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Introduction

Why should physicists be interested in nanoscience?

because there’s plenty of room at the bottom...

This famous talk given by Richard P. Feynman in 1959 (30 years before the invention of
the Atomic Force Microscope [AFM] by Binnig et al [1]) clearly states about the importance
of studying what happens at the nanoscale. One of the important point emphasized was the
interdisciplinarity of nanoscience (Physics, Chemistry, Biology). It is particulary interesting to
look at the questions asked by Prof. Feynman: "Why cannot we write the entire 24 volumes
of the Encyclopaedia Britannica on the head of a pin? Is there a physical way to synthesize
any chemical substance? What is the sequence of bases in the DNA and how proteins are
synthesized? How is the structure of RNA related in its order of bases to the DNA?" This
questions are interesting in the sense that answering them may get you a Nobel Prize. In 1962,
Crick, Watson and Wilkins received one for their discoveries concerning the molecular structure
of nucleic acids and its significance for information transfer in living material. In 1975, it has
been awarded to Baltimore, Dulbecco, and Temin for the discovery of reverse transcriptase that
permits to transcribes single-stranded RNA into double-stranded DNA.

It is interesting to note that the research of Watson and Crick are based on X-ray diffraction
images of DNA obtained by Rosalind Franklin. Above the problem of intellectual property, this
story is a good example of how a physical technique has been used to obtain a fundamental
result in an other field. In this context, the AFM is remarkable because it permits to measure a
wide range of properties in almost all nanoscience’s field. Notably, it has been recently used to
analyze the structure of Escherichia coli RNA polymerase [2] or to chemically identify [3] and
manipulate [4] single atoms. At the end of its talk, Feynman, fully aware of the potentiality
and the economic importance of nanoscience, finally conclude: "I know that the reason that you
would do it might be just for fun." We will now focuss on the aim of this thesis: the study of
dielectric and mechanical properties of polymers at macro and nanoscale.

Introduction
The title of this thesis: "Dielectric and mechanical properties of polymers at macro and

nanoscale" is broad. The idea of this work was first to understand the main physical theories
that describe the dynamics of linear polymers at the macroscopic scale using Broadband Di-
electric Spectroscopy (BDS) and rheology. These techniques are commonly used to measure
dielectric and mechanical properties, respectively. However, they have no spatial resolution
and the study of the local dynamics or the dynamics of heterogeneous systems is always model
dependent. Therefore, we would have liked to develop new methods to measure dielectric prop-
erties at the nanoscale in order to check how the local dynamics can be described by theories
currently applied for macroscopic system.



Introduction

The first chapter of this thesis is a general overview on polymers. We will define and de-
tail what are polymers, their structures, types and conformations. Then we will introduce the
Rouse model and reptational tube theory that describe the dynamics of non entangled and en-
tangled polymers, respectively. Finally we will give the basis of thermodynamic polymer mixing.

In the second chapter, we will introduce the samples used all along in this work. We have
chosen to study the dynamics of poly(vynil acetate) (PVAc) and polyisoprene (PI). PVAc ex-
hibits a strong segmental relaxation (the so-called α-relaxation, ∆ε ∼ 5) related with dipole
moments perpendicular to the chain backbone slightly above room temperature. Therefore it is
a convenient candidate to develop methods to measure dielectric properties at the nanoscale. PI
has a weaker relaxation (∆ε ∼ 0.05, around 100 times weaker than the relaxation of PVAc), but
due to dipolar moments parallel to the chain backbone, it also exhibits a whole chain dielectric
relaxation (large scale dynamics). This so-called normal mode can either be described by the
reptational tube theory or the Rouse model if the polymer is entangled or not. After having
detailed the experimental techniques that permit to measure dielectric and mechanical proper-
ties at the macroscale, we will study these two relaxations and the two theories that describe
the large scale dynamics [5, 6].

The third chapter is of the up most importance because it introduces notions needed to
understand chapter 4 and 5. We have developed EFM based method to measure dielectric
properties at the nanoscale . After having defined the electrostatic force and force gradient
between an AFM tip and a dielectric sample, we will explain how these quantities can be mea-
sured using EFM. Then, we will detailed the numerical simulation of the Equivalent Charge
Method (ECM) that permits to quantify the value of the relative dielectric constant εr from
the quantities measured experimentally. The influence of each parameters of our system, the
sensitivity of our experiment and the depth penetration of the electric field will also be discussed
quantitatively [7]. Finally, we will reference in a non exhaustive way the different experimental
methods found in literature to measure locally dielectric properties.

In chapter 4, we will describe how the static dielectric permittivity of a thin insulating film
can be obtained at the nanoscale by measuring the force gradient created by a VDC potential
between a tip and a grounded dielectric. This method has first been developed to measure εr
in one point before being extended to obtain quantitative maps the of the dielectric constant.
Values of εr measured in one point will be presented for different systems (silicon dioxide, PVAc,
and polystyrene (PS)) and we will detail how we have been able to quantitatively map the di-
electric constant of a model nano-structured blend of PVAc in a matrix of PS [8,9].

Finally, in chapter 5, we will present Local Dielectric Spectroscopy (LDS) that permits to
measure the temperature-frequency dependence of the dielectric losses, related with the polymer
dynamics. This method has first been developed under Ultra High Vacuum in the Frequency-
Modulation (FM) mode by measuring the force gradient by Crider et al in 2007 [10,11]. We will
show how we have been able to extend this method in order to obtain a local mapping of the
dielectric losses [12] appearing in the same kind of PVAc/PS thin film previously introduced.
Then, we will demonstrate that LDS can be achieved in ambient condition, in the Amplitude-
Modulation (AM) mode and by measuring the force of the interaction. The two methods based
on the measurement of the force or force gradient will be compared based on first results. The
timescale measured by LDS at the nanoscale will be compared to macroscopic ones measured
by BDS. The influence of the parameters of the experiment will be discussed qualitatively.
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Overview on polymers

1 Introduction

"There is probably no other inert substance which so excites the mind." Charles Goodyear.
Much of human history has been influenced by the availability of materials. In fact, history

is divided into eras named after the primary materials used; the Stone Age, the Bronze Age,
and the Iron Age. Similarly, we can assert that we have entered the Polymer Age. Polymer
have been first properly synthesized by Charles Goodyear using the process of vulcanization in
the middle of the 19th century. Today polymers are widely used in industry and quotidian life,
well known examples include plastics, DNA and proteins.

A polymer is composed of molecules with large molecular mass, themselves constituted of
repeating structural units (or monomers) connected by covalent chemical bonds. The word
is derived from the Greek, poly, "many"; and meros, "part". Since ’monomer’ can mean any-
thing that repeats along the chain, it is by definition ambiguous. In this thesis, two types of
monomers are important. Chemical monomers are the repeating unit that corresponds to the
small molecules that were linked together to make the polymer chain. The Kuhn monomer in-
volves a longer section of the chain (typically few chemical monomers) and will be defined and
disused later. The entire structure of a polymer is generated during polymerization, the process
by which chemical monomers are covalently bonded together. The number of monomers in a
polymer molecule is called its degree of polymerization. The chemical identity of monomers
is one of the main factors determining the properties of polymeric systems. Another major
factor is the polymer’s microstructure, which is the organization of atoms along the chain that
is fixed during the polymerization process. Three process are mainly used to synthesize macro-
molecules: radical, anionic and cationic polymerization.

Macromolecules that contain monomers of only one type are called homopolymers. Ho-
mopolymers are made from the same monomer, but may differ by their microstructure, degree
of polymerization or architecture. The degree of polymerization of macromolecules is a major
factor determining many properties of polymeric systems. If a molecule consists of only a small
number of monomers (generally, less than 20) it is called an oligomer. Linear polymers contain
between 20 and 10 billion (for the longest known chromosome) monomers.

Combining several different types of monomers into a single chain leads to new macro-
molecules, called heteropolymers, with unique properties. The properties of heteropolymers de-
pend both on composition (the fraction of each type of monomers present) and on the sequence
in which these different monomers are combined into the chain. Macromolecules containing two
different monomers are called copolymers. Copolymers can be alternating, random, block, or
graft depending on the sequence in which their monomers are bonded together. Polymers con-
taining two blocks are called diblock copolymers. Chains with three blocks are called triblock
copolymers. Polymers with many alternating blocks are called multiblock copolymers. Many
biopolymers are heteropolymers. DNA is a heteropolymer consisting of four different types of
monomers (nucleotides), while natural proteins are heteropolymers commonly consisting of 20
different types of monomers (amino acids).

Clément Riedel, PhD Thesis 9
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1.1 Isomerism

An example of double bond polymerization is shown in Fig. 1.1. A variety of different
isomers are possible for the repeating units along the chain. Sequence isomerism are shown in

Figure 1.1 : C-C double bond polymerization

Fig. 1.2a for polypropylene. In the head-to-head isomer, two adjacent monomers have their
CH3 groups attached to adjacent carbons along the chain’s backbone, whereas the head-to-tail
isomer has a CH2 in the backbone between the CH3 groups of adjacent monomers. Head-to-tail
is the more common microstructure, but the properties change significantly with the fraction
of head-to-head isomers present. Polymers that contain a double bond in their backbone (that
cannot rotate) can exhibit structural isomerism. Such polymers have distinct structural isomers,
such as cis-, trans-, and vinyl-polybutadiene shown in Fig. 1.2b. These isomers result from the
different ways that dienes, such as butadiene, can polymerize and many synthetic polymers have
mixtures of cis and trans structural isomers along their chains.

Figure 1.2 : Sequential and structural isomers [13]

Another isomeric variation that is locked-in during polymerization is stereoisomerism. The
four single bonds, emanating from a carbon atom, have a tetragonal structure. The place-

10 Clément Riedel, PhD Thesis
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ment of the different group on this tetragonal structure leads to different tacticity (isotactic,
syndiotactic, atactic).

1.2 Architecture

Architecture is an important feature controlling the properties of polymeric systems. Types of
polymer architectures include linear, ring, star-branched, H-branched, comb, ladder, dendrimer,
or randomly branched as sketched in Fig. 1.3. Random branching that leads to structures like

Figure 1.3 : Examples of polymer architectures: (a) linear; (b) ring; (c) star; (d) H; (e) comb: (f)
ladder; (g) dendrimer; (h) randomly branched. [13]

Fig. 1.3h has particular industrial importance, for example in bottles and film for packaging.
A high degree of crosslinking can lead to a macroscopic molecule, called a polymer network.

1.3 Types of polymeric substances

— Polymer liquid
There are two types of polymer liquids: polymer melts and polymer solutions. Polymer so-

lutions can be obtained by dissolving a polymer in a solvent. Examples of polymer solutions are
wood protectants (varnish and polyurethane coatings) and floor shines. Polymer solutions are
classified as dilute or semidilute depending on the polymer mass concentration, the ratio of the
total mass of polymer dissolved in a solution and the volume of the solution. In the absence of
solvent, macromolecules can form a bulk liquid state, called a polymer melt. Polymer melts are
neat polymeric liquids above their glass transition and melting temperatures. A macroscopic
piece of a polymer melt remembers its shape and has elasticity on short time scales, but exhibits
liquid flow (with a high viscosity) at long times. Such time dependent mechanical properties are
termed viscoelastic because of the combination of viscous flow at long times and elastic response
at short times. A familiar example of a polymer melt is Silly Putty®. On short time scales (of or-
der seconds), a sphere of Silly Putty resembles a soft elastic solid that bounces when dropped on
the floor. However, if left on a table top for an hour, Silly Putty flows into a puddle like a liquid.

— Polymer solid
There are several different types of polymeric solids. If a polymer melt is cooled, it can either

transform into a semicrystalline solid below its melting temperature Tm or into a polymeric glass
below its glass transition temperature Tg. Semicrystalline solids consist of crystalline regions,
called lamellae, in which sections of chains are packed parallel to each other, and of amorphous
regions between these lamellae. This multiphase nature makes semicrystalline polymers opaque,

Clément Riedel, PhD Thesis 11
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but also deformable and tough, when used at temperatures above the Tg of the amorphous phase
(such as for polyethylene and polypropylene at room temperature). Macromolecules with reg-
ular configurations, such as isotactic and syn- diotactic homopolymers often crystallize easily.
Macromolecules with more random configurations, such as atactic homopolymers and random
copolymers, tend to transform upon cooling into a transparent yet brittle glassy state (such as
polymethylmethacrylate and polystyrene). However, there are technologically important excep-
tions to this rule. Polycarbonate, for example, is a tough glassy polymer at room temperature,
making it the polymer of choice for transparent structural applications such as greenhouses
and skylights. If the chains of a polymer melt are reacted with each other to form covalent
crosslinks between chains, a polymer network can be formed. Polymer networks are solids and
have a preferred shape determined during their preparation by crosslinking. Above their Tg,
the chains between crosslinks in a polymer network can move locally, but not globally. There-
fore, polymer networks above Tg are called soft solids. Rubbers or elastomers are crosslinked
polymer networks with Tg below room temperature. Examples are vulcanized natural rubber
(crosslinked polyisoprene) and silicone caulks (crosslinked polydimethylsiloxane). A polymer
gel is a polymer network that is swollen in a solvent. The gel becomes progressively softer as
more solvent is added, but always remains a solid owing to the permanent bonds that connect
the chains. Examples of common polymer gels are Jello®, which is a mixture of water and
gelatin (a denatured form of the protein collagen collagen), and superabsorbers derived from
poly (acrylic acid) used in disposable diapers.

— Liquid Crystal
A variety of states with order intermediate between crystalline solids and amorphous liq-

uids are also possible for polymers that contain sufficiently rigid rodlike monomers, known as
mesogens. These mesogens can be attached to chemical monomers as a side group or they may
be incorporated within the backbone of the polymer. Polymers with exclusively rigid rod-like
mesogens as their monomers are usually intractable because they start to decompose below their
crystalline melting points. However, alternating copolymers of rigid rodlike mesogens and flexi-
ble segments often are able to be melt processed and have interesting properties. In particular,
in a temperature range between their melting point and the temperature at which they become
isotropic liquids, these polymers can exhibit any of a number of phases with intermediate order.

A nematic phase, where the mesogens preferentially align in the same direction locally, is the
least ordered and most common liquid crystalline phase. Often the alignment of the mesogens
allows the molecules to slide past one another more easily, making the viscosity of the nematic
phase lower than the isotropic liquid viscosity. A variety of smectic phases are also possible,
where the mesogens form layered structures. These anisotropic liquid crystalline phases can
occur in melts, solutions and networks. The physical properties of liquid crystal polymers are
anisotropic as a result of the order. Additionally, electric fields, magnetic fields, and flow fields
can be used to align this class of materials.

1.4 Molecular mass distribution

One distinguishing feature of most synthetic polymers is that they are polydisperse. The
entire polymer sample is made up of individual molecules that have a distribution of degrees
of polymerization, determined by the particular synthesis method used. If all polymers in a
given sample have the same number of monomers, the sample is monodisperse. There are many
examples of natural polymers (such as proteins) that are perfectly monodisperse, but such
perfection is very rare in synthetic polymers. The polydispersity of a sample is described by
its molecular mass distribution. Given a distribution of molecular sizes (Ni molecules of mass
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Mi), the number-averaged molecular weight Mn is defined as the first moment of distribution
(Eq. 1.1) and the mass-averaged molecular weightMw as the ratio between the second and first
moments of the distribution (Eq. 1.2).

Mn =
∑
i

NiMi

Ni
(1.1)

Mw =
∑
i

NiM
2
i

NiMi
(1.2)

The polydispersity Ip is the ratio Mw/Mn .

1.5 Static conformation of an ideal chain

We consider the conformations of an ideal chains with no interactions between monomers
that are far apart along the chain, even if they approach each other in space. This model
is an essential starting point in most models in polymer physics. In order to understand the
multitude of conformations available for a polymer chain, consider an example of a polyethylene
molecule. The distance between carbon atoms in the molecule is almost constant l = 1.54 Å.
The fluctuations in the bond length (typically ± 0.05 Å) do not affect chain conformations. The
angle between neighbouring bonds, called the tetra- hedral angle θ = 68° is also almost constant.
The main source of polymer flexibility is the variation of torsion angles (see Fig. 1.4a). In order
to describe these variations, consider a plane defined by three neighbouring carbon atoms Ci−2,
Ci−1, Ci. The bond vector −−−−→Ci−1Ci defines the axis of rotation for the bond vector −−−−→CiCi+1 at
constant bond angle θi. The zero value of the torsion angle φi corresponds to the bond vector−−−−→
CiCi+1 being colinear to the bond vector −−−−−−→Ci−2Ci−1 and is called the trans state (t) of the torsion
angle φi (Fig. 1.4b). The trans state of the torsion angle φi is the lowest energy conformation

Figure 1.4 : (a) Torsion angle φi for a sequence of three main-chain bonds, (b) Trans state, (c)
Gauche-p]us state, (d) Torsion angle dependence of energy. [13]

of the four consecutive CH2 groups. The changes of the torsion angle φi lead to the energy
variations shown in Fig. Fig. 1.4d. These energy variations are due to changes in distances and
therefore interactions between carbon atoms and hydrogen atoms of this sequence of four CH2
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groups. The two secondary minima corresponding to torsion angles φi, = ± 120° are called
gauche plus (g+) and gauche minus (g-) (Fig. 1.4c). The energy difference between gauche and
trans minima determines the relative probability of a torsion angle being in a gauche state in
thermal equilibrium.

Any section of the chain with consecutive trans states of torsion angles is in a rod-like zig-
zag conformation. If all torsion angles of the whole chain are in the trans state, the chain has
the largest possible value of its end-to-end distance RMax. This largest end-to-end distance
is determined by the product of the number of chemical skeleton bonds n and their projected
length along the contour, and is referred to as the contour length of the chain:

RMax = nl cos
(
θ

2

)
(1.3)

A qualitatively different mechanism of flexibility of many polymers, such as double-helix
DNA is uniform flexibility over the whole polymer length. These chains are well described by
the so-called worm-like chain model.

— The random walk
The random walk is an extremely simple model that accounts quantitatively for many prop-

erties of chains and provides the starting point for much of the physics of polymer (see the Rouse
model below). In this model, we consider an ideal freely joined chain, made up of N links, each
define by a vector −→r i and b the average length between the links (Fig. 1.5). The different links
have independent orientations. Thus the path of the polymer in space is a random walk. It is
important to note that the bond here considered, the so-called Kunh monomers, are different
from the chemical bond defined previously.

Figure 1.5 : Schematic representation of the spring model for polymer chain

The end-to-end vector −→RN (t) is the sum of the N jump vectors −→r i+1 −−→r i which represent
the direction and size of each link in the chain:

−→
RN (t) =

N−1∑
i=1

−→r i+1 −−→r i (1.4)
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The mean end-to-end distance is

〈
−→
RN (t) · −→RN (t)〉 = 〈

N−1∑
i=1

(−→r i+1 −−→r i) · (
N∑
i=1

−→r i+1 −−→r i)〉 (1.5)

〈
−→
RN (t)2〉 = 〈

∑
i

∑
j

(−→r i+1 −−→r i) · (−→r j+1 −−→r j)〉 (1.6)

If we extract from the sum the case i = j

〈
−→
RN (t)2〉 = N b2 + 〈

∑
i 6=j

(−→r i+1 −−→r i) · (−→r j+1 −
−→
j i)〉 (1.7)

As the chain is freely joined, the directions of different links are completely uncorrelated and
the cross term disappear when the average is taken. We obtain the random walk result :

〈
−→
RN (t)2〉 = N b2 (1.8)

The contour length of this equivalent freely jointed chain is simply:

RMax = Nb (1.9)

It is interesting to note that the Kunh length can be related with the number and size of chemical
monomers (n and l respectively) using the Flory’s Characteristic ratio Cn. This coefficient is
the average value of the sum of the angle between all vectors (θi,j):

Cn = 1
n

n∑
i=1

n∑
j=1
〈cos(θi,j)〉 (1.10)

The physical origins of these local correlations between bond vectors are restricted bond angles
and steric hindrance. All models of ideal polymers ignore steric hindrance between monomers
separated by many bonds and result in characteristic ratios saturating at a finite value C∞ for
large numbers of main-chain bonds (n → ∞). Thus, thinking in terms of chemical monomers,
the mean- square end-to-end distance can be approximated for long chains:

〈
−→
RN (t)2〉 = C∞nl

2 (1.11)

and the relation between the Kunh and chemical monomer size is given by:

b = 〈
−→
RN (t)2〉
RMax

= C∞nl
2

RMax
(1.12)

2 Polymer dynamics

2.1 Overview on polymer dynamics

Before detailing the models describing the dynamics, it is interesting to have a global
point-of-view on all different regimes followed by a modulus (describing a property) and their
molecular origin. The Fig. 1.6 describes schematically the variation of the elastic part of the
young modulus (related with the elasticity of the polymer) as a function of temperature for a
given frequency. We will see that the same kind of plot can be obtained as a function of the
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time for a given temperature. As it is well explained in reference [14]:

Figure 1.6 : Richness of dynamic modulus in a bulk polymer and its molecular origin. [14]

At low temperature (or short time) the material is in the glassy state and only small ampli-
tude motions like vibrations, short range rotations or secondary relaxations are possible. Below
the glass transition temperature Tg the secondary β-relaxation and the methyl group rotations
may be observed. In addition, at high frequencies the vibrational dynamics, in particular the
so called Boson peak, characterizes the dynamic behavior of amorphous polyisoprene. The sec-
ondary relaxations cause the first small step in the dynamic modulus of such a polymer system.

At the glass transition temperature Tg the primary relaxation (α-relaxation), related to
segmental motion of the chain, becomes active allowing the system to flow. In the dynamic
modulus, the α-relaxation causes a huge step of typically three orders of magnitude in strength.

The following rubbery plateau in the modulus relates to large scale motions within a polymer
chain. Two aspects stand out. When the sample has a molecular weight below the molecular
weight of entanglement, relaxations of fluctuations out of equilibrium are entropy-driven and
qualitatively described by the Rouse model and no plateau is detected since no transient net-
work are formed. Secondly, for samples having a molecular weight superior to the molecular
weight of entanglement, these relaxations are limited by confinement effects caused by the mu-
tually interpenetrating chains. This confinement is modeled most successfully in terms of the
reptation model by de Gennes [15] and Doi and Edwards [16]. There, the confinement effects
are described in terms of a tube following the coarse grained chain profile. The final diffusive
motion is only allowed along the tube profile leading to the reptation process the snake-like
motion of a polymer chain.

When a chain has lost the memory of its initial state, rubbery flow sets in. Then we en-
ter into the liquid flow, which is characterized by the translational diffusion coefficient of the
chain. Depending on the molecular weight, the characteristic length scales from the motion of
a single bond to the overall chain diffusion may cover about three orders of magnitude,while
the associated time scales easily may be stretched over ten or more orders.
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2.2 Rouse model

The Rouse model is based on the static conformation of an ideal chain described by a
random walk (see above). The overall size of a random walk is proportional to the square root
of the number of steps. The distribution of possible end-to-end vectors is well known in statical
mechanics to be gaussian. Specifically, the probability distribution function P (−→R,N) is given
by:

P (−→RN (t), N) =
( 3

2π b2
)3/2

exp
(
− 3−→R 2

N

2N b2

)
(1.13)

This expression is important because it allows us to reach the configurational entropy S(−→RN )
of a polymer chain as a function of its elongation (kb is the Boltzman constant):

S(−→RN ) = −3 kb
−→
R 2
N

2 b2 (1.14)

Thus, when we stretch a polymer chain its entropy is lowered. This results in an increase in
the free energy ∆F (−→RN ) (T is the temperature and as the chain is freely joined, there is no
interactions and the potential energy U is negligible):

∆F (−→RN ) = 3 kb T
−→
R 2
N

2 b2 (1.15)

And so we can calculate the spring like force:

−→
F S = 3 kb T

−→
RN

b2
(1.16)

A polymer chain behave like a mass spring system; if it is stretched beyond its ideal random
walk value there is a restoring force proportional to the extension. However, this restoring force
does not arise from an increase of internal energy of the polymer as it would for the spring.
Instead the origin of the force is entirely entopic. There are fewer possible configurations of the
polymer chain when it stretched than when it is in its unperturbed random walk state.

The force of all the other chains can be represented by introducing a friction coefficient ξ.
As this parameter describe short range interactions it is somehow related with the α-relaxation.

−→
F F = −ξ d

−→r
dt

(1.17)

Finally, the random forces −→f , that represents the sum of the forces due to the interaction of
the molecules with Brownian particles, are defined as:

〈
−→
f (t)〉 = 0 (1.18)

〈
−→
f i(t)

−→
f j(t′)〉 = 2 ξ kb T δij δ(t− t′) (1.19)

As you can see on Eq. 1.19 there is no (either spatial or time) correlation between random forces.
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Once we have introduced all the static properties we can develop the Rouse model in order
to get the equation of movement. This model has first been thought for polymers in solution in
a theta solvent [17] and does not take into account:
1: Rapid relaxation process involving segments shorter than the submolecule (α-relaxation).
2: Obstruction of the motion of a segment by other segments with which it could be in contact.

This implies that the Rouse theory only works for molecular weight under the entanglement
molecular weight Me which correspond to the average mass between to chains crossover.

