists of three-subgroups; activated carbon, 
carbon nano-tubes and carbon aero gels. In this dissertation, application of activated carbon 
EDLC is discussed. 

 

Fig.  2.1 Taxonomy of the ultra-capacitors. 

 

2.1.3. Electric Double Layer Capacitors -EDLC 

2.1.3.1. The Ultra-capacitor Structure 

In order to increase the capacitance of anultra-capacitor, it is necessary to maximize 
contact surface are. To achieve this without increaseing in the capacitor volume, one must use 
a special material for the electrode. This material must have a porous structure and 
consequently a very high specific surface. The most frequently used material is activated 
carbon or carbon nano-tubes. In both cases, the specific surface may be as high as 1000m2/g 
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to 3000m2/g. The simplified structure of super-capacitor cell is depicted in Fig.  2.2. The 
elementary capacitor cell consists of positive and negative current collectors, positive and 
negative porous electrodes made of activated carbon which are attached on the current 
collectors, and a separator between the porous electrodes. The separator is material 
transparent to ions but an insulator for direct contact between the porous electrodes. 

 

 

Fig.  2.2 Construction of an electrochemical double layer capacitor with porous electrodes (activated 
carbon). 

 

Since the first development of double layer capacitors, there have been several 
iterations and models of the basic structure. 

The very first work on double layer capacitors was carried out by Helmholtz in 1853. 
He supposed that the layer in an electrolyte is a single layer of the electrolyte molecules 
attached to the solid electrode, Fig.  2.3 (a). 

The specific capacitance of such a structure is 

d
c

ε=' , ( 2.1) 

where ε is the solvent electrolyte permittivity and d is thickness of the layer, which 
equals to the molecule diameter. 

The specific capacitance is overestimated compared to the experimentally obtained 
value. For aqueous electrolyte with εR=78 and d=0.2nm, equations ( 2.1) gives 340µF/cm2, 
what is much greater than the measured value 10µF/cm2 to 30µF/cm2. Also, the model does 
not take in account that the capacitance is voltage dependent. 

In order to describe voltage dependence of the capacitance, Gouy introduced a theory 
of random thermal motion in 1910, and considered a space distribution of the charge in the 
electrolyte in proximity of theboundary between the electrolyte and electrode, Fig.  2.3 (b). A 
few years later, Chapman defined the charge distribution in the electrolyte as a function of 
linear distance and properties of the electrolyte. The specific capacitance is estimated as 
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where q is elementary charge, n0 is the concentration of anions and cations, z is the 
valence electrolyte ions, ε is the electrolyte permittivity, k is Bolzman’ constant, and T is the 
temperature. 

In the model, the charge is considered as point charge (charge density is Dirac 
function of space). Thus, the specific capacitance is over-evaluated. 

 

  
 

Fig.  2.3 a) Helmholtz’s model of a DLEC (1857). b) Gouy and Chapman’s model (1910 and 1913). C) 
Stern’s model (1924). 

 

In 1924 Stern proposed new model which improved Gouy and Chapmen’s models. He 
introduced the real dimension of solvent molecules and then divided the space charge into two 
layers; compact layer and diffused layer, Fig.  2.3 (c). 

Total specific capacitance is estimated as 
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where c’C is the compact layer capacitance, and c’D is the diffused layer capacitance 
defined as 
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2.2. The Ultra-capacitors Macro (Electric Circuit) Model  

In this section, the ultra-capacitor macro model is analysed and discussed. The ultra-
capacitor macro model is used for the conversion system control analysis and design, as well 
as evaluation of the ultra-capacitor losses and temperature in different operating modes. 

2.2.1. Full Theoretical Model 

The traditional model consists of an ideal linear capacitor and equivalent series 
resistance (ESR). This simple model cannot be used in a super-capacitor model because two 
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phenomena: (1) the capacitance is voltage dependent, and (2) the time/space redistribution of 
the charge due to porosity of the activated carbon electrodes. The porous electrode structure 
behaves as a nonlinear transmission line,  [75]- [77]. It is known from theory of electric circuit 
that an electrically short transmission line can be approximated with Nth order RLCG ladder 
network. At low frequency, below 100 Hz, distributed serial inductance L can be neglected 
 [77]. Distributed conductance G can be neglected too, except if long term steady state analysis 
is needed. Thus, an approximated model of an ultra-capacitor having porous electrodes is 
serial connection of two RC leader networks of Nth order, the separator resistance RSP and the 
current collector resistances RCP and RCN. A schematic diagram of the approximated model is 
given in Fig.  2.4. 

 

Fig.  2.4 An approximated model of the electrochemical double layer capacitor taking in the account 
porosity of the electrodes. 

 

The resistors RP1…..RP..N and RN1…..RN..N are the resistances of positive and negative 
porous electrode respectively. For more accurate modeling of the ultra-capacitor, the fact that 
these resistances are nonlinear and depend on the capacitor voltage must be taken into 
account. Nonlinear capacitances CP1…..CP..N and CN1…..CN..N  are the positive and negative 
porous electrode capacitances. 

The voltage dependent capacitances CP1…..CP..N and CN1…..CN..N  can be approximated 
by first order functions of the voltage across each cell, 
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The coefficients KCN1….KCP..N models the voltage dependency of the capacitance due 
to the diffused layer. Voltages uCN1….uCP..N are the voltage across each elementary capacitor 
cell. 

Considering that the positive and negative electrodes are symmetric, the circuit in Fig. 
 2.4 can be reduced to a simple Nth order RC ladder network, depicted in Fig.  2.5. 

 

 

Fig.  2.5 Nth order equivalent model of an electrochemical double layer capacitor. 

 

Resistances of the equivalent circuit in Fig.  2.5 are 
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For simplicity of notation, we will use electrical elastance as inverse variable of 
capacitance to define the capacitances of the equivalent model, 
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2.2.1.1. Ultra-capacitor Model in Frequency Domain 

The circuit of Fig.  2.5 is a nonlinear circuit because the capacitances depend on the 
voltage. To develop a model in the frequency domain we have to linearize the nonlinear 
circuit. Expanding ( 2.5) and ( 2.6) into a Taylor series, taking just the zero order members and 
substituting them into ( 2.8) yields 
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Now, having a linearizerd mode of the super capacitor ladder network and using the N 
Extra Element theorem  [76] one can develop the ultra-capacitor input impedance ZC0ω). Since 
the capacitances are voltage dependent, the developed impedance is a small signal impedance, 
which is valid just in proximity of the capacitor voltage operating point UC0. 
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As one can see from equation ( 2.10), the super-capacitor equivalent series resistance 
RC0 and equivalent capacitance CC are frequency dependent properties. The resistance and 
capacitance are defined for zero frequency (DC operational mode) and high frequency as 
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To illustrate these properties, a 2500F/2.5V ultra-capacitor cell has been modelled as a 
5th order RC ladder network . The super-capacitor parameters are given in TABLE  2-2. 

TABLE  2-2: Simulated parameters of a 2500F/2.5V ultra-capacitor at UC0=1V. The capacitance C in 
[F] and the resistance R in [Ω]. 

R1 C1 R2 C2 R3 C3 R4 C4 R5 C5 

0,324E-04 23,2 0,0324E-06 211 55,4E-06 235 88,4E-06 699 0,389E-04 1172 

 

The magnitude and phase of the capacitor input impedance are plotted in Fig.  2.6 (a) 
and Fig.  2.6 (b). From this plot one can see that the ultra-capacitor behaves as a pure capacitor 
in the very low frequency range, up to 20mHz. In the high frequency range, let say above 
10Hz, the ultra-capacitor bank behaves as a pure resistor. In the mid-frequency range, it 
behaves as a RC element. 

The equivalent serial resistance and capacitance versus frequency were calculated and 
plotted in Fig.  2.6 (c) and Fig.  2.6 (d). Both resistance and capacitance decrease with 
frequency. The resistance is high and constant at low frequency up to 200mHz, and then 
decreases to a minimum value at frequencies above 10Hz. Ratio max/min resistance is 
approximately 1.6. The equivalent capacitance varies in the same frequency range as the 
resistance. The ratio max/min capacitance is approximately 10. In the following section we 
will discuss these properties in more detail. 

2.2.1.2. The ESR versus Frequency 

As already mentioned, the ultra-capacitor is not an ideal loss-free device. Whenever 
current flows through the capacitor, regardless on the conversion process and power flow 
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direction, an amount of energy is wasted as the Jule’s energy. This is due to the resistance of 
the ultra-capacitor collectors, porous electrodes, separator and electrolyte. The quantity of 
energy wasted generally depends on the resistance and current. In power applications, the 
capacitor current is a varying quantity, depending on charge/discharge cycle. In addition, the 
capacitor current containes a high frequency component due to switch mode operation of the 
power conversion unit which charges/discharges the ultra-capacitor. The capacitor current 
spectra falls in range from, let say mHz up to kHz or tens of kHz. As the equivalent resistance 
is frequency dependent, the contribution of each spectral component on the losses is different. 
This is discussed in section  2.4. 

The input impedance amplitude versus frequency
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The input impedance phase versus frequency
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(b) 

ESR versus frequency
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Capacitance versus frequency
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(d) 

Fig.  2.6 The ultra-capacitor input impedance versus frequency. a) Amplitude, b) phase, c) the equivalent 
series resistance and d) the capacitance. The ultra-capacitor is 2500F/2.5V cell. 

 

2.2.1.3. The Capacitance versus Frequency 

The capacitance varies more significantly with frequency than the resistance. The 
factor CMAX/CMIN could be up to 10 or more. What are typical implications of this in real 
power application application? The capacitance variation with frequency means that one 
needs certain time to store the required energy in the capacitor. If one charges the capacitor 
with high power, close to maximum, the capacitor voltage will increase fast, and reach the 
maximum voltage before the capacitor is fully charged. Thus, the full energy capability of the 
capacitor is not used. In contrast to this, if one charges the capacitor with low power, the 
voltage increases slowly and the charge is distributed over the entire capacitor. Once the 
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voltage reaches maximum voltage, the capacitor is fully charged, and the energy capability is 
maximized. From this short discussion one can conclude that the total capacitance is available 
only at very low frequency, and consequently light load. 

Fig.  2.7 (a) shows the dynamic specific energy versus pulse width. The ultra-capacitor 
voltage charge/discharge variation is 10% of the rated voltage. Notice that the specific energy 
(energy capability) decreases as the pulse width decreases. Variation of the energy capability 
is due to the frequency dependent capacitance which is caused by the relaxation phenomenon 
in the porous electrodes  [69],  [76]. There is another factor that limits the ultra-capacitor 
energy capability. That is voltage drop of the electrode and separator resistance, and porous 
electrode resistance close to the input. Fig.  2.7 (b) illustrates two different cases. The red plot 
illustrates the charging process with relatively high charging current, while the blue 
waveforms illustrate charging process with current, 10% of the previous. This issue could be 
solved by the control of charge/discharge process, wherein the real capacitor voltage is 
estimated from the capacitor model and measured input voltage and current. 

 

 

(a) 

 

(b) 

Fig.  2.7 Illustration of the effect of the ultra-capacitor frequency dependent capacitance on energy 
storage capability. a) Effective specific energy versus charging/discharging pulse width, and b) 
time diagrams for two different cases, short pulse and long pulse. 

 

The charge criterion is the voltage across the capacitor terminals, which should not be 
higher than UC0max. The difference between the steady state voltages UC01, UC02 represents the 
difference in the stored energy in the ultra-capacitor for different charging speeds. 
Considering a linear capacitor with frequency dependent capacitance, one can estimate the 
difference in energy stored as ∆E. 
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where ∆UC0 strongly depends on the time profile of the charging current. 

2.2.2. Simplified Model 

For simplicity of the following analysis, a first order nonlinear model of an ultra-
capacitor is used. The model takes in account the linear (voltage independent) internal 
resistance RC0 and total capacitance as a function of the capacitor voltage. Effects of the 
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transmission line are neglected. The internal equivalent resistance RC0 is modelled as a 
constant and frequency independent resistance. Fig.  2.8 depicts a simplified model of ultra-
capacitor used in the analysis. The equivalent capacitor consists of a linear capacitor C0 and 
parallel connected voltage dependent capacitor C(uC). 

 

Fig.  2.8 Simple RC model of the ultra-capacitor. 

 

The total capacitance of an ultra-capacitor is voltage controlled capacitance defined as 

( ) CCC ukCuC ⋅+= 0 , ( 2.14) 

where C0 is initial linear capacitance which represents electrostatic capacitance of the 
capacitor, and kC is a coefficient which represent the effects of the diffused layer of the super-
capacitor. In case of a hybrid super-capacitor, the coefficient models the Faradic effect and 
electrochemical processes on one side of the capacitor  [69]. 

The capacitor current defined is 
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The capacitance denoted as CI(uC) is a virtual capacitance, the so-called current 
capacitance. Substituting ( 2.14) in ( 2.15) yields 

 

( ) CCCI ukCuC ⋅+= 20  and ( )
dt

du
ukCi C

CCC ⋅+= 20 . ( 2.16) 

2.2.3. The Ultra-capacitor Energy Capacity 

Energy stored in the ultra-capacitor charged to a voltage uC is  
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The capacitance denoted as CE(uC) is the so-called energetic capacitance. 

The energy available from the ultra-capacitor discharged from the initial voltage 
UC0max to the final voltage UC0min is 
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This equation will be used to compute the energy that can be stored and restored from 
the ultra-capacitor in real applications. For example, it could be braking energy or ride-
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through energy in variable speed drive systems. This will be discussed in more detail in 
chapter 3. 

2.3. The Ultra-capacitor Charge/Discharge Methods 

Theoretically, four different power conversion modes are possible; constant voltage, 
constant resistance, constant current and constant power conversion mode. The first one is not 
applicable because the ultra-capacitor is some kind of voltage source with an internal 
resistance. The most important characteristics of the other three conversion methods are 
briefly discussed in the following section. 

2.3.1. Constant Resistive Load 

Constant resistive load is the simplest charge/discharge method. The capacitor is 
charged from voltage source VBUS via a charge resistor R0 and discharged in the load resistor 
R0. However, because low conversion efficiency this method is rarely used in power 
applications, and therefore will not be discussed. 

 

(a) 

 

(b) 

Fig.  2.9 The ultra-capacitor resistive power conversion. a) Charging, and b) discharging. 

 

2.3.2. Constant Current 

The ultra-capacitor can be charged/discharged with a constant current load/source. 
Constant current load/source is often found in regulated power converters, such as regulated 
chargers and constant torque driven electric motors. 

 

Fig.  2.10 Charging/discharging the ultra-capacitor with a constant current source. 

 

2.3.2.1. Discharging 

Let the ultra-capacitor initial voltage be UC0 and the ultra-capacitor, and assume the 
ultra-capacitor is being discharged by constant current I0. The capacitor internal voltage 
declines as 
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where the discharge time is 
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2.3.2.2. Maximum Discharge Power 

Maximum power delivered to the load is limited and defined by the capacitor internal 
resistance RC0, 
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The current I0 is limited and depends on the capacitor voltage uC and the internal 
resistance RC0. 
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If the current exceeds the limit, the capacitor terminal voltage uC0 becomes negative 
and the load changes in the nature and turns to be a source. However, the capacitor is still 
being discharged. All energy recovered from the capacitor and energy delivered from the 
current source is dissipated in the capacitors internal series resistance RC0. 

2.3.3. Charging 

The ultra-capacitor voltage during the charging process is 
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The charge time is 
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where U0MAX is the capacitor terminal voltage. 

2.3.3.1. Maximum Charging Power 

In charging mode the current I0 is negative. Maximum current that can be injected into 
the ultra-capacitor is limitated by the capacitor terminal voltage U0MAX, 
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From ( 2.25) one can define maximum charging power as a function of the capacitor 
resistance and the capacitor voltage, 
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2.3.4. Constant Power 

In power conversion applications, most of load and sources behave as constant power, 
either positive or negative. Typical examples of such constant power loads are power 
converters having regulated output voltage, such as pulse width modulated (PWM) variable 
speed drives and dc-dc converters. According to the convention on Fig.  2.11, power of the 
load is defined as 000 CCC iuP −= , where power is positive in sink (load) mode and negative in 
source mode. 

 

Fig.  2.11 Charging/discharging the ultra-capacitor with a constant power source. 

 

2.3.4.1. Discharging 

The circuit in Fig.  2.11 is described by the following differential equation,  
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where the ultra-capacitor is taken as a linear capacitor (kC=0). If the ultra-capacitor is 
properly selected, the power PC0 is much lower than the matched maximum power, 
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uPP =<< , and therefore the ultra-capacitor resistance RC0 can be neglected in the 

analysis. From those two approximations one obtains the ultra-capacitor discharging current 
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where the voltage UC0 is the ultra-capacitor initial voltage. The maximum discharge 
time is 
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2.3.4.2. Maximum Discharge Power 

Just as in the case of current or resistive discharge, the capacitor maximum power is 
limited due to internal series resistance RC0. The maximum power that can be delivered to the 
load having constant power characteristic is 
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Please note that the maximum power is defined by the capacitor voltage and RC0, 
exactly as in the two previous two cases (constant resistance and constant current load). There 
is however an essential difference. If the load is higher than the maximum power at given the 
ultra-capacitor voltage, the system becomes unstable and the voltage collapses. 

2.3.4.3. Charging 

In the charging mode of an ultra-capacitor, the power of the power source PC0 is 
negative according to the notation in Fig.  2.11. Using the same method as we used before, but 
simply applying negative power, we obtain the ultra-capacitor charging current  
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where the initial ultra-capacitor voltage is UCmin. 

2.3.4.4. Maximum Charging Power 

In charging mode the power PC0 is negative. Thus, the maximum power stability 
criteria is not applicable in this case. In other words, the system described by Fig.  2.11 is 
stable in charging mode regardless on the power PC0. In a real application, however, there is 
another limitation that defines maximum power that can be transfered into the ultra-capacitor 
bank. It is the limitation of the power source maximum voltage U0MAX, 
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2.4. Frequency Related Losses 

As mentioned in section  2.2.1, the ultra-capacitor is a non-linear device, with voltage 
and frequency dependent properties. In this section, the effect of the frequency dependent 
resistance on the conversion losses is discussed. 

One can distinguish two different frequency ranges in spectrum of the capacitor 
current. The first one is low frequency, which is related to the capacitor operational mode and 
cycle. The second one is high frequency current due to the nature of the power converter used 
to charge/discharge the ultra-capacitor. Low frequency current is normally aperiodic, while 
high frequency current is periodic, where the basic period is multiple or fraction of the 
switching period TS. 
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2.4.1. How to Calculate Total Losses in Case that the ESR is a Function of 
Frequency? 

The serial equivalent series resistance is the frequency dependent resistance. Based on 
the time to frequency transformations, one can conclude that the resistance is alos time 
dependent. 

( )ω00 CC RR =  ⇒ ( )tRR CC 00 =  ( 2.33) 

Due to the frequency dependent resistance, instantaneous voltage and current are not 
linked by a simple coefficient RC0, 

( ) ( )tiRtu CCESR 00 ⋅≠ . ( 2.34) 

Considering the excitation current iC0 is sinusoidal function ( ) )sin( 000 tIti CC ω= , one can 
write that instantaneous voltage and current are linked by a simple coefficient RC0, where RC0 

is the resistance at a specified frequency, 
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Instantaneous power of the resistor RC0 carrying a current i0 is 

( ) ( ) ( )( ) ( )titiftitutp ESR 000)( ⋅=⋅= , ( 2.36) 

where ( )( )tifu CESR 0=  is the voltage across the equivalent series resistance of the 
capacitor as a function of the current. This nonlinearity is some kind of hidden nonlinearity, 
which exists due to the frequency dependent resistance of the capacitor. 

Average power calculated over a period T is 
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where the period T represents the fundamental period in case of periodic function. If 
the current is non-periodic, T represents the period of observation. 

2.4.2. The Current is Periodic Function 

Consider the current iC0 is periodic function with a period T0, and angular frequency 
ω0. This current can be expanded in a Fourier series: 
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The voltage across equivalent series resistance con also be expanded in a Fourier 
series 
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where ( ) ( )ωω 000 CC RkR =  is the frequency dependent RC0 of the capacitor. Since the 
resistor is quasi-linear ( 2.35), the phase displacement for each harmonic is zero, and kk ϕψ =  
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as a consequence. Inserting ( 2.38) and ( 2.39) into ( 2.36) yields instantaneous power dissipated 
on the resistor RC0, 
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Using the Lagrange identity  [82], 
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where f1 and f2 are regular functions which could be expanded in potential series, 
yields 
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The average power dissipated over a period T is 
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Using orthogonal property of the sin and cos functions, 
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yields an average power 
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Please note from ( 2.45), that the total average power depends strongly on the 
frequency spectrum of the capacitor current. Thus, to estimate total losses one has to take 
account of the real time profile of the capacitor current. 

2.4.2.1. Low Frequency Current 

In the general case, the low frequency current would be either pseudo-periodic or 
periodic, depending on the application. The dominant time constant and fundamental 
frequency depends on the charge/discharge cycle and power/current level. This can be 
expressed as 

( ) ( )CRUPiti CCLFCLFC ,,, 000_0_0 = . ( 2.46) 
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Two application examples are illustrated in Fig.  2.12 and Fig.  2.13. The first one is a 
tooling machine application with intermittent load. The ultra-capacitor is used as an energy 
storage device to filter peak power from the mains supply. Fig.  2.12 (a) shows an 
experimental waveform of the ultra-capacitor current and voltage. The current amplitude 
spectrum is shown in Fig.  2.12 (b). Note that the dominant frequency (first harmonic) is 0.48 
Hz and the higher harmonics fall in the mid-frequency range (see example in Fig.  2.6). Hence, 
the losses have to be computed taking all spectral components of the current and the 
frequency dependent resistance into account, as given in ( 2.45). 

 

(a) 

 

(b) 

Fig.  2.12 Variable speed drive with the ultra-capacitor as energy storage device used to filter the drive 
input peak power. a) Experimental waveform of the ultra-capacitor current iC0 [5A/div] and 
voltage uC0 [100V/div]. b) The current amplitude spectra. 

 

(a) 

 

(b) 

Fig.  2.13 Braking and energy recovery cycle of a variable speed drive with the ultra-capacitor as energy 
storage device. A) Experimental waveform of the ultra-capacitor current iC0 [5A/div] and voltage 
uC0 [100V/div]. b) The current amplitude spectrum. 

Another typical application is a lift or hoisting application with a requirement for 
braking. The waveforms over one entire cycle are shown in Fig.  2.13 (a), while the amplitude 
spectrum is shown in Fig.  2.13 (b). In this example, the current fundamental frequency is 
below the ultra-capacitor mid-frequency range. Therefore the losses can be computed using 
the total RMS current and that the resistance is constant (frequency independent). 
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2.4.2.2. High Frequency Current 

The ultra-capacitor high frequency current is the current ripple caused by the power 
converter used to charge/discharge the ultra-capacitor. The current ripple depends on the 
power converter topology. This will be discussed in more details in chapter  4. For the 
moment, we can assume that the power converter is designed in such a way to have the 
current ripple significantly smaller than the average current (selecting an appropriate topology 
or adding a low pass filter between the converter and the ultra-capacitor). Also, it is assumed 
that fundamental frequency of the current ripple is far above the ultra-capacitor cut-off 
frequency (the capacitance and resistance can be assumed as constant properties). 

2.4.3. The Current is Non-periodic Function 

Let’s consider that the capacitor current is non-periodic function. Typical example is 
variable speed drive with extended ride-through capability. The ultra-capacitor is employed as 
the energy storage to supply the drive system in case of short power interruption. An example 
is illustrated in Fig.  2.14. The waveforms of the ultra-capacitor current and voltage are shown 
in Fig.  2.14 (a). Fig.  2.14 (b) shows the current amplitude spectrum computed within a 
window T=50s. 

 

 

(a) 

 

(b) 

Fig.  2.14 Variable speed drive with emergency supply based on the ultra-capacitor as an energy storage 
device. a) Experimental waveform of the ultra-capacitor current iC0 [5A/div] and voltage uC0 

[100V/div]. b) The current amplitude spectra. 

 

The ultra-capacitor current and voltage drop on the equivalent resistor RC0 could be 
represented by Fourier’s integrals 
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Then, instantaneous power dissipated on the RC0 is 
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From the conditions ( ) ∞<∫
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Please, note that average power ( 2.49) is zero, and as that it has no practical value. 
However, the question is how to evaluate the ultra-capacitor losses? Is it sufficient to compute 
the losses or is some other quantity as important? The quantities are important, namely: 1) the 
energy dissipated on the internal resistor and 2) the module temperature increase. 

2.4.3.1. The Energy Losses 

The energy dissipated on the ultra-capacitor resistance is 
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2.4.3.2. The Ultra-capacitor Temperature Increase 

The power losses can be computed in the frequency domain from ( 2.47) and using 
convolution in the frequency domain. 
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( )υjRC0  is the ultra-capacitor resistance as a function on the frequency ( 2.10), ( )υjI  is 
a spectrum of the ultra-capacitor current and υ is angular frequency. 

The ultra-capacitor temperature rise can be computed as 
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where ( )ωjZ  is the ultra-capacitor thermal impedance. 

2.5. Trends in the Ultra-capacitors Development 

Two key features are relevant for the development of new generation of the ultra-
capacitors: 1) energy density and 2) the internal equivalent series resistance that basically 
determines the power density. Presently, most commercially available ultra-capacitors have 
the energy density around 5Wh/kg and a power density up to 20kW/kg  [70]- [73],  [84]. 
Existing ultra-capacitors energy density is approximately 5% of the energy density of the 
broadly used lithium-ion batteries. For most of applications this is not sufficient. There is 
need for energy densities of 20Wh/kg or more. 
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Currently, there are four different mainstreams in the ultra-capacitors development: 1) 
Carbon nano-tube technology, 2) Nano-gate technology, 3) so-called EeStore technology, and 
4) Mega farad super-capacitor technology. A summary of all four ongoing ultra-capacitor 
technologies is given in TABLE  2-3. 

A team at Massachusetts Institute of Technology (MIT) led by Professor Joel 
Schindall has started development of new ultra-capacitor based on carbon nano-tube 
technology  [86],  [87]. An ultra-capacitor based on such an approach could have energy 
density as high as 25% or even 50% of the energy density of the existing chemical batteries. 

Okamura Laboratory and Power Systems have announced first significant 
development results of new generation of ultra-capacitor based on very promising Nano-gate 
technology in September 2007  [88]. The expected energy density is 50 to 80Wh/kg, which is 
the same order as the existing electrochemical batteries. 

The third, quiet different ultra-capacitor technology is so-called EeStore technology, 
which promises to increase the energy density up to 280Wh/kg, and the operating voltage up 
to 3000V,  [89]. These ultra-capacitors are based on high voltage multilayer ceramic 
technology, and therefore the internal series resistance is expected to be very low compared to 
the existing technologies. 

A recently announced technology is the double layer capacitor with a thin layer of 
high permittivity material on top of the activated carbon electrode  [90]. Expected energy 
density is two order of magnitude greater than existing technology, ~500[Wh/kg]. 

 

TABLE  2-3: Existing ultra-capacitor technology versus technology under development. 

 The existing 
technology 

Nano-tube Nano-gate EesE Mega Farad 
super-capacitor 

Energy density 
[Wh/kg] 

~5 20-40 50-80 ~280 ~500 

Operating 
voltage [V] 

<2.8 ~3 ~3.9 3000 <2.8 

Internal 
resistance [mΩ] 

0.66+1000/C* As the existing As the existing Lower than the 
existing 

As the existing 

* This is an approximation where C is the cell capacitance [F]. 

The ultra-capacitor cost is driven by the market, mainly the automotive industry. As 
the application fields of ultra-capacitors increase so the cost of ultra-capacitors decrease. The 
cost prediction for 2010 is 1.28US$ per kJ of the stored energy  [84],  [85]. 

2.6. Short Conclusion 

In this chapter, the ultra-capacitor as an energy storage device dedicated for power 
conversion applications has been discussed. In comparison to state of the art electrochemical 
batteries, the ultra-capacitors have higher power density, higher efficiency, longer lifetime 
and greater cycling capability. In comparison to the state of the art electrolytic capacitors, the 
ultra-capacitors have higher energy density. All these advantages make the ultra-capacitors 
good candidate for many power conversion applications with a need for short term, 0.1 to 15s, 
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energy storage. The applications could be industrial applications, power 
transmission/distribution network, building and IT centre. 

The ultra-capacitor macro model has been discussed. Depending on the application 
need, a simplified first order or higher order RC model is proposed. The model can be used to 
estimate the ultra-capacitor losses and temperature. The first order model is sufficient if the 
ultra-capacitor current frequency is well below or above the transition frequency. Otherwise, a 
second or even third order model is necessary. The first order model is sufficiently accurate 
for the interface power converter controllers’ analysis and synthesis. 

State of the art ultra-capacitor technology is activated carbon double layer capacitor 
 [70]- [73],  [84]. Among this, there are four different technologies under development: 1) Nano 
tube capacitor  [86], 2) Nano-gate capacitor  [88], 3) EeStore high voltage multilayer capacitor 
 [89], and 4) Mega Farad ultra-capacitor  [90]. All technologies under development promise 
order of magnitude higher energy density in comparison to the state of the art technology. 
Some of them, for example technology 3) and 4), promise energy density even greater than 
state of the art electrochemical batteries. 
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3. ULTRA -CAPACITOR BASED REGENERATIVE ELECTRIC DRIVES 

3.1. Background 

In general introduction of the dissertation, application of controlled electric drives and 
some associated technical issues have been discussed. For the sake of clarity and simplicity, a 
part of that discussion has been repeated in this chapter. 

Modern controlled electric drives are exclusively based on three phase motors, either 
the induction or permanent magnet (PM) synchronous motors. The motor is powered from a 
pulse width modulated (PWM) converter, and the converter is supplied from the industrial or 
distributive mains 230 V to 690V and 50 to 60Hz. Several technical issues in application of 
such drives are still a big challenge. Two of these issues, namely 1) recovery of the braking 
energy and 2) the drive ride-through capability, are discussed and a solution is proposed in 
this chapter. 

Most of drive applications, such as lifts, cranes, tooling machines, and so on, are 
characterized by low balance between average and peak power. Moreover, such applications 
have a demand for braking at rated power. In ordinary variable speed drives, the mechanical 
energy of rotating mass of the motor load and the motor shaft is usually dissipated in a brake 
resistor. The energy losses in such applications can be 20 to 50% of the consumed energy. 
Nowadays, having in mind energy crisis, this has become an issue that needs a very urgent 
solution  [6]. 

Modern variable speed drives are sensitive to the mains supply disturbances. The most 
frequent disturbance is voltage dip/sag  [10]. Power interruptions cause drop in the dc bus 
voltage below the limit, and then the entire drive system trips. The system interruptions are 
very costly and unacceptable when the drive is applied in critical process industry, oil pump 
systems or glass industry. Such kind of industry have reported losses ranging from 10k$ to 
1M$ per a disrupting event  [10]. 

State of the art solutions can be split into two different groups: 1) back to back PWM 
rectifiers and 2) direct (matrix) converters  [16]- [18]. These regenerative drives draw the 
energy from the mains when operates in motoring mode, and pump the energy in the mains 
while the drive is in breaking mode. The main disadvantage of such solutions is the fact that 
functionality of the drive is strongly linked to the mains. In other words, any power 
interruption of the mains is reflected to the drive, and the drive is disabled whenever the 
mains is interrupted for longer than one the mains cycle (20ms). Moreover, such kind of 
drives has a high power demand during acceleration and deceleration. This modulated power 
produces additional disturbances and losses in weak supply mains. 

A basic idea of the regenerative controlled electric drive system using an ultra-
capacitor as an energy storage device is illustrated in Fig.  3.1. The drive system consists of an 
ordinary variable speed drive converter (the input diode rectifier, voltage dc link and output 
inverter) and a parallel connected energy storage device. The rectifier is connected to the 
three-phase distribution network, while the inverter feeds a three-phase motor (the induction 
or synchronies PM motor). The energy storage device is composed of an ultra-capacitor CC0 
and a bi-directional dc-dc power converter. The energy storage could be another type of 
storage device, such as flywheel or battery. However, the battery is not an appropriate 
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solution because limited power density, while the flywheel is a system that is more complex 
in comparison to the ultra-capacitor system. 

For generality of the analysis, in the first part of this section the dc-dc power converter 
will be considered as a controllable bi-directional dc-dc power converter with one input (the 
dc bus voltage vBUS) and one output (the ultra-capacitor voltage uC0). The dc-dc converter 
could be, for example, non-isolated two-level or three-level converter, multiphase interleaved 
converter or an isolated dc-dc converter. The dc-dc converter is controlled by the control 
variable m that could be duty cycle, phase shift or switching frequency, depending on the 
converter topology. More details of the dc-dc power converter will be given in chapter  4. 

 

 

Fig.  3.1 Concept of regenerative controlled electric drive based on an auxiliary energy storage device and an 
interface dc-dc converter. 

3.2. Operational Modes 

The drive system whose block circuit diagram is depicted in Fig.  3.1 may operate in 
six different modes. The modes are illustrated in Fig.  3.2 and Fig.  3.3. The drive system is 
represented by the rectifier, inverter, dc bus capacitor CBUS, dc-dc converter and the ultra-
capacitor. The dc bus inductor LBUS is not relevant for this analysis and therefore it is just 
indicated in the circuit as an inductance between the rectifier and inverter. Fig.  3.4 illustrates 
relevant waveforms for different operating conditions. The signification of voltages VBUSmax, 
VBUSmin, UC0max, UC0inM and UC0min that appear in Fig.  3.4 will be discussed shortly after. 

MM ) Motoring from the mains is illustrated in Fig.  3.2 (a). The drive operates in 
motoring mode, being powered from the mains. The dc bus voltage vBUS is slightly lower than 
the input phase to phase peak voltage. The dc-dc converter controls the ultra-capacitor voltage 
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to UC0inM, in order to prevent energy flow between the ultra-capacitor and the drive dc bus. In 
this mode, the rectifier voltage vREC is determined by the mains voltage and conduction state 
of the rectifier diodes, where the diodes state is determined by dc bus filter capacitor, inductor 
and load  [48]. 

B) Braking and energy storing mode is illustrated in Fig.  3.2 (b). The drive operates in 
braking mode. As the dc bus load is negative (the motor turns to be a generator), the dc bus 
capacitor is charged and therefore the dc bus voltage vBUS increases. Once it reaches VBUSmax, 
the dc-dc converter starts to regulate the ultra-capacitor current iC0 in order to regulate the dc 
bus voltage to VBUSmax. The ultra-capacitor current is positive and the ultra-capacitor voltage 
increases. The braking energy is stored into the ultra-capacitor. Since the dc-dc converter 
controller is designed to maintain the dc bus voltage VBUSmax greater than the input phase to 
phase peak voltage, the drive rectifier is blocked. Thus the drive input current is zero and the 
rectifier voltage vREC is equal to the dc bus voltage vBUS. The ultra-capacitor is sized to store 
certain energy during a braking phase. Thus, at the end of a braking phase the ultra-capacitor 
voltage has to be lower than the maximum rated voltage UC0max. 

 

 

(a) 
 

(b) 

Fig.  3.2 The power flow for different operating modes a) the mains motoring mode (MM ), b) braking 
mode (B). 

 

STB) Standby mode: There is not energy flow between the drive, mains and ultra-
capacitor. The ultra-capacitor voltage is constant, taking any value between UC0max and 
UC0inM. The control system is designed in such a way to maintain the dc bus voltage to VBUSmax 
whenever the ultra-capacitor voltage is greater than UC0inM. Therefore, if this is case in stand-
by mode, the dc bus voltage will stay constant at VBUSmax. 

