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Titre: Couverture quadratique en marché incomplet pour des processus a accroissents

indépendants et applications au marché de 'électricité.

Résumé: La thése porte sur une décomposition explicite de Follmer-Schweizer d'une
classe importante d’actifs conditionnels lorsque le cours du sous-jacent est un processus a
accroissements indépendants ou une exponentielle de tels processus. Ceci permet de met-
tre en oeuvre un algorithme efficace pour établir des stratégies optimales dans le cadre de
la couverture quadratique. Ces résultats ont été implémentés dans le cas du marché de

I’électricité.

Titolo: Copertura sulla base dello scarto quadratico medio nei mercati incompleti per

dei processi a incrementi indipendenti e applicazioni al mercato elettrico.

Riassunto: In questa tesi di dottorato di ricerca vengono calcolate esplicitamente le
scomposizioni dette di Follmer-Schweizer per una famiglia significativa di opzioni finanziarie
quando il prezzo del soggiacente é un processo a incrementi indipendenti o un esponenziale
di tali processi. Le formule ottenute permettono di produrre un algoritmo efficiente per la
risoluzione del problema della copertura che minimizza lo scarto quadratico medio nei mer-
cati incompleti. I risultati sono stati implementati numericamente nell’ambito del mercato

elettrico.

Title: Variance Optimal Hedging in incomplete market for processes with independent

increments and applications to electricity market.

Abstract: For a large class of vanilla contingent claims, we establish an explicit Follmer-
Schweizer decomposition when the underlying is a process with independent increments (PII)
and an exponential of a PII process. This allows to provide an efficient algorithm for solving
the mean variance hedging problem. Applications to models derived from the electricity

market are performed.

Key words and phrases: Variance-optimal hedging, Follmer-Schweizer decomposition,
Lévy process, Cumulative generating function, Characteristic function, Normal Inverse Gaus-
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Chapter 1
Introduction

Dans cette thése, nous nous intéresserons aux problémes de la couverture d’options en
marché incomplet et & ses applications, notamment sur le marché Spot de I’électricité. En
effet, la motivation premiére de cette thése a été que sur le marché de I’électricité les pics de
prix des actifs sont a la fois fréquents et élevés. Comme nous pouvons le voir dans la figure
1.1, la présence de sauts dans les prix de certains sous-jacents justifie I'utilisation de modéles
non gaussiens et, entre autre, 'utilisation de processus a accroissements indépendants dans
nos modéles de prix, afin de pouvoir représenter ces sauts. Il est clair que des variations de
prix comme celles-1a ne peuvent pas étre expliquées par un modele gaussien.

Du point de vue de la couverture, les modeéles gaussiens correspondent en général aux
marchés complets ou aux marchés qui peuvent étre complétés. Or, I'utilisation de modéles
non gaussiens utilisant, par exemple, des processus a accroissements indépendants entraine
I’incomplétude du marché; c’est a dire un marché ou les méthodes classiques de couverture
et de valorisation du type de celle de Black et Scholes ne permettent plus une réplication

parfaite des produits dérivés.

La question de la valorisation et de la couverture d’option en temps continu ou discret
dans la cas non gaussien se pose donc. Quel est 'apport de la prise en compte des pics
de prix du sous-jacent dans le calcul de couverture par rapport a la solution donnée par la
formule de Black et Scholes? Comment se traduit, en terme d’erreur, le fait de discrétiser

une stratégie de couverture optimale en temps continu?
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Figure 1.1: Prix du marché Spot de l’électricité sur le marché PowerNext entre le 15/11/05 et le
31/03/06 en euros par Mwh, heure par heure.
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CHAPTER 1. INTRODUCTION

L’approche Variance-Optimale

Une approche populaire pour résoudre le probléme de couverture en marché incomplet est
celle de la couverture variance-optimale introduite dans [30]. Soit (€2, F,[P) un espace de
probabilité, soit 7" > 0 une maturité, posons S une (F;)-semimartingale de décomposition
de Doob S; = Sy + M; + A; pour tout t € [0,T]. Appelons © 'espace des processus prévisi-
bles (v¢)se(o,r] pour lequel I'intégrale stochastique Gy(v) = fot v4dS, est une semimartingale de
carré intégrable. Fixons une variable aléatoire de carré intégrable H. Le probléme de couver-
ture variance-optimale consiste a trouver une constante ¢ € R et une stratégie de couverture

(V¢)teo,r] € © qui minimisent le risque quadratique globale de couverture suivant:
E[(H — ¢~ Gr(v))’]

En termes financiers, ¢ répresente la valeur optimale du capital initial nécessaire pour
minimiser notre erreur globale de couverture. ¢ représente la stratégie optimale d’achat et

de vente sur le marché de 'actif H a chaque instant de couverture.

Richardson [30]; Schweizer |72, 73, 76, 66|; Gourieroux, Laurent et Pham [41]| Cont,
Tankov et Voltchkovaet [23] ou plus récemment Cerny et Kallsen [17] ont contribué de fagon

significative a la résolution de ce probléme.

La décomposition de Follmer-Schweizer est un outil classique utilisé pour résoudre le
probléme de couverture variance-optmale.
La décomposition de Fo6llmer-Schweizer

Définition. On dit qu’une variable aléatoire H € L*(Q), F, P) admet une décomposition

de Follmer-Schweizer si elle peut étre représentée sous la forme suivante:
T
H:H0+/ las,+ LY, P—as., (0.1)
0

ot Hy € R est une constante, £ € © et LH = (L{{)te[()"]“] une martingale de carré intégrable
telle que E[L{] = 0 et fortement orthogonale a la partie martingale locale M (i.e. (L, M) =

0) apparaissant dans la décomposition de Doob de S.

Le premier article introduisant cette décomposition dans le cas ou (S;) est continue est

celui de Follmer-Schweizer [36]. Nous pouvons remarquer que dans le cas ot (S;) est une

11
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martingale de carré intégrable alors la décomposition de Follmer-Schweizer coincide avec la

décomposition de Kunita-Watanabe.

L’existence d’une telle décomposition est primordiale dans la caractérisation de la solution
de notre probléme de couverture variance-optimale. En effet, ¢’est grace au triplet (Hy, &, L)
intervenant dans la décomposition de Follmer-Schweizer que nous caractériserons la solution
explicite de notre probléme de couverture variance-optimale. On en déduit qu'une premiére
étape nécessaire a la résolution de notre probléme de couverture est de démontrer I’existence
d’une telle décomposition pour notre semimartingale (.S;). Il convient tout d’abord de vérifier

une condition introduite par Schweizer dans [72| appelée condition de structure.

Définition. On dit que la semimartingale (S;)ico,r) satisfait la condition de structure

(SC) s’il existe un processus prévisible (au)com tel que pour tout t € [0,T] on ait
t
A= / asd(M)s, Kr < oo a.s.,
0

ot I’ on note .
K, = / aZd({M),.
0

Dans ce cas, la (F;)-semimartingale (S;) peut s’écrire sous la forme :
¢
St:So+Mt+/ asd (M),
0

Le processus (Kt)te[O,T] joue un role important dans ’existence de la décomposition de
Follmer-Schweizer. Ce processus est appelé processus mean-variance tradeoff. Il est
inspiré de la théorie en temps discret introduite dans [70] et définie en temps continu dans
[36] puis [72]. Monat et Strciker, dans [61], ont donné une condition suffisante a ’existence

et a I'unicité de la décomposition de Follmer-Schweizer d'une variable aléatoire H.

Proposition. Supposons que (S;)icjo,r) satisfasse la condition de structure (SC) et que
le processus mean-variance tradeoff K soit uniformement borné en t et w alors toute variable

aléatoire H € L*(, F, P) admet une unique décomposition de Fillmer-Schweizer.

Ce résultat nous permet donc sous certaines conditions sur notre sous-jacent (S;) de
prouver 'existence de la décomposition de Follmer-Schweizer de toute variable alétaoire H.
L’existence de cette décomposition va nous permettre de prouver I’existence de la solution

de notre probléme de couverture variance-optimale.

12
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La solution de notre probléme de couverture variance-optimale

En effet, 'existence de la décomposition de Follmer-Schweizer sous les conditions précé-
dentes aboutit a 'existence de la solution de notre probléme de couverture variance-optimale.

Monat et Stricker, toujours dans [61], ont ainsi démontré le résultat suivant:

Théoréme. Supposons que (Si)icpor satisfasse la condition de structure (SC) et que le
processus mean-variance tradeoff K soit uniformement borné en t et w alors pour toute
variable aléatoire H € L2(Q, F,P), il existe un unique couple (¢ o)) € L2(Fy) x O tel
que
H H)\\2 : 2
BI(H — &~ Gr(e ™)) = win B[ — = Gr(0))].

Schweizer, dans [72], donne, dans le cas ou le processus mean-variance tradeoff (K;) est
déterministe, une forme implicite (mais exploitable numériquement) du couple (c), o)) €
L*(Fy) x © solution du probléme variance-optimale, ainsi que la valeur de la variance de

notre erreur de couverture variance-optimale.

Théoréme. Supposons que (Si)cpo,r) satisfasse la condition de structure (SC) et que le
processus mean-variance tradeoff (K;) soit déterministe. Soit o le processus prévisible ap-
paraissant dans la condition de structure et H € L? la variable aléatoire admettant une

décomposition de Féllmer-Schweizer; alors nous avons

1. Pour tout c € R la stratégie optimale 9 € © solution de notre probléeme de couverture

variance optimale est donnée par

(& « C
(pg ) — 5tH + Tim(]—lt_ —c— Gt_(go( ))) . pour toutt € [0,T]

ot le processus (Ht)te[o,T] est défini par
t
H, = H0+/ ¢HdX, + L.
0

2. De plus la variance de notre erreur de couverture variance-optimale vaut
1

ek E(L"))) 02

ot E(S) est lexponentielle de Doléans-Dade de la semimartingale S (voir séction I1.8

p. 85 de [63]) et

nmeﬁw—GﬂMereKmQﬂrwf+mwﬁﬂ+A

vEO

K /t s d (M) /t LK., for allt € [0, 7]
= —_— = —dK,, for A
A S s Jo 1+ AK,
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3. En particulier, si (M, M) est continue, nous avons alors que

minE[(H — ¢ — Gr(v))’] = exp(—Kr) ((Ho — ¢)* + E[(L{)?))

veEO

+E UOT exp{—(Kr — K,)}d (L") | .

Nous pouvons remarquer que dans le cas ou la semimartingale (S;) est continue, traitée
dans [36], aucune condition sur K n’est requise. Plus récemment, une quantité importante
de travaux traitant les problémes de minimisation du risque local ou global ont été publiés.
Il est donc impossible de tous les lister. Cependant nous pouvons citer [76], [9] et [17] qui

comportent une bibliographie importante.

Une autre approche envisagée pour résoudre le probléme de couverture variance optimale
est celle de Cont, Tankov et Voltchkova dans [23], qui minimisent cette variance sous une

mesure de probabilité équivalente par rapport a laquelle (S;) est une martingale.

Le probléme de couverture variance-optimale peut aussi étre relié a la théorie des équa-
tions différentielles stochastiques rétrogrades (BSDEs) dans le sens de Pardoux et Peng
[62], et a été proposé par Schweizer [72]. Dans [62], est considérée une équation différen-
tielle stochastique rétrograde dirigée par un mouvement brownien. Dans 72|, le mouvement
brownien est remplacé par M. Le premier auteur ayant considéré une équation différentielle
stochastique rétrograde dirigée par une martingale est Buckdahn dans [14].

Supposons V; = f(f asd(M)s. Le probléme de couverture variance-optimale consiste a

trouver un triplet (V; ¢, L) résolvant la BSDE suivante

T T
WZH—/fwm—/fM&%&WM%%M—M%

ol

f(w> S, ‘/57 fs) = fsas

E[V}?] < oo pour tout ¢ € [0, 7]

E[f) €2d(M),] < o

L est une (F;)-martingale locale orthogonale a M.

14
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En fait, cette décomposition nous donne la solution au probléme de minimisation du risque
local de couverture [36]. Dans ce cas, V; représente le prix de notre option a l'instant ¢ et Vj

est espérance sous la variance-optimal mesure (VOM) de H.

La motivation du marché de 1’électricité

Notre motivation a résoudre le probléme de couverture variance optimale dans le cas de
logarithme de prix a accroissements indépendants nous vient, comme nous I’avons mentionné
précédement, du marché de 1’électricité. En effet, du fait de I'impossibilité de stocker de
Pélectricité, I'un des instruments de couverture utilisé sont les prix a termes ou futur F'
sur les prix spot (S;). F{'® représente alors le prix futur a instant ¢ < T de la livraison de
IMWh d’électricité sur la période [Ty, Ty + 6].

Le modéle exponentiel de Lévy, proposé dans [11]| et [21]|, permet de représenter a la
fois la structure de volatilité et les pics de prix. Plus précisément, le prix futur est donné

par le modéle a deux facteurs suivant:

t
Fl = Fl7 exp(m]* +/ gse_)‘(Td_s)dAi—i— oW,

~
facteur court terme  facteur long terme

), pour tout t € [0, T4, (0.3)

ol m est une tendance réelle déterministe, A un processus de Lévy réel et W un mouvement
brownien réel. Nous remarquons que la dynamique des prix futurs FtTd est modélisée par
une exponentielle de processus a accroissements indépendants.

Ceci justifie notre choix de nous intéresser a ’extension des résultats du probléme de
valorisation et de couverture variance-optimale dans le cas ou le sous-jacent suit un modeéle

a accroissements indépendants mais non plus forcément stationnaires.

Cette thése traitera donc du cas ou le sous-jacent (S;) est un processus a accroissements
indépendants ou une exponentielle de processus a accroissements indépendants, et ceci dans
le cas d’'un marché en temps continu ou discret. Nous donnerons, entre autre, des formules
explicites permettant d’obtenir le triplet (Hy,&, L) intervenant dans la décomposition de
Follmer-Schweizer et ceci dans le cas ou la semimartingale (S;) est une exponentielle de
processus a accroissements indépendants et pour une classe particulére d’options introduite

dans [49]. En effet, 'option H sera donnée par I'inverse d’une transformeée de Laplace d’une

15
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fonction f contre une mesure complexe finie II. Typiquement, on aura que H = f(Sr) avec
f(s) = [.s°TI(dz). A titre d’exemple, nous avons qu'un call européen de strike K vérifie ce
type de représentation et on a que pour R > 1et s >0
1 Rtico  prl-z
(s — K)" = 5 8272(2/ — 1)dz

Pour ce type d’option, nous exprimerons la valeur de notre stratégie de couverture variance-
optimale (gogc))te[oﬂ en fonction de la fonction cumulative génératrice (k¢ );ecp0,7) du processus
X, = log(S,). (k) étant définie pour I'ensemble des z € D := {z € C | E[ef*()X] < 00, Vt €
0,7} comme

ke: D —C, avec ¥ =E[S?]=E[e*],

On peut trouver dans [49], des résultats concernant le cas ot le sous-jacent semimartingale
(S;) est une exponentielle de processus de Lévy (donc & accroissements indépendants et
stationnaires).

Cette thése se composera donc de deux parties. Chacune d’entre elles faisant objet d’une

soumission a publication.

L’approche en temps continu

Le premier chapitre visera a résoudre le probléme en temps continu. Dans la section 2.2,
nous introduirons, dans un premier temps, les notions intervenant dans la résolution du
probléme de la couverture variance-optimale et nous définirons la décomposition de Follmer-

Schweizer. Deux cas de sous-jacent (S;) seront alors étudiés:

e La section 2.3 portera sur I’étude du cas ou le sous-jacent (S;) est donné par un proces-
sus a accroissements indépendants (X;). Dans ce cas précis, nous travaillerons sur une
classe d’options du type transformée de Fourier de notre procéssus a accroissements

indépendants:

H = f(Sr) = f(Xr) with f(z)= / e u(du) , pour tout z € R,
R

pour une certaine mesure signée finie p. Le théoréme 2.3.34 établira alors des formules
explicites permettant d’obtenir la décomposition de Follmer-Schweizer d’une variable

aléatoire H vérifiant ce type de représentation.
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e La section 2.4 traitera ensuite du cas ou le sous-jacent (S;) est donné par une expo-
nentielle de processus a accroissements indépendants S; = exp X;. Nous donnerons des
résultats faisant intervenir la fonction génératrice cumulative de (X;). Nous établirons
alors grace a ces résultats le théoréme 2.4.24 donnant les formules explicites de la dé-
composition de Follmer-Schweizer d’une variable aléatoire H définie comme 'inverse
d’une transformée de Laplace d’une fonction f contre une mesure complexe finie II.
H = f(Sr) avec f(s) = [.s°TI(dz).

Puis dans la section 2.5, nous donnerons, dans un premier temps, dans le théoréme 2.5.1 la
solution explicite au probléme de couverture variance-optimale dans le cas ou (S;) est donné
par un processus a accroissements indépendants (X;). Dans un second temps, le théoréme
2.5.2 formulera la solution dans le cas ou (.S;) est donné par une exponentielle de processus a
accroissements indépendants (exp(X;)). Nous établirons ensuite le théoréme 2.5.4 donnant
la valeur explicite de la variance de ’erreur de couverture variance-optimale dans le cas ou
(S;) est donné par une exponentielle de processus a accroissements indépendants (exp(Xy)).

La section 2.6 portera sur l'application des résultats obtenus au cas particulier du
marché de I’électricité. En effet, comme nous I'avons vu précédemment les prix futurs (F,'4)
sont donnés par une exponentielle de processus a accroissements indépendants (X;) définie
pour tout ¢ € [0, 7] par (0.3):

t
X, =my + th + Xt2 = m'fd + / o.e Mg\, + oW, .
0

Nous établirons ainsi les formules explicites de notre solution de couverture variance opti-

male au cas particulier du marché de I’électricité.

Enfin, la section 2.7 présentera des simulations numériques qui permettront d’illustrer

et d’interpréter nos résultats.

L’approche en temps discret

Le second chapitre cherchera a résoudre le probléme de la minimisation de la couverture
variance-optimale en temps discret. Nous introduirons dans la section 3.2 les notions inter-
venant dans la résolution du probléme de couverture variance-optimale. La version discréte
de la décomposition de Follmer-Schweizer ainsi que les conditions suffisantes & son existence

seront ainsi définies.
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Nous utiliserons ensuite dans la section 3.3 la version discréte de la fonction génératrice
cumulative du processus (Sy,)n—0,1,..n pour établir la proposition 3.3.19 donnant la formule
explicite de la décomposition discrete de Follmer-Schweizer dans le cas d’un modéle expo-

nentiel de processus a accroissements indépendants.