Let’s now apply the fundamental principle of dynamics for one mass between two springs:
(Fig. 1.7):

Figure 1.7 : Schematic representation of the forces in the Rouse model

m
d2−→r j
dt2

= −→
F S
j +−→F F

j +−→f j (1.20)
−→
F S
j = 3 kbT

b2
(−→r j+1 +−→r j−1 − 2−→r j) for j 6= 1, N (1.21)

−→
F F
j = −ξ d

−→r j
dt

(1.22)

As experimental results shown that the inertial term m
d2−→r j
dt2 is negligible for t � m/ξ ∼

10−12s we obtain the equation of the Brownian motion of coupled oscillators:

ξ
d−→r j
dt

= 3 kbT
b2

(−→r j+1 +−→r j−1 − 2−→r j) +−→f j (1.23)

This set of equations is coupled. To solve this system, we need to use normal coordinate (Rouse
modes) to get independent equations of motion. A complete derivation of the normal modes
coordinate in the continuous limit, for long chains, is given in ref [16]. Here as we are working
with small chains, we will follow the approach of reference [18] :

−→
X p(t) = 1

N

N∑
j=1

Apj
−→r j(t) p = 0, 1, ..., N − 1 (1.24)

where

Apj = cos

(
p π

N
(j − 1

2)
)

(1.25)
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−→
X p(t) describes the motion of a subchain of "wavelength" ' N

P and lentgth-scale '
√

N b2

p . The
inverse transformation of Eq. 1.24 gives:

−→r j(t) = −→X 0(t) + 2
N−1∑
p=1

Apj
−→
X p(t) (1.26)

where −→
X 0(t) = 1

N

∑−→r j(t) is the center of mass of the chain.

The equation 1.23 can be written with the Rouse modes as a set of independent equations:

ξp
d
−→
X p(t)
dt

= −12kbTξp
b2

sin

(
p π

2N

)2 −→
X p(t) +−→g p (1.27)

with:

ξp = (2− δop)N ξ (1.28)

−→g p = ξp
N ξ

N∑
j=1

Apj
−→
f i(t) (1.29)

Within the Rouse model, according to Eq. 1.27, the Rouse modes are mutually orthogonal
and the correlation functions for p > 0 are exponentially decaying:

〈
−→
X p(t)

−→
X p(0)〉 = 〈X2

p 〉 exp
(
−t
τp

)
(1.30)

with the distribution of the relaxation times

τp = ξb2

12 kb T sin2 ( p π
2N
) (1.31)

for pπ �2N, and as N ∝Mw

τp ∼=
ξb2

3 kb T (πp)2N
2 (1.32)

τp ∝ Mw
2 (1.33)

The slowest time τ1 is called the Rouse time

τ1 = τp/p
2 = ξb2

3 kb Tπ2N
2 (1.34)

The Rouse characteristic frequency is defined as:

W = 3kbT/(ξb2) (1.35)

The amplitude of the Rouse modes can be calculated from Eq. 1.27 [18]

〈X2
p 〉 = b2

8Nsin2 ( p π
2N
) (1.36)
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Finally we can calculate the dynamic of the end-to-end vector −→RN (t) = −→r N (t)−−→r 1(t):

−→
RN (t) = 2

N−1∑
p:1

−→
X p(t)cos

(
pπ

2N

)
(cos(pπ)− 1) (1.37)

= −4
N−1∑
p:odd

−→
X p(t)cos

(
pπ

2N

)
(1.38)

and the correlation function of −→RN (t)

〈
−→
RN (t)−→RN (0)〉 = 16

N−1∑
p:odd
〈X2

p 〉cos2
(
pπ

2N

)
exp

(
−t
τp

)
(1.39)

= 2b2
N

N−1∑
p:odd

cot2
(
pπ

2N

)
exp

(
−t
τp

)
(1.40)

In the limit of the long chains, for pπ<2N, we obtain the well known expression of the
end-to-end vector:

〈
−→
RN (t)−→RN (0)〉 ∼=

8 b2N
π2

∑
p:odd

1
p2 exp

(
− t

τp

)
(1.41)

Due to the factor 1/p2 the correlation function of the end-to-end vector is dominated by the
Rouse time (slowest mode) and as τp = τ1

p2 the higher modes are shifted to higher frequencies.
For small deformation, the chain can be approximatively described using a gaussian config-

uration and the expression of the xy component of the microscopic shear stress is given by [16]:

σxy = 3 ν kbT
Nb2

N∑
i=1
〈(−→r i+1 −−→r i)x(−→r i+1 −−→r i)y〉 (1.42)

where ν is the number of chain per volume unit V. This expression can be written in term of
normal coordinates [18]:

σxy(t) = 3 kbT
V

N∑
i=1

Xi,x(t)Xi,y(t)
〈X2

i 〉
(1.43)

In the next chapter, the Rouse model will be invesigated by Broadband Dielectric Spec-
troscopy (BDS) and rheology. Therefore it is important to obtain the expressions of the dielec-
tric permittivity ε(ω) and shear modulus G(ω) in the frame of this model.

— Expression of ε(ω) in the frame of the Rouse Model
BDS measure the time fluctuation of the polarization. Polymers can have dipole moments
parallel to the chain backbone, leading to a net "end-to-end" vector. The part of the polarization
related with these dipole moments is proportional to the time fluctuation of the end-to-end
vector: φ(t) = [−→P (t) · −→P (0)] ∝ [−→RN (t) · −→RN (0)]. Using the expression of the end-to-end vector
(Eq. 1.40) in the phenomenological theory of the dielectric relaxation (Eq. 2.6) we obtain an
expression of the frequency dependance of the dielectric permittivity in the frame of the Rouse
model:
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ε′(ω) ∝ 2b2
N

N−1∑
p:odd

cot2
(
pπ

2N

) 1
1 + ω2τ2

p

(1.44)

ε′′(ω) ∝ 2b2
N

N−1∑
p:odd

cot2
(
pπ

2N

)
ωτp

1 + ω2τ2
p

(1.45)

Only the odds (step from equation 1.37 to 1.38 contribute to the dielectric permittivity.
Moreover, the factor cot2(p) (which can be developed in 1/p2 when p<N) strongly suppress the
contribution of high p modes. Therefore, the dielectric permittivity is sensitive to slow (low p
modes) and facilitates resolving normal mode and segmental relaxation contributions.

— Expression of G(ω) in the frame of the Rouse Model
We can calculate the expression of the shear modulus in the time domain from Eq.1.43, and
using a Fourier transform, we obtain:

G′(ω) ∝
N−1∑
p=1

ω2τ2
p /4

1 + ω2τ2
p /4

(1.46)

G′′(ω) ∝
N−1∑
p=1

ωτp/2
1 + ω2τ2

p /4
(1.47)

All the modes are contributing in the expression of the shear modulus. Therefore, for the case
of small chains, rheology is not a convenient experimental technique to resolve the chain modes
from the segmental dynamics.

2.3 Reptational tube model

The reptational tube model was first introduced by de Gennes [15] and developed by Doi
and Edwards [16] to described the phenomena of entanglement. This model is valid when the
molecular weight of the sample is superior to the molecular weight of entanglement Me. Many
corrections (as Contour Length Fluctuation or Constraints Release) have been added to the
pure reptation in order to reach a totally predictive theory [19,20].

In the reptational tube model, an entangled chain diffuses along its confining tube in a way
analogous to the motion of a snake or a worm. This notion of the chain consists of diffusion of
small loops, along the contour of the primitive path. The lateral restrictions are modelled by a
tube with a diameter d parallel to the chain profile.

For short times,when the chain segment has not yet realized the topological constraints, i.e.
for distances smaller than the tube diameter (r < d), we expect unrestricted Rouse motion.
The corresponding relaxation time τe, is defined as [16] :

τe = ξd4

kbTb2
(1.48)

where b is the Kunh length previously defined. Another important relaxation time is the disan-
glement time τd which correspond to the time needed for the primitive chain to disengage from
the tube it was confined to [16].
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τd = ξb4N3

πkbTd2 (1.49)

When τe < t < τd the chain reptates along the tube. This phenomena can be visualized as
a non-interacting defect running along like the arch in a caterpillar (see Fig. 1.8a). As a result
of such motion, the tube itself changes with time (Fig. 1.8b): for example if the chain moves
right, the part B0B can choose a random direction, and create a new part of the tube which
will be a constraint for the rest of the chain, while the part of the previous tube A0A becomes
empty and disappears.

Figure 1.8 : Schematic representation of reptation: (a) Motion of a single defect (b) Motion of the
tube. [16].

2.4 Segmental dynamics and glass transition temperature

Polymeric solids can be found the amorphous state or in the partially crystalline state. The
glass transition is "probably the deepest and most interesting unsolved problem in solid state
theory", in the words of the Nobel Prize winner P.W. Anderson. The aim of this subsection is
to present basic properties needed to understand qualitatively this phenomena in the frame of
our study. For further information, the lector should read [14] and references associated.

A glass is a noncrystalline solid obtained by cooling the material from a temperature above
the melting point TM . While cooling, a system can either crystallize or stay in a liquid-like state.
This supercooled metastable state is viscoelastic in the case of polymers. When the structural
rearrangements characteristic for the supercooled state cannot follow the cooling rate, the sys-
tem falls out of equilibrium and transforms into a glassy solid - a "frozen" liquid - within the
experimental observation time. This phenomenon, known as the glass transition, takes place in
a temperature range that depends in general on the experimental cooling/heating conditions.
Usually this temperature range is represented by only one temperature, the glass transition
temperature Tg. Above Tg, the glassy state is unstable with respect not only to the supercooled
liquid, but also to the crystalline solid. However, some degrees below Tg polymer glasses can
be considered as "stable" from a practical point of view, i.e. their physical properties do not
change much over time scales of several years although small changes, referred to as physical
aging, are detectable.
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There is some differences between melting and the glass transition. When you heat a crys-
talline polymer at a constant heat transfer rate, the temperature will increase at a constant
rate until TM . At this point, the temperature hold and all the energy is added in the melting
process, (none of it goes into raising the temperature). This heat is called the latent heat of
melting. This change in the heat capacity is a first order transition. Once the polymer has
melted, the temperature begins to rise again, but at a slower rate. The molten polymer has
a higher heat capacity than the solid crystalline polymer, so it can absorb more heat with the
same increase in temperature. For the glass transition, the temperature keeps going up but at
a different rate. The polymer undergoes an increase in its heat capacity when it undergoes the
glass transition. Because the glass transition involves change in heat capacity, but it does not
involve a latent heat, this transition is similar to a second order transition.

Glasses show a series of universal features:
They are characterized by long range structural disorder and some average short-range order.
Their static structure factors S(Q) (obtained by neutron scattering or X-Ray, see ref. [14]) shows
broad diffraction peaks revealing inter and intra molecular correlations. Another general finding
is the occurrence of a series of dynamical processes, the so called α and β relaxations. Let us

Figure 1.9 : (a) Cartoon of the thermal evolution of a correlation function. (b) The characteristic time
defined in (a) by the arrows displays a non-Arrhenius behavior. [14]

follow the time evolution of a given correlation function Φ(t) of a glass former for different tem-
peratures, as it is schematically shown in Fig. 1.9. At a high temperature (e.g., above the TM ),
like T1 in the figure, Φ(t) decays in a single step at short times, of the order of picoseconds a
behavior expected for a simple liquid. If the system is cooled down without crystallizing, there
is a temperature range, which we will call T ∗, where a second step in Φ(t) develops, slowing
down the decay of the correlations at long times (T ∗ ≈ T2 in the figure). This second step
becomes more and more important when the temperature of the system decreases. The state of
the system in this temperature region T < T ∗ is what it is known as supercooled liquid state. In
the neighborhood of Tg the correlations of the system are finally frozen and the obtained state
is glassy (T6 in Fig. 1.9). The characteristic feature of the supercooled liquid in contraposition
to the simple liquid state is thus the presence of the second slow step in Φ(t). This step is called
the α-relaxation independently of the correlation observed or the experimental technique used.
The characteristic time of this process (time where the correlation function decays to 1/e of the
initial value in the time domain) follows a dramatic increase with decreasing temperature. This
is schematically represented in Fig. 1.9b. In the neighborhood of Tg, this time reaches values
of the order of minutes, and the system looks frozen at the timescale of observation. Below Tg,
in the glassy state, the correlations do not decay anymore. Since the α-process is a universal
feature of the dynamics of supercooled liquids, it is nowadays generally accepted that it origins
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from a structural relaxation at the intermolecular level. Thereby, the features of the α-relaxation
observed by different techniques are different projections of the actual structural α-relaxation.
As the glass transition occurs when this relaxation freezes, the investigation of the dynamics
of this process is of crucial interest, in order to understand the intriguing phenomenon of the
glass transition. Below Tg the movements in matter are due principally to the dynamic of side
groups, secondary relaxation (β γ) and the so-called boson peak. Up to date there have been
several theoretical attempts to give account for these phenomenons. The approach by Adam
and Gibbs is one of the most successful ones since it provides an explanation for the unusual
thermal dependence of the timescale. However, the only microscopic theory available is the
so-called Mode Coupling Theory (MCT); recently, landscape models have also been proposed
to give account for some of its features.

In this work we will focuse on the study of the α-relaxation by BDS. We will now summarize
the main experimental features needed to understand the BDS α-relaxation (see reference [21,22]
for more details). The decay of the correlation function Φ(t) can be descried in the time domain
by a stretched exponentially or Kohlraush-Williams-Watts (KWW) function [23,24]:

φ(t) ∝ exp
[
−
(

t

τKWW

)βKWW ]
(1.50)

where τKWW is a characteristic time, βKWW is the stretching parameter (0 ≤ βKWW ≤ 1).
All the experiments here reported will be made in te frequency domains where the process is
characterized by a peak in the losses. The characteristic time of the relaxation, τα, is defined
as the inverse of this maximum (τα = 2π/fmax). We can describe the shape of the dielectric
spectrum in the frequency domain using an Havriliak Negami function [25,26]:

ε(ω) = ε∞ + εs − ε∞
(1 + (i ω τHN )α)γ (1.51)

where τHN is a characteristic relaxation time, α and γ are shape parameters (0 < α, γ ≤ 1) de-
scribing respectively the symmetric and the asymmetric broadening of the equivalent relaxation
time distribution function. The major drawback of the HN equation is the lack of justification
of HN parameters in terms of a physical model. Following the approach of reference [27], we
can correlate the HN equation to the KWW correlation relaxation by restricted the parameters
as follow:

γ = 1− 0.812(1− α)0.387 (1.52)

With the following relationships, we can define:

log(τKWW ) = log(τHN )− 2.6(1− βKWW )0.5exp(3βKWW ) (1.53)
βKWW = (αγ)0.813 (1.54)

in such way that the HN function can be considered as a good description of the Fourier
Transform of the KWW one.

The temperature dependence of the relaxation time shows a dramatic increase when
the glass transition temperature is approached. This non-Arrhenius dependance is usually well
described in terms of the Vogel-Fulcher temperature dependance [28,29]:

τ(T ) = τ0 exp
(

B

T − T0

)
(1.55)
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T0 is known as the Vogel-Fulcher temperature and is usally located 30K to 50K below Tg.
τ0 is the asymptotic value of the relaxation time of the correlator Φ for T → ∞. Note that
introducing the shift factor at = τ(T )/τ(Tref ), this expression can be related with the one
developed by William, Landel and Ferry [30]:

log (at) = B

T − T0
− B

Tref − T0
(1.56)

log(at) = C1(T − Tref )
T − Tref + C2

(1.57)

with:

C1 = B

(Tref − T0)
(1.58)

C2 = Tref − T0 (1.59)

3 Thermodynamic of mixing

Mixtures are systems consisting of two or more different chemical species. Binary mixtures
consist of only two different species. An example of a binary mixture is a blend of polystyrene
and poly(vinyl acetate). Mixtures with three components are called ternary. An example of a
ternary mixture is a solution of polystyrene and poly(vinyl acetate) in toluene. If the mixture
is uniform and all components of the mixture are intermixed on a molecular scale, the mixture
is called homogeneous. An example of a homogeneous mixture is a polymer solution in a good
solvent. If the mixture consists of several different phases (regions with different compositions),
it is called heterogeneous. An example of a heterogeneous mixture is that of oil and water.
Whether an equilibrium state of a given mixture is homogeneous or heterogeneous is determined
by the composition dependence of the entropy and energy changes on mixing. Entropy always
favours mixing, but energetic interactions between species can either promote or inhibit mixing.
We will treat the case of a binary mixing, in the frame of a lattice model with no volume change.

3.1 Entropic contribution

We consider two species A and B and we assume that there is no volume change during
mixing: volume VA of species A is mixed with volume VB of species B to make a mixture of
volume VA+ VB. The calculation assumes that the conformational entropy of a polymer is
identical in the mixed and pure states. The mixture is macroscopically uniform and the two
components are randomly mixed to fill the entire lattice. The volume fractions of the two
components in the binary mixture are φA and φB:

φA = VA
VA + VB

(1.60)

φB = VB
VA + VB

= 1− φA (1.61)

We define the lattice site volume v0 as the the smallest units occupied by one consisting unit
as solvent molecules or monomers. Larger molecules like polymers occupy multiple connected
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lattice sites. A molecule of species A has a molecular volume:

VA = NAv0 (1.62)

where NA is the number of lattice site occupied by the species A. Regular solutions are mixtures
of low molar mass species with NA = NB = 1. Polymer solutions are mixtures of macromolecules
(NA = N � 1) with the low molar mass solvent defining the lattice (NB = 1). Polymer blends
are mixtures of macromolecules of different chemical species (NA and NB � 1). The combined
system of volume VA + VB occupies

n = VA + VB
v0

(1.63)

lattice sites, while all molecules of species A occupy VA/v0 = n φA sites. The number of
molecules of species A is:

nA = nφA
NA

(1.64)

The entropy S is determined as the product of the Boltzmann constant k and the natural
logarithm of the number of ways Ω to arrange molecules on the lattice (the number of states).

S = k ln(Ω) (1.65)

The number of translational states of a given single molecule is simply the number of in-
dependent positions that a molecule can have on the lattice, which is equal to the number of
lattice sites. In a homogeneous mixture of A and B, each molecule has

ΩAB = n (1.66)

The number of states ΩA of each molecule of species A before mixing (in a pure A state) is
equal to the number of lattice sites occupied by species A: ΩA = n φA. For a single molecule of
species A, the entropy change on mixing is

∆SA = k ln(ΩAB)− k ln(ΩA) = −k ln(φA) (1.67)

Since the volume fraction is less than unity (φA < 1), the entropy change upon mixing is
always positive. Equation 1.67 holds for the entropy contribution of each molecule of species
A, with a similar relation for species B. To calculate the total entropy of mixing, the entropy
contributions from each molecule in the system are summed:

∆Smix = nA∆SA + nB∆SB (1.68)
= −k [nA ln(φA) + nB ln(φB)] (1.69)

The entropy of mixing per lattice site ∆Smix = ∆Smix/v0 is an intrinsic thermodynamic
quantity:

∆Smix = −k
[
φA
NA

ln(φA) + φB
NB

ln(φB)
]
. (1.70)

26 Clément Riedel, PhD Thesis



Overview on polymers

3.2 Energetic contribution

The energy of mixing can be either negative (promoting mixing) or positive (opposing mix-
ing). Regular solution theory can be applied for both possibilities, using the lattice model. To
estimate the energy of mixing this theory places species into lattice sites randomly, ignoring any
correlations. Thus, for all mixtures, favourable or unfavourable interactions between monomers
are assumed to be small enough that they do not affect the random placement. Worse still, the
regular solution approach effectively cuts the polymer chain into pieces that are the size of the
solvent molecules (the lattice size) and distributes these pieces randomly. Such a mean-field
approach ignores the correlations between monomers along the chain (the chain connectivity).
Here, for simplicity, it is assumed that in polymer blends the monomer volumes of species A
and B are identical. Regular solution theory writes the energy of mixing in terms of three
pairwise interaction energies (uAA, uBB, and uAB) between adjacent lattice sites occupied by
the two species. A mean field is used to determine the average pairwise interaction UA of a
monomer of species A occupying one lattice site with a neighbouring monomer on one of the
adjacent sites. For simplicity in the index notation we will use: φA = φ and φB = 1 − φ. The
probability of this neighbour being a monomer of species A is assumed to be the volume fraction
φ of these molecules (ignoring the effect of interactions on this probability). The probability
of this neighbour being a monomer of species B is 1 − φ. The average pairwise interaction of
an A-monomer with one of its neighbouring monomers is a volume fraction weighted sum of
interaction energies:

UA = uAAφ+ uAB(1− φ) (1.71)

Each lattice site of a regular lattice has z nearest neighbours, where z is the coordination
number of the lattice. For example, z = 4 for a square lattice and z = 6 for a cubic lattice.
Therefore, the average interaction energy of an A monomer with all of its z neighbours is zUA.
The average energy per monomer is half of this energy zUA/2 due to the fact that every pairwise
interaction is counted twice (once for the monomer in question and once for its neighbour). The
number of sites occupied by species A (the number of monomers of species A) is nφ, where n is
the total number of sites in the combined system. Summing all the interactions gives the total
interaction energy of the mixture:

U = zn

2 [UAφ+ UB(1− φ)] , (1.72)

= zn

2
[
uAAφ

2 + 2uABφ(1− φ) + uBB(1− φ)2
]
. (1.73)

The total energy of both species before mixing is the sum of the energies of the two pure
components:

U0 = zn

2 [uAAφ+ uBB(1− φ)] . (1.74)

We can now define another intrinsic properties, the energy change on mixing per site:

∆Umix = U − U0
n

= z

2φ(1− φ)(2uAB − uAA − uBB). (1.75)

The Flory interaction parameter χ is defined to characterize the difference of interaction energies
in the mixture:

χ = z

2kT (2uAB − uAA − uBB). (1.76)
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χ is a dimensionless measure of the differences in the strength of pairwise interaction energies
between species in a mixture (compared with the same species in their pure component states).
Using this definition, we write the energy of mixing per lattice site as

∆Umix = χφ(1− φ)kT. (1.77)

χ is an important parameter in the study of polymer mixture. Most of these interaction pa-
rameters have been tabulated, see reference [13] and reference there-in. For miscible polymer
blends χ can be measured using small-angle neutron scattering, usually involving deuterium
labelling of one blend component. For non-polar mixtures with species interacting mainly by
dispersion forces, the Flory interaction parameter can be estimated by a method based on the
solubility parameter δ related to the energy of of a molecule:

χ ' v0
kT

(δA − δB)2. (1.78)

One of the major assumptions of the Flory-Huggins theory is that there is no volume change
on mixing and that monomers of both species can fit on the sites of the same lattice. In
most real polymer blends, the volume per monomer changes upon mixing. Some monomers
may pack together better with certain other monomers. The volume change on mixing and
local packing effects lead to a temperature-independent additive constant in the expression
of the Flory interaction parameter. In practice, these effects are not fully understood and
all deviations from the lattice model are lumped into the interaction parameter which can
display non-trivial dependences on composition, chain length, and temperature. Empirically,
the temperature dependence of the Flory interaction parameter is often written as the sum of
two terms:

χ(T ) ' A+ B

T
. (1.79)

The temperature-independent term A is referred to as the "entropic part" of ẇhile B/T is
called the "enthalpic part". The parameters A and B have been tabulated for many polymer
blends [13].

3.3 Equilibrium and phase diagram

Using equations 1.70 and 1.75 we can define the Helmholtz free energy of mixing per lattice
site ∆Fmix:

∆Fmix = ∆Umix − T∆Smix, (1.80)

= kT

[
φ

NA
ln(φ) + 1− φ

NB
ln(1− φ) + χφ(1− φ)

]
. (1.81)

The first two terms in the free energy of mixing have entropic origin and always act to promote
mixing, although with blends of long chain polymers these terms are quite small. The last term
has energetic origin, and can be positive (opposing mixing), zero (ideal mixtures), or negative
(promoting mixing) depending on the sign of the interaction parameter χ. If there is a net
attraction between species (i.e. they like each other better than they like themselves), χ < 0
and a single-phase mixture is favourable for all compositions. More often there is a net repulsion
between species (they like themselves more than each other) and the Flory interaction parameter
is positive χ > 0. In this case the equilibrium state of the mixture depends not on the sign of
the free energy of mixing ∆Fmix at the particular composition of interest, but on the functional
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dependence of this free energy on the composition φ for the whole range of compositions. This
functional dependence ∆Fmix(φ) depends on the value of the Flory interaction parameter χ
as well as on the degrees of polymerization of both molecules NA and NB. This function
is always convex near the boundaries of the composition range (for φ near zero and unity)
because the entropic part always dominates there at any practical (non-zero) temperature. If
the composition dependence of the free energy of mixing is convex over the whole composition
range, the mixture is homogeneous at all compositions. If the free energy is concave in some
part of the composition range (due to energetic contribution), the line of common tangent to
the free energy curve determines the range of the miscibility gap. This criterium is written as:(

∂∆Fmix
∂φ

)
φ=φ′

=
(
∂∆Fmix
∂φ

)
φ=φ′′

(1.82)

where φ′ and φ′′ are two compositions of the system. This derivative of the free energy of mixing
per site with respect to volume fraction of component A is:

∂∆Fmix
∂φ

= kT

[ ln(φ)
NA

1
NA

+ ln(1− φ)
NB

− 1
NB

+ χ(1− 2φ)
]

(1.83)

For the simple example of a symmetric polymer blend with NA = NB = N. the common tangent
line is horizontal.(

∂∆Fmix
∂φ

)
φ=φ′

=
(
∂∆Fmix
∂φ

)
φ=φ′′

(1.84)

= kT

[ ln(φ)
N

+ ln(1− φ)
N

+ χ(1− 2φ)
]

= 0 (1.85)

(1.86)

The above equation can be solved for the interaction parameter corresponding to the phase
boundary: the binodal (solid line in the bottom part of Fig. 1.10) of a symmetric blend:

χb = ln(φ/(1− φ))
2φ− 1)N (1.87)

The binodal separates the homogeneous (single phase) and heterogeneous (two phase) regions in
the phase diagram. For binary mixtures, the binodal line is also the coexistence curve, defined
by the common tangent line to the composition dependence of the free energy of mixing curve,
and gives the equilibrium compositions of the two phases obtained when the overall composition
is inside the miscibility gap.