MC0) Motoring and energy recovery mode is illustrated in Fig.  3.3 (a). The drive 
operates in motoring mode, being powered from the ultra-capacitor. The ultra-capacitor 
voltage is greater than UC0inM. The dc bus voltage controller acts on the dc-dc converter, in 
order to maintain the dc bus voltage constant (VBUSmax). The ultra-capacitor is discharged and 
its voltage decreases towards the intermediate level UC0inM. The energy is restored from the 
ultra-capacitor. Once the ultra-capacitor has been discharged to the intermediate level UC0inM, 
the dc bus voltage falls to the nominal voltage and the drive rectifier diodes start to conduct. 
The drive is again powered from the mains. 
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RT) Ride-through mode is illustrated in Fig.  3.3 (b). The mains supply is interrupted 
and the dc bus voltage starts to decrease quickly. Once it has reached the minimum voltage 
VBUSmin, the dc-dc converter starts to discharge the ultra-capacitor and maintain the dc bus 
voltage to VBUSmin. The drive is powered from the ultra-capacitor. The ultra-capacitor is 
discharged deeper below the intermediate level UC0inM towards the minimum level UC0min. 

MM-CH ) The ultra-capacitor charging mode is illustrated in Fig.  3.3 (b). The mains 
supply is recovered and then the ultra-capacitor is recharged to the intermediate level UC0inM. 

 

 

(a) 

 

(b) 

Fig.  3.3 The power flow for different operating modes: a) energy recovery mode (MC 0) and ride-through 
mode (RT), b) the ultra-capacitor charging mode (MM-CH ). 

 

3.2.1. Definition of the Reference Voltages 

Let us now explain the signification of the reference voltages VBUSmax, VBUSmin, UC0max, 
UC0inM and UC0min. Fig.  3.5 (a) illustrates the signification of the reference voltages VBUSmax 
and VBUSmin. OBF signifies Over-Braking Fault, while USF signifies the Under Supply Fault. 
When the system operates in the mains motoring mode, the dc bus voltage takes a value 
between minimum and maximum input voltage. In order to avoid unnecessary charge and 
discharge of the ultra-capacitor, the dc bus voltage references VBUSmin and VBUSmax must stay 
outside of the normal operation range, as shown in Fig.  3.5 (a). On other side, to prevent the 
system fault, either OBF or USF, the dc bus voltage references must not be in the forbidden 
regions. Therefore, the reference VBUSmin is located within an interval [USF, Min Input 
Voltage] while the reference VBUSmax is located within an interval [Max Input Voltage, OBF]. 

The ultra-capacitor voltage takes value within an interval [UC0max, UC0min ], as shown in 
Fig.  3.5 (b). The maximum voltage UC0max is determined by the ultra-capacitor rated voltage. 
This limit must not be exceeded in any case; otherwise the ultra-capacitor will be damaged or 
even totally destroyed. The minimum voltage UC0min is determined by the current capability of 
the power converter and the ultra-capacitor; the lower voltage the higher current capability 
and vice versa. The intermediate voltage UC0inM can take any value between the maximum and 
minimum, depending on the design criteria (ratio of the braking energy capability to the ride-
through energy availability). 
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Fig.  3.4 The waveforms for different operating modes: the mains motoring mode (MM ), braking mode 
(B), stand-by mode (STB), energy recovery mode (MC 0), ride-through mode (RT), the ultra-
capacitor charging mode (MM-CH ) and the mains peak power filtering mode (MPFM ). 

 

 

(a) 

 

(b) 

Fig.  3.5 Definition of the reference voltages, (a) VBUSmax, VBUSmin, and, b) UC0min, UC0inM and UC0max. 

 

3.2.2. Some Experimental Waveforms 

Block diagram of an experimental set-up is depicted in Fig.  3.6. A general purpose 
variable speed drive ATV71 (5.5kW 400V) was used in the test set up. An ultra-capacitor 
module of 0.4F rated capacitance and 800V rated voltage was connected to the drive via the 
custom designed bi-directional dc-dc converter. The converter was controlled by a digital 
signal processor (DSP) TMS 320F2808 and interfacing analog/digital electronic circuitry 
(measurement, gate driving and protection). Different operation modes were analysed and 
some waveforms recorded. The waveforms are depicted and discussed hereafter. 
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Fig.  3.6 Experimental set-up. An ultra-capacitor is connected to a general purpose variable speed drive 
ATV71 5.5kw via the dc-dc converter. 

 

Fig.  3.7 (a) shows waveforms of the dc bus voltage vBUS, the drive input current iMAINS, 
the ultra-capacitor current iC0 and voltage uC0 when the drive operates in 
motoring/braking/motoring cycle. The drive system runs in motoring mode (MM ) being 
supplied from the mains. The ultra-capacitor voltage is UC0inM, while the dc bus voltage is 
determined by the mains phase to phase voltage (≈1.41VMAINS ). Once the drive load is 
inverted, the drive enters in the braking phase (B) and the energy being transferred from the 
load to the drive dc bus. The dc bus voltage vBUS elevates up to the upper reference VBUSmax 
and then stayes regulated to that level. At the same time, the input current iMAINS falls to zero. 
The ultra-capacitor voltage increases and the current decreases (charging/discharging power is 
roughly constant). When the braking phase is finished, the drive load becomes again positive 
and the drive enters in motoring mode (MC0), being supplied from the ultra-capacitor. The 
current iC0 turns negative and the voltage uC0 starts to decrease towards the reference UC0inM. 
When the ultra-capacitor voltage reaches the reference UC0inM the current droppes to zero and 
the dc bus voltage falls to the nominal value. The ultra-capacitor discharging is finished and 
the drive is again supplied from the mains (MM ). 

Fig.  3.7 (b) illustrates the system behaviour when the braking energy is greater than 
the ultra-capacitor storage capability. In this case the ultra-capacitor is charged to the 
maximum voltage UC0max before the braking is finished. As the voltage reaches the maximum, 
charging is stopped to prevent break-down of the ultra-capacitor. The dc bus voltage vBUS 
starts to increase until reached over-braking protection level and drive system falls into over-
braking fault (OBF). Shortly before the ultra-capacitor voltage has reached the maximum, the 
dc bus voltage started to increase and follow the increase in the ultra-capacitor voltage. This is 
caused by the dc-dc converter duty cycle saturation (dmax=97.5%). 

Fig.  3.8 (a) shows the waveforms in case of the mains short interruption. The drive 
runs in the mains motoring mode (MM ). Once the mains is interrupted, the dc bus voltage 
falls to the minimum reference VBUSmin, and stays at that level regulated by the dc bus voltage 
controller. The drive operates in the ride-through mode (RT), being supplied from the ultra-
capacitor. The ultra-capacitor voltage decreases below UC0inM towards UCimin. Once the mains 
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is recovered after 1.5s, the ultra-capacitor is re-charged to UC0inM (the mains motoring and 
charging mode (MM-CH )). 

Fig.  3.8 (b) illustrates a case when the power interruption is longer than the specified. 
The ultra-capacitor is discharged to the minimum voltage UC0min, and then the ultra-capacitor 
discharge current iC0 falls to zero. Since the dc bus voltage is not controlled any more, it falls 
below the limit, and the drive falls into under-supply fault (USF). 

 

 

(a) 

 

(b) 

Fig.  3.7 Experimental waveforms of the ultra-capacitor current iC0 [5A/div] and voltage uC0 [100V/div], 
the dc bus voltage vBUS [100V/div] and the mains current iMAINS [50A/div] during an entire 
braking-motoring cycle. a) The ultra-capacitor is properly sized, and  b) the ultra-capacitor is 
under-sized. 

 

 

(a) 

 

(b) 

Fig.  3.8 Experimental waveforms of the ultra-capacitor current iC0 [5A/div] and voltage uC0 [100V/div], 
the dc bus voltage vBUS [100V/div] and the mains current iMAINS [50A/div] when the mains is 
interrupted. a) Short power interruption, and b) long power interruption. 

3.3. Ultra-capacitor Selection and Design 

The ultra-capacitor design and selection criterion is based on the three parameters. 1) 
Rated voltage of the ultra-capacitor module, 2) the ultra-capacitor rated capacitance, and 3) 
the ultra-capacitor losses and conversion efficiency. 
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3.3.1. Voltage Rating 

The ultra-capacitor module rated voltage depends on the interface dc-dc converter 
topology. In this analysis we have assumed that the dc-dc converter is a non-isolated direct 
dc-dc converter with voltage gain not greater than unity uC0/vBUS≤1. Therefore, the ultra-
capacitor voltage cannot be greater than the dc bus voltage. As the ultra-capacitor is charged 
when the drive dc bus voltage is maximum (the drive is braking), the ultra-capacitor rated 
voltage UC0max is 

maxmax0 BUSC VU ≤ . ( 3.1) 

The ultra-capacitor minimum operating voltage is determined by the dc-dc converter 
current capability IC0max and conversion power P0, 

max0

0
min0

C

C I

P
U ≥

.
 ( 3.2) 

Very often, the minimum voltage is limited to 40 to 50% of the rated voltage (UC0min 
=0.4÷0.5 UC0max). 

3.3.2. The Capacitance 

Most of the ultra-capacitor models presented in the literature consider a non-linear (the 
voltage dependent) transmission line or a finite ladder RC network  [76]. For simplicity of the 
analysis, the transmission line effect is neglected, and a first order nonlinear model depicted 
in Fig.  3.9 is used  [75]. The equivalent series resistance RC0 is the frequency-independent 
resistance. The ultra-capacitor total capacitance is the voltage-controlled capacitance defined 
as 

( ) CCCC ukCuC ⋅+= 00 , ( 3.3) 

where C0 is the initial capacitance that represents the electrostatic capacitance of the 
capacitor, and kC is a coefficient that represents effects of the diffused layer of the super-
capacitor  [69]. 

 

Fig.  3.9 First order RC model of the ultra-capacitor. 

 

Energy storage capacity of the ultra-capacitor ( 3.3) is 

( ) ( )3
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3
max0

2
0

2
max0

0

3

2

2 CCCCCC UUkUU
C

E −+−= , ( 3.4) 

where UC0max is the ultra-capacitor maximum voltage, which  has been defined in ( 3.1) 
and UC0 is the ultra-capacitor initial voltage. The initial capacitance C0 for the given braking 
energy EB and coefficient kC can be computed from ( 3.4) as  
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where the ultra-capacitor voltage UC0inM is the intermediate voltage that has been 
defined in Fig.  3.5 (b). The braking energy EB is 

( )∫=
Bt

BB dttPE
0

0η , ( 3.6) 

where ηB is efficiency of the entire conversion system, including the motor, drive 
converter, dc-dc converter and the ultra-capacitor efficiency. Power P0(t) is the motor shaft 
power and tB is braking time. 

The ultra-capacitor energy that is available for ride-through cycle is 
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E −+−= , ( 3.7) 

where UC0min is the ultra-capacitor minimum voltage that has been defined in Fig.  3.5 
(b). 

The ride-through energy ERT, which the ultra-capacitor has to provide to the drive 
during a power interruption, is 

( )∫=
RTt

M

RT dttPE
0

0

1

η
, ( 3.8) 

where tRT is the ride-through time. ηM is efficiency of the entire conversion system, 
which depends on the motor shaft power P0(t) and internal resistance of the ultra-capacitor. 

The ultra-capacitor intermediate voltage UC0inM is selected according to the application 
requirement, for the braking energy capability EB ( 3.6) and the ride-through energy 
availability ERT ( 3.8). The intermediate voltage UC0inM can be computed from ( 3.5) and ( 3.7) 
as 

RTC

CBCRT
inMC EE

UEUE
U

+
+≅

2
min0

2
max0

0 , ( 3.9) 

where kC≅0. 

Fig.  3.10 illustrates the ultra-capacitor intermediate voltage UC0inM versus braking 
energy EBR and minimum discharge voltage uC0min. The ultra-capacitor voltages are 
normalized on the rated voltage UC0max, while the braking energy is normalized on the ride-
through energy ERT. For example, if the ride through energy is 25% of the braking energy 
(Ebr/Ert=4 on the x axis) and minimum discharge voltage is 50% (the blue trace), the 
intermediate voltage is approximately 63%. 

3.3.3. Current Stress and Losses 

The ultra-capacitor current, in general case has two essentially different frequency 
components: 1) Very low frequency, and 2) high switching frequency current. 
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Fig.  3.10 The ultra-capacitor intermediate voltage uC0inM versus relative braking energy (determined as 
ration between the braking energy EB and ride-through energy ERT) and relative minimum ultra-
capacitor voltage (determined as ratio of minimum to maximum ultra-capacitor voltage). 

 

Very low frequency current corresponds to the energy transfer between the drive dc 
bus and the ultra-capacitor (braking and motoring from the ultra-capacitor). Considering that 
the ultra-capacitor is a linear capacitor (kC≅0.) and neglecting the internal resistance RC0 one 
can find the ultra-capacitor charging current as 
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where the initial ultra-capacitor voltage is UC0min. 

Discharging current has similar form 
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where the voltage UC0 is the ultra-capacitor initial voltage. The ultra-capacitor 
charging/discharging power PC0 is constant. 

The ultra-capacitor losses are computed from ( 3.10) and ( 3.11) as 
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The losses model ( 3.12) is correct only if the frequency of the charging/discharging 
current is lower that the ultra-capacitor cut-off frequency. Otherwise the losses have to be 
computed using the method described in section  2.4.2. 

High frequency ripple ∆iC0 could be neglected because the ripple is normally quite 
smaller than the average current. If this is not a case, the additional high frequency losses 
have to be taken into account. 

2
)(0)(0)( RMSCHFCHFC iRP ∆≅ , ( 3.13) 

where RC0(HF) is the ultra-capacitor resistance at high frequency. 
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3.3.4. Conversion Efficiency 

As given in ( 3.12), the ultra-capacitor losses depend on a few parameters: the series 
resistance, capacitance and the ultra-capacitor initial voltage. Is it possible to select the ultra-
capacitor for the losses given as a design parameter? To find answer on this question, let us 
consider that the ultra-capacitor is charged (braking mode of the drive system) from UC0inM 
toward UC0max with a constant power PC0. The losses-time profile and the energy lost during 
entire charge time can be defined as 
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where TCH is the ultra-capacitor charge time, in this case the braking time. 

The ultra-capacitor resistance depends also on the capacitance. The greater 
capacitance the smaller resistance 
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( 3.16) 

Fig.  3.11 shows an example. The ultra-capacitor series resistance RC0 versus the 
capacitance C0 is plotted for an 800V ultra-capacitor module. The module is composed of 
series/parallel connected ultra-capacitor cells rated on 2.8V  [91]. 

 

Fig.  3.11 The ultra-capacitor resistance RC0 versus the capacitance C0. The red squares are value from 
datasheet and blue line is interpolation. The module is arranged as series/parallel connection of 
2.8V rated ultra-capacitor cells. The module rated voltage is UC0max=800V. 

Substituting ( 3.16) in ( 3.15) yields the conversion energy losses as a function on the 
capacitance C0, 
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Charge/discharge (round trip) energy efficiency is 
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Fig.  3.12 and Fig.  3.13 illustrate the conversion efficiency versus the capacitance C0, 
the intermediate voltage UC0inM and cost of the ultra-capacitor module.  

 

Fig.  3.12 The conversion efficiency and intermediate voltage UC0inM versus the ultra-capacitor rated 
capacitance C0 and the ultra-capacitor module cost. The ultra-capacitor module rated voltage 
UC0max=800V, braking time TBR=20s, the conversion power PC0=4kW, 5.5kW, 7.5kW and 11kW. 

 
(a) 

 

(b) 

Fig.  3.13 a) The intermediate voltage UC0inM versus the ultra-capacitor rated capacitance C0. b) The 
conversion efficiency versus the ultra-capacitor module cost. The ultra-capacitor module rated 
voltage UC0max=800V, braking time TBR=20s, the conversion power PC0=4kW, 5.5kW, 7.5kW and 
11kW. 
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The conversion efficiency versus capacitance and voltage is computed from ( 3.5) and 
( 3.18).The module cost is computed using prediction of 1.28 $/kJ for an ultra-capacitor cell. 
Taking into account that the module cost is approximately twice of the cell cost, we have 2 
€/kJ of total stored energy capacity. 
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4. THREE-LEVEL INTERFACE DC-DC CONVERTER  

4.1. Background and State of the Art 

For the sake of better flexibility and higher efficiency of the controlled electric drive 
with the ultra-capacitor energy storage, the ultra-capacitor cannot be directly connected to the 
drive dc bus. An interface power converter is necessary. The converter is controlled in the 
way depending on the system control objectives: control of the dc bus voltage, the ultra-
capacitor state of charge, active sharing of the energy between the drive and ultra-capacitor 
and so on. 

Typical dc-dc converter and variable speed drive system is specified as follows: 

• The drive is supplied from a three-phase 400V 50Hz industrial network, 

• The converter input is the dc bus: VBUSmin=450V, VBUSmax=800V, 

• The converter output is the ultra-capacitor: UC0min>250V, UC0max=780V, 

• The converter output current ripple: ∆iC0≤20%, 

• Effective switching frequency: fSW_E≥50kHz, 

• Passive components: minimized, 

• Efficiency: >95%. 

Most of dc-dc converter topologies are based on ordinary two-level single-phase or 
multiphase interleaved topologies  [30]- [35], Fig.  4.1 (a) and (b). The main drawback of these 
topologies is the fact that the switches are rated for the full dc bus voltage. As the dc bus 
voltage may go up to 800V, or more, the switches are rated on 1200V. This becomes an issue 
if the converter switching frequency is high, let us say above 20kHz. Two-level dc-dc 
converter with soft switching is an alternative  [36]. This solution offers lower switching 
losses. However, since the converter operates in discontinuous conduction mode (DCM), the 
peak current and ripple current are quite greater than of that one operates in continuous 
conduction mode (CCM). This causes problem of the inductor losses, particularly the core 
losses. Fig.  4.1 (c) and (d) shows circuit diagrams of single-phase boost-back and buck-boost 
topology. Those topologies are used in applications that require large variation of the ultra-
capacitor voltage around the dc bus voltage. Isolated dc-dc converter topologies with soft 
switching have been analyzed in  [37],  [38]. These topologies are attractive solution when 
ratio of the dc bus voltage to the ultra-capacitor voltage is high, greater than 2. If the ratio is 
lower than 2, the efficiency is lower than efficiency of a non-isolated topology. 

4.2. Three-Level DC-DC Converter 

Three-level converter is well adopted solution in applications with high input voltage 
and high switching frequency. The switches are stressed on half of the total dc bus voltage. 
This allow us to use lower voltage rated switches with better switching and conduction 
performance compared to the switches rated for the full dc bus voltage. Therefore, the 
converter overall performances, including cost and efficiency, can be significantly better 
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compared to two-level converters, especially when switching frequency is above 20kHz or 
MOSFETs are used as the switches. 

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Fig.  4.1 State of the art topologies of the inter-connection dc-dc converters. a) single phase two level , b) 
three phase two level, c) boost-buck, d) buck-boost. 

 

Fig.  4.2 shows a circuit diagram of a three-level bi-directional dc-dc converter. The 
converter is composed of four switches SW1A, SW1B, SW2A and SW2B and four freewheeling 
diodes D1A, D1B, D2A and D2B, an output filter inductor LC0 and two input filter capacitors CB1 
and CB2.  

 

Fig.  4.2 Circuit diagram of the interface bidirectional dc-dc converter based on three-level topology. 
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The input filter capacitors are series connected and serve as a capacitive voltage 
divider to split the dc bus voltage vBUS into two equal voltages vC1 and vC2. The capacitors 
mid-point is connected to the switching cell mid-point. 

4.2.1. Analysis 

The switches SW1A and SW1B states are determined by a switching function s1 and the 
complementary function, while the switches SW2B and SW2A states are determined by a 
switching function s2 and the complementary function. The switching functions s1 and s2 are 
generated by the pulse width modulators PWM1 and PWM2. The switching functions s1 and 
s2 are 
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where k is an integer [ )+∞∈ ,k  and TSW is the switching period. The modulation signals 
d1 and d2 are duty cycles generated by the control circuit. The control circuit controls the 
ultra-capacitor current iC0 and balances the voltages vC1 and vC2. The modulation carriers are 
triangular signals vT1 and vT2 shifted for π radians and running at the same frequency fSW (see 
Fig.  4.3 ). Fig.  4.3 (a) shows the converter waveforms when d1=d2<1/2, while Fig.  4.3 (b) 
shows the waveforms when d1=d2>1/2. Depending on the switches state, four different 
topological stages can be distinguished, namely A, B, C and D. Equivalent circuit diagrams 
for these stages are illustrated in Fig.  4.3 (c). The input filter capacitors are modeled as ideal 
voltage sources vC1 and vC2. 

The stage A): The converter can be in this stage only if the duty cycles are lower than 
1/2. The switches SW1B and SW2A are closed, while the switches SW1A and SW2B are opened. 
As the current iC0 is assumed as positive according to the circuit diagram, the currents i1B and 
i2A are negative; the freewheeling diodes D1B and D2A are conducting. The output voltage is 
vOUT=0, and therefore the current iC0 decreases. 

0
0

00 <







−=

C

CC

L

u

dt

di
 ( 4.2) 

The stage B): The switches SW1A and SW2A are closed, while the switches SW1B and 
SW2B are opened. The current i1A is positive and the current i2A is negative; the freewheeling 
diode D2A is conducting. The filter capacitor CB1 is discharged by the current i1A. The output 
voltage is vOUT=vC1. The current iC0 decreases or increases. It depends on the ultra-capacitor 
voltage (duty cycle consequently). 
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The stage C): The switches SW1B and SW2B are closed, while the switches SW1A and 
SW1B are opened. The current i2B is positive and the current i1B is negative; the freewheeling 
diode D1B is conducting. The filter capacitor CB2 is discharged by the current i2B. The output 
voltage is vOUT=vC2. The current iC0 decreases or increases, depending on the duty cycle, 
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(a) 

 

(b) 

 

(c) 

Fig.  4.3 Different topological stages of the three-level dc-dc converter: a) ideal waveforms for d<1/2, b) 
ideal waveforms for d>1/2, c) equivalent circuits for the stages A, B, C and D. 
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The stage D): The converter can be in this stage only if the duty cycles are greater than 
1/2. The switches SW1A and SW2B are closed, while the switches SW1B and SW2A are opened. 
The switches currents i1A and i2B are positive. The output voltage is vOUT=vBUS, and therefore 
the current iC0 increases. 
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Instantaneous output voltage vOUT can be expressed as 

( ) ( ) ( ) ( )( )tstsvtsvtv CBUSOUT 2111 −+= , ( 4.6) 

where s1(t) and s2(t) are the switching functions ( 4.1). 

Assuming that d1=d2=d and vC1=vC2=vBUS/2 (this is a case when the converter is well 
designed and controlled), from ( 4.1)-( 4.5) and Fig.  4.3 follows that 
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As ( 4.7) shows, the output voltage is periodic function with period TSW/2. That means 
the effective fundamental frequency of the output voltage vOUT and therefore the output 
current iC0 is twice switching frequency, fSW-E=2fSW. This has a significant influence on design 
of the inductor LC0, as it will be shown in the following section. 

4.2.2. Filter Inductor L C0 

Two main parameters are relevant for the inductor design: 1) the inductance LC0 and 2) 
losses PLC0. 

4.2.2.1. Inductance LC0 

To compute the inductance LC0, peak to peak current ripple ∆iC0max has to be defined. 
From ( 4.2)-( 4.5) and the assumptions d1=d2=d and vC1= vC2=vBUS/2 one finds the current 
ripple as a function of the duty cycle d, 
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Maximum of the current ripple is 
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From ( 4.9) one finds the inductance LC0 
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where the dc bus voltage (input voltage) is maximum voltage vBUS=VBUSmax. The 
current ripple ∆iC0max is given as a design criterion. 

Please note that the inductance ( 4.10) is 25% of the inductance of two-level dc-dc 
converter for the same current ripple ∆iC0max and the same switching frequency fSW. That 
means the inductor volume is 25% of that of the conventional converter. Fig.  4.4 shows the 
current ripple versus duty cycle for the ordinary two-level converter and the three-level 
converter. 

 

Fig.  4.4 The inductor current ripple ∆iC0 versus duty cycle d (the duty cycle corresponds to the ultra-
capacitor voltage uC0). The ripple is normalized on the maximum current ripple when two-level 
dc-dc converter is used. 

 

4.2.2.2. The Inductor Losses 

The inductor losses consist of the copper (winding) losses and the core losses. Both of 
them depends on the inductor instantaneous current. The inductor current can be expressed as 
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where SWSW fπω 2= . The converter switching frequency is SWf  and n is the harmonic 
order. 

The copper losses can be found in a general form 
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where RCu(n) is the inductor winding resistance that depends on the frequency. 

The core losses can be defined in similar way, 
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where RC(2nfsw) is the core equivalent resistance that models the core losses as a 
function of the frequency  [92]- [98]. Here we have to highlight that the core losses model 
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( 4.13) is an approximation of the real core losses  [99]. The core losses model ( 4.13) was 
extensively discussed in  [92]. Experimental verification of ( 4.13) was also given. 

The inductor losses model ( 4.12) and ( 4.13) takes into account harmonics of the 
inductor current. To simplify analysis, one can substitute the current ripple by an equivalent 
sinusoidal current with the RMS value and frequency same as the total current ripple. Such an 
approach is not completely correct, but it is sufficient for simplified calculation. 

RMS value of the equivalent sinusoidal current ripple is 

( )
( )
( )( )



≤≤−−
≤≤−

∆≅
12/1,112

2/10,21

3

4
max020 ddd

ddd
iI CfRMSC SW

, ( 4.14) 

where ∆iC0max is the current ripple ( 4.9). 

The inductor average current (dc component) is computed from output power PC0 and 
the ultra-capacitor voltage uC0 as 
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Substituting ( 4.14) and ( 4.15) into ( 4.12) and ( 4.13) yields the inductor total losses, 
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where RDC is the inductor resistance at low frequency, while RCu(2fsw) and RC(2fsw) are 
the inductor winding resistance and the core equivalent resistance at twice switching 
frequency. 

4.2.3. Filter Capacitors CB1, CB2 

The filter capacitors are designed for two main criteria: 1) the capacitors peak and 
RMS current, and 2) the input voltage ripple. For simplicity of the analysis one can neglected 
the current ripple (∆iC0 ≅0), and assume that d1=d2=d and vC1=vC2=vBUS/2. 

Fig.  4.5(a) illustrates waveforms of the currents iC1, iC2 and the voltages vC1, vC2, when 
d<1/2. Fig.  4.5 (b) illustrates the case when d>1/2. The capacitors current and the voltage 
ripple are periodic functions with a period TSW=1/fSW. 

4.2.3.1. Peak and RMS Current 

From Fig.  4.5 one can define the capacitors instantaneous current as follows 
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As the dc-dc converter is loaded by constant power PC0, the capacitors current has to 
be defined as a function of the power PC0 and the ultra-capacitor voltage uC0. Using the 
assumption ∆iC0 ≅0 and substituting ( 4.7) and ( 4.15) into ( 4.17) yields the peak current 



 4. THREE-LEVEL INTERFACE DC-DC CONVERTER 

 -58- 

( )







 −==
min

min0
max2max1

1
,1max

d

d

v

P
ii

BUS

C
peakCpeakC , ( 4.18) 

and RMS current 
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(a) 

 

(b) 

Fig.  4.5 The filter capacitors currents iC1 and iC2 and the voltages vC1 and vC2 at different duty cycle: a) 
d<1/2 and b) d>1/2. 

 

Maximum of the capacitors RMS current is 
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The capacitors losses are 
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where RESR is the capacitors equivalent series resistance. 
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4.2.3.2. Input Voltage (DC Bus Voltage) Ripple 

For this analysis, the filter capacitors are taken as identical, CB1=CB2=C. The input 
voltage peak to peak ripple is 
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Comparison of the input voltage ripple of an ordinary two-level and the proposed 
three-level dc-dc converter is given in Fig.  4.6 The voltage ripple is computed for the same 
conditions: the capacitance C, output power PC0 and switching frequency fSW. As seen from 
the graph, the three-level converter ripple is quite lower than that of two-level converter. The 
ripple ratio depends on the duty cycle range. If the duty cycle is in a range 1/2 to 1, the 
voltage ripple of the three-level converter is roughly 20% of that of two-level converter. That 
means the filter capacitor can be five times smaller than that of two-level converter for the 
same voltage ripple ∆vBUS. 

 

Fig.  4.6 The capacitors voltage ripple ∆vBUS versus duty cycle d (duty cycle corresponds to the ultra-
capacitor voltage uC0). The conversion power PC0 and the dc bus voltage VBUS are considered as 
constant. The ripple is normalized on the maximum voltage ripple when two-level dc-dc 
converter is used. 

 

Maximum of the input voltage ripple is 
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The capacitance C is computed from ( 4.23) as 
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4.3. Design and Selection of the Active Components 

4.3.1. Advanced Semiconductor Switches 

The most common power semiconductor switches used in switch mode power 
converters are Si based insulated gate bipolar transistor (IGBT), metal oxide semiconductor 
field effect transistors (MOSFET) and PiN diodes  [104]. In last decade, we have seen 
intensive development of SiC based power semiconductor switches, such as Schottky barrier 
diode (SBD) and junction filed effect transistor (JFET)  [105]. Fig.  4.7 illustrates comparison 
of performance of the most used semiconductor switches. The conduction losses (on-state 
voltage VCON) and switching losses of three types of active switches, Si IGBT, Si MOSFET 
and SiC JFET are compared at two different voltage rating, 600V and 1200V. Comparison is 
illustrated in Fig.  4.7 (a). Regarding overall performance, switching and conduction, in both 
voltage ranges the SiC JFET is superior. 600V rated MOSFET and IGBT have similar 
conduction performances, while the MOSFET is superior regarding switching performance. 
In 1200V range, the MOSFET has superior switching performance in comparison to the 
IGBT. The situation for conduction performance is opposite; the IGBT is superior. Here, we 
have to highlight that technology of 600V and 1200V MOSFET is different. In 600V range, 
super-junction technology is dominant  [101]. This technology offers significant improvement 
of the switch conduction performance. However, there is not possibility to implement the 
super-junction technology in 1200V range. 

 

(a) 

 

(b) 

Fig.  4.7 Advanced power semiconductor switches performances versus rated voltage. a) Active switches 
and b) diodes. 

600V and 1200V rated Si PiN and SiC SBD switching diodes are compared. Note that 
switching losses of SiC SBD are quite lower than that of Si PiN diode. The difference in on-
state voltage is less significant. SiC PiN diode is not considered because such type of diode is 
applicable in very high voltage rather than in low voltage applications. 

4.3.2. Voltage Rating 

The switches and diodes voltage rating is defined by the switch transient blocking 
voltage 
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where ∆V is the commutation over-voltage  [100]. 

Since the switch voltage rating is a half of the dc bus voltage, a device rated for 500 to 
600V can be used. It could be either 550V CoolMOSFET or 600V IGBT. The first one offers 
better switching and similar conduction performance compared to the IGBT  [101]. However, 
the intrinsic FWD of the CollMOSFET has inferior characteristics in comparison to the PiN 
diode used in the IGBT module. This issue could be solved by the use of some complex 
topology, but it cause additional expenses and losses. Thus, 600V IGBT with an integrated 
FWD is used as the switch. 

4.3.3. Conduction and Switching Losses 

The switches and diodes output characteristics are approximated by the first order 
functions 
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were VSW0 and rSW are the IGBT threshold conduction voltage and dynamic resistance. 
VD0 and rD are the freewheeling diode (FWD) threshold conduction voltage and dynamic 
resistance. 

The switch and FWD conduction losses can be computed from ( 4.26) as 
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Commutation losses are 
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where EON, EOFF and EQ denotes turn on, turn off and reverse recovery commutation 
energy, which are given at the rated voltage VN , current IN and 125°C junction temperature. 

Let us consider that the current iC0 is positive (the ultra-capacitor is charged). The 
switches and freewheeling diodes current is determined by the current iC0 and the switching 
functions s1 and s2 as follows, 
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The losses are computed from ( 4.15), ( 4.27), ( 4.28) and ( 4.29) as 
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Remark: The losses equations ( 4.30) and ( 4.31) have been derived assuming that the 
ultra-capacitor current is ripple-free (∆iC0≅0) and duty cycles are balanced (d1=d2=d). 

If the current is negative (the ultra-capacitor is discharged), the losses have the same 
form as ( 4.30) and ( 4.31) but redistributed to the complementary devices. When the duty 
cycle is varying in time, as it is a case when the ultra-capacitor is charged/discharged, the total 
loses profile can easily be computed from ( 4.30) and ( 4.31) substituting the ultra-capacitor 
current profile ( 3.10) and ( 3.11). 

4.4. The DC-DC Converter Design Example 

A 5.5 kW prototype was designed (see Fig.  4.8) and the proposed bi-directional dc-dc 
converter experimentally verified. The converter specification and parameters of the selected 
main components are given in TABLE  4-1. Active power components (IGBTs and FWDs) 
were selected for the target switching frequency, dc bus voltage and ultra-capacitor current. 
The filter inductor LC0 and input filter capacitors CB1 and CB2 were designed and selected 
according to the specification in TABLE  4-1 and the criteria ( 4.10) and ( 4.24). RDC is the 
winding resistance at low frequency and RAC is the winding resistance at switching frequency, 
which was computed taking the high frequency resistance factor of 20  [102]. The resistance 
RC is the core equivalent resistance as a model of the core losses ( 4.16). The core resistance 
was computed at the inductor rated current, using the manufacture datasheet  [103]. 

The inductor losses were computed from ( 4.16) and the parameters in TABLE  4-1. 
Fig.  4.9 (a) shows 3-D graph of the total inductor loses versus output power and duty cycle. 
As seen, the core losses are dominant in most of the operating region. The core losses and the 
total losses reach a peak at duty cycle of d=3/4 and d=1/2 and full load. The first peak 
corresponds to the maximum current ripple ( 4.9) (and core losses), while the second one 
corresponds to the maximum conversion power (and low frequency copper losses). 

The IGBTs and FWDs losses were computed from ( 4.30), ( 4.31) and data given in 
TABLE  4-1. Fig.  4.10 shows 3-D graph of the total losses (switching and conduction) versus 
conversion power and duty cycle, where the duty cycle corresponds to the ultra-capacitor 
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voltage. As seen from the graph, the losses reach maximum of roughly 125W at the maximum 
output power POUT=5500W and minimum duty cycle d=1/2. 

TABLE  4-1. The converter specification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  4.8 Prototype of 5.5kW three-level dc-dc converter. 

 

Fig.  4.9 The inductor losses versus the load power PC0 and duty cycle (that is proportional to the ultra-
capacitor voltage d≈uC0/vBUS). vBUS=700V and the inductor core temperature TC=100°C. 

Nominal power PC0=5500W 

DC bus nominal voltage VBUS=570V 

DC bus braking voltage VBUSmax=700V 

DC bus ride-through voltage VBUSmin=450V 

Switching frequency fSW=25kHz 

The current ripple ∆iC0=3A 

 

IGBT/FWD 600V 30A 

VCE RCE *EON+EOFF VDF rDF *EQF 

0.8V 27mΩ 80µJ/A 0.9 V 20 mΩ 10µJ/A 

*Switching losses at VN=300V TJ=150˚C 

FILTER INDUCTOR LC0 CAPACITOR CB1, CB2 

High Flux Powder Core (2x) 58192-A2 MKP EPCOS B32774D4106 

L RDC RAC RC C ESR 

580µH 38mΩ 0.8Ω 3Ω 2x10µF 3.75mΩ 
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Fig.  4.10 The switches total losses versus the load power PC0 and duty cycle (that is proportional to the 
ultra-capacitor voltage d≈uC0/vBUS). The dc bus voltage vBUS=700V, the switch junction 
temperature TJ=150°C. 