Dans un troisiéeme temps, dans la section 3.4, nous établirons dans le théoréeme 3.4.1 la
solution explicite du probléme de couverture variance-optimale. Le théoréme 3.4.3 permet-
tra d’établir la formule explicite donnant la valeur de la variance de I'erreur de couverture

variance-optimale.

Pour finir, la section 3.5 présentera des simulations numériques qui seront articulées

en deux temps.

e Nous nous intéresserons tout d’abord au cas d’un payoff irrégulier (option digitale)
avec un sous-jacent suivant un modéle exponentiel de processus a accroissements in-
dépendants et stationnaires. Nous montrerons que le choix d’instants de couverture
"équirépartis" sur [0, 7] n’est pas forcément optimal au vue du caractére irrégulier du

payoft.

e Puis, dans une seconde partie, nous travaillerons dans le cas d’un payoff plus régulier
(option call européen) mais avec un sous-jacent suivant un modéle exponentiel de pro-
cessus a accroissements indépendants et non plus stationnaires. Le fait d’avoir une
volatilité qui augmente en se rapprochant de la maturité 7" de 'option nous perme-
ttra de montrer que l'erreur de couverture variance-optimale peut étre réduite en se

couvrant plus souvent quand nous nous rapprocherons de 7.

Une des conclusions des ces simulations sera que dans les deux cas nous arrivons a réduire

I’erreur de couverture variance-optimale en optimisant nos instants de couverture.
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CHAPTER 2. VARIANCE-OPTIMAL HEDGING IN CONTINUOUS TIME

This chapter is the object of the paper [45].

Abstract. For a large class of vanilla contingent claims, we establish an explicit Féllmer-
Schweizer decomposition when the underlying is a process with independent increments (PII)
and an exponential of a PII process. This allows to provide an efficient algorithm for solv-
ing the mean variance hedging problem. Applications to models derived from the electricity

market are performed.

Key words and phrases: Variance-optimal hedging, Follmer-Schweizer decomposition,
Lévy processes, Cumulative generating function, Characteristic function, Normal Inverse

Gaussian process, Electricity markets, Process with independent increments.

2000 AMS-classification: 60G51, 60H05, 60J25, 60J75

JEL-classification: C02, G11, G12, G13
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CHAPTER 2. VARIANCE-OPTIMAL HEDGING IN CONTINUOUS TIME

2.1 Introduction

There are basically two main approaches to define the mark to market of a contingent claim:
one relying on the no-arbitrage assumption and the other related to a hedging portfolio, those
two approaches converging in the specific case of complete markets. A simple introduction
to the different hedging and pricing models in incomplete markets can be found in chapter 10
of [22].

The fundamental theorem of Asset Pricing |26] implies that a pricing rule without arbitrage
that moreover satisfies some usual conditions (linearity, non anticipativity ...) can always be
written as an expectation under a martingale measure. In general, the resulting price is not
linked with a hedging strategy except in some specific cases such as complete markets. More
precisely, it is proved [26] that the market completeness is equivalent to uniqueness of the
equivalent martingale measure. Hence, when the market is not complete, there exist several
equivalent martingale measures (possibly an infinity) and one has to specify a criterion to
select one specific pricing measure: to recover some given option prices (by calibration) [44];
to simplify calculus and obtain a simple process under the pricing measure; to maintain the
structure of the real world dynamics; to minimize a distance to the objective probability
(entropy [38] ...). In this framework, the difficulty is to understand in a practical way the
impact of the choice of the martingale measure on the resulting prices.

If the resulting price is in this case not directly connected to a hedging strategy, yet it is
possible to consider the hedging question in a second step, optimizing the hedging strat-
egy for the given price. In this framework, one approach consists in deriving the hedging
strategy minimizing the global quadratic hedging error under the pricing measure where the
martingale property of the underlying highly simplifies calculations. This approach, is de-
veloped in |22], in the case of exponential-Lévy models: the optimal quadratic hedge is then
expressed as a solution of an integro-differential equation involving the Lévy measure. Un-
fortunately, minimizing the quadratic hedging error under the pricing measure has no clear
interpretation since the resulting hedging strategy can lead to huge quadratic error under the
objective measure. On the other hand [23| continues this approach, again in the martingale
framework, providing some interesting financial motivations.

Alternatively, one can define option prices as a by-product of the hedging strategy. In the
case of complete markets, any option can be replicated perfectly by a self-financed hedging
portfolio continuously rebalanced, then the option hedging value can be defined as the cost

of the hedging strategy. When the market is not complete, it is not possible, in general, to
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hedge perfectly an option. One has to specify risk criteria, and consider the hedging strategy
that minimizes the distance (in terms of the given criteria) between the pay-off of the option
and the terminal value of the hedging portfolio. Then, the price of the option is related
to the cost of this imperfect hedging strategy to which is added in practice another prime
related to the residual risk induced by incompleteness.

Several criteria can be adopted. The aim of super-hedging is to hedge all cases. This ap-
proach yields in general prices that are too expensive to be realistic [32]. Quantile hedging
modifies this approach allowing for a limited probability of loss [34]. Indifference utility pric-
ing introduced in [47| defines the price of an option to sell (resp. to buy) as the minimum
initial value s.t. the hedging portfolio with the option sold (resp. bought) is equivalent
(in term of utility) to the initial portfolio. Quadratic hedging is developed in [72], [74]:
the quadratic distance between the hedging portfolio and the pay-off is minimized. Then,
contrarily to the case of utility maximization, losses and gains are treated in a symmetric
manner, which yields a fair price for both the buyer and the seller of the option.

In this paper, we follow this last approach and our developments can be used in both the
no-arbitrage value and the hedging value framework: either to derive the hedging strategy
minimizing the global quadratic hedging error under the objective measure, for a given pric-
ing rule; or to derive both the price and the hedging strategy minimizing the global quadratic
hedging error under the objective measure.

We spend now some words related to the global quadratic hedging approach which is also
called mean-variance hedging or global risk minimization. Given a square integrable r.v.
H, we say that the pair (Vp, ) is optimal if (c,v) = (Vy,p) minimizes the functional
E (H —c— fOT vdS)2. The price Vg represents the price of the contingent claim H and
© is the optimal strategy.

Technically speaking, the global risk minimization problem, is based on the so-called F'éllmer-
Schweizer decomposition (or FS decomposition) of a square integrable random variable (rep-
resenting the contingent claim) with respect to an (F;)-semimartingale S = M + A modeling
the asset price: M is an (F;)-local martingale and A is a bounded variation process with
Ag = 0. Mathematically, the F'S decomposition, constitutes the generalisation of the mar-
tingale representation theorem (Kunita-Watanabe representation) when S is a Brownian
motion or a martingale. Given a square integrable random variable H, the problem consists
in expressing H as Hy + fOT £dS + Lp where € is predictable and Ly is the terminal value of

an orthogonal martingale L to M, i.e. the martingale part of S. The seminal paper is [36]
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where the problem is treated in the case that S is continuous. In the general case S is said
to have the structure condition (SC) condition if there is a predictable process « such
that A; = fot asd(M)s and fOT a?d{M), < oo a.s. In the sequel most of contributions were
produced in the multidimensional case. Here for simplicity we will formulate all the results
in the one-dimensional case.

An interesting connection with the theory of backward stochastic differential equations (BS-
DEs) in the sense of [62], was proposed in [72]. [62] considered BSDEs driven by Brownian
motion; in [72| the Brownian motion is in fact replaced by M. The first author who consid-
ered a BSDE driven by a martingale was [14]. Suppose that V; = fot asd(M)s. The BSDE
problem consists in finding a triple (V, &, L) where

T T
Vi=H —/t Esd Mg — [ Esasd(M)s — (Lp — Ly),

and L is an (F;)-local martingale orthogonal to M.

In fact, this decomposition provides the solution to the so called local risk minimization
problem, see [36]. In this case, V; represents the price of the contingent claim at time ¢ and
the price Vj constitutes in fact the expectation under the so called variance optimal signed
measure (VOM). Hence, in full generality, the price Vj is not guaranteed to be arbitrage-
free. In case of continuous processes, the variance optimal measure is proved to be nonegative
under a mild no-arbitrage condition [75|. Arai [3] and |2| provides sufficient conditions for
the variance-optimal martingale measure to be a probability measure, for discontinuous
semimartingales.

In the framework of F'S decomposition, a process which plays a significant role is the so-called
mean variance tradeoff (MVT) process K. This notion is inspired by the theory in discrete
time started by [70[; in the continuous time case K is defined as K; = fot a2d(M)s, t €
[0, 7. [72]| shows the existence of the mean-variance hedging problem if the MVT process
is deterministic. In fact, a slight more general condition was the (ESC) condition and the
EMVT process but we will not discuss here further details. We remark that in the continuous
case, treated by [36], no need of any condition on K is required. When the MVT process
is deterministic, [72] is able to solve the global quadratic variation problem and provides an
efficient relation, see Theorem 2.5.2 with the F'S decomposition. He also shows that, for the
obtention of the mentioned relation, previous condition is not far from being optimal. The
next important step was done in [61| where under the only condition that K is uniformly

bounded, the FS decomposition of any square integrable random variable admits existence
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and uniqueness and the global minimization problem admits a solution.

More recently has appeared an incredible amount of papers in the framework of global (resp.
local) risk minimization, so that it is impossible to list all of them and it is beyond our scope.
Two significant papers containing a good list of references are [76], [9] and [17].

For the sake of financial applications, one would like to find an expression for the FS
decomposition as ezplicit as possible. We are not interested in generalizing the conditions
under which the FS decomposition exists. Besides, the numerical computation of BSDE (and
therefore of F'S decomposition) is a real issue in applied probability and mathematical finance.
We recall that Clark-Ocone formula provides an explicit form for the Kunita Watanabe
decomposition (in the Brownian case). The present paper aims, in the spirit of a simplified
Clark-Ocone formula, at providing an explicit form for the F'S decomposition for a large class
of European payoffs H, when the process S is a process with independent increments (PII)
or an exponential of PII. In the case of Lévy processes, there are some Clark-Ocone type
formula, but they are in a different spirit than ours. We acknowledge for instance [29, 58|.

From a practical point of view, this serves to compute efficiently the variance optimal
hedging strategy which is directly related to the F'S decomposition, since the mean-variance
tradeoff is for that type of processes deterministic. One major idea proposed by [49] in
the case where the log price is a Lévy process consists in expressing the payoff as a linear
combination of exponential payoffs for which the variance optimal hedging strategy can be
expressed explicitly. We propose here to use the same idea of using Laplace transforms
representation of payoff but to extend the results of [49] to the case of PII and exponential
of PII price processes.

The first part of this paper puts emphasis on PII and contingent claims that are provided
by some Fourier transform of a finite measure: an original approach is developed to derive
explicit FS decompositions. The second part of this paper extends results of [49] concerning
exponential of Lévy processes and contingent claims that are Laplace-Fourier transform of
a finite measure to the case of exponential of PII. Restricting assumptions was a leading
issue for this work. In particular, our results do not require any assumption on the absolute
continuity of the cumulant generating function of log(.S;).

One practical motivation for considering processes with independent and possibly non sta-
tionary increments came from hedging problems in the electricity market. Because of non-
storability of electricity, the hedging instrument is in that case, a forward contract with

value S = e "Ta=t)(ET* — Fl4) where F/'* is the forward price given at time t < T} for
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delivery of IMWh at time Tj;. Hence, the dynamic of the underlying S° is directly related to
the dynamic of forward prices. Now, forward prices are known to exhibit both heavy tails
(especially on the short term) and a volatility term structure which require the use of models
with both non Gaussian and non stationary increments.

The paper is organized as follows. After this introduction and some generalities about semi-
martingales, we introduce the notion of F'S decomposition and describe local and global risk
minimization. Then, we examine at Section 3 (resp. 4) the explicit F'S decomposition for
PII processes (resp. exponential of PII processes). Section 5 is devoted to the solution to
the global minimization problem and Section 6 to the case of a model intervening in the

electricity market. Section 7 is devoted to simulations.

2.2 Generalities on semimartingales and Follmer-Schweizer

decomposition

In the whole paper, T" > 0, will be a fixed terminal time and we will denote by (2, F, (F¢):co,1, P)
a filtered probability space, fulfilling the usual conditions.

2.2.1 Generating functions

Let X = (Xt)te[o,T} be a real valued stochastic process.

Definition 2.2.1. The characteristic function of (the law of) X, is the continuous map-
ping
ox, :R—C with ¢x,(u)=E[e"*] .

In the sequel, when there will be no ambiguity on the underlying process X, we will use the

shortened notation y; for ¢x,.

Definition 2.2.2. The cumulant generating function of (the law of ) X; is the mapping
z +— Log(E[e**]) where Log(w) = log(Jw|) + iArg(w) where Arg(w) is the Argument of w,

chosen in | — m,m|; Log is the principal value logarithm. In particular we have
kx,: D — C with ™) =E[e*X]

where D := {z € C | E[ef*®X] < 00, Vt € [0,T]}.
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In the sequel, when there will be no ambiguity on the underlying process X, we will use

the shortened notation k; for kyx,.
We observe that D includes the imaginary axis.

Remark 2.2.3. 1. Forall z € D, ki(Z) = k(2) , where Z denotes the conjugate complex
of z € C.

2. Forallz€ DNR | k(z) €R .

2.2.2 Semimartingales

An (F;)-semimartingale X = (Xi);co1) is a process of the form X = M + A, where M is
an (F;)-local martingale and A is a bounded variation adapted process vanishing at zero.
||A||7 will denote the total variation of A on [0,7]. Given two (F;)- local martingales M
and N, (M, N) will denote the angle bracket of M and N, i.e. the unique bounded variation
predictable process vanishing at zero such that M N — (M, N) is an (F;)-local martingale. If
X and Y are (F;)-semimartingales, [X, Y| denotes the square bracket of X and Y, i.e. the
quadratic covariation of X and Y. In the sequel, if there is no confusion about the underlying
filtration (F;), we will simply speak about semimartingales, local martingales, martingales.
All the local martingales admit a cadlag version. By default, when we speak about local
martingales we always refer to their cadlag version.

More details about previous notions are given in chapter I.1. of [53].

Remark 2.2.4. 1. All along this paper we will consider C-valued martingales (resp. local

martingales, semimartingales). Given two C-valued local martingales M*, M? then
MY, M2 are still local martingales. Moreover (MY, M2) = (M, M?) .

2. If M is a C-valued martingale then (M, M) is a real valued increasing process.

Theorem 2.2.5. (Xy)icor) @5 a real semimartingale iff the characteristic function, t +—

wi(u), has bounded variation over all finite intervals, for all u € R.

Definition 2.2.6. An (F;)-spectal semimartingale is an (F;)-semimartingale X with the
decomposition X = M + A, where M 1is a local martingale and A is a bounded variation

predictable process starting at zero.

Remark 2.2.7. The decomposition of a special semimartingale of the form X = M + A s
unique, see [53] definition 4.22.
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For any special semimartingale X we define
XI5 = E[[M, M]7] +E (||All7) -

The set 6% is the set of (F;)-special semimartingale X for which ||X||%, is finite.

A truncation function defined on R is a bounded function h : R — R with compact
support such that h(z) = z in a neighbourhood of 0.

An important notion, in the theory of semimartingales, is the notion of characteristics,
defined in definition 11.2.6 of [53|. Let X = M + A be a real-valued semimartingale. A

characteristic is a triplet, (b, ¢, ), depending on a fixed truncation function, where
1. b is a predictable process with bounded variation;

2. ¢ = (M¢°, M¢), M¢ being the continuous part of M according to Theorem 1.4.18 of [53].

3. v is a predictable random measure on R* x R, namely the compensator of the random

measure 4~ associated to the jumps of X.

Given a real cadlag stochastic process X, the quantity AX; will represent the jump X, — X, .

2.2.3 Follmer-Schweizer Structure Condition

Let X = (Xt)te[o,T} be a real-valued special semimartingale with canonical decomposition,
X=M+A.

For the clarity of the reader, we formulate in dimension one, the concepts appearing in the

literature, see e.g. [72] in the multidimensional case.

Definition 2.2.8. For a given local martingale M, the space L*(M) consists of all predictable

R-valued processes v = (vy)icpo,r) such that

E VOT|US|%1<M>S} <oo.

For a given predictable bounded variation process A, the space L*(A) consists of all predictable

R-valued processes v = (vi)icpo,r) such that

([ oAl < oo

© = L*(M) N L2(A) .

Finally, we set
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For any v € O, the stochastic integral process
t
Gy(v) ::/ vsdX,, forallte|0,T],
0
is therefore well-defined and is a semimartingale in 62 with canonical decomposition
t ¢
G(v) :/ vgd M, +/ vedA, , forallt €[0,7T] .
0 0

We can view this stochastic integral process as the gain process associated with strategy v

on the underlying process X.

Definition 2.2.9. The minimaization problem we aim to study is the following.
Given H € L?, an admissible strategy pair (Vy, @) will be called optimal if (c,v) = (Vo, p)

mainimizes the expected squared hedging error
E[(H —c—Gr(v))*] (2.1)

over all admisible strategy pairs (c,v) € R x ©. Vi will represent the price of the contingent

claim H at time zero.

Definition 2.2.10. Let X = (X,),co1 be a real-valued special semimartingale. X is said
to satisfy the structure condition (SC) if there is a predictable R-valued process a =

(ct)eepo,r) such that the following properties are verified.

1. At:f(fozscﬂM) for all t € [0,T], so that dA < d (M).

s )

T
2/ a2d (M), < oo, P-—a.s.
0

Definition 2.2.11. From now on, we will denote by K = (K;)icjo,r] the cadlag process
t
K,y :/ a2d (M), , forallte0,T].
0

This process will be called the mean-variance tradeoff (MVT) process.
Remark 2.2.12. In [72], the process (K)o, is denoted by (IA(t)te[O,T].
Lemma 2 of [72] states the following.