The local curvature of the free energy as a function of of the phase composition determines
local stability. If the composition dependence of the free energy is concave, the system can
spontaneously lower its free energy by phase separating into two phases. On the other hand,
when the composition dependence of the free energy is convex, any mixed state has lower free
energy than any state the blend could phase separate making the mixed state locally stable.
Returning to the general case of an asymmetric blend, the criterion for local stability is written
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in terms of the second derivative of the free energy:

∂2∆Fmix
∂φ2 > 0 Unstalbe, (1.88)

∂2∆Fmix
∂φ2 < 0 Locally stable. (1.89)

The spinodal curve defined by:

∂2∆Fmix
∂φ2 = kT

[ 1
NAφ

+ 1
NB(1− φ) − 2χ

]
= 0 (1.90)

χs = 1
2

( 1
NAφ

+ 1
NB(1− φ)

)
(1.91)

determines by the inflection points of the composition dependence of the free energy of mixing
curve, separates unstable and metastable regions within the miscibility gap (Fig. 1.10).

An example of phase diagram for a symetric blend is shown in Fig. 1.10. For a composition

Figure 1.10 : Composition dependence of the free energy of mixing for a symmetric polymer blend with
the product χN = 2.1 (top figure) and the corresponding phase diagram (bottom figure). Binodal (solid
curve) and spinodal (dashed curve) are shown on the phase diagram. [13]

in the two phase unstable part of the diagram, the system will spontaneously phase separate into
two phases with compositions given by the values on the binodal curve. This spontaneous phase
separation, called spinodal decomposition, occurs because the mixture is locally unstable. Any
small composition fluctuation is sufficient to initiate the phase separation process. The points of
the phase diagram between the spinodal and binodal curves correspond to metastable mixtures.

30 Clément Riedel, PhD Thesis



Overview on polymers

The metastable homogeneous state is stable against small composition fluctuations and requires
a larger nucleation event to initiate phase separation into the equilibrium phases given by the
coexistence curve. This phase separation process is called nucleation and growth. The point of
the phase diagram below the binodal corresponds to stable homogeneous composition.

Experimentally, the interaction parameter is most conveniently changed by varying temper-
ature T (Eq. 1.79). Phase diagrams can be plotted in the temperature - composition plane.
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Conclusion on the overview on polymers

Polymers are formed by repetitive covalent bonding of chemical monomers. Some polymer
characteristics, such as degree of polymerization, polydispersity, microstructure, architecture
and chemical composition are fixed during polymerization. These characteristics control many
important properties of polymeric materials. The static conformation of an ideal chain (with
no interaction between monomers separated by many bonds along the chain) can be described
by the random walk model. It is convenient to define the Kuhn monomer of length b and the
number of Kuhn monomers N such that the mean-square end-to-end distance of an ideal linear
chain is a freely jointed chain.

The dynamics of polymer can be characterized by a large scale and a segmental motion. At
this day no physical theory can relate properly all the aspects of the segmental motion. Rouse
theory and the reptational tube model are well known to describe the large scale dynamics of non
entangled and entangled polymers, respectively. These theory and model predict an exponent
2 and 3 in the molecular weight dependence of the longest relaxation time, respectively. We
have shown that in the frame of the Rouse model, expressions of the frequency dependence of
the dielectric permittivity and shear modulus can be written as:

ε′(ω) ∝ 2b2
N

N−1∑
p:odd

cot2
(
pπ

2N

) 1
1 + ω2τ2

p

ε′′(ω) ∝ 2b2
N

N−1∑
p:odd

cot2
(
pπ

2N

)
ωτp

1 + ω2τ2
p

G′(ω) ∝
N−1∑
p=1

ω2τ2
p /4

1 + ω2τ2
p /4

G′′(ω) ∝
N−1∑
p=1

ωτp/2
1 + ω2τ2

p /4

where τp are the relaxation times of the Rouse modes.

When different polymers are mixed, they can either form a single phase or phase separated
domains. This phenomena can be described by the study of the free Helmholtz energy. The
Flory interaction parameter χ plays an important role in the expression of the free Helmholtz
energy. If there is a net attraction between species (i.e. they like each other better than they
like themselves), χ < 0 and a single phase mixture is favourable for all compositions. More
often there is a net repulsion between species (they like themselves more than each other) and
the Flory interaction parameter is positive χ > 0. In this case the equilibrium state of the
mixture depends on the functional dependence of the free energy on the composition for the
whole range of compositions.
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Introduction

The aim of this chapter is to discuss the models describing the polymer dynamics at macro-
scopic scale and present the different experimental techniques that permit to test these models.
We will first focuse our study on the segmental dynamics of poly(vynil acetate) (PVAc) before
studying the whole chain motion of polyisoprene (PI).

PVAc has a strong (∆ε ∼ 5) dipolar component perpendicular to the chain backbone leading
to the so-called α-relaxation, related with segmental motion. At this day, this relaxation can
only be described by semi-phenomenological theories. Even if we are not currently able to test
any physical theory to interpret the α-relaxation, the study of PVAc is interesting because it
exhibits strong losses slightly above room temperature. Therefore, it is a convenient candidate
to develop Electrostatic Force Microscopy based nano-characterization methods; and the dielec-
tric macroscopic response here measured will be then compared to the nanoscopic one in the
following chapters of this thesis.

Due to dipolar components both parallel and perpendicular to the chain backbone, PI
exhibits a whole chain dielectric relaxation (normal mode) in addition to that associated with
segmental motion. The Rouse model [17], has been first developed to describe the dynamics of
polymer solution in a theta solvent, i.e. a solvent in which polymer coils act like ideal chains,
assuming exactly their random walk coil dimensions. This model is now well known to describe
rather correctly the whole chain dynamics of unentangled polymers. In the past, the validity
of the Rouse model has ever been instigated by means of different experimental techniques
(Broadband Dielectric Spectroscopy (BDS), rheology, neutron scattering) and also by molecular
dynamics simulations. However this study is still challenging because in unentangled polymer
the segmental dynamics contributions overlap significantly with the whole chain dynamics.
In this chapter, we will demonstrate how we have been able to decorelate the effect of the
α-relaxation on the normal mode in order to test how the Rouse model can quantitatively
describes the normal mode measured by BDS and rheology. The introduction of polydispersity
is a key point of this study.

The reptational tube theory, first introduced by de Gennes [15] and developed by Doi and
Edwads [16] describes the dynamics of entangled polymers where the Rouse model can not
be applied. Many corrections (as Contour Length Fluctuation or Constraints Release) have
been added to the pure reptation in order to reach a totally predictive theory [19, 20]. In the
last part of this chapter, we will show how the relaxation time of the large chain dynamics
depends on molecular weight and discuss the effects of entanglement predicted by de Gennes
theory on dielectric spectra. PI is a canonical polymer to study and understand the large chain
dynamics. However, due to its very weak relaxation (∆ε ∼ 0.05, around 100 times weaker than
the relaxation of PVAc), the measurement of this dynamics at nanoscale is still challenging.
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1 Materials and method

1.1 Macroscopic Samples

Polymers can have dipoles in the monomeric unit that can be decomposed in two different
components: parallel or perpendicular to the chain backbone. The non canceling dipole moment
parallel to the chain backbone giving rise to an "end-to-end" net polarization vector will induce
the so-called dielectric normal mode dielectric relaxation that can be studied using theoretical
models. The dipole moment perpendicular to the chain backbone will lead to the segmental
α-relaxation that can only be described using empirical models, since no definitive theoritical
framework exists for this universal process.

We have chosen to study the relaxations of two different samples. The first is 1,4-cis-
polyisoprene (PI). This isomer is a A-type polymer in the Stockmayer classification [31]: it
carries both local dipole moments parallel and perpendicular to the chain backbone. The
chapter on the large scale dynamics will be focused on the study of the dynamics of the normal
mode of PI. The second is poly(vinyl acetate) (PVAc), a B-type polymer that does not present
a net component along the chain. Therefore it is not possible to test the theoretical theories
describing the normal mode on PVAc. However, this canonical polymer has a dipole component
perpendicular to the chain backbone leading to a strong segmental relaxation. This so-called
α-relaxation appears around 10 Hz slightly above room temperature and makes him a very
convenient candidate for the development of nano-dielectric characterization methods. We will
study this polymer as a pure component and in a blend with polystyrene (PS). This last polymer
is well known for having an extremely weak relaxation only detected above 100ºC and will be
used as an non-active component in a blend containing 75% of PS and 25 % of PVAc.

a Polyisoprene

The polyisoprene (PI) samples were obtained from anionic polymerization of isoprene (Fig.
2.1). According to the supplier, Polymer Source, the sample is linear (no ramification) and its
micro-composition is 80% cis, 15% trans and 5% other 2.1. We are working with the isomer cis
that have a net end-to-end polarization vector. Before the experiments samples were dried in a
vacuum oven at 70 ºC for 24 hours to remove any trace of solvent.

(a) Polymerization 1,4 of isoprene

(b) cis- and trans- isomers of polyisoprene

Figure 2.1 : Polymerization of isoprene
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For our study, seven samples have been chosen to cover a large band of molecular weight
with low polydispersity (Table 2.1). The polydispersity (determined from size-exclusion chro-
matography experiments) is given by supplier while the glass transition temperature (Tg) has
been measured by dynamic scanning calorimetry. To avoid oxidation, PI samples were stored
at -25 ºC.

Sample Mn [kg/mol] Mw [kg/mol] Ip Tg [K]
PI-1 1.1 1.2 1.11 194
PI-3 2.7 2.9 1.06 203
PI-10 10.1 10.5 1.04 209
PI-33 33.5 34.5 1.04 210
PI-82 76.5 82 1.07 210
PI-145 138 145 1.07 210
PI-320 281 320 1.14 210

Table 2.1 : Molecular weight, polydispersity and Tg of PI

b Poly(vinyl acetate)

The molecular formula of Poly(vinyl acetate) (PVAc) is (C4H6O2)n (Fig. 2.2. The monomer
has a molecular weight of 86 g/mol and we will be working with a sample having a molecular
weight of Mw = 83 000 g /mol. The sample has been provided by Sigma Aldrich. The Tg has
been measured at 38 ºC. Prior to the measurements, samples were kept at 180°C in vacuum
for at least 24 h to remove any solvent or moisture content as structural relaxation of PVAc is
known to be sensitive to moisture content.

Figure 2.2 : Schematic representation of the monomer of PVAc

c Polystyrene

The molecular formula of Polystyrene (PS) is (C8H8)n (Fig. 2.3. The monomer has a
molecular weight of 104 g/mol and we will be working with a sample having a molecular weight
of Mw = 70 950 g /mol. The sample has been provided by Polymer Laboratories. A drying
was performed under vacuum at 180ºC for at least 24 hours before measurements.
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Figure 2.3 : Schematic representation of the monomer of PS

1.2 Rheology

RHEOMETER
ARES-LS2, TA Instruments (1mHz - 50 Hz)
Transducers: 2K FRTN1 and 200 FRTN1
LN2 controller (130 - 800 K)
Simultaneous electric impedance analysis (20Hz - 1MHz)

Elasticity is the ability of a material to store deformational energy, and can be viewed
as the capacity of a material to regain its original shape after being deformed. Viscosity is a
measure of the ability of a material to resist flow, and reflects dissipation of deformational energy
through flow. Material will respond to an applied force by exhibiting either elastic or viscous
behavior, or more commonly, a combination of both mechanisms. The combined behavior is
termed viscoelasticity. In rheological measurements, the deformational force is expressed as the
stress, or force per unit area. The degree of deformation applied to a material is called the
strain. Strain may also be expressed as sample displacement (after deformation) relative to
pre-deformation sample dimensions.

Dynamic mechanical testing involves the application of an oscillatory strain γ(t) = γ0 cos(ωt)
to a sample. The resulting sinusoidal stress σ(t) = σ0 cos(ωt + δ) is measured and correlated
against the input strain, and the viscous and elastic properties of the sample are simultaneously
measured.

If the sample behaves as an ideal elastic solid, then the resulting stress is proportional to the
strain amplitude (Hooke’s Law), and the stress and strain signals are in phase. The coefficient
of proportionality is called the shear modulus G. σ(t) = Gγ0 cos(ωt) If the sample behaves
as an ideal fluid, then the stress is proportional to the strain rate, or the first derivative of the
strain (Newton’s Law). In this case, the stress signal is out of phase with the strain, leading it
by 90°. The coefficient of proportionality is the viscosity η. σ(t) = η ω γ0 cos(ωt+ π/2)

For viscoelastic materials, the phase angle shift (δ) between stress and strain occurs between
the elastic and viscous extremes. The stress signal generated by a viscoelastic material can be
separated into two components: an elastic stress (σ’ ) that is in phase with strain, and a viscous
stress (σ” ) that is in phase with the strain rate (dγ/dt) but 90° out of phase with strain. The
elastic and viscous stresses are sometimes referred to as the in-phase and out-of-phase stresses,
respectively. The elastic stress is a measure of the degree to which the material behaves as an
elastic solid. The viscous stress is a measure of the degree to which the material behaves as an
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ideal fluid. By separating the stress into these components, both strain amplitude and strain
rate dependence of a material can be simultaneously measured. We can resume this paragraph
by a set of equation:

σ(t) =
(
σ0 cos(δ)

γ0

)
γ0 cos(ω t) +

(
σ0 sin(δ)

γ0

)
γ0 sin(ω t) (2.1)

G′ = σ0 cos(δ)
γ0

G′′ = σ0 cos(δ)
γ0

(2.2)

G(ω) = G′ + iG′′ (2.3)

Concretely, the sample is placed between the two plates represented in Fig. 2.4. A
motor apply a strain to the bottom plate and the movement of the upper plate is recorded. The
typical value for the gap is 1 mm.

(a) Parallel plate tool (b) Sample between plates (the strain is in an
horizantal plane)

Figure 2.4 : Shematic view of rheological tools

1.3 Broadband dielectric spectroscopy

BROADBAND DIELECTRIC SPECTROSCOPY
High-resolution dielectric/impedance analyzer
ALPHA-S, Novocontrol
Frequency range: 1e-3 - 1e7 Hz ,
Sensitivity : tan(δ) ∼ 1e− 5
Temperature Control (100 - 600 K, stability ±0.01K) :
Nitrogen-jet stream Quatro Cryosystem, Novocontrol

The set-up of a broadband dielectric spectroscopy (BDS) experiment is displayed in Fig. 2.5.
The sample is placed between two electrodes of a capacitor and polarized by a sinusoidal voltage
U(ω). The result of this phenomena is the orientation of dipoles which will create a capacitive
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system. The current I(ω) due to the polarization is then measured between the electrode. The
complex capacity C(ω) of this system is describe by the complex dielectric function ε(ω) as:

ε(ω) = ε′(ω)− i ε′′(ω) = C(ω)
C0

= J(ω)
i ω ε0E(ω) = I(ω)

i ω U(ω)C0
(2.4)

where: C0 is the vacuum capacitance of the arrangement
E(ω) is the sinusoidal electric field applied (within the linear response)
J(ω) is the complex current density
ε0 = 8.85 10−12AsV −1m−1is the permittivity of vacuum
ε′ and ε′′ are proportional to the energy stored and lost in the sample, respectively.

(a) Schema of the principle of BDS (b) Polarization of matter and resulting
capacitive system

Figure 2.5 : Schema of the principle of BDS

In our experiments samples were placed between parallel gold-plated electrodes of 20 mm
diameter and the value of the gap (between the electrodes) was fixed to 0.1mm (by a narrow
PTFE cross shape piece).

Polarization of matter (−→P ) can be describe as damped harmonic oscillator. When the
electromagnetic field is sinusoidal the dipole oscillates around its position of equilibrium. This
response is characterized by ε(ω):

−→
P = ε0 (ε(ω)− 1)−→E (ω) (2.5)

The complex dielectric function is the one-sided Fourier or pure imaginary Laplace transform
of the correlation function of the polarization fluctuations φ(t) = [−→P (t) ·−→P (0)] (phenomological
theory of dielectric relaxation [25])

ε(ω)− ε∞
εs − ε∞

=
∫ ∞
0

exp(−i ω t)
(
−dφ(t)

dt

)
dt (2.6)

where εs and ε∞ are are the unrelaxed and relaxed values of the dielectric constant

If we consider a "Debye process" (the dissipation of the fluctuation is exponential: φ(t) =
exp(−t/τ)) we obtain:

ε′(ω)− ε∞
εs − ε∞

= 1
1 + ω2 τ2 (2.7)

ε′′(ω)
εs − ε∞

= ω τ

1 + ω2 τ2 (2.8)
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1.4 Differential scanning calorimetry

DIFFERENTIAL SCANNING CALORIMETRY
Q2000 TMDSC, TA Instruments
Refrigerated Cooling System RCS90 (100 -700 K)

Differential scanning calorimetry (DSC) permits to measure the glass transition as a change
in heat capacity of as the polymer go from the glass state to the rubber state. The sample
material, encapsulated in a pan, and an empty reference pan sit on a thermoelectric disk sur-
rounded by a furnace. As the temperature of the furnace is changed by heating at a linear rate,
heat is transferred to the sample and reference through the thermoelectric disk. The differential
heat flow to the sample and reference is measured by area thermocouples using the thermal
equivalent of Ohm’s Law:

q = ∆T
R

(2.9)

where: q is the sample heat flow, ∆T is the temperature difference between sample and reference
and R is the resistance of the thermoelectric disk. More elaborate expression exists to take into
account extraneous heat flow within the sensor or between the sensor and sample pan. (See
reference [32] for more details.)

Polymers have a higher heat capacity above the glass transition temperature than below.
Because of this change in heat capacity that occurs at the glass transition, we can use DSC
to measure a polymer’s glass transition temperature. The change doesn’t occur suddenly, but
takes place over a temperature range. We conventionally measure Tg by a taking the middle of
the linear extrapolation of the curve as it is usual in DSC.

Figure 2.6 : DSC of PI33. Left: all the cycle ; Right: zoom on the glassy temperature

Measurements have been made on the Q2000 TMDSC from TA Instruments. Samples have
been prepared with hermetic lid and stored for 12 hours in an oven under vacuum at 70°C to
remove all traces of impurity and rest of any solvents. The typical mass was of about 5 mg and
the rate of heating was 10 K/min. For each sample, we used a linear extrapolation to determine
the glassy temperature as it is shown for PI33 on Fig. 2.6. Values of Tg are reported in the
section Material.
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2 Segmental dynamics

2.1 BDS study of PVAc pure and in a blend of PS

The dynamics of PVAc have been largely studied by BDS (see [22, 27] and reference there-
in). However, no trace has been found in the literature about the dielectric study of the blend
PVAc/PS. In this section we will compare dielectric results of a pure PVAc sample to the one
obtained from a blend having a 25% PVAc and 75% PS composition. The Flory interaction
of these constituent is given in reference [33]: χ(PS/PV Ac) = 0.02. Using this parameter au-
thors constructed a phase diagram where it appears that PS and PVAc are immiscible, and
form a phase separated system. This blend is interesting in the frame of this work because
BDS allows measuring the average signal of the blend while measurement at the nanoscopic
using Electrostatic Force Microscopy permits to differentiate properties of the nano-structured
domains.

a Pure PVAc

Fig. 2.7 represents the real and imaginary parts of the α-relaxation as it can be measured
by BDS. The first think to note on this graph is that the time temperature superposition is
rather well respected although not completely [27]. Even if the half width at middle height of
ε” is slightly decreasing with temperature, curves are shifted without any important changes in
the shape. In the real part, we can observe the characteristic step ∆ε from the low (εs) to high

(a) Real part of the dielectric constant at differ-
ent temperature (from 320 to 370K, ∆T =10K).
Unfilled square represent the temperatures of 295K
and 340K that we will be used for the nanoscopic
static characterization

(b) Imaginary part of the dielectric constant at dif-
ferent temperature (from 320 to 370K, ∆T =10K)

Figure 2.7 : Dielectric α-relaxation of PVAc

(ε∞) frequency value of the relative dielectric permittivity. It is interesting to note the value of
εs at 295K and 340K because these temperatures will be used in the nanoscopic static dielectric
characterization using Electrostatic Force Microscopy. As at these temperatures and frequencies
ε′ � ε′′, the low frequency limit of the the dielectric constant εr can be approximated by the
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value of the real part:

εr(295K) ' ε′s(295K) ' 3 (2.10)
εr(340K) ' ε′s(340K) ' 8 (2.11)

b Blend 25% PVAc 75% PS

The miscibility of PVAc and PS has been investigated by different group, see [34] and
reference there-in. It appears that the miscibility depends on synthesis’ conditions. Fig. 2.8
represents the frequency dependance of the imaginary part of the dielectric permittivity of
the pure PVAc sample and the blend of PVAc-PS. The peak measure in the blend is slightly
broadened and faster than the pure PVAc component. The shape parameter βKWW has a value
for the pure and the blend:

βpKWW = 0.49 (2.12)
βbKWW = 0.43 (2.13)

The facts that both shape and relaxation time are close indicate a non miscibility of the two
components with a single phase of PVAc.

Figure 2.8 : Comparison of the shape of the losses measured in pure PVAc and in the blend. The
dynamics is measured slightly faster and broader in the blend.

One possible hypothesis to explain this faster dynamics could be related with the fact that
BDS measure dielectric properties macroscopically, over the all sample, including the interfaces’
regions between PVAc and PS having a different dynamics.

These results are preliminary and further research should be done to verify them (with
different concentration of PVAc for instance) and test the other possible hypothesis (like density
effects or possible partial miscibility) to explain this change in the dynamics. These data will
be later compared to those obtained at the nanoscale.
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2.2 Resolving the normal mode from the α-relaxation for low molecular
weight polyisoprene

For low molecular weight, the normal mode of PI overlaps at high frequency with the α-
relaxation (Fig. 2.9).

Figure 2.9 : Dielectric relaxation curves collected at 250 K on PI with different molecular weights.

This overlapping is an intrinsic problem in checking the Rouse model (that describes the
normal mode dynamics, see next section), since its applicability is limited to chains with mod-
erate molecular weight (below the molecular weight between entanglements). In fact, even
by microscopic techniques with spatial resolution as neutron scattering, it is rather difficult
to distinguish the border between chain and segmental relaxations [14].Because the time scale
separation between the two dynamical processes is not complete, a detailed analysis of the va-
lidity of the Rouse model predictions at high frequencies requires accounting accurately for the
α-relaxation contribution.

The imaginary part of the dielectric α-relaxation can be analyzed by using the phenomeno-
logical Havriliak-Negami function (Eq. 1.51). In addition, a power law contribution (∝ ω−1)
was used to account for the normal mode contribution at low frequencies, which is the frequency
dependence expected from the Rouse model for frequencies larger than the characteristic one of
the shortest mode contribution. Thus, we assumed that the high frequency tail of the normal
mode follows a C/ω law and superimposes on the low frequency part of the alpha relaxation
losses, being C a free fitting parameter at this stage. The α-relaxation time corresponding to
the loss peak maximum was obtained from the parameters of the HN function as follows [25]:

τα = τHN

[
sin

(
αγπ
2+2γ

)]1/α
[
sin

(
απ

2+2γ

)]1/α (2.14)

The results obtained for samples with different molecular weight at a common temperature
of 230 K are shown in Fig. 2.10. It is evident that in the low molecular weight range the
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time scale of the segmental dynamics is considerably faster than that corresponding to the high
molecular weight limit. This behavior is mainly associated with the plasticizer-like effect of the
enchain groups, which are more and more relevant as chain molecular weight decreases. The
line in figure 2.10 describing the experimental behavior for the PI samples investigated is given
by an empirical function:

τα(M) = τα(∞)
(1 + 10000/M)2 (2.15)

Figure 2.10 : α-relaxation times of polyisoprene at 230 K as a function of molecular weight. The line
corresponds to Eq. 2.15

As can be seen in Fig. 2.9 and 2.10, the α-relaxation contribution from long chains is nearly
independent on molecular mass, but for low molecular masses (c.a. below 20 000 g/mol) it is
shifted to higher frequencies and slightly broader. Because the rather small length scale involved
in the segmental dynamics (around a nanometer) [35,36] it is expected that for a relatively low
molecular weight sample, as PI-3, there would be contributions to the α-relaxation with different
time scales originated because the presence of chains of different lengths. This could explain
the fact that the α-relaxation peak of the PI-3 sample is slightly broader than that of a high
molecular weight one, the PI-82 for instance (see Figure 2.9). Thus, in order to take this small
effect into account we decided to describe the α-relaxation of the PI-3 sample as a superposition
of different contributions. The contribution to the α-relaxation from a single chain of molecular
weight M is assumed to be of the HN type (Eq. 1.51), with intensity proportional to the
number of units (segments) in the chain, i.e. proportional to M. Under this assumption, the
whole α-relaxation would be given as follows:

εα(ω) =
∫ ∆ε(M)

(1 + (i ω τHN )β)γ g(M)dM (2.16)

= ∆εα
Mn

∫
M

(1 + (i ω τHN )β)γ g(M)dM (2.17)
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where g(M) is a Gaussian-like distribution introduced to take into account the effects of the
actual molecular weight distribution of the sample:

g(M) = 1√
2πσ

exp
(
−(M −Mn)2

2σ2

)
(2.18)

σ = Mn

√
Mw

Mn
− 1 (2.19)

g(M)dM is the number density of chains with molecular weight M, ∆εα is the total dielectric
strength associated to the α-relaxation, and 1/Mn is just a normalization factor. The parameters
β and γ in Eq. 2.17 were taken form the fitting of the α-relaxation losses of a high molecular
weight sample, PI-82, (β = 0.71, γ = 0.50), i.e. the shape of each component has been assumed
to be that obtained from the experiment in a sample with a high molecular weight and a narrow
distribution. For such a sample no differences between the contributions of distinct chains are
expected (see Figure 2.10).