 

 

(a) 
 

(b) 

Fig.  4.11 The IGBT losses versus the load power PC0 and duty cycle (that is proportional to the ultra-
capacitor voltage d≈uC0/vBUS). a) Conduction losses, b) switching losses. The dc bus voltage 
vBUS=700V, the switch junction temperature TJ=150°C. 

 

Fig.  4.11 and Fig.  4.12 show graph of the IGBT and FWD losses versus conversion 
power and duty cycle. The IGBT switching losses are dominant and quite dependent on the 
duty cycle. In contrast to this, the IGBT conduction losses are almost constant overall whole 
range of the duty cycle. The FWD losses, particularly conduction losses vary significantly 
with the duty cycle. 

Fig.  4.13 shows the converter efficiency versus output power and duty cycle. This 
calculation shows that the converter efficiency is quite high, from 95% (at minimum output 
power of 550W and duty cycle of 3/4) up to 99% at minimum output power and maximum 
duty cycle (d=1). In this calculation, the filter capacitors CB1 and CB2 losses and the control 
circuit and gate drivers’ losses were neglected. The filter capacitors losses are quite small, 
below 1W in the worst case (d=1/2 and maximum power). The control circuit and the gate 
drivers’ losses were not calculated. 
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(a) 
 

(b) 

Fig.  4.12 The FWD losses versus the load power PC0 and duty cycle (that is proportional to the ultra-capacitor 
voltage d≈uC0/vBUS). a) Conduction losses, b) switching losses. The dc bus voltage vBUS=700V, the 
switch junction temperature TJ=150°C. 

 

 

Fig.  4.13 The switches losses versus the load power PC0 and duty cycle (that is proportional to the ultra-
capacitor voltage d≈uC0/vBUS). The dc bus voltage vBUS=700V, the switch junction temperature 
TJ=150°C, the inductor core temperature TC=100°C. 

 

Fig.  4.14 and Fig.  4.15 show waveforms of the converter output voltage vOUT, the 
ultra-capacitor voltage uC0 and the current iC0 when the ultra-capacitor voltage uC0 takes 
different value. Fig.  4.14 (a) and Fig.  4.14 (b) show the waveforms when uC0<vBUS/2 (d<1/2). 
The output voltage takes discreet value of zero and vBUS/2, which corresponds to the 
topological stages A, B and C (Fig.  4.3). 

Fig.  4.15 (a) and Fig.  4.15 (b) show the waveforms when uC0>vBUS/2 (d>1/2). The 
output voltage vOUT takes discreet value of vBUS/2 or vBUS, which corresponds to the 
topological stages B, C and D (Fig.  4.3). Fig.  4.14 (b) and Fig.  4.15 (b) show the waveforms 
when the ultra-capacitor voltage is slightly lower or greater than vBUS/2. In the both cases the 
current ripple almost disappeared, as given in ( 4.8). 
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(a) 

 

(b) 

Fig.  4.14 Experimental waveforms of the output voltage vOUT [100V/div] the ultra-capacitor current iC0 
[2A/div] and the ultra-capacitor voltage uC0 [100V/div] for different duty cycle d. a) d<1/2, b) 
d=1/2- ε, where ε≈0. vBUS=500V, iC0(AV)=10A, LC0=600µH, fSW=25kHz. 

 

(a) 

 

(b) 

Fig.  4.15 Experimental waveforms of the output voltage vOUT [100V/div] the ultra-capacitor current iC0 
[2A/div] and the ultra-capacitor voltage uC0 [100V/div] for different duty cycle d. a) d=1/2+ ε 
where ε≈0, b) d >1/2. vBUS=500V, iC0(AV)=10A, LC0=600µH, fSW=25kHz. 

 

Fig.  4.16 (a-c) shows waveforms of the output current and ac component of the 
voltages vC1, vC2 and vBUS when the duty cycle takes different values; a) d≅1/4, b) d≅1/2, c) 
d≅3/4. Noise in the voltage waveforms is the commutation noise picked up by the active 
voltage probes that were used to measure the capacitor voltages. The output current ripple and 
dc bus voltage ripple are practically disappeared as the duty cycle approaches 1/2. 

Fig.  4.16 (d-f) shows the output current, the ac component of the voltages vC1 and vC2, 
and the capacitors mid-point current ∆iC when the duty cycle takes different values, d) d≅1/4, 
e) d≅1/2, f) d≅3/4. The capacitors mid-point current ∆iC is alternative current having 
symmetrical positive and negative segments. Spikes that are seen in the current waveforms 
(the red ellipses) are the FWD reverse recovery current. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig.  4.16 Experimental waveforms of the capacitor voltages vC1, vC2, [5V/div], the dc bus voltage vBUS 
[5V/div] and the ultra-capacitor current iC0 [5A/div] at different the duty cycle. a) d≅0.25, b) 
d≅0.5 and c) d≅0.75.The waveforms of the capacitor voltages vC1, vC2, the mid point capacitor 
current ∆iC and the ultra-capacitor current iC0 at different duty cycle. d) d≅0.25, e) d≅0.5 and f) 
d≅0.75. vBUS=500V, iC0(AV)=10A, LC0=600µH, fSW=25kHz. 
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5. MODELING ASPECTS AND CONTROL SCHEME  

5.1. Modelling Techniques 

In last two decades we have seen much research activities in field of modeling of 
switching mode power converters  [106]- [107]. To give background of these modeling 
techniques, let us consider a power converter whose circuit diagram is depicted in Fig.  5.1. 
The converter consists of an input voltage source vIN, a linear and time invariant passive 
network, a switching network, a vector of control variables and an output load given as 
constant current i0. The switching network terminal variables are v1, v2, i1 and i2 .The input 
variables are vIN and i0, and output variables are v0 and i IN. The control variables can be duty 
cycle as wewll as switching frequency. In case of more complex converters, such as full-
bridge phase shifted converters, the control variable can be phase shift of the bridge driving 
signals. 

 

 

(a) 

 

(b) 

Fig.  5.1 An example of switching mode power converter that consists of a linear passive network and a 
non-linear switching network. a) Circuit diagram and b) waveforms of the switching cell 
voltages and currents. 

 

The terminal variables (v1, v2, i1 and i2) are periodic signals with the period equal to 
the control signal period (as given in Fig.  5.1 (b)). Therefore, the terminal variables can be 
expanded in Fourier series. 
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The analysis could be simplified if the following assumptions are made: 

• The linear & time invariant passive network is essentially a low pass filter, and 

• Dominant time constant of the linear passive network is much greater than the switching 
period, TSW<<T 0. 

The terminal variables now can be approximated by first element of the Fourier series. 
The first elements of the Fourier series are average value computed over a switching period, 
so-called local or moving average variables  [108]. 
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Note: The switching period TSW is not necessarily constant. 

The switching network variables are generally multi-frequency variables. In such a 
case, multi-dimensional Fourier series can be applied to obtain multi-frequency moving 
average value  [109]. Typical power converters that show such behavior are power factor 
correctors.  

The voltage 1v and current 2i are commonly treated as dependent variables, which 

are nonlinear functions of voltages2v , INv , 0v , the currents 1i , INi , 0i  and the control 

variables )(td and )(tfSW . 
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( 5.5) 

where nonlinear function F1 and F2 ( 5.5) depends strongly on the converter topology 
and operation mode, continuous conduction mode (CCM) or discontinuous conduction mode 
(DCM). 

To perform transient analysis, nonlinear equations ( 5.5) are linearized around the 
steady state. The nonlinear equations ( 5.5) can be expanded in multidimensional Taylor 
series. Neglecting higher order elements yields a linarized equation that describes the 
switching network. 
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The circuit given in Fig.  5.1 can be now analyzed as a standard linear circuit. Linear 
differential equations in time domain or unilateral Laplace transformation in complex domain 
are used. The output variables, in this case ac components of the output voltage v0 and the 
input current i IN are determined as a function of ac components of the input voltage, output 
current, duty cycle and switching frequency, as expressed in matrix form 
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where a transfer function ( )sGxy is defined by the definition as 
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( 5.8) 

Remark: This approach is not completely correct. The small signal model is 
developed assuming that an instantaneous variable could be de-composed in one variable that 
is constant over time (steady state or equilibrium point) and one superimposed ac variable. 
Frequency of that ac variable must be lower than the Nyquist frequency, in this case half of 
the switching frequency. Applying the Laplace transformation, however, does not give any 
limitation of the signal spectra. It means that the signal could be any regular signal having the 
Laplace transformation, including the step function and even the Dirac function. This is in 
contradiction with the first assumption of using small signal model; limited spectra of the 
superimposed small signal. 
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5.2. The DC-DC Converter Model 

Fig.  5.2 shows the converter equivalent circuit diagram. The input filter capacitors are 
modeled by ideal capacitors CB1, CB2. The capacitors leakage current is modeled by the 
current sources iB1 and iB2. Resistance RLC0 is the inductor resistance that is a constant 
(frequency independent) resistance. 

 

 

Fig.  5.2 The dc-dc converter large signal (average) model. 

 

5.2.1. Large Signal Model 

Assuming that vBUS=const, the circuit in Fig.  5.2 can be described by the following set 
of equations, 
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where 21 CCC vvv −=∆ , and iB1 and iB2 are the filter capacitors leakage current. 

Duty cycles d1 and d2 are modulation signals (PWM1 and PWM2), which are generated 
by a non-linear controller, where the control law is 
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u0 is the main control variable, while ∆d is the balancing duty cycle as an auxiliary 
control variable. uC0 is the ultra-capacitor voltage and vBUS is the dc bus voltage. The control 
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variable u0 is generated by the current controller, while ∆d is generated by the voltage error 
controller (∆vC). This is discussed shortly after in section  5.5.2. 

Substituting ( 5.10) into ( 5.9) yields 
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where ∆iB=iB1-iB2. 

5.2.2. Linearization and Small Signal Model 

The state and control variables of the system ( 5.11) are approximated by the first order 
perturbation model 
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Substituting ( 5.12) into ( 5.11) yields small signal model 
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Circuit diagram of the small signal model is depicted in Fig.  5.3. 

 

Fig.  5.3 The dc-dc converter small signal model. 

 

Appling Laplace transformation on ( 5.13) yields the system transfer functions in a 
matrix form 

( )
( )

( ) ( )
( ) ( )

( )
( ) ( )si

G

G

sd

su

sGsG

sGsG

sv

si
B

vCB

BiC

CONTROL

dvCvCu

diCuiC

OUT

C

C ∆







+








∆







=









∆ ∆

∆ 00

0

0000

4342143421

, 
( 5.14) 



 5. MODELING AND CONTROL ASPECTS 

 -73- 

where the transfer functions are 
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The capacitors leakage current ∆iB is not included in transfer function ( 5.15) because 
this current is not dynamic variable (the capacitors leakage current is constant 0ˆ ≅∆ Bi ). 
However, the leakage current has to be taken into account when computing steady state 
balancing duty cycle ∆D. 
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Fig.  5.4 (a) illustrates a block diagram of the small signal model ( 5.15). This model 
will be further used for synthesis of the current controller (iC0) and the input voltage error 
controller (∆vC). The transfer functions ( 5.15) are second order functions, wherein the 
nominators and denominator coefficients depend on the steady state variables: ∆VC, ∆D, U0 
and IC0. If the system is well designed and controlled, the steady state voltage balancing error 
is 0=∆ CV . Furthermore, from ( 5.11) follows that the duty cycles d1 and d2 in steady state 
must be equal, and therefore 0=∆D . This is a case only if the filter capacitors leakage current 
can be neglected (∆iB=i B1-iB2=0), for example when high quality film capacitors are used. If 
electrolytic capacitors are used, leakage current has to be taken into account. In that case, 
steady state balancing duty cycle is given by ( 5.16). 

Substituting conditions 0=∆ CV  and 0=∆D  into ( 5.15) yields simplified transfer 
functions, 
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( 5.17) 

The transfer functions GiCu0 and GvC∆d have become first order functions. The cross-
coupling terms GiC∆d and GiC0∆d are zero; u0 has no influence on the voltage balancing error 
∆vC and ∆d has no influence on the output current iC0. Bode diagrams of the transfer functions 
( 5.15) have been computed for different conditions and depicted in Fig.  5.4 (b), (c) and (d). 
To prove small signal model ( 5.15), the dc-dc converter frequency response was simulated 
under different conditions. The results are included in the Bode diagram of Fig.  5.4 at 
different frequencies; 1Hz, 10Hz, 100Hz and 1kHz. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.  5.4 a) The dc-dc converter small signal model. Bode diagram of the system transfer functions: b) the 

control to the ultra-capacitor current system transfer function
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5.3. The DC Bus Circuit Model 

In this section, general case of the dc bus load model is discussed. Then, PWM fed 
variable speed drive is analysed as an application example. 

5.3.1. A General Case 

In real applications, such as lose-less power conversion, the dc bus load is more 
complex than a simple current source. It could be also constant resistance and constant power 
as well as a combination of all the three loads. This could be an essential issue for the system 
control, particularly the dc bus voltage and overall system stability. To cover all these cases, 
we shall consider a generic load composed of constant power PLOAD, constant current ILOAD 
and a passive resistive load RLOAD, as given in Fig.  5.5,  [110]- [111]. The dc bus filter is 
modelled by an ideal capacitor CBUS and equivalent series resistance RESR. The dc bus supply 
is indicated by a current iBUS. 

From Fig.  5.5 we have the load equivalent current iL_E 
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Linearization around an equilibrium point yields steady state (DC component) 
variables 
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II ++=_ , ( 5.19) 

and small signal variation  (ac component) around the steady state 
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PLOAD-RL_E graph for different type of load, active constant power load and passive 
resistive load is given in Fig.  5.6. As seen from Fig.  5.6, the load incremental resistance 
(small signal resistance) is negative if the load is positive constant power, while the resistance 
is positive when the load is either passive resistive load or negative constant power load. 

 

 

Fig.  5.5 Model of the dc bus filter and load. 

 

 

Fig.  5.6 Incremental (small signal) resistance versus the dc bus load. 

 

5.3.2. PWM Inverter fed Variable Speed Drives as DC bus load 

Basically, two different operational modes of a variable speed drive can be 
distinguished, namely constant power and constant torque mode. Most of today’s drives work 
in constant power mode thanks to accurate control of the speed. Typical examples are lifts in 
constant speed mode, conveyers, pumps fans, and so on. There are, however, some 
applications with constant torque control. Typical examples are high performance servo 
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positioning drives, such as robot applications, tooling machines and so on. In such 
applications the shaft speed is varying while to torque is controlled by an inner control loop. 
However, even in this case, the inverter behaves as a constant power load. The inverter output 
voltage is controlled to be constant, controlling the inverter duty cycle. Therefore, on short 
term scale in order of several 100ms, the inverter output power is constant too. If the inverter 
losses can be neglected, as it is case when the inverter is well designed, the inverter input 
power (dc bus power) is constant too, regardless on the input voltage (dc bus voltage) 
variation. 

5.4. The Entire Conversion System Model 

5.4.1. Large Signal Model 

The large signal (nonlinear) model of the entire power conversion system is depicted 
in Fig.  5.7. The input rectifier is modeled by a voltage source vREC, diode DR and filter 
inductor LBUS. Here, we consider that the drive operates in braking or motoring mode from the 
ultra-capacitor. In that case the dc bus voltage is boosted, being greater that the input voltage, 
and therefore the input rectifier diodes are blocked. Thus, the input voltage vREC, diode DR and 
inductor LBUS can be dropped from the model. This is indicated by the dashed lines in Fig.  5.7 
(a). The dc bus capacitor is modeled by an ideal capacitor CBUS and its equivalent series 
resistance RESR. The dc bus load, in this case a controlled electric drive, is modeled by a 
constant power load pLOAD. 

The bi-directional dc-dc converter is modeled by a loss-free power converter with an 
input (vBUS) and an output (uC0). The input is modeled by a power source pC0 that is connected 
on the dc bus side. The output is modeled by a current source iC0 that is connected on the 
ultra-capacitor side. Details are shown in Fig.  5.7 (a). Block diagram of the converter model is 
depicted in Fig.  5.7 (b). 

The dc-dc converter contains an inductor LC0 that is carrying the current iC0. The input 
to output instantaneous power balance is 
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Liiup C

CCCCC
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00000 += . ( 5.21) 

However, if the dc-dc converter is designed in such a way to have switching frequency 
quite greater than bandwidth of the dc bus voltage control loop, the effect of the inductance 

LC0 can be neglected, and therefore it can be assumed that 00
0 →




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



dt

di
L C

C .Thus, the input 

instantaneous power is equal to the output instantaneous power, 

000 CCC iup = . ( 5.22) 

Without losing generality of the analysis, one may consider that the current iC0 is well 
controlled by an inner current controller and as that the current iC0 will be taken as the system 
control variable. 
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(a) 

 

(b) 

Fig.  5.7 Model of entire power conversion system. a) Circuit diagram and b) bloc diagram. 

 

The system of Fig.  5.7 can be described by following set of nonlinear equations 
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5.4.2. Linearization and Small Signal Model 

Applying Taylor series expansion ( 5.6) or the first order perturbation model ( 5.12) on 
( 5.23), ( 5.24) and ( 5.25) yields a linear model, 
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where a variable xXx
)+= 0  is represented by the steady state 0X and a small variation 

x
) around the steady state. 

Applying Laplace transformation on ( 5.26)-( 5.28) yields the transfer functions in a 
matrix form, 
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Block diagram of the small signal model ( 5.29) is depicted in Fig.  5.8. 

 

Fig.  5.8 Block diagram of small signal model of the conversion system of Fig.  5.7. 

 

The ultra-capacitor current to voltage transfer functions is 
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where ωZ and ωP are a zero and pole that depend on steady state variables UC0, IC0 and 
the ultra-capacitor parameters. 

The control and disturbance to the dc bus voltage transfer functions are 
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( 5.31) 

where VBUS and PLOAD are the dc bus voltage and load power in steady state and GC0 is 
the ultra-capacitor voltage transfer function ( 5.30). When the electric drive operates in steady 
state, being supplied from the ultra-capacitor, the ultra-capacitor power and load are balanced, 

000 =+ LOADCC PIU . Substituting this condition into ( 5.31) yields 
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If the ultra-capacitor is large enough to be considered as an infinite capacitance 
compared to the dc bus capacitor CBUS, as it is case in most of the applications, the transfer 
function BUSG  becomes 
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Transfer function could be further simplified.  The ultra-capacitor voltage is high 
enough and therefore the voltage droop on the series resistance can be neglected, 

000 CCC RIU >> . The dc bus voltage transfer function is  
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5.4.3. Discussion on the Model 

As well known from the literature, a dc-dc converter may have right half plane zero 
(RHPZ) in the control to the dc bus voltage transfer function  [106],  [112]- [114]. The control 
variable can be either duty cycle d in voltage control mode or output current iC0 in the current 
control mode. Location of the zero depends on the output current iC0. The positive current the 
negative zero and negative current the positive zero. This causes an issue when the dc bus 
voltage control loop has to be fast, in the same order as the output current control loop. 

Please note from ( 5.34) that the zero of the transfer function is independent on the 
output current. In fact, when linear model of the conversion system has being developed, it 
has been assumed that the dc-dc converter is a device that satisfies the instantaneous power 
balance ( 5.22). That means the dc-dc converter does not content any energy storage element, 
neither an inductor nor a capacitor. This is just an approximation. If the dc-dc converter 
contents an inductor LC0 which cannot be neglected, the instantaneous power balance ( 5.21) 
has to be used. Substituting ( 5.21) into ( 5.24) and ( 5.25), yields a transfer function that has a 
zero, whose position in complex plane depends on the steady state current IC0; the positive 
current the negative zero and the negative current the positive zero. If the dc-dc converter is 
designed in such a way to have switching frequency quite greater than bandwidth of the dc 
bus voltage control loop, the RHPZ can be neglected in the transfer function GBUS. Also, in 
this case, the current controller response time can be neglected. 

5.5. Control Scheme 

5.5.1. The Control Objectives 

The primary control objective is to control the ultra-capacitor current iC0 and the 
voltage balancing error ∆vC  [92]. The secondary control objective is to asymptotically 
regulate the dc bus voltage vBUS to desired reference, where the reference depends on the 
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system operation mode  [114]. Last but not least control objective is to regulate the ultra-
capacitor state of the charge, where the state of charge reference depends on the operating 
mode  [114]. The system operating modes and corresponding references have been discussed 
in chapter 3, section 3.2. 

5.5.2. Control of the Ultra-capacitor Current and Voltage Balancing Error 

Fig.  5.9 illustrates small signal block diagram of the converter, including control 
scheme for the ultra-capacitor current and the voltage balancing error. The converter model 
and two controllers can be distinguished. The controller GiC0 controls the ultra-capacitor 
current iC0, while the controller G∆vC controls the voltage balancing error ∆vC. The current 
reference is iC0REF, while the reference for the voltage balancing controller is zero. 

 

 

(a) 

 

(b) 

 

(c) 

Fig.  5.9 Control algorithm for the ultra-capacitor current and the voltage balancing error. a) Small signal 
model, b) the ultra-capacitor current control loop, and c) the voltage balancing control loop. 

 

5.5.2.1. The Control Scheme Realization 

Design and realization of the current controller is state of the art, and therefore it is not 
discussed. The voltage balancing controller design and realization is discussed in some more 
detail. As seen from ( 5.17), gain of the transfer function GvC∆d depends on the output current; 
the positive current the negative gain and opposite; the controller parameters depend on the 
current iC0. To avoid the use of complex adaptive controller, the controller GvC∆d can be 
designed considering positive output current. Then, the output of the controller is multiplied 
by function sgn(iC0). Simple realization is illustrated in Fig.  5.10. If the current iC0 is positive, 
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the control signal ∆d is the controller output signal. If the current iC0 is negative, the control 
signal ∆d is switched to the inverted output signal of the controller G∆vC. 

Fig.  5.11 illustrates the functionality and performance of the ultra-capacitor current 
controller and the voltage balancing controller. The current iC0 is cycling between -9A and 
10A, and the voltages vC1 and vC2 were recorded. Please note that the voltages vC1 and vC2 are 
quite well matched.  When the load current is positive the voltages are decreasing and when 
the current is negative the voltages are increasing. This is caused by the power supply current 
limitation. Fig.  5.11 (b) shows details when the output current iC0 rises from -9A to 10A, 
while Fig.  5.11 (c) illustrates the details when the current falls from 10A to -9A. High 
frequency oscillations (when the current rises/falls) are caused by the input filter inductance 
(not included in the analysis and the circuit diagram). 

 

Fig.  5.10 Realization of the ultra-capacitor current and the voltage balancing error control. 

 

5.5.3. The Ultra-capacitor and the DC Bus Voltage Control 

To describe the control scheme, three operational modes that are important from the 
control point of view are considered: 1) The mains motoring mode, 2) the braking and 
motoring from the ultra-capacitor, and 3) ride-through mode  [114]. 

Fig.  5.12 illustrates the proposed control scheme. One can distinguish an inner current 
controller GiC0 and three outer controllers. The inner controller GiC0 regulates the ultra-
capacitor current iC0. This was discussed in the previous section. Here in this section, it will 
be assumed that the current iC0 is well controlled and it follows the reference without 
significant error. 

The outer controller GuC0 regulates the ultra-capacitor voltage uC0. This controller 
generates reference iC0(REF) for the ultra-capacitor current controller. The dc bus voltage vBUS 
is controlled by two outer voltage controllers GvBUSmax and GvBUSmin. The controller GvBUSmax 
regulates the dc bus voltage when the drive operates in braking and motoring mode from the 
ultra-capacitor (modes B and MC0, Fig.  3.4), while the controller GvBUSmin regulates the dc bus 
voltage when the system operates in the ride-through mode (mode RT, Fig.  3.4). The ultra-
capacitor voltage reference uC0(REF) is sum of the output signals of the dc bus voltage 
controllers GvBUSmax and GvBUSmin. 
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(a) 

 

(b) 

 

(c) 

Fig.  5.11 Experimental waveforms of the capacitor voltages vC1, vC2 [10V/div] and the ultra-capacitor 
current iC0 [5A/div]. The ultra-capacitor current commutes from -9A to +10A. 

 

 

 

Fig.  5.12 Control block diagram of the converter, excluding control of the ultra-capacitor current and 
voltage balancing error. 
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5.5.3.1. The Mains Motoring Mode 

The dc bus voltage is determined by the mains voltage, vBUS≅1.41VMAINS, where VMAINS 
is the mains phase-to-phase RMS voltage. As defined in Fig.  3.5 (a), the dc bus voltage is 
lower than the reference VBUSmax and greater than the reference VBUSmin. Hence, the dc bus 
voltage controller GvBUSmax is saturated to UC0inM, while the controller GvBUSmin is saturated to 
zero. The ultra-capacitor voltage reference is therefore 

inMCinMCrefC UUu 000 0 =+= . ( 5.35) 

The controller GuC0 maintains the ultra-capacitor voltage constant to the intermediate 
level UC0inM in order to prevent energy flow between the ultra-capacitor and the drive. 

 

 

Fig.  5.13 The ultra-capacitor voltage closed loop. 

 

5.5.3.2. The Drive Braking Mode and Motoring Mode from the Ultra-capacitor 

The drive load is inverted (the motor operates as a generator) and therefore the dc bus 
capacitor CBUS is charged. The dc bus voltage vBUS increases until it reaches the reference 
VBUSmax. The dc bus voltage controller GvBUSmax goes out of saturation while the controller 
GvBUSmin stays saturated to zero. The ultra-capacitor reference voltage starts to increase from 
UC0inM towards UC0max and therefore the ultra-capacitor current increases. The magnitude of 
the current is adjusted by the cascaded controllers GvBUSmax and GuC0 to such level to maintain 
the dc bus voltage constant. If the braking energy is greater than the ultra-capacitor capability 
the voltage uC0 will reach the maximum UC0max. Then the dc bus voltage controller GvBUSmax 
will be saturated at UC0max. The ultra-capacitor voltage is regulated to UC0max and the current 
iC0 falls to zero. Charging of the ultra-capacitor is stopped. The dc bus voltage starts to 
increase until activation of the braking resistor or the drive over-voltage (over-braking) 
protection. 

When the drive operates in motoring mode, the ultra-capacitor has to be discharged to 
the intermediate value UC0inM in order to be ready for the next braking phase. The dc bus 
voltage controller GvBUSmax maintains the dc bus voltage to VBUSmax. The controller GvBUSmax 
output decreases, and therefore the ultra-capacitor voltage reference decreases towards UC0inM. 

inMCrefCC UuU 00max0 ↓≥≥ . ( 5.36) 
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The ultra-capacitor is being discharged, supplying the drive. Once the ultra-capacitor 
voltage reaches the intermediate value UC0inM, the dc bus voltage controller GvBUSmax will be 
saturated at the reference UC0inM. The ultra-capacitor voltage is regulated to UC0inM, and 
therefore the ultra-capacitor current falls to zero. Discharging of the ultra-capacitor is 
finished. The dc bus capacitor is being discharged, and therefore the dc bus voltage decreases 
until the drive input rectifier starts to conduct. The drive is being supplied again from the 
mains. 

5.5.3.3. The Ride-Through Mode 

When the mains is interrupted the dc bus voltage starts to decrease until it reaches the 
lower reference VBUSmin. The controller GvBUSmin goes out of saturation and its output starts to 
decrease below zero towards ∆UC0min=UC0min-UC0inM. Since the controller GvBUSmax is saturated 
to UC0inM, the ultra-capacitor reference voltage starts to decrease below UC0inM towards UC0min. 

( )min00min0000 CinMCCinMCrefCinMC UUUUuU =−+↓≥≥ . ( 5.37) 

It allows deeper discharge of the ultra-capacitor, and regulation of the dc bus voltage 
to the minimum level VBUSmin. If the power interruption is longer than specified, the ultra-
capacitor will be discharged to the minimum level UC0min. The ultra-capacitor current will fall 
to zero and then the dc bus voltage will start to decrease until it reaches the under-voltage 
supply fault (USF) level. 

5.5.4. The Controller(s) Synthesis 

5.5.4.1. The Ultra-capacitor Voltage Controller 

Fig.  5.14 shows the ultra-capacitor voltage control loop, where GC0 is the ultra-
capacitor current to voltage transfer function ( 5.30), GuC0 is the voltage controller and GF is 
the feedback filter. 

 

Fig.  5.14 The ultra-capacitor voltage closed loop. 

 

The ultra-capacitor voltage closed loop transfer function is 
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where ωZ and ωP are the zero and pole of the ultra-capacitor voltage transfer function 
( 5.30). The ultra-capacitor voltage controller is a classical proportional (P) controller and the 
filter GF is a low-pass filter 

( ) 00 PCuC ksG = , ( 5.39) 
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Characteristic equation of ( 5.38) is 
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where ζC0 is damping factor and ωC0 is the closed loop natural frequency. Proportional 
gain of the controller and time constant of the filter can be computed from ( 5.30) and ( 5.41) 
using the binomial criterion (ζC0=1). 

However, the question is how to define the natural frequency, or simply speaking how 
to define the close loop band-width? To answer on this question one has to keep in mind some 
system limitations. In fact, the controller bandwidth is determined by the ultra-capacitor 
voltage tracking error. In section IV it has been explained how the control system works when 
the ultra-capacitor is charged (the drive braking mode) and discharged (the drive motoring 
from the ultra-capacitor). In both modes, the ultra-capacitor voltage reference slowly 
increases/decreases. The ultra-capacitor voltage has to follow the reference. If the tracking 
error is too big, the ultra-capacitor current reference will be too small, and therefore the dc 
bus voltage can not be maintained constant.  

Maximum bandwidth is limited by the converter current capability. If the bandwidth is 
high, the ultra-capacitor voltage controller will generate the current reference greater than 
maximum current of the dc-dc converter. Therefore, the current controller GiC0 will be 
saturated, and as consequence the ultra-capacitor voltage controller will not be able to 
regulate the voltage; the control loop is saturated. 

From ( 5.41) follows relation between proportional and integral gain 
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From Fig.  5.14 and ( 5.39) one can determine the ultra-capacitor voltage error as 
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Let the ultra-capacitor is charged/discharged with constant current iC0max and the ultra-
capacitor charge/discharge time is T0. One can compute the ultra-capacitor voltage error as 
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Fig.  5.15 illustrates ( 5.44) in two different cases: the ultra-capacitor voltage is lower 
than the maximum UC0max, and the ultra-capacitor voltage is high, slightly lower than the 
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maximum UC0max. The ultra-capacitor is charged by constant current iC0. The current is 
determined by the dc bus voltage controller via the ultra-capacitor voltage reference in such a 
way to maintain the dc bus voltage constant. At the end of charging, at the moment T0, the 
voltage reference uC0(REF) is limited on UC0max, while the ultra-capacitor voltage is still 
increasing. Therefore, the error starts rapidly decreasing, causing decrease in the ultra-
capacitor current. The decrease in the current will cause lost of the dc bus voltage control. If 
the charge/discharge time is long, the ultra-capacitor voltage error is low at the end of 
charging, at T0, Fig.  5.15 (a). The most critical case is when the ultra-capacitor initial voltage 
is close to the maximum UC0max. In this case that is not possible even to start controlling the 
dc bus voltage. This case is illustrated in Fig.  5.15 (b). 

 

(a) 

 

(b) 

Fig.  5.15 Relation between the ultra-capacitor controller gain and control performance. a) The ultra-
capacitor voltage is lower than the maximum UC0max. b) the ultra-capacitor voltage is high, 
slightly lower than the maximum UC0max. 

The controller proportional gain kPC0 is computed from ( 5.44) as 
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Finally, substituting ( 5.45) into ( 5.42) yields the filter time constant as a function on 
the ultra-capacitor parameters and the closed loop damping factor 
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Fig.  5.16 shows the filter time constant versus the damping factor and the ultra-
capacitor voltage controller gain. 

5.5.4.2. The DC Bus Voltage Controller(s) Synthesis 

The dc bus voltage closed loop is illustrated in Fig.  5.17. The ultra-capacitor voltage 
control is cascaded with the dc bus voltage control. This may cause a problem in the 
controller synthesis because the ultra-capacitor voltage control loop is in order of magnitude 
slower than the dc bus voltage control loop. Let us see how the analysis can be simplified and 
the dc bus voltage controller designed. 

The ultra-capacitor voltage control loop appears in the dc bus voltage control loop as 
transfer function 
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(a) 

 

(b) 

Fig.  5.16 a) The filter time constant TF versus damping factor and the controller gain. RC0 =2Ω, CC0=0.3F, 
kC=0.1/700 F/V. b) TF versus damping factor at fixed controller gain kPC0 =5. 

 

 

Fig.  5.17 Block diagram of the dc bus voltage closed loop control. 

 

Assuming that the ultra-capacitor is large enough, ( 5.47) can be simplified as 
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Because current capability of the dc-dc converter is limited, the bandwidth of the ultra-
capacitor voltage controller is much lower than bandwidth of the dc bus voltage controller. 
Therefore, the filter time constant TF can be assumed as infinite in comparison to the dc bus 
voltage response time. ( 5.48) is therefore simplified as 
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This simplification can be done straightforward from ( 5.47) if taken into account that 
the dc bus voltage controller is much faster than the ultra-capacitor voltage controller. 
Therefore, one can assume that the ultra-capacitor voltage reference uC0(REF) is a unity step 
function and then apply the initial value theorem into ( 5.47). 
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Frequency response of the transfer function ( 5.47) and the approximation ( 5.50) have 
been compared. The comparison is illustrated in Fig.  5.18 Note that the approximated model 
and the original one are quite well matched at frequencies above 20Hz. In low frequency 
range, there is deviation in amplitude and phase characteristic. 

 

Fig.  5.18 Bode diagram of the transfer function ( 5.47). The ultra-capacitor feedback filter time constant is 
TF=100ms. The ultra-capacitor CC0=0.4F (the red trace) and an infinite capacitance (the blue 
trace). 

Now, the dc bus voltage close loop transfer function is define as 
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The dc bus voltage controller is the classical PI controller 
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The characteristic equation of the closed loop transfer function ( 5.51) is given by 
( 5.53), where ζBUS is damping factor and ωBUS is the closed loop natural frequency. 
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Proportional and integral gains are computed using the Butterworth criteria (ζBUS=0.7)  
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If the dc bus capacitor series resistance can be neglected, BUSESRBUS CRω>>1 , ( 5.54) is 
simplified and the controller gains computed as 
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The controllers’ gains depend on the ultra-capacitor voltage, which is in general case 
not constant over time, taking value from the minimum UC0min to the maximum UC0max. The 
dc bus voltage controller has to be designed in such a way to provide sufficient damping in 
the worst case of the ultra-capacitor voltage UC0. To determine the worst case, one can draw 
the close loop root locus versus the ultra-capacitor voltage. The root locus is depicted in Fig. 
 5.19.  

 

Fig.  5.19 The dc bus voltage closed loop root locus versus the ultra-capacitor voltage UC0. VBUS=700V, 
fBUS=25Hz, kPBUS=0.08, kIBUS=16. 

As seen, the damping factor increases as the ultra-capacitor voltage increases. 
Therefore, the controllers have to be designed for the minimum ultra-capacitor voltage UC0min. 
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In that case, the damping factor will not be lower than the desired for any value of the ultra-
capacitor voltage. 

The gains of the dc bus voltage controllers can now be computed from ( 5.54), taking 
the dc bus voltage and the ultra-capacitor voltage reference from Fig.  3.5. 
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Fig.  5.20 Bode diagram of the dc bus voltage transfer function vBUS(s)/vBUS(REF)(s) for different time 
constant of the ultra-capacitor voltage feedback filter. 

5.5.5. Simulation and Experimental Results 

The model and control scheme presented in this chapter were simulated by 
Matlab/Simulink. For simulation purpose, non-linear model (Fig.  5.7) was used. The model 
and control scheme were also experimentally verified. Some of the simulation and 
experimental results are presented and discussed hereafter. The control algorithm, PWM and 
protection functions were implemented in a fixed-point 32 bit digital signal processor (DSP). 
The complete control algorithm is executed at 50 kHz. The controllers were implemented as 
ordinary proportional-integral (PI) controllers. The controller parameters were computed in 
continuous time domain (s), and then translated into discrete time domain, (z), using the 

approximation
ST

z
s

11 −−= , where sTS µ200= is the sampling period. The control system 

specification is given in TABLE  5-1 on the next page. 