Proposition 2.2.13. If X satisfies (SC) such that E[Kr] < oo, then © = L*(M).
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The structure condition (SC) appears quite naturally in applications to financial mathe-
matics. In fact, it is mildly related to the no arbitrage condition. In fact (SC) is a natural
extension of the existence of an equivalent martingale measure from the case where X is
continuous. Next proposition will show that every adapted continuous process X admitting

an equivalent martingale measure satisfies (SC).

Proposition 2.2.14. Let X be a (P, F;) continuous semimartingale. Suppose the existence

of a locally equivalent probability Q ~ P under which X is an (Q, F;)-local martingale, then
(SC) is verified.

Proof. Let (Dy)icjo,r) be the strictly positive continuous @-local martingale such that dP =
Drd@. By Theorem VIIL.1.7 of [65], M = X — (X, L) is a continuous P-local martingale,

where L is the continuous ()-local martingale associated to the density process i.e.

1
Dt = eXp{Lt — §<L>t} s fOI' all ¢ c [O,T] .

According to Lemma IV.4.2 in [65], there is a progressively measurable process R such that
for all t € [0,T7,

t T
L, = / R, dX,+ O; and / R2d (X), <00, Q-—as.,
0

0
where O is a Q-local martingale such that (X, O) = 0. Hence,
t t
(X, L) :/ R d(X)s and X; = M, +/ Ry X]s, foralltel0,T].
0 0
We end the proof by setti X, L) R O
n r ing ay, = ——"~ =R, .
p Yy g ay d<X>t t
2.2.4 Follmer-Schweizer Decomposition and variance optimal hedg-
ing
Throughout this section, as in Section 2.2.3, X is supposed to be an (F;)-special semimartin-
gale fulfilling the (SC) condition.
We recall here the definition stated in Chapter IV.3 p. 179 of [63].

Definition 2.2.15. Two (F;)-martingales M, N are said to be strongly orthogonal if M N

15 a uniformly integrable martingale.
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Remark 2.2.16. If M, N are strongly orthogonal, then they are (weakly) orthogonal in the
sence that E[MrNp| =0 .

Lemma 2.2.17. Let M, N be two square integrable martingales. Then M and N are strongly
orthogonal if and only if (M, N) = 0.

Proof. Let S(M) be the stable subspace generated by M. S(M) includes the space of mar-

tingales of the form

t
M/ ::/ f(s)dM, , foralltel0,T],
0

where f € L?(dM) is deterministic. According to Lemma IV.3.2 of [63], it is enough to show
that, for any f € L?>(dM), g € L*>(dN), M/ and NY are weakly orthogonal in the sense that

E[M{:N:%] = 0. This is clear since previous expectation equals

E[(M! N?) ] =E (/OT fgd (M, N)) =0

if (M, N) = 0. This shows the converse implication.
The direct implication follows from the fact that M N is a martingale, the definition of the

angle bracket and uniqueness of special semimartingale decomposition. O

Definition 2.2.18. We say that a random variable H € L2(Q, F, P) admits a Féllmer-

Schweizer (FS) decomposition, if it can be written as
T
H:H0+/ Hax, + LY, P—as., (2.2)
0

where Hy € R is a constant, £ € © and L7 = (Lf)te[o,T} 15 a square integrable martingale,
with E[LY] = 0 and strongly orthogonal to M.

We formulate for this section one basic assumption.

Assumption 1. We assume that X satisfies (SC) and that the MVT process K is uniformly

bounded in t and w.

The first result below gives the existence and the uniqueness of the Follmer-Schweizer
decomposition for a random variable H € £%(Q), F, P). The second affirms that subspaces
Gr(0) and {L*(Fy) + Gr(O)} are closed subspaces of £? . The last one provides existence
and uniqueness of the solution of the minimization problem (2.1). We recall Theorem 3.4
of [61].
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Theorem 2.2.19. Under Assumption 1, every random variable H € L*(Q, F,P) admits a
FS decomposition. Moreover, Hy € R, £ € L*(M) and Lz is uniquely determined by H.

We recall Theorem 4.1 of [61].

Theorem 2.2.20. Under Assumption 1, the subspaces Gr(0©) and {L*(Fy) + Gr(©)} are

closed subspaces of L2.

So we can project any random variable H € £? on Gp(©). By Theorem 2.2.19, we
have the uniqueness of the solution of the minimization problem (2.1). This is given by
Theorem 4.6 of [61], which is stated below.

Theorem 2.2.21. We suppose Assumption 1.

1. For every H € L2(Q, F, P) and every c € L2(Fy), there exists a unique strategy ©'© €
O such that

E[(H — ¢ — Gr(¢9)?] = minE[(H — ¢ — Gp(v))?] . (2.3)

veEO®
2. For every H € L2(Q, F,P) there exists a unique (¢, o) € L2(F,) x © such that

_ (H)))2] — - e 2
B(H = = Gr()) = min E[(H —c=Gr(v))]] .

From Fo6llmer-Schweizer decomposition follows the solution to the global minimization

problem (2.1). Next theorem gives the explicit form of the optimal strategy.

Theorem 2.2.22. Suppose that X satisifies (SC) and that the MVT process K of X is
deterministic and let « be the process appearing in Definition 2.2.10 of (SC). Let H € L*
with FS-decomposition (2.2).

1. For any c € R, the solution of the minimization problem (2.3) verifies o) € © for any
c € R, such that
C « C
o =&+ e (e == Gi(¢)) . for allt€[0,T] (2.4)

where the process (Hy)icpo,r s defined by

t
H, = H0+/ Hax,+ L. (2.5)
0
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min E[(H — ¢ — Gr(v))?] = £(=K7) <(H0 — )2+ E[(LT)Y . (E[(L™), ))

vEO

where, given a semimartingale X, E(X) is the Doléans-Dade exponential of X, see
section I1.8 p. 85 of [63] and

_ t ‘Oé |2 t 1
K= — _qM). = | ———dK,, forallt€|0,T].
! /0 1+ AK, (M), /0 1+ AK, ora 0,71

3. In particular, if (M, M) is continuous,

minE[(H — ¢ — Gr(v))’] = exp(—Kr) ((Ho — ¢)* + E[(L)?])

vEO

\E UOT exp{—(Kr — K,)}d (L"),

Remark 2.2.23. 1. Point 1. is a consequence of Theorem 8 of [72] which in fact is stated
under a more general condition, i.e. the so called (ESC) condition, which is associated

with the extended mean-variance tradeoff (EVT) process K.
2. Point 2. is stated again under condition (ESC) in Corollary 9 of [72].

3. Since (M, M) is continuous, K = K and £(K) = exp(K) because K has bounded

variation. This finally shows point 3.

4. When (M, M) is continuous, condition (ESC) and (SC) are equivalent. This will

concern the applications to Sections 3. and 4.

To obtain the solution to the minimization problem (2.1), we use Corollary 10 of [72]

that we recall.

Corollary 2.2.24. Under the assumption of Theorem 2.2.22, the solution of the minimiza-
tion problem (2.1) is given by the pair (Hy, o10) .

In the sequel, we will find an explicit expression of the F'S decomposition for a large
class of square integrable random variables, when the underlying process is a process with
independent increments, or is an exponential of process with independent increments. For
this, the first step will consist in verifying (SC) and the boundedness condition on the MVT

process, see Assumption 1.
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2.2.5 Link with the equivalent signed martingale measure and the

variance optimal martingale (VOM) measure

Definition 2.2.25. 1. A signed measure, Q, on (Q, Fr), is called a signed ©-martingale

measure, if

(a) Q(Q) =1;
d@

. a7 2 .
(b) Q < P with 7D € L*(P) ;

(c) E[%GT(U)] =0 for allv € O.

We denote by Py(0), the set of all such signed ©-martingale measures. Moreover, we
define

P.(O) :={Q € Py(O) | Q ~ P and Q is a probability measure} ,

and introduce the closed convex set,

Dy:={DeL*P)| D= % for some @Q € Py (O)} .

2. A signed martingale measure Pe Py(©) is called variance-optimal martingale (VOM)

~ ~ dP
measure if D = argminpep,Var[D?| = argminpep, (E[D? — 1), where D = R

The space Gr(0) := {G7(v) | v € O} is a linear subspace of £L2(P). Then, we denote by

Gr(©)* its orthogonal complement, that is,
Gr(©)t :={D € L*(P) | E[DGr(v)] =0 for any v € O} .

Furthermore, G7(0)** denotes the orthogonal complement of G7(0)*, which is the £2(P)-
closure of G (0).
A simple example when P.(©) is non empty is given by the following proposition, that

anticipates some material treated in the next section.
Proposition 2.2.26. Let X be a process with independent increments such that
e X, has the same law as — Xy, for any t € [0,T);

° % belongs to the domain D of the cumulative generating function (t,z) — ry(2).
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Then, there is a probability QQ ~ P such that Sy = exp(X;) is a martingale.

Proof. For all t € [0,T], we set D; = exp{—=t — r;(—3)}. Notice that D is a martingale so
that the measure @ on (2, Fr) defined by d@) = D7dP is an (equivalent) probability to P.
On the other hand, the symmetry of the law of X, implies for all ¢ € [0, 7],

1 X, 1

SiDy = exp{% — K,t(—ﬁ)} = exp{# — nt(§)} .

So SD is also a martingale. According to 53], chapter III, Proposition 3.8 a), S is a Q-

martingale and so S is a ()-martingale. O

Example 2.2.27. Let Y be a process with independent increments. We consider two copies
YL of Y and Y? of =Y. We set X =Y +Y?2 Then X has the same law of —X.

For simplicity, we suppose from now that Assumption 1 is verified, even if one could

consider a more general framework, see [3] Therorem 1.28. This ensures that the linear

space G7(0) is closed in L£3(Q), therefore Gr(0) = G7(0) = Gr(©)*++. Moreover, Propo-
sition 2.2.13 ensures that © = L?(M). We recall an almost known fact cited in [3]. For

completeness, we give a proof.
Proposition 2.2.28. P, (0) # (0 is equivalent to 1 ¢ G7(©) .
Proof. Let us prove the two implications.

o Let Q € Py(O©). If 1 € Gr(O), then Q(2) = E¥(1) = 0 which leads to a contradiction
since () is a probability. Hence 1 ¢ G(0).

e Suppose that 1 ¢ G7(0). We denote by f the orthogonal projection of 1 on G(0).
Since E[f(1 — f)] = 0, then E[1 — f] = E[(1 — f)?]. Recall that 1 # f € G7(©), hence
we have E[f] # 1. Therefore, we can define the signed measure P by setting

-7

T (2.7)

ﬁ(A):/zN)dP, with D =
A

We check now that P € P,(0).

— Trivially P(Q) = E(D) =1 ;
- P<P , by construction.
1

— Let v € ©, E[DGr(v)] = 1-E[f]

(E[(1 — f/)Gr(v)]) =0, since 1 — f € Gp(0)*.
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Hence, P € P,(©) which concludes the proof of the Proposition.

Remark 2.2.29. If 1 is orthogonal to Gp(0), then f =0 and P € P4(O) so P,(O©) # 0.
In fact, P constructed in the proof of Proposition 2.2.28 coincides with the VOM measure.

Proposition 2.2.30. Let P be the signed measure defined in (2.7). Then,

D = argmin E[D?] = argmin Var[D] .
DeDy DeDy

Proof. Let D € Dy and Q such that dQ = DdP. We have to show that E[D?] > E[D?]. We

write

2

?WE[(D - D)(1-f)].

E[D? = E[(D — D)*] + E[D* +
Moreover, since f € Gr(O) yields

E(D - D)(1- f)] = E[D]-E[D]-E[Df]+E[Df],
= Q(Q) -Q(Q).
= 0.
]

Remark 2.2.31. 1. Arai [2] gives sufficient conditions under which the VOM measure is
a probability, see Theorem 3.4 in [2].

2. Taking in account Proposition 2.2.28, the property 1 ¢ G7(©) may be viewed as non-
arbitrage condition. In fact, in [26], the existence of a martingale measure which is a

probability is equivalent to a no free lunch condition.
Next proposition can be easily deduced for a more general formulation, see [76].

Proposition 2.2.32. We assume Assumption 1. Let H € L*(2) and consider the solution

(c®, ") of the minimization problem (2.1). Then, the price ¢! equals the expectation under
the VOM measure P of H.
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Proof. We have
H="+Gr(e")+ R,

where R is orthogonal to G7(0) and E[R] = 0. Since P € P,(©), taking the expectation
with respect to ]3, denoted by E we obtain

E[H] =" +E[R] .

From the proof of Proposition 2.2.28, we have

_ o EO-HR 1
B = =%~ ToEn

Since f € Gr(O©) and R is orthogonal to G7(©), we get E[R] =0 . O

(E[R] - E[fR]) .

2.3 Processes with independent increments (PII)

This section deals with the case of Processes with Independent Increments. The preliminary
part recalls some useful properties of such processes. Then, we obtain a sufficient condition
on the characteristic function for the existence of the FS decomposition. Moreover, an
explicit F'S decomposition is derived.

Beyond its own theoretical interest, this work is motivated by its possible application to
hedging and pricing energy derivatives and specifically electricity derivatives. Indeed, one
way of modeling electricity forward prices is to use arithmetic models such as the Bachelier
model which was developed for standard financial assets. The reason for using arithmetic
models, is that the usual hedging intrument available on electricity markets are swap con-
tracts which give a fixed price for the delivery of electricity over a contracted time period.
Hence, electricty swaps can be viewed as a strip of forwards for each hour of the delivery
period. In this framework, arithmetic models have the significant advantage to yield closed
pricing formula for swaps which is not the case of geometric models.

However, in whole generality, an arithmetic model allows negative prices which could be
underisable. Nevertheless, in the electricity market, negative prices may occur because it
can be more expensive for a producer to switch off some generators than to pay someone to
consume the resulting excess of production. Still, in [8], is introduced a class of arithmetic
models where the positivity of spot prices is ensured, using a specific choice of increasing

Lévy process. The parameters estimation of this kind of model is studied in [60].
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2.3.1 Preliminaries

Definition 2.3.1. X = (Xy)icjor) s a (real) process with independent increments
(PII) iff

1. X has cadlag paths.

2. Xy =0.

3. Xy — X is independent of Fs for 0 < s <t < T where (F;) is the canonical filitration

associated with X.

Moreover we will also suppose

4. X 18 continuous in probability, i.e. X has no fixed time of discontinuties.

From now on (F;) will always be the canonical filtration associated with X. We recall
Theorem I1.4.15 of [53].

Theorem 2.3.2. Let (X;)icpor be a real-valued special semimartingale, with Xo = 0. Then,
X is a process with independent increments, iff there is a version (b, c,v) of its characteristics

that is deterministic.

Remark 2.3.3. In particular, v is a (deterministic non-negative) measure on the Borel

o-field of [0,T] x R.

From now on, given two reals a, b, we denote by a V b (resp. a A b) the maximum (resp.

minimum) between a and b.

Proposition 2.3.4. Suppose X is a semimartingale with independent increments with char-

acteristics (b, c,v), then there exists an increasing function t — a; such that
db, < day , de; < day  and v(dt,dz) = Fy(dz)da, (3.1)
where F,(dz) is a non-negative kernel from ([0, T, B([0,T])) into (R, B) verifying
/R(W A)E(dz) <1, Vte0,T]. (3.2)
and

o = [[blls +Ct+/R(\x|2 A ([0, 4], d) - (3.3)
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Proof. The existence of (a;) as a process fulfilling (3.3) and F fulfilling (3.2) is provided by
the statement and the proof of Proposition II. 2.9 of [53]. (3.3) and Theorem 2.3.2 guarantee

that (a;) is deterministic. O

Remark 2.3.5. In particular, (b)), (¢;) and t — f[o t]xB(\xP A 1)v(ds,dx) has bounded
variation for any B € B.

The proposition below provides the so called Lévy-Khinchine Decomposition.

Proposition 2.3.6. Assume that (X;)ico,m) s a process with independent increments. Then
oi(u) = e’ | forallu € R, (3.4)

W, , is given by the Lévy-Khinchine decomposition of the process X,

2

Uy (u) = iub, — %ct + /(6““” — 1 —duh(x))F,(dz) , forallueR (3.5)
R

where B — Fy(B) is the positive measure v(|0,t] x B) which integrates 1 A |x|* for any
te[0,7].

We introduce here a simplifying hypothesis for this section.
Assumption 2. For any t > 0, X, is never deterministic.
Remark 2.3.7. We suppose Assumption 2.

1. Up to a 2mi addition of ki(e), we can write Vi(u) = ry(iv), Yu € R. From now on we

will always make use of this modification.

2. @i(u) is never a negative number. Otherwise, there would be u € R*;t > 0 such that
E(cos(uX;)) = —1. Since cos(uXy) +1 > 0 a.s. then cos(uX;) = —1 a.s. and this is

not possible since X, is non-deterministic.

3. Previous point implies that all the differentiability properties of u — ¢(u) are equiva-
lent to those of u — W;(u).

4. IfE[|X,|?] < oo, then for all u € R, W,(u) and V; (u) ewist.

We come back to the cumulant generating function s and its domain D.
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Remark 2.3.8. In the case where the underlying process is a PII, then
D :={z€C|E[ef®X] < 0o, Vt € [0,T]} = {z € C | E[efD*T] < o0} .
In fact, for givent € [0,T],v € R we have
E(e7X7) = B(e)E(e?X %)) < o0,
Since each factor is positive, and if the left-hand side is finite, then E(e7™*) is also finite.

We need now a result which extends the Lévy-Khinchine decomposition to the cumulant

generating function. Similarly to Theorem 25.17 of [69] we have.

Proposition 2.3.9. Let Dy = {c eER | f[ e“y(dt,dr) < oo}. Then,

0,7)x{|z|>1}

1. Dyq s convex and contains the origin.
2. Dy =DNR.

3. If z € C such that Re(z) € Dy, i.e. z € D, then

2

Ke(z) = 2b, + Z ot / (e —1— zh(x))v(ds,dx) . (3.6)
2 [0, xR

Proof. 1. is a consequence of Holder inequality similarly as i) in Theorem 25.17 of [69] .