Figure 2.11 : Resolved normal of PI-3, the dotted line represents the modelled contribution of the
α-relaxation.

Furthermore, we can note that for this sample, the α-relaxation is very well resolved from
the normal mode and, therefore, its shape can be accurately characterized. Moreover, ac-
cording to Eq. 2.15, the following expression for τHN (M) was used, τHN (M)/τHN (∞) =
[1+(10000/M)2]−1, where a value of τHN (∞) = τHN (82000) is a good approximation. In order
to avoid the unphysical asymptotic behavior (ε′′ ∝ ωβ) given by the HN equation at very low
frequencies, the physical asymptotic behavior (ε′′ ∝ ω) was imposed for frequencies two decades
lower than that of the peak loss frequency. This cut-off frequency was chosen because is the
highest cut-off frequency allowing a good description of the α-relaxation data from the high
molecular weight PI samples.

The resulting curve is depicted in Fig. 2.11 as a dotted line. The value of ∆εα (single
adjustable parameter) has been selected to fit the experimental data above f=5*10e4 Hz, where
no appreciable contributions from the normal mode would be expected. After calculating the
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α-relaxation contribution, the normal mode contribution can be completely resolved by sub-
tracting it from the experimental data. The so obtained results are depicted in Figure 2.11 for
PI-3.
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3 Large scale Dynamics

The large chain-dynamics of linear polymers is one of the basic and classical problems of
polymer physics, and thereby, it has been the subject of intensive investigation, both experi-
mentally and theoretically, over many years [15, 16, 19, 37–41]. Despite of the broad range of
models and theoretical approaches existing in the literature there are many aspects of the prob-
lem that remain to be understood (see refs. [16, 17, 19, 41] and references therein). Most of the
current investigations are devoted to the problem of the dynamics of highly entangled polymer
melts with different architectures and topologies, and to the rheology of polymer systems of
industrial relevance [16, 42, 43]. Concerning the chain-dynamics of unentangled polymers, it is
generally assumed that the well-known Rouse model [17] provides a suitable theoretical descrip-
tion. The Rouse model represents a linear chain as a series of beds and springs subjected to
entropic forces in a medium with a constant friction. It has been first developed to describe the
dynamics of polymer solution in a theta solvent. Although this simple approach obviously fails
in describing the melt dynamics of long chains at longer times, the Rouse model is also used
for describing the fastest part of the response of these long chains and thereby it is a common
ingredient of all available model and theories. In the past, the validity of the Rouse model
has ever been instigated by means of different experimental techniques and also by molecular
dynamics simulations. But as already mentioned in the previous section, a full and detailed
test of the Rouse model is challenging because in unentangled polymer melts the segmental dy-
namics (α-relaxation) contributions overlap significantly with the high-frequency components
of the chain dynamics. This fact, among others, restricts the use of rheology experiments to test
accurately the Rouse model on unentangled polymer chains. It is very hard to obtain rheology
data of unentangled polymers in the melt. This is due to the rapid relaxation times of the
material and the broad spread of the effect of more local molecular mechanisms that affect the
stress relaxation modulus at higher frequencies. After a theoretical introduction, we will show
how we have tested in full detail the Rouse model using both rheology and BDS.

3.1 Test of the Rouse model

— Choice of the sample: Working below Me

The Rouse model describe the dynamics of unentangled polymers only. Therefore it is im-
portant to characterize its domains of application. As we will see below, the use of the time
temperature superposition (TTS, see next paragraph) to create master curves in rheology is
questionable. Figure 2.12 represents the master plot obtained for PI-82 from different tempera-
tures T=[40, 20, -15, -30, -50]ºC (each represented by a different color) shifted to the reference
temperature of -50ºC. Master curves permits to obtain the full rheology of the polymer. At low
frequencies we can see the Maxwell zone (G′ ∝ ω,G′′ ∝ ω2). Then, the elastic plateau, where
G’>G”, is well defined and the polymer is therefore entangled. After the plateau, the Rouse
zone is characterized by G′ ∝ G′′ ∝ ω1/2. Rheology allows measuring a value of the molecular
weight of entanglement Me by measuring G0

n, value of G’ at the minimum of tan(δ) (around
the middle of the elastic plateau) [21]. This measurement is made at one temperature, and
therefore no master curve is needed to get the value of G0

n. According to reference [16]:

Me = ρRT

G0
n

(2.20)

where ρ=0.9 g/cm3 is the density, R = 8.32 J/K/mol is the ideal gas constant and T is the
temperature of measurement. Using the value obtained from Fig. 2.12: G0

n = 2.105 Pa, we
obtain a value of Me=9 kg/mol.
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Figure 2.12 : Master curve of PI-82 at the reference temperature of -50ºC

The dielectric normal mode reflects the fluctuations of the end-to-end vector and is dom-
inated by the slowest chain normal mode. As higher modes are scaled and shifted to higher
frequencies, the timescale of the normal mode peak, τN = 2π

fN
(where fN is the frequency of the

maximum of the peak), measured by BDS provides a rather direct access to the Rouse time
τ1 when Rouse theory is fulfilled. Using these values of τN at 230 K we have checked whether
below the molecular weight between entanglements the Rouse model predictions concerning the
molecular weight dependence of the slowest relaxation times (τ1 ∝ M2) is verified. In Fig.
2.13 we present the values of the ratio τN/τα as a function of the molecular mass. The ratio
between the longest relaxation time and the value of τα obtained at the same temperature in
the same experiment is the way used trying to remove the possible variation in τN arising from
the monomeric friction coefficient, which can be assumed as straightforwardly related with the
changes in the glass transition temperature, and hence, with the noticeable effect of end chain
groups in the segmental dynamics. Fig. 2.13 shows that below a molecular weight of around
7 000 g/mol the data scales approximately with M2. This is just the Rouse model prediction,
i.e., what is deduced from Eq. 1.34 for low-p values where the following approximation holds.
This value is intermediate between that of the molecular mass between entanglements (Me=9
kg/mol) obtained by rheology and that measured from neutron scattering experiments Me=5
kg/mol [44].

Once we have confirmed the range of molecular masses where the molecular weight depen-
dence of the longest relaxation time verifies Eq. 1.34, we will test if the whole dielectric normal
mode conforms the Rouse model predictions. We have selected the sample PI-3 for this test
because, on the one hand, it has a molecular weight sufficiently below of the molecular weight
between entanglements (so all the molecular masses of the distribution are belowMe and, on the
other hand, it shows a normal mode that is rather well resolved from the segmental α-relaxation
contributions to the dielectric losses. Using higher molecular weight samples yield the possibility
that the high molecular weight tail of the distribution was above the entanglement molecular
weight. On the contrary, for lower molecular weight samples the stronger superposition of the
normal mode and the α-relaxation will make the comparison less conclusive (see Fig. 2.9). For
the test, we have taken the data recorded at a temperature of 230 K where the normal mode
contribution is completely included within the experimental frequency window, being at the
same time the α-relaxation contribution also well captured and then subtracted (see previous
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Figure 2.13 : Ratio τN/τα , as a function of the molecular weight at 230 K. Solid line represents the
behavior predicted by the Rouse model where τN = τ1 ∝M2.

section and Figure 2.11).

— Time temperature superposition (TTS)

(a) Dielectric spectra of PI3 from 220K (left) to
300K (right) ∆T = 10K.

(b) Comparison of normal mode and α-relaxation
frequency shifts for PI3 when temperature is
changed from 220 K to 250 K.

Figure 2.14 : Shift of the dielectric response of PI-3 with temperature

Figure 2.14 a shows the high level of accuracy obtained by means of the present BDS
experiments when measuring the rather weak dielectric relaxation of a PI-3 sample, for both
the normal mode and the α-relaxation. From simple inspection of the data it is apparent that
the normal mode peak shifts by changing temperature without any significant change in shape
(time temperature superposition is verified for this process), which is one of the predictions
of the Rouse model (see eq. 1.40). However, it is also evident that the shift of the normal
mode peak is distinct than that of the α-relaxation one, i.e. the TTS fails for the complete
response. [45]. This fact is illustrated in Figure 2.14 b where data at two temperatures where
both processes are clearly visible in the frequency window are compared. For this comparison
the axes were scaled (by a multiplying factor) in such a way that the normal peaks superimpose.
Whereas the superposition in the normal mode range is excellent, the same shift makes the alpha
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relaxation peak positions to be about half a decade different. The temperature dependance of
the normal mode peak can be described by Williams-Landel-Ferry (WLF) [30] equation:

log(aT ) = C1(T − Tref )
T − Tref + C2

(2.21)

When considering the temperature dependence of the shift factor we found that, whereas for
high molecular masses (above that between entanglements) the WLF parameters are the same
within uncertainties (WLF parameters with Tg as the reference temperature C1 = 30.2±0.7 and
C2 = 57.0 ± 0.2K), for lower molecular weight samples the value of C1 remains the same but
C2 becomes noticeably smaller, being 49.2 K for PI-3. This is likely related with the significant
variation of Tg in the low molecular range (see Table 2.1).

The data resulting from the rheology experiments performed on a PI-3 sample of 1.3 mm
thickness using two parallel plates of 8 mm diameter are shown in Figure 2.15. To produce this
plot a master curve at a reference temperature Tref = 230 K was built imposing the horizontal
shift factor aT determined from BDS (see above) and a vertical shift factor bT=Tref/T. Curves
have been measured at 215, 220, 225, 230 and 240K, each color represent a temperature. It is
apparent that the superposition so obtained is good in the terminal relaxation range, although
at the highest frequencies, where the contributions of the segmental dynamics are prominent,
the data superposition fails clearly. The use of master curves in rheology experiments is a
standard practice because of the rather limited frequency range and the general applicability
of the TTS principle to the terminal relaxation range. However, the presence of the segmental
dynamics contribution at high frequencies when approaching Tg could make the application of
TTS questionable because the different temperature shifts of global and the segmental dynamics
(see above). Thus, using rheology data alone the high frequency side of the terminal region could
be highly distorted.

Figure 2.15 : Rheological master curve of PI-3(reference temperature Tr =230 K) of the real: � and
imaginary: • parts of the shear modulus.

— Determination of the bead size
For using Eq. 1.45 we need the previous determination of N, which is not known a priori,

as it requires the estimation of the bead size. Adachi and co-workers [46] estimated the bead
size of PI on the basis of an analysis of the segmental relaxation in terms of a distribution
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of Debye relaxation times. These authors suggested that a PI bead would contain about 7
monomers. However, a generally accepted approach is to consider that the bead size would be
of the order of the Kuhn length, bk. [47] The literature value of bk for PI is 0.84 nm, [13] which
corresponds to a molecular mass of the Kuhn segment of 120 g/mol. This means that a Kuhn
segment would contain about 1.5 monomers, about a factor of about 5 less than Adachi et al.
estimated. On the other hand, recent results has evidenced that the α-relaxation in the glass
transition range probes the polymer segmental motions in a volume comparable to b3k. [35, 48]
Thus, we will introduce a "segmental" Rouse time τS = τp=N , which apparently have not a
clear physical meaning (the fastest Rouse time would be p=N-1) but it can be related with the
so-called characteristic Rouse frequency (W = 3kbT/(ξb2)) as τ−1

S = 4W . Nevertheless, τS is
here used as a convenient parameter for the further analysis. We can identify τS at Tg with
the α-relaxation time determined at this same temperature, i.e. τS(Tg)=5 s. In this way, by
using the WLF equation describing the temperature dependence of the normal mode peak, the
obtained value of τS at 230 K would be 1.1*10e-4 s. Using this value and that obtained for τ1
from the normal peak maximum in Eq. 1.34 a value of N=24 results. Note that according with
this value the bead mass would be around 121 g/mol in very good agreement with literature
results for the Kuhn segment mass, [13] and consequently the corresponding bead size will be
nearly identical to bk.

— Monodisperse system
Thus, in order to test the validity of the Rouse model in describing the dielectric normal

mode relaxation data we assumed N=24 in Eq. 1.45, which would be completely predictive,
except in an amplitude factor, once the slowest relaxation time τ1 was determined from the loss
peak maximum. The so calculated curve is shown as a dashed line in Figure 2.16. It is very
clear that the calculated curve is significantly narrower than the experimental data, not only at
high frequencies where some overlapping contribution from the α-relaxation could exists, but
more importantly also in the low frequency flank of the loss peak. This comparison evidence
clearly that the experimental peak is distinctly broader than the calculation of the Rouse model
based in Eq. 7, confirming what was already envisaged in Figure 7a of ref. [41]. Nevertheless,
an obvious reason for this discrepancy could be the fact that the actual sample has some (small)
polydispersity. Despite of the fact that PI samples with a low polydispersity (2.1) were chosen,
even samples obtained from a very controlled chemistry contains a narrow distribution of the
molecular weights, which was not considered in the previous calculation.

— Introduction of polydispersity
Now, we are in a situation where it becomes possible to perform a detailed comparison be-

tween the experimental normal mode relaxation and the calculated Rouse model expectation.
In order to incorporate the small sample polydispersity, the response expected from the Rouse
model has been calculated as a weighted superposition of the responses corresponding to chains
with different molecular weights. Since the molecular masses of the chains in the PI-3 sample
are all below the molecular weight between entanglements, the molecular weight dependence
of τp will be that given by Eq. 1.31 for all of the different chains. For calculating τp(M) we
have used in Eq. 1.31 a common value τs irrespective of the molecular weight of the particular
chain. Furthermore, we calculated τ1(Mw) as the reciprocal of the peak angular frequency of
the experimental normal mode of this sample.

In this way the Rouse model remains completely predictive and the corresponding dielectric
response to be compared with normal mode contribution from the actual sample will be given
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by:

ε′′N (ω) = ∆εN
Mn

∫
M

2b2
N

N−1∑
p:odd

cot2
(
pπ

2N

)
g(M)dM (2.22)

where the contribution to the normal mode from a given chain is proportional to the chain
dipole moment (to the end-to-end vector), and thus again proportional to M.

Figure 2.16 : Resolved normal mode relaxation of PI-3 sample. The lines represent the behaviour
predicted by the Rouse model including for the actual sample polydispersity (solid line) and without it
(dotted line). Triangles correspond to the difference between the experimental losses and the Rouse model
predictions. The inset shows schematically how the presence of configuration defects allows fluctuations
of the whole chain dipole moment without variation of the end-to-end vector.

As can be seen in Figure 2.16 (solid line), the sum over all the modes and all the molec-
ular weight provides a satisfactory description of the experimental dielectric losses, namely at
frequencies around and above the peak. The excellent agreement evidences that taking into
account the (small) polydispersity of the sample under investigation is necessary to provide
a good description of the dielectric normal mode contribution by means of the Rouse model,
without any adjustable parameter other than the Rouse time, which (for the average molecular
mass) is essentially determined from the reciprocal of the maximum loss angular frequency.

— BDS and rheology in the same experiment
Once we have found that the Rouse model can account accurately for the chain dynamics as
observed by dielectric spectroscopy, the question that arise is if using the very same approach
it would be possible to account also for other independent experiments, namely rheology. A
key point to perform such a test is to be sure that all the environmental sample conditions
remains the same. To be sure about this, we performed simultaneous dielectric and rheology
experiments at 230 K. The sample thickness was smaller to balance the data quality of both
dielectric and rheological results. We found that a thickness of 0.9 mm using two parallel plates
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of 25 mm diameter provides a rather good compromise. The output of these experiments at
230 K is shown in Figure 2.17. Despite of the very different geometry used, the rheological

Figure 2.17 : Simultaneous rheology (G’: �, G”: •, tan(δ) : N) and BDS experiments (ε”: ◦) on
PI-3 at 230 K. Lines correspond to the description obtained using the Rouse model, with a single set of
parameters, for all the data sets.

results are in close agreement with those obtained before. In this simultaneous experiment, the
dielectric normal mode is clearly resolved so the peak position defining the time scale can be
determined with low uncertainty, although again the accuracy of the dielectric relaxation data
is not so good as that obtained in the data presented before. Nevertheless, this experiment
will be essential in testing the ability of the Rouse model in accounting simultaneously for both
the dielectric and rheology signatures of the whole chain dynamics. The approach used was
to determine τ1 from the dielectric losses, according with the description used above that is
able to accurately account for the complete dielectric relaxation spectrum, and to use a similar
approach to generate the corresponding rheology behavior. Thus, the only unknown parameter
needed to perform the comparison with the experimental G’(ω) and G”(ω) data will be G∞
(the high frequency limit of the modulus in terminal zone), which in fact it is not needed for
calculating tan (δ)= G”(ω)/G’(ω). The equations used were obtained from Eq. 1.46 and 1.47
following the same procedure that the one from BDS:

G′(ω) =
∫
G∞
Mn

N−1∑
p=1

ω2τ2
p /4

1 + ω2τ2
p /4

g(M)dM (2.23)

G′′(ω) =
∫
G∞
Mn

N−1∑
p=1

ωτp/2
1 + ω2τ2

p /4
g(M)dM (2.24)

The results of the comparison between the calculated responses and the experimental data
are shown in Fig. 2.17. A satisfactory description is obtained for G’(ω) and G”(ω) by means
of the same Rouse model parameters used in describing the dielectric normal mode. More in-
terestingly, the description of tan(δ) is also rather good, for which the previous calculation is
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compared with the experimental data without any arbitrary scaling. Despite the good agree-
ment obtained, it is worthy of remark that the ability of rheology experiments for checking
the Rouse model in full detail is much more limited than the dielectric one because both the
narrower frequency range accessible and the stronger overlapping of the segmental dynamics
contributions.

— Discussion
Despite the overall good agreement, Figure 2.16 evidences that the experimental losses are

slightly larger (maximum difference about 10%) than the Rouse model prediction in the high
frequency side. Although one could consider that this is simply due to the contribution of the
overlapping α-relaxation that has not been properly subtracted, the fact that the maximum of
these extra losses intensity occurs at frequencies two decades above the segmental relaxation
peak (see triangle in Figure 2.16) seems to point out to other origin. In agreement with this
idea, that the frequency distance above the NM peak where the Rouse model description starts
underestimating the experimental losses does not depend much on temperature. Thus, extra
contributions from some chain-modes are detected in the dielectric normal mode. In fact the
peak intensity of the extra losses occurs at the position of the p=3 mode (see triangles in Fig.
2.16), i.e. the second mode contributing to the dielectric normal mode. All this might evidence
the fact that the Rouse model approach ignores several aspects of the actual chain properties as
that of the chain stiffness [49] or the lower friction expected to occur at the chain ends [50]. In
this context it is noticeable that the contribution from the α-relaxation extended considerably
towards the frequency range where the normal mode is more prominent. In fact the cut-off
frequency used for describing the α-relaxation in Fig. 2.11 was close to 100 Hz, i.e, where
the differences between the normal mode response and the Rouse model are more pronounced.
This result indicates that for most of the high-p chain modes the segmental relaxation is not
completed. This is in contrast to the assumptions of the Rouse model where it is considered
that all the internal motions in the chain segment are so fast that their effect can be included
in the effective friction coefficient. It is noteworthy that a higher frequency cut-off would
be not compatible with the experimental data of the high molecular weight PI samples, and
would produce a more prominent underestimation of the dielectric normal mode losses. On the
contrary, a lower frequency cut-off would improve slightly the agreement between the normal
mode data and the Rouse model prediction but would imply and higher coupling between
the segmental dynamics and the whole chain motion. Small deviations from the Rouse model
predictions have also been reported from numerical simulations, molecular dynamics calculations
and detected by neutron scattering experiments, [41,49,51,52] although these deviations become
evident only for relatively high p-values. Note, that dielectric experiments being mainly sensitive
to the low-p modes can hardly detect such deviations. On the other hand, experiments in
solution have also evidenced differences between the experimental data and the predictions of
the Rouse model, [53] which were tentatively attributed to chain overlapping effects since the
deviations occur above a given concentration. Nonetheless, there are also possible experimental
sources for the small extra high frequency contributions to the dielectric losses as it would be
the presence in the actual polymer of a fraction of monomeric units others than the 1,4-cis
ones (up to 20%). The motion of such units, having a much smaller component of the dipole
moment parallel to the chain contour, would produce small amplitude fluctuations of the whole
dipole moment uncorrelated with the fluctuations of the end-to-end vector (see inset in Figure
2.16). The chain motions around these ’configuration defects’ would generate a relatively weak
and fast contribution to the dielectric normal mode that could explain the experimental data.
Unfortunately, the actual sample microstructure prevents to definitively address whether the
deviations from the Rouse model predictions are actually indicative of its limitations.
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3.2 Dynamics regimes as a function of the molecular weight and effects of
entanglement

As shown in the previous section, the polymer dynamics follows different regimes as a
function of the molecular weight and molecular weight distribution. Abdel-Goad et al [54], using
rheology measurements coupled with an empirical Winter-relaxation BSW-model obtained three
different exponents (1, 3.4 and 3) in the molecular weight dependence of the zero shear viscosity.
Previous BDS studies on the molecular weight dependence of the normal mode relaxation time
showed a crossover from the unentangled dynamics to the entanglement regime [37–39, 39, 55].
However, none of BDS experiment has been able to access the crossover to exponent 3 expected
by the pure reptation theory which, as aforementioned, has been detected for the viscosity.
In this section, we will detail how careful BDS experiments allow detecting the two different
crossovers from the Rouse up to the pure reptation regime. Entanglement effects in BDS spectra
will be also analyzed. Finally, the possible influence of the narrow molecular weight distribution
of the samples on the dielectric loss shape will be discussed.

— Low molecular weight
As can be seen in Fig. 2.9 the fast variation of the normal mode relaxation peak prevents

detecting it in the frequency window at 250 K for molecular weight higher than 80 kg/mol.
Thus, we will first focus the analysis on the samples with lower molecular weight. As already
mentioned, for low molecular masses the changes in the local friction coefficient (arising because
the significant changes in the end chain groups accompanying the changes in molecular weight)
influences the relaxation time. Therefore, just as in Fig. 2.13, the ratio of the normal mode
time scale to that of the α-relaxation was evaluated (Fig. 2.18). To increase the plot sensitivity

Figure 2.18 : Longest and segmental relaxation time ratio as a function of the molecular weight at
250 K. The vertical axis is scaled by M2 to emphasize the transition from the Rouse to the intermediate
regime. The solid line corresponds to the description of the data with a sharp crossover between two
power law regimes with different exponents.

to changes between the different regimes a factor of M−2
w has been applied to the ratio be-

tween the characteristic times (reciprocal of the peak angular frequency) of the two relaxation
processes. As already mentioned, the M2

w dependence expected for unentangled polymers on
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the basis of the Rouse theory is fulfilled for samples with molecular weight below 7 kg/mol.
The exponent describing the higher molecular mass range considered in this plot was 3.2± 0.1
which is distinctly lower, but close, to the 3.4 usually found in rheological experiments [21]. It
is noteworthy that imposing this exponent to fit our data will result in a higher value of the
crossover molecular weight, thus increasing the discrepancy with the reported/admitted value
ofMe = 5 kg/mol measured by neutron scattering [44]. It is noteworthy that, as it is well know,
the ratio τN/τα will change with temperature [56]. Nevertheless, the previous results will not
change significantly using data at other temperatures because the changes in the value τN/τα
will be very similar for all the samples having different molecular weights and, consequently,
the resulting molecular weight dependence would be unaltered.

— High molecular weight
After analyzing the molecular weight dependence of the end-to-end fluctuations in the low

and moderate molecular weight range, now we will focus the attention in the highest accessible
molecular weights. In the high molecular weight range, the comparison among the different
samples has to be performed at a significantly higher temperature due to the dramatic slowing
down of the chain dynamics. The more suitable temperatures are those where the normal mode
loss peak of the sample with the highest molecular weight occurs in the low frequency range of
the experimental window. An additional factor that have to be taken into account is the fact
that by increasing temperature the conductivity contribution to the dielectric losses becomes
more prominent. The conductivity contribution appears as a ω−1 increasing of the dielectric
losses and is due to impurity in the sample. This is an important issue even for high qual-
ity samples when the experiments require accessing to the low frequencies at temperatures far
above Tg. This situation is illustrated in Fig. 2.19 for the raw data of the PI sample having the
highest investigated molecular weight. It is apparent that at 340 K the normal mode peak can

Figure 2.19 : Normal mode of the high molecular weight PI samples. Dashed line represents the
calculated conductivity contribution to the dielectric losses for the PI-320 sample

be well resolved from conductivity for this sample but it would be hard to resolve the normal
mode relaxation at this temperature for a sample with a significantly higher molecular weight.
Furthermore, increasing temperature would not improve the situation since the overlapping
of the conductivity contribution with the normal mode relaxation will also increase. This is
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a serious limitation of the dielectric methods for investigating the slowest chain dynamics in
highly entangled systems. Nevertheless, as shown in Fig. 2.19, resolving the normal mode peak
was possible for all the samples investigated although the contribution from conductivity will
increase the uncertainty in the peak position for the samples with very high molecular weight.
Figure 2.20 shows the molecular weight dependence of the slowest relaxation time for the high
molecular weight regime obtained from the data presented in Fig. 2.19. Trying to increase

Figure 2.20 : Longest relaxation time from the higher molecular weight PI samples. The graph is
scaled to M3 to emphasize the crossover from the intermediate to the reptation regime. The solid line
corresponds to the description of the data with a sharp crossover between to power law regimes with
different exponents.

the sensitivity of the plot to possible changes in behavior the data have been multiplied by
M−3
w , which would produce a molecular weight independent result for a pure reptation regime.