5.5.5.1. Simulation Results 

Fig.  5.21 shows the waveforms during an entire operating cycle: the mains motoring 
(MM ), braking (B), the ultra-capacitor motoring (MC0) and the mains motoring mode (MM ). 

Fig.  5.22 (a) shows the dc bus voltage and the ultra-capacitor current and voltage 
waveforms during transition from the mains motoring mode to braking mode. Fig.  5.22 (b) 
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shows the same waveforms during transition from braking to the ultra-capacitor motoring 
mode. 

TABLE  5-1. Specification of the control system. 

ULTRA-CAPACITOR DC BUS 

UC0max 780V VBUSmax 700V 

UC0inM 350V VBUSmin 450V 

UC0min 250V CBUS 820µF 

CC0 0.4F RESR 190mΩ 

RC0 2Ω Bandwidth 50Hz 

Controller UC0 ( ) 50 =zGuC  Controller VBUSmax ( )
1max 1

0065.0
145.0 −−

−−=
z

zGvBUS  

Feedback filter  ( ) ( ) 11500

1
1 +−

= −z
zGF  

Controller VBUSmin ( )
1min 1

009.0
2.0 −−

−−=
z

zGvBUS  

 

 

(a) 

 

(b) 

Fig.  5.21 Simulation waveforms of the dc bus voltage vBUS, the ultra-capacitor voltage uC0 and current iC0 
during the mains motoring- braking-the ultra-capacitor motoring mode. vBUSmax=700V, fB=50Hz, 
PLOAD=+/- 5000W, CBUS=820µF, CC0=0.4F. 

 

(a) 

 

(b) 

Fig.  5.22 Simulation waveforms of the dc bus voltage vBUS, the ultra-capacitor voltage uC0 and current iC0. 
a) transition from MM  to B, and b) transition from B to MC0 mode vBUSmax=700V, fB=50Hz, 
PLOAD=+/- 5000W, CBUS=820µF, CC0=0.4F. 
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5.5.5.2. Experimental Results 

The control system was experimentally tested under different conditions. Fig.  5.23 (a) 
shows the waveforms when the drive runs on the full speed and then is stopped suddenly. The 
dc bus voltage rapidly increases within 30ms until reaches reference VBUSmax=700V. At that 
instant dc bus voltage controller starts to regulate dc bus voltage with slight overshoot of 
approximately 12V. The ultra-capacitor current is approximately 13A. Similar test was done 
in case of power interruption. The drive is loaded and then the mains is interrupted. The dc 
bus voltage falls to minimum VBUSmin=450V within 10ms, and then stays well regulate to that 
level. As seen from Fig.  5.23 (b) the dc bus voltage has an under-shoot of approximately 12V 
during settling time of about 30ms. The ultra-capacitor discharge current is approximately -
13A. The initial step in the ultra-capacitor voltage seen in the both experiments is caused by 
the voltage drop across the capacitor internal resistance RC0. The ultra-capacitor 
charging/discharging power computed from the ultra-capacitor voltage and current is roughly 
4500W. 

 

 

(a) 

 

(b) 

Fig.  5.23 Experimental waveforms of the ultra-capacitor current iC0 [5A/div] and voltage uC0 [100V/div], 
the dc bus voltage vBUS [100V/div] and the mains current iMAINS [50A/div]. a) Transition from the 
mains motoring mode to the braking mode. b) Transition from the mains motoring to ride-through 
mode. 

Fig.  5.24 illustrates the functionality of the dc bus voltage braking controller, GVBUSmax. 
The ultra-capacitor is charged on 550V. Fig.  5.24 (a) shows the ultra-capacitor voltage and 
current, ac component of the dc bus voltage and rectifier current when the drive switches from 
stand-by mode to the ultra-capacitor mode. The controller response time is approximately 8 
ms, while the voltage undershoot is approximately -15V. Fig.  5.24 (b) shows the waveforms 
when the drive switches from the ultra-capacitor mode to stand-by mode. The voltage 
overshoot is approximately 14V. The controller response time is similar to the previous one. 

5.5.6. Discussion on the Current Controller Response Time and the DC Bus 
Voltage Control 

In the above analysis, response time of the current controller has been neglected and 
the current iC0 has been taken as an independent control variable. This is sufficiently accurate 
approximation if the dc bus control is slow compared to the current controller. In most of the 
applications that is the case. The current controller response time is TiC0≤500µs, while 



 5. MODELING AND CONTROL ASPECTS 

 -93- 

response time of the dc bus voltage controller is TvBUS≥5ms. Therefore, the current controller 
can be considered as a pure gain without delay, and the dc bus voltage controller can be 
designed as it has been described. 

However, in certain applications the dc bus voltage controller has to be fast, having 
response time in order of 1ms. Typical application is variable speed drive converter equipped 
with a small dc bus capacitor. In such an application, the dc bus voltage controller has to be 
able to regulate the voltage regardless on the dc bus load variation. Thus, the current 
controller response time has to be taken into account when designing the dc bus voltage 
controllers. 

 

 

(a) 

 

(b) 

Fig.  5.24 Experimental waveforms of the ultra-capacitor current iC0 [5A/div] and voltage uC0 [100V/div], 
the dc bus voltage vBUS [100V/div] and the rectifier current iREC [5A/div]. The dc bus voltage 
controller response on a step load. a) Transition from stand by mode to the ultra-capacitor 
motoring mode, b) transition from the ultra-capacitor motoring mode to stand by mode. 
VBUSmax=700V, uC0=550V and fB=50Hz. 
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6. DISCUSSION AND CONCLUSIONS 

6.1. Concept of the Ultra-capacitor Based Controlled Electric Drive 

To compare the ultra-capacitor based regenerative electric drive with state of the art 
solutions, the following two features are considered: 

1. The drive immunity on the mains interruption, and 

2. The drive system cost versus braking and ride-through time. 

6.1.1. The Drive Immunity on the Mains Power Interruption 

Comparison of the ultra-capacitor based regenerative drive with back-to-back and 
matrix drive is summarized in TABLE  6-1. The ride-through time in braking and motoring 
mode are compared. The back-to-back drives have short-term ride-through capability, in order 
of 20ms, while the matrix converter drives do not have ride-through capability at all. In 
contrast to this, the ultra-capacitor based drives have the ride-through capability, wherein the 
ride-through time is the system design parameter. 

TABLE  6-1: Comparison of different drive concepts regarding ride-through capability. 

 Back-to-back drive 
converter 

Matrix drive converter The ultra-capacitor based 
drive 

Ride-through time in 
motoring mode 

Depends on the load. At 
full load and 100% 

interruption, the ride-
through time is less than 

100ms 

No ride-through 
capability 

From 100ms up to 
several seconds or 

minutes, depending on 
the design criteria 

Ride-through time in 
braking mode 

Normally less the mains 
period (20ms) 

No ride-through 
capability 

From few seconds up to 
minutes, depending on 

the design criteria 

6.1.2. The Drive Cost Comparison 

The cost of the ultra-capacitor based controlled electric drive depends on the braking 
and ride-through capability. Longer braking and ride-through time the bigger the ultra-
capacitor is. In contrast to this, cost of back-to-back and matrix converters is practically 
independent on the braking time. If the braking time is shorter than the critical time TCR, the 
ultra-capacitor based solution is more cost effective than back-to-back and matrix solution. 
The critical braking time TCR is currently between 10 and 15s. This limit will go up in the near 
future with development of new technology of the ultra-capacitors. Regarding extended ride-
through capability the ultra-capacitor solution is the most cost effective solution regardless on 
the ride-through time. Reason for this lays in the fact that an additional energy storage device 
and dc-dc or dc-ac converter are required for back-to-back and matrix solution. Fig.  6.1 
illustrates the drive cost versus braking and ride-through time for different drive technology. 
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Fig.  6.1 Cost comparison of the ultra-capacitor based regenerative drive versus back-to-back and matrix 
converter regarding braking time and ride-through time. 

6.2. Interface DC-DC Converter 

When comparing different power converter topologies, a few parameters are 
important. The first one is power rating of the active switches. The second one is size of the 
passive components, particularly inductors. Finally, the conversion losses and efficiency are 
parameters to be also considered. 

 

(a) 

 

(b) 

Fig.  6.2 Two-level versus three-level dc-dc converter. 

 

6.2.1. Semiconductors Switches 

Power rating and surface of chip of the semiconductor switch are defined by two 
parameters: the switch utilization factor  [92],  [115] and the switch voltage rating. 

6.2.1.1. The Switch Utilization Factor SUF 

The switch utilization factor of a power converter that consists of N switches 
(including diodes) is defined as 
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where ISmax and VSmax are the switches peak current and peak voltage and PC0 is the 
conversion power. 

The switch utilization factor of two-level and three-level topology is computed from 
( 4.15) and ( 6.1) as 
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where subscript (3L) and (2L) denote three-level and two-level. Please, note that the 
SUF of the two-level and three-level converter is the same. From ( 6.2) and ( 6.3) it seems that 
the two topologies are equivalent. 

6.2.1.2. The Switches Voltage Rating 

The switches voltage rating has been taken into account as a parameter in the switch 
utilization factor ( 6.1). However, this is not sufficient to compare two topologies with 
different voltage rating of the switches. Semiconductor switch conduction and switching 
performance depend strongly on the switch voltage rating and the switch technology. 
Generally, lower voltage rating means lower conduction losses, better switching performance, 
higher efficiency and lower cost. For example, let us consider a 400V supplied variable speed 
drive. The dc bus voltage varies from 500V up to 850V. For two-level dc-dc converter (Fig. 
 4.1 (a), (b)), the switches and diodes voltage rating is the full dc bus voltage. For this voltage 
rating, 1200V IGBT and 1200V fast diode are used. In this case, maximum switching 
frequency is limited by the switching performance of the IGBT and the diode. To reduce 
switching losses, soft switching techniques can be employed  [36]. 

In contrast to this, for the three-level converter, the switches and diodes voltage rating 
is a half of dc bus voltage. In this case, 600V rated IGBT or 500V super junction MOSFET 
and ultra-fast diodes can be used. Switching losses of 600V rated IGBT and diode are three to 
four times lower than the switching losses of a 1200V rated IGBT and diode. Conduction 
losses are lower too in comparison to a 1200V device. If compare two MOSFETs, one 1200V 
and one 600V rated, the difference in conduction losses is significant, because the drain 
source on-state resistance depends strongly on the voltage rating  [41]. 

6.2.2. Passive Components 

6.2.2.1. Filter Inductor L C0 

Comparison of the filter inductor is based on the comparison of the inductance LC0 at 
the same conditions: the current ripple, switching frequency and the dc bus voltage. The 
inductance of the three-level topology is computed from ( 4.8), while the inductance for two-
level topology is computed from following equation 
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The inductors size is compared from ( 4.8) and ( 6.4) as 
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where subscript (3L) and (2L) denote three-level and two-level. 

Fig.  6.3 shows the inductor relative size versus minimum duty cycle dmin, where the 
minimum duty cycle corresponds to the ultra-capacitor minimum voltage UC0min ( 3.2). Note 
that the inductor for the three-level topology is 25% of the inductor for two-level topology 
when the minimum duty cycle is inferior to 1/2. The inductor size increases from 25% up to 
50% as the minimum duty cycle increases from 1/2 towards 1. Comparison of the inductor 
size computed by ( 6.5) is not sufficient to compare the inductor volume. For that, the inductor 
losses have to be alos considered and compared. That comparison is given in section  6.2.3. 

 

Fig.  6.3 Comparison of the filter inductor size versus minimum duty cycle (corresponds to the minimum 
ultra-capacitor voltage). 

 

6.2.2.2. The DC Bus Filter Capacitors CB1, CB2 

The filter capacitors are compared at the same conditions: the voltage ripple, switching 
frequency, dc bus voltage and conversion power. The filter capacitor of the three-level 
topology is computed from ( 4.22), while the capacitor of the two-level topology is computed 
from equation 

( ) ( )d
fCv

P
dv

SWBUS

C
BUS −=∆ 10 . ( 6.6) 

The capacitors size (volume) is compared from the capacitor(s) total energy, taking 
into account that the voltage rating of capacitor(s) is different. One filter capacitor rated for 
the full dc bus voltage is used in two-level topology, and two capacitors rated for half dc bus 
voltage are used in three-level topology. From ( 4.22) and ( 6.6) follows 
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where subscript (3L) and (2L) denote three-level and two-level. 

Fig.  6.4 shows the capacitor relative capacitance and energy (which corresponds to 
size) versus minimum duty cycle dmin. Note that the capacitance of the three-level topology is 
below 20% of that of two-level topology when the minimum duty cycle is inferior to 1/2. The 
capacitance increases from 20% up to 50% as the minimum duty cycle increases from 1/2 
towards 1. The capacitors total energy (size) varies from 10% at minimum duty cycle of 1/2 
up to 25% at duty cycle of 1. The capacitor losses are not compared because high quality film 
capacitors are used and therefore the losses can be neglected. 

 

(a) 

 

(b) 

Fig.  6.4 Comparison of the filter capacitance (a) and the filter capacitor total energy (b) versus minimum 
duty cycle (corresponds to the minimum ultra-capacitor voltage). The capacitance and energy are 
computed as ratio of the capacitance and energy of the filter capacitor of two-level to three-level 
topology. 

6.2.3. Conversion Losses 

The switches losses are computed from the models ( 4.30) and ( 4.31), and data in 
TABLE  4-1. Fig.  6.5 shows 3-D graph of relative losses versus the conversion power and 
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duty cycle, where duty cycle corresponds to the ultra-capacitor voltage. The relative losses are 
computed as ratio of the three-level converter losses to the two-level converter losses. The 
losses vary from 85% at maximum duty cycle up to 89% at minimum duty cycle. That means 
heat sink of the three-level converter is 10% to 15% smaller than that of the two-level 
converter. 

The inductor losses are computed from the losses model ( 4.16) and data in TABLE 
 4-1. Fig.  6.6 shows the inductor relative losses versus the conversion power and the ultra-
capacitor voltage. The relative losses are computed as ratio of the three-level converter losses 
to the two-level converter losses. Please note that the relative losses vary between 25% and 
45% at full load, while at light load the losses vary from approximately 5% up to 50%. 

 

 

Fig.  6.5 The switches (IGBT+FWD) relative losses versus duty cycle and conversion power. The relative 
losses are computed as ratio of total losses of two-level dc-dc converter to the three-level dc-dc 
converter. 

 

 

Fig.  6.6 The filter inductor relative losses versus duty cycle and conversion power. The relative losses are 
computed as ratio of total losses of two-level dc-dc converter to the three-level dc-dc converter. 

 

6.2.4. Model and Control Scheme 

Most of the control method presented in the literature are focused on hybrid electric 
vehicle and power sources  [14],  [27]- [29],  [32],  [33]- [35],  [43]- [47]. Only a few publications 
are focused on control of the ultra-capacitor based electric drives  [5],  [21],  [22]. In 
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comparison to state of the art, the model and control scheme proposed in this part of the 
dissertation has the following features: 

o The entire conversion system is modeled, considering all parasitic effects, such 
as the voltage-dependent capacitance of the ultra-capacitor. This is particularly 
important for the ultra-capacitor voltage controller design and synthesis. 

o The dc bus voltage is asymptotically regulated to a pre-defined reference, 
where the reference depends on operating mode of the drive. 

o The ultra-capacitor voltage is asymptotically regulated to a desired reference, 
where the reference is determined depending on the application requirement. 
Doing this, the drive system is kept ready for the next braking and ride-through 
sequence. 

6.3. Conclusions 

Application of ultra-capacitor based energy storage devices in controlled electric 
drives has been discussed in this part of this dissertation. The ultra-capacitor is used to store 
the drive braking energy and restore the energy whenever it is possible. Moreover, the ultra-
capacitor can be utilized as emergency energy storage in case of the mains power interruption. 

 Because it is not convenient to connect the ultra-capacitor directly to the controlled 
electric drive, an interface dc-dc converter is necessary. State of the art topologies of interface 
dc-dc converters are discussed and a new three-level dc-dc converter is proposed. The 
proposed topology is analysed and design guidelines are given. The model of the entire 
conversion system is developed and a new control scheme is proposed. The control objective 
of the proposed control scheme is to control the ultra-capacitor current and the dc bus mid-
point voltage. The second control objective is to asymptotically regulate the dc bus voltage to 
desired reference, depending on the operating mode. The ultra-capacitor state of charge 
(SOC) control is third control objective. 

In comparison to state of the art solutions, such as back-to-back and matrix drive 
converters, the proposed ultra-capacitor based controlled electric drive has the following 
advantages: 

o The system ride-through capability is extended. The drive time autonomy is a 
design parameter. Depending on the application, the ride-through time could be 
extended up to 15s. Above this limit, it is not cost effective to use the ultra-
capacitors. Electrochemical batteries are more suitable solution. This limit will 
move up with development of new generation of ultra-capacitors. 

o The system functionality, including braking capability is not linked to the 
mains reliability. 

o Regarding the system installation cost, the proposed ultra-capacitor based 
regenerative electric drive is cost effective in applications that require braking 
time up to 10 to 15s. Above this limit, back-to-back and matrix converter based 
drive is better solutions. 

The three-level dc-dc converter has the following features in comparison to state of the 
art topologies: 

o The semiconductors losses are smaller than that of the state of the art 
topologies, such as two-level topology and isolated topologies. 
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o The output inductor is smaller than that of the two-level topology. The inductor 
size depends on the ultra-capacitor minimum voltage, and it varies from 25% 
to 50% of that of the two-level converter. 

o The input filter capacitor is also smaller. The capacitor volume varies between 
10% and 25% of that of the two-level converter. 
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7. BACKGROUND AND STATE OF THE ART 

7.1. Background 

Three-phase ac-dc power converters (rectifiers) are widely used in many applications, 
such as variable speed drives, UPS, data centers and telecom power supplies and many other 
applications. The rectifier main design objectives are efficiency, size, reliability and cost. 
Recently, the input current harmonics have become a more and more important design 
criterion. In some applications, the dc bus voltage has to be constant and greater than the 
mains voltage regardless on the mains voltage variations and disturbances. A further issue in 
the application of three-phase rectifiers is single-phase supply operation. Single-phase supply 
could be the mains degradation when one phase is lost. In such a case, the rectifier is supplied 
with one phase-to-phase voltage and from the rectifier sideequvalent to a single-phase supply. 
Another application example is rural single-phase network or some specific application of 
variable speed drives, such as irrigation systems. 

7.2. State of the Art 

Numerous different rectifier topologies have been presented in literature and used in 
applications. The most important topologies are briefly presented in this section as state of the 
art solutions. 

Three-phase diode front-end rectifier with passive LC filter is the most common 
rectifier topology. The circuit diagram is depicted in Fig.  7.1 (a). This is the simplest and the 
most robust solution. However, it has numerous disadvantages, which make it undesirable in 
many applications. The input current total harmonic distortion (THD) is relatively high and 
the power factor (PF) is low. THD depends on the inductor and capacitor size, and it could be 
as high as 100%, or higher. The dc bus voltage is uncontrolled and slightly lower than the 
mains phase-to-phase peak voltage. In addition, low frequency voltage ripple is significant 
too. The dc bus filter capacitor CBUS and inductor LBUS are bulky, lossy and expensive. 

The single-switch three-phase continuous conduction mode (CCM) boost rectifier is a 
solution that offers some advantages compared to the diode front-end rectifier  [49]- [51]. The 
circuit diagram is shown in Fig.  7.1 (b). The rectifier output current iREC is constant and 
therefore the mains current is a square waveform of 2π/3 radians with a THD of 
approximately 30%. The dc bus voltage is controlled and boosted above the mains phase-to-
phase peak voltage. Low frequency voltage ripple is negligible compared to the diode 
rectifier. A variant of this topology is discontinuous conduction mode (DCM) boost rectifier 
 [52]- [55] (Fig.  7.1 (c)). This topology offers lower THD of the input current than CCM boost 
rectifier. The common disadvantage of those two topologies is power rating of the switch and 
the boost diode. Both of them are rated at full dc bus voltage vBUS and full rectifier current 
iREC. The double-boost rectifier, Fig.  7.1 (d), is a solution that offers better efficiency and 
smaller filter inductor in comparison to the single-switch boost topology. 

An electronic smoothing inductor (ELSI) has been proposed in  [61]- [63] (see Fig.  7.1 
(e)). A low voltage H bridge with a low voltage capacitor and a small filtering inductor is 
connected between the rectifier and the dc bus plus rail. This emulates an infinity inductance 
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and maintains the rectifier current constant. The active components are rated on a fraction of 
the dc bus voltage. The main disadvantage of this topology is the fact that the dc bus voltage 
is equal to the average value of the rectifier voltage. This means the dc bus voltage is even 
lower than that of the ordinary diode rectifier with capacitive filter. In some applications, this 
is a serious limiting factor. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
 

(e) 

Fig.  7.1 State of the art rectifier topologies a) diode front end rectifier, b) continuous conduction mode 
(CCM) single switch boost rectifier, c) discontinuous conduction mode (DCM) single switch 
boost rectifier, d) double boost, and e) an electronic smoothing inductor (ESI) rectifier. 

 

7.3. A Novel Half-DC-Bus-Voltage Rated Boost Rectifier 

In this part of the dissertation, chapters 8 to 11, a novel hybrid half-dc-bus-voltage 
rated boost rectifier is presented  [116]. The core of the presented solution is a unidirectional 
power conversion device, so-called the loss-free transformer (LFT), see. The LFT has two 
output and input terminals. The output is series connected between the rectifier plus rail and 
the dc bus plus rail. The input is parallel connected with the dc bus. Because of such a 
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connection, it is possible to control the rectifier current and to boost the dc bus voltage above 
the mains phase-to-phase peak voltage. The LFT is composed of two uni-directional dc-dc 
converters. The first converter is rated on half of the dc bus voltage and full rectifier current, 
while the second one is rated on half dc bus voltage and a fraction of the input rectifier 
current. The first converter regulates the rectifier current and the dc bus voltage, while second 
one assists to the first one. Power rating, size and efficiency of the entire conversion system 
depend strongly on the ratio of the dc bus voltage to the rectifier voltage (boosting factor). For 
example, if the boosting factor is low, below 1.5, the efficiency is around 98 to 99% 
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8. HYBRID HALF -DC-BUS-VOLTAGE RATED BOOST RECTIFIER  

8.1. The Basic Principle 

The basic principle of the proposed boost rectifier is illustrated in Fig.  8.1. One can 
distinguish a three-phase diode rectifier, a dc bus filter capacitor CBUS, the dc bus load and a 
two-terminal device designated as loss free-transformer (LFT). 

 

(a) 

 

(b) 

Fig.  8.1 a) Basic principle of the proposed boost rectifier, b) the rectifier voltage vREC, the dc bus voltage 
vBUS and the compensation voltage v0, the mains phase-to-phase voltage vMAINS, the mains phase-
to-neutral voltage vMAINS(phase) and the mains phase current iMAINS. 
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The output terminal of the LFT is connected between the rectifier plus rail and the dc 
bus plus rail, while the input is connected in parallel with the dc bus. The LFT is controlled by 
a control variable m(t). 

Let the mains be symmetrical three phase mains with phase to phase voltages given as 
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where p=0,1,2 is the phase order. 

Let the rectifier current iREC be constant or pseudo constant (being controlled by the 
LFT). Since the rectifier operates in continuous conduction mode (CCM), the rectifier output 
voltage is 
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with the period T=Tm/6, where Tm is the mains period. The rectifier voltage, the dc bus 
voltage, the mains phase voltage and phase-to-phase voltage, and the mains current are 
illustrated in Fig.  8.1 (b). 

The rectifier average voltage and average current are 
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As it can be seen from Fig.  8.1, the dc bus voltage vBUS is sum of the rectifier voltage 
vREC and the auxiliary boost voltage v0(t), where v0(t) is generated and controlled by the LFT. 
Hence, the dc bus voltage can be directly controlled by the boost voltage v0(t) via the LFT, 
regardless on variation of the mains voltage and the dc bus load. The instantaneous and 
average boost voltage is 

( ) ( )tvvtv RECBUS −=0 , ( 8.5) 
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8.1.1. The LFT Realization 

Some possible realizations of the LFT are illustrated in Fig.  8.2. The LFT consists of 
two uni-directional dc-dc converters, namely DC-DC1 and DC-DC2, and two series 
connected capacitors CB1 and CB2. Output of the converter DC-DC1 is connected between the 
rectifier and dc bus plus rail, while the input is connected in parallel with the capacitor CB2. 
The average power of the converter DC-DC1 is not zero (v0(AV)iREC≠0). Therefore, the current 
i1, which flows into the capacitors mid point, is not zero. Since the capacitors average current 
must be zero in steady state, one additional converter must be connected on the capacitors mid 
point in order to compensate the current i1. The converter DC-DC2 could be connected in 
three different ways. 
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The case A: The DC-DC2 output is parallel connected with the capacitor CB2, while 
the input is connected in parallel with the dc bus (Fig.  8.2 (a)). 

The case B: The DC-DC2 output is connected on the dc bus, while the input is 
connected in parallel with the capacitor CB1 (Fig.  8.2 (b)). 

The case C: The DC-DC2 output is connected in parallel with CB2, while the input is 
connected in parallel with CB1 (Fig.  8.2 (c)). 

 

(a) 

 

(b) 

 

(c) 

Fig.  8.2 Realization of the LFT with two dc-dc converters. a) DC-DC2 is connected on top capacitor CB2 
and the dc bus, b) DC-DC2 is connected on bottom capacitor CB1 and the dc bus, and c) DC-DC2 
is connected on CB1 and CB2. 
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The best of the three possible topologies depends on the power rating of the DC-DC2 
converter. To examine this, let us compute power rating of DC-DC2 converter for all the three 
cases. 

The average currents i1 and i2 are computed from the power balance as 
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where the top capacitor voltage is BUSCC vkv 22 = . The dc bus voltage boosting factor 
kBOOST is defined as 
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From ( 8.7) and Fig.  8.2 one can find power rating of the DC-DC2 converter. 

The case A: 
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The case B: 
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The case C: 
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The converter relative power rating versus the voltage vC2 is plotted in Fig.  8.3. 

 

 

Fig.  8.3 Relative power of the converter DC-DC2 versus voltage vC2. P2A if case A, P2B if case B, and P2C 

if case C. The coefficient 
BUS

C
C v

v
k 2

2 =  is the voltage vC2 normalized on the dc bus voltage vBUS. 
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One can see from the graph, Fig.  8.3, that the power rating of the converter of case A 
(Fig.  8.2 (a)) is constant. In contrast to this, the power rating of the converter in case B and C 
(Fig.  8.2 (b) and (c)) strongly depends on the voltage vC2. From the graph, one can conclude 
that the topology C requires minimum power rating of the DC-DC2 converter. 

A particular case that is considered in the dissertation is vC2=vC1=vBUS/2 (the DC-DC2 
is connected as in case C). Because some of the terminals of the DC-DC1 and DC-DC2 
converters are connected together, the circuit of Fig.  8.2 (c) could be further simplified as 
given in Fig.  8.4 (a). 

Detailed circuit diagram is depicted in Fig.  8.4 (b). The DC-DC1 converter is a 
converter connected in three points; plus rail of the input rectifier, plus rail of the dc bus and 
mid point of the capacitors CB1 and CB2. The DC-DC2 converter is a switched capacitor 
converter that is connected between mid point of the capacitors CB1 and CB2 and plus/minus dc 
bus. Detailed analysis of these two converters is given in sections  8.2 and  8.3. 

 

 

(a) 

 

(b) 

Fig.  8.4 Realization of the LFT using two three-points connected dc-dc converters, and b) some details of 
a possible realization. 
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8.1.2. The Mains Current Quality 

The mains current quality has become an important issue recently with broad 
application of nonlinear loads such as diode bridge passive rectifiers. Such loads generate 
higher harmonics in the mains current, which cause additional heating of the distribution 
transformers, capacitor banks and neutral line of the low voltage distribution network. 
Moreover, the higher harmonics generates electromagnetic interference (EMI) with analog 
communication equipment. 

Based on the international IEC standard  [13], total harmonic distortion factor (THD) 
and partially weighed harmonic distortion factor (PWHD) are defined as 
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Please notice that harmonics up to 40th order are taken into account in the THD and 
PWHD definition  [13]. In the near future, it is expected that the standards will be modified 
and higher order harmonics (above 40th) will be taken into account. 

In this dissertation, an intermediate solution is discussed. The mains current is square-
waveform with certain level of higher harmonics. An ideal waveform is depicted in Fig.  8.5 
(a), while the current spectrum is depicted in Fig.  8.5 (b). The THD and PWHD factors are 
indicated in Fig.  8.5 (b). 

 

(a) 

 

(b) 

Fig.  8.5 a) Ideal waveform of the mains current, and b) amplitude spectra up to 40th harmonic. The THD 
and PWHD factor are computed from definitions ( 8.12) and ( 8.13). 

 

TABLE  8-1 shows the current emission limits applicable on three-phase variable 
speed drives. In most industrial applications, the short circuit coefficient ISC/IN is greater than 
300. In this case, the square waveform current satisfies THD limit but not PWHD limit. 
Further improvement of the current shape regarding the PWHD factor is possible. 

Fig.  8.6 (a) shows some experimental waveforms that illustrate the functionality of the 
proposed boost rectifier. Waveform of the mains phase-to-phase voltage vMAINS, current iMAINS 
and the dc bus voltage vBUS are given. The current is a square-waveform, as expected from 
theoretical analysis. The dc bus voltage is constant, ripple-free and boosted above the mains 



 8. HYBRID HALF DC BUS VOLTAGE RATED BOOST RECTIFIER 

-112- 

phase-to-phase peak voltage. The same waveforms of an ordinary diode rectifier are depicted 
in Fig.  8.6 (b). The waveforms were recorded at the same conditions: the load and the mains 
voltage. The mains current peak and RMS value are 35A and 12.5A respectively in 
comparison to 10A and 8A in case of the proposed boost rectifier. Fig.  8.7 shows the mains 
current amplitude spectra. Fig.  8.7 (a) shows spectra in full frequency range, from 2 kHz up to 
150 kHz, while Fig.  8.7 (b) shows spectra up to 40th harmonic. 

 

TABLE  8-1: Current emission limits for balanced three-phase equipment, based on the IEC 61000-3-12 
standard  [13]. 

Short circuit 

ratio 
N

SC

I

I
 

Admissible individual current harmonics In/I1 [%] Admissible harmonic 
distortion factors 

 I5 I7 I11 I13 THD PWHD 

33 10.7 7.2 3.1 2 13 22 

66 14 9 5 3 16 25 

120 19 12 7 4 22 28 

250 31 20 12 7 37 38 

≥350 40 25 15 10 48 46 

The relative values of even harmonics up to 12 shall not exceed 16/n %. Even harmonics above order 12 
are taken into account in THD and PWHD in the same way as odd order harmonics. 

SCI  and NI are the network short circuit current and the equipment nominal phase 
current. 

 

 

(a) 

 

(b) 

Fig.  8.6 Experimental waveforms the mains current iMAINS [5A/div] and voltage vMAINS [200V/div] and the 
dc bus voltage vBUS [200V/div]. a) Rectifier with proposed half-dc-bus-voltage rated topology. b) 
An ordinary diode rectifier with capacitive filter. VMAINS=400V, VBUS=650V, PLOAD=5.5kW. 
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(a) 

 

(b) 

Fig.  8.7 The mains current amplitude spectra. a) From 2kHz up to 150kHz, and b) up to 40th harmonic. 
The THD and PWHD factor are computed from definitions ( 8.12) and ( 8.13). The bars in red: 
spectra of a standard diode rectifier current, and bars in blue: spectra of the boost rectifier current. 

 

8.2. The DC-DC1 Converter 

In this section, the DC-DC1 converter is analyzed and some design guidelines are 
given.  

A circuit diagram of the DC-DC1 converter is depicted in Fig.  8.8. The input rectifier, 
DC-DC2 converter and the dc bus load are not detailed, just indicated as gray shaded boxes. 
Equivalent circuit diagram and waveforms (the inductor current iREC and voltage vL0) are 
given in Fig.  8.9. The input rectifier is represented by a voltage source vREC. The capacitors 
CB1 and CB2 are modeled as a voltage sources vC1 and vC2 that are assumed to be constant. Let 
Since the capacitors could be large enough to behave as constant voltage sources over a short 
period (order of switching period). However, on long term, the voltage vC1 has tendency to 
increase and vC2 has tendency to decrease because the mid point current i1 is non-zero positive 
current. To keep those voltages in a constant ratio, an auxiliary converter DC-DC2 is used. 
Selecting a proper topology, it would be possible to maintain the voltages vC1 and vC2 in 
constant ratio regardless on the current i1. In this analysis, a particular case, vC1=vBUS/2 is 
considered. 

 

 

 

Fig.  8.8 Circuit diagram of the DC-DC1 converter. 
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8.2.1. Analysis 

The converter basically operates in the same way as the ordinary boost converter: the 
switch S0 conducts during period dTS and the inductor current iREC increases. The boost diode 
D0 conducts during the complementary period (1-d)TS and the inductor current decreases and 
charges the dc bus capacitor CBUS. The difference between the ordinary boost converter and 
the proposed one is that the switch S0 is connected to the mid point of the capacitors CB1 and 
CB2. That means the inductor voltage swing is the voltage vC2=vBUS/2. 

 

(a) 

 

(b) 

 

(c) 

Fig.  8.9 a) The equivalent circuit of the DC-DC1 converter. b) Waveforms of the inductor voltage vL0, and 
the current iL0, and c) the voltages vREC, v1, vBUS, v0, vC1 and vC2. 
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In the standard single-switch boost topology, the switch is connected to the minus dc 
bus and therefore the inductor voltage swing is the full dc bus voltage vBUS. This has direct 
influence on the inductor size, losses and electromagnetic interference (EMI)  [117]- [118]. 

The circuit of Fig.  8.9 (a) is described by equation 
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where TS is the switching period and d is the duty cycle. From ( 8.14) and the volt-
second balance it follows that duty cycle d is 
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where vC1=vBUS/2. Substituting ( 8.2) into ( 8.15) yields duty cycle 

( )
°≤<°









−=

12060

sin
12

tBOOST

m

m
k

t
td

ω

ω
. ( 8.16) 

Fig.  8.10 shows 3-D graph of the duty cycle ( 8.16) versus the boost factor and angle 
ωt. 

Maximum boost factor and the dc bus voltage are computed from ( 8.16) and the 
condition that the duty cycle is maximum (dmax=1) at minimum of the rectifier voltage. 
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The boost factor (and therefore the dc bus voltage) of the proposed hybrid boost 
converter is limited, in contrast to the ordinary boost converter that has theoretically unlimited 
boost factor (in reality limited by the circuit parasitic resistance). In most of the applications, 
the boost factor is often lower than 1.5, and therefore the limitation ( 8.17) is not relevant. 

 

 

Fig.  8.10 Duty cycle d versus the boost factor kBOOST and angle ω is the mains angular frequency. 

Fig.  8.11 (a) illustrates the functionality of the DC-DC1 converter. Experimental 
waveforms of the rectifier voltage vREC, rectifier current iREC and the voltage v1 are shown. 
The voltage v1 is the voltage between the inductor and minus dc bus (see Fig.  8.11 (a)). Fig. 
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 8.11 (b) shows a zoom of the waveforms. Please notice notches in the rectifier voltage 
waveform and corresponding distortion in the rectifier current waveform, which are caused by 
the mains background voltage distortion. 