2. The characteristic function of the law of X, is given by (3.5). According to Theo-
rem I1.8.1 (iii) of Sato [69], there is an infinitely divisible distribution with charac-
teristics (by, ¢, Fi(dx)), fulfilling F;({0}) = 0 and [(1 A 2?)Fy(dz) < oo and ¢ > 0.
By uniqueness of the characteristic function, that law is precisely the law of X;. By
Corollary I1.11.6, in [69], there is a Lévy process (L%, 0 < s < 1) such that L} and X
are identically distributed. We define

Ch={ceR| / e Fy(dz) < oo} and C'={z € C|E [exp(Re(zL})] < oo} .
{lz[>1}

Remark 2.3.8 says that CT = D, moreover clearly C¢ = Dy. Theorem V.25.17 of [69]

implies Dy = DN R, i.e. point 2. is established.

3. Let t € [0,T] be fixed; let w € D. We apply point (iii) of Theorem V.25.17 of [69] to
the Lévy process L.
[
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Proposition 2.3.10. Let X be a semimartingale with independent increments. For all

z € D, t — Ri(z) has bounded variation and
Ka(2) < day . (3.7)
Proof. Using (3.6), it remains to prove that
t— (e** — 1 — zh(x))v(ds, dx)
0,T]xR

is absolutely continuous with respect to (da;). We can conclude

m(z)—/ ;lzsd +Z /ggzd —i—/das/ * 1~ 2h(z)) Fy(dz) |

if we show that

/OT das/R\e” — 1 — zh(z)|F,(dz) < oo . (3.8)

Without restriction of generality we can suppose h(x) = 21j;<1. (3.8) can be bounded by
the sum Iy + I, + I3 where

/ da, / 22| (da)
0 |z[>1
T ~
I, = / das/ Fy(dx)
0 |z|>1
T ~
/ das/ |e*® — 1 — zx|Fy(dx)
lz[<1

Using Proposition 2.3.4, we have

T T
I = / da, / 22| B (dar) = / da, / B2 | F () = / R (ds da):
0 |z[>1 0 |z[>1 [0,T]x|z|>1

this quantity is finite because Re(z) € Dy taking into account Proposition 2.3.9. Concerning

T _ T B
I, = / das/ Fy(dz) = / das/ (1 A |2?]) Fy(dw) < ar,
0 lz|>1 0 |z|>1
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because of (3.2). As far as I3 is concerned, we have

2 ~ 2
I3 < eRe(Z)Z—/ das(z* A1) Fy(dx) = eRe(Z)Z—aT
[0,T]x || <1 2

again because of (3.2). This concludes the proof of the Proposition.
]

The converse of the first part of previous corollary also holds. For this purpose we

formulate first a simple remark.

Remark 2.3.11. For every z € D, (exp(2X; — ki(2))) is a martingale. In fact, for all
0<s<t<T, we have

Elexp(z(X; — X;))] = exp(r(2) — rs(2)) - (3.9)

Proposition 2.3.12. Let X be a PII. Let z € D NR*. (X)) is a semimartingale iff

t — Kky(z) has bounded variation.

Proof. 1t remains to prove the converse implication.
If ¢ — ky(2) has bounded variation then ¢ — ¢%(*)) has the same property. Remark 2.3.11

ZXt)

says that e*Xt = M,;e"(?) where (M,) is a martingale. Finally, (e is a semimartingale and

taking the logarithm (2X;) has the same property. O

Remark 2.3.13. Let z € D. If (X) is a semimartingale with independent increments then
(e#Xt) is necessarily a special semimartingale since it is the product of a martingale and a

bounded variation continuous deterministic function, by use of integration by parts.

Lemma 2.3.14. Suppose that (X;) is a semimartingale with independent increments. Then

for every z € Int(D), t — k(z) is continuous.

Remark 2.3.15. The conclusion remains true for any process which is continuous in prob-

ability, whenever t — rky(2) is (locally) bounded.

Proof of Lemma 2.8.1/. Since z € Int(D), there is v > 1 such that vz € D; so
Elexp(27.X,)] = exp(ri(72)) < exp(sup(ki(72)))

t<T

because ¢ — k;(7z) is bounded, being of bounded variation. This implies that (exp(2X¢)):c(o,7]
is uniformly integrable. Since (X;) is continuous in probability, then (exp(zX;)) is continuous

in £'. The result easily follows. O

41



CHAPTER 2. VARIANCE-OPTIMAL HEDGING IN CONTINUOUS TIME

Proposition 2.3.16. The function (t,z) — ri(z) is continuous. In particular, (t,z) —

ki(z), t €[0,T), z belonging to a compact real subset, is bounded.

Proof. e Proposition 2.3.9 implies that z — k;(z) is continuous uniformly with respect
tot € [0,7].

e By Lemma 2.3.14, for z € IntD, ¢ +— r¢(2) is continuous.

e To conclude it is enough to show that ¢ — k;(2) is continuous for every z € D. Since
D = TntD, there is a sequence (z,) in the interior of D converging to z. Since a uniform
limit of continuous functions on [0,7] converges to a continuous function, the result
follows.

O

2.3.2 Structure condition for PII (which are semimartingales)

Let X = (X{)tejo,r] be a real-valued semimartingale with independent increments and X, = 0.
We assume that E[|X;|?] < oco. We denote by ¢i(u) = Elexp(iuX;)] the characteristic
function of X; and by u +— W;(u) its log-characteristic function introduced in Proposition
2.3.6. We recall that ¢;(u) = exp(¥;(u)).

X has the property of independent increments; therefore
exp(iuXy)/Elexp(iuXy)] = exp(iuX;)/ exp(Vi(u)) , (3.10)
is a martingale.

Remark 2.3.17. Notice that the two first order moments of X are related to the log-
characterisctic function of X, as follows

E[X)] = —iW,(0), E[X,—X.]=—i(¥,(0)— ¥,(0)), (3.11)

" 1"

Var(X,) = =9, 0), Var(X,—X,)=—[T,(0)— ¥, (0)] . (3.12)

Proposition 2.3.18. Let X = (Xt)te[o,T] be a real-valued semimartingale with independent

mcrements.

1. X is a special semimartingale with decomposition X = M + A with the following
properties:

"

(M), = =0, (0) and A, =—iT,(0) . (3.13)

In particular t — —W; (0) is increasing and therefore of bounded variation.
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2. X satisfies condition (SC) of Definition 2.2.10 if and only if

2

/ 1" T d ‘P/ 1"
¥(0) < U/ (0) and / s )| 10 (0)] < oo . (3.14)
0 dt‘ljs
In that case
t /
. . dy0,(0)
A, = sd (M th = It elo,T). 3.15
¢ /o asd (M), with o Zdtllft(()) for a [0, 7] (3.15)

3. Under condition (3.14), FS decomposition exists (and it is unique) for every square

integrable random variable.

In the sequel, we will provide an explicit decomposition for a class of contingent claims,
under condition (3.14).

Proof. 1. Let us first determine A and M in terms of the log-characteristic function of
X. Using (3.11) of Remark 2.3.17, we get

E[X,|F] = E[X;— X, + X, | F],=E[X, - X,] + X, ,
= —i0,(0) +iV,(0) + X, , then
E[X, +iV,(0)|F] = X, +iV,(0).

Hence, (X, +iV;(0)) is a martingale and the canonical decomposition of X follows

Xy = X; +iW,(0) —i W} (0)
—_————— —

My At

where M is a local martingale and A is a locally bounded variation process thanks
to the semimartingale property of X. Let us now determine (M), in terms of the
log-characteristic function of X. Using (3.11) and (3.12) of Remark 2.3.17, yields

E[MZ|F,) = E[(X;+iT,(0))%F] = E[(M, + X, — X, +i(P,(0) — ¥,(0)))*|F] ,

= M+ Var(X, — X,) = M7 — ¥, (0) + U, (0) .
Hence, (M? + U} (0)) is a (F;)-martingale, and point 1. is established. On the other
hand

t /
_ d,T.(0)
A = sd (M th =i—a~ forallte|0,7T].
¢ /Oa (M), with « Zdt\Ilt(O) or a [0, 7]
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2. is a consequence of point 1. and of Definition 2.2.10.

A
d, v

T 2
3. follows from Theorem 2.2.19. In fact Kt = —/ ( (O)) dW(0) is deterministic
0

and so Assumption 1 is fulfilled.
U

2.3.3 Examples
A Gaussian continuous process example

Let ¢ : [0,T] — R be a continuous strictly increasing function, v : [0,7] — R be a bounded
variation function such that dy < dip. We set X; = Wy + (t), where W is the standard
Brownian motion on R. Clearly, X; = M, + ~(t), where M; = Wy, defines a continuous
martingale, such that (M), = [M], = ¢(t). Since X; ~ N(7(t),?(t)) for all v € R and
t € [0, 7], we have

u?(t)

Uy (u) = iy(t)u — 5

which yields

/

U,(0) =iy(t) and W, (0) = —(t)

d
Therefore, if ﬁ € L*(dv), then X satisfies condition (SC) of Definition 2.2.10 with

¢
A = / a,d(M), and o = il for all t € [0,77] .
0 dqu) t

Processes with independent and stationary increments (Lévy processes)

Definition 2.3.19. X = (X}),c0,1) is called Lévy process or process with stationary and
independent increments if X is a PII process such that the distribution of X, — X, depends
only ont—s for0<s<t<T.

For details on Lévy processes, we refer the reader to [63], [69] and [53].
Let X = (Xy)ieo,1) be a real-valued Lévy process, with Xy = 0. We assume that E[| X;[*] < oo

and we do not consider the trivial case where L; is deterministic.

Remark 2.3.20. 1. Since X = (Xy)co,1) is a Lévy process then Wy (u) = tW(u). In the

sequel, we will use the shortened notation V := Wy,
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2. W is a function of class C* and U"(0) = Var(X,) which is strictly positive if X has

no stationary increments.
We recall some cumulant and log-caracteristic functions of some typical Lévy processes.

Remark 2.3.21. 1. Poisson Case: If X is a Poisson process with intensity A\, we have
that k™ (2) = Xe* — 1). Moreover, in this case the set D = C.
Concerning the log-characteristic function we have

T(u) = Ae™ —1), U(0)=ix and ¥ (0)=-\uecR
2. NIG Case: This process was introduced by Barndorff-Nielsen in [6]. Then X is a Lévy
process with X; ~ NIG(«, 3,0, 1), with o > |B] > 0, § > 0 and p € R. We have

K'A(Z)::uz_‘_é‘(ﬁyo 7z andﬁ)/z VAS ﬂ_‘_z D= Oé_ﬂ704_ﬁ]+iR'
Therefore

U(u) = piv+ 0(y0 — Vi) , where = \/a2 (6 + iu)?

By derivation, one gets

/ . /Lﬂ " 1 ﬂ2
U (0)=ip+d— and ¥ (0)=—-0(—+ —),
©) Yo (©) (”Yo ”YS)

. U'(0) 15 (yop +88)
Which yields o = 1—; =
’ T0) g+ 0)

3. Variance Gamma case: Let o, 3 > 0,0 # 0. If X is a Variance Gamma process with

X1 ~ VG(a,B,0, ) with k*z) = pz + 5Log< _ﬂa 22) , where Log is again the

2
principal value complex logarithm defined in Section 2. The expression of k™(2) can be

found in [49, 59] or also [22], table IV.4.5 in the particular case ;= 0. In particular
an easy calculation shows that we need z € C such that Re(z —B—+/B?+2a, —

V32 + 2a so that k*(2) is well defined so that
— B+ 20, =3+ /3% + 20[+iR.

Finally we obtain
U(u) = piu + 6 Log % .
a — fiu+ %
After derivation it follows

W(0) = i(u—08), W (0) = a® ).
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We discuss now the validity of the (SC) in the Lévy case. By application of Proposi-
tion 2.3.18 and Remark 2.3.20, we get the following result.
Corollary 2.3.22. Let X = M + A be the canonical decomposition of X, then for all
te0,77,
(M), = —tT"(0) and A, = —it¥'(0) . (3.16)

Moreover X satisfies condition (SC) of Definition 2.2.10 with

A = /t ad (M), with o= ii,l,((g)) for allt €[0,7T] . (3.17)
0

Hence, FS decomposition exists for every square integrable random variable.
Remark 2.3.23. We have the following in previous three examples in Remark 2.3.21.

1. Poisson case: o = 1.

2
Y5 (Yot + 903)
2. NIG process: o = ——————~
5(5 + )
nw—9op «
3. VG process: a = o5

Wiener integrals of Lévy processes

We take X; = fot vsdAg, where A is a square integrable Lévy process as in Section 2.3.3.
Then, fOT vsdAs is well-defined for at least v € £([0, 7). It is then possible to calculate the
characteristic function and the cumulative function of [ v.dA,. Let (t,2) — tWy(2), (resp.
(t,z) +— tx™(2)) denoting the log-characteristic function (resp. the cumulant generating
function) of A.

Lemma 2.3.24. Let v : [0,7] — R be a Borel bounded function.

1. The log-characteristic function of X, is such that for all u € R,
t
Uy, (u) :/ Ua(uys)ds ,  where Elexp(iuX;)] = exp (\Ifxt(u)) :
0

2. Let Dy be the domain related to k in the sense of Definition 2.2.2. The cumulant
generating function of X, is such that for all z € {z | Rezy, € Dy for all t € [0,T]},

o2 = [ W)
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Proof. We only prove 1. since 2. follows similarly. Suppose first v to be continuous, then
fo vsdAg is the limit in probability of ZJ 07 (A —Ay) where 0=t <ty < .. <t, =T
is a subdivision of [0,7] whose mesh converges to zero. Using the independence of the

increments, we have

p—1
E [exp{: Z Ve, (A, — Agy)}
§=0

= HE [exp{i’ytj (Atj+1 - At])}i| )
= HeXp{‘I’A(%j)(th —14)},

= eXp{Z 41— 1) Pal,)} -

This converges to exp <f0T \I/A(%)ds), when the mesh of the subdivision goes to zero.
Suppose now that ~ is only bounded and consider, using convolution, a sequence -, of

continuous functions, such that v, — v a.e. and sup,ejo 7y [7a(t)| < supyeo 1 [7(t)]. We have

[ ([ nan.)] = oo ([ watutns) (3.18)

Now, W, is continuous therefore bounded, so Lebesgue dominated convergence and continuity

proved that

of stochastic integral imply statement 1. O

Remark 2.3.25. 1. Previous proof, which is left to the reader, also applies for statement
2. This statement in a slight different form is proved in [11]

2. We prefer to formulate a direct proof. In particular statement 1. holds with the same
proof even if A has no moment condition and 7y is a continuous function with bounded

variation. Stochastic integrals are then defined using integration by parts.

We suppose now that A is a Lévy process such that A; is not deterministic. In particular
Var(Ay) # 0 and so ¥ # 0.

In this case

/

¢ ¢
\I/t(u):/ U, (uvs)ysds and W, (u):/ ‘I/A(u%)vfds.
0

0

47



CHAPTER 2. VARIANCE-OPTIMAL HEDGING IN CONTINUOUS TIME

So

/

t t
V(0) = ¥y(0) [ s and ](0) = wi0) [ o2ds
0 0
Condition (SC) is verified since d¥;(0) < d¥} (0) with
N _Z.d‘I'Q(O) _ W, (0) 2y
©Taw(0) T wh(0) p

- v (0))2
and / a2 |, (0)]y2ds = TM < 00 .
0 (WA (0)]

2.3.4 Explicit Follmer-Schweizer decomposition in the PII case

Preliminaries

Let X = (Xt):cp,m) be a semimartingale with independent increments with log-characteristic
function (t,u) — Wi(u). We assume that (X;).cor] is square integrable and satisfies As-

sumption 2.

Remark 2.3.26. 1. u — Uy(u) is of class C?, for any t € [0,T] because X; is square

integrable.

2.t U (0) and t — W;(0) have bounded variation because of Proposition 2.3.18. There-
fore, they are bounded.

3.1 — ‘I/;(u) s continuous for every u € R. In fact, first t — X; is continuous in
probability. Since M, = X, — W,(0) is a square integrable martingale and t — W,(0) is
bounded, then the family (E(X?)) is bounded and so (X;) is uniformly integrable. So

t — @i(u) is continuous and the result follows by Assumption 2

4. t+— U(0) is continuous. In fact, again it is enough to prove t — ¢} (0) is continuous.
This follows if we prove that (M) is continuous in L. This is true because M is

continuous in probability and for any N > 0, t € [0,T], Chebyshev implies that

Var(X;) < Var(Xr)

P{|M? > N} <
g > Ny < 22 =

and so the family (M?) is again uniformly integrable.
We suppose the following.

Assumption 3. 1. t — U (u) is absolutely continuous with respect to d¥; (0).
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2. For every u € R, we suppose that the following quantity
T

K(u) ::/

0

Remark 2.3.27. Ifu = 0, the previous quantity (3.19) is finite because of the (SC) condition.

2
"

d¥,(u) exp(2Re(VYp(u) — Wy(u)))d(—V, (0)) (3.19)

¥ (0)

s finite.

We consider a contingent claim which is given as a Fourier transform of X7,
H = f(X7) with f(x)= / e u(du) , forallz €R, (3.20)
R

for some finite signed measure .

Assumption 4.
[ Kt < .
R

Remark 2.3.28. We observe that the function

—~

ut) = exp(Vr(u) — Vy(u))
(u,t) = exp(2(Pr(u) — Ui(u)))
are uniformly bounded because the characteristic function is bounded.

We will first evaluate an explicit Kunita-Watanabe decomposition of H w.r.t. the mar-

tingale part M of X. Later, we will finally obtain the decomposition with respect to X.

Explicit elementary Kunita-Watanabe decomposition

By Propostion 2.3.18, X admits the following semimartingale decomposition, X, = A, + M,

where

Ay = =il (0) and (M), = —V;(0) . (3.21)

=
Proposition 2.3.29. Let H = f(X7) where f is of the form (3.20). We suppose that the
PII X satisfies Assumptions 2, 8 and 4. Then, H admits the decomposition

{ Vi = Vot [y ZdM, + O, 5.22)

Vi = H |

with the following properties.
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1. H = Vp where (Vi)icpo,r is an (F;)-martingale defined by

Vi~ B(HIE) = [ Vilwduta), ¢ 0.7)

where for any u € R we have

Vi(u) = e™*t exp {Up(u) — Wy (u)} . (3.23)
2. Forallt € [0,T], = J& Zi(u)dp(u) where for any u € R, t € [0,T]
Zy(u) = ie™- (%, gﬁﬁ 70) vi(0)) exp {Vr(u) — U (u)}; (3.24)

5. B |fy 22 (M),] < oo.
4. O is a square integrable (F;)-martingale such that (O, M) = 0.
Remark 2.3.30. In particular, Vo = E[H].
Proof. A) We start with the case yu = d,(dx) for some v € R so that f(z) = ™. We
consider the (F;)-martingale V; = E[f(X7)|F] = E[e?XT|F].
1. Clearly Vy = E[e™XT].
2. We calculate explicitely V;, which gives
V, = E[eX7|F] = "X E[eMXr=X0] = exp(iuX, — Uy(u)) exp(¥r(u))
= Viexp(Ur(w) ,
where V, = exp(iuX, — U, (u)) defines an (F,)-martingale.
3. We evaluate (V, M).