Despite of the uncertainties involved, our results evidence that for the highest molecular weight
samples the molecular mass dependence approach the pure reptation regime expectation. The
line in Fig. 2.20 corresponds to a crossover from and exponent 3.35 to a pure reptation-like
regime. The small difference between this exponent and that obtained above from Figure 2 is
more likely due to the fact that the sample with the lower molecular weight considered in Fig. 4
have a significantly lower glass transition temperature, an effect not been considered in Fig. 2.20
. The crossover molecular weight obtained from Fig. 2.20 is 75± 10 kg/mol, i.e. it corresponds
to about 15 timesMe. This value is slightly lower than that determined from viscosity data [54].

— Discussion
The results previously described showed three different regimes for the molecular weight

dependence of the chain longest relaxation time in PI, one below 7 kg/mol following the Rouse
model prediction as expected for a non-entangled polymer melts, other above 75 kg/mol where
the reptation theory provides a good description and an intermediate one, where the polymer
is entangled but other mechanisms (like contour length fluctuations or constraints release) in
addition to reptation would control the whole chain dynamics. In the rheological experiments
above referred [54] it was shown that the viscosity of high molecular weight PI samples con-
forms well the reptation theory predictions. Thus, we decided to test up to what extent the
pure reptation theory is able to describe the normal mode relaxation spectrum of the highly
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entangled PI samples. This test can evidence the ability of the reptation theory to capture
the main features of the slowest chain dynamics, despite the well documented failure of the
reptation theory in accounting for the whole chain dynamics, even in the high molecular weight
range. This is clearly evidenced by the reported mismatching of the normalized dielectric and
rheological spectra [57]. To this end, we compared our experimental data on the high molecular
mass samples with the corresponding reptation theory predictions for the dielectric permittiv-
ity. This relation is similar to the one obtained in the frame of the Rouse model (Eq. 1.45.
As the chain are long, N>p and the cot2 can be developed in 1/p2. By analogy, the value of
τp = τ1/p

2 is replaced by τd/p2 where τd is the disentanglement time (reptation time), which
would correspond in good approximation to τN .

ε′′(ω) ∝
N−1∑
p:odd

1
p2

ω τd/p
2

1 + (ω2 τd/p2)2 (2.25)

Figure 2.21 shows the direct comparison between the experimental data for some of the samples
investigated (symbols) having all of them the lowest available polydispersity index ( 1.05) and
the pure reptation theory prediction (solid line). Both vertical and horizontal scaling factors
have been applied to obtain a good matching of the peaks. It should be noted that the possible
conductivity contributions to the normal mode relaxation were subtracted. The inset shows
separately the data of the highest molecular weight sample because it has a markedly broader
molecular weight distribution (polydispersity index 1.14). From Fig. 2.21 it becomes apparent

Figure 2.21 : Comparison of the BDS data of high molecular weight (symbols) with pure reptation
theory (solid line). Dashed straight line showing the ¼ power law behavior of the samples with PI-33
and PI-145 are also shown. The vertical arrows indicate the crossover frequency between both regimes.
The inset presents for comparison the highest molecular weight data (PI-320) with a high polydispersity
(1.14) with that of smaller polydispersity (1.04). The dashed line represents what would be the reptation
theory expectation when a very crude approximation is used to account the effect of the molecular weight.

that in the high frequency side of the loss peak deviations from the reptation predictions on
the end-to-end vector fluctuations persist even for the highest molecular weight investigated.
Whereas the high frequency behavior expected from the reptation theory is a power law with
exponent -1/2, the experimental data present and exponent -1/4 (see Figure 2.21), which would
be a signature of the relevance of chain contour length fluctuations at least in this high fre-
quency side of the normal mode relaxation. Nevertheless, it is also clear that the range of these
deviations reduce when increasing molecular weight. The vertical arrows in Fig. 2.21 shows that
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a factor of 5 increasing in molecular weight makes the crossover frequency to increase in a factor
of about 2. By inspection of the rheological data reported by Abdel-Goad et al, [54] it is also
apparent that in the very high molecular weight range where the viscosity scales as predicted
by reptation theory the terminal relaxation is far from being properly described by this theory.
Eventually the normal mode description by the pure reptation theory could be obtained only
at extremely higher molecular weights, for which, as aforementioned, the dielectric experiments
will not be suitable for investigating the extremely slow chain dynamics. Concerning this, it
has been shown [19] that for polyethylene the frequency dependence of the loss shear modulus
verifies the reptation prediction only for a molecular weight as high as of 800 kg/mol, which
for this polymer corresponds to about 400 times Me, i.e., it would correspond to about 3000
kg/mol for PI. Taking the above-calculated shift of the crossover frequency into account, for
this limiting molecular weight the crossover frequency would occur at around 20 Hz and the
failure of the repetition theory description would be hardly detectable by using the same scale
as in Fig. 2.21. This figure also shows that both the maximum and the low frequency side of the
loss peak is well accounted by the reptation theory without any evident deviation, except for
the sample having a broader distribution of molecular weight, which shows a distinctly broader
normal mode peak (see inset of Fig. 2.21). This comparison evidences that the molecular
weight distribution have a noticeable effect on the normal mode spectrum shape. We remind
that the effect of the molecular weight distribution on the normal mode was properly accounted
for in an unentangled PI sample by assuming that the contributions from chains in the sample
with distinct molecular weight simply superimpose (see previous section on the Rouse model).
When we tried the same approach with the higher molecular weight samples (dashed line in the
inset of Fig. 2.21) it becomes evident that the situation for well-entangled polymers is different.
Even by using the smallest polydispersity (1.04) the calculated response overestimates by far
the broadening of the peak for the sample with highest polydispersity (1.14). Thus, for highly
entangled polymers the effect of the molecular weight distribution on the normal mode is less
evident than that observed in the unentangled polymer case. In fact, the complete disentangle-
ment of a chain involves also the motions of the chains around, which would have a different
molecular weight, being therefore the resulting time scale some kind of average of those corre-
sponding to the ideally monodisperse melts. As a result the longest relaxation time in highly
entangled melts should not dependent greatly on the molecular weight distribution provided it
is not very broad.

60 Clément Riedel, PhD Thesis



Segmental dynamics, test of the Rouse model and effect of entanglement at the macroscale

Conclusion on the macroscopic properties

The aim of the macroscopic studies of polymer was to understand the main theories that
describe the polymer dynamics before developing EFM based nano-characterization methods
in order to test if these theories still holds at the nanosclae. We have studied two polymers:
polyisoprene and poly(vinyl acetate).

Due to dipolar moment parallel to the chain backbone, PI exhibit a whole chain dielectric
relaxation. This so-called normal mode can either be described by the Rouse or reptational
tube theory for unantengled and entangled polymers respectively. We have chosen to work with
PI samples having a molecular weight variating between 1 and 320 kg/mol in order to cover the
range of applications of these two regimes. The first step of the work on PI was to study the
Rouse model, well known since the fifties to describe rather correctly the whole chain dynamics
of unentangled polymers. Using rheology, we have measured the molecular weight of entangle-
ment Me=9 kg/mol and chosen to study how the Rouse model could describe the normal mode
response of a sample having a molecular weight of 2700 g/mol. Even if the Rouse model has
been intensively investigated by different experimental techniques this study is still challenging
because for unentangled polymer, contributions of the α-relaxation (a fast segmental relaxation
related to dipolar component perpendicular to the chain backbone) overlap significantly with
the whole chain dynamics. By decorelating the effect of the α-relaxation on the normal mode
and introducing polydispersity, we showed that the Rouse model permits a good description
of both rheological and Broadband Dielectric Spectroscopy (BDS) data. The small differences
between theory and experiment are attributed to a defect of configuration: the sample is com-
posed by 80% of the isomer cis.

Then, we have studied the different regime in the dynamics as a function of molecular weight.
In agreement with other rheological data previously reported, we found two crossovers in the
molecular weight dependence of the longest relaxation time. The first, around a molecular
weight of 6.5 ± 0.15 kg/mol, corresponds to the end of the Rouse regime. Above the second at
75 ± 10 kg/mol we find a power law with exponent 3 as predicted by the De Gennes theory.

PVAc exhibits strong losses due to the segmental dynamics slightly above room temperature.
Therefore it will be a good candidate to develop EFM based nano-characterization methods. The
static value of the dielectric constant has been measured to 3 and 8 around room temperature
and 70ºC, respectively. It forms phase separated domains when used has a component in a blend
with PS. Preliminary results have shown that for a given temperature, the characteristic time of
the α-relaxation (τα) measured by BDS is slightly faster for a blend of PVAc/PS than for a bulk
of pure PVAc. One possible hypothesis to explain this faster dynamics could be related with
the fact that BDS measure dielectric properties macroscopically, over the all sample, including
the interfaces’ regions between PVAc and PS having a different dynamics. Further research
are needed to confirm these results and clearly states, in a quantitative way, about possible
interface’s effects.
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This chapter is of the upmost importance because it details how the quantities measured
by Electrostatic Force Microscopy (EFM) in chapters 4 and 5 are related with the dielectric
permittivity ε of the sample. We will first give some generalities about Atomic and Electrostatic
Force Microscopy. Then, we will define the electrostatic force and force gradient and explain how
we are able to measure these quantities. In the second section of this chapter, we will detail the
numerical simulation of the Equivalent Charge Method (ECM) that allows obtaining the value
of the relative dielectric permittivity εr from the physical quantities measured experimentally.
The importance of the other parameters of the experiment (tip radius, thickness of the sample,
tip sample distance) and the sensitivity will be discussed. We will report first considerations
about how to control the penetration of the field inside the sample.

1 Atomic and Electrostatic Force Microscopy

An Atomic Force Microscope (AFM) is composed of a cantilever with a sharp tip (probe) at
its end that is used to scan the specimen surface. Typical geometric parameters of the cantilever
are a length of 100 µm, a width of 20-40 µm and a thickness of 1-2 µm. The tip is located at
the end of a cone having a length of about 10 µm and a radius variating from 20 to 150 nm
(Fig. 3.1). In the dynamic mode, the cantilever (excited by a piezoelectric actuator) is oscil-

Figure 3.1 : Typical AFM probe (image obtained by Scanning Electron Microscopy)

lating at or close to its resonance frequency. The motion of the cantilever is usually measured
using optic signals: A laser is reflected at the extremity of the cantilever and then measured
by photodiodes. When the tip is brought into proximity of the sample surface, forces between
the tip and the sample lead to a deflection of the cantilever. The cantilever can be modelized
by a point mass spring system. The stiffness kc is defined as the coefficient of proportionality
between the force and the deflexion. In the absence of external fields, the dominant forces are
the long range attractive Van der Waals interactions and the short range repulsive forces. The
AFM has two important qualities:
- It permits to probe local nanoscopic properties.
- Its modularity allows creating new modes in order to measure specific properties.

Since the first development of the AFM in the contact mode by Binnig et al [1] in 1986, an
impressive number of modes have been developed: lateral force microscopy, force modulation,
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phase imaging, magnetic scanning force microscopy, scanning capacitance microscopy... These
different modes allow measuring a wide range of properties in different environments (air, liq-
uid, vacuum) making the AFM a commonly used technique in physics, chemistry and biology.
Presently, two dynamics modes have emerged to measure the topography of a sample surface:
the Amplitude Modulation (AM-AFM) and Frequency Modulation (FM-AFM). In AM-AFM
the oscillation amplitude is used as a feedback parameter to measure the topography. Usually
the tip is fixed and a piezoelectric actuator allows moving the sample in the x, y and z di-
rection. The image is reconstructed from the z displacement of the piezoelectric necessary to
keep constant the amplitude of vibration. In FM-AFM the cantilever is kept oscillating with a
constant amplitude by fixing a small resonance frequency shift. This shift depends on the forces
acting between tip and sample surface and serves as a feedback parameter for the formation of
topographic images. FM-AFM has been developed in order to work under Ultra High Vacuum
(UHV) where the quality factor is typically of the order of Q ∼ 104, leading to an excessively
long time constant and therefore to a non reasonable time of acquisition of a simple topography.
Working with higher harmonics [58] permits to use the AM mode under vacuum, but most of
the experiments in the air are still made in the AM mode whereas UHV is performed using FM.

1.1 Oscillation of the cantilever

The cantilever can be considered as a point mass spring oscillator, then the tip motion z(t)
can be described by second order differential equation:

mz̈ + mω0
Q

ż + kc z = F (z) + F1 cos(ω t) (3.1)

where F1 and ω are the amplitude and angular frequency of the driving force. Q, ω0, kc and m are
the quality factor, angular resonance frequency, stiffness and effective mass of the cantilever-tip
system, respectively. F contains the tip surface interaction forces. When the cantilever is freely
oscillating (F=0) Eq. 3.1 describes the motion of a force harmonic oscillator with damping. In
this case, the solution is well known (see general review about AFM as [59, 60]) and has the
form:

z = Ac cos(ω t− φc) +B exp(−t/τ)cos(ωr t+ β) (3.2)

where Ac is the amplitude of the cantilever’s motion, φc is the phase difference between the
driving force and the cantilever motion. ωr is the resonance frequency of the cantilever influenced
by the damping effect. The first term is a steady solution ad the second term is a transient one.
The transient term has exponential decaying time dependence with a constant time τ = 2Q/ω0.
This time constant could be a significant parameter for a high Q-value system as in vacuum
where Q ' 50 000 and τ ' 150 ms, leading to a time of acquisition of about six hours for
a 256x256 pixels image. When the transient solution fades out, the sinusoidal motion of the
cantilever is characterized by:

Ac = F0

m
[
(ω2

0 − ω2)2 + (ω0 ω /Q)2
]1/2 (3.3)

tan(φc) = ωω0
Q(ω2

0 − ω2) (3.4)
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At the resonance frequency, Ac(ω0) = QF0/kc. The resonance frequency with damping, ωr is
related to the free resonance frequency ω0 by:

ωr = ω0

√
1− 1

2Q2 (3.5)

Let’s now consider the total force FT acting on the cantilever. For small displacements with
respect to the equilibrium position z0, FT can be expressed as:

FT = F0 −
(
k − ∂F

∂z

)
z0

(z − z0) (3.6)

Then, Eq. 3.1 describes the motion of a harmonic oscillator with an effective spring constant
ke and resonance frequency defined by:

ke = kc −
(
∂F

∂z

)
z0

(3.7)

and

ωe =
√
ke
m

(3.8)

The resonance frequency of a weakly perturbed harmonic oscillator depends on the force
gradient of the interaction. A change ∆f0 in the effective resonance frequency induces a shift
of the resonance curve, with a variation of the amplitude and the mechanical phase of the
oscillator. The force gradient being positive, it decreases the effective spring constant of the
cantilever and the actual resonance frequency. Fig. 3.2 represents the amplitude and phase
(Ac,φc) of the cantilever observed freely or in presence of an attractive force in the case of small
displacements.

Figure 3.2 : Amplitude (line) and phase (doted line) of the free cantilever and in presence of an
attractive force gradient (curves shifted to lower frequency). ∆f0 and ∆φm are proportional to the force
gradient.
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When the force gradient is small compared to the cantilever spring constant (∂F∂z � kc), by
developing Eq. 3.8 in Taylor series, it appears that the frequency shift ∆f0 is proportional to
the force gradient:

ωe =

√
k − ∂F

∂z

m
(3.9)

∼=

√
kc
m

+ 1
2

(
kc
m

)−1/2 (
− 1
m

)
∂F

∂z
(3.10)

∼= ω0 −
1
2
∂F

∂z
(3.11)

ωe − ω0 ∼= ∆ω0 = − ω0
2kc

∂F

∂z
(3.12)

∆f0 ∼= − f0
2kc

∂F

∂z
(3.13)

Moreover, according to reference [58] the mechanical phase shift can be expressed as:

∆φm ∼= −
Q

kc

∂F

∂z
(3.14)

We point out that although the force gradients can be detected either by measuring the frequency
shifts or by measuring the phase shifts, we always chose in this work the measurement of
frequency shifts to avoid the phase’ saturation observed at high voltage (>10V).

1.2 Electrostatic force microscopy

a Expression of the force and force gradient in EFM

In EFM, we are always working at a relatively large value of the tip sample distance and
there is no repulsive contact force between the tip and the sample. Moreover, van der Walls
forces are negligible. Therefore, force between the tip and the sample F is purely electrostatic
and can be defined as:

F = 1
2
∂C

∂z
V 2 (3.15)

where V is the the voltage difference between the tip and the sample and C the tip-sample ca-
pacitance. When a sinusoidal voltage is applied to the probe (with the sample holder grounded):

V 2 = [(VDC − Vcp) + VAC sin(ωe t)]2 (3.16)
= (VDC − Vcp)2 + 2(VDC − Vcp)VAC sin(ωe t) + V 2

AC sin2(ωe t) (3.17)

ωe is the electrical pulsation of the VAC voltage. Vcp is the contact potential difference corre-
sponding to the work function difference of the tip and the sample if the sample is conductive
(or semi-conductive). When studying insulator, Vcp describe the work function difference of the
tip and the conductive sample holder. In the frame of our experiments we did not observed any
significant contact potential, thus in what follows we will assume Vcp=0. Using the formula of
the reduction of the square:

V 2
AC sin2(ωet) = V 2

AC

1− cos(2ωe t)
2 (3.18)
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we obtain the expression of the electrostatic force:

F = FDC + Fωe − F2ωe (3.19)

with:

FDC = 1
2
∂C

∂z

[
V 2
DC + V 2

AC

2

]
(3.20)

Fωe = ∂C

∂z
VDC VAC sin(ωet) (3.21)

F2ωe = 1
4
∂C

∂z
V 2
AC cos(2ωet) (3.22)

The same kind of expression is obtained for the force gradient G:

G = GDC +Gωe −G2ωe (3.23)

with:

GDC = 1
2
∂2C

∂z2

[
V 2
DC + V 2

AC

2

]
(3.24)

Gωe = ∂2C

∂z2 VDC VAC sin(ωet) (3.25)

G2ωe = 1
4
∂2C

∂z2 V
2
AC cos(2ωet) (3.26)

b What we are measuring

Measurements of the force or force gradient in the AM-AFM mode have been realized using
the double-pass method (lift-mode) where the topographic information is obtained during the
first pass and the electrostatic signals are acquired during the second pass. In the FM-AFM
mode, the Phase Locked Loop (PLL) detects the shift in the resonance frequency due to the
van der Walls interaction between tip and sample surface. This frequency shift serves as a
feedback parameter for the formation of topographic images whereas the frequency shift due to
the electrostatic interaction provides information about dielectric properties.

In this study, the raw signal is always the one coming from the photodiode. Ap and φp
are the amplitude and phase of the signal measured by the photodiodes, respectively. Figure
3.3 summarized all the signals measured in EFM. In the next chapters of the thesis, we will
distinguish two modes either working with a VDC or VAC voltage.

— Working with VDC

When the mechanical excitation is turned off, the amplitude of the signal of the photodiode
Ap gives a direct access to the electrostatic force. This signal (in volt) is related with the
deflexion of the cantilever (in nm) via a factor of proportionality χ (expressed in nm/V). χ can
be measured by realizing a force distance curve on a hard material. Therefore:

Ap = 1
χkc

FDC = 1
2χkc

∂C

∂z
V 2
DC (3.27)
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Figure 3.3 : Schematic Summary of the signals measured in EFM.

Ap has been used in reference [61] to map quantitatively the dielectric constant of a biological
membrane.

The expression of the frequency and phase shift are given by:

∆f0 ∼= −
f0
2kc

GDC = − f0
4kc

∂2C

∂z2 V
2
DC = −a∆f0(z)V 2

DC (3.28)

∆φm ∼= −
Q

kc
GDC = − Q

2kc
∂2C

∂z2 V
2
DC = −a∆φm(z)V 2

DC (3.29)

The coefficient a∆f0(z) is of the upmost importance in this work because it will be used in the
chapter 3 to determine quantitatively the dielectric constant. The value of εr will be obtained
by fitting a∆f0(z) using the Equivalent Charge Method (see next section).

— Working with VAC

Using directly a lock-in amplifier at the electric reference 2ωe on the signal of the photodiode,
we can measure the amplitude AF,2ωe and the phase ΦF,2ωe of the 2ωe component of the force.

AF,2ωe = 1
χkc
|F2ωe | =

1
4χkc

∂C

∂z
V 2
AC (3.30)

AF,2ωe has been used in reference [62] to measure quantitatively the dielectric constant of thick
insulators.
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And finally using a lock-in at the electric reference 2ωe on the frequency shift we can measure
amplitude AG,2ωe and the phase ΦG,2ω of the 2ωe component of the force gradient.

AG,2ωe = 1
χkc
|G2ωe | =

1
4χkc

∂2C

∂z2 V
2
AC (3.31)

The phases ΦF,2ωe and ΦG,2ωe measured while applying a VAC voltage will be used in chapter
4 in order to study the temperature frequency dependance of polymers.
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2 The numerical simulation of the Equivalent Charge Method

A number of models describing probe-sample interactions have been proposed in the two last
decades. Earlier models treated the probe surface as an equipotential created by a distribution of
charges, such as a single point charge [63] or a uniformly charged line [64], and the probe-sample
interaction was approximated as the interaction between the assumed charge distribution and
its image with respect to the sample surface. Another group of models introduced geometric
approximations to the probe shape and solved the probe-sample capacitance problem either by
exactly solving the boundary value problem, e.g., the sphere model [65] and the hyperboloid
model [66], or by introducing further approximations to the electric field between the probe and
the sample [67, 68]. These models provide convenient analytic expressions of the probe-sample
interaction; however, more sophisticated models are demanded for studying the lateral variation
of the sample surface properties (e.g., topography and trapped charges distribution) or to take
into account the presence of a dielectric film of variable thickness.

Let us consider the AFM tip as a cone of height H, half angle θ, with a spherical apex of
radius R, attached to the extremity of a cantilever in front of a dielectric medium having a
height h and a dielectric constant εr (Fig. 3.32). The total capacitance C(z) versus the tip-
sample distance z is a sum of the apex capacitance Capex(z) (i.e the local capacitance) and the
stray capacitance Cstray(z), associated with the tip cone and the cantilever contributions. For

Figure 3.4 : Schema of the characteristic tip and the dielectric layer [69]

films thicknesses less than 100 nm we can refer to the model proposed by Fumagalli et al [70].
It can be expressed as:

C(z, εr, h) = 2πε0R ln

(
1 + R(1− sin(θ))

z + h/εr

)
(3.32)

By fitting the region where the effect of the local capacitance is negligible, they found a stray
capacitance of the linear form Cstray = −bz. Therefore the stray capacitance does not appear
in the expression of a∆f0(z) (which is proportional to the second derivative of the capacitance).

A second family of approaches used numerical methods such as the finite element method
[71], the self-consistent integral equation method [72], and the boundary element method [73].
The main advantage of these models is their ability to take into account the exact geometry of
the EFM probe, which permits comparison of different probe tip shapes.

We will use here the numerical simulation of the Equivalent Charge Method (ECM)to model
the tip sample interaction. The advantage of numerical simulation compared to analytical
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expressions is that it permits to work without any restriction on the height of the polymer
film. The methodology of ECM is always the same: find the position of different charges that
will create the potential researched and then calculate their electrostatic charges using limit
conditions. We will first treat the case of a tip in front of a metallic plate, and then we will
deduce the force for a system composed by a tip in front of a dielectric layer over a metallic
plate.

2.1 Tip over a metallic plate

Before modelling the tip, we will study the simple example of a charge +q, located at (0, a)
above a metallic plate grounded at a 0V potential, lying along the x-axis. Deriving the charge
distribution on the plate, or the force felt by the point charge by solving general electrostatic
equations is not trivial. It is simplified by replacing the metal with a charge, located at (0,
-a) and with charge -q. This arrangement will produce the same electric field at any point for
which z > 0, and satisfies the boundary condition, that the potential along the plate must be
zero. This new setup is depicted in Fig. 3.5

Figure 3.5 : One charge over a metallic plate (left) and its equivalent in term of ECM (right)

The case of a system composed by a tip in front of a conductive plane has been treated
in [74]. The surface of the tip is at a potential V. The idea of ECM is to find a discrete charge
distribution (Nc charge points qi at a distance ri on the axis x=0) that will create the desired
potential at the surface of the tip. The conductive plane at a zero potential is created by the
introduction of an electrostatic image tip with −qi charges at a distance −ri on the z axis (Fig.
3.6).