 

 

(a) 

 

(b) 

Fig.  8.11 a) Experimental waveforms the rectifier current iREC [5A/div] and voltage vREC [100V/div] and the 
switching voltage v1 [100/div]. b) Zoom at maximum rectifier voltage. VMAINS=400V, VBUS=650V, 
PLOAD=5500W. 

 

8.2.2. Design Aspects 

In this section, some aspects of design of the boost inductor L0, the dc bus capacitor 
CBUS and boost switch S0 and diode D0 are discussed and design guidelines are given. 

8.2.2.1. Boost Inductor L0 

Design of the boost inductor is one of the most important design steps in a boost 
converter design. The design is based on two criteria: the inductance (for allowed current 
ripple ∆iREC) and the inductor losses. The current ripple has significant influence on the total 
losses and the inductor thermal design. For generality of the analysis, it is assumed that the 
maximum current ripple is given as a design parameter. The boost inductor losses are 
computed, however the thermal design is not discussed in detail. 

o The Inductance and Current Ripple 

The inductor current ripple is computed from ( 8.14) and volt-second balance as 

( )2

02
dd

fL

v
i

SW

BUS
REC −=∆ , ( 8.18) 

where fSW is the switching frequency. Fig.  8.12 shows the current ripple versus boost 
factor and angle ωt. 
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(a) 

 

(b) 

Fig.  8.12 The rectifier current ripple versus the boost factor kBOOST and angle ωt, where ω is the mains 
angular frequency. The ripple is normalized on the maximum current ripple achieved at d=0.5. 

 

Substituting ( 8.16) into ( 8.18) one can find the maximum current ripple 
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The boost inductance is computed for the worst case of ( 8.19) and the maximum 
current ripple ∆imax 
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o The Inductor Losses 

The inductor losses consist of the winding losses and the core losses. 
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where RL0(fsw) is the inductor winding resistance that dependents on the frequency. The 
resistance RC(fsw) is the core equivalent resistance that models the core losses  [92]. The losses 
model ( 8.21) takes into account harmonics of the inductor current. To simplify computation, 
the current ripple can be substituted by an equivalent sinusoidal current having the same RMS 
value and frequency as the total current ripple. As can be seen from ( 8.18), the ripple current 
is time varying because duty cycle varies with the instantaneous rectifier voltage ( 8.2). Hence, 
the ripple RMS current varies too. It could be considered as local RMS current. 
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Substituting ( 8.22) into ( 8.21) yields local average losses of the inductor 
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where RL0(DC) is the inductor winding resistance at low frequency. 

Substituting ( 8.18) into ( 8.23) one can compute the inductor average losses, ( 8.24). 
Here, we have to highlight that the losses model ( 8.24) is not very accurate, but sufficient as 
an initial step in the inductor design procedure. 
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8.2.2.2. The DC Bus Circuit 

The dc bus capacitor is designed with the dc bus voltage ripple as the design criterion. 
The dc bus voltage ripple at low frequency is computed from the instantaneous power balance 
equation 

CBUSBUSLOADRECREC ivPiv += , ( 8.25) 

where iCBUS is the dc bus capacitor current. In ( 8.25), it has been assumed that 
instantaneous power of the capacitors CB1, CB2 and CS, and inductors L0 and LS could be 
neglected in comparison to the dc bus capacitor. The rectifier current is assumed as constant 
(actively controlled by the DC-DC1 converter). 

The rectifier voltage ( 8.2) can be expanded in Fourier series 
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From ( 8.25) and ( 8.26) it follows that 
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Here, it has been assumed that 6th harmonic of the instantaneous power ( 8.25) is 
dominant, and the dc bus voltage ripple is significantly lower than the average dc bus voltage, 

)( AVBUSBUS vv <<∆ . Thus, the peak-to-peak voltage ripple can be computed as 
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From ( 8.28) it follows that the dc bus capacitance is 
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where maxBUSv∆ is maximum dc bus voltage ripple given as a design parameter. 

8.2.2.3. The Switch and Boost Diode 

Three parameters are important for design and selection of the boost switch and diode: 

1. The device voltage stress, 

2. The device current stress, and 

3. The device losses and associated thermal stress. 

The device voltage rating, current stress and losses will be analyzed. Thermal aspects 
however will not be discussed because that is an issue well known and presented in literature, 
 [119]. 

o The Device Voltage Rating 

The device transient voltage defines the switch and diode voltage rating 
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where ∆V is commutation over-voltage  
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cL  is the commutation inductance  [100], 0SI  is the switch peak current and Ft  is the 
current fall time. Notice that the voltage rating is one half of the dc bus voltage in contrast to 
the ordinary boost converter. 

o Current Stress and Losses 

The switch average and RMS current are 
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The switch losses are computed from the switch model (chapter 5) and ( 8.32) 
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where fSW is switching frequency. The switch S0 is approximated by threshold voltage 
VS0 and dynamic resistance rS0. EON and EOFF are switching energy at the given conditions; 
rated voltage VN and current IN. 

Similar calculation is applied on the boost diode D0. Average and RMS currents and 
losses are 
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( ) ( )
444 3444 21

4444 34444 21

SWITCHING

SWQ

NN

BOOSTLOAD

CONDUCTION

RMSDDAVDDFD fE
IV

kP
IrIVP

2
2

00000 ++= , 
( 8.35) 

where the diode is approximated by threshold voltage VDF0 and dynamic resistance rD0. 
EQ is reverse recovery energy at given the conditions; rated voltage VN and current IN. 

8.3. The DC-DC2 Converter 

As already mentioned in section  8.1, the role of the DC-DC2 converter is to balance 
the voltages vC1 and vC2. The circuit diagram of the proposed converter is given in Fig.  8.13. 
Basically, the converter is a variant of a switched capacitor converter  [118]. A switch leg S1 S2 
is connected across the bottom capacitor CB1, and a diode leg D1 D2 is connected across the 
top capacitor CB2. The capacitor CS is the main switched capacitor that transfers the energy, 
while inductor LS is an auxiliary inductor used to reduce conduction losses and achieve zero 
current switching (ZCS)  [118]. The switches S1 S2 are driven with complementary control 
signals at period TS2. The duty cycle d2 is constant, around 50%. 

8.3.1. Analysis 

For simplicity of the analysis, one can assume that the capacitors CB1 and CB2 are large 
enough to maintain the voltages vC1 and vC2 constant over one switching cycle TS2. Also, the 
switches and diodes are modeled by constant voltage sources VS0 and VDF0. One complete 
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cycle TS2 can be divided into four stages, namely stage A to stage D. Fig.  8.14 illustrates 
topological stages and waveform of the resonant current iR2. 

 

 

Fig.  8.13 DC-DC2 converter circuit diagram. 

 

Stage A: Switch S1 is closed at the instant t=0. The capacitor CS is charged from vC1 
via the switch S1 diode D1 and the inductor LS. The current i2R and voltage vCS increase. Once 
reaches the maximum, the current starts decreasing towards zero (LSCS resonant circuit). 

Stage B: The current i2R reaches zero and diode D1 is blocked at the instant t=T0/2. 
The current remains zero until commutation of the switch S2. 

Stage C: The switch S2 is closed at the instant t=TS2/2. The capacitor CS is discharged 
(into vC2) via the switch S2, diode D2 and the inductor LS. The current i2R increases in negative 
direction with respect to the direction in Fig. 7 The voltage vCS decreases. After reaching the 
maximum, the current starts decreasing towards zero (LSCS resonant circuit). 

Stage D: The current i2R reaches zero and diode D2 is blocked at the instant 
t=TS2/2+T0/2. The current remains zero until the commutation of the switch S1 at the moment 
t=TS2. One switching cycle is finished. 

Neglecting the circuit resistance, the current i2R can be described by fractions of 
sinusoidal function, 
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where the circuit natural frequency is 
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Fig.  8.14 Different topological stages of the converter. A) S1, D1 are conducting, B) S1 is conducting D1 is 
blocking, C) S2, D2 are conducting, and D) S2 is conducting D2 is blocking. 

 

The current i1 is the current of the switch S0 (the converter DC-DC1), and is a purely 
discontinuous current. However, because of presence of the capacitors CB1 and CB2 that are 
assumed sufficiently large, the current i1 can be considered as a constant current i1(AV). In 
steady state, the capacitors voltages are constant. As the capacitors are large, but not infinite 
capacitance, it follows that the capacitors current over a certain period must be zero. Hence, 
i2(AV)=i1(AV). From ( 8.4) and ( 8.16) it follows that 
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Please, note that i2(AV)(t) is the current averaged over a switching period TS2. So, it can 
be considered as the local average current  [108]. Also, note from ( 8.36) and ( 8.38) that peak 
of the resonant current i2R changes with the rectifier voltage; the lower rectifier voltage the 
greater peak current. 

8.3.1.1. The Voltage Transfer Ratio 

The converter DC-DC2 can be considered as series resonant converter that operates in 
discontinuous conduction mode (DCM), mode 1  [121]. The input is voltage vC1 and output is 
voltage vC2. The voltage gain of the series resonant converter operating in this mode is unity, 
regardless on the load and switching frequency. 
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where VS0 and VDF0 are the switch and diode voltage droop. 
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The bottom and top capacitor voltages are computed from ( 8.39) as 
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As is it can be seen from ( 8.40), the ratio of vC1 to vC2 is constant. That means there is 
no need for direct measurement and control of the mid point voltage. 

Fig.  8.15 illustrates the functionality of the DC-DC2 converter. Waveforms of the 
rectifier voltage vREC and current iREC and the resonant current i2R are shown. Note that the 
peak of the current i2R changes as the rectifier voltage changes, as predicted in ( 8.36) and 
( 8.38). Fig.  8.16 shows a zoomed in disply of these waveforms and voltage vS1 of the bottom 
switch S1 (circuit in Fig.  8.13); Fig.  8.16 (a) is zoomed at the peak of the rectifier voltage and 
Fig.  8.16 (b) is zoomed at the minimum rectifier voltage. Note that the switches commutate at 
the zero current condition. 

 

Fig.  8.15 Experimental waveforms of the rectifier current iREC [5A/div], the rectifier voltage vREC [100/div] 
and resonant circuit current iR2 [5A/div]. VMAINS=400V, VBUS=650V, PLOAD=5.5kW. 

 

 

(a) 

 

(b) 

Fig.  8.16 Experimental waveforms of the rectifier current iREC [5A/div], the rectifier voltage vREC [100/div] 
and resonant circuit current iR2 [5A/div]. a) Zoom at peak of the rectifier voltage, and b) zoom at 
minimum rectifier voltage. VMAINS=400V, VBUS=650V, PLOAD=5.5kW. 
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8.3.2. Design Aspects 

8.3.2.1. The Switches and Diodes 

The switches and diodes average and RMS current computed over a switching cycle 
(local averaging  [108]) are 
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The average and RMS current computed over a fundamental period 
3
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Now, having average and RMS current, one can compute conduction losses of the 
switch and diode as 
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The switches and diodes are approximated by constant threshold voltage VS and VDF 
and dynamic resistance rS and rD. Switching losses are neglected since the switches commute 
at zero current conditions. If necessary, the losses due to the switch parasitic capacitance can 
be taken into account. 

8.3.2.2. LC Circuit 

The resonant circuit RMS current and losses depend on the load power PLOAD, the 
boosting factor kBOOST and ratio between the switching and resonant frequency, 
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The role of the inductor LS is to minimize the conduction losses and ensure the zero 
current switching condition. It follows from ( 8.37), ( 8.42) and ( 8.44) that the greater 
inductance the lower conduction losses. The zero current switching condition is defined 
as 20 STT ≤ . From this condition and ( 8.37) it follows that 
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The capacitor and inductor have to be selected for minimum size, cost and losses of 
the LC circuit. Total volume of the capacitor and inductor can be expressed in general form 
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where functions F1 and F2 depends on the capacitor and the inductor technology. 

The function F1 has been interpolated for EPCOS film capacitors B32674 at 450Vdc 
rated voltage  [122]. Fig.  8.17 shows the capacitor volume versus capacitance. Red squares are 
the data sheet values and blue line is first order interpolation, 
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Volume of the air-core short inductor  [123] can be approximated by a second order 
function 
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(a) 

 

(b) 

Fig.  8.17 a) Volume of MKP Epcos film capacitors B32674 versus capacitances at 450Vdc rated voltage. b) 
Volume of an air-core inductor versus the inductance at 10Arms rated current. 

 

From ( 8.47) and ( 8.48) and the condition 
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the capacitance CS and inductance LS can be found that gives minimum volume of the 
converter. Another parameter that has to be verified is the capacitor RMS current. This is a 
trivial problem of optimisation and as that it will not be further discussed. 
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8.4. A Design Example 

A 5.5 kW prototype was designed and the proposed half-dc-bus-voltage-rated boost 
rectifier experimentally verified. A picture of the prototype is shown in Fig.  8.18. The 
converter specification and parameters of the selected main components are given in TABLE 
 8-2 Active power components (MOSFETs, IGBTs and FWDs) were selected for the target 
switching frequencies, dc bus voltage, boost factor and rated power. RDC is the winding 
resistance at low frequency and RAC is the winding resistance at switching frequency  [102]. 
The resistance RC is the core equivalent resistance as a model of the core losses ( 8.21). The 
core resistance was computed at the inductor rated current, using the manufacture datasheet 
and design software tool  [103]. 

The inductor losses were computed from ( 8.21) and the parameters in TABLE  8-2. 
Fig.  8.19 shows 3-D graph of the total inductor loses versus output power and boost factor. 

The switch S0 and diode D0 losses were computed from ( 8.33), ( 8.35) and data given 
in TABLE  8-2. Fig.  8.20 and Fig.  8.21 show 3-D graph of switching and conduction losses 
versus conversion power and boost factor. The switch conduction losses strongly depend on 
the boost factor. They are dominant at full power and high boost factor. In contrast to this, the 
switch commutation losses are less dependent on the boost factor. The boost diode losses, 
particularly conduction losses vary significantly with the boost factor. 

 

TABLE  8-2: Specification of the half-dc-bus-voltage rated boost rectifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nominal power  PC0=5500W 

DC bus voltage  VBUS=650V 

Minimum input (line RMS) voltage Vmains=350V 

Switching frequency DC-DC1 fSW1=100kHz 

Switching frequency DC-DC2 fSW2=50kHz 

The current ripple  ∆iREC=2.5A 

 

S0: MOSFET 500V 20A D0: FAST DIODE 500V 20A 

VS0 rS0 *EON+EO

 
VDF0 rD0 *EQ 

0 200mΩ 10µJ/A 1.13 V 11 mΩ 5µJ/A 

*Switching losses at VN=300V TJ=150˚C 

 

BOOST INDUCTOR L0 DC BUS CAPACITOR CBUS 

High Flux Powder Core 58439-A2  

L0 RDC RAC RC C ESR 

325µ
H 

40mΩ 0.8Ω 4.4Ω 820µF 0.19 Ω 

 

LS CS S1/S2 
IGBT 600V 10A 

D1/D2 
FAST DIODE 600V 10A 

VS rS VD rD 

Air core 
inductor 

MKP  

0.8V 80 mΩ 0.9V 100 mΩ 0.6µH 10µF 
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(a) 

 

(b) 

Fig.  8.18 a) Prototype of the boost converter. b) The resonant air-core inductor 0.6µH 10Arms. 

 

 

 

Fig.  8.19 The boost inductor L0 losses versus the boost factor and conversion power. 

 

 

 

(a) 
 

(b) 

Fig.  8.20 The switch S0 losses versus the boost factor and conversion power. 
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(a) 

 

(b) 

Fig.  8.21 The diode D0 losses versus the boost factor and conversion power. 

 

The switch S1/2 and diode D1/2 losses were computed from losses model ( 8.43) and 
data in TABLE  8-2. The computed losses versus conversion power and boost factor are 
illustrated in Fig.  8.22. Fig.  8.23 shows the converter total losses and conversion efficiency 
versus conversion power and boost factor. The calculation shows that the converter efficiency 
is quite high, from 97% at minimum output power of 550W and boost factor kBOOST=1.7 up to 
99% at maximum output power and minimum boost factor kBOOST=1. In this calculation, 
losses of the filter capacitors CB1 and CB2 and resonant capacitor CS and inductor LS were 
neglected. The control circuit and gate drivers’ losses were also neglected. 

 

 

(a) 

 

(b) 

Fig.  8.22 The switch S1/2 and diode D1/2 losses versus the boost factor and conversion power. The losses 
are computed per one device (total losses are twice). 

 

 

(a) 

 

(b) 

Fig.  8.23 The conversion total losses and efficiency versus the boost factor and conversion power. 
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9. MODELING ASPECTS AND CONTROL SCHEME  

The model of the half-dc-bus-voltage rated boost rectifier is developed and discussed 
in this chapter. As mentioned in chapter  8, the half-dc-bus-voltage rated boost rectifier 
consists of two converters (DC-DC1 and DC-DC2). Model for each converter and then model 
of the entire rectifier system have to be developed. The model of the DC-DC1 converter is 
more or less state of the art  [106] and therefore it is not discussed in details in this chapter. 
The model of the DC-DC2 converter is less known in the literature, and is developed and 
discussed. Finally, a large signal and small signal model of the entire boost rectifier is 
developed. The model is verified by the Matlab simulations and a set of experiments. 

In second part of this chapter, the control scheme is discussed and the controllers’ 
synthesis procedure is given. The proposed control scheme is verified by Matlab/Simulink 
simulation and a set of experiments. The results are presented and discussed. 

9.1. Model of Series Resonant Converter 

As discussed in chapter  8, section  8.3, the DC-DC2 converter is the series resonant 
converter that operates in type 1 discontinuous conduction mode (DCM)  [121]. The series 
resonant converter topology is well-know topology since the age of vacuum tube high 
frequency generators and SCRs power converters  [124]. In the 1980s and 1990s this topology 
was in focus for high-density dc-dc conversion applications  [124]. Two of the most often used 
methods to model series resonant converter (SRC) are sinusoidal approximation  [124]- [127], 
and discrete time modelling  [128],  [129]. However, those modelling techniques are not 
appropriate if the resonant converter operates in continuous conduction mode (CCM) at 
resonant frequency or in type 1 discontinuous conduction mode (DCM)  [121]. The concept of 
the quantum modelling and control technique introduced in  [130] can be used in analysis of 
type 1 DCM resonant converter. 

The circuit diagram is given in Fig.  9.1 (a). The capacitors CB1 and CB2 are modelled 
by the ideal voltage sources vC1 and vC2. The equivalent circuit diagram is depicted in Fig.  9.1 
(b). The model consists of two voltage-controlled voltage sources (vC1 and vC2), two current-
controlled current sources (iS and iD) and an equivalent inductance LE. The controlled voltage 
sources are known (vC1 and vC2). The controlled current sources and the equivalent inductance 
LE have to be determined. 

To determine the equivalent inductance LE, the following virtual experiment is 
performed. Let us consider steady state and no load condition, meaning that i2(AV)=0, and 

021 CCC Vvv == . The switch and diode conduction voltages are neglected, 0≅= DFS VV . Hence, 
the resonant circuit current i2R is zero, and the capacitor CS initial voltage is 0CCS Vv = . Then, at 
the instant t=0, a step ∆VC is applied on the input voltage vC1, while the voltage vC2 remains 
constant. Then, the average currents, iS, iD and i2 will be computed. Finally, the inductance LE 
will be computed from variation of the average current i2. 

The switch S1 (Fig.  9.1 (a).) is closed and a step voltage ∆VC is applied on the voltage 
source vC1 at the instant t=0, while the voltage vC2 remains constant. 
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where h(t) is the step function defined as 
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(a) 

 

(b) 

Fig.  9.1 a) Simplified circuit diagram of the DC-DC2 converter, and b) the equivalent circuit diagram. 

 

Neglecting the circuit resistance, the instantaneous currents i2R, i2, iS and iD can be 
described by a train of half-sinusoidal pulses with cycle by cycle increasing magnitude. The 
waveforms are illustrated in Fig.  9.2 (a). The phase portrait of the resonant circuit is shown in 
Fig.  9.2 (b). 

The equations describing the currents i2R, i2, iS and iD are 
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Average values of the currents ( 9.3)-( 9.6) are 
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where k is a floor integer defined as )
2

(
2ST

t
INTk = . 

 

 

(a) 

 

(b) 

Fig.  9.2 The resonant current iR2. a) Time diagram, and b) the phase portrait. 
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Variation of the average current i2 between two successive cycles is 
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The equivalent circuit of Fig.  9.1 (b) can be described by difference equation 

( )( ) ( ) ( ) ( )kVkvkvL
T

ki
CCCE

AV ∆=−=
∆

∆
21

2 , ( 9.9) 

where the time step is 2STT =∆ . Finally, from ( 9.8) and ( 9.9) one computes the 
equivalent inductance LE as  
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From ( 9.7) one can also define iS and iD as 
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Fig.  9.3 illustrates interpolated equations ( 9.11). Notice that the difference between the 
currents iS and iD is initially 20% and it drops below 10% for k>3 (after three half-periods). 

In this virtual experiment, we have assumed that the switch S1 is closed at the same 
time as the variation ∆VC is applied on vC1. As the average currents are computed over an 
interval (0, TS2), the diode average current is greater than the switch average current, as given 
in ( 9.7) and ( 9.11). However, if we assume that the switch S2 is closed at the same time as the 
variation ∆VC is applied on vC1, the switch average current iS(AV) will be greater than the diode 
average current iD(AV). In reality, the step voltage could be applied at any instant in the interval 
(0, TS2). Thus, the diode to switch average currents ratio could be any between the two 
extreme cases mentioned before. However, the switching frequency fSW2 is greater that the 
frequency of our interest. Therefore, it could be assumed that the transition period is much 
shorter than the observation period. In that case the switch and diode currents can be assumed 
as the same ( ) ( )AVDAVS ii ≅ . 

 

 

Fig.  9.3 Average current of the switch and diode versus number of cycles k. 
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9.2. The Entire Rectifier Model 

9.2.1. Large Signal Model 

Now, having model of the DC-DC1 and DC-DC2 converters, one can construct a 
model of the entire rectifier. The model is depicted in Fig.  9.4. The dc bus load is a constant 
power pLOAD (this is typical load in controlled power converter applications). The inductance 
L0 is the boost inductor, while the resistance R0 is an equivalent input resistance 

mmL LRR ω
π
3

00 += . ( 9.12) 

The resistance RL0 is the boost inductor parasitic resistance, which includes the 
winding resistance and the core losses resistance  [92]. The second part of ( 9.12) is model of 
the rectifier commutation voltage losses  [115]. The frequency mm fπω 2= is the mains angular 
frequency and Lm is the mains inductance. 

 

 

Fig.  9.4 Large signal model of the entire boost rectifier. 

 

The large signal model of circuit in Fig.  9.4 is described by set of nonlinear 
differential equations, 

200 CBUSRECREC
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di
L ⋅+−+−= , ( 9.13) 
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Variable d is duty cycle as the modulation signal of the DC-DC1 converter. The duty 
cycle is generated by a non-linear controller, where the control law is 
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The variable u is the main control variable that is generated by the upper level 
controller (the rectifier current controller for example). Substituting ( 9.15) into ( 9.13) yields 
linear differential equation 
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REC iRu
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L 00 −= . ( 9.16) 

The dc bus circuit is described by ( 9.14). However, notice that duty cycle d appears as 
an intermediate variable in ( 9.14). To find an equation that describes the dc bus circuit (the dc 
bus voltage vBUS) as a function of the rectifier current iREC as the control variable, one can use 
the power balance 
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pIN and pOUT are the system input and output power, N is number of the resistors 
(including parasitic resistances ), M is number of the inductors and Q is number of the 
capacitors in the circuit. Applying ( 9.17) on the circuit of Fig.  9.4 yields 
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Assuming that the filter capacitors are the same BBB CCC 221 == , ( 9.18) can be 
rearranged as 
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From ( 9.14) we have the following set of equations that describes the balancing 
current i2 and balancing voltage error ∆vC (the DC-DC2 converter) 
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Here, product of duty cycle and rectifier current,RECid ⋅ , is the disturbance for the DC-
DC2 converter. 
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9.2.2. Linearization and Small Signal Model 

The small signal model is obtained by the use of the first order perturbation model or 
Taylor series expansion. Then, Laplace transformation is applied to obtain the rectifier current 
( 9.21) and the dc bus voltage ( 9.22) transfer functions. 
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Transfer functions of the voltage balancing error ∆vC and balancing current i2 are, 
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where the denominator D(s) is 
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D0 is steady state duty cycle. Notice that the current i2 figures in the dc bus voltage 
vBUS transfer function ( 9.22), and the dc bus voltage figures in the current transfer functions 
( 9.23). Substituting ( 9.22) into ( 9.23) and vice versa, we can eliminate i2 from ( 9.23) and vBUS 
from ( 9.22). However, in that case the dc bus voltage transfer function will be a third order 
function, which is complex and difficult to analyse and use in the controller synthesis. 

As shown in ( 9.10), the equivalent inductance LE depends on the resonant inductor LS 
and ratio of the resonant to the switching frequency. The inductor LS is normally very small, 
in order of several hundred nH. If the DC-DC2 operates close to resonant frequency, it 
follows from ( 9.10) that the equivalent inductance LE is order of µH. Also, the resistance RE is 
quite small in comparison to the resistance R0. Therefor, we can assume that dominant 
frequency of the DC-DC2 circuit is much greater than dominant frequency of the dc bus 
circuit. It will be shown in the following section that the dc bus controller bandwidth is 
normally limited to a few hundred Hz. That means the dc bus circuit frequency of interest is 
below 1 kHz. On another hand, the dominant frequency of the DC-DC2 circuit is above 1 
kHz. Hence, last part of ( 9.22) and ( 9.23) could be neglected. 
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9.2.3. Matlab/Simulink Model Verification 

To verify transfer functions ( 9.22) and ( 9.23), simulation of the large signal model 
( 9.13) and ( 9.14) has been performed in Matlab/Simulink. Frequency response at different 
frequencies has been simulated and compared with bode diagram of the transfer functions 
( 9.22) and ( 9.23). Fig.  9.5 (a) illustrates frequency characteristics of the transfer function 
vBUS(s)/iREC(s). The solid blue line is computed from ( 9.22) and the red dots are the simulation 
of the entire large signal model ( 9.13), ( 9.14). Please, note that at low frequency, below 1kHz, 
the model magnitude and phase characteristics closely match the simulation. At frequency 
above 1 kHz, the model underestimates the magnitude and phase, because we have neglected 
the last part in the model. In the applications of our interest (three-phase boost rectifiers with 
electrolytic dc bus capacitor), the voltage controller is quiet slow, and the model ( 9.22) is 
accurate enough. However, if the boost converter is used in an application that requires high 
bandwidth of the dc bus voltage control, the simplified model is not sufficient; the effect of 
the DC-DC2 converter must be taken into account and the full model used. Fig.  9.5 (b) 
illustrates bode diagram of the transfer function i2(s)/iREC(s). The solid blue line is calculation 
from ( 9.23) and the red squares are the simulation of the entire large signal model ( 9.13) and 
( 9.14). Notice that at low frequency, below 50Hz, the magnitude and phase response of the 
small signal model and the large signal model are quite different (magnitude is 
underestimated and the phase is overestimated).  

 

 

(a) 

 

(b) 

Fig.  9.5 Bode diagram of the system transfer functions. a) vBUS(s)/iREC(s) and b) i2(s)/iREC(s). Red 
dots/squares: simulated values, blue line: value computed from ( 9.22) and ( 9.23). 
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At frequencies above 100Hz, the magnitude and phase responses are quite well 
matched. As mentioned in section  9.1, the DC-DC2 converter operates in open loop and 
therefore no need for closed loop control of the voltage error ∆vC. 

9.3. Control Scheme 

9.3.1. The Control Objective 

The primary control objective is to asymptotically regulate the dc bus voltage vBUS to a 
desired reference vBUS(REF). The secondary control objective is regulate the rectifier current in 
order to obtain 2π/3 radians square waveform of the mains current with minimum total 
harmonic distortion factor (THD) and the partial weighted harmonic distortion factor 
(PWHD)  [13]. 

The control scheme of the proposed boost rectifier is illustrated in Fig.  9.6. Please, 
note that the control scheme is more or less state of the art cascaded control  [106],  [115], 
 [131],  [132]. Two cascaded controllers can be identified: an inner current controller GiREC and 
an outer voltage controller GvBUS. The inner current controller regulates the rectifier current, 
while the outer controller regulates the dc bus voltage vBUS and generates the reference 
iREC_REF for the rectifier current controller. Synthesis of the rectifier current controller is state 
of the art  [132], and it is not discussed in the dissertation. The dc bus voltage controller design 
and synthesis is discussed in detail. 

 

 

Fig.  9.6 The boost converter control structure. 

 

9.3.2. The DC Bus Voltage Controller 

The control block diagram is illustrated in Fig.  9.7. The rectifier current control loop 
appears in the dc bus voltage loop as transfer function that can be, for simplicity of the 
analysis, approximated by first order transfer function 
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Let us consider that the bus voltage controller is a conventional proportional-integral 

(PI) controller
s

k
k I

P + . The dc bus voltage closed loop transfer function is 
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Fig.  9.7 Simplified small signal block diagram. 

 

As a well known issue, the boost converter operating in continuous conduction mode 
(CCM) is a non-minimum phase system  [112]- [114]. This is caused by the boost inductor that 
imposes right half plane zero (RHPZ) in the dc bus voltage transfer function. A system with 
the RHPZ is naturally stable system if it operates in open loop. However, when the system is 
in closed loop, the RHPZ appears in denominator of the dc bus voltage transfer function and 
as that it limits the system bandwidth  [112]- [114],  [131]. It was shown in section  8.2.2.1 that 
the boost inductor of the proposed boost rectifier is up to 50% smaller than that of the 
ordinary single-switch boost rectifier. That means the RHPZ frequency is higher and therefore 
the dc bus voltage bandwidth can be higher too. Moreover, the smaller boost inductor, the 
higher bandwidth of the rectifier current controller  [132]. 

For simplicity of the analysis and the voltage controller design, one can assume that 
the boost inductor (L0) is small enough. Thus, the RHPZ and the current controller response 
time TREC) could be neglected. This yields the simplified transfer function 
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Proportional and integral gains of the voltage controller are computed from ( 9.29) 
using the Butterworth criteria (ζBUS=0.7)  [131]. 
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where fB is the dc bus voltage controller bandwidth. 
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9.3.2.1. The Bandwidth versus the Rectifier Current Ripple 

A three-phase diode boost rectifier that operates in CCM is not a ripple-free converter. 
The dc bus voltage is not zero ripple voltage, as given in ( 8.28)  [116]. The voltage ripple is 
reflected on the rectifier current reference via the dc bus voltage controller GvBUS. To avoid 
distortion of the rectifier current, a few solutions are proposed in the literature  [134]- [136]. 
The simplest one is to design the dc bus voltage controller with low bandwidth. Another 
solution is ripple cancellation techniques  [134], or the voltage dead zone control  [135],  [136]. 
In this dissertation, a conventional technique is considered; the voltage controller bandwidth 
is low enough to avoid significant distortion of the rectifier current. 

Let us find maximum bandwidth for the rectifier current ripple given as a parameter. 
Peak-to-peak dc bus voltage ripple has been computed in section  8.2.2.2 as 

( )BUSmBUS

LOAD
BUS CV

P
v

ω6

2

35

2≅∆ , ( 9.31) 

where mm fπω 2= is the mains angular frequency. The voltage ripple equation ( 9.31) is 
valid only if the rectifier current is constant (the current ripple is small enough to be 
neglected RECREC Ii <<∆ ). The ripple imposed on the current reference by the dc bus voltage 
ripple via the voltage controller is 
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The rectifier current ripple at 6th harmonic of the mains frequency can be defined as 
relative ripple ( )pu∆  in respect to the rectifier average current ( 8.4) 
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where kBOOST is the boost factor ( 8.8). From ( 9.32) and ( 9.33) it follows that 
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Substituting ( 9.30) into ( 9.34) yields a biquadratic function with the dc bus voltage 
controller bandwidth fB as unknown variable. Real and positive solution of that equation gives 
maximum bandwidth fBmax for the relative current ripple ( )pu∆  given as the design parameter. 

( ) 175.8126 2
max −∆+ puff mB  ( 9.35) 

Note that the dc bus capacitance CBUS does not figure in ( 9.35). The maximum 
bandwidth depends on the current ripple and the mains frequency only. The bandwidth versus 
current ripple is plotted in Fig.  9.8. 

Experimental waveforms of the ac component of the rectifier current and the dc bus 
voltage are depicted in Fig.  9.9 (a). The amplitude spectrum of the rectifier current is depicted 
in Fig.  9.9 (b).  
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Fig.  9.8 The controller bandwidth versus the rectifier current ripple at 300Hz. 

 

 

(a) 

 

(b) 

Fig.  9.9 a) Experimental waveforms of the rectifier current iREC [1A/div] and the dc bus voltage vBUS 
[2V/div]. b) Amplitude spectra of the rectifier current. VBUS=650V, VMAINS(RMS)=400V, 
PLOAD=5500W, CBUS=820µF and fBOOST=50Hz. 

 

9.3.3. Matlab/Simulink Simulation Results 

The voltage controller has been designed using simplified transfer function ( 9.29), for 
two different value of the bandwidth, fB=10Hz and fB=100Hz. Then, frequency response of 
the dc bus voltage control has been computed for different conditions; simplified model 
( 9.29), the response time (TREC=0) of the current controller neglected, and a system without 
approximations ( 9.27). The results are presented in Fig.  9.10. Notice, there is not significant 
difference in the magnitude response for the full model and approximated one. In the phase 
response, however, there is significant deviation at frequency above 1 kHz. 

The boost rectifier with control was simulated using a Matlab/Simulink average model 
( 9.13), ( 9.14). In this model, we have assumed that iS(AV)=iD(AV)=1/2 i2(AV). The simulation has 
been done for two different controller bandwidths, fB=10Hz and fB=100Hz. The dc bus 
voltage and rectifier current response on the step load are illustrated in Fig.  9.11. In the first 
case, the dc bus voltage has over-shoot and under-shoot of approximately 70V (11%) with 
settling time of approximately 100ms. The rectifier current ripple can be neglected. In the 
case that the controller bandwidth is 100Hz, the over-shoot and under-shoot are 
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approximately 5V (0.7%). The current ripple is however greater, approximately 0.5A (4.5% 
of the rectifier current). The voltage balancing error ∆vC=vC1-vC2 and compensation current i2 
averaged over the switching period are depicted in Fig.  9.12. The voltage error is very small, 
below 15mV. The average current i2 follows the shape of the rectifier current and the 
instantaneous duty cycle, as predicted in ( 8.36). 

 

(a) 

 

(b) 

Fig.  9.10 Frequency response of the dc bus voltage controller under different conditions; 1) simplified 
model (33), 2) neglected the current control response time (TREC=0), and 3) a system without 
approximations. a) fB=10Hz and b) fB=100Hz. 

 

9.3.4. Experimental Results 

The model and control scheme proposed in this chapter have been experimentally 
verified on a 5.5kW prototype. The control algorithm, PWM and protection functions were 
implemented in a fixed-point 32bit digital signal processor (DSP). The rectifier current 
controller is executed at 100 kHz, while the dc bus voltage controller is executed at 5 kHz. 
The dc bus voltage controller was designed for bandwidth of 50Hz. 

The rectifier specification is: VBUS=650V, PLOAD=5500W, VMAINS=400V, 
CB1=CB2=1600µF (CBUS=800µF), L0=300µH, fSW1=100 kHz, fSW2=50 kHz. 