Lemma 2.3.31. (V, M), = —i [} Vi(W),(u) — ¥, (0)) .

Proof. We evaluate E[V,M,|F,]. Since V and M are (F;)-martingales and using
the property of independent increments we get
EV:M|F] = E[ViM|F)+E[Vi(M; — M)IF]

= MV, + VE[exp{iu(X; = X,) = (We(u) — U, (u)} (M, = M,)]

— MS\Z + \786*(‘1’1&(u)*‘l’s(u))E[eiu(Xt*Xs)(Mt _ Ms)] ]
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Previous expectation gives

’

EleX (M, — M,)] = E[e" (X, — X)) + E[e"Ti(,(0) — ¥,(0))]

- —igE[ei“(Xt_Xs)] +i(W,(0) — U,

" (0)Efer ¥ %0]

! /

— _Z'e\I’t(u)—\Ifs(u)(\I;t(u) _ \I/S(u)) + i(\l/t(O) N \Ij;(o))e\yt(u)—\ps(u) '

Consequently,
E[ViM|F] = MV, —iVi(y(u) — U (u) +iVi(¥,(0) — ¥,(0))
= MV, = iV, (Wi(u) — B(0) - (¥, (u) - ,(0))) .

This implies that (ﬁMt iV (W (u) — qf;(()))) is an (F,)-martingale. Then by
t
integration by parts,

~ ’ /

V(W) () — W,(0)) = / V(W (u) — W, (0)) + / (W () — W,(0))dV,

The second integral term of the right-hand side being a martingale, it follows that

() == [ VLW () — W (0))

and so

(V. M), = —i / V(W (1) — WL (0)) . (3.25)

4. We continue the proof of the Proposition 2.3.29. For given (Z;) we have

</Ot ZdM, M>t - /Ot Z, d (M), = _/Ot 2.0..(0) |

5. We want to identify

_/O ZS\I/:;S(O) = —i/o Vs(\If;ls(U) — W,,(0))

This naturally leads to

Vi . (3.26)
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6. Assumption 3 implies that E(fOT | Zs(u)|*ds) < .

7. Since V' is an (F;)-martingale, previous points imply that O is a square integrable

(F:)-martingale.

B) For treating the general case, where p is a general finite complexe measure, the use of

Fubini’s theorem is essential. We have to show the following properties.

1. V is a square integrable martingale;

[awice ([ 1Z00ra00.) <o (3.27)

3. VM — [, Z,d(M, M) is a martingale.

2.

4. fOT Z2d(M, M), < oo so that O is a square integrable (F;)-martingale.

Point 3. is a consequence of Fubini’s, point 2. together with part A) which says that

for any v € R
(V(u)M — [, &d(M, M)) is an (F;)-martingale. This shows in particular the validity
of

<V7 M>t - /Ot st<M7 M>s (328)

Point 4. is a consequence of points 2. and 1.

Concerning point 2., we remark that the left-hand side of (3.27) is bounded by

([ dultuco) (329)

2

d(—1"(0)).

where

C(u) = /0 exp(2Re(¥r(u) — ¥(u))) 'dw;d(zi‘l)j&o\;;m)

Since ((u) < 2(K(u) + K(0)) for any u € R, Assumption 4 2. finally concludes (3.27)
and therefore point 2. Point 1. can be proved by similar Fubini’s type arguments.
O

Example 2.3.32. We take X = M = W the classical Wiener process. We have Wq(u) =

—% so that IIf;(u) = —us and IIf;'(u) = —s. So Z, = wV,. We recall that

T —
Vs = Elexp(iuWr)|Fs] = exp(iulWy) exp (—u2 5 S) :
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In particular, Vo = exp(—“QTT) and so

T T_ 2T
exp(iulWr) = z/ wexp(iuWy) exp (—u2 ) dWs + exp(—T).

0
In fact that expression is classical and it can be derived from Clark-Ocone formula.

Explicit Follmer-Schweizer decomposition

We introduce a quantity which will be useful in the sequel. For ¢ € [0,T],u € R we set

n(u,t) = /O d(q’ﬁ&lio))( ))\11;5(0). (3.30)

Remark 2.3.33. 1. 7 is defined unambiguously since d (\I/;(u) — ‘P;(O)) is absolutely con-
tinuous with respect to dW; (0) .

2. n 1s well-defined, because for any u € R,

[P (u) — B/(0) d(W,/(0))
o= [ awroy) dwr) O

s bounded by Cauchy-Schwarz, taking into account Assumption 3 point 2.

We are now able to evaluate the FS decomposition of H = f(Xr) where f is given
by (4.28).

We introduce now a supplementary hypothesis.

Assumption 5. The quantity

sup  (Re(n(u,T) —n(u,t)) < oo .

uesuppp,t€[0,T

Theorem 2.3.34. Under the assumptions of Proposition 2.3.29 and Assumption 5, the FS

decomposition of H is the following
t
0

and

H;, = /H u)p(du) , & = /5 w)p(du), (3.32)
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where

(3.33)
H(u)y = exp{n(u,T) —n(u,t) +¥r(u) = U(u)} e .

Proof. Using Fubini’s theorem, with the help of Assumption 5, we reduce the problem to
show that

H(u)e = H(u)o + /O £(u)odX, + L(u), with H(u)p = exp(iuXr) ,

for fixed u € R where L(u) is a square integrable martingale and (L(u), M) = 0, where M
is the martingale part of the special semimartingale X. Notice that by equation (3.33),

H(u), = el nwd) Y (), with  V(u), = exp(iuX; + Up(u) — Uy(u)) .
Integrating by parts, gives
H(u); = H(u)y — /t efTT"(“’dS)V(u)m(u,dr) 4 /t ol U(u,ds)dv(u)r )
We denote again by Z(u) theoexpression provided by (3.26(;). We recall that
dV(u), = Z(u),.dM, + dO(u), = Z(u),(dX, — dA,) + dO(u), ,
where A is given by (3.21) and O is a square integrable martingale strongly orthogonal to

M (i.e. (M,0) =0).

tor tor ,
Hu), = H(u)o+ Liu) + / ) 74 dx, — / eI 70y (W, (0))
0 0

t
N / el 1Y (), dr)
0
where
t n
L(u), = / el 1wds) 4O (), |
0

is a martingale strongly orthogonal to M. To conclude, we need to choose 77 so that

t T , t T
| 2@t i), (0)) = [ el (@ p(adr)

0 0
This requires

So we define 7 as in (3.30). O
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The Lévy case

Let X be a square integrable Lévy process, with characteristic function exp(W¥(u)t). In
particular, U is of class C%(R). We have
d¥y(u) _ ¥'(u)

" - 7 d ,t :t
a0y v M ()

U (u) —W'(0)
W\If (0) .

We remark that Assumptions 2 is verified. Concerning Assumption 3, point 1. is trivial;

point 2. is verified because

Ky~ PO

- S /0 exp(2(T — 1) ReW(u))dt < oo. (3.34)

On the other hand Assumption 5 is verified if

sup Re (\I/(;,,)i(q}o/)m)) < 00 . (3.35)

Since W' (0) = iE[X,] and " (0) < 0, (3.35) is fulfilled if
ing[Xl]Im(m’(u)) > —00 . (3.36)

Concerning Assumption 4, (3.34) gives
PR LU iy
—w(0) Jo

3.37
1 [P wP o

—37(0) ~Ret (w) SRRV WT)

Example 2.3.35. We start with the toy model X; = ocW; + mt, o,m € R. We have
U(u) = —“7202 +imu so W' (u) = —uc® +im and Im(¥' (u)) = m. Condition 4 is always
verified since K(u) < 0—12 and v is finite. Condition (3.36) is always verified and Assumption

4 is always verified since K(u) < —U% and p is finite.

Remark 2.3.36. In the examples introduced in Remark 2.3.21, we can show that u — }‘I/(u)‘
is bounded and so (3.36) is fulfilled. Assumption 4 is again satisfied because (3.37) implies
that K(u) < constsup |W'(u). We recall in fact the following.

1. Poisson case
We have ' (u) = ile™ .
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2. NIG case
We have W'(u) = ip + 16 (8 + iu) (o — (8 + iu)?)”

, ﬂZ_‘_uZ
[V (u)] <2 <|M\2 + 25\/@2 — B2+ u2)? + 4u2ﬁ2> ‘

Since |a| > |B|, u— |V'(u)| is bounded.

1
2

. Now

3. Variance Gamma case

We have V' (u) = i — % Clearly |V (u)| is again bounded.
a—1iu 5

In conclusion, we can apply Theorem 2.3.34 and we obtain

V(u)y = exp(iuX;+ (T —t)¥(u)),
H(u)y = exp((T—6)¥(u)+n(u,T) = n(u,t)) e,

T
§(u)y = Ht(u)i%«;j(o)-

2.3.5 Representation of some contingent claims by Fourier trans-

forms

In general, it is not possible to find a Fourier representation, of the form (3.20), for a given
payoff function which is not necessarily bounded or integrable. Hence, it can be more con-
venient to use the bilateral Laplace transform that allows an extended domain of definition
including non integrable functions. We refer to [25], [64] and more recently [31] for such char-
acterizations of payoff functions. This will be done in the next section. However, to illustrate
the results of this section restricted to payoff functions represented as classical Fourier trans-
forms, we give here one simple example of such representation extracted from [31]. The

payoff of a self quanto put option with strike K is

R 4 24+iu
fx)=e"(K —¢"), and f(u)= [Re““f(x) dr = (1+i§)(2—l—iU) '

In this case p admits an integrable density.
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2.4  Follmer-Schweizer decomposition for exponential of

PII processes

In this section, we consisder the case of exponential of PII corresponding to geometric models
(such as the Black-Scholes model) much more used in finance than arithmetic models (such
as the Bachelier model). The aim of this section is to generalize the results of [49] to the case
of PII with possibly non stationary increments. Here again, this generalization is motivated
by applications to energy derivatives where forward prices show a volatility term structure

that requires the use of models with non stationary increments.

2.4.1 A reference variance measure

We come back to the main optimization problem which was formulated in Section 2.2. We
assume that the process S is the discounted price of the non-dividend paying stock which is

supposed to be of the form,
Sy = spexp(X;), forallte0,7T],

where sg is a strictly positive constant and X is a semimartingale process with indepen-
dent increments (PII), in the sense of Definition 2.3.1, but not necessarily with stationary

increments.

For notational convenience we introduce the set £ = {z € C|2z € D}.
Remark 2.4.1. We recall that D is convexe. Consequently we have.
1. Ify,z € %, theny+z¢€ D. If z € % then z € % and 2Rez € D.
2. Since 0 € D, clearly % CcD.
3. Under Assumption 6 below, 2 € D and so % +1cCD.
Remark 2.4.2. Let v € R*.
1. Elexp(v(X: — Xy))] > 0, since Xy — Xy > —oc0 a.s.
2. exp(v(Xy — X)) has a strictly positive variance if (X, — X) is non-deterministic.

We introduce a new function that will be useful in the sequel.
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Definition 2.4.3. e Foranyt e [0,T],if z,y € % we denote

pe(2,y) = ki(z +y) — Ki(2) — Ke(y) - (4.1)
o To shorten notations p; : = — C will denote the real valued function such that,
pt(z) = pi(z,2) = Kt(2Re(2)) — 2Re(ki(2)) - (4.2)

Notice that the last equality results from Remark 2.2.5.
An important technical lemma follows below.

Lemma 2.4.4. Let z € —, with z # 0, then, t — py(2) is strictly increasing if and only if

X has no deterministic increments.

Proof. 1t is enough to show that X has no deterministic increment if and only if for any

0 <s<t<T, the following quantity is positive,
pe(2) — ps(z) = [ke(2Re(2)) — ks (2Re(2))] — 2Re(ki(z) — ks(2)) - (4.3)
By Remark 2.3.11, for all z € D, we have
explri(2) — Ks(2)] = E[exp(2AY)] ,  where AL = X; — X, .

Applying this property and Remark 2.2.3 1., to the exponential of the first term on the
right-hand side of (4.3) yields

exp [kt (2Re(2)) — ks (2Re(2))] = Elexp(2Re(2)AL)] = Elexp((z + 2)A!)]
= E[lexp(zA%)[7] .

Similarly, for the exponential of the second term on the right-hand side difference of (4.3),

one gets
exp [2Re(/<;t(z) — ms(z))] = exp [(/@t(z) — /is(Z)) + (/@t(z) — /@S(z))} = }E[exp(zA';)HQ
Hence taking the exponential of p;(z) — ps(2) yields

Elexp(2A9["]
[Elexp(zAL)]

explpi(z) — ps(2)] =1 =

= E[|T (2 I — 1, where I''(2) = exp(zAl
UE[Ft( )”2 ) s( ) p( s) )

Var [Re(T(2))] + Var [Im(I'(z))]
BT (2)]]”
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e If X has a deterministic increment AL = X, — X, then I'}(z) is again deterministic

and (4.4) vanishes and hence ¢t — p;y(z) is not strictly increasing.

e If X has never deterministic increments, then the nominator is never zero, otherwise
Re(T'%(2)), Im(I'%(2)) and therefore I'.(z) would be deterministic.

From now on, we will always suppose the following assumption.
Assumption 6. 1. (X;) has no deterministic increments.

2.2€D.

D

Remark 2.4.5. 1. In particular for v € 5, v # 0, the function t — p(7y) is strictly

INCTeasing.
Var(exp(Al))
(Elexp(a1)]))"

We continue with a simple observation.

which is a mean-variance quantity.

2. If z=1, (4.4) equals

Lemma 2.4.6. Let [ be a compact real interval included in D.

supsup E[S}] < oo .
wel t<T

Proof. Let t € [0,7] and x € I, we have

E[Sf] = sg exp{ri(z)} < max(1, S(S)upl) exp( <sTup ) |ke(2)]) -
t<T,xe

since k 18 continuous. ]

We state now a result that will help us to show that k4(z) is absolutely continuous with

respect t0 par(1) = Kar(2) — 2k4(1).

Lemma 2.4.7. We consider two positive finite non-atomic Borel measures on E C R",

and v. We suppose the following:
1. p<Luv;

2. u(I) # 0 for every open ball of E.
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d
Then d—u :=h # 0 v a.e. In particular ;n and v are equivalent.
v

Proof. We consider the Borel set
B ={xz € E|h(z) =0} .

We want to prove that v(B) = 0. So we suppose that there exists a constant ¢ > 0 such
that v(B) = ¢ > 0 and another constant € such that 0 < € < ¢. Since v is a Radon measure,

there are compact subsets K. and K¢ of £ such that

K. CKe:CB and v(B—K.)<e, v(B-—K:<
2 2

[NRING

Setting € = 7, we have

and I/(K)>%.

C
I/(KG) > 5 %

By Urysohn lemma, there is a continuous function ¢ : ' — R such that, 0 < ¢ <1 with
p=1on K. and gszonK%.
Now
/Ego(x)y(dx) > v(K,) > g >0.

By continuity of ¢ there is an open set O C E with ¢(x) > 0 forz € O. Clearly O C K¢ C B;
since O is relatively compact, it is a countable union of balls, and so B contains a ball I. The
fact that h = 0 on [ implies p(/) = 0 and this contradicts Hypothesis 2. of the statement.
Hence the result follows.

O

Remark 2.4.8. From now on, in this section, dp; = pg will denote the measure
dpe = par(1) = d(ke(2) — 2k(1)) - (4.5)

According to Remark 2.4.5 1., it is a positive measure which is strictly positive on each

interval. This measure will play a fundamental role.

Remark 2.4.9. 1. If E = [0,T], then point 2. of Lemma 2.4.7 becomes pu(I) # 0 for
every open interval I C [0, 7).
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2. The result holds for every normal metric locally connected space E, provided v are

Radon measures.

Proposition 2.4.10. Under Assumption 6
d(k(z)) < dpy , forallze D . (4.6)

Proof. We apply Lemma 2.4.7, with du = dp; and dv = da,. Indeed, Proposition 2.3.10
implies Condition 1. of Lemma 2.4.7 and Lemma 2.4.4 implies Condition 2. of Lemma 2.4.7.

Therefore, da, is equivalent to dp;. O

Remark 2.4.11. Notice that this result also holds with dp,(y) instead of dp, = dpi(1), for
any y € 2 such that Re(y) # 0.

2.4.2 On some semimartingale decompositions and covariations

Proposition 2.4.12. We suppose the validity of Assumption 6. Let y,z € %. Then S* is a

special semimartingale whose canonical decomposition Sf = M(z), + A(z); satisfies

A(Z)t:/o S%_kau(2) , <M(y)>M(Z)>t=/0 SY  pau(z,y) . M(2)o = s5, (4.7)

where dp,(2) is defined by equation (4.2). In particular we have the following:
1 A(M(2), M), = [ Si pau(2,1)
2. (M(2), M(2), = J; S35 pau() -

Proof. The case y = 1, follows very similarly to the proof of Lemma 3.2 of [49]. The major
tools are integration by parts and Remark 2.3.11 which says that N(z); := e () S? is a
martingale. The general case can be easily adapted.

O

Remark 2.4.13. Lemma 2.4.6 implies that E [| (M (y), M (2))|] < oo and so M(z) is a square

integrable martingale for any z € %.
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2.4.3 On the Structure Condition

If we apply Proposition 2.4.12 with y = z = 1, we obtain S = M + A where M is a martingale

and
t
A, :/ Su—FKau(1) , (4.8)
0

and
t t
<Ma M>t = / ng('%du(2) - 2K’du(1)) = / Sifpdu . (49)
0 0
At this point, the aim is to exhibit a predictable R-valued process a such that
LA = [y ad(M), ;
2. Kr = fOT aZd (M), is bounded.