Position and number of the charges and test points have to be chosen with care because
the stability of the system of equations that we will obtain depends on these parameters. For
the cone, charges are displayed on a geometrical serie, while test points are projected on the
tip surface. One test point is intercalated between two projections. For the spherical part, the
position of the charges and test points is chosen manually to reproduce the strong curvature of
the equipotential where is concentred the most of the interaction.
Test points have to fulfilled two conditions:
- The distance between two successive test points should not be too big to ensure that the
potential created follows the surface of the tip.
- If this distance is too small, the matrix describing the system could become singular.

The value of the charges qi is fixed in such way that the potential Vn calculated in the test
point n at the tip surface equals V.
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Figure 3.6 : Distribution of the
charges (•z>0), image charges
(•z<0)that will create the potential of
the tip measured in the test points ◦

If we introduce

Ci,n = 1
di,n
− 1
d
′
i,n

(3.33)

where di,n and d′i,n are the distance between the point n and the effective and image charge i,
respectively, we can express the potential Vn as:

Vn =
∑
i

Ci,n qi
4πε0

(3.34)

The best value of qi is obtained using the least mean square method:

∂

∂qi

∑
n

(Vn − V )2 = 2
∑
n

(
(Vn − V )∂Vn

∂qi

)
= 0 (3.35)

Expliciting the value of Vn and its derivative, we get:

∑
n

(∑
i

Ci,nqi
4πε0

− V
)
Cj,n
4πε0

= 0 (3.36)

which can be written as a system of linear equations where nmax is the number of test points
and qi are the variables.


...

. . .
∑nmax
n=1 Ci,nCj,n . . .

...




q1
...
qi
...
qNc


=


...

4πε0V
∑nmax
n=1 Cj,n
...

 (3.37)

We obtain the best value of qi by solving the linear system of equation 3.37. Knowing the
position and the value of the charges qi we can calculate the force which is the resultant of the
interaction of each charge qi with all the image charges q′j :
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F = 1
4πε0

Nc∑
i=1

Nc∑
j=1

qi q
′
j

d2
i,j

(3.38)

2.2 Tip over a dielectric layer plus a metallic plate

a One charge over a semi-infinite dielectric

Before modelling the complete system, we will study the potential created by a charge
q0, located at (0, a) above a semi-infinite dielectric, lying along the x-axis (Fig.3.7). We will
demonstrate that the potential created by this charge in the air (z>0) V0(P ) and in the dielectric
(z<0) V1(Q) are given by:

V0(P ) = 1
4πε0

(
q0
r0

+ q1
r1

)
(3.39)

V1(Q) = 1
4πε1

q2
r2

(3.40)

Notations are defined on figure 3.7.

Figure 3.7 : One charge over a semi-infinite dielectric (left) and its equivalent in term of ECM (right)

The charge q1 is the symmetric of q0 in regard to the x-axis that satisfies limit conditions
which are written on the x-axis:

V0 = V1 (3.41)

ε0
∂V0
∂z

= ε1
∂V1
∂z

(3.42)

Inserting Eq. 3.39 and 3.40 in Eq. 3.41, 3.42 we obtain the value of the charges q1 and q2:

q1 = −
(
ε1 − ε0
ε0 + ε1

)
q0 (3.43)

q2 = 2ε1
ε0 + ε1

q0 (3.44)

Knowing the position and the value of the charges we can calculate the potential in all the
space.
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b Charge over a dielectric layer plus a metallic plate

When the system is composed by a tip in front of a dielectric layer plus a conductive
plane, simulations are more complicated. This problem has been treated by Saenz et al [75]
introducing the Green Function formalism. In our study, we have chosen to follow the early
method of Durand [76]. We consider a charge q0 in the air (dielectric constant taken at ε0) at
a distance a of a dielectric layer of thickness h and dielectric constant εr over a metallic plate.
We note b = a+ h the distance between the charge and the metallic plate (Fig.3.8).

Figure 3.8 : Schema of one charge over a
dielectric layer lying on a metallic plate. Axis
are chosen to facilitate calculations.

In order to calculate the potential at the different interfaces and take into account the
symmetry of the problem, we express the potential created by the charge using cylindrical
coordinate (ρ, z) and introducing the Bessel function J0:

V = q

4πε0r
= q

4πε0

∫ ∞
0

J0(mρ)e−m|z|dm (3.45)

This equation satisfies to the Laplace equation for all functions emz. We would like to have,
for each dielectric, solutions of the form:

V0 = q0
4πε0

∫ ∞
0

(
e−m|z| +A(m)emz

)
J0(mρ)dm (3.46)

V1 = q0
4πε1

∫ ∞
0

(
B(m)e−mz + C(m)emz

)
J0(mρ)dm (3.47)

where A(m), B(m) and C(m) are functions to determined. Limit conditions are written as:

(V0 − V1)z=a = 0 (3.48)(
ε0
∂V0
∂z
− ε1

∂V1
∂z

)
z=a

= 0 (3.49)

(V1)z=b = 0 (3.50)

In order to facilitate calculation, we express limit conditions on the z axis (ρ = 0):

 −ε1ema ε0e
−ma ε0e

ma

ema e−ma −ema
0 e−mb emb


 A
B
C

 =

 ε1e
−ma

ema

0

 (3.51)
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Introducing k1 = − ε1−ε0
ε1+ε0 and h = b− a we get:

A = k1e
2ma − e−2mb

1− k1e2ma
(3.52)

B = 1− k1
(1− k1)e−2mh (3.53)

C = −(1− k1)e−2mb

1− k1e−2mh (3.54)

We deduce the expression of the potential V0:

V0 = q0
4πε0

∫ ∞
0

(
e−m|z| + k1e

2ma − e−2mb

1− k1e2ma
emz

)
dm (3.55)

in which we can calculate the integral [76]:

V0 = q0
4πε0

(
1
|z|
− k1
z − 2a + (1− k2

1)
∞∑
0

kn1
z − 2b− 2nh

)
(3.56)

The potential created in air take into account the source, its image by the dielectric surface
and an infinite serie of image charges issue from the reflection on the dielectric and the metallic
surface (Fig.3.9).

Using the same method, we get the potential V1 which is equivalent to the one created by the
sum of two infinite series arising from the reflection of the charge q0 at each interface ((Fig.3.9)):

V1 = q0
4πε1

∫ ∞
0

(
1− k1

(1− k1)e−2mh e
−mz − (1− k1)e−2mb

1− k1e−2mh e
mz

)
dm (3.57)

V1 = q0
4πε0

(1− k1)
( ∞∑

0

kn1
z + 2nh +

∞∑
0

kn1
z − 2nb− 2ne

)
(3.58)

We are now able to express the potential in any point (ρ,z) created by each charge qi (0,zi).
To keep coherent notation with previous section, these expression are given for z>0 from the
dielectric to the tip. Introducing notations for the different contributions of the image and series
of images:

D± = 1√
ρ2 + (z ± zi)2

(3.59)

A =
∞∑
n=0

kn√
ρ2 + (z + 2(n+ 1)h+ zi)2

(3.60)

B =
∞∑
n=0

kn√
ρ2 + (z − 2nh− zi)2

(3.61)

we obtain the potentials created by the tip:
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Figure 3.9 : Series of image creating V0 in the air (left) and V1 in the dielectric (right)

V0 =
∑
i

V i
0 =

∑
i

qi
4πε0

(D+ + kD−(1− k2)A (3.62)

V1 =
∑
i

V i
1 =

∑
i

qi
4πε0

(1− k)(B −A) (3.63)

c Tip over a dielectric layer plus a metallic plate

An example of the potential created in the air and in the dielectric by a nanoscopic tip is shown
in Fig.3.10.

We are now able to calculate the force (and then the force gradient, capacitance and coeffi-
cient a∆f0(z)) of our system:

F = 1
4πε0

∑
i,j

(
k1qiqj

(zi + zj)2
− qiqj(1− k2

1)
∞∑
n=0

kn1
(zi + zj + 2(n+ 1)h)2

)
(3.64)
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Figure 3.10 : Potential, created in the air (z>0nm) and in the dielectric (z<0) by a tip (R=130nm,
θ=15˚) in front of a dielectric layer of height h=100nm with a dielectric constant εr = 4. The potential
is set to 1V at the surface of the tip. The maximum error in one test point is of the order 1/1000.

2.3 Behavior of the parabolic coefficient

We remind that:

∆f0 = −a∆f0(z)V 2
DC (3.65)

a∆f0 = f0
4kc

∂2C

∂z2 (3.66)

a∆f0 is directly measured by EFM at different lift z and then experimental points are fitted
to obtain the value of εr. The best-fitting curves were obtained by the least-squares method and
the final uncertainties are calculated including uncertainties of all others parameters involved
in the calculations. It is interesting to study the behavior of a∆f0(z) to know what are the best
parameters for our experiment. a∆f0 is function of five parameters: z, R, θ, h and εr.

a Tip parameters: R, θ

As explained above, the first step in the quantitative determination of the dielectric constant
is the measurement of the "electrostatic" tip radius over a metallic plate. Therefore, in order to
understand the importance of the tip parameters R and θ we simulate the interaction between
a tip and a metallic plate. As already mentioned the effect of the cone (θ) is negligible for small
distances. For our simulation we took the typical value: θ=15℃. Fig.3.11 represents the shape
of a∆f0(z) for different value of the radius of the tip. We see that for a distance of the lift fixed
the value of a∆f0 (the intensity of the signal measured) increases with the radius. The bigger
is the radius the stronger is the interaction. However, the spatial resolution decreases (i.e. its
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numerical value increases) when the tip radius increases (see reference [77, 78] and chapter 3)
and classical EFM tips having a radius of about 20 nm are convenient to perform this study.

Figure 3.11 : Behavior of a∆f0(z) as a function of the radius of the tip. (Simulated over a metallic
plate)

b Sample parameters for the dielectric: h, εr

The behavior of a∆f0(z) as a function of the height for a given εr = 4, is represented in Fig.
3.12 a. The strength of the interaction (and so the value of a∆f0(z) at a fixed lift) increases
when the height of polymer decreases. The stronger interaction is obtained for the limit case of
the nude metallic surface (h=0). Fig. 3.12 b shows the behavior a∆f0(z) as a function of the

(a) Behavior of a∆f0(z) as a function of the thick-
ness of the sample. (εr = 4)

(b) Behavior of a∆f0(z) as a function of εr. (h=
100 nm)

Figure 3.12

dielectric constant for a given thickness of 100 nm. The strength of the interaction increases
with the dielectric constant.
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c Sensitivity

We are not only interested by the intensity of the signal but also by the sensitivity S of the
method, i.e. its ability to detect a relative change in the coefficient a∆f0 for a given change in
εr:

S = 1
a∆f0(z)

∂a∆f0(z)
∂εr

(3.67)

As shown in Fig. 3.13, the sensitivity clearly decreases when the dielectric permittivity increases.
This point can be a limiting factor for the study of high dielectric permittivity materials (εr >
10) but not for the study of polymers, for which 2 < εr < 10. One way to increase the sensitivity
is to increase the thickness of the sample (Fig. 3.13). As mentioned, the signal will be weaker
but this problem could be overcome by increasing the voltage.

Figure 3.13 : Sensitivity of the measurement of a∆f0(z) as a function of εr (z=20 nm). Inset: zoom
on the range of epsilon corresponding to polymers (εr<10

2.4 Introduction to the penetration depth of the electric field

The penetration depth is a measure of how deep the electric field penetrates into a mate-
rial. It can be defined as the depth at which the field inside the material falls to 1/e of the
original value at the surface. In the context of this work, we can reformulate the problem of the
penetration depth in one question: Are we able to measure the dielectric response of a buried
object? The answer depends of the properties of the object and of the geometry of the system.
For instance, if you would like to measure the dielectric response of an underneath layer of
polymer, the depth penetration would depend on the dielectric constant and thickness of the
upper layer. Therefore a full modelization of the system is needed for each particular case.

Studies involving different experimental techniques like BDS [79, 80], fluoresence [81, 82] or
Local Dielectric Spectroscopy (see chapter 4 and reference [10,11]) have shown different dynam-
ics between interfaces and bulk. Controlling the penetration depth would allows measuring, on
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the same sample and with the same experimental technique, both surface and bulk-like behavior.

— Few words about Broadband Dielectric Spectroscopy (BDS)
Experimental BDS samples are modelized as a plate-plate capacitor (see chapter 1). Therefore,
the potential lines are perpendicular to the electrodes and the electric field is constant along
these lines: BDS measure the dielectric response over the all thickness and we cannot estimate a
penetration depth. This problem, in addition to the lack of spatial resolution, makes the study
of nano-structured systems always model dependant.

We will now detail a simulation of the penetration of the electric field created by a tip having
a radius of 20 nm in a semi-infinite dielectric medium modelized by h=1 µm and εr = 4.

— Electrostatic Force Microscopy
Using the numerical simulation of the ECM, we are able to calculate the potential created in
all the space by an AFM tip at a tip-sample distance of 20 nm in front of a dielectric medium
(see Fig. 3.10). We numerically select the value of the potential inside the dielectric along the
z-axis. As the electric field E is the gradient of the potential, we are able to calculate E(z) along
this line. The criterium to define the depth penetration is defined as E(z) = E(0)/e. Fig. 3.14 a
represents E(z) for different tip-sample distances (from 20 to 200 nm) measured on the x=0 axis
of a 1 µm sample. Solid line represents the thickness where E(z)>E(0)/e whereas dotted line
are below the depth penetration. For a classical tip sample distance of 20 nm the penetration
depth is of about 40 nm: only the first layers of the sample are probed. It is interesting to note
(Fig. 3.14 b) that the penetration depth, p, increases linearly with the tip-sample distance:

p ' R+ z (3.68)

Working at a higher value of the tip-sample distance would allow measuring deeper properties
in the sample. For a tip-sample of 20 nm, the electrostatic interaction is concentrated over the
first 40 nm layer from the interface with the free interface (air or vacuum).

(a) Electric field inside a 1 µm sample for different
tip sample-distances (z=20 to 200 nm, ∆z=20 nm)

(b) Penetration depth as a function of the tip-
sample distance for a thick sample (1 µm)

Figure 3.14
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3 Measuring local dielectric properties: State of the art

The classical way to measure dielectric properties is Broadband Dielectric Spectroscopy
(BDS). This technique, based on the measurement of the capacitance of a parallel plate capaci-
tor, presents a lot of advantages: well known geometry, very good temperature stabilization and
sensitivity. However, there is no spatial resolution and the measurement of local properties is
therefore not possible. In this section, we detail the contributions found in literature to measure
locally dielectric properties.

3.1 Capacitance measurements

The first idea to measure local properties was to keep the capacitance measurement used in
BDS and reduce the size of the electrode. The expression of the capacitance of a parallel plate
partially filled with a dielectric medium of thickness h (see Fig. 3.15) is proportional to the
area A of the electrodes:

Figure 3.15 : Schematic representation of a capacitor having a distance d between electrodes of area A,
filled with a dielectric of thickness h and dielectric constant εr.

C = ε0
A

d− h+ h/εr
(3.69)

The main issue to realize local measurements with an electrode having a small area is the de-
tection of low value of the capacitance. Two methods, nanoscale impedance microscopy and
nanoscale capacitance microscopy have been developed in this way. The main drawbacks of
these methods are the homemade electronics needed to measure extremely low capacitance and
the great care to avoid and characterize stray capacitances.

— Nanoscale impedance microscopy
The principle of nanoscale impedance microscopy is detailed in reference [83] and [84]. They

measured capacitance values in the picofarad (10−12F ) to femtofarad (10−15F ) range on a set
of square parallel plate capacitors using a homemade nanoscale impedance microscopy (NIM)
device. Measurements were realized on totally filled (h=d) metal-insulator-metal sandwiches.
The insulator was a glass ceramic (Macor®) having a dielectric constant around 6, a thickness
of 1mm and an area of 8*8 µm2. Measurements of the capacitance have been realized other dif-
ferent kind of sample (square, rectangular, surrounded by guard ring) and experimental results
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have been compared to numerical calculations and simple analytical model. Some deviation
from Eq. 3.69 were reported: A first term due to edge effects, which cease being negligible
when the upper electrode size becomes lower than the insulator thickness (term K1), and a
second due to the existence of a stray capacitance (term K2) leading to an expression of the
modeled capacitance Cm:

Cm = ε0εr((A/h+ PK1) +K2) (3.70)

where P is the perimeter of the sample. Value of K1 and K2 were determined by fitting
experimental capacitance versus upper surface curves for different geometry. Then, they have
realized a topographical and capacitance image of tiny 8*8 µm2 capacitor (Fig. 3.16).

Figure 3.16 : Topographical (left) and capacitance (right) images, performed in 85 min, with 512*512
image resolution [83]

— Nanoscale capacitance microscopy
Nanoscale capacitance microscopy, also refereed as nanoscale dielectric spectroscopy, has

been developed by Gomila et al [69,70,85,86]. Using a custom-made current-to-voltage amplifier
connected to the AFM tip they reached attofard (10−18F ) resolution. As previously mentioned,
they developed an expression of the capacitance valid for films thicknesses h less than 100
nm [70]:

C(z, εr, h) = 2πε0R ln

(
1 + R(1− sin(θ))

z + h/εr

)
(3.71)

The stray capacitance was determined by fitting the curves where the local capacitance is
negligible (high value of the tip sample distance) and then subtracted to measurements in order
to obtain the tip-sample capacitance ∆C. Using this technique, they first realized capacitance
map of a silicon oxide [69]. Then, they used the analytical expression (Eq. 3.71) to fit the
capacitance versus tip-sample distance curves in order to get a quantitative value of the dielectric
constant of a 1*1 µm2 SiO2 squares, εr=4 (Fig. 3.17). Measurements over gold substrate (h=0)
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allowed to fit the radius of the tip.

Figure 3.17 : Measured ∆C vs tip-sample distance taken on a 23-nm-thick SiO2 layer (triangles) and
on the gold surface (circles) close to the oxide [85].

An important step in the development of the nanoscale capacitance microscopy was the
transition toward imagery. Using a two pass method, the authors first record the topography
and the then measured the capacitance during a second pass at a constant tip-electrode distance.
Dielectric constant images are then quantitatively reconstructed by introducing the thickness
and local capacitance in Eq. 3.71. [87]. First quantitative maps of the dielectric constant have
been obtained on a single-layer biomembrane with a spatial resolution of about 70 nm.

Figure 3.18 : Left: Schema of the experiment. Right: Quantitative dielectric map of a biomembrane [87]
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3.2 EFM based methods

— Scanning Polarization Force Microscopy
Scanning Polarization Force Microscopy (SPFM) [63, 88] has been the first method (devel-

oped in 1995) to qualitatively map dielectric polarization. Using polarization forces they have
been able to image liquid films, droplets, and other weakly adsorbed material. The images are
obtained by adjusting the separation between the sample and the cantilever such that its bend-
ing stays constant while the tip is scanned over the surface. The bias applied is either DC or AC
and has a value of few volts. Working with very sharp tip and small tip-sample distances, they
reached spatial resolution of about 50 nm horizontally and one angstrom vertically. Fig. 3.19
exemplifies an utilization of SPFM to map the water film due to humidity (average thickness
of about 2 Å) covering a mica surface. The two phases are due to a difference in dielectric
constants related with a difference in humidity in these domains.

Figure 3.19 : Images of a water film on mica formed at 40% humidity for both positive and negative
bias. Two phases are observed: phase I forms first (light areas) and later, above 25% humidity, phase II
(dark areas) forms. The fraction of surface covered by each phase depends on humidity. Phase II has a
lower dielectric constant than phase I, which makes its apparent height lower than that of phase I. [88]

— Quantification of the dielectric constant of heterogeneous blend mea-
suring phase shifts

In 2004, Krayev et al realized a study of polymers heterogeneous blend in the form of layer
of several microns thickness [89,90]. The authors showed that an electric contrast could be ob-
tained on EFM phase images and that such a contrast is related to the variations of the relative
dielectric permittivity εr. They quantified the value of εr in the frame of a simple spherical ca-
pacitor model. Unfortunately, this model is appropriate only under certain conditions because
it makes the approximation that the thickness of the sample is very large compared to the tip
radius and the tip-sample distance. Dielectric constants of two reference polymers εr1 and εr2
are required to measure a third unknown one (εr3). This value is obtained from the ration of
the difference of phase measured between two polymers: ∆Φ1−∆Φ2

∆Φ2−∆Φ3 where the only unknown is
one of the dielectric constant. Fig. 3.20 represents a 3 dimensional plot (x and y are spatial
coordinates and z is the phase shift) of a atactic poly(propylene) (APP), poly(isopropyl acry-
late) (PIPA) and poly(octylmethacrylate) (POMA) blend. The matrix is constitued by POMA
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having a dielectric constant εr1 = 3, peaks are characteristic of PIPA regions (εr2 is supposed
to be unknown) and holes are APP domains (εr3=2.2). Using these set of data authors find a
value of the dielectric constant of PIPA, εr2=4.25, in good agreement with literature.

Figure 3.20 : 3 dimensional plot of the phase shift measured over a POMA, PIPA, APP polymer blend.
x and y are spatial coordinates (in µm), z is the phase shift (in degree). The matrix is composed by
POMA (εr1 = 3), peaks by PIPA (εr2=4.25) and holes by APP (εr3=2.2). The dielectric constant of one
of the component can be calculated from phase shifts measured on this plot and the value of the dielectric
constant of the 2 others components [90].

— Quantitative dielectric map in the force mode applying a DC bias
In reference [61], Gramse et al presented a simple method to measure the static dielec-

Figure 3.21 : Dielectric constant map of a purple membrane in the force mode

tric constant of thin films with a spatial resolution of about 70 nm. The dielectric constant
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is extracted from DC electrostatic force (term Ap in Eq. 3.27) measurements with the use of
the analytical expression of the capacitance previously reported by the same group (Eq. 3.71).
The method is validated on thin silicon dioxide films (8 nm thick, dielectric constant εr ∼ 4)
and purple membrane monolayers (6 nm thick, dielectric constant εr ∼ 2), providing results
in good agreement with those recently obtained by nanoscale capacitance microscopy using a
current-sensing approach. The main advantage of the force detection approach resides in its
simplicity and direct application on any commercial atomic force microscope with no need of
additional sophisticated electronics. Fig. 3.21 represents the dielectric map of the biological
membrane.

— Quantitative measurements in one point, in the force mode applying
an AC bias

In reference [62], authors measured the modulus of the the 2ωe component of the force (term
AF,2ωe in Eq. 3.30) to quantify the dielectric constant of thick insulators. As the thickness of
the samples was superior to 100 nm, they were not able to use the analytical expression of the
capacitance (Eq. 3.71) as in their previous publication and chose to work with finite element
calculation. The advantage of this technique compared to DC methods is that the lock-in
suppresses all the noises that are not at the electrical frequency. As it will be demonstrated
using numerical simulation in the Equivalent Charge Method section, working with thick films
permit to reach better sensitivity. Fig. 3.22 summarizes the quantification of the dielectric
constant of different polymers by fitting the 2ωe component of the force (i.e. the derivative of
the capacitance ∆C ′ as a function of the tip-sample distance.

Figure 3.22 : Quantification of the dielectric constant in the force mode applying an AC bias. Lines are
fit of the experimental data by finite element models. Numbers at end of lines are values for simulation
with confidence bounds on fit [62]
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— Local Dielectric Spectroscopy: Measuring frequency dependant prop-
erties

Local Dielectric Spectroscopy [10, 11] has been developed by Crider et al under Ultra High
Vacuum in the gradient mode. This method will be detailed in the last chapter of this the-
sis (Measurement of the temperature frequency dependence of the dielectric permittivity at
the nanoscale). LDS has been used in reference [91] to study how relaxation dynamics of a
poly(vinyl-acetate) ultra-thin film is influenced by inorganic nano-inclusions of a layered sili-
cate (montmorillonite). Dielectric loss spectra are measured by electrostatic force microscopy in
the frequency-modulation mode in ambient air. Spectral changes in both shape and relaxation
time are evidenced across the boundary between pure polymer and montmorillonite sheets. Di-
electric loss imaging is also performed, evidencing spatial variations of dielectric properties near
to nanostructures with nanometer scale resolution.

3.3 Timeline summary

1995: Scanning Polarization Force Microscopy: First qualitative images of dielectric polariza-
tion. Salmeron et al [63, 88]

2004: Quantification of the dielectric constant of polymers by measuring phase shifts. The
dielectric constant of two references polymers are needed to measured a third one. Krayev et
al [89, 90]

2005: Nanoscale Impedance Microscopy (NIM): Femtofarad (10−15) resolution reached for ca-
pacitance images . Schneegans et al [83, 84]

2006: Nanoscale Capacitance Microscopy (NCM): Attofarad (10−18) resolution reached for ca-
pacitance images . Gomila et al [69]

2007 (July): Local Dielectric Spectroscopy (LDS) developed under Ultra High Vacuum in the
gradient mode: Frequency dependence of the dielectric losses of PVAc measured in one point.
Israeloff et al [10, 11].

2007 (December): Dielectric constant measured in one point using NCM. Gomila et al [85]

2009 (March): Dielectric map of a biomembrane using NCM. Gomila et al [87]

2009 (July): Quantitative measurement in one point using the DC component of the force
gradient (Chapter 4 of this thesis). Riedel et al [8]

2009 (September): Dielectric map of a biomembrane measuring the DC component of the
force. Gomila et al [87]

2010 (January): Quantitative mapping of a nanostructured PS/PVAc polymer film using the
DC component of the force gradient. (Chapter 4 of this thesis). Riedel et al [9]
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2010 (May): Mapping of the dielectric losses of a PS/PVAc polymer film using LDS in the
gradient mode. Riedel et al [9].