Fig.  9.13 (a) shows waveforms of ac component of the rectifier voltage and current. 
Note the 300Hz component in the current waveform. This harmonic is caused by the dc bus 
voltage ripple via the voltage controller.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.  9.11 Simulation of the boost rectifier under step load variation (10% to 100% to10%). a) and c) the 
dc bus voltage, and b) and d) the rectifier current. The controller bandwidth fB=10Hz (a, b), and 
fB=100Hz (c, d). PLOAD=550-5500W, VBUS=650V, VREC=600V, L0=300µH, CBUS=800µF. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.  9.12 Simulation of the boost rectifier under step load variation (10% to 100% to10%). (a, c) the 
balancing voltage error ∆vC and (b, d) the current i2 that is averaged over the switching period. 
The controller bandwidth fB=10Hz (a, b), and fB=100Hz (c, d). PLOAD=550-5500W, VBUS=650V, 
VREC=600V, L0=300µH, CBUS=800µF. 
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The spikes circled in the green are caused by the notches that are coming from the 
mains supply. Those disturbances can be reduced by the current controller having higher 
bandwidth or using some advanced current controller techniques, such as resonant or 
repetitive controller [138]- [139]. 

Performance of the dc bus voltage controller was tested on variation of the dc bus 
load. Experimental waveforms of the dc bus voltage and rectifier current are depicted in Fig. 
 9.14. The controller response on step load, 10% to 100% (550W to 5500W) is illustrated in 
Fig.  9.14 (a). The voltage undershoot is approximately 13 V (2% of the dc bus voltage) and 
response time is approximately 10ms. Fig.  9.14 (b) shows the waveforms when the load is 
reduced from 100% to 10%. The voltage over-shoot is approximately 14V (2.15%). Notice 
that the rectifier current is zero during the transient because the rectifier is a uni-directional 
device that does not allow the current in opposite direction. Thus, the current controller is 
saturated during this time. As a consequence, the dc bus voltage has an undershoot of 
approximately -9V. Once the current controller is out of saturation, the dc bus voltage settles 
down at the reference. This effect could be reduced, even completely eliminated by 
appropriate current control, but this is not subject of this dissertation. 

 

(a) 

 

(b) 

Fig.  9.13 The voltage controller response on step load. The rectifier current iREC [1A/div] and ac 
component of the dc bus voltage vBUS [50V/div]. a) Step load from 10% to 100%, and b) from 
100% to 10%. VBUS=650V, VMAINS=400V, L0=325µH, CBUS=800µF and fBOOST=50Hz. 

 

(a) 

 

(b) 

Fig.  9.14 The voltage controller response on step load. The rectifier current iREC [5A/div] and ac 
component of the dc bus voltage vBUS [5V/div]. a) Step load from 10% to 100%, and b) from 
100% to 10%. VBUS=650V, VMAINS=400V, L0=325µH, CBUS=800µF and fBOOST=50Hz. 
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10. SINGLE PHASE OPERATION  

10.1. Short Introduction 

Three-phase induction motors are the most popular motors in industry and other 
applications since the age of Tesla  [1]- [3]. The three-phase motors are more efficient, less 
cost, last longer and have better torque/speed characteristic than single-phase motors. 
However, very often the three-phase public network is not available in some area where it 
may not be economical to install three-phase distribution network. In such applications, 
conversion from single-phase to three-phase is necessary. 

A multi-phase system (including a three-phase system) can be represented by an 
equivalent two-phase system and vice versa. Single-phase system, however, cannot be 
represented by a multi-phase system of direct order  [137]. Two-phase to three-phase 
transformation is easily possible by the use of the Scott transformer, while single-phase to 
three-phase transformation is not possible by the use of passive devices such as transformers. 
For this, more complex conversion systems, such as motor-generator groups or semiconductor 
power converters are used. The first solution has no practical value in the era of advanced 
power converters. Static power converters are used in most applications. 

The single-phase supplied rectifier with passive LC dc bus filter and three-phase pulse 
width modulated (PWM) inverter is the most common solution, as shown in Fig.  10.1 (a). The 
dc bus capacitor is a large electrolytic capacitor, while the inductor is small or absent. Such a 
rectifier works as a peak detecting circuit; the dc bus voltage is charged on the peak mains 
voltage and the mains current is a train of narrow pulses. Apart the fact that such a rectifier is 
cost effective and robust, the drive manufacturers do not recommende this solution because of 
a few limitations: 

-The input current is distorted, with peaks that are 5 to 10 times of the fundamental 
RMS current. The total harmonic distortion factor is as high as 150%, even higher. The power 
factor is low. 

-A bulky dc bus capacitor is necessary to keep the dc bus voltage ripple acceptably 
low. 

-A filter inductor must be used to limit peak of the input current. The inductance value 
is however limited because the dc bus voltage quickly decays with the inductance. 

-The dc bus voltage is reduced in comparison to three-phase supplied drive. Hence, 
available motor voltage is reduced too. 

-The drive life time is limited by the dc bus capacitor life time (the capacitor is the 
most stressed component). 

-The drive may be de-rated by 50% when supplied from single-phase, which means 
higher installation cost per kW. 

The single-phase single-switch and double-switch boost rectifier is the most popular 
solution in applications that require a boosted dc bus voltage and sinusoidal or pseudo-
sinusoidal input current, Fig.  10.1 (b), (c),  [66]. This topology is often used in low power 
supplies such as PC and small telecom supplies. In variable speed drives, however, this 
topology is rarely used because of cost, size and efficiency. 
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The split-capacitor three-leg rectifier/inverter is used in low cost low power variable 
speed drive applications, such as air-conditioning and home appliances  [67],  [68], Fig.  10.1 
(d). This topology offers the lowest count of the active and passive components in comparison 
to the other solutions. However, two drawbacks make this topology inappropriate in higher 
power industrial applications; 1) The dc bus capacitor current stress at low frequency, and 2) 
the output current ripple. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.  10.1 State of the art solutions. a) Diode rectifier with passive filter, b) single switch boost rectifier 
and c) double boost rectifier. 

 

A three-phase diode boost rectifier based on half-dc-bus-voltage rated topology has 
been presented in chapter  8 and  [116]. The main feature of the topology is that the switches 
and diodes are rated at half of the dc bus voltage and fraction of the rectifier current. Power 
rating, size and efficiency of the entire rectifier strongly depend on the ratio of the dc bus 
voltage to the rectifier voltage (the boost factor). For example, if the boost factor is low, the 
power converter efficiency is as high as 98 to 99%. 

In this chapter, three-phase half-dc-bus-voltage rated boost rectifier that operates 
under single-phase supply conditions is analyzed. In section  10.2 the principle of the proposed 
solution is analyzed and the main equations are derived. Further, in section  10.3, and  10.4, the 
main conversion structure is analyzed and design guidelines are given. The dc bus capacitor 
design is discussed in section  10.5. 

10.2. Single Phase Operation of the Half-DC-Bus-Voltage Rated Boost 
Rectifier 

10.2.1. The Principle 

The basic principle of single-phase supplied three-phase boost rectifier and relevant 
waveforms are illustrated in Fig.  10.2 (a). Notice that the circuit diagram is the same as Fig. 
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 8.4 (b), except the input rectifier is a single-phase rectifier instead of the three-phase rectifier. 
Idealized waveforms are depicted in Fig.  10.2 (b). 

The boost rectifier consists of a single-phase diode rectifier, two uni-directional dc-dc 
converters, namely DC-DC1 and DC-DC2, and two series connected capacitors CB1 and CB2. 
The DC-DC1 converter is connected in three points; the rectifier plus rail, the dc bus plus rail, 
and mid point of the capacitors CB1 and CB2. The DC-DC1 converter generates the 
compensation voltage v0, which is used as an intermediate voltage to regulate the rectifier 
current iREC and the dc bus voltage vBUS. 

 

(a) 

 

(b) 

Fig.  10.2 a) Circuit diagram of the half-dc-bus-voltage-rated boost rectifier under single-phase supply 
conditions. b) Waveforms of the dc bus voltage vBUS, rectifier voltage vREC, the mains current 
iMAINS and voltage vMAINS. 
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The average current i1 which flows from the DC-DC1 converter into the capacitors 
mid point is not zero. Since the capacitors average current must be zero in steady state, one 
additional converter DC-DC2 is used to compensate the current i1 and maintain ratio between 
the voltages vC1 and vC2 constant. 

Fig.  10.3 shows waveforms of the mains voltage and current and the dc bus voltage 
when the proposed boost rectifier and the ordinary diode rectifier with capacitive filter are 
used. The waveforms are recorded at 4000W load. 

 

Fig.  10.3 Experimental waveforms of the mains voltage vMAINS [200V/div] and current iMAINS [20A/div] 
and the dc bus voltage vBUS [200V/div]. VBUS(AV)=650V, Vmains(RMS)=400V, PLOAD=4000W, 
CBUS=820µF. 

 

10.2.2. A Short Analysis 

Let the mains voltage be purely sinusoidal voltage 

( ) ( )tVtv mPEAKmains ωsin= . ( 10.1) 

Also, let us assume that the rectifier current iREC is constant during a period that the 
rectifier instantaneous voltage is greater than half of the dc bus voltage (see Fig.  10.2 (b)). 
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The threshold angle 0α is 
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where the boost factor was defined in ( 8.4) as 
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BOOST V

v
k = . ( 10.4) 

The rectifier current ( 10.2) is idealized. It has been assumed that the switching 
frequency is far higher than the mains frequency, and therefore small boost inductor L0 is 
used. This is a correct assumption because the switching frequency is as high as 50 kHz or 
even higher in comparison to the mains frequency of 50Hz. As a consequence of such an 
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idealization, the current fall time and rise time are zero. That means the current 
instantaneously commutes from zero to IREC at instant 0αα = and from IREC to zero at 
instant 0απα −= . This will be discussed shortly after. 

The threshold angle 0α and the conducting angle 02απ − versus the boosting factor 

kBOOST are plotted in Fig.  10.4. Notice that the minimum angle 0α is 30° (π/6) and the 

maximum conducting angle 02απ − is 120° (2π/3). 

 

Fig.  10.4 The threshold angle α0 and conducting angle π-2α0 versus the boost factor. 
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To find the magnitude of the rectifier current, one can use the instantaneous input 
power, 
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Assume that the conversion losses can be neglected. Thus, the average input power PIN 
is equal to the load power PLOAD, 
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The rectifier peak current is computed from ( 10.7) as 

0cos2 α
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REC k

v

P
I = , ( 10.8) 

where the angle 0α  ( 10.3) is a function of the boost factor ( 10.4). 

10.2.2.1. THD, PH and PWHD versus the Boost Factor 

The mains current is quasi-square waveform with magnitude IREC and duration of π-
2α0 radians. The current can be expanded in Fourier series 
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The mains RMS current and the first harmonic RMS current are 
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Fig.  10.5 illustrates the mains peak and RMS current versus the boost factor kBOOST. 

Total harmonic distortion factor (THD), partially weighted harmonic distortion factor 
(PWHD) and power factor (PF) are computed from ( 10.10) as 
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THD and PF versus the boost factor are plotted in Fig.  10.6. The minimum THD that 
is possible to obtain is approximately 31% at minimum angle °= 300α . This is the same THD 
that can be obtained with the three-phase diode boost rectifier. 

 

Fig.  10.5 The mains peak and RMS current versus the boost factor. 

 

Fig.  10.6 Total harmonic distortion (THD) and power factor (PF) versus the boost factor. 
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Remark: The THD is computed taking into account all higher harmonics (2 to ∝), 
while the PWHD factor is computed using IEC 61000-3-12 norm definition ( 8.13),  [13]. 

10.3. The DC-DC1 Converter under Single Phase Supply 

The DC-DC1 converter basically operates in the same way as the three-phase supplied 
rectifier. Therefore, main part of the analysis given in chapter  8 will not be repeated here. 

10.3.1. An Ideal Circuit Analysis 

An equivalent circuit diagram of the DC-DC1 and waveforms of the dc bus voltage 
vBUS, the rectifier voltage vREC and switching voltage v1 are depicted in Fig.  10.7. 

 

 

(a) 

 

(b) 

Fig.  10.7 a) The DC-DC1 converter equivalent circuit. b) The dc bus voltage vBUS, the rectifier voltage 
vREC and switching voltage v1.. 

 

The duty cycle is computed from ( 8.15) and ( 10.5) as 
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Maximum boost factor when the rectifier is supplied from three-phase mains has been 
defined under condition that the rectifier current is continuous. However, this criterion cannot 
be used in single phase supply because the rectifier current is naturally discontinuous (zero 
during period 0α ). The criterion for single-phase supply can be controllability of the dc bus 
voltage; the peak of the input voltage cannot be lower than half of the dc bus voltage. From 
this we have 
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This value is, of course, not realistic because in such a case the conduction period of 
the rectifier current is zero, and therefore the peak current is infinite. In most applications, the 
boost factor is often not greater than 1.5, and therefore the limitation ( 10.13) has no relevance. 

10.3.2. The Mains Diode Commutation Effect 

Once the rectifier voltage reaches the voltage vC1, at the angle 0απα −= , the duty 
cycle is limited to 1 (the boost inductor is permanently connected to the vC1 via the switch S0). 
Then, the current iREC will start decreasing towards zero. After delay ∆α, the current reaches 
zero and mains diode Dmains is blocked. The current remains zero and the rectifier voltage vREC 
jumps to the vC1 and the commutation is finished. Fig.  10.8 shows waveforms of the rectifier 
current and voltage. 

The commutation angle is approximated as 
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BUS

BOOSTRECm

v

kIL≅∆ . ( 10.14) 

 

 

(a) 

 

(b) 

Fig.  10.8 Commutation of the mains diode. a) the equivalent circuit, and b) zoom of the rectifier voltage 
and current. 

 

Fig.  10.9 (a) shows experimental waveforms of the rectifier voltage vREC and current 
iREC. Note that the rectifier current is not constant during the conduction period (α0, π-2α0). 
The current variation is caused by the dc bus voltage ripple that is reflected to the rectifier 
current reference via the dc bus voltage controller. Fig.  10.9 (b) shows a zoomed in plot of the 
waveforms. Please, note two irregularities in the current waveform. The first one is the mains 
diode commutation effect (denoted by the blue circle). The second irregularity is over-shoot 
(denoted by the red circle). The current over-shoot is caused by saturation of the rectifier 
current controller (the wind up effect). This problem could be fixed by proper design of the 
rectifier current controller. 
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(a) 

 

(b) 

Fig.  10.9 a) Experimental waveforms of the rectifier voltage vREC [100V/div] and current iREC [10A/div] 
and the dc bus voltage vBUS [100V/div]. b) Zoom. VBUS(AV)=650V, VMAINS(RMS)=400V, 
PLOAD=4000W, CBUS=820µF. 

 

10.3.3. The Switch and Boost Diode Stress Analysis 

The switch average and RMS current computed over the mains half period are 
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The switch conduction losses are 
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The switch S0 is approximated by threshold voltage VS0 and dynamic resistance rS0. 
The switching losses averaged over the mains half period are 

( ) ( ) ( )
0

0

cos2

2

22

1 0

0
α
απω

π

απ

α

−+=+= ∫
−

SWOFFONBOOST

NN

LOAD
mSWOFFON

NN

RECBUS
Sw fEEk

IV

P
tdfEE

IV

Iv
P , ( 10.18) 

where fSW is switching frequency. EON and EOFF are switching energy at given 
conditions; rated voltage VN and current IN. 

Similar calculation could be applied on the boost diode D0. 
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The diode is approximated by threshold voltage VD0 and dynamic resistance rD0. EQ is 
reverse recovery energy at given conditions; rated voltage VN and current IN. 

10.3.4. Boost Inductor 

The inductor losses averaged over the switching period (local average) have been 
discussed in section  8.2.2 and given by ( 8.23). Here, that equation is re-used and adapted to 
single-phase condition taking into account that the inductor current is zero if the input 
instantaneous voltage is lower than half of the dc bus voltage. The inductor local average 
losses are 
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where RL0(DC) is the inductor winding resistance at low frequency, RL0(fsw) is the 
inductor winding resistance at the switching frequency. The resistance RC(fsw) is the core 
equivalent resistance  [92]. The losses averaged over half of the mains period can be computed 
as 
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Another parameter that is important for design of the boost inductor is the peak 
current, 
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10.4. The DC-DC2 Converter Operation under Single Phase Supply 

The DC-DC2 converter has been analyzed in detail in chapter  8, and therefore the 
main part of analysis will not be repeated, except a few details that are necessary to follow the 
discussion. 

From ( 10.2), ( 10.8) and ( 10.12) one can find local average value of the current i2(AV), 
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The switches and diodes average and RMS current over the half mains period are 
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The switch and diode conduction losses are 
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where the switches and diodes are approximated by constant threshold voltage VS and 
VDF and dynamic resistance rS and rD. Switching losses are neglected since the switches 
commute at zero current conditions. If necessary, the losses due to the switch parasitic 
capacitance can be taken into account. 

The resonant circuit RMS current computed over a half the mains period is 
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Fig.  10.10 shows experimental waveforms of the dc bus voltage vBUS, the rectifier 
voltage vREC, and current iREC and the resonant circuit current i2R. Fig.  10.10 (b,c,d) shows 
zoom of the waveforms at different operating points; b) start of the mains diode conduction 
(ωmt=α0) , c) end of the mains diode conduction (ωmt=π-2α0), and d) peak of the rectifier 
voltage (ωmt=π/2). 

10.5. The DC Bus Capacitor Design 

Design of the dc bus capacitor in single-phase rectifiers is a critical design step. Unlike 
three-phase boost rectifiers, where the dc bus capacitor current stress is very low, the dc bus 
capacitor in single-phase boost rectifiers is stressed on the second harmonic. The current 
magnitude is order of the fundamental harmonic, even higher in case of the passive rectifier 
with LC filter. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.  10.10 Experimental waveforms of the rectifier voltage vREC [100V/div] and current iREC [10A/div], the 
dc bus voltage vBUS [100V/div] and the resonant current iR2 [20V/div]. b) start of the mains diode 
conduction (ωmt=α0), c) end of the mains diode conduction (ωmt=π-2α0) and d) zoom at peak of 
the rectifier voltage (ωmt=π/2). VBUS(AV)=650V, VMAINS(RMS)=400V, PLOAD=4000W, CBUS=820µF. 

 

The dc bus capacitor is designed for two criteria; low frequency current ripple, in this 
case twice the mains frequency (100Hz) and the dc bus voltage ripple. To compute the current 
and voltage ripple, the instantaneous power balance is used. 

CBUSBUSLOADRECRECIN ivPivp +== , ( 10.30) 

where iCBUS is the dc bus capacitor current. It is assumed in ( 10.30) that instantaneous 
power of the capacitors CB1, CB2 and CS, and inductors L0 and LS could be neglected in 
comparison to the dc bus capacitor CBUS. Substituting ( 10.6) into ( 10.30) yields the dc bus 
capacitor current 
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where 0α  is the threshold angle ( 10.3). 

10.5.1. The Voltage Ripple 

From ( 10.31) and the dc bus circuit one can write a differential equation 
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Peak-to-peak voltage ripple is computed from ( 10.32) as 
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The dc bus capacitance is computed from ( 10.33) as 
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where maxBUSv∆ is maximum dc bus voltage ripple given as a design parameter. 

Fig.  10.11 illustrates the dc bus capacitance versus the boosting factor. The 
capacitance is normalized on 1kW and 1V peak-to-peak ripple. This means, the value from 
the graph has to be multiplied by the load power in [kW] and divided by the peak-to-peak 
voltage ripple in [V]. For example, the boosting factor is kBOOST=1.25, the power rating is 
PLOAD=11kW and the voltage ripple is ∆vBUS=20V. From the graph in Fig.  10.11 it follows 
that the dc bus capacitance is CBUS≥3630µF. 

10.5.2. The Capacitor Current Stress 

Assuming that the dc bus voltage ripple is negligible in comparison to the average dc 
bus voltage, )( AVBUSBUS vv <<∆ , we can compute the capacitor current ripple as 
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Fig.  10.12 illustrates the capacitor ripple current versus the boost factor. The capacitor 
RMS current is normalized to 1kW. Hence, to compute the absolute current ripple, the value 
from the graph in Fig.  10.12 has to be multiplied by the load power given in [kW]. 

 

Fig.  10.11 The dc bus capacitance normalized on 1kW dc bus load and 1Vpp the dc bus voltage ripple 
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Fig.  10.12 The capacitor RMS current normalized on 1kW of the dc bus load. 
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11. DISCUSSION AND CONCLUSIONS 

11.1. Comparison with State of the Art Solutions 

In this chapter, the half-dc-bus-voltage rated boost rectifier is compared with state of 
the art solutions. The comparison is done for three-phase and single-phase supplied system. 
The size of the active components (switches and diodes), filter inductor(s) and capacitor(s) 
and conversion losses are compared. 

11.1.1. Three Phase Operation 

In this section, the new boost rectifier supplied from three-phase mains is compared 
with some state of the art solutions. Three parameters are compared: rating of active switches, 
the conversion losses and size of the passive components. 

11.1.1.1. Semiconductor Switches 

Like it has been done in chapter 6, the switches comparison is based on two 
parameters, the switch utilization factor and the switch voltage rating. 

o The Switch Utilization Factor 

The switch utilization factor of the DC-DC1 converter is computed by the definition, 
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In some applications, the switch apparent power can be determined as 
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where IS(AV) is the switches average current. The switch apparent power definition 
( 11.2) could be used in resonant converters when the IGBTs are used as switches. In that case, 
the switches losses depend mainly on the switch average current, while the RMS and peak 
current have no significant influence on the losses. Definition ( 11.2) will be used to compute 
the switch utilization factor of DC-DC2. 

The switch utilization factor of the new boost converter is computed from the 
definition ( 8.4), ( 8.30) and ( 8.42) as 
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The switch utilization factor of the ordinary single-switch boost (SSW) converter is  
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Fig.  11.1 shows the switch utilization factor versus the boosting factor for the ordinary 
single switch boost converter, the electronic smoothing inductor (ESI) and the hybrid boost 
converter proposed in this dissertation. As seen, the ESI has the highest utilization factor. 
However, it operates only at the fixed boosting factor of 0.955. The proposed boost converter 
shows better switch utilization factor in entire range of the boost factor (1 to 1.73). 

 

o The Switches Voltage Rating 

As mentioned in chapter  6, section  6.2.1.1, the switch voltage rating is a factor that 
cannot be compared by simple comparison of the switch utilization factor. A semiconductor 
switch conduction and switching performance depend strongly on the switch voltage rating 
and the switch technology. Lower voltage rating means lower conduction losses, better 
switching performance, higher efficiency and lower cost. For example, let us consider a 400V 
three-phase rectifier. The dc bus voltage is vBUS=700 to 800V. For the ordinary single switch 
boost converter, the switch and boost diode voltage rating is 1000V to 1200V. For such 
voltage rating, 1200V IGBT and 1000V fast diode are used. In this case, maximum switching 
frequency is limited by the switching performance of the devices, mainly by the IGBT. To 
reduce switching losses, soft switching techniques are often used  [57],  [58]. This however 
requires additional passive and active components, which make the switch utilization factor 
even worst than ( 11.4). In contrast to this, in the proposed hybrid half-dc-bus-voltage rated 
boost rectifier, the switches and diodes voltage rating is 500V. In this case, 600V rated IGBT 
or 500V super junction MOSFET and ultra-fast boost diode can be used. Switching losses of 
600V rated IGBT and boost diode are three to four times lower than switching losses of a 
1200V rated IGBT and boost diode. Conduction losses of a 600V rated device are also lower 
in comparison to a 1200V rated device. If the IGBT losses are compared with high voltage 
MOSFETs, the difference in conduction losses is significant, because the drain source on-
state resistance strongly depends on the voltage rating  [41]. 

11.1.1.2. The Boost Inductor Size 

Size of an inductor could be defined in general case as 

RMSPEAKIILsize 0≈ . ( 11.5) 

where L0 is inductance at rated current, IRMS the inductor RMS current and IRMS is the 
inductor peak current. 

As the inductor current is the same for the both topologies, the new one and ordinary 
single-switch, the inductors relative size ( 11.5) is ratio the inductance of half-dc-bus-voltage-
rated topology to the inductance of the single-switch topology, 

 

Fig.  11.1 The switches utilization factor versus boosting factor and different topologies. 
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where subscript ( )HB and ( )SSW denote hybrid topology and single switch topology. 

The inductance of the ordinary single-switch boost rectifier is computed from the 
current ripple  
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Fig.  11.2 illustrates the inductor relative size ( 11.6) versus the boosting factor. The 
inductor of single-switch boost topology is taken as reference. 

 

 

Fig.  11.2 The boost inductor relative size versus the boosting factor. 

11.1.1.3. Conversion Losses 

The switch losses of the ordinary single switch boost rectifier are 

The switch RMS and average currents are 
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The diode average and RMS currents are 
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TABLE  11-1 shows parameters of the boost switch and diode used in the ordinary 
single-switch boost rectifier. The rectifier specification (power, voltage and switching 
frequency) is the same as for the new boost rectifier, TABLE  8-2. 

 

TABLE  11-1: Specification of the switch and diode for the ordinary 5.5kW single switch boost rectifier. 

 

 

 

 

Fig.  11.3 shows ratio of the total losses of the proposed topology to the losses of a 
standard single switch boost converter. Note that the relative losses vary between 50% and 
95%, depending on the conversion power PLOAD and boost factor. This result clearly illustrates 
advantage of the proposed solution in comparison with state of the art solutions. 

 

 

Fig.  11.3 Comparison of the conversion losses of the proposed boost rectifier versus an ordinary single-
switch boost rectifier. vBUS=650V. The losses were computed from the losses model ( 8.33), 
( 8.43) and ( 11.9). 

 

11.1.2. Single Phase Operation 

In this section, the new boost rectifier operating in single-phase supply mode will be 
compared with two state of the art solutions, single-switch boost rectifier and the ordinary 
diode rectifier. Size of the boost inductor and the switch utilisation factor will be compared 
for the new boost rectifier and the ordinary single switch rectifier. The mains current quality 
and the dc bus capacitor current and losses are compared for the presented rectifier and diode 
rectifier with passive LC filter. 

11.1.2.1. The Boost Inductor Size 

The inductor peak and RMS current for single-switch boost topology are  

S0: MOSFET 1000V 20A D0: FAST DIODE 1000V 20A 

VS0 rS0 *EON+EO

 
VD0 rD0 *EQ 

0 600mΩ 30µJ/A 1.25 V 15 mΩ 15µJ/A 

*Switching losses at VN=600V TJ=150˚C 



 11. DISCUSSION AND CONCLUSIONS 

-162- 

( )

2

2

)( BOOST

BUS

LOAD
SSWPEAK

BOOST

BUS

LOAD
SSWRMS

k
v

P
I

k
v

P
I

=

=
. ( 11.12) 

Using ( 8.20), ( 10.8), ( 10.10) and ( 11.12) one can compute relative size of the proposed 
boost rectifier 
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where subscripts (HB) and (SSW) denote the hybrid boost rectifier and the single switch 
boost rectifier. 

Fig.  11.4 shows relative size of the boost inductor (comparison of the inductor for the 
proposed boost rectifier and the ordinary single switch boost rectifier) versus the boost factor. 
The inductor is approximately 50% at minimum boost factor kBOOST=1 and approximately 
95% at maximum boost factor kBOOST=1.7. 

11.1.2.2. The Switches Utilization Factor 

The switch utilization factor of the hybrid boost converter is computed from the 
definition ( 6.1) as 
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The switch utilization factor of the ordinary single-switch boost converter is  
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SSW k
SUF

4

1=  ( 11.15) 

Fig.  11.5 shows the switch utilisation factor plotted versus the boost factor. Note that 
the proposed topology has greater the switch utilisation factor than the ordinary single-switch 
boost converter if the boost factor is lower than 1.55. When the boost factor is greater than 
1.55, the ordinary single-switch topology has slightly greater switch utilisation factor than the 
new one. 

 

Fig.  11.4 The boost inductor size versus the boost factor. The inductor size is normalized on the single-
switch boost inductor size. 



 11. DISCUSSION AND CONCLUSIONS 

-163- 

 

 

 

 

 

 

 

 

11.1.2.3. The Mains Current Quality and DC Bus Capacitor Stress 

Fig.  11.6 shows waveforms of the mains voltage and current and the dc bus voltage 
when the proposed boost rectifier is used, Fig.  11.6 (a) and the ordinary diode rectifier with 
capacitive filter is used, Fig.  11.6 (b). The waveforms are recorded at power of 4000W. The 
most important parameters are summarized in TABLE  11-2. PCBUS is the dc bus capacitor 
losses computed from the capacitor RMS current and equivalent series resistance (ESR) given 
as data sheet parameter. 

TABLE  11-2: Comparison of the ordinary diode rectifier and the proposed boost rectifier. 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

Fig.  11.6 a) Experimental waveforms of the mains phase-to-phase voltage vMAINS [200V/div], the dc bus 
voltage vBUS [200V/div] and the mains current iMAINS [20A/div] when the drive is single-phase 
supplied. a) The drive with the proposed topology, and b) a drive with diode rectifier and 
passive LC filter. VBUS(AV)=650V, VMAINS(RMS)=400V, PLOAD=4000W, CBUS=820µF. 

 

Fig.  11.5 The switch utilization factor versus the boost factor. 

 Diode rectifier with 
passive LC filter 

The new boost 
rectifier  

Imains(RMS) 18.8 A 10.3 A 

Imains(PEAK) 60 A 15 A 

THDi 170 % 45 % 

∆∆∆∆vBUS 100 V 35 V 

ICBUS(RMS) 17.7 A 5.4 A 

PCBUS 62.5 W 5.8 W 
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11.2. Three Phase versus Single Phase Supply 

Very often, a variable speed drive is designed to operate in three-phase as well as in 
single-phase supply mode. In this section, the hybrid boost rectifier supplied from three-phase 
and single-phase mains is discussed. The following parameters are compared: The mains peak 
and RMS current, the switches and diodes losses, and size of the boost inductor. 

11.2.1. The Mains Current 

Equations for the relevant variables (peak, average and RMS currents) of three-phase 
supplied diode boost rectifier have been developed in chapter  8. Those equations are re-used 
and relative currents are computed. The relative currents are computed as ratio of the currents 
of single-phase supplied rectifier to the currents of the three-phase supplied rectifier. The 
currents for single-phase supply are computed at three different loads: nominal (Pn), 80% of 
nominal (0.8Pn) and 60% of nominal (0.6Pn). 

 

 

(a) 

 

(b) 

Fig.  11.7 a) The mains peak current and b) RMS current versus the boost factor. The currents are 
computed as ratio between currents of single-phase supplied rectifier at different load (Pn, 0.8Pn 
and 0.6Pn) and three-phase supplied rectifier at nominal load (Pn). 

 

Fig.  11.7 shows the mains peak current and RMS current versus boost factor. Please 
notice that RMS and peak current increase with the boost factor. At nominal power, single-
phase supplied rectifier draws 73% more current at minimum boost factor. This is the factor 
of 3 , which is ratio of single-phase to three-phase current at the same power. 
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11.2.2. The Switches Losses 

The switch losses are computed from ( 10.17), ( 10.18) and ( 10.21) and compared with 
the losses of three-phase supplied rectifier ( 8.33), ( 8.35) and ( 8.43). Fig.  11.8 shows the 
relative power losses that are computed as ratio of power losses of three-phase supplied 
rectifier to the single-phase supplied rectifier at different load (nominal, 80% of nominal and 
60% of nominal). At nominal power, the losses are approximately 10% greater than that of 
three-phase supplied rectifier if the boost factor is lower than 1.3. At maximum boost factor, 
the losses are approximately 30% greater. 

 

 

Fig.  11.8 Relative power losses versus the dc bus load. The power losses are computed as ratio of the 
power losses of single-phase supplied rectifier at different load (Pn, 0.8Pn and 0.6Pn) to the 
three-phase supplied rectifier at nominal load (Pn). 

11.2.3. The Inductor Size 

The size of the boost inductor for single-phase and three-phase supplied rectifier can 
be compared using the same method that was used in section  11.1.1.2. From ( 8.4), ( 8.20) and 
( 10.8) one can define the inductor relative size as 
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where subscripts )(SP and )(TP denote single-phase and three-phase. )(SPLOADP  is load of 

single-phase supplied rectifier and )(TPLOADP is load of single-phase supplied rectifier. The 

inductor relative size versus the boosting factor is plotted in Fig.  11.9. 

 

Fig.  11.9 Relative size of the boost inductor. The size is computed as ratio of the size of single-phase 
supplied rectifier at different load (Pn, 0.8Pn and 0.6Pn) to three-phase supplied rectifier at 
nominal load (Pn). 
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11.3. Conclusions 

A novel three-phase diode boost rectifier based on the half-dc-bus-voltage-rated 
topology has been proposed and discussed in part three of the dissertation. The topology has 
been extensively analysed and some design guidelines given. Modelling aspects and the 
control scheme have been given too. The proposed topology including control scheme has 
been verified by Matlab/Simulink simulation and a set of experiments on a laboratory 
prototype. The simulation and experimental results has confirmed theoretical analysis. Single-
phase operation of the proposed boost rectifier has been discussed and experimentally verified 
too. 

The advantages of the proposed solution over single-switch and double boost rectifier 
are: 

o Power semiconductor switche size and losses. The switches utilization factor 
of the new boost rectifier is higher than that of the state of the art solutions. 
This means that the switch cost is lower. The switch voltage rating is half of 
that of the single-switch boost rectifier. Therefore, better and more efficient 
devices could be used. 

o The passive power components size and losses. The boost inductor is smaller 
than the inductor of single-switch boost rectifier. Thus, the inductor losses are 
reduced by factor 1.5 to 2. However, in comparison to the double-boost 
topology, the inductor of the proposed rectifier is slightly bigger. 

Regarding the mains current quality and the dc bus voltage boost, there is not a 
difference between the new topology and state of the art single-switch and double boost 
topology. The mains current is square waveform with conduction angle of 2π/3 radians, while 
the dc bus voltage is boosted and actively controlled. However, compared to the state of the 
art passive diode rectifier, the current shape is significantly better. THD is approximately 30% 
instead of 100 to 150%, while the peak and RMS current are reduced by factor of 3.5 and 1.5. 
The dc bus voltage quality is better too in comparison to simple diode rectifier. 

A disadvantage of the proposed boost rectifier is need for an auxiliary dc-dc converter 
to control the capacitors mid point voltage. The auxiliary converter is rated at a fraction of the 
conversion power. Therefore, the losses of that auxiliary converter can be quite low in 
comparison to the total conversion losses  [116]. It will be shown in chapter  12 that the 
auxiliary converter can be re-used as a part of the interface dc-dc converter that has been 
discussed in chapter  4. 

The proposed boost rectifier can effectively be a replacement for passive diode 
rectifiers as well as single-switch and double boost rectifier. 
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12. THE PRINCIPLE  

12.1. Introduction 

As discussed in the part two and three of the dissertation, some technical issues in 
application of modern controlled electric drives are still challenging issues. The following 
issues are identified as the most critical issues: 

1) Saving of the drive system braking energy, 

2) The system immunity on the mains power supply interruption, 

3) The drive input current quality, 

4) The drive dc bus voltage control and stability, 

5) Single-phase supply, and 

6) Reduction of the mains peak power. 

The issues 1 and 2 have been discussed and a new solution proposed in the part two, 
chapters 3 to 6. The issues 3 to 5 have been discussed and a new solution proposed in the part 
three, chapters 7 to 11. In the part four, a solution for the six issues is discussed. 

The three-terminal energy storage and power factor correction device is proposed as a 
solution to solve the above-mentioned issues. In chapter 12, the three-terminal energy storage 
and power factor correction (PFC) device is analysed and some design guidelines are given. 
The model and control aspects are discussed in chapter 13. The proposed solution is validated 
by Matlab/Simulink simulation and a set of experiments on a 5.5kW laboratory prototype. 
The results are presented and discussed. 