In that case, according Theorem 2.2.19, there will exist a unique FS decomposition for any
H € L£? and so the minimization problem (2.1) will have a unique solution, by Theorem
2.2.22.

Proposition 2.4.14. Under Assumption 6, we have

t
A= [Cadin, . (4.10)
0
where o 1S given by
A drq, (1
Q= Suu_ with A\, == ,:Zl;)(u ) , Jorallue0,T]. (4.11)

Moreover the MV'T process is given by

K, = /Ot (M)2dpu . (4.12)

dpu

Corollary 2.4.15. Under Assumption 6, the structure condition (SC) is verified if and only

if

In particular, (K;) is deterministic therefore bounded.
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Proof of Proposition 2.4.14. By Proposition 2.4.10, dr(1) is absolutely continuous with
respect to dp;. Setting v, as in (4.11), relation (4.12) follows from Proposition 2.4.12,
expressing K; = f(f azd (M), O

Lemma 2.4.16. The space © s constituted by all predictable processes v such that

T
E (/ vafdpt) < 00 .
0

Proof. According to Proposition 2.2.13, the fact that K is bounded and S satisfies (SC),
then v € © holds if and only if v is predictable and E[fOT vZd (M, M),] < . Since

t
<M7M>t:/ Ss2—d/)87
0

the assertion follows. O

2.4.4 Explicit Follmer-Schweizer decomposition

We denote by D the set of z € D such that

r

From now on, we formulate another assumption which will be in force for the whole section.

2

d
i (2) dp, < oo. (4.13)

dpu

Assumption 7. 1 € D.

d
Remark 2.4.17. 1. Because of Proposition 2.4.10, % exists for every z € D.

Pt

2. Assumption 7 implies that K is uniformly bounded.

The proposition below will constitute an important step for determining the FS decom-
position of the contingent claim H = f(Sr) for a significant class of functions f, see Section
2.4.5.

Proposition 2.4.18. Let z € DN L. with 2+ 1 € D. (In particular 2Re(z) € D).

1. Si € LX(Q, Fr).

63



CHAPTER 2. VARIANCE-OPTIMAL HEDGING IN CONTINUOUS TIME

2. We suppose Assumptions 6 and 7 and we define

(2 t) = %ﬁi’”), te0,T). (4.14)

foT (2, 1) |*par < o0 and

drs(1)
dps

n(t) = alz) / (2, 8)kas(L) = me(z) — / Az, 52D, (4.15)

is well-defined and n(z,-) is absolutely continuous with respect to pas and therefore
bounded.

3. Under the same assumptions H(z) = S% admits a FS decomposition H(z) = H(z)o +

Proof.

2.

fo 2):dS; + L(2)7 where

H(z), = eli =gz (4.16)
E(2)r = 7(z t)eft n(z.ds) gz—1 (4.17)
L) = H(z)i— H(z)o— / € (4.18)

1. is a consequence of Lemma 2.4.6.

v(z,) is square integrable because Assumption 7 and z,z + 1 € D. Moreover 7 is

de,()] N _ [T o [T dr(1)
W) ) < , 1R, 4.19
o I O e (A )

well-defined since

([ b

In order to prove that (4.16),(4.17) and (4.18) constitute the F'S decomposition of H(z),

taking into account Remark 2.2.16 we need to show that

H(z)o is Fo-measurable,

(a)

(b) (L(2), >—0,
)
)

a

(c) £(2) €

(d) L(z) is a square integrable martingale.
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We proceed similarly to the proof of Lemma 3.3 of [49]. Point (a) is obvious. Partial
integration and point 1 of Proposition 2.4.12 yield

t
H(2), = H(2)o+ / RCCRVE / Wi duyt | el Me09; i (2).
0
(4.20)
On the other hand

/0 £(2)udS, = / £(2)udM, + / (el S k(1) (4.21)

Hence, using expressions (4.20) and (4.21), by definition of 7 in (4.15), which says
n(z, du) = kagu(2) — v(2,u)kau (1), we obtain

L(z); = H(2), — H(z 0—/5 )udS,, _/ el A g (2 /5 WdM,, (4.22)
0

which implies that L(z) is a local martingale.

From point 1. of Proposition 2.4.12, using (4.17), it follows that

t -
(L) M), = [ el IS o (2,1) = (2 u) )
0
Then by definition of v in (4.14), pa(z,1) = v(z,t)pa: , yields,
(L(z),M), =0 (4.23)

Consequently, point (b) follows. To continue the proof of this proposition we need the

lemma below.

Lemma 2.4.19. For all z € C as wn Proposition 2.4.18, dp; a.e. we have

1o y(z,t) = (2, 1);
2. n(z,t) =n(z,t).

Proof. Using Remark 2.2.3 1) we observe z,z + 1 € D.

1. By definition of v in (4.14), v(z,t)pa: = pat(z, 1) . Then, taking the complex conjugate
of the integral from 0 to ¢ and using Remark 2.2.3.1 yields,

Yt t
/ (2, 8)pus = / (2, 8)pus -
0 0
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2. It is a consequence of the definition of 1 in (4.15) and point 1.
U

We continue with the proof of point 3. of Proposition 2.4.18. It remains to prove point
(d) i.e. that L(z) is a square-integrable martingale for all z € D and that Re(£(z)) and
Im(&(2)) are in ©. (4.22) says that

/ eIz g /5

By Proposition 2.4.12, Lemma 2.4.19 and (4.22), it follows

(L. IR), = <L<z>,L<z>>t:<L<z>, [ remao)

O (4.24)

t
_ / efsT Ti(z,du)efsT n(z,du 2Re pds / 5 ng U(E,du)ssli—épds(z 1) ]
0

Consequently

t
(L), 1)) = / el 2 AN ST 4, (2) = (2 5)Ppas] (4.25)

t 0
Taking the expectation in (4.25), using point 2., (4.14), (4.15) and Lemma 2.4.6, we obtain

E [<L(z),m>T} <. (4.26)

Therefore, L is a square-integrable martingale.
[t remains to prove point (c) i.e. that (z) € ©. In view of applying Lemma 2.4.16, we

evaluate

T T
i e(z
/ [€(2)s]*S2pas :/ (2, 8) el 2helntedn GEREE (4.27)
0 0
Similarly as for (4.25), we can show that the expectation of the left-hand side of (4.27) is
finite. This concludes the proof of Proposition 2.4.18. O

2.4.5 FS decomposition of special contingent claims

Now, we will proceed to the FS decomposition of more general contingent claims. We consider

now options of the type

H = f(Sy) with f(s)— /C STI(dz) | (4.28)
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where II is a (finite) complex measure in the sense of Rudin [68], Section 6.1. An integral
representation of some basic European calls can be found later.

We need now the new following assumption.

Assumption 8. Let Iy = suppll NR. We denote I = 215U {1}.
1. Iy s compact.
2. Vz esuppll, z,z+1€D.
3. Iyc 2.

< Q0.

) d(kt())
dpt

4. SUP,er )
[o¢]

Remark 2.4.20. 1. Point 3. of Assumption 8 implies sup, ;. g ||kat(Re(2))]|; < 00.

2. Under Assumption 8, H = f(St) is square integrable. In particular it admits an FS

decomposition.

3. Because of (4.6) in Proposition 2.4.10, the Radon-Nykodim derivative at Point 4. of

Assumption 8, always exists.

We need now to obtain upper bounds on z for the quantity (4.26). We will first need
the following lemma which constitutes the generalization of of Lemma 3.4 of [49] which was
stated when X is a Lévy processe. The fact that X does not have stationary increments,

constitutes a significant obstacle.

Lemma 2.4.21. There are positive constants ¢y, co, c3 such that dps a.e.

1.
dR
“up 6(;7(27 s)) <e
2€Ip+iR Ps
2. For any z € Iy + 1R
dps dR ;
o) < ) <y - L)

— sup /o 2Re(17(z,dt))exp(/t Re(n(z,ds))) < oo.

z€Ilp+iR
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Remark 2.4.22. 1. According to Proposition 2.4.18, t — Re(n(z,t)) is absolutely con-

tinuous with respect to dp;.
2. We recall that suppll is included in Iy + iR.

Proof (of Lemma 2.4.21). According to Point 3. of Assumption 8 we denote

C11 -= sup
zel

For z € Iy + iR, t € [0,T], we have
020 =l = [ s ) and a0 = k(@) = [ (0.
Then, we get Re(n(z,t)) = Re(r(z)) — fot Re(y(z,s))drs(1) . We obtain

/tTRe(n(Z,dS)) < Re(kr(z) — ru(2)) + /tTV(Z’S)dRS(l)'

(4.30)
T T
Re(dks
= / Mdps + / ~(z, s)dms(l)‘ :
t dps t
Since <L(z), L(z)> is increasing, and taking into account (4.25), the measure,
t
(dps(2) — (. ) Pdpy)
is non-negative. It follows that
dps
psl2) _ V(z,8)* >0, dp,ae. (4.31)
dps
. . L dps(z) . .
Remark 2.4.23. By (4.31), in particular the density 7 s non-negative dps a.e.
Consequently,
d s drs(2
pdftelrs(z) _ drs(2Rez) ) - (4.32)
dps dps
In order to prove 1. it is enough to verify that, for some ¢y > 0,
dR 1 dRe(ks
dRe(n(z5) _ . LdBelrs(z) (4.33)

dps - 2 dps
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In fact, (4.32) and Assumption 8 point 3. and (4.29), imply that

dRe(n(z,s))

<cy+ —=ci1 =: .
dps > Co 211 1

To prove (4.33) it is enough to show that
1
Re(u(=7) — (2, 1)) < colpr — po) + g Relrr(2) — (=), ¥ €[0.7]

Again Assumption 8 point 3. implies that

T T
/ v(z, s)d/is(l)‘ < 012/ [v(z, s)|dps
t t

where ¢ = Hd%p(sl)ﬂoo. Using (4.31), and Assumption 8 it follows
dps(z dr(2Re(z 2dRe(ks(z 2dRe(kg(z
g < die) | dr(Re) | 2Re((:) | 2Re(n(z)

dps dps dps dps

Aah(z 9 < ( . (%p”))) ,

where c¢3 > 0 is chosen such that ¢2; > 4cf, + ?5c1;. Consequently

/tTwz,s)dns(l)] <[ . (i 5 [lD)

Coming back to (4.30), we obtain

Relo(e.7) =) < [ (PAGED oy L RAERED ) g,

(e (it )

(4.32) and Assumption 8 allow to establish

This implies that

Re(n(z,T) — n(z,1)) S/tpos (cﬁ%%ﬁ'z(z))) :

where ¢y = % + ¢13. This concludes the proof of point 1.

In order to prove point 2. we first observe that (4.33) implies

dRe(ky(2)) dRe(n(z,s))
T, = ( - T)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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dps a.e. (4.37) implies

dRe(n(z,s))

2
Y(z,8)]" < cop —4
1z )P < e i

: (4.40)

where co; = ¢11 + 4¢g. Point 2. is now established with ¢y = ¢9; and c3 = 4.

We continue with the proof of point 3. We decompose
Re(n(z,1)) = A (2,t) — A™(2,1)

where

A+(z,t):/0t (%{f’s)))ﬂps, and A(z,t):/ot (%ff’s)))dm.

AT(z,.) and A~ (z,.) are increasing non negative functions. Moreover point 1. implies
A+(th) S C1pt -

At this point, for z € Iy + iR

T

T
—/ R@(T](Z7dt))@ﬁfT?Re(n(z’dS)) Z dt A+(Z dt)) QJtTRe(n(z,ds))
0

T
A= (2, dt)e 2(A*(2,1)— A“'(z,t))G—Q(A_(z,T)—A_(z,t))

f
< 6201PT/ (A (z,T)fA_(z,t))A—(’%dt)
0

2c 2c
_ ecpr {1 B 6_2A—(z,T)} < ﬂ :
2 - 2

which concludes the proof of point 3 of Lemma 2.4.21.

By Lemma 2.4.6, it follows

cs:= sup E[SY] <o0. (4.41)

zel s<T

Theorem 2.4.24. Let I1 be a finite complex-valued Borel measure on C.

Suppose Assumptions 6, 7, 8. Any complex-valued contingent claim H = f(St), where f is
of the form (4.28), and H € L%, admits a unique FS decomposition H = Hy + fOT &dSy + Ly
with the following properties.
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1. H e L? and

H, = / H2)Il(dz), & = / (2)II(dz), L, — / L(2),T1(d2),

where for z € supp(Il), H(z),£(z) and L(z) are the same as those introduced in Propo-
sition 2.4.18 and we convene that they vanish if z ¢ supp(II).

2. Previous decomposition is real-valued if f is real-valued.

Remark 2.4.25. Taking Il = 6,,(dz), zo € C, Assumption 8 is equivalent to the assumptions
of Proposition 2.4.18.

Proof. a) f(Sr) € L? since by Jensen,

[c (dz) SZ

where |II| denotes the total variation of the finite measure II. Previous quantity is

E / 1T (d2) E|S27#|[TT|(C) < sup E(52)|IT|(C),

x€lp

bounded because of Lemma 2.4.18.
We go on with the FS decomposition. We would like to prove first that H and L are
well defined square-integrable processes and E(fOT &s|2d(M)5) < oc.

By Jensen’s inequality, we have

2

E

/C L(2),T1(d2)

|<E ( / |H\<dz>\Lt<z>|t) O = [ Im@ELE R
Similar calculations allow to show that

E[¢Z] < |1|(C) / Md2)EE(=)f] and E[L?] < [TI(C) / T (d=)E[ Lu(2)P] -
We will show now that

o (AL): sup;cr equppn B[ He(2)[?] < 00;
o (A2): [oT[(d2)E[| Le(2)[7] < oo;

o (A3): )
B ([ ot [ lerimin) <o
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(A1): Since H(z); = eli n(zds) G2 we have

‘H(Z)t|2 = H(Z)tH(Z)t _ eftT 2Re(n(z,ds))St2Re(z) 7
SO

E[‘H(Z)tm = @fiT 2Re(n(z,ds))E[St2Re(z)] < C46ftT 2Re(n(2,ds))

Y

where ¢4 was defined in (4.41). Lemma 2.4.21 imply (A1l). Therefore (H;) is a well-

defined square-integrable process.

(A2): E[|L,(2)?] < E[|Lr(2)]?] = E[<L(z), L(z)> |, where the first inequality is due
T

to the fact that |L;(2)|? is a submartingale.

. [<L(Z)7E>T} e |:/T 6];T2Re(n(z,du)582i%e(z) [dps(Z) _ |7(Za S)Pdps}} '

0

By Fubini’s, Lemma 2.4.6 and (4.25), we have
T
_ jST 2Re(n(z,du) 2Re(z) dps(Z) o 2
E[(za.2@),] - [ Bfs2) | LE yeop ap,

T
< / oI 2Re(n(z.du) [M] dp..
0 dps

According to Lemma 2.4.21 point 2, previous expression is bounded by ¢,I(z), where

I(z) = /0 potexp < /tTQRe(n(z,ds)) {CQ_C3MD

dp
(4.42)
= CQIl(Z) + 6312(2) s
where
T T
Li(z) = / dp; exp (/ 2Re(n(z,ds)))
0 t
T T
L(z) = / exp (/ 2Re(77(z,ds))) Re(n(z,ds))
0 t
Using Lemma 2.4.21, we obtain
sup |[1(2)| < prexp (2cipr)  and  sup [[x(z)| < oo, (4.43)

z€lp+iR z€Ilp+iR
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and so

sup E [<L(z),m>T] < 00 . (4.44)

z€Ilp+iR

This concludes (A2).
We verify now the validity of (A3). This requires to control

/ " pus? (f |n|(dz>|5<z>t|2)1 <E [ / " pus? ( [ i)

Using Jensen’s inequality, this is smaller or equal than

) [ ) [ o [s20) hte e (2 [ Reloedsn)

Lemma 2.4.21 gives the upper bound

E

T
7(z,1) exp ( / Re(n(z,ds») g3~

)

:|TT|(C) / T1|(d2)I() |

where I(z) was defined in (4.43). Since II is finite and because of (4.44), (A3) is now
established.

In order to conclude, it remains to show that L is an (F;)-martingale which is strongly
orthogonal to M. This can be established similarly as in [49], Proposition 3.1, by

making use of Fubini’s theorem and Fubini’s theorem for stochastic integrals (cf. [63],
Theorem IV.46) and (A1), (A2), (A3).

Consequently, (Hy, &, L) provide a (possibly complexe) FS decomposition of H.

b) It remains to prove that the decomposition is real-valued. Let (Hy, ¢, L) and (Hy, €, L)
be two FS decomposition of H. Consequently, since H and (.S;) are real-valued, we

have
—_— —_— T J— —_
OZH—HZ(HO—H0)+/ (& —&,)dSs + (Lt — Lr) |
0

which implies that 0 = I'm(H,) + fOT Im(&s)dSs + Im(Ly). By Theorem 2.2.19, the
uniqueness of the real-valued Follmer-Schweizer decomposition yields that the pro-
cesses (H,;),(&) and (L) are real-valued.

O
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2.4.6 Representation of some typical contingent claims

We used some integral representations of payoffs of the form (4.28). We refer to [25], [64]
and more recently [31], for some characterizations of classes of functions which admit this
kind of representation. In order to apply the results of this paper, we need explicit formulae

for the complex measure II in some example of contingent claims.

Call

The first example is the European Call option H = (S7 — K),. We have two representations

of the form (4.28) which result from the following lemma.