2010 (May): LDS of a PVAc film with inclusion of layered silicate. Massimiliano et al [91].

2010 (May): Quantitative measurement in one point using the modulus of the 2ω component
of the force. Gomila et al [62]

2010 : Mapping of the dielectric losses of a nanostructured PS/PVAc polymer film using LDS
in the force mode under ambient condition. (Chapter 5 of this thesis).
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Conclusion on the generalities about EFM and the ECM

We have introduced the two dynamics modes that allows measuring topography with an
AFM: the Amplitude Modulation (AM-AFM) and Frequency Modulation (FM-AFM). In AM-
AFM the oscillation amplitude is used as a feedback parameter to measure the topography
whereas in FM-AFM the cantilever is kept oscillating with a constant amplitude by fixing a
small resonance frequency shift. AM-AFM and FM-AFM are usually realized under ambient
condition and vacuum, respectively. These two modes permits to measure signals related with
the electrostatic interaction during a scan at a given value of the tip-sample distance (EFM).
The amplitude of the signal of the photodiode and the frequency shift can be related to the
electrostatic force and force gradient, respectively.

The frequency shift as a function of the VDC voltage curves exhibit a parabolic dependence:

∆f0 ∼= −
f0
2kc

GDC = − f0
4kc

∂2C

∂z2 V
2
DC = −a∆f0(z)V 2

DC

The ECM permits to calculate the parabolic coefficient a∆f0 as a function of all the parameters
of the experiment: tip-sample distance, thickness, radius of the tip and dielectric constant. In
chapter 4, we will detail how the fit of a∆f0(z) allows obtaining a quantitative value of εr. The
highest sensitivity of the method is obtained for small dielectric constant and thick sample.
The simulated penetration depth of the electrostatic field inside the dielectric increases almost
linearly with the tip-sample distance. For the classical condition of a tip having a 20 nm radius
at a 20 nm distance of a dielectric, the electrostatic interaction is concentrated over the first 40
nm layer at the free interface (air or vacuum).

Working with a VAC voltage at a ωe frequency, it is possible to measure the phase shift of
the 2ωe component of the force or force gradient using a lock-in. In chapter 5, we will use this
quantity to study the temperature-frequency dependence of dielectric losses.
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The aim of this chapter is to present two methods to measure quantitatively the low fre-
quency limit, or static, dielectric permittivity εr. The first permits to obtain a value in one
point while the second allows a quantitative mapping of the dielectric constant. We remind
that (see previous chapter):

∆f0 ∼= −
f0
4kc

∂2C

∂z2 V
2
DC = a∆f0(z)V 2

DC (4.1)

Both methods are based on the measurement of the coefficient a∆f0(z) via the detection of
the frequency shift while applying a VDC voltage. The value of εr is then obtained using the
numerical simulation of the Equivalent Charge Method (ECM). We will first introduce the
preliminary common steps to these two methods. Then we will presents values of the dielectric
constant measured in one point for a silicon dioxide and two polymer films of Poly(vinyl acetate)
(PVAc) and Polystyrene (PS) at different temperatures. Finally, we will detail how we have been
able to extend this method in order to obtain a quantitative dielectric map of a nano-structured
polymer film composed by a matrix of PS with inclusions of PVAc.

1 Preliminary common steps

Experiments were realized under room condition in the AM-AFM mode with a Veeco Envi-
roscope™ equipped with a Lakeshore temperature controller. The free oscillating frequency
f0 was measured using the generic frequency sweep. The stiffness kc was calculated using the
so-called thermal tune method [92] based on the thermal noise measurement. The thickness of
the sample h was measured by recording a topography in the tapping mode®over a cut in the
sample. Frequency shifts were recorded using the double pass method.

1.1 The double pass method

Figure 4.1 : Principle of the double pass method. During the first scan topography is acquired. The tip
is then retracted by a constant height Hlift and amplitude is reduced by a factor of about 3. During the
second scan, a voltage V is applied on the tip and force or force gradient are detected.

In the double-pass method (also called lift-mode) the topographic information is recorded
during a first pass and the electrostatic signals are acquired during a second pass (Fig 4.1).
During the second pass, the tip is retracted from the surface morphology by a constant height
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Hlift, also called "lift height", and the amplitude of the tip vibration δz is reduced in order to
stay in the linear regime (amplitude � tip-sample distance). Typically, we divide the tapping
amplitude by a factor 3. While the voltage V is applied to the tip (with the sample holder
grounded) the electric force or force gradient is detected. As shown in Fig. 4.1 during the first
scan, the average tip-sample distance z1 is approximately equal to the oscillation amplitude
(z1 ∼= δz1). During the second scan, the distance is the sum of the first scan amplitude δz1
and the lift height Hlift (z2 ∼= δz1 + Hlift) and the cantilever oscillates with an amplitude
of δz2. This method has the key advantage to avoid any coupling between structural and
dielectric informations, and to allow setting optimized conditions for electric measurements
(linear regime).

1.2 Determination of the actual tip-sample distance

Figure 4.2 : Typical amplitude-distance curve recorded on a stiff sample. The first scan amplitude δz1
is equal to the difference between the z-position corresponding to the set point amplitude and the zero
distance.

The value of δz1 (δz1 ' 20 nm)is obtained by recording an amplitude-distance curve. A
typical experimental curve is shown in Fig. 4.2; the slope of this curve gives the correspondence
between the photodetector rms voltage and the real amplitude. Indeed, if there is no indentation
of the tip into the sample, we can consider that amplitude is roughly equivalent to the distance.
The zero distance corresponds to the point where amplitude becomes null. The tip-sample
distance is calculated as the difference between the z-position of the actuator corresponding
to the amplitude set point and the z-position corresponding to the zero distance. During the
record of the amplitude-distance curve, the tip can be destroyed. We thus recommend to do it
at the end of the experiments. Consequently, the adjustable parameter is the lift height. It can
vary from positive to negative values, the minimum value corresponding to the height where
the tip is in the contact with the sample.

1.3 Determination of the tip radius

This part of the experiment has to be performed on a conductive sample or substrate h = 0. The
aim of this step is to extract the actual equivalent value of the tip radius R. ∆f0(VDC) curves
are recorded at several lift heights Hlift. A parabolic fit allows to extract the experimental
coefficients a∆f0 according to the real tip-sample distance. A value of the radius R is then
obtained by fitting the a∆f0(z) curve with expression 4.1 in which the tip-sample capacitance is
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calculated using the equivalent charge model (see previous chapter) without taking into account
the insulating layer.

2 Measurement in one point

The protocol for the measurement of the dielectric constant εr in one point is similar to the one
to determine the tip radius. The experiment is now preformed with a thin insulating layer of the
material under study deposited on the conductive substrate. ∆f0(VDC) curves are recorded at
different lift heightsHlift and they are then analyzed in order to extract experimental coefficients
a∆f0(z) for each lift height. Once R and h are known from previous experiments, we can fit the
a∆f0(z) curve using expression 4.1 in which the capacitance is calculated by ECM, thereby we
obtain the value of the dielectric permittivity εr.

2.1 Silicon oxide

a Sample preparation: Focused Ion Beam method

SiO2 oxide has been provided by the The Nanotechnology Platform at the Parc Científic de
Barcelona (PCB, Barcelona Science Park) using Focused Ion Beam (FIB). María Jesús López
Bosque is acknowledged for the sample preparation and interesting discussions. FIB uses a
gallium ion beam for localized ion etching of materials and also for localized depositions of
distinct materials. The instrument allows the visualization and in situ control of the processes
made using the dual beam facility, which combines the ion beam with an electron beam. Both
beams are convergent at the same point, and form an angle of 52º. It is possible to make
maskless ion etching and reactive ion etching of materials, and deposition of thin metal films
(Pt and W) and thin insulating films (SiO2). The technique also allows the deposition of 3D
structures with a precision within a few tens of nanometers (30 nm). The apparatus is a Strata
DB235 made by FEI Company. Our samples are similar to those studied by Fumagalli et al. [85].
They are composed of squares of 1µm side deposited on a gold layer. The average thickness of
the SiO2 layers was measured around 12 nm.

Figure 4.3 : Topography of the Silicon Oxide sample measured by AFM
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b Results

Experiments were realized with a conductive diamond coated tips Nanosensors™ , CDT-FMR
having a free oscillating frequency f0=103 kHz and a stiffness kc=5.9 N m−1. In Fig. 4.4 a),
we show the ∆f0(VDC) curve obtained on the gold conductive sample in comparison with the
curve obtained on the insulating oxide layer. Both curves were acquired at the same tip-sample
distance z=31 nm. We observed that the parabolic profile in the presence of the oxide layer
tends "to open" what is revealing a reduction in the local capacitance in accordance with Eq.
4.1. By fitting these curves using a parabolic function, we obtained a∆f0 =31.7 Hz/V 2 for gold
and a∆f0 =27.8 Hz/V 2 for SiO2. In Fig. 4.4 a), we present the parabolic coefficients a∆f0 as a
function of the real tip-sample distance obtained on gold and SiO2. The fit on gold allows to
estimate the value of the effective radius of the tip R=105 nm in this case. Then, we calculated
the value of the dielectric permittivity of the insulating layer by fitting the points obtained on
SiO2. We found εr = 4.5± 1.1, which is in agreement with the value obtained by Fumagalli et
al. [85] on the same type of sample.

(a) Parabolic profiles of ∆f0(VDC) curves mea-
sured on a conductive gold sample (circles) and
a SiO2 /gold sample (squares) with hSiO2=12
nm.

(b) a∆f0(z) curves measured on a conductive gold
sample (circles) and a SiO2 /gold sample (squares).
Fits of the data by the ECM gives value of R = 105
± 4 nm (Gold) and εr = 4.5 ± 1.1 (Oxide)

Figure 4.4 : Determination of the dielectric constant of silicon oxide at nanoscale

2.2 PVAc & PS polymer films

a Sample preparation: Spin coating

Two polymer films of PVAc and PS have been prepared by spin coating. This simple
process permits to obtain flat nanometric films. A solution of polymer in solvent is dropped
on a substrate which is rotating at high speed in order to spread the fluid by centrifugal force.
Rotation is continued for some time, with fluid being spun off the edges of the substrate, until
the desired film thickness is achieved. The solvent is usually volatile, providing an instantaneous
evaporation. As related in reference [93] the concentration of the polymer influences more the
thickness than the speed rotation. We found in a rude approximation a linear relation between
the thickness of the film and the concentration of polymer in solvent having a coefficient of
about 60 nm/% for a rotational speed of 3000 round per minute (rpm). In order to measure
precisely the thickness of the film we cut the polymer film with a sharp tool and measure the
topography using the AFM.
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(a) Schematic representation of the spin coat-
ing

(b) Resulting polymer film and cuts permit-
ting to measure the height of the film. The
black line indicates that the cut has removed
the gold.

Figure 4.5 : Spin coating of polymer films

b Results

The second series of experiments was performed on two ultra-thin polymer films. PS (weight
average molecular weight Mw = 70950 g/mol) and PVAc (Mw = 83000 g/mol) were chosen
because both their dielectric strength and their temperature dependence are very different for
these two polymers. Additionally, the dielectric responses of both polymers have been previously
well characterized in the literature [22,27,94] and in chapter 1. Samples were prepared by spin
coating starting from solutions at 1% (w/w) in toluene. The substrate was composed of a
fine gold layer deposited on a glass plate. The small percentage of polymer in solution was
selected in order to obtain films with a thickness of about 50nm according to ref [93]. We used
in this case standard EFM cantilevers (Nanosensors EFM) having a free oscillating frequency
f0 = 71.42 kHz and a stiffness kc = 4.4 N.m−1. The experiments were performed on neat
PS and PVAc films at room temperature and at 70°C (Fig. 4.6). The measured thicknesses
of the films were 50 ± 2 nm for PS and 50 ± 3 nm for PVAc at both room temperature
and 70°C. The accuracy of our measurements does not allow detecting any thermal expansion.
The experimental parabolic coefficients a∆f0(z) obtained for PS are shown in Fig. 4.6 a).
Measurements at room temperature and at 70°C are very close indicating a weak temperature
dependence of the dielectric permittivity as expected for this polymer. In addition, there is a big
difference between the curves measured on gold and PS.We obtained the value of the tip radius
R = 32 ± 2 nm and the dielectric permittivity of PS at 22°C and 70°C : 2.2 ± 0.2 and 2.6 ± 0.3.
The experimental parabolic coefficients obtained for PVAc are shown in Fig. 4.6 b). We can
note a significant difference between measurements realized at room temperature and at 70°C,
i.e. below and above the glass transition temperature, Tg. At 70°C, the PVAc curve approaches
the gold curve indicating an important increase of εr. By applying ECM, we obtained 2.9 ±
0.3 and 8.2 ± 1 for PVAc. The estimated values for PS and PVAc are in good agreement with
the macroscopic ones reported in chapter 1 and reference [22,27,94]. The variation observed in
the dielectric permittivity of PVAc is related with its strong dipole moment and the fact that
PVAc crossed the glass transition temperature at around 38°C increasing the chain mobility
and therefore the dielectric permittivity. Opposite, PS has a weak dipole moment and its Tg is
around 105°C; therefore, a little or negligible variation of the dielectric permittivity is expected
in this case.
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(a) a∆f0(z) curves obtained on a 50±2 nm PS thin
film at 22°C (diamond) and 70°C (squares) in com-
parison with the curve obtained on a gold sample (cir-
cles). The tip radius is measured at R = 32 ± 2
nm. Fitting PVAc parabolic coefficients using ECM,
we obtained εr = 2.2 ± 0.2 at 22°C and εr = 2.6 ±
0.3 at 70°C.

(b) a∆f0(z) curves obtained on a 50±2 nm PVAc
thin film at 22°C (diamond) and 70°C (squares) in
comparison with the curve obtained on a gold sample
(circles). The tip radius is measured at R = 32 ± 2
nm. Fitting PVAc parabolic coefficients using ECM,
we obtained εr = 2.9 ± 0.3 at 22°C and εr = 8.2 ±
1 at 70°C.

Figure 4.6 : Determination of the dielectric constant of ultrathin PVAc and PS films at the nanoscale
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3 Mapping of the dielectric constant of a nanostructured PS/PVAc
film

The second step of this work was to study the morphology and dielectric properties of an im-
miscible blend of PS and PVAc. The sample film was prepared from a solution of the polymers
(1% w/w in toluene with 75% PS w/w and 25% w/w PVAc). The solution was subsequently
spin coated on a conductive gold substrate at 3000 rpm. The film exhibits a nodular mor-
phology of PVAc in a continuum phase of PS (Fig 4.7). The nodules of PVAc have a mean
height measured by AFM around 50 nm and the PS has a homogeneous thickness t0 of around
27 nm. At room temperature both polymers present similar dielectric permittivity, but they
are substantially different above 50 °C providing a good dielectric contrast. Experiments were

(a) Typical topographic profile of PVAc islands in a
PS matrix. Both tip and polymer film are represented
at the same scale. The dash line represents the tip
motion during the second scan.

(b) Topography and frequency shift measured by the
double pass method at +5 and -5 V on the PVAc/PS
films. The black line corresponds to the profile ap-
pearing in a)

Figure 4.7

carried out with a standard Pt-Ir coated tip (Nanosensors EFM). The cantilever free resonance
frequency was f0 = 70.13 kHz and the stiffness kc = 4.5 N m−1 The tip radius was measured
at R = 19 ± 2 nm. In order to preserve the tip from wear, all the experiments were carried out
in a very soft tapping mode. When recording the topography signal, during the first scan, the
tip was carefully maintained in a light attractive regime (negative mechanical phase shift of the
cantilever oscillation). We checked that after several series of measurements the tip radius did
not increase significantly, as expected for EFM polymer characterization.

Frequency shifts were measured by means of the succession of two double pass scans at a
fixed value of the tip-sample distance, z0 = 18 ± 2 nm, and applying two different voltages
of +5 and -5 V (Fig. 4.7 b)). When the surface is characterized by a zero contact potential,
only a single double pass scan is necessary to implement our method. However, we recommend
doing two double pass scans in order to verify the good accuracy of the measurements and to
check the symmetry of the parabola with respect to the 0 V axis. We note that the applied
DC voltage can influence the bending of the cantilever and hence can induce notable variations
of the tip-sample distance. In our experiments, we estimate a 2 nN maximum force acting on
the cantilever, giving a precision of the tip-sample distance of ∼ 2%. In the present study,
due to the absence of free charges, the frequency shift at a zero voltage is found to be nearly
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null in the scanned area. In order to ensure that the two frequency shifts correspond to the
same sample point, the topography of the two images at different biases should be as similar as
possible (Fig. 4.7 b)). However, working at 70 °C a non-negligible drift is observed. Translation
effects have been numerically corrected by the introduction of a correlation function. Note that,
as the height is an important parameter to calculate εr, images have to be properly flattened
using only the topography information from the PS matrix. Using these two measurements and
assuming a zero-frequency shift for a zero voltage applied, we can calculate the coefficient a∆f0
at each point of the topographic image.

Figures 4.8 a) and 4.8 b) present the topography and the corresponding map of the coefficient
a∆f0 , respectively. The height of the polymer h is equal to the topography measured in Fig.
4.8 a) plus the homogeneous thickness of the matrix: h = t0 + t.

(a) Topography of the PVAc/PS film. (b) Corresponding map of the coefficient a∆f0 . Val-
ues of t and a∆f0 at points M (PS matrix) and
N (PVAc nodule) have been reported in Fig. 4.9
where they have been interpolated with ECM sim-
ulated curves in order to extract the corresponding
value of εr

Figure 4.8

In the general case, in order to take into account the nonzero surface potential potential Vcp,
a third image has to be recorded at another applied voltage (for example, at 0 V). A map of
the parabolic coefficient a∆f0 could be obtained from frequency shift images using the equation
∆f = a∆f0(VDC − Vcp)2.

Using the ECM, we are able to calculate a∆f0(h, εr) (Fig. 4.9). After successive interpola-
tion, we can obtain the value of εr in each point of the image (Fig. 4.10). As an example, points
M (PS) and N (PVAc) in Figs. 4.9 and 4.8 are characterized by h(M) = 27 ± 2 nm, a∆f0 =
5.2 ± 0.3 Hz/V2 and h(N) = 50 ± 2 nm, a∆f0 = 7.8 0.7 Hz/V2, respectively. After successive
interpolations between different a∆f0(h, εr) curves, we found εr = 2.3 ± 0.3 for PS and εr = 7.5
± 1 for PVAc, values in agreement with the ones previously reported and literature [22,27,94].

Fig. 4.10a) shows a quantitative map of the dielectric constant of the PVAc/PS film at the
nanoscale. The small asymmetry observed on the islands of PVAc (on the x axis) is most likely
attributed to the scanning process (only retrace signal was recorded). We estimate an upper
limit of the spatial resolution ∆ x around ' 30 nm, which corresponds to half the distance
necessary to achieve the transition between the dielectric level of the island of PVAc and the
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Figure 4.9 : Numerical simulations based on ECM of the curves a∆f0(h, εr), where h is the sample
thickness and εr is the relative dielectric permittivity, for a tip radius R = 19 nm and a tip-sample
distance z0 = 18 nm. M(h,a∆f0) and N(h,a∆f0) are typical points obtained from AFM topography and
EFM images (Fig. 4.8), respectively, on the PS matrix and the PVAc nodules of the studied polymer
blend thin film. εr can be deduced by interpolating these points with simulated curves.

(a) Map of the dielectric constant of the PVAc/PS film
obtained by processing images shown in Fig. 4.8.

(b) Typical profile of the dielectric permittivity
across the PVAc/PS interface.

Figure 4.10 : Map of the dielectric constant of a nanostructured PS/PVAc film
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matrix of PS (Fig. 4.10b)). This value is in good agreement with the theoretical one calculated
on the basis of the tip-sample electrostatic interaction [77, 78]: ∆x = (Rz0)1/2 ' 20 nm. This
result shows that PS and PVAc are immiscible at scale equal or lower than 30 nm. The direct
confrontation of the topography with the dielectric map (Fig. 4.8a)) and (Fig. 4.10a)) points
out that small satellite nodules (around 20 nm) are detected in the dielectric map and not in
the topography, thus showing the high sensitivity of this method.
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Conclusion on quantitative measurement of the static dielectric
permittivity at the nanoscale

We have developed a method that permits to measure quantitatively the static dielectric
permittivity εr at the nanoscale. The measurement is based on the detection of the parabolic
coefficient of the frequency versus voltage curves, a∆f0 using EFM. a∆f0 is function of the
tip-radius, tip-sample distance, thickness and dielectric constant of the sample. A preliminary
step is needed to determine the geometrical parameters of the system before quantifying the
dielectric constant. The thickness is measured from a topography of the sample and the actual
tip-sample distance from an amplitude distance curve. The ECM permits to calculate a∆f0 as
a function of all parameters. The fit of a∆f0(z) over a metallic surface permits to measure the
tip-radius. Once these parameters have been determined, the method permits either a quantifi-
cation of εr from measurement in one point or a mapping of dielectric constant at the nanoscale.

The quantitative value of εr in one point is obtained by fitting the experimental a∆f0(z)
points measured over the dielectric. The first measurement has been realized on a silicon
oxide, well characterized at both macro and nanoscale by other methods. We found a value of
εr = 4.5±1.1 in good agreement with literature. We have then measured the dielectric constant
of thin (thickness around 50 nm) PVAc and PS polymer films at different temperatures. The
value here summarized are in accord with the macroscopic ones previously reported in this
manuscript and in the literature.

The variation observed in the dielectric permittivity of PVAc is related with its strong dipole
moment and the fact that PVAc crossed the glass transition temperature at around 38°C in-
creasing the chain mobility and therefore the dielectric permittivity. Opposite, PS has a weak
dipole moment and its Tg is around 105°C; therefore, a little or negligible variation of the di-
electric permittivity is expected in this case.

The method has then been extended to obtain a quantitative map of the dielectric constant.
By mapping the sample at 3 different voltages (-5V, 0V and 5V) we have been able to obtain
a map of a∆f0 . A modification of the numerical script previously used allows a quantification
of the dielectric constant from the topography and a∆f0 maps. Measurements carried on a
nanostructured PS/PVAc film gives values in good agreement with both macroscopic and "in
one point" measurement. The spatial resolution has been measured to 40 nm, a value close to
the theoretical limit. This method can be used with any standard AFM in ambient condition.
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In this chapter, we present two methods to measure the temperature frequency depen-
dence of the dielectric permittivity. In the gradient mode the signal measured is the mechanical
frequency shift, in the force mode the signal is the amplitude of vibration and comes directly
from the photodiodes. Both methods are based on the detection of the phase shift in the 2 ω
component between the signal measured and the electrical excitation (Φ2ωe). Force and force
gradient being a function of the dielectric permittivity, any measurable dielectric losses in the
material will be detected as a phase shift. This phase shift is related with the well-known loss
angle tan(δ) measured by Broadband Dielectric Spectroscopy (BDS); but has still not been
quantified at this day. We will present two experiments:
- The frequency sweep in one point that permits to access to the frequency dependence the
dielectric permittivity.
- An imagery mode at a given frequency that allows mapping the dynamics with dielectric
compositional contrast.
The interest of this Local Dielectric Spectroscopy (LDS) is its spatial resolution and penetration
depth of few tens of nanometers that would permits to measure difference between bulk and
local dynamics. The experimental protocol will be detailed in the "FM-EFM measurements in
the gradient mode" section. Then we will present results obtained on a model nano-structured
polymer film composed by a matrix of PS with inclusion of PVAc. In the "AM-EFM mea-
surements in the force mode", we will introduce a multi-frequency study of the same kind of
nano-structred film before comparing the dynamics measured at macroscopic scale using BDS
with the ones measured in a pure PVAc film and in the nano-structured system. The effects of
the experimental parameters (thickness, tip-sample distance) on the shape of the difference of
phase will be discussed.

1 FM-EFM measurements in the gradient mode

Experiments were carried out by FM-EFM under Ultra High Vacuum (UHV) with a variable
temperature stage (RHK UHV 350). The temperature was measured with a small thermocouple
clamped to the sample surface. A classical EFM conducting cantilever with 25 nm tip radius
was used. In FM-EFM, the cantilever is oscillated at its resonance frequency, f0 = 70 kHz, and
the resonance frequency shift ∆f0, due to tip-sample interaction forces, is detected with very
high resolution using a Nanosurf Easy Phase Locked Loop (PLL) detector. This parameter
is used as a feedback for controlling the tip-sample distance z. Additional signals are those
measured as a result of the electrodynamics interaction between the conducting tip and the
polymer sample. The 2 ωe component of the force gradient can be detected via the frequency
shift of the cantilever by using a lock-in amplifier (Stanford Research SR-830).