12.2. The Principle 

The basic principle of the proposed regenerative electric drive with the three-terminal 
energy storage and PFC device is illustrated in Fig.  12.1 (a). One can distinguish three-phase 
diode rectifier, dc bus capacitor CBUS, dc bus load, storage capacitor CC0 and the three-
terminal power converter designated as the loss-free transformer (LFT). The terminal 0 is 
connected between the rectifier and the dc bus plus rail, the terminal 1 is connected in parallel 
with the dc bus, and the terminal 2 is connected on the storage capacitor CC0. The storage 
capacitor is an electrical double layer capacitor (EDLC), well know as the ultra-capacitor. The 
LFT is controlled by a control variable m(t). Internal structure of the LFT is depicted in Fig. 
 12.1 (b). The LFT is composed of two dc-dc converters, namely DC-DC1 and DC-DC2, and 
two series connected capacitors CB1 and CB2. Role of the DC-DC1 converter is to generate the 
voltage v0 in order to regulate the rectifier current iREC and boost the dc bus voltage vBUS. The 
DC-DC2 converter has two roles. The first one is to assist to the DC-DC1 converter when the 
drive is supplied from the mains. More precisely, the DC-DC2 converter has the role to 
maintain the voltage vC1 and vC2 in a constant ratio vC1=vC2=vBUS/2. The second role of the 
DC-DC2 converter is to be the interface between the ultra-capacitor CC0 and the drive when 
the drive operates in the braking mode or the ultra-capacitor motoring mode  [48]. 
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(a) 

 

(b) 

Fig.  12.1 a) Regenerative three-phase variable speed drive with the dc bus voltage boost function using 
the three-terminal loss-free transformer (LFT) with energy storage. b) Realization using two dc-
dc converters and an ultra-capacitor. 

 

Fig.  12.2 The rectifier voltage vREC, the dc bus voltage vBUS, the mains voltage vMAINS and current iMAINS. 
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12.2.1. The System Operating Modes 

A controlled electric drive with the ultra-capacitor energy storage device may operate 
in several different modes, depending on the drive load and status of the mains. The operating 
modes are described hereafter. Fig.  12.3 shows the power-flow diagrams, and Fig.  12.4 shows 
the waveforms for different operating modes. The signification of the voltages VBUSmax, 
VBUS(REF), VBUSmin, UC0max, UC0inM and UC0min that appear in Fig.  12.4 is discussed later on in the 
following section. 

a) Motoring mode from the mains (MM ). The drive is supplied from the mains and 
running in the motoring mode. The input and output power are equal, PIN=POUT. The power 
∆P circulates between the converters DC-DC2 and DC-DC1. This circulating power 
contributes boosting and control of the dc bus voltage vBUS. The ultra-capacitor power is 
PC0=0 and the ultra-capacitor voltage is constant uC0=UC0inM. The DC-DC1 actively regulates 
the dc bus voltage to the reference VBUS(REF), where the reference is higher  than the mains 
phase to phase peak voltage. 

b) Braking-energy storing mode (B). The drive runs in braking mode. The braking 
energy is stored in ultra-capacitor CC0 via the converter DC-DC2. The drive input power is 
PIN=0. The ultra-capacitor power PC0 is positive according to the diagram, Fig.  12.3. The 
ultra-capacitor voltage increases towards UC0max. The DC-DC2 converter actively regulates 
the dc bus voltage to the reference VBUSmax.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig.  12.3 Power flow for different operating modes a) the mains motoring mode (MM), b) barking mode 
(B), c) stand by mode (STB), d) energy recovery mode (MC0) and ride-through mode (RT), e) 
the ultra-capacitor charging mode (MM-CH) and f) the mains peak power filtering mode 
(MPFM). 
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c) Standby mode (STB). The drive is in the standby mode, and no energy flow 
between the input, output and the ultra-capacitor. The DC-DC2 converter actively regulates 
the dc bus voltage to the reference VBUSmax. 

d-1) Motoring-energy recovery mode (MC0). The drive operates in motoring mode. 
The energy required for the drive acceleration is recovered from the ultra-capacitor via the 
converter DC-DC2. The power PC0 is negative and the ultra-capacitor voltage decreases 
towards UC0inM. The DC-DC2 converter actively regulates the dc bus voltage to the reference 
VBUSmax. 

d-2) The ride-through operation mode (RT). The mains supply is interrupted, and 
therefore the drive is supplied from the ultra-capacitor via the power converter DC-DC2. The 
power PC0 is negative and the ultra-capacitor voltage decreases towards UC0min. The DC-DC2 
converter actively regulates the dc bus voltage to the reference VBUSmin. 

e) The ultra-capacitor charging mode (MM-CH ). The mains supply is recovered and 
then the ultra-capacitor is charged to the pre-defined intermediate voltage uC0=UC0inM. The 
DC-DC1 converter actively regulates the dc bus voltage to the reference VBUS(REF). 

f) The mains peak power filtering mode (MPFM ). The drive operates in the mains 
motoring mode. If the load high during a short period, the input power is limited and the drive 
load is supplied from the ultra-capacitor. Once the load is reduced, the ultra-capacitor is re-
charged from the mains. 

 

 

Fig.  12.4 Waveforms at different operating modes of the drive system: the mains motoring mode (MM), 
braking mode (B), stand by mode (STB), energy recovery mode (MC0) and ride-through mode 
(RT), e) the ultra-capacitor charging mode (MM-CH) and the mains peak power filtering mode 
(MPFM). 
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12.2.2. The DC Bus Voltage Reference 

Fig.  12.5 illustrates the signification of the reference voltages VBUSmax VBUS(REF) and 
VBUSmin. The OBF signifies Over-Braking Fault, and USF signifies Under Supply Fault. When 
the system operates in the mains motoring mode, the dc bus voltage is regulated to the 
reference VBUS(REF) that must be greater than the maximum of the supply voltage (to be able to 
control the rectifier current). In order to avoid unnecessary charge and discharge of the ultra-
capacitor, the dc bus voltage references VBUSmin and VBUSmax must stay outside of the normal 
operation range, as shown in Fig.  12.5. On other side, to prevent the system fault, either OBF 
or USF, the dc bus voltage references must not be in the forbidden regions. Therefore, the 
reference VBUSmin is located within an interval [USF, Min Input Voltage] while the reference 
VBUSmax is located within an interval [VBUS(REF), OBF]. The reference VBUS is located within an 
interval [Max Input Voltage, OBF]. 

 

 

Fig.  12.5 Definition of the reference voltages VBUSmax, VBUS(REF) and VBUSmin. 

 

Fig.  12.6 illustrates the capability of the drive system to store and recover the braking 
energy. Waveforms of the dc bus voltage vBUS, the rectifier current iREC, the ultra-capacitor 
current iC0 and voltage uC0 when the drive operates in motoring/braking/motoring cycle are 
shown. The drive runs in the motoring mode (MM ) and is supplied from the mains. The ultra-
capacitor voltage is UC0inM, while the dc bus voltage is regulated to the reference VBUS(REF). 
Once the drive load becomes negative, the drive starts the braking phase (B) and the energy is 
transferred from the load to the drive dc bus. The dc bus voltage vBUS elevates towards the 
upper reference VBUSmax and then stays regulated to that level. At the same time, the input 
current iMAINS falls to zero. The ultra-capacitor voltage increases and the current decreases 
since the charging/discharging power is assumed constant. When the braking phase is 
finished, the drive load becomes again positive and the drive turns to motoring mode again 
(MC0), but this time supplied from the ultra-capacitor. The current iC0 turns negative and the 
voltage uC0 starts to decrease towards the reference UC0inM. Once the ultra-capacitor voltage 
reaches the reference UC0inM, the current drops to zero and the dc bus voltage falls to the 
nominal value VBUS. The ultra-capacitor discharge phase is finished and the drive is supplied 
from the mains again (MM ). 

Fig.  12.7 illustrates the drive immunity on the mains short interruption. The drive runs 
in the mains motoring mode (MM ), and at some instant the mains is interrupted. The dc bus 
voltage falls to the minimum VBUSmin, and stays at that level regulated by the dc bus voltage 
controller. The drive is in the ride-through mode (RT), being supplied from the ultra-
capacitor. The ultra-capacitor voltage decreases below UC0inM towards UCimin. Once the mains 
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is recovered after 1.5s, the ultra-capacitor is re-charged to UC0inM. This is  the mains motoring 
and charging mode (MM-CH ). 

 

 

(a) 

 

(b) 

Fig.  12.6 a) Experimental waveforms of the ultra-capacitor current iC0 [5A/div] and voltage uC0 
[100V/div], the dc bus voltage vBUS [100V/div] and the mains current iMAINS [5A/div] during an 
entire braking-motoring cycle of the drive system. b) Zoom of transition from stand-by to the 
ultra-capacitor motoring mode and stand by mode. The ultra-capacitor voltage is approximately 
UC0=550V. The rectifier current iREC is shown instead of the mains current iMAINS. 

  

 

Fig.  12.7 Experimental waveforms of the ultra-capacitor current iC0 [5A/div] and voltage uC0 [100V/div], 
the dc bus voltage vBUS [100V/div] and the mains current iMAINS [5A/div] during the mains 
interruption. 

 

Fig.  12.8 (a) illustrates the system capability to control the dc bus voltage and reduce 
distortion of the mains current. Waveforms of the dc bus voltage vBUS, the mains phase-to-
phase voltage vMAINS, the rectifier current iREC and the mains current iMAINS are shown. The 
mains current is a square waveform of 2π/3 radians with magnitude of approximately 10A. 
The RMS current is 8.28A RMS. The dc bus voltage is constant and ripple-free. More details 
of control performance in presence of step variation of the load are discussed in the following 
chapter. For comparison, the waveforms of the standard diode rectifier are shown in Fig.  12.8 
(b). The mains current amplitude spectrais is shown in Fig.  12.8. (c). The current total 
harmonic distortion factor (THD) is 29.5% and partially weighted harmonic distortion factor 
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(PWHD) is 54%. The THD is lower than the requirement, of 48%,  [13]. However, the PWHD 
is slightly higher than the limit of 46%, defined by the standard  [13].  

 
(a) 

 
(b) 

 
(c) 

Fig.  12.8 a) Experimental waveforms of the mains phase-to-phase voltage vMAINS, the dc bus voltage vBUS 
[200V/div], the rectifier current iREC and the mains current iMAINS [10A/div] when the drive 
operates in the mains motoring mode (MM). b) The same waveforms when a standard diode 
rectifier is used. The mains current scale is [10A/div]. c) The mains current amplitude spectra. 
The red bars are current spectrum of a standard diode rectifier and the blue bars are current 
spectra of the new drive rectifier. VBUS=650V, VMAINS=400V PLOAD=5500W. 

  

 
(a) 

 
(b) 

Fig.  12.9 a) Experimental waveforms of the mains phase-to-phase voltage vMAINS, the dc bus voltage vBUS 
[200V/div], the rectifier current iREC and the mains current iMAINS [20A/div] when the drive is 
single-phase supplied. a) The drive with the proposed topology, and b) a drive with diode 
rectifier and passive filter. VBUS(AV)=650V, VMAINS(RMS)=400V, PLOAD=4000W, CBUS=820µF. 
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Fig.  12.9 illustrates the drive capability to run on single-phase supply. It could be 
degradation of the mains supply (one phase lost) or the application requirement (rural area 
without three phase supply). The waveforms of the mains voltage and current and the dc bus 
voltage are shown. Fig.  12.9 (a) illustrates waveforms when the proposed solution is used and 
Fig.  12.9 (b) illustrates waveforms when a standard diode rectifier is used. The waveforms are 
recorded at nominal power of 4000W. Note significant difference in the mains peak and rms 
current and also the dc bus voltage ripple. 

12.3. Three-terminal Energy Storage and Power Factor Correction 
Device 

12.3.1. Basic Principle 

Realisation of the three-terminal energy storage and power factor correction device is 
discussed in this section. Fig.  12.10 (a) shows circuit diagram of the solution that was 
proposed and discussed in part two of the dissertation. Fig.  12.10 (b) shows circuit diagram of 
the solution that was proposed and discussed in part three of the dissertation. Combining 
those two solutions into one, yields a solution that solves all the problems mentioned in the 
introduction, section  12.1. Circuit diagram is depicted in Fig.  12.10 (c).  

 

(a) 

 

(b) 

 

(c)  A+B=C 

Fig.  12.10 Evolution of the three-terminal energy storage and PFC device. a) Topology of parallel 
connected ultra-capacitor and interface dc-dc converter, b) half-dc-bus-voltage rated boost 
rectifier, and c) energy storage end PFC device as a combination of the previous two topologies. 
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Note that this circuit corresponds to circuit of Fig.  12.1 (b) (the DC-DC1 converter, 
two series connected capacitors and the DC-DC2 converter). 

The DC-DC1 converter is a switch/diode cell with a filter inductor L0. The inductor is 
connected on the rectifier plus rail, the diode D0 is connected on the dc bus plus rail and the 
switch S0 is connected to the mid-point of the capacitors CB1 and CB2. The DC-DC2 converter 
is composed of the following devices: a switching leg S1S2 connected in parallel with the 
bottom capacitor CB1, the switching leg S3S4 connected in parallel with the top capacitor CB2 
and a diode leg D1D2 connected in parallel with the top side capacitor CB2. Mid-points of the 
legs S1S2 and S3S4 are connected to the ultra-capacitor via a filter inductor LC0. A resonant 
circuit LSCS is connected between the S1S2 mid-point and the diode D1D2 mid-point. 

12.3.2. The DC-DC2 Converter Operating Modes 

As already mentioned in the previous section, the DC-DC2 converter has two roles: 1) 
to control power flow between the drive and the ultra-capacitor when the drive operates in 
braking and ultra-capacitor motoring mode. 2) To assist to DC-DC1 converter and balance the 
voltages vC1 and vC2 when the drive operates in the mains motoring mode. The converter 
circuit diagram in different operating modes is given in Fig.  12.11 and Fig.  12.12. 

12.3.2.1. The Ultra-capacitor Energy Transfer Mode 

In this operating mode, the rectifier current is zero, and therefore the cell D1D2 and 
LSCS circuit (this part of DC-DC2 converter assists to the DC-DC1 converter) can be drooped 
from the circuit, as illustrated in Fig.  12.11 (a). 

 

 

(a) 

 

(b) 

Fig.  12.11 The DC-DC2 converter operating in the ultra-capacitor energy transfer mode and b) an 
equivalent circuit diagram  [48]. 

 

Four switches denoted as S1-S4 and a filter inductor LC0, that are connected in a three-
level topology  [92] controls power flow between the ultra-capacitor CC0 and the dc bus. More 
precisely, the circuit is active whenever the drive operates in the braking mode (charging the 
ultra-capacitor) or motoring mode from the ultra-capacitor (discharging the ultra-capacitor). 
The switches S1-S4 are controlled by two duty cycles d1 and d2. Detailed analysis of the DC-
DC2 converter operating in the ultra-capacitor energy transfer mode was given in chapter  8, 
section  8.3. Here, in this chapter, very simplified analysis that is necessary to follow the 
dissertation is presented. For this, it will be assumed that vC1=vC2 and d1=d2=d. Simplified 
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circuit diagram depicted in Fig.  12.11 (b) is considered. Resistance RC0 is the ultra-capacitor 
internal resistance, which is assumed as frequency independent resistance. Resistance RLC0 is 
the inductor parasitic resistance, which includes the wire resistance and the core equivalent 
resistance  [92]. 

The circuit in Fig.  12.11 (b) is described by equation 
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where the symbol x  denotes moving average value of a variable x . 
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The ultra-capacitor current and voltage are controlled by the controllers via the duty 
cycle d. 

12.3.2.2. The Mains Motoring Mode 

Let us assume that the drive operates in the mains motoring mode. As mentioned, in 
this mode there is no power flow between the drive and ultra-capacitor. Hence, the ultra-
capacitor current is zero (the ultra-capacitor stand-by). As the current is zero, the top side 
switches S3S4 can be drooped from the circuit, as illustrated in Fig.  12.11 (a). 

 

(a) 

 

(b) 

Fig.  12.12 a) The DC-DC2 converter operating in the mains motoring mode, and b) an equivalent circuit 
diagram. 

 

As already discussed and mentioned in chapter  9, the circuit of Fig.  12.11 (a) is a 
variant of the switched capacitor converter. A leg S1S2 is connected across the bottom 
capacitor CB1, and a leg D1D2 is connected across the top capacitor CB2. The capacitor CS is 
the main switched capacitor that transfers the energy from the bottom capacitor CB1 to the top 
capacitor CB2, and the inductor LS is an auxiliary inductor. The role of the inductor LS is to 
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minimize the conduction losses and ensure the zero current switching condition (ZCS). The 
switches S1 and S2 are driven with complementary control signals at period TS2. The duty 
cycle is d1 and depends on the ultra-capacitor voltage ( 12.2), and is normally around 50%. 

An equivalent circuit diagram of the DC-DC2 converter is given in Fig.  12.11 (b). The 
inductance LE is an equivalent inductance of the resonant circuit, given as 
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where SSCLT π20 = is the resonant period.  

The current sources iD and iS are approximated by i2/2, as it was already discussed in 
section  9.1. For simplicity of the analysis, one can assume that the capacitors CB1 and CB2 are 
large enough to maintain the voltages vC1 and vC2 constant over the switching cycle TS2. The 
switches and diodes are modeled by constant voltage sources VS0 and VDF0. 

One complete cycle TS2 can be divided into four stages, namely stage A to stage D. 
Simplified model, topology stages and the waveforms are given in Fig.  12.13. 

Stage A: Switch S1 is closed at the instant t=0. The capacitor CS is charged from vC1 
via the switch S1 diode D1 and the inductor LS. The current i2R and voltage vCS increase. Once 
reaches the maximum, the current starts to decrease towards zero (LSCS resonant circuit). 

Stage B: The current i2R reaches zero and diode D1 is blocked at the instant t=T0/2. 
The current remains zero until commutation of the switch S2. 

Stage C: The switch S2 is closed at the instant t=dTS2. The capacitor CS is discharged 
into vC2 via the switch S2, diode D2 and the inductor LS. The current i2R increases in negative 
direction in respect to the direction in Fig.  12.12. The voltage vCS decreases. After reaching 
the maximum, the current starts to decrease towards zero (LSCS resonant circuit). 

 

(a) 

 

(b) 

Fig.  12.13 a) Circuit diagram of the converter DC-DC2 based on ZCS switched capacitor converter. b) Different 
topological stages of the converter. A) S1, D1 are conducting, B) S1 is conducting D1 is blocking, C) S2, 
D2 are conducting, and D) S2 is conducting D2 is blocking. 
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Stage D: The current i2R reaches zero and diode D2 is blocked at the instant 
t=dTS2+T0/2. The current remains zero until the commutation of the switch S1 at the instant 
t=TS2. One switching cycle is finished. 

12.3.2.3. Zero Current Switching Conditions and LSCS Design 

To achieve the ZCS, the resonant current iR2 must fall to zero before next commutation 
of the S1S2 switch cell. Otherwise, the switch cell commutates at non-zero current conditions. 
As a consequence, the switching losses of the S1S2 and D1D2 will be quiet high. To satisfy the 
ZCS condition, the resonant frequency must be 
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where the maximum and minimum duty cycle have been defined in ( 12.2) as a 
function of the dc bus voltage and the ultra-capacitor voltage. 

From the ZCS condition follows that 
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The capacitor and inductor can be selected using same optimization method that was 
discussed in chapter 9, section 9.3.2.2. 

Fig.  12.14 (a) shows experimental waveforms of the rectifier voltage vREC, resonant 
current i2R and the rectifier current iREC. Magnitude of the current directly follows the rectifier 
current magnitude and inversely follows magnitude of the rectifier voltage. More precisely it 
follows the difference between the dc bus voltage and rectifier voltage. This was discussed 
and explained in chapter  8. Fig.  12.14 (b) shows zoom of those waveforms and waveform of 
voltage vS1 (the bottom switch S1 voltage in Fig.  12.13). In the current waveform, note an 
anomaly that is denoted in the pink. Once the current reaches zero, it is expected that the 
current remains zero until the next switching sequence. However, the current has another 
peak, with lower magnitude and slightly lower frequency. In this particular case, the 
commutation is still soft commutation; the current falls to zero before next commutation. 
However, this is only a coincidence. If duty cycle is different (in this case lower) the 
commutation will not be soft. The switch will commute at non-zero current conditions. 

To investigate the root-cause of this anomaly, let us refer on the real circuit diagram, 
which is shown in Fig.  12.15 (a). In the real set-up circuit, the main dc bus capacitor CBUS is 
dislocated from the dc-dc converter board and capacitors CB1, CB2. This is indicated by the 
parasitic inductance Lγ in the circuit diagram in Fig.  12.15 (a). Thus, an additional parasitic 
resonant circuit is created by the parasitic inductance Lγ and the capacitors CB1, CB2. The 
parasitic resonant circuit is excited each time the switches S1S2 commutate. The voltages vC1 
and vC2 therefore oscillates around the average value. This is visible in the waveforms in Fig. 
 12.15 (b). Once the voltage becomes greater than the voltage of the resonant capacitor CS, the 
diode D1 starts to re-conduct and charge the capacitor CS. 

Fig.  12.16 shows the waveforms after some modifications on the real circuit have been 
done. The first modification: An additional small inductance is connected between the dc bus 
capacitor and the converter board. Waveforms are shown in Fig.  12.16 (a). Note that the 
voltage ripple is greater than that in case without the additional inductance. The re-conduction 
time is longer and therefore the commutation is hard. 
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The second modification: An additional inductor of 50µH is connected between the dc 
bus capacitor and the converter board. Fig.  12.16 (b) shows the waveforms. The voltage ripple 
is smaller than that of the first case. The voltage waveform is regular triangular waveform. 
The resonant current is regular, no re-conduction of the diode D1. The switches commutate at 
the zero current condition. 

The third modification: An additional dc bus capacitor is connected close to the 
converter board. In this case the parasitic inductance is significantly reduced. Fig.  12.17 
shows the waveforms. The voltage ripple is smaller than before. The resonant current is 
regular, without re-conduction. The switches commutate at the zero current condition. 

 

 

(a) 

 

(b) 

Fig.  12.14 a) Experimental waveforms of the rectifier current iREC, the resonant circuit current i2R [10A/div] 
and the rectifier voltage vREC [100V/div]. The conversion power step from 10% to 100%. The 
bus voltage is VBUS=650V and nominal load PLOAD=5500W. b) Zoom of the waveforms 
including the bottom switch voltage vS1 [100V/div]. 

  

 

(a) 

 

(b) 

Fig.  12.15 a) The equivalent circuit including real value of the components. b) The waveforms of the 
resonant circuit current i2R [10A/div], ac component of the bottom filter capacitor voltage vC1 
[5V/div], and the bottom switch voltage vS1 [100V/div]. 
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(a) 

 

(b) 

Fig.  12.16 The waveforms of the resonant circuit current i2R [10A/div], ac component of the bottom filter 
capacitor voltage vC1 [5V/div], and the bottom switch voltage vS1 [100V/div]. a) The parasitic 
inductance LBUS is slightly increased. b) An additional filter inductor of 50µH between the dc 
bus capacitor and the converter board. 

 

 

Fig.  12.17 The waveforms of the resonant circuit current i2R [10A/div], ac component of the bottom filter 
capacitor voltage vC1 [5V/div], and the bottom switch voltage vS1 [100V/div]. The dc bus 
capacitor is connected on the board (the parasitic inductance Lγ significantly reduced). 
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13. MODELING AND CONTROL SCHEME  

The modelling and control scheme are discussed in this chapter. The large and small 
signal model of the entire conversion system (the ultra-capacitor, the dc-dc converter and 
drive converter) is developed. Some of the model derivations are re-used from chapter  5 and 
chapter  9. In the second part of this chapter, the control objective and control scheme are 
discussed. The model and control scheme are validated by Matlab/Simulink simulation and a 
set of experimental measurements. The results are presented and discussed. 

13.1. The System Model 

13.1.1. Large Signal Model 

The large signal (nonlinear) model of the entire power conversion system is depicted 
in Fig.  13.1. The input rectifier is modeled by a voltage source vREC. The dc bus capacitor is 
modeled as an ideal capacitor CBUS and its equivalent series resistance RESR. 

 

 

Fig.  13.1 Large signal model of the three-terminal energy storage and power factor correction device, 
rectifier and inverter load. 

 

The system of Fig.  13.1 is described by the instantaneous power equation 
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where the rectifier and the ultra-capacitor instantaneous power is 
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Instantaneous power of the filter inductor LC0 and the boost inductor L0 are neglected 
in ( 12.2) and ( 12.3). 

The ultra-capacitor circuit is described by the following equations 

( ) 00 2 C
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dt
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ukC =+ , ( 13.4) 

000 CCCC iRuu += , ( 13.5) 
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( 13.6) 

13.1.2. Small Signal Model 

Appling the small signal approximation and Laplace transformation on ( 13.2)-( 13.6) 
yields transfer functions in matrix form 
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The system output variables are uC0 and vBUS, the control variables are iC0 and iREC, and 
the disturbance variables are pLAOD and vREC. The transfer functions are  
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Remark: When the transfer function GBUS(C0) was being developed, it was assumed 
that the ultra-capacitor is an infinite capacitance. 

Fig.  13.2 shows block diagram of the small signal model of the system ( 13.1)-( 13.6) 
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Fig.  13.2 Small signal model of the entire power conversion system. 

 

13.2. Control Aspects 

13.2.1. The Control Objectives 

The primary control objective is to asymptotically regulate the dc bus voltage to the 
reference, where the reference depends on the system-operating mode. The secondary control 
objective is to regulate the rectifier current to be constant or quasi-constant in order to reduce 
the mains current total harmonic distortion (THD). The last control objective is to regulate the 
ultra-capacitor state of the charge, where the state of charge reference depends on the 
operating mode. 

13.2.2. Control Scheme 

The control scheme is illustrated in Fig.  13.3. Note two sections, namely DC-DC1 
CONTROL and DC-DC2 CONTROL. The first control block consists of the controllers GiREC 
and GvBUS. The controller GiREC regulates the rectifier current, while the controller GvBUS 
asymptotically regulates the dc bus voltage to the reference VBUS(REF). The block denoted as 
DC-DC2 CONTROL consists of the ultra-capacitor current controller GiC0, the ultra-capacitor 
voltage controller GuC0 and two dc bus voltage controllers, GvBUSmax and GvBUSmin. The mid-
point voltage balancing controller is not illustrated in the control structure. It was discussed in 
chapter 6. 

13.2.3. Operational Modes 

From control perspective, the system may operate in three different modes: 1) the 
rectifier mode, 2) the ultra-capacitor energy transfer mode and 3) the mains peak power 
filtering mode. 

13.2.3.1. The Rectifier Mode 

Fig.  13.4 illustrates the control scheme when the drive operates in the rectifier (the 
mains motoring) mode. When operates in this mode, the drive is supplied from the mains. The 
dc bus voltage is actively controlled by the DC-DC1 converter to the reference VBUS(REF). 
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Fig.  13.3 The control scheme of the three-terminal energy storage and power factor correction device. 

 

 

Fig.  13.4 The control scheme in the rectifier mode. The dc bus min/max voltage controllers are saturated 
(deactivated). 

 

As mentioned before, in chapter 12 (Fig.  12.5 (a)), the dc bus voltage is 
vBUS=VBUS(REF), where the reference VBUS(REF) is lower than the reference VBUSmax and greater 
than the reference VBUSmin. Thus, the controller GvBUSmax is saturated at UC0inM, while the 
controller GvBUSmin is saturated at zero. Please, note that the controllers GvBUSmax and GvBUSmin 
are designed in such a way to have 0&0 <↑>↓ errorifouterrorifout , where out is the 
controllers output u1(REF) and u2(REF), and error is the controllers input (the dc bus voltage 
control error). The symbols ↑ and ↓ denote that the variable increases and decreases 
respectively. 

The ultra-capacitor voltage reference is constant, 

inMCinMCREFREFREFC UUuuu 00)(2)(1)(0 0 =+=+= . ( 13.10) 

The controller GuC0 regulates the ultra-capacitor voltage to the intermediate reference 
UC0inM in order to prevent power flow between the ultra-capacitor and the drive. 
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Fig.  13.5 shows the small signal model and control scheme of the system working in 
the rectifier mode. As the dc bus voltage controllers are saturated, the ultra-capacitor voltage 
(small signal) reference is zero. 

 

Fig.  13.5 Small signal block diagram of the control system operating in the rectifier mode. 

 

13.2.3.2. The Ultra-capacitor Energy Transfer Mode 

In the ultra-capacitor energy transfer mode, two sub-modes can be distinguished: a) 
the braking mode, and b) ride-through mode. Fig.  13.6 and Fig.  13.7 depict the control 
scheme and small signal control block diagram. 

o Braking Mode 

The drive load is negative (the motor works as a generator). Because the rectifier is a 
uni-directional device, the dc bus capacitor is charged and the dc bus voltage vBUS increases. 
As the dc bus voltage increases, the dc bus voltage error decreases. Thus, the boost voltage 
controller trays to regulate the dc bus voltage and reduce the rectifier current reference 
towards zero. Once the reference reaches zero, the boost voltage controller is saturated, and 
can be neglected in the analysis. 

Once the dc bus voltage reaches the reference VBUSmax, the dc bus voltage controller 
GvBUSmax is out of saturation, while the controller GvBUSmin stays saturated at zero. Thus, the 
ultra-capacitor voltage reference uC0(REF) starts to increase from UC0inM towards UC0max, 

max0)(00 CREFCinMC UuU ↑≤< . ( 13.11) 

The ultra-capacitor current is set by the controller GuC0 at such a level to maintain the 
dc bus voltage constant vBUS=VBUSmax. If the braking energy is greater than the ultra-capacitor 
capability, the ultra-capacitor will be fully charged to the maximum voltage UC0max before the 
end of the braking phase. The dc bus voltage controller GvBUSmax will be saturated at UC0max, 
and the ultra-capacitor voltage reference will stop increasing. The ultra-capacitor voltage will 
stay constant and the current iC0 will fall to zero; charging of the ultra-capacitor is finished. 
Then, the dc bus voltage will start increasing until activation of the braking resistor or the 
drive over-voltage (over-braking fault) protection. 

When the drive operates in motoring mode, the ultra-capacitor has to be discharged to 
the intermediate value UC0inM in order keep the ultra-capacitor ready for next braking cycle. 
The dc bus voltage controller GvBUSmax regulates the dc bus voltage to VBUSmax. Output of the 
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controller GvBUSmax decreases and therefore the ultra-capacitor voltage reference decreases 
towards UC0inM. The ultra-capacitor is discharged, supplying the drive load. 

max0)(00 CREFCinMC UuU ↓<≤ . ( 13.12) 

 

Fig.  13.6 Control scheme in the ultra-capacitor energy transfer mode. The rectifier control system is saturated 
(deactivated). 

 

 

Fig.  13.7 Small signal block diagram of the control system operating in the ultra-capacitor energy transfer 
mode. 

 

Once the ultra-capacitor is discharged to the intermediate level UC0inM, the dc bus 
voltage controller GvBUSmax is saturated at the reference UC0inM. The ultra-capacitor voltage 
reference is therefore constant 

inMCinMCREFC UUu 00)(0 0 =+= . ( 13.13) 

 

The ultra-capacitor voltage is regulated to the intermediate reference, uC0=UC0inM. 
Therefore, the ultra-capacitor current falls to zero and discharging is finished. The dc bus 
capacitor is discharged and the dc bus voltage decreases. Once it reaches the reference 
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VBUS(REF), the boost voltage controller GvBUS goes out of saturation and the DC-DC1 converter 
starts to regulate the dc bus voltage. The drive is supplied again from the mains. 

o The Ride-Through Mode 

When the mains is interrupted, the dc bus voltage starts to decrease until it reaches the 
minimum VBUSmin. At that instance, the controller GvBUSmin goes out of saturation and the 
output u1(REF) starts to decrease below zero towards ∆UC0min=UC0min-UC0inM. Since the 
controller GvBUSmax stays saturated at UC0inM, the ultra-capacitor voltage reference starts to 
decrease below UC0inM towards UC0min. 

( ) inMCREFCCinMCCinMC UuUUUU 0)(0min00min00 ↓>≥=−+ , ( 13.14) 

The ultra-capacitor is discharged deeper while the dc bus voltage is regulated to the 
minimum level vBUS=VBUSmin. Once the mains is recovered, the dc bus voltage starts to 
increase to the nominal voltage (defined by the mains voltage). At same time, the ultra-
capacitor is charged and its voltage increases towards UC0inM in order to be ready for next 
interruption.  

If the power interruption is longer than the specified, the ultra-capacitor will be 
discharged to the lower minimum level UC0min. Then, the ultra-capacitor current will fall to 
zero and the dc bus voltage will start decreasing until reaches the under supply fault (USF) 
level. The drive will fail in the USF and the complete system will be stopped. 

o The Mains Peak Power Smoothing Mode 

When the drive operates in the mains peak power filtering mode, the DC-DC1 and 
DC-DC2 control blocks are active. The dc bus boost voltage controller is active continuously, 
while the dc bus voltage min/max controllers operate complementary. Equivalent control 
block diagram that illustrates this operating mode is depicted in Fig.  13.8. 

 

 

Fig.  13.8 Small signal block diagram of the system operating in the mains peak power filtering mode. All 
controllers are active. 
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13.3. Simulation and Experiments 

The model and control algorithm proposed in this chapter were simulated by the 
average model ( 13.1)-( 13.6) implemented in Matlab/Simulink and verified by a set of 
experiments. Some of the simulation and experimental results are presented and discussed 
hereafter. All relevant parameters of the system and control are summarized in TABLE  13-1. 

 

TABLE  13-1: The conversion system and control parameters. Sampling time for the dc bus voltage 

controllers and the ultra-capacitor filter is sTS µ200= . 

 

The control algorithm, PWM and protection functions were implemented in a fixed-
point 32 bit digital signal processor (DSP). The complete control algorithm is executed at 
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three different rates: the rectifier current control at 100 kHz, the ultra-capacitor current control 
at 25 kHz and the dc bus voltage control at 5 kHz. The controllers were designed as the 
standard proportional-integral (PI) controllers. The controller parameters were computed in 
continuous time domain (s), and then translated into discrete time domain, (z), using the 

approximation 
ST

z
s

11 −−= , where is the sampling period is ( ) sT iRECS µ10= , sT
iCS µ40

0
=  and 

sT vBUSS µ200)( = . 

13.3.1. Simulation Results 

Fig.  13.9 shows waveforms simulated during an entire operating cycle: the mains 
motoring (MM ), braking (B), the ultra-capacitor motoring (MC0) and the mains motoring 
mode (MM ). Fig.  13.10 shows the dc bus voltage and the mains current waveforms during 
transition from the mains motoring mode to braking mode. 

Fig.  13.10 shows the dc bus voltage and the mains current during transition from the 
mains motoring mode to the braking mode. Once the dc bus load becomes negative, the dc 
bus voltage starts to rise from the reference VBUS(REF) =650V towards the reference 
VBUSmax=655V, while the mains current drops to zero. The dc bus voltage overshoot is small, 
approximately 15V, which is 2.3% of the nominal voltage. 

Fig.  13.11 shows the dc bus voltage and the mains current waveform during transition 
from the ultra-capacitor motoring mode to the mains motoring mode. The dc bus voltage falls 
from the reference VBUSmax =655V towards the reference VBUS(REF)=650V, while the mains 
current rises slowly. Note, the dc bus voltage undershoot is small, around 1V that is 0.15% of 
the nominal voltage. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.  13.9 Simulated waveforms of the dc bus voltage vBUS, rectifier voltage, the ultra-capacitor voltage uC0 
and current iC0 during an entire cycle; the mains motoring (MM ), braking (B), the ultra-
capacitor motoring (MC 0) and the mains motoring mode (MM ). PLOAD=+/- 5000W, 
CBUS=820µF, CC0=0.4F, VMAINS=400Vrms. 
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(a) 

 

(b) 

Fig.  13.10 Simulated waveforms of the dc bus voltage vBUS and the mains current iMAINS during transition 
from the mains motoring mode to braking mode. PLOAD=+/- 5000W, CBUS=820µF, CC0=0.4F, 
VMAINS=400Vrms. 