Lemma 2.4.26. Let K > 0, the European Call option H = (S — K), has two representa-
tions of the form (4.28):

1. For arbitrary R > 1, s > 0, we have

1 R+ico K1-=
- K)y =— f—dz . 4.4
(s )+ 27i ° z(z—1) - (4.45)

R—ico

2. For arbitrary 0 < R <1, s > 0, we have
1 R+ico Kl—z

_K), — 5= — E—— 4.4
(=K —s=52 ) o= p® (4.46)

Put

Lemma 2.4.27. Let K > 0, the European Put option H = (K — St)4 gives for an arbitrary
R<0,5s>0

1 R-+ico Klfz
K — = — ez . 4.47
( s)+ 27i ° z2(z—1) - (4.47)

R—ioc0
2.5 The solution to the minimization problem

2.5.1 Mean-Variance Hedging

F'S decomposition will help to provide the solution to the global minimization problem. Next

theorem deals with the case where the underlying process is a PII.
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Theorem 2.5.1. Let X = (X;)wcjor) be a process with independent increments with log-
characteristic function V,. Let H = f(Xr) where [ is of the form (3.20). We suppose
that the PII, X, satisfies Assumptions 2, 3, 4 and 5. Then, the variance-optimal capital V;
and the variance-optimal hedging strategy o, solution of the minimization problem (2.1), are

given by
% - HO ) (51)

and the implicit expression

t
o= bt ot~ Vo [ ouds,) (5.2)
0

where the processes (Hy),(&) and (N\;) are defined by

! /

o= [ i . e= [ BO) ) and ai= G 5
and
H(u), = WD) =)+ 07 () =i (u) piuXee  p n(u,t) = i/t giéig;d (W;(u) — W;(O)) (5.4)

The optimal initial capital is unique. The optimal hedging strategy ¢.(w) is unique up to
some (P(dw) ® dt)-null set.

Proof. Since K is deterministic, the optimality follows from Theorem 2.3.34, Theorem 2.2.22
and Corollary 2.2.24. Uniqueness follows from Theorem 2.2.21. We recall that o was given
in (3.15). O

Next theorem deals with the case where the payoff to hedge is given as a bilateral Laplace
transform of the exponential of a PII. It is an extension of Theorem 3.3 of [49] to PII with

no stationary increments.

Theorem 2.5.2. Let X = (Xt)te[O,T] be a process with independent increments with cumulant
generating function k. Let H = f(eXT) where f is of the form (4.28). We assume the validity
of Assumptions 6, 7, 8. The variance-optimal capital Vi and the variance-optimal hedging

strategy @, solution of the minimization problem (2.1), are given by

Vo = H, (5.5)
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and the implicit expression

)\ t
Y = ft + S—t(Htf - % - / stdss) ) (56)
t— 0

where the processes (Hy), (&) and (N) are defined by

et i= P it pey) = e+ ) = ) = ) 5.7
n(z,dt) == kg (2) — v(z, t)kar (1) , (5.8)
_d(r(1))
pyp I (5.9)
H, = / el M=) ST (dz) (5.10)
C

— . 6ftTn(z,ds) z—1 =) . .

X / A (2, 1) S2I(dz) (5.11)

The optimal initial capital is unique. The optimal hedging strategy ¢.(w) is unique up to
some (P(dw) ® dt)-null set.

Remark 2.5.3. The mean variance tradeoff process can be expressed as follows, see (4.12):

" dry(1)
K:/uinul.
' 0 dpu d()

Proof of Theorem 2.5.2. Since K is deterministic, the optimality follows from Theo-
rem 2.4.24, Theorem 2.2.22 and Corollary 2.2.24. We recall that o was calculated in (4.11).
Uniqueness follows from Theorem 2.2.21.

U

When the underlying price is an exponential of PII process, we evaluate the so called
variance of the hedging error of the contingent claim H i.e. the quantity E[(Vo+Gr(p)—
H)?|, where V, ¢ and H were defined at Theorem 2.5.2.
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Theorem 2.5.4. Under the assumptions of Theorem 2.5.2, the variance of the hedging error

equals
Jo == <//J0 Y,z (dz)) )
where
y+z ki (y+2)+taly,z,t) .
ol 2) = [} B(y, =, dt)e : Y,z € suppll
0 . otherwise.
and

alrt) = D) =0 D) =) = [ (P

Bl zt) = puly,2) — / (22 8)pas( 1) -

Remark 2.5.5. We have

a(y,z.t) = (n(z,T) —n(z1) =y, T) = n(y, 1)) — (Kr — Ky) ,
where K 1s the MV'T process.

Proof [of Theorem 2.5.4|. Since X, = 0, Fy is the trivial o-field, therefore Ly = 0, because
it is mean-zero and deterministic.
The quadratic error can be calculated using Corollary 2.2.24 and Theorem 2.2.22 3. They

give

E UOTexp{—(KT—KS)}d@)S | (5.12)

where L is the remainder martingale in the F'S decomposition of H. We proceed now to the
evaluation of (L).

Similarly to the proof of Theorem 3.2 pf [49], using (4.24), Remark 2.2.4, the bilinearity
of the covariation and (4.44), it is possible to show that

| [ T1(dy)T1(d),

is a well-defined, continuous, predictable, with bounded variation complex-valued process

and

(L, L), / / T1(dy)TT(d>). (5.13)
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[t remains to evaluate (L(y), L(z)) for y, z € supp(II).
We know by Proposition 2.4.12 that for all y, 2z € %,

<M@MWALZASﬂ%M%@

Using the same terminology of Proposition 2.4.18, similarly to (4.25) we have

t T
(L(y), L(2)), = / els Ed0Tydw) GUre [, (4 2) — (2, 8)pas(y, 1)] -

0
Hence,

t T
<M%L@n=/euwmwwmmww@z%y

0
We come back to (5.12). Recalling Remark 2.5.5 we have

. T
/ 6_(KT—Ki)d<L(y), L(Z)>t = / ea(y,z,t)styjzﬂ(y,z,dt).
0 0

Since E[SY*] = sy e W+2) an application of Fubini’s theorem yields

T T
E </ 67(KT*Kt)d <L(y>’ L(Z)>t) — SngZ/ ea(y,z,t)er(erz)ﬁ(y’ z, dt) )
0 0

which equals Jy(y, z). (5.13), (5.14) and Fubini’s theorem imply

A‘%“iLL /// KT 4 (L(y), L(2)), (dy)TI(dz)

hence

(5.14)

E[/OTe (Kr=Kog (], L)] _ /C/CE{/OTe_(KT_Kt)d@(y),L(z)>t TI(dy)TI(d>) |

= //JO Y,z 1I(dz).

This concludes the proof of Theorem 2.5.4.

2.5.2 The exponential Lévy case

In this section, we specify rapidly the results concerning FS decomposition and the mini-

mization problem when (X}) is a Lévy process (A;). Using the fact that (A;) is a process

with independent stationary increments it is not difficult to show that

(5.15)
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where £ (2) = k,(2), k* : D — C. Since for every z € D, t — k;(z) has bounded variation
then X = A is a semimartingale; moreover Proposition 2.3.16 implies that x* is continuous.

We make the following hypothesis.
Assumption 9. 1. 2€ D;

2. kM2) — 2kM(1) £ 0.
Remark 2.5.6. 1. py = (k*(2) — 2x™(1)) dt;

dlit 1 A
d—pt(z) = /@A(Q)—2/<;A(1)K (2) for anyt € [0,T),z€ D; so D="D.

3. Assumptions 6, and 7 are verified.

Ais continuous.

4. Assumption 8 4. is always verified if Iy is compact since K
5. Since D =D, Assumption 8 2. is verified if Assumption 8 3. is fulfilled.
Again we denote the process S as

Sy = spexp(X;) = soexp(Ay) .

It remains to verify points 1. and 3. of Assumption 8 which of course depends on the

contingent claim.

Example 2.5.7. 1. H = (Spr — K);. We choose the second representation for the call.
So, for 0 < R < 1,

In=supp(Il)NR = {R,1}.

Assumption 8 1. is clearly satisfied. Since 2 € D by Assumption 9, in this case
Assumption 8.3 reduces to 2R € D. This is always satisfied since D D [0,2] and it is

conver.
2. H= (K — Sr)y+. We recall that R <0 and so
Iy = supp(Il) NR = {R}.

Again of course point 1. of Assumption 8 is fulfilled. Point 3. gives again 2R € D.
Now 2R s a negative value but this is not a restriction provided that D contains some

negative values since we have the degree of freedom for choosing R.
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Remark 2.5.8. We come back to the examples introduced in Remark 2.3.21. In all the three
cases, Assumption 9 is verified if 2 € D. This happens in the following situations:

1. always in the Poisson case;
2. if N =X is a NIG process and if 2 < o — 3

3. if A =X is a VG process and if 2 < —( + /% + 2.

Theorem 2.5.2 allows to reobtain the results stated in [49]. They will appear as a partic-
ular case of Corollary 2.5.16.

Remark 2.5.9. If X is a Poisson process with parameter X\ > 0 then the quadratic error is

zero. In fact, the quantities

RMz) = Aexp(z) — 1)

piy,z) = At(exp(y) — 1)(exp(z) — 1)
KMz 4+ 1) — kM2) — kA1), exp(z) —1
(1) = AR — 20 e—1

imply that 5(y, z,t) = 0 for every y,z € C,t € [0,T].
Therefore Jo(y, z,t) = 0. In particular all the options of type (4.28) are perfectly hedge-
able.

2.5.3 Exponential of a Wiener integral driven by a Lévy process
Let A be a Lévy process. The cumulant function of A; equals k*(2) = tk#(z2) for k) = Kk :
Dy — C. We formulate the following hypothesis:
Assumption 10. 1. There is r > 0 such that r € D,.

2. kM(2) — 26M(1) #£ 0.

3. Let € > 0 such that 2¢ < r and l : [0,T] — [g,r/2] be a (deterministic continuous)

function.
We consider the PII process X; = fot lsdA.

Remark 2.5.10. According to Lemma 2.4.4 for every ~v > 0, such that v € D,

KM (2y) — 262 (y) > 0 . (5.16)
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Remark 2.5.11. 1. Lemma 2.3.24 says that D contains D, , = {x € Rlex, 5 € DA} +
iR, and ky(z) = fg kM (2l,)ds .
2. pi =[5 (KM2L) — 262(1,)) ds;

3. 2 € D; X is a PII semimartingale since t — r(2) has bounded variation, see Lemma

2.3.14.
4. 1€ D., since 0,7 € Dy.

Remark 2.5.12. If | = 1 then X = A and the validity of Assumption 10 is equivalent to
the validity of Assumption 9. In fact if Assumption 10 is verified then, settingr =2, =1,

Assumption 9 is verified. The converse is a consequence of Remark 2.5.11 3.
Proposition 2.5.13. Assumptions 6 and 7 are verified. Moreover D., C D.

Proof. 1. Using Lemma 2.4.4, Assumption 6 is verified if we show that t — pi(1) =

ke(2) — 2k¢(1) is strictly increasing. Now

Re(2) — 2k (1) = /t (k™(215) — 262(1,)) ds
0
Inequality (5.16) and Lemma 2.4.4 imply that Vs € [0, 7]
KM(21) — 26M(1) > 0 .
In fact, A has no deterministic increments. This shows Assumption 6.

2. For z € D, ,, by Remark 2.5.11 1. we have

dry(2)
dp

_ KJA(th) Supxe[s,r] "%A('CEZ)’
KA (2l) — 2rM(L) | T infaee, g (K4 (22) — 262 (2))

Previuous supremum and infimum exist since z + x*(zx) is continuous and it attains
a maximum and a minimum on a compact interval. So, D., C D and Assumption 7
is verified because of Remark 2.5.11 4.

O

Remark 2.5.14. 1. Point 5. of Assumption 8 is also verified if we show that 21y C D, ,;
in fact D., C D and

e,r De,r

2 * 2

because of Remark 2.5.11 4. and the fact that D, , is conveze.

suppll U (suppll + 1) C

C Ds,r>
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2. From previous proof it follows that

dri(2) _ kM (2ly)
dp; kA2ly) — 260 (1)

3. Admitting point 1. of Assumption 8, then [0,T] x I is compact. Since t +— d';;(f) is

continuous, point 4. of Assumption 8 would be verified.

We consider again the same class of options as in previous subsections. To conclude the

verification of Assumption 8 it remains to show the following.
e [y is compact. This point will be trivially fulfilled.
o 2Iy C D.,.
The only point to establish will be in fact
I ¢ {a|ex, % € Dy ). (5.17)

Example 2.5.15. 1. H = (S;p — K),. Similarly to the case where X is a Lévy process,
we take the second representation of the European Call. In this case 21y = {2R,2} and
(5.17) is verified.

2. H= (K — Sr);. Again, here R <0, 21, = {2R}.
Again, we only have to require that Dy contains some negative values, which is the

case for the two examples introduced in Remark 2.3.21. Selecting R in a proper way,
(5.17) is fulfilled.

We provide now the FS decomposition and the solution to the minimization problem
under Assumption 10. By Theorem 2.4.24 and Theorem 2.5.2, we obtain the following

result.

Corollary 2.5.16. We consider a process X of the form X; = fot lsdAg under Assumption
10. We consider an option H of the type (4.28). For z € suppll,t € [0,T] we set

K (1)
KA(2l,) — 2kM(1s)’
Mz 4 D)) — £ EL) — kA (L)
1(z98) = KM (20,) — 2k (1) ’

nzs) = ﬁA(Z@)‘,@A(zzS ElZ)nAus) (<4 l) = w3(el) = (L))

A(s) =
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For convenience, if z ¢ suppll then we define

The following properties hold true.
1. The FS decomposition is given by Hr = Hy + fOT &dSy + L where
H, = / el n(2ds) 11 (d ),
C
& = / Yz, t)elt 1) SE1(dz),
C
t
Lt - Ht - HO - / fudsu
0

2. The solution of the minimization problem is given by a pair (Vy, @) where

At
Vo=Hy and ¢ =& + —S( )(Ht_ — Vo — Gi_(¥)).
tf

2.5.4 A Log-Gaussian continuous process example.

Let (W;) be a standard Brownian motion, we consider X; = Wy, where ¢ : Ry — R is a

strictly increasing function, including the pathological case where ¢/, = 0 a.e. For z € D = C,

we have
E[ert] — E[GZWw(Z)] — em(z) — eé’d)(t) ,
so that
52
Ht(z) = Eib(t) ) P(t) = ’ft(Q) - 2/‘%(1) = ¢(t)
So

t t 1 tl
(M, M), = /0 S2 y(ds) and A, — /0 S L), = /0 S5, u(ds)

and the MV'T process verifies

| "1 1
K= [ gmanan, = [ Juias) = o).
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Assumption 6 1. is verified since v is strictly increasing; Assumption 6 2., Assumption 7 and

Assumption 8 are verified since D = D = C and dzt—p(tz) = 22—2 is continuous. Consequently all

the conditions to apply Theorem 2.5.2 are satisfied and

v(z,t) =2z, n(zt)= @(22 —z) and M\() =

N —

Hence we can compute the variance-optimal hedging strategy ¢ and the variance-optimal

initial capital Vj in this case

1 t
o =& + K(Ht— - Vo — /0 ©sdSs)

and

2

H, — /(C el s SETT(dz) = /(C exp{z 2_2(\I/(T) —\I/(t))}SfH(dz)

£ = /C (2, t)eli 1) ST () = /(C 2 exp {22 o “(W(T) - IIf(t))} Sz 'I(dz)

Remark 2.5.17. Calculating B(y, z,t) of the quadratic error section, we find 3 = 0. There-
fore here also the quadratic error is zero. This confirms the fact that the market is complete,

at least for the considered class of options.

2.6 Application to Electricity

2.6.1 Hedging electricity derivatives with forward contracts

Electricity markets are composed by the Spot market setting prices for each delivery hour
of the next day and the forward or futures market setting prices for more distant delivery
periods. For simplicity, we will assume that interest rates are deterministic and zero so
that futures prices are equivalent to forward prices. Forward prices given by the market
correspond to a fixed price of one MWh of electricity for delivery in a given future period,
typically a month, a quarter or a year. Hence, the corresponding term contracts are in fact
swaps (i.e. forward contracts with delivery over a period) but are improperly named forward.
However, the strong assumption that there are tradable forward contracts for all future time

points T; > 0 is usual and will be assumed here.
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Because of non-storability of electricity, no dynamic hedging strategy can be performed on
the spot market. Hedging instruments for electricity derivatives are then futures or forward
contracts. The value of a forward contract offering the fixed price FOT 4 at time 0 for delivery
of IMWh at time T} is by definition of the forward price, Sg’Td = 0. Indeed, there is no cost
to enter at time O the forward contract with the current market forward price Fg ¢, Then,
the value of the same forward contract S%7 at time ¢ € [0, Ty is deduced by an argument
of Absence of (static) Arbitrage as ;"¢ = e ("9 (F* — FJ*). Hence, the dynamic of the
hedging instrument (S;""*)o<;<7, is directly related (for deterministic interest rates) to the
dynamic of forward prices (FtTd)ogthd. Consequently, in the sequel we will focus on the

dynamic of forward prices.

2.6.2 Electricity price models for pricing and hedging application

Observing market data, one can notice two main stylised features of electricity spot and

forward prices:

e Volatility term structure of forward prices: the volatility increases when the time to

maturity decreases;

e Non-Gaussianity of log-returns: log-returns can be considered as Gaussian for long-
term contracts but they are clearly leptokurtic for short-term contratcs with huge

spikes on the Spot market.

Hence, a challenge is to be able to describe with a single model, both the spikes on the short
term and the volatility term structure of the forward curve. One reasonable attempt to do so
is to consider the exponential Lévy factor model, proposed by Benth and Benth [11], or [21].
The forward price given at time t for delivery at time 7; > ¢, denoted FtTd is then modeled

by a p-factors model, such that

P
Fl = Fl7exp(m]® + ZXf’Td) , forallt e€0,Ty] ,where (6.18)
k=1

T . e
o (m;?)o<t<, is a real deterministic trend;

e For any k = 1,---p, (X" g<s<r, is such that X;7* = fot ope W= AR where
A= (A',---  AP) is a Lévy process on RY, with E[A¥] = 0 and Var[Af] = 1;

e 0, >0, A\, >0, are called respectively the volatilities and the mean-reverting rates.

85



CHAPTER 2. VARIANCE-OPTIMAL HEDGING IN CONTINUOUS TIME

Hence, forward prices are given as exponentials of PII with non-stationary increments. Then,
the spot model is derived by setting St, = F% and reduces to the exponential of a sum of
possibly non-Gaussian Ornstein-Uhlenbeck processes. In practice, we consider the case of a
one or a two factors model (p = 1 or 2), where the first factor X! is a non-Gaussian PIT and
the second factor X? is a Brownian motion with o, > o0,. Notice that this kind of model
was originally developed and studied in details for interest rates in [64], as an extension of
the Heath-Jarrow-Morton model where the Brownian motion has been replaced by a general
Lévy process. Recent contributions in the subject are [33, 67].