1.1 Experimental protocol

The principle of the frequency sweep is detailed in reference [10,11]. It consists in recording
the phase in one point at different frequencies and constant temperatures. During the acquisition
of the dielectric spectrum, the feedback of the PLL detector (typically ∆f0 = 15 Hz) was turned
off in order to avoid any coupling with the corresponding electrical frequency. We apply a
VAC = V0sin(ωet) voltage at different frequencies varying from 0.1 to 120 Hz. We mention
the fact that the frequency range is limited at low frequencies by the time of acquisition and
at high frequencies by the bandwidth of the microscope’s electronics. The detector introduces
an intrinsic reponse in the signal. A preliminary step consists in measuring this reference
phase in the V2ωe over a metallic substrate or any material without any measurable dielectric
relaxation (Fig. 5.1). The difference between this reference phase and the phase measured in the
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experiments, ∆ΦG,2ωe, is used to characterize the dielectric dissipation. During the relaxation,
due to the loss of energy to align the dipoles in the field, a peak is observed in ∆ΦG,2ωe. An

Figure 5.1 : Measurement of the reference phase (over a metallic or a glassy substrate) the phase
measured over the polymer (here PVAc) and ∆ΦG,2ωe

example is shown in Fig. 5.1 where are represented the reference phase Φref , the phase measured
over a film of PVAc and the resulting ∆ΦG,2ωe.
From the measurement of ∆ΦG,2ωe, we can define V’ and V”, related with the real and imaginary
part of the dielectric permittivity:

V ′ ∝ A(ω)/Aref (ω)(cos(∆ΦG,2ωe) (5.1)
V ′′ ∝ A(ω)/Aref (ω) sin(∆ΦG,2ωe) (5.2)

where A(ω) and Aref (ω) are the amplitude recorded over the sample and the reference, respec-
tively. These two quantities are similar to ε’ and ε” measured by BDS (Fig. 5.2) and a model
is needed to get quantified values. In this context, we have chosen to work with the physical
measurable quantity ∆ΦG,2ωe.

Figure 5.2 : Real (V’, square) and imaginary (V”, circle) part of the dielectric response measured by
Local Dielectric Spectroscopy
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1.2 Temperature-frequency dependence of a PS/PVAc film in the gradient
force

We have chosen to study the same kind of PS/PVAc polymer film used in chapter 3. The
topography is still characterized by a 25 nm thick matrix with island-like features having an
average diameter of about 500 nm and a maximum height of about 25 nm above the reference
level of the matrix (Fig. 5.3). In the investigated range of frequency (0.1 - 120 Hz) we expect
to detect the dielectric alpha-relaxation of PVAc slightly above its glass transition temperature:
Tg ' 38°C. Therefore we have explored the temperature range between 25°C and 50°C in order
to follow the evolution of this dynamic process. The Tg of PS being '105°C, no measurable
relaxation is expected in our range of temperature and frequency. As mentioned in chapter
2 and 4, these two polymers are immiscible, even at the nanoscale and form phase separated
domains. Fig. 5.4 shows ∆ΦG,2ωe over an island at different temperatures. The fitting lines

Figure 5.3 : Topography of the thin PS/PVAc polymer film. The thickness of the matrix is approximately
25 nm, whereas islands rise to 50nm from the substrate.

were obtained using a Kohlrausch-Williams-Watts response function ( exp(−t/τ)β see Eq. 1.50)
as a convenient way to describe the experimental results. Maximum value of ∆ΦG,2ωe and shape
parameter (β=0.42) were fixed by fitting the data measured at 40°C. Keeping these parameters
constant and using only a free timescale parameter we obtained a rather satisfactory description
of the data, ie, the shape of the peak does not depend on temperature within the uncertainties.
Measurements at the same temperatures have been performed over the matrix and the response
(not shown) is always flat (∆ΦG,2ωe < 0.1°). Therefore, the frequency spectrum permits to
characterize locally the dynamical properties of the sample, which shows that the matrix is
composed of PS whereas islands are dynamic domains of PVAc, in agreement with Fig. 4.10.
The second experiment involved scanning the sample surface while a 50 Hz VAC is applied to the
tip. In order to keep a constant tip-sample distance, the feedback of the PLL is used during the
scan. Fig. 5.5 presents images of ∆ΦG,2ωe recorded at different temperatures. All images have
been offset to the same phase-shift color scale using WSxM [95]. The phase recorded on the flat
matrix areas is always near 0, as expected for PS. On the other hand all values measured on the
PVAc islands are, within experimental errors, the same as those measured using the frequency
sweep in one single point at 50 Hz (Fig. 5.4). At 25°C, the image is homogeneous: there is
no dielectric relaxation occurring in the islands of PVAc. This demonstrates that this method
is only sensitive to dipolar relaxation and not topographical effects. When the temperature is
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Figure 5.4 : Phase shift measured as a function of the frequency over an island of PVAc. Statistical
error is 0.25 for f > 1Hz and 0.35 for f < 1 Hz. Lines are fits derived from a KWW model with amplitude
and shape parameters fixed for all curves. The dashed line indicates the imaging frequency at 50 Hz of
Fig 5.5.

increased to 36°C we begin to see a strong contrast in the images as the high frequency wing
of the dielectric loss peak starts to contribute at 50 Hz in the PVAc regions. The maximum
contrast is found at 42°C. Further increasing the temperature reduces the contrast as the loss
peak shifts to higher frequencies and only the lower frequency contributions are detected. As
the shape of the relaxation does not depend significantly on temperature, the contrast observed
is only attributed to the passage of dynamics associated with the alpha-relaxation through our
measurement window. Fig. 5.6 shows the profile of the phase recorded at 42°C across the
interface between a PVAc island and the PS matrix (as shown in Fig. 5.5). We can estimate
an upper limit of the spatial resolution (corresponding to half of the distance necessary to
achieve the transition between the dielectric level of PVAc and PS) ∆x around ' 40 nm. This
corresponds to the state-of-the-art resolution in EFM imaging when using standard probes, and
it is also close to the theoretical resolution under our working conditions [77,78].

Values of ∆ΦG,2ωe measured by frequency sweep (Fig. 5.4) and using a profile (Fig. 5.6)
are in good agreement:

T [°C] 36 40 42 46 50
∆ΦG,2ωe Freq. Sweep [°] 0.6 1.7 2.2 1.2 0.5

∆ΦG,2ωe Profile [°] 0.7 1.8 2.6 1.5 0.5

Table 5.1 : Comparison of ∆ΦG,2ωe measured by frequency sweep in one single point and extracted from
an image profile. Statical error is measured to 0.25°
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Figure 5.5 : Image of the phase shift recorded at 50 Hz on a PS/PVAc film at various temperatures.
Brighter areas correspond to higher losses, indicative of segmental relaxation on ∼ 3 ms time scales in
PVAc. The profile recorded on the black line at 42°C is shown on Fig. 5.6.

Figure 5.6 : Profile of the phase shift recorded at 50 Hz and 42° (as shown in Fig. 5.5 d). The phase
jump at the PS/PVAc boundary gives an estimated lateral resolution, ∆x ∼ 40 nm. The value of the
phase shift is measured around 2.6°
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2 AM-EFM measurements in the force mode

In this section we present results obtained using AM-EFM. In this mode we have been work-
ing directly with the amplitude of vibration, in the force mode. These observations are of
great relevance because they demonstrate for the first time that FM-EFM and vacuum are not
necessary to measure the dynamic dielectric response. This is particularly important to study
bio-materials. Such studies can be implemented using standard commercial devices under am-
bient conditions. Measurements have been realized with a Veeco Multimode V SPM and the
temperature was set by a Thermal Application Controller (TAC). The holder was a classical
EFM holder (that does not permits to regulate the temperature) and the temperature has been
measured afterward by a small thermocouple clamped on a reference sample. Temperatures set
to the TAC have been corrected into nominal temperatures actually measured by the thermo-
couple. The protocol is the same than the one explained in previous section: The difference
between a reference phase measured on a sample having no dielectric response and the phase
measured over the polymer ∆ΦF,2ωe is used to characterize the material. In a first time, we
have chosen to study the same kind of nanostructured PS/PVAc film. Then we will present
results obtained on a poly(methyl methacrylate) (PMMA) film before discussing the shape of
∆ΦF,2ωe as a function of the experimental parameters.

2.1 Temperature-frequency dependence of a PS/PVAc film in the force mode

Images recorded by the nanoscope software on the external channel coming from the lockin
are presented in volts. The first step is to convert these volts into degrees. The reference
phase measured on a conductive material when detecting the force has the same shape than
the one measured previously in the gradient mode (Fig. 5.1). In order to calculate the factor
of conversion from the lock-in to the nanoscope, we have plotted the signal in volt given by the
nanoscope software as a function of the degree printed by the lockin while recording a reference
phase (Fig. 5.7). Images have subsequently been rescaled in degree using WSXm [95].

Figure 5.7 : The conversion factor from the lock-in to the nanoscope controller is measured to 18°/V.

We have realized maps of ∆ΦF,2ωe over the same kind of PS/PVAc sample previously pre-
sented, having a thickness of about 250 nm. Fig. 5.8 presents maps recorded at different
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Figure 5.8 : AM-EFM images of ∆ΦF,2ωe recorded on a thin PS / PVAc blend sample. In line,
images at a fixed temperature and at different frequencies. In column, images at a fixed frequency and
different temperatures. Values of frequencies and temperature are in good agreement with single point
measurements on PVAc shown in the inset. A maximum of contrast is obtained when crossing the
alpha-relaxation of PVAc.

Figure 5.9 : Profile of the phase shift recorded at 100 Hz and 48°C. The phase jump at the PS/PVAc
boundary gives an estimated lateral resolution, ∆x ∼ 150 nm.
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temperatures and frequencies. The images are in good agreement with the frequency sweep
measured in one point (inset). The high frequency limit is around 35 kHz, value close to the
half of the resonance frequency. As we are working on the 2 ω component, this number tends
to show that the high frequency limit is fixed by the mechanical resonance frequency.

Fig. 5.9 represents the profile recorded at 48°C and 100 Hz. The lateral resolution is mea-
sured around 150 nm. According to theoretical work [78] the ratio between the lateral resolution
in force and gradient mode would be close to 1.4. As the aim of this measurement was not to be
quantitative we did not measure the radius of the tip or the tip-sample distance. Just as the case
of the gradient mode, we hope to reach lateral resolution close to theoretical limits. In order
to get a proper comparison, measurements should be repeated in the very same experimental
conditions.

In chapter 1, we have constated (Fig. 2.8) that the dynamics in the blend of PVAc/PS was
slightly faster and broader than in the pure bulk of PVAc. This phenomena could be attributed
to compositional heterogeneities, interface’s effects. In Fig. 5.10 we constat that within the
uncertainty of our measurement, the dynamics is the same in a pure PVAc film than the one
measured in an island of PVAc. The thicknesses of the films were of about 250 nm and the
temperature close to 48°C. Although preliminary, this result tends to show the that the local
dynamics inside PVAc domains is not affected by the matrix of PS.

Figure 5.10 : Comparison of the dynamics measured locally by LDS in a pure PVAc film and in an
island of the blend with PS. The dynamics are measured at the same timescale, within uncertainties.

Figure 5.11 : Schematic comparison of the relaxation time measured by LDS for PVAc pure and in a
blend with PS. For a given temperature, the same timescale is measured locally in the pure PVAc film
than in a domain of PVAc surrounded by the matrix of PS.

Fig. 5.12 is a relaxation map of PVAc measured locally by LDS and macroscopically by BDS.
The plot presents the frequency of the peak in tan(δ) and ∆ΦF,2ωe. We have to take a great care
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while comparing the relaxation time measured by these two different techniques. BDS probe
the dynamics macroscopically over the all sample whereas LDS mainly probe the first layer
(of about 40 nm) at the free interface. We will assume that the temperature measured on the
thermocouple clamped at the surface of the sample is representative of the actual temperature
where the dynamics is probe in the sample. Finally, the last hypothesis needed to make a
comparison is that for a same system, i.e. the same dynamics probe, BDS and LDS would
measure the same relaxation time. Fig. 5.12 shows, in agreement with [11], that the local
dynamics is faster than the bulk one. These results could be interpreted as a speeding up in
the α-relaxation time related with a small decrease in the dynamical Tg at the near surface of
polymer films [11]. This decrease in Tg at the free interface of a thin polymer film has also
been measured by fluorescence [96], and neutron reflectivity [97]. It has also been shown using
Brillouin light scattering [98], that the Tg of a polymer film decreases with thickness. This
phenomena has been attributed to unambiguous effect of the free surface on Tg of thin polymer
film [98].

Figure 5.12 : Relaxation map of PVAc measured locally by LDS and macroscopically BDS. The local
relaxation is faster than the one measured in the bulk.

Figure 5.13 : Schematic comparison of the relaxation time measured on a pure PVAc film by LDS and
BDS. For a given temperature, the dynamics measured by LDS is faster than the bulk one measured by
BDS. One possible hypothesis could be related with a decrease in Tg at the free interface.
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2.2 Qualitative shape analysis: Influence of the thickness and the tip sample
distance

— One example: PMMA
As already mentioned in the introduction of this chapter, the difference of phase ∆ΦF,2ωe has

not yet been quantified. Therefore the comparison between frequency spectra of the dielectric
losses measured macroscopically and at the nanoscale can only be qualitative. The β-relaxation
of poly(methyl methacrylate)(PMMA) is interesting because it occurs slightly above room tem-
perature in our range of frequency and the intensity of the dielectric losses increases with
temperature. Therefore, we have studied and compared this relaxation measured by BDS and
LDS around the same timescales (Fig. 5.14). We see that LDS permits to detect the increase
in the maximum intensity of ∆ΦF,2ωe in agreement with BDS measurements. Therefore LDS
allows measuring the same relative variation in the intesity of dielectric losses. We will then
study the influence of the different parameters of the experiment on the shape of ∆ΦF,2ωe.

(a) β-relaxation of PMMA measured by BDS (b) β-relaxation of PMMA measured by LDS

Figure 5.14 : β-relaxation of PMMA measured by BDS and LDS. The increase in the maximum
intensity of the relaxation with temperature is detected by both methods.

— Influence of the thickness and tip sample distance on ∆ΦF,2ωe
We will now study the effect of the different parameters on the shape of ∆ΦF,2ωe. The first

thing is that the measurement is non voltage dependant. Increasing the voltage will induce a
stronger deflexion of the cantilever in the force mode and a stronger frequency shift in the gradi-
ent mode but it will not affect the difference of phase between these quantities and the electrical
oscillation. Fig. 5.15 represents the effect of the thickness of the sample and the lift height (i.e.
the lift input in the electronic) on the shape of ∆ΦF,2ωe. Measurements have been realized on
PVAc samples at 48°C. As mentioned in the section about the Equivalent Charge Method of
the Chapter 2, when the thickness decreases, the intensity of the interaction is stronger but the
sensitivity of the method decreases. This phenomena is attributed to the stronger contribution
to the metallic counter-electrode and can be seen in Fig. 5.15a. Therefore the measurements
of the relaxation in ultrathin polymer film is very challenging, in this particular experimental
condition we have not been able to measure the relaxation in 70nm thin polymer film. For a
fixed thickness, we found that when we are close to the sample the near surface of the sample is
strongly polarized leading to high value of the maximum of the relaxation. While increasing the
lift height (i.e. the tip-sample distance) the sample is less polarized and therefore the relative
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(a) Effect of the thickness on the shape of ∆ΦF,2ωe.
The intensity of the losses increases with the thick-
ness.

(b) Effect of the lift height on the shape of ∆ΦF,2ωe.
The intensity of the losses decreases with the lift.

Figure 5.15

intensity of the dielectric losses decreases Fig. (5.15a). Best working conditions are close to a
thick sample. Work toward an absolute quantification is in progress.
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Conclusion on the temperature frequency dependence

We have developed two methods to measure locally the frequency dependance of the dielec-
tric permittivity. The first permits to measure the frequency spectrum of the dielectric losses
whereas the second allows a mapping of these losses at a given frequency. These two methods
can either be achieved by measuring the phase shift in the 2ωe electrical component of the
force or the force gradient. Table 5.2 summarizes the experimental spatial resolution and high
frequency limit reached using these two methods. Theoretically, the spatial resolution in the
force mode is only slightly higher than the one obtained in the gradient mode. In order to get a
proper comparison, measurements should be made with the very same experimental conditions.

Spatial resolution (nm) High frequency limit (Hz)
Gradient 40 1e2
Force 150 1e4

Table 5.2 : Comparison of the spatial resolution and high frequency limit measured experimentally for
the force and force gradient mode

These methods have been used to measure the α-relaxation of PVAc at the nanoscale. Mea-
surements of the frequency spectrum by LDS have shown a faster local dynamics. This phe-
nomena could be related to a decrease in Tg due the influence of the free interface [11,96–98]. A
contrario to macroscopic measurements, no differences have been found between the dynamics
measured by LDS in an island of PVAc surrounded by a matrix of PS and in a pure PVAc
sample. This results indicates that our measurement is local and that the matrix of PS does
not affect the dynamics of PVAc at the center of the island. Further research are needed to
clearly states about interface’s effects.

Measurements have not yet been quantified in term of dielectric permittivity but first exper-
iments performed on PMMA shown that LDS permits to measure a relative variation of ∆Φ2ωe.
Best experimental conditions maximizing the value of the ∆Φ2ωe are a thick sample and a small
tip-sample distance.

An important point has been to implement these measurement in the AM mode, under am-
bient condition, with a non-modified commercial AFM. This simple setup would allow working
with bio-materials opening the way of the the study of soft hydrated materials such as proteins,
and cell membranes, and investigate processes such as membrane potential formation, action
potential propagation, or ion membrane transport [99].

Recent studies [96] have shown that the Tg dynamics (measured by fluorescence) of PS
nanolayers and nanodomains can be dramatically tuned (and even slaved) by the dynamics of
neighboring immiscible polymers. By using different polymer underlayers, the Tgs of ultrathin
PS surface layers span a 100 K temperature range, with related effects occurring in nanoblends.
These results show that the cooperative glass transition dynamics in nanoconfined polymer can
be coupled to the dynamics of neighboring immiscible polymer domains over many tens of
nanometer length scales. Measuring this coupled dynamics using LDS would be of the upmost
interest.
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The aim of this work was to study dielectric and mechanical properties of polymers at macro
and nanoscale. We have chosen to study the relaxations of two polymers: Polyisoprene (PI)
and Poly(vynil acetate) (PVAc).

Due to dipolar moment parallel to the chain backbone, PI exhibit a whole chain dielectric
relaxation. This so-called normal mode can either be described by the Rouse or reptational
tube theory for unantengled and entangled polymers respectively. We have chosen to work with
PI samples having a molecular weight variating between 1 and 320 kg/mol in order to cover the
range of applications of these two regimes. The first step of the work on PI was to study the
Rouse model, well known since the fifties to describe rather correctly the whole chain dynamics
of polymers in solution in a theta-solvent. Using rheology, we have measured the molecular
weight of entanglement Me=9 kg/mol and chosen to study how the Rouse model could describe
the normal mode response of a sample having a molecular weight of 2700 g/mol. Even if the
Rouse model has been intensively investigated by different experimental techniques this study
is still challenging because for unentangled polymer, contributions of the α-relaxation (a fast
segmental relaxation related to dipolar component perpendicular to the chain backbone) over-
lap significantly with the whole chain dynamics. By decorelating the effect of the α-relaxation
on the normal mode and introducing polydispersity, we showed that the Rouse model permits a
good description of both rheological and Broadband Dielectric Spectroscopy (BDS) data. The
small differences between theory and experiment are attributed to a defect of configuration: the
sample is composed by 80% of the isomer cis.

Then, we have studied the different regime in the dynamics as a function of molecular weight.
In agreement with other rheological data previously reported, we found two crossovers in the
molecular weight dependence of the longest relaxation time. The first, around a molecular
weight of 6.5 ± 0.15 kg/mol, corresponds to the end of the Rouse regime. Above the second at
100 ± 50 kg/mol we find a power law with exponent 3 as predicted by the De Gennes theory.
The current sensitivity of the methods developed to measure the local dielectric response by
EFM did not allowed measuring the rather weak (∆ε ∼ 0.05) relaxation of PI.

PVAc exhibits strong (∆ε ∼ 5) dielectric losses (related with the segmental relaxation)
slightly above room temperature and have been a good candidate to develop EFM based nano-
characterization methods. Using BDS, we have first measured its static value of the dielectric
constant at 22°C, εr=3, and 70ºC εr=8. Then by measuring the dielectric frequency spectrum,
we have constated that the response of a blend of PVAc / PS is similar to the one measured in
the pure component (indicating a phase separation) but slightly shifted to higher frequencies
and broadened. One possible hypothesis to explain this phenomena would be that BDS mea-
sure dielectric properties over the all sample, including interface’s regions between PVAc and
PS having a different dynamics.

We have then developed and implement two EFM based methods to measure and image
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quantitatively the relative dielectric constant and the temperature-frequency dependance of di-
electric losses.

The first method developed to measure dielectric properties at the nanoscale was based on
the measurement of the force gradient between a tip and a grounded polymer while applying a
VDC voltage. The numerical simulation of the Equivalent Charge Method permits a quantifica-
tion of the dielectric constant. The method has first been developed to measure the dielectric
constant in one point before being extended to a quantitative mapping of heterogeneous com-
ponent. Measurements made in one point on PVAc and values obtained from a quantitative
mapping of the dielectric constant of a nano-structured PVAc / PS are in good agreement with
the one previously measured macroscopically by BDS. The spatial resolution of 40 nm is close
to the theoretical limit.

The second methods permit to measure the frequency dependance of polymers. First de-
veloped by Crider et al [10], Local Dielectric Spectroscopy (LDS) permitted to measure in one
point the dielectric losses as a function of the frequency via the detection of the force gradient
under Ultra High Vacuum (UHV). We have extended this technique to map the dielectric losses
at a given frequency. We have demonstrate that LDS could be achieved under ambient condi-
tion and by detecting the force between the tip and the sample. Measurements of the frequency
spectrum showed that the α-relaxation of PVAc measured locally at the free surface by LDS is
faster than the one measured in bulk by BDS. This phenomena could be related to a decrease
in Tg due the influence of the free interface [11, 96–98]. A contrario to macroscopic measure-
ments, no differences have been found between the dynamics measured by LDS in an island of
PVAc surrounded by a matrix of PS and in a pure PVAc sample. This results indicates that
our measurement is local and that the matrix of PS does not interferes with the dynamics of
PVAc at the center of the island. Further research to unambiguously state about the interface’s
effects on polymer dynamics would be of the upmost interest. As mentioned few years ago by
Pierre-Gilles de Gennes [100], further experiments should not aim at the determination of a
single Tg, but at a distribution of Tgs. Concrete other applications of this method would be the
study of bio-materials or coupled polymer dynamics in nano-domains [96].
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Dielectric and mechanical properties of polymers at macro and
nanoscale.

Abstract: The idea was first to understand the physical theories that describe the dynamics of linear
polymers at the macroscopic scale. Rouse and the reptational tube theory describe the large scale
dynamics of unentangled and entangled polymers respectively. Using Broadband Dielectric Spectroscopy
(BDS) and rheology we have studied the different transition between these two regimes. Avoiding the
segmental relaxation contribution and introducing a distribution in the molecular weight we have been
able to perform a detailed comparison of the Rouse model with dielectric and rheological data. Effects of
entanglement on dielectric spectra have been discussed. BDS and rheology are commonly used techniques
to measure dielectric and mechanical properties but they do not have spatial resolution. Therefore the
study of the local dynamics or heterogeneous system is always model dependant. We have developed
EFM-based methods in order to study this local dynamics. Using the numerical simulation of the
Equivalent Charge Method, the value of the static dielectric permittivity has been quantified from the
measurement of the force gradient created by a Vdc potential between a tip and a grounded dielectric.
This method allows a quantitative mapping of dielectric properties with a 40 nm spatial resolution and is
therefore suitable for the study of nano-defined domains. The electrical phase shift in the 2ω component
of the force gradient created by Vac voltage is related with dielectric losses. We have developed a method
to image the temperature-frequency dependence of the dielectric losses. These methods would allow the
study of soft matter or biological phenomena at the local scale.
Key words : Polymer, Soft matter, Dielectric, Mechanical, Dynamics, Rouse, De Gennes, Entangle-
ment, AFM, EFM.

Propriétés diélectrique et mécanique des polymères aux échelles macro
et nanoscopique.

Résumé : Le but de cette thèse était tout d’abord d’étudier les théories physiques qui décrivent la dy-
namique des polymères à l’échelle macroscopique. Le modèle de Rouse et la théorie d’enchevêtrement de
P-G. de Gennes décrivent la dynamique des polymères non enchevêtrés et enchevêtrés, respectivement.
Nous avons étudié les différentes transitions entre ces deux régimes en utilisant deux techniques expé-
rimentales : Spéctroscopie dielectrique large bande et rhéologie. Un test complet du modèle de Rouse à
été effectué en comparant les prédictions de ce modèle pour la dépendance en fréquence de la permitti-
vité diélectrique et du module de cisaillement aux données expérimentales. Les effets d’enchevêtrement
sur les spectres diélectriques ont été discutés. Nous avons ensuite développés des méthodes basées sur
la microscopie à force électrostatique afin d’étudier les propriétés diélectriques locales. En utilisant une
simulation numérique basée sur la Méthode des Charges Equivalentes, nous avons quantifié la constante
diélectrique à partir de la mesure du gradient de force crée par un potentiel statique entre une pointe
et un diélectrique. Cette méthode permet d’imager la constante diélectrique avec une résolution spatial
de 40 nm. Le retard de phase de la composante en 2ω de la force ou du gradient de force crée par un
voltage alternatif est relié aux pertes diélectriques. Nous avons développé un mode d’imagerie des pertes
diélectriques. Cette méthode simple pourrait être appliqué en biologie ou matière molle en générale afin
d’étudier des variations locales de constantes dielectriques.
Mots clés : Polymère, Matière molle, Diélectrique, Mécanique, Dynamique, Rouse, De Gennes, En-
chevêtrement, AFM, EFM.
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