 

(a) 

 

(b) 

Fig.  13.11 Simulated waveforms of the dc bus voltage vBUS and the mains iMAINS current during transition 
from the ultra-capacitor motoring mode to the mains motoring mode. 

 

13.3.1.1. The Mains Peak Power Smoothing 

Fig.  13.12 and Fig.  13.13 illustrate the drive system behaviour in presence of a 
discontinuous load. The dc bus load is cycling between 10% and 100% with repetition period 
of 1s and duty cycle of 35%. Waveforms of the dc bus voltage and the mains current when the 
mains peak power filter mode is not active (the voltage controller bandwidth is fBOOST=50Hz) 
are shown in Fig.  13.12. 

 

(a) 
 

(b) 

Fig.  13.12 Simulated waveforms of the dc bus voltage vBUS and the mains iMAINS current when the load is 
cycling 10% to 100% to 10%. The bus voltage is vBUS=650V, the mains phase-to-phase voltage 
VMAINS=400Vrms, the dc bus capacitor CBUS=820µF and the boost voltage controller bandwidth 
is fBOOST=50Hz. 
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The dc bus is regulated to the reference VBUS(REF) =650V. Magnitude of the mains 
current is modulated by the dc bus load, and varies from approximately 1A (at light load) to 
9.5A (at full load). Fig.  13.13 shows waveforms of the ultra-capacitor current and voltage. 
The current is zero with narrow positive and negative spikes. The spikes are caused by the dc 
bus min/max voltage controller because difference between the dc bus voltage references is 
narrow, in this case VBUSmax  - VBUSmin =10V. 

 

 

(a) 

 

(b) 

Fig.  13.13 Simulated waveforms of the ultra-capacitor voltage and current when the load is cycling 10% - 
100% -10%. The bus voltage is vBUS=650V, the mains phase-to-phase voltage VMAINS=400Vrms, 
the dc bus capacitor CBUS=820µF and the boost voltage controller bandwidth is fBOOST=50Hz. 

 

The system behavior is simulated when the mains peak power filter mode is active (the 
voltage controller bandwidth is fBOOST=1Hz). Fig.  13.14 shows the dc bus voltage and the 
mains current waveforms. The dc bus voltage regularly commutates between VBUSmin=645V 
and VBUSmax=655V. The mains current is slightly modulated, but with much lower variation in 
comparison the previous case. Fig.  13.15 shows the ultra-capacitor voltage and current 
waveforms. The current commutates between -9A (full load on the dc bus side) and 5A (light 
load on the dc bus side). Discontinuity is the ultra-capacitor voltage is in the voltage drop on 
the ultra-capacitor internal resistance RC0. 

 

 

(a) 
 

(b) 

Fig.  13.14 Simulated waveforms of the dc bus voltage vBUS and the mains iMAINS current when the load is 
cycling 10% - 100% -10%. The bus voltage is vBUS=650V, the mains phase-to-phase voltage 
VMAINS=400Vrms, the dc bus capacitor CBUS=820µF and the boost voltage controller bandwidth 
is fBOOST=1Hz. 
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(a) 

 

(b) 

Fig.  13.15 Simulated waveforms of the ultra-capacitor voltage and current when the load is cycling 10% - 
100% -10%. The bus voltage is vBUS=650V, the mains phase-to-phase voltage VMAINS=400Vrms, 
the dc bus capacitor CBUS=820µF and the boost voltage controller bandwidth is fBOOST=50Hz. 

 

13.3.2. Experimental Results 

13.3.2.1. The DC Bus Voltage Controller GBUS(REF) Performance 

Fig.  13.16 illustrates the functionality of the dc bus voltage boost controller, GVBUS, in 
presence of a step change in the dc bus load. Fig (a) shows the rectifier current, ac component 
of the dc bus voltage and the ultra-capacitor voltage and current when the dc bus load is 
stepped from 10% to 110%. The controller response time is approximately 10ms, while the 
voltage undershoot is approximately -15V. Fig.  13.16 (b) shows the waveforms when the load 
is stepped from 110% to 10%. The voltage overshoot is approximately 12V. The controller 
response time is slightly greater than that of the previous case. The reaction time is extended 
because the rectifier current is limited at zero. It cannot be negative because the input rectifier 
is uni-directional device. The ultra-capacitor current remains zero, because it should not be 
power flow between the ultra-capacitor and the drive. 

 

 

(a) 

 

(b) 

Fig.  13.16 Experimental waveforms of the rectifier current iREC [5A/div], the ac component of the dc bus 
voltage vBUS [10V/div], the ultra-capacitor voltage uC0 [100V/div] and current iC0 [5A/div]. a) 
The dc bus load step from 10% to 110%, and b) from 110% to 10%. VBUS=650V, 
VMAINS=400Vrms, L0=325µH, CBUS=820µF and fBOOST=50Hz. 
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13.3.2.2. The DC Bus Voltage Controller GBUSmax Performance 

Fig.  13.17 illustrates the functionality of the dc bus voltage braking controller, 
GVBUSmax. The ultra-capacitor is charged on 550V. Fig.  13.17 (a) shows the ultra-capacitor 
voltage and current, ac component of the dc bus voltage and rectifier current when the drive 
switches from stand-by mode to the ultra-capacitor mode. The controller response time is 
approximately 5 ms, while the voltage undershoot is approximately -13V. Fig.  13.17 (b) 
shows the waveforms when the drive switches from the ultra-capacitor mode to the stand-by 
mode. The voltage overshoot is approximately 12V. The controller response time is similar to 
the previous one. 

13.3.2.3. The Mains Peak Power Smoothing Controller Performance 

The capability of the drive system to reduce the mains peak power is tested and results 
are illustrated in Fig.  13.18 . The waveforms of the ultra-capacitor voltage uC0 and current iC0, 
the dc bus voltage vBUS and the mains current iMAINS are shown. The dc bus load is cycling 
between 10% and 100% with repetition period of 2.2s and duty cycle of 40%. Fig.  13.18 (a) 
illustrates a case when the peak power filtering function is deactivated (the dc bus voltage 
boost controller bandwidth is 50Hz). As one can see from the waveform, the dc bus voltage is 
well regulated at the reference VBUS(REF)=650V. The ultra-capacitor current is zero. The mains 
current is modulated with the load and it varies from 1A up to 11A. 

Fig.  13.18 (b) illustrates a case when the peak power filtering function is activated (the 
dc bus voltage boost controller bandwidth is 1Hz). The dc bus voltage is well regulated at two 
different references VBUSmax=675V and VBUSmin=625V. The ultra-capacitor current commutates 
between -8A (the dc bus load is 100%) and 6A (the dc bus load is 10%). The mains current 
magnitude is approximately 6A, continuous without significant variations. 

 

 

(a) 

 

(b) 

Fig.  13.17 Experimental waveforms of the dc bus voltage vBUS [10V/div] and the mains iMAINS current 
[5A/div], the ultra-capacitor voltage uC0 [100V/div] and current iC0 [5A/div]. a) Transition from 
stand-by to the ultra-capacitor motoring mode and b) transition from the ultra-capacitor 
motoring mode to stand-by mode. VBUS=675V, uC0=550V, VMAINS=400V, L0=325µH, 
CBUS=820µF and fBOOST=50Hz. 
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(a) 

 

(b) 

Fig.  13.18 Experimental waveforms of the dc bus voltage vBUS [100V/div] and the mains current iMAINS 
[5A/div] the ultra-capacitor current iC0 [5A/div] and voltage uC0 [100V/div], when the load is 
cycling (10% to 100% to 10%). VBUS=650V, VMAINS=400V, CBUS=820µF,PLOAD=5500W. a) 
fBOOST=50Hz and b) fBOOST=1Hz. 
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14. CONCLUSION  

In this part of the dissertation, a new solution for the ultra-capacitor based regenerative 
electric drive has been proposed. The proposed solution intents to successfully solve some the 
technical issues that still exist in the application of controlled electric drives: 1) Saving of the 
braking energy, 2) extension of the drive system ride-through capability (immunity on the 
mains interruption), 3) the drive input current quality, 4) the drive dc bus voltage control, 5) 
single phase operation and 6) smoothing of the mains peak power. 

The proposed solution has been theoretically analysed. The analyses results are 
confirmed by the Matlab/Simulink simulation and a set of experiments on an industrial 
prototype. The conversion efficiency has been computed and is between 97% and 99%. 
Please, note that the ultra-capacitor efficiency is excluded from this calculation. As it was 
discussed in chapter 3, the ultra-capacitor efficiency strongly depends on the capacitor size 
and conversion power, the smaller capacitor the lower efficiency. Therefore, efficiency of the 
entire drive system depends on the ultra-capacitor size. 

In comparison to state of the art solutions, such as regenerative rectifiers or matrix 
converters, the proposed solution has the following advantages: 

1) The system ride-through capability is extended. The drive autonomy time is a 
design parameter. Depending on the application, the ride-through time could be extended up 
to 15s. Above this, it is not cost effective to use the ultra-capacitors. Instead, electrochemical 
battery can be better solution. This limit will move up with development of the new 
generation of ultra-capacitors  [72]. 

2) The system functionality, including braking capability is not linked to the mains 
reliability. 

3) Operation of the drive system in single-phase supply mode is possible. 

4) The mains peak power is controlled and the drive effects on the mains are reduced. 
This is particularly important in case of a weak supply network. Also, smoothing of the input 
power allows better sizing of the drive installation (smaller cabling cabinet, fuses and 
contactors). 

A disadvantage of the proposed solution is the input current total harmonic distortion 
(THD) that cannot be lower than 30%. However, according to the existing standards  [13], 
THD of 30% is sufficient for general purpose industrial drive applications. 
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15. THE DISSERTATION CONTRIBUTION  

Contribution of the dissertation could be summarized as follows: 

o The Ultra-capacitor Application in Power Conversion 

A comprehensive analysis of the ultra-capacitor as an energy storage device for power 
conversion applications has been performed. The ultra-capacitor macro model has been 
discussed. The conversion losses model, which takes into account frequency of the capacitor 
current and the frequency dependent resistance of the capacitor, has also been developed.  

o Parallel Connected Energy Storage Device for Controlled Electric Drives 

Regenerative controlled electric drive with braking capability and extended ride-
through capability, using parallel connected ultra-capacitor as an energy storage device has 
been extensively analysed. Such a drive concept allows saving and recovery of the drive 
braking energy in most of controlled electric drive applications. Moreover, the drive ride-
through capability can be extended, depending on an application need. 

o Interface DC-DC Converter 

Three-level dc-dc converter as interface between the ultra-capacitor and the controlled 
electric drive has been proposed and discussed. The advantages of the three-level dc-dc 
converter have been clearly identified and discussed. 

o The System Model and Control Scheme 

Dynamic nonlinear and small signal linear model of the controlled electric drive with 
the ultra-capacitor and dc-dc converter has been developed. The model takes into account all 
the relevant effects that are present in such a complex power conversion system. A novel 
control scheme has been also proposed. The control scheme allows control of the ultra-
capacitor current, the ultra-capacitor state of the charge (SOC) and the dc bus voltage. The 
advantages of the proposed control scheme have been identified and discussed. 

o Three-terminal Power Factor Correction Device 

The mains current quality, dc bus voltage control and operation on single-phase supply 
have been discussed. A novel boost dc-dc converter based on the half-dc-bus-voltage rated 
topology has been proposed as a solution for the above-mentioned issues. The new topology 
has been theoretically analysed and the concept verified by a set of experiments. Modelling 
aspects and control scheme have been discussed. Particular attention has been paid on the 
model of the resonant dc-dc converter that is used to balance the dc bus mid-point voltage. 
The advantages of the new topology have been clearly identified and discussed. 

o Three-terminal Power Factor Correction and Energy Storage Device 

The three-terminal energy storage and power factor correction device for controlled 
electric drive applications has been proposed. The proposed three-terminal device is a 
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solution that solves some of the technical issues that still exist in application of controlled 
electric drives. The proposed solution has been deeply analysed and the concept verified by a 
set of experiments. The advantages and disadvantages have been clearly identified and 
discussed 

o Publications 

Most of the work presented in the dissertation is in publication and review process for 
IEEE Transaction on  Industrial Electronics. 
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16. CONCLUSIONS AND PERSPECTIVES 

16.1. General conclusion 

16.1.1. The Ultra-capacitor in Electric Drives and Other Power Conversion 
Applications 

The ultra-capacitor as an energy storage device dedicated for power conversion has 
been discussed in the first part of the dissertation. In comparison to state of the art 
electrochemical batteries, ultra-capacitors have higher power density, higher efficiency, 
longer life time and greater cycling capability. In comparison to state of the art electrolytic 
capacitors, ultra-capacitors have higher energy density. All those advantages make ultra-
capacitors the most suitable candidate for power conversion applications with a need for 
short-term energy storage, up to 15s. Some of the possible applications are industrial 
controlled electric drives, hoisting applications, power transmission/distribution networks, 
traction drives and UPS in building and IT centres. 

State of the art ultra-capacitor technology is the double layer capacitor with activated 
carbon electrodes. Beside this technology, there are four different technologies under 
development: 1) Nano tube capacitor, 2) Nano-gate capacitor, 3) EeStore high voltage 
multilayer capacitor and 4) Mega-farad ultra-capacitor. All the technologies under 
development promise higher energy density than state of the art ultra-capacitors. Some of 
them, for example technology 3) and 4), promise energy density even greater than state of the 
art electrochemical batteries. 

The ultra-capacitor macro model has been discussed. Proper electrical model is 
essential for the ultra-capacitor losses and temperature evaluation and the conversion system 
control analysis and synthesis. The first order RC model is sufficiently accurate if dominant 
frequency of the ultra-capacitor current is well below or above the capacitor cut-off 
frequency. Otherwise, the second or higher order model is necessary to accurately compute 
the capacitor losses and internal temperature. For the most commercially available ultra-
capacitors, lower cut-off frequency is around 0.1Hz, while the upper cut-off frequency is 
around 10Hz. The first order RC model is sufficient for analysis and synthesis of the power 
converter controllers. 

The concept of the ultra-capacitor based regenerative electric drive has been discussed 
in part two of the dissertation. The ultra-capacitor is employed as the energy storage device to 
store the drive braking energy and restore the energy whenever it is possible. Moreover, the 
ultra-capacitor is used as an emergency power supply in case of the mains interruption. 
Unlike electrochemical batteries, the ultra-capacitor state of charge (SOC) strongly depends 
on the terminal voltage. Thus, it is not practical and convenient to connect the ultra-capacitor 
directly to the controlled electric drive. An interface dc-dc converter is necessary. State of the 
art topologies are discussed and the new three-level dc-dc converter topology is proposed. 
The proposed topology is analysed and design guidelines are given. Model of the entire 
conversion system is developed and new control scheme is proposed. Objective of the 
proposed control is to control the ultra-capacitor current and the dc bus mid-point voltage. 
The second control objective is to asymptotically regulate the dc bus voltage at desired 
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reference, depending on the operating mode. The ultra-capacitor state of charge (SOC) control 
is the third control objective. 

In comparison to state of the art solutions, such as back-to-back and matrix converters, 
the proposed ultra-capacitor based controlled electric drive converter shows the following 
advantages. 

o The system ride-through capability is extended. The drive autonomy is a 
design parameter. Depending on the application, the ride-through time can be 
extended up to 15s. Above this, it is not cost effective to use the ultra-
capacitors. Electrochemical batteries are more suitable solution. This limit will 
move up with development of the new generation of ultra-capacitors. 

o The system functionality, including braking capability and reliability is not 
linked to the mains reliability. 

Regarding to the three-level interface dc-dc converter, the following advantages 
compare to state of the art topologies are identified. 

o The semiconductors losses are smaller than that of the two-level topology and 
isolated topologies. 

o The output inductor is smaller than that of the ordinary two-level topology. 
The inductor size depends on the ultra-capacitor minimum voltage, and varies 
between 25% and 50% of that of the two-level converter.  

o The input filter capacitor is smaller too. The capacitor volume varies between 
10% and 25% of that of the two-level converter. 

16.1.2. Novel Diode Boost Rectifier 

The novel three-phase diode boost rectifier using the half-dc-bus-voltage-rated 
topology has been proposed and discussed in part three of the dissertation. The proposed 
boost converter consists of two dc-dc converters and two series connected dc bus capacitors. 
The first converter regulates the rectifier current and boosts the dc bus voltage above the 
mains phase-to-phase peak voltage. This converter is state of the art dc-dc converter, which is 
connected on the rectifier plus rail, the dc bus plus rail and the dc bus capacitors mid-point. 
The second dc-dc converter is an auxiliary converter that assists to the first one. This 
converter is a variant of the series resonant converter that operates in discontinuous 
conduction mode, type 1. Nonlinear model and small signal model of the entire rectifier have 
been discussed. Particular attention has been paid on the auxiliary resonant dc-dc converter 
model. Control scheme has been proposed and validated by simulation and a set of 
experiments. 

The advantages of the proposed boost rectifier compared to the ordinary single-switch 
and double-boost rectifier can be summarized as follows. 

o The switches utilization factor is higher than that of state of the art solutions. 
Therefore, the switches cost is lower. 

o The switches voltage rating is half of that of the single-switch boost rectifier. 
Thus, better and more efficient devices could be used. 

o The boost inductor is smaller than the inductor of single-switch boost rectifier. 

o The conversion efficiency is greater than that of state of the art solutions. 



 16. CONCLUSION AND PERSPECTIVES 

-202- 

Some inconveniences of the proposed boost rectifier are identified too. 

o The need for an auxiliary dc-dc converter to control the dc bus capacitors mid-
point voltage. This converter is rated on a fraction of the total conversion 
power. Therefore the conversion losses can be quite low in comparison to the 
total conversion losses. 

o The input current total harmonic distortion factor (THD) and partially weighted 
harmonic distortion factor (PWHD). Because of operation principle of three-
phase diode boost rectifier operating in continuous conduction mode (CCM), 
the THD cannot be reduced below 30%, while the PWHD is around 55%. 
However, according to the existing standards  [13], THD of 30% is sufficiently 
low for industrial drive applications, while PWHD is slightly above the limit. 
The PWHD, however, can be reduced below 46% as required by the standard 
by the use of 6th harmonic injection  [140]. 

The new boost rectifier is an effective replacement for passive diode rectifiers as well 
as single-switch and double boost rectifier. This topology could be used in three-phase 
supplied and single –phase supplied three-phase controlled electric drives. 

16.1.3. All Together 

In last part of the dissertation, a compilation of the parallel-connected energy storage 
device (discussed in part two of the dissertation) and the new boost rectifier (discussed in part 
three of the dissertation) is proposed. The proposed solution intents to successfully solve the 
following technical issues that still exist in application of controlled electric drives: 1) Saving 
of the braking energy, 2) extension of the drive system ride-through capability (immunity on 
the mains interruption), 3) the drive input current quality, 4) the drive dc bus voltage control, 
5) single phase operation and 6) smoothing of the mains peak power. The proposed solution is 
theoretically analysed and design guidelines are given. The concept has been validated by 
simulation and a set of experiments. 

Compared to state of the art solutions, such as regenerative back to back and matrix 
converters, the proposed solution has the following advantages. 

o The system ride-through capability is extended. 

o The system functionality, including braking capability is not linked to the 
mains reliability. 

o Single-phase supply operation is possible too. 

o The mains peak power is controlled and the drive effects on the mains are 
reduced. This is particularly important if the electric drive is supplied from a 
weak public supply network. Moreover, smoothing of the input power allows 
better sizing of the drive installation (smaller cabling cabinet, fuses and 
contactors). 

o The conversion efficiency is greater that that of state of the art solutions. 

 

16.2. Perspectives for Future Work 

Perspectives for future work on the project can be summarized as follows. 
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16.2.1. Commissioning and Self–tuning of the System Controllers 

The first objective for future work on this project would be the system commissioning 
and self-tuning process. Two parameters have to be well known for proper tuning of the 
system controllers: 1) Capacitance of the dc bus capacitor, and 2) capacitance of the ultra-
capacitor. The first one is important for the dc bus voltage controllers’ adjusment, while the 
second one is important for the ultra-capacitor state of charge (SOC) controller adjustment. 

16.2.2. On-line Monitoring and the Ultra-capacitor Life Tim e Estimation 

The ultra-capacitor lifetime prediction is another aspect to be considered. In certain 
applications, such as critical industrial processes  [10], unexpected interruptions of the system 
are not allowed. Hence, failures such as end of life of the ultra-capacitor must be predicted 
and preventive replacement done on time. For this, on-line lifetime estimation is essential. 
Some work has been already done in field of electrolytic capacitors failure prediction  [141]. 
Similar concept can be used to predict end of life of the ultra-capacitor. 
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RESUME EN FRANÇIAS  

Au cours de l’histoire humaine, la force motrice fut d’abord celle des animaux et des esclaves, 

la puissance hydraulique, puis l’éolien. Au 18ième siècle, il s’agissait de la machine à vapeur inventée 

par James Watt. Avec l’invention de l’électricité, l’énergie électrique s’est peu à peu imposée. Les 

premiers moteurs étaient à courant continu et à la fin du 18ième siècle, Nikola Tesla inventa le 

système triphasé, ainsi que le plus connu des moteurs : le moteur asynchrone. Du fait de leurs 

nombreux avantages par rapport aux machines à courant continu, les moteurs asynchrones 

devinrent prédominants dans la plupart des applications à vitesse constante. Toutefois, le 

principal inconvénient de ces moteurs restait la difficulté à contrôler leur vitesse, constituant 

un facteur limitant pour les applications à vitesse variable. 

Les premiers développements de variateurs de vitesse électronique datent de la 

première moitié du 20ième siècle, entre 1910 et 1940. Ils étaient basés sur des tubes 

électroniques comme les thyratrons et les ignitrons. Ces « interrupteurs d’électronique de 

puissance » n’ont pas eu un large succès dans les applications industrielles du fait de leur 

complexité et de problèmes de fiabilité. Au début des années 1960, le premier thyristor a été 

inventé et l’ère des convertisseurs de puissance à semiconducteurs a commencé, ainsi que 

l’essor des variateurs de vitesse. Quatre décennies plus tard, au début du 21ième siècle, les 

variateurs modernes basse tension sont exclusivement dédiés aux moteurs triphasés, qu’ils 

soient asynchrones ou synchrones à aimants permanents. Les convertisseurs d’électronique de 

puissance utilisés sont des onduleurs à source de tension modulée en largeur d’impulsion 

(MLI) et ils utilisent des semiconducteurs de puissance de type Silicium (Si) à savoir des 

diodes et des transistors bipolaires à grille isolée (IGBTs). Récemment, les composants au 

Carbure de Silicium (SiC) ont fait leur apparition (diodes schottky (SBD) et transistors à effet 

de champ FET), sans grand succès pour le moment, du fait de leur coût élevé et d’un 

problème de maturité. 

Avec le développement rapide des applications électriques, les variateurs électroniques 

deviennent d’importants consommateurs d’énergie. De nos jours, 70% de la production 

mondiale d’électricité est consommée par des variateurs de vitesse, pour le transport, 

l’industrie, l’électroménager etc. Ces solutions ne résolvent pas tous les problèmes: 

récupération de l’énergie de freinage, immunité face aux coupures du réseau d’alimentation, 
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qualité du courant d’entrée, contrôle et stabilité du bus continu, fonctionnement monophasé, 

et puissance crête appelée sur le réseau. 

La plupart des applications modernes des variateurs de vitesse, comme les ascenseurs, 

les grues, les machines-outils, etc… sont caractérisées par un fort déséquilibre entre leur 

puissance moyenne et leur puissance crête. De plus, ces applications requièrent un freinage à 

puissance nominale. Dans les variateurs de vitesse classiques, l’énergie mécanique 

emmagasinée dans la charge en mouvement est dissipée via une résistance. Les pertes 

énergétiques dans de telles applications s’élèvent à hauteur de 30 à 50% de l’énergie 

consommée. A l’heure actuelle, dans un contexte de crise énergétique, l’efficacité de ces 

systèmes d’entraînement devient une préoccupation prioritaire qui nécessite des réponses 

industrielles à très court terme. 

Les variateurs modernes sont sensibles aux coupures du réseau d’alimentation. Ces 

coupures sont susceptibles d’interrompre le fonctionnement du variateur et de bloquer une 

ligne entière de production. Ces interruptions sont extrêmement coûteuses et inacceptables 

quand le variateur est utilisé dans un processus critique comme l’extraction de pétrole ou 

l’industrie du verre. De telles industries ont rapporté des pertes allant de 10k$ à 1M$ par 

interruption. Un autre problème introduit par le variateur lui-même est la qualité du courant 

prélevé sur le réseau. Les redresseurs à diodes classiques équipés de filtres LC prélèvent un 

courant à fort contenu harmonique. L’alimentation monophasée de variateurs triphasés est une 

autre problématique de la qualité de l’énergie, par exemple lors de la déconnexion d’une 

phase du réseau d’alimentation. Dans certaines applications comme les pompes d’irrigation, 

le fonctionnement monophasé constitue même le mode de fonctionnement normal. 

Les deux solutions les plus fréquemment évoquées pour récupérer l’énergie de 

freinage des variateurs de vitesse sont les convertisseurs réversibles AC-DC-AC indirects, et 

les convertisseurs AC-AC, appelés convertisseurs matriciels. Ces variateurs utilisent l’énergie 

du réseau lors des phases d’accélération, et réinjectent de l’énergie dans le réseau lors des 

phases de freinages (décélération).  Le principal inconvénient incombant à ces solutions, vient 

du fait que cette fonctionnalité est fortement dépendante de la qualité et de la fiabilité du 

réseau d’alimentation. Chaque interruption d’alimentation perturbe le variateur de vitesse, et 

celui-ci s’arrête complètement de fonctionner lorsque l’interruption dépasse une période 

réseau. Les fonctionnements en monophasé sont limités, voir impossibles pour les 

convertisseurs matriciels. De plus, certains variateurs de vitesse ont une forte demande en 

courant durant les phases d’accélération et de décélération. Ces variations importantes de 
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courant aux bornes du variateur de vitesse ajoutent des perturbations et des pertes sur les 

réseaux d’alimentation peu fiables. 

Un autre concept de variateur de vitesse à récupération d’énergie est basé sur un 

convertisseur classique AC-DC-AC à diode, équipé d’un dispositif de stockage d’énergie. Ce 

concept revient au gout du jour, grâce aux larges applications qu’offrent les nouveaux 

condensateurs double couches électrochimiques (EDLC), aussi appelé supercondensateurs. En 

comparaison aux actuelles batteries électrochimiques, les supercondensateurs ont une densité 

de puissance élevée, un meilleur rendement, une durée de vie plus longue, ainsi que de 

meilleures performances dynamiques. Tous ces avantages font des supercondensateurs les 

meilleurs candidats pour les applications de puissance nécessitant un stockage énergétique. 

Dans notre cas, les super-condensateurs viennent stocker l’énergie durant les phases de 

freinage du variateur de vitesse. Cette énergie est ensuite réutilisée lors des phases 

d’accélération suivantes. Les variateurs de vitesse utilisant un tel concept de récupération 

d’énergie peuvent alimenter des ascenseurs, des machines à outils ayant des séquences 

accélération-décélération rapides, ainsi que d’autres applications sollicitant souvent la 

fonction freinage du variateur de vitesse. De plus, les supercondensateurs peuvent assurer la 

fonctionnalité UPS (alimentation sans interruption – uninterruptable power supply) et ainsi 

permettre au variateur de vitesse de rester sous tension lors des microcoupures d’alimentation, 

ce qui est déterminant pour des applications industrielles critiques où les arrêts sont très 

couteux. 

Dans la première partie de ce document, une introduction générale est donnée. Puis, 

dans la deuxième partie de ce document, sera présenté le concept de variateur de vitesse à 

récupération d’énergie basé sur les supercondensateurs. Les supercondensateurs sont utilisés 

comme élément de stockage d’énergie lors des freinages, et comme source d’énergie lorsque 

cela est possible. De plus, les supercondensateurs sont utilisés comme alimentation de secours 

lors des microcoupures de courant. A la différence des batteries électrochimiques, l’état de 

charge (SOC) des supercondensateurs dépend fortement de la tension à leurs bornes. Ainsi, il 

n’est pas possible de connecter directement les supercondensateurs au variateur de vitesse. Il 

est nécessaire d’utiliser une interface électronique DC-DC. L’état de l’art sur ces topologies 

est présenté, et un nouveau convertisseur multiniveaux DC-DC est proposé. Celle-ci est 

analysée et les règles de conception sont exposées. Le modèle complet du système de 

conversion est ensuite développé et un contrôle/commande est proposé. L’objectif de la partie 

contrôle est triple. Le premier objectif est de réguler le courant du supercondensateur ainsi 
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que le point milieu du bus continu du hacheur multiniveaux. Le second objectif est de faire 

tendre la tension du bus continu vers la tension de référence dépendant du mode 

d’exploitation choisi. Le dernier objectif est de contrôler l’état de charge du 

supercondensateur. 

La troisième partie de ce document présente un variateur de vitesse triphasé novateur à 

pont redresseur à diode en entrée mais doté d’un convertisseur élévateur alimenté par la demi-

tension du bus continu. Ce convertisseur élévateur est composé de deux convertisseurs DC-

DC ainsi que de deux condensateurs en série sur le bus continu. Le premier convertisseur 

régule le courant continu de sortie du redresseur d’entrée et élève la tension du bus continu à 

une valeur supérieure à la tension composée réseau crête. Ce convertisseur est connecté entre 

la borne + du bus DC et le point milieu des capacités du bus DC.  

Le deuxième convertisseur DC-DC est un convertisseur auxiliaire qui assiste le 

premier. Ce convertisseur est un convertisseur résonnant série fonctionnant en mode 

discontinue (type 1). Le modèle complet, non-linéaire et de petit signal, est présenté, ainsi que 

le mode de contrôle, le tout étant validé expérimentalement. Les avantages du hacheur 

élévateur original proposé comparativement aux solutions connues sont le rendement de 

conversion plus élevé ainsi que la taille réduite des composants aussi bien actifs (diodes et 

interrupteurs de puissance) que passifs (inductances et condensateurs). Cependant, le taux de 

distorsion harmonique du courant total (THD) ainsi que le taux de distorsion harmonique 

pondérée partiel (PWHD) restent élevé. Le THD tourne autour des 30% alors que le PWHD 

tourne autour de 55%. Comme les normes acceptent un THD de 30% pour les variateurs de 

vitesse utilisés à des fins industrielles tant que le PWHD est légèrement en dessous de la 

valeur limite, le nouveau convertisseur élévateur est une solution viable pour remplacer les 

convertisseurs passif à diode tout comme les redresseur à prélèvement sinus utilisant des 

hacheurs boost ou double boost. Cette topologie peut être utilisée aussi bien sur les variateurs 

monophasés que les variateurs triphasés. 

Dans la quatrième partie de ce document, une solution regroupant les deux solutions 

précédentes est présentée. Cette solution permet de résoudre les problèmes techniques actuels 

qui existent dans la variation de vitesse :  

1) Récupérer l’énergie de freinage 

2) Empêcher les disfonctionnements du variateur de vitesse lors des microcoupures 

3) Augmenter la qualité du courant d’entrée du variateur de vitesse 
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4) Contrôler la tension continu (bus DC) du variateur de vitesse 

5) Permettre un fonctionnement dégradé lors de la perte d’une phase réseau 

6) Lisser les pics de puissance provoqués par la charge et prélévés habituellement sur 

le réseau 

La solution proposée à été analysée et les règles de conception ont été exposées. Le 

concept a été validé par des simulations sur Matlab/Simulink et un prototype a été réalisé et 

testé en laboratoire. Si on compare la solution innovante proposée avec les solutions non 

industrielles envisagées habituellement pour la variation de vitesse (convertisseur matriciel – 

convertisseur classique avec stockage, convertisseur MLI réversible…), la solution originale 

proposée a les avantages suivant :  

• Capacité du variateur de vitesse à rester fonctionnel lors des microcoupures 

d’alimentation est améliorée. La durée de microcoupure maximale tolérée est alors un 

paramètre de dimensionnement du stockage. 

• La fonctionnalité système du variateur de vitesse, incluant sa capacité de freinage, 

n’est pas reliée à la fiabilité de l’alimentation 

• Le fonctionnement en marche dégradée lors de la perte d’une phase réseau est simple 

à gérer et amène à de très bonnes performances.  

• Les pics de puissance sont limités, et conduisent à une réduction des contraintes 

électriques au niveau réseau. 

• La consommation électrique du système est fortement réduite grâce au stockage et au 

développement d’une solution électronique à haut rendement. 

 

 



 

 

Dispositif correcteur de facteur de puissance à base de 
super-condensateur pour variateur de vitesse 

 
Les variateurs de vitesse modernes sont exclusivement basés sur l’utilisation de moteurs triphasés 

alimentés par des onduleurs à modulation de largeur d’impulsion (MLI). La plupart des applications modernes 
de la variation de vitesse, comme les ascenseurs, les grues et les machines-outils sont caractérisées 
principalement par un rapport élevé entre la puissance crête et la puissance moyenne et une forte demande de 
freinage à la puissance nominale. Dans les variateurs de vitesse ordinaires, l’énergie de freinage, qui est de 
l’ordre de 30 à 50% de l’énergie consommée, est dissipé dans une résistance. Outre les problèmes 
« énergétiques », les interruptions et dégradations de la tension d’alimentation ainsi que la qualité du courant 
d’entrée et la fluctuation de la charge, sont d’autres questions à aborder et à résoudre. 

Le super-condensateur dédié aux applications de conversion de puissance est ainsi proposé. Un 
variateur de vitesse équipé avec des super-condensateurs est présenté dans la thèse. Les super-condensateurs, 
interconnectés par un convertisseur DC-DC sont utilisés pour stocker et ré-injecter l'énergie de freinage. De plus, 
le convertisseur DC-DC contrôle le courant du redresseur et la tension du bus DC. Le THD du courant d’entrée 
est ramené à 30%. La tension du bus DC est élevée et en permanence contrôlée et lissée indépendamment de la 
charge et de la variation de la tension réseau.  Pour terminer, les pics de puissance peuvent être lissés. La 
solution présentée est analysée théoriquement et vérifiée par un ensemble de simulations et 
expérimentations. Les résultats sont présentés et commentés. 

 

Ultra-capacitor based regenerative energy storage and 
power factor correction device for controlled electric drives 

 
Modern controlled electric drives are exclusively based on three-phase motors that are fed from three-

phase pulse width modulated (PWM) inverters. Most of modern controlled electric drive applications, such as 
lifts, cranes and tooling machines are characterized by high ratio of the peak to average power, and high demand 
for braking at the rated power. In ordinary drives, the braking energy, which represents 30-50% of the consumed 
energy, is dissipated on a braking resistor. Apart from the “energetic” issue, the mains interruption and 
degradation, the input current quality and the load fluctuation are additional issues to be addressed and solved. 

The ultra-capacitor dedicated for power conversion applications has been discussed. In comparison to 
electrochemical batteries, the ultra-capacitors have higher power density and efficiency, longer life time and 
greater cycling capability. This makes the ultra-capacitor an excellent candidate for power conversion 
applications. 

A new electric drive converter equipped with the ultra-capacitor is presented in the dissertation. The 
ultra-capacitor with an inter-connection dc-dc converter is used to store and recover the drive braking energy. 
Moreover, the dc-dc converter controls the rectifier current and the dc bus voltage. The drive input current THD 
is reduced to 30%. The dc bus voltage is boosted and controlled constant and ripple free regardless on the load 
and the mains voltage variation. Moreover, the drive input peak power can be smoothed. The presented solution 
is theoretically analysed and verified by set of simulations and experiments. The results are presented and 
discussed. 