Of course, this modeling procedure (6.18), implies incompleteness of the market. Hence, if
we aim at pricing and hedging a European call on a forward with maturity 7" < Ty, it won’t
be possible, in general, to hedge perfectly the payoff (Fg‘i — K), with a hedging portfolio of
forward contracts. Then, a natural approach could consist in looking for the variance optimal
price and hedging portfolio. In this framework, the results of Section 2.4 generalizing the
results of Hubalek & al in [49] to the case of non stationary PII can be useful. Similarly, some
arithmetic models proposed in [8] for electricity prices, consists of replacing the right-hand
side of (6.18) by its logarithm. Hence, with this kind of models the results of Section 2.3.4

can also be useful.

2.6.3 The non Gaussian two factors model

To simplify let us forget the upperscript T, denoting the delivery period (since we will
consider a fixed delivery period). We suppose that the forward price F' follows the two

factors model

Fy = Fyexp(m, + X} + X7), forallt€[0,T,] ,where (6.19)

m is a real deterministic trend starting at 0. It is supposed to be absolutely continuous

with respect to Lebesgue;

X! = fot ose Ma=w A, where A is a Lévy process on R with A following a Normal In-
verse Gaussian (NIG) distribution or a Variance Gamma (VG) distribution. Moreover,
we will assume that E[A;] = 0 and Var[A;] = 1,

e X2 = ;W where W is a standard Brownian motion on R;

A and W are independent.
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e 0, and o; standing respectively for the short-term volatilty and long-term volatility.

2.6.4 Verification of the assumptions

The result below helps to extend Theorem 2.5.2 to the case where X is a finite sum of
independent PII semimartingales, each one verifying Assumptions 6, 7 and 8 for a given
payoff H = f(speX7).

Lemma 2.6.1. Let X', X? be two independent PII semimartingales with cumulant gener-
ating functions k' and related domains D', D',i = 1,2 characterized in Remark 2.5.8 and
(4.13). Let f : C — C of the form (4.28).

For X = X' + X? with related domains D, D and cumulant generating function k, we have

the following.
1. D=D'n D2
2. D'NnD*C D.
3. If X', X2 verify Assumptions 6, 7 and 8, then X has the same property.

Proof. Since X', X? are independent and taking into account Remark 2.3.8 we obtain 1. and
kie(2) = K (2) + K*(2), Yz € D.

We denote by p%,i = 1,2, the reference variance measures defined in Remark 2.4.8. Clearly
p=p'+p* and dp' < dp with H‘Z—‘;HOO <1
If z € D' N D?, we can write

T4 2 Tl drl(2) dol |? T dr2(2) do?|?
/ Ki(2) dp, < 2/ ki (12) APy dp; + 2/ K (22) Py 0
0 dpt 0 dpy  dpy 0 dpi  dp,
= 92 g d,‘ﬂ‘%(z) 2d_pt1d 1+2 ’ d/ﬁ)?(Z) 2d—p§d 2
- ot | dp " dp? | dp "
0 Pt Pt 0 Pt Pt
T 1 2 T 2 2
dr; (2) dr;(2)
S 2 / t dpl + / t de )
( 0 dpy ' 0 dp; '
This concludes the proof of D! N'D?* C D and therefore of the of Point 2.
Finally Point 3. follows then by inspection. U
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With the two factors model, the forward price F'is then given as the exponential of a
PII, X, such that for all ¢ € [0, T],

t
Xy =m+ X} + X2 =my + o, / e MW gN, 4 oW (6.20)
0

For this model, we formulate the following assumption.
Assumption 11. 1. 20, € D,.
2. If oy = 0, we require A not to have deterministic increments.
3. We define e = o,e M, r = 20,.
4. [:C — C is of the type (4.28) fulfilling (5.17).

Proposition 2.6.2. 1. The cumulant generating function of X defined by (6.20), k :
0,74 x D — C is such that for all z € D., == {x € R|xzo, € Dp} + iR, then for all
t e [0, Ty,

Zoft i\ A(Ty—u)
ke(z) = z2my + 5t K (zose 47 du . (6.21)
0

In particular for fited z € D.,, t — ki(z) is absolutely continuous with respect to

Lebesgue measure.
2. Assumptions 6, 7 and 8 are verified.

Proof. We set X2 = m + X2. We observe that
t
D*=D*=C, kj(z)=exp(zm;+ 220125).

We recall that A and W are independent so that X2 and X' are independent.
X1 is a process of the type studied at Section 2.5.3. According to Proposition 2.5.13, Remark
2.5.14 and (5.17) it follows that Assumptions 6, 7 and 8 are verified for X

Both statements 1. and 2. are now a consequence of Lemma 2.6.1. O
Remark 2.6.3. For examples of [ fulfilling (5.17), we refer to Example 2.5.15.

The solution to the mean-variance problem is provided by Theorem 2.5.2.
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Theorem 2.6.4. We suppose Assumption 11. The vartance-optimal capital Vo and the

variance-optimal hedging strateqy o, solution of the minimization problem (2.1), are given

by

Vo = H, (6.22)

and the implicit expression

At

¢
or =&+ S—(Htf —Vo— / ©sdSs), (6.23)
t— 0

where the processes (Hy),(&) and (N\;) are defined as follows:

% = o Mt
(2.1) 2o + kM((2 + 1)2) — k2(22) — KMZ)
z,t): = ,
e o7 + KA(2Z) — 250 (3)
2o} A o A
n(z,t): = |zmy+ 5 K (z%)—'y(z,t)(mt+?+/i ()] dt,
0'2 A
my + 5 + K°(Z)
)\t -

o+ N2 2R
H, = /eftTn(zﬁdS)SfH(dZ%
C

S = / ’Y(Z,t)ej¥T”(Z’ds)Sfj1H(dz).
C

The optimal initial capital is unique. The optimal hedging strategy ¢.(w) is unique up to
some (P(dw) ® dt)-null set.

Remark 2.6.5. Previous formulae are practically exploitable numerically. The last condition

to be checked is
205 € Dy. (6.24)

In our classical examples, this is always verified.

1. Ay is a Normal Inverse Gaussian random variable; if o, < O‘%ﬂ then (6.24) is verified.

2. Ny is a Variance Gamma random variable then (6.24) is verified; if for instance oy <

—B+1/B2+2a

2
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2.7 Simulations

2.7.1 Exponential Lévy

We consider the problem of pricing a European call, with payoff (Sp — K)., where the

underlying process S is given as the exponential of a NIG Lévy process i.e. for all ¢ € [0, 77,
Sy = s, where X is a Lévy process with X; ~ NIG(a, 3,6, 1) .

The time unit is the year and the interest rate is zero in all our simulations. The initial value
of the underlying is sy = 100 Euros. The maturity of the option is 7' = 0.25 i.e. three months
from now. Five different sets of parameters for the NIG distribution have been considered,
going from the case of almost Gaussian returns corresponding to standard equities, to the
case of highly non Gaussian returns. The standard set of parameters is estimated on the

Month-ahead base forward prices of the French Power market in 2007:
a=23846, =-385, 0 =6.40, ;4 =0.64 . (7.25)

Those parameters imply a zero mean, a standard deviation of 41%, a skewness (measuring the
asymmetry) of —0.02 and an excess kurtosis (measuring the fatness of the tails) of 0.01. The
other sets of parameters are obtained by multiplying parameter « by a coefficient C, (3, d, 11)
being such that the first three moments are unchanged. Note that when C' grows to infinity
the tails of the NIG distribution get closer to the tails of the Gaussian distribution. For
instance, Table 2.1 shows how the excess kurtosis (which is zero for a Gaussian distribution)

is modified with the five values of C' chosen in our simulations.

Coefficient C=008|C=014|C=02|C=1|C=2

o 3.08 5.38 7.69 38.46 76.92
Excess kurtosis 1.87 0.61 0.30 0.01 | 4.1073

Figure 2.1: Excess kurtosis of X; for different values of «, (3,9, 1) insuring the same three first

moiments.

We have compared on simulations the Variance Optimal strategy (VO) using the real NIG
incomplete market model with the real values of parameters to the Black-Scholes strategy

(BS) assuming Gaussian returns with the real values of mean and variance. Of course, the VO
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strategy is by definition theoritically optimal in continuous time, w.r.t. the quadratic norm.
However, both strategies are implemented in discrete time, hence the performances observed

in our simulations are spoiled w.r.t. the theoritical continuous rebalancing framework.

Strike impact on the pricing value and the hedging ratio

Figure 2.2 shows the initial capital (on the left graph) and the initial hedge ratio (on the
right graph) produced by the VO and the BS strategies as functions of the strike, for three
different sets of parameters C' = 0.08, C' =1, C = 2. We consider N = 12 trading dates,
which corresponds to operational practices on electricity markets, for an option expirying
in three months. One can observe that BS results are very similar to VO results for C' > 1
which corresponds to almost Gaussian returns. However, for small values of C, for C' =
0.08, corresponding to highly non Gaussian returns, BS approach under-estimates out-of-the-
money options and over-estimates at-the-money options. For instance, on Figure 2.3, one
can observe that for X' = 99 Euros the Black-Scholes Initial Capital (ICgg) represents 122%
of the Variance Optimal Initial Capital (ICy), while for K" = 150 it represents only 57%
of the variance optimal price. Moreover, the hedging strategy differs sensibly for C' = 0.08,

while it is quite similar to BS’s ratio for C' > 1.

60

o o

Variance-optimal initial hedge
o o

Variance-optimal initial capital

Figure 2.2: Initial capital (on the left) and hedge ratio (on the right) w.r.t. the strike, for C' =
0.08, C=1, C =2
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Strikes

K =50

K =99

K =150

ICyvo

50.08

7.11

0.40

ICBS (VS ICVo)

50.00 (99.56%)

8.65 (121.73%)

0.23 (57.30%)

Figure 2.3: Initial Capital of VO pricing (ICy o) vs Initial Capital of BS pricing (ICpg) for C' = 0.08.

Hedging error and number of trading dates

Figure 2.4 considers the hedging error (the difference between the terminal value of the
hedging portfolio and the payoff) as a function of the number of trading dates, for a strike
K = 99 Euros (at the money) and for five different sets of parameters C' described on
Figure 2.1. The bias (on the left graph) and standard deviation (on the right graph) of the
hedging error have been estimated by Monte Carlo method on 5000 runs. Note that we could
have used the formula stated in Theorem 2.5.4 to compute the variance of the error, but this
would have give us the limiting error which does not take into account the additional error
due to the finite number of trading dates.

In terms of standard deviation, the VO strategy seems to outperform sensibly the BS
strategy, for small values of C'. For instance, one can observe on Figure 2.5, for C' = 0.08 that
the VO strategy allows to reduce 10% of the standard deviation of the error. As expected,
one can observe that the VO error converges to the BS error when C' increases. This is
due to the convergence of NIG log-returns to Gaussian log-returns when C' increases (recall
that the simulated log-returns are almost symmetric). One can distinguish two sources
of incompleteness, the rebalancing error due to the dicrete rebalancing strategy and the
intrinsic error due to the model incompleteness. On Figure 2.4, the hedging error (both for
BS and VO) decreases with the number of trading dates and seems to converge to a limiting
error corresponding to the intrinsic error. For C' = 1 and for a small number of trading
dates N < 5, the rebalancing error represents the most part of the hedging error, then it
seems to vanish over N = 30 trading dates, where the intrinsic error is predominant. For
small values of C' < 0.2, even for small numbers of trading dates, the intrinsic error seems
to be predominant. For C' < 0.2 and N > 12 trading dates, it seems useless to increase the
number of trading dates. Moreover, one can observe that for a small number of trading dates
N < 12 and for large values of C' > 1, BS seems to outperform the VO strategy, in terms of
standard deviation. This can be interpreted as a consequence of the central limit theorem.

Indeed, when the time between two trading dates increases the corresponding increments of
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the Lévy process converge to a Gaussian variable. Hence, the model error comitted by the
BS approach decreases when the number of trading dates decreases.

In term of bias, the over-estimation of at-the-money options (observed for C' = 0.08, on
Figures 2.2, 2.3) seems to induce a positive bias for the BS error (see Figure 2.4), whereas
the Bias of the VO error is negligeable (as expected from the theory).

However, to be more relevant in our analysis, we have compared on Figures 2.6 and 2.7,
the performances of the BS hedging portfolio with the VO hedging portfolio starting with
the same initial capital as the BS hedging portfolio. One can observe on Figure 2.6 that
this approach allows to reduce the standard deviation of the VO hedging error (increasing
the bias and of course the global quadratic error w.r.t. the VO strategy with optimal initial
capital).

It is interesting to notice that, in terms of skewness and kurtosis, the VO strategy seems
to outperform sensibly the BS strategy for small values of C. Figure 2.6 shows that for
C' = 0.08, the skewness of the BS hedging error is strongly negative (3 times greater than
the VO error using the same initial capital) and the kurtosis is high (14 times greater than
the VO error). Hence, in our simulations, BS strategy seems to imply more extreme losses
than the VO strategy.

In conclusion, the VO approach provides initial capital and hedging strategies which
are not significantly different from the BS approach except for log-returns with high excess
kurtosis (with small values of parameter « in the NIG case). Similarly, we can observe
(though the figures are not reported here) the same behaviour w.r.t. to the asymmetry of
the distribution: the VO approach allows to outperform significantly the BS approach for
strongly asymmetric log-returns (with high (absolute) values of parameter 5 in the NIG
case). On the other hand, in more standard cases, the VO strategy seems to be comparable
with the BS strategy in terms of quadratic error and to have the significant and unexpected

advantage to limit extreme losses (skewness and kurtosis) compared to the BS strategy.

2.7.2 Exponential PII

We consider the problem of hedging and pricing a European call on an electricity forward,
with a maturity 7" = 0.25 of three month. The maturity is equal to the delivery date of the
forward contract T" = T,. As stated in Section 2.6, the natural hedging instrument is the

corresponding forward contract with value SY = e "T(F — FT) for all t € [0, 7], where
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Figure 2.4: Hedging error w.r.t. the number of trading dates for different values of C' and for

K =99 Euros (Bias, on the left and standard deviation, on the right).

Coefficient C=008|C=014|C=02] C=1 C=2
Stdyo/Stdpgs 91.19% 95.88% | 97.63% | 107.52% | 109.39%
Biasgs — Biasyo 1.20 0.57 0.32 0.022 0.019
ICgs — ICyo 1.55 0.7 0.39 0.01 0

Figure 2.5: Variance optimal hedging error vs Black-Scholes hedging error for different values of C

and for K = 99 Euros (averaged values for different numbers of trading dates).

Moments Mean | Standard deviation | Skewness | Kurtosis
VO —0.049 6.59 —3.50 31.51
BS 1.27 7.25 —7.65 152.09
VO with ICy o = ICpg 1.39 6.47 —2.37 10.70

Figure 2.6: Empirical moments of the hedging error for C' = 0.08 and K = 99 Euros (averaged

values for different numbers of trading dates).
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Figure 2.7: Hedging error of BS strategy v.s. the VO strategy with the same initial capital as BS
w.r.t. the number of trading dates for different values of C' and for K = 99 Euros (Bias, on the left

and standard deviation, on the right).
FT = F is supposed to follow the NIG one factor model:
t
F,=eX, where X, = / o,e M WdA,  where A is a Lévy process with Ay ~ NIG(a, 3,0, 1) .
0

The standard set of parameters (C' = 1) for the distribution of A; is estimated on the same
data as in the previous section (Month-ahead base forward prices of the French Power market
in 2007):

a=1581, f=—1.581, 0 =15.57, pu=1.56.

Those parameters correspond to a standard and centered NIG distribution with a skewness
of —0.019. The estimated annual short-term volatility and mean-reverting rate are o; =
57.47% and X\ = 3. The other sets of parameters considered in simulations are obtained by
multiplying parameter a by a coefficient C, (3, d, u being such that the first three moments
are unchanged).

Figure 2.8 shows the Bias and Standard deviation of the hedging error as a function of
the number of trading dates estimated by Monte Calo method on 5000 runs. The results are
comparable to those obtained in the case of the Lévy process, on Figure 2.8. However, one
can notice that the BS strategy does no more outperform the VO strategy for small numbers
of trading dates as observed in the Lévy case. This is due to the fact that X; is no more a

sum of i.i.d. variables.
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Figure 2.8: Hedging error w.r.t. the number of trading dates for C' = 0.08 and C' = 1, for K = 99
Euros (Bias, on the left and standard deviation, on the right).

Moments || Mean | Standard deviation | Skewness | Kurtosis

VO 0.43 6.59 —2.89 16.24
BS 1.58 6.65 —3.79 25.53

Figure 2.9: Empirical moments of the hedging error for C' = 0.08, N = 10 and K = 99 Euros.
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This chapter is the object of the paper [46].

Abstract. We consider the discretized version of a (continuous-time) two-factor model in-
troduced by Benth and coauthors for the electricity markets. For this model, the underlying
15 the exponent of a sum of independent random wvariables. We provide and test an al-
gorithm, which is based on the celebrated Fillmer-Schweizer decomposition for solving the
mean-variance hedging problem. In particular, we establish that decomposition explicitely,
for a large class of vanilla contingent claims. Interest is devoted in the choice of rebalanc-
ing dates and its impact on the hedging error, reqarding the payoff regularity and the non

stationarity of the log-price process.

Key words: Variance-optimal hedging, Follmer-Schweizer decomposition, Lévy process, Cu-
mulative generating function, Characteristic function, Normal Inverse Gaussian distribution,
Electricity markets, Incomplete Markets, Processes with independent increments, trading

dates optimization.

2010 AMS-classification: 60G50, 60G51, 91G10, 60J05, 62M99

JEL-classification: C02, C15, G11, G12, G13
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3.1 Introduction

It is well known that the classical Black-Scholes model does not allow in real applications to
replicate perfectly contingent claims. Of course, this is due to market incompleteness and
specifically two major reasons : the non-Gaussianity of prices log-returns and the finite num-
ber of trading dates. The impact of these features have been intensively studied separately
in the literature.

There is a large literature on pricing and hedging with non Gaussian models (allowing for
stochastic volatility or jumps), in a continuous time setup. Then, the hedging error related to
the dicretization of the hedging strategy is in general ignored or investigated separately. One
popular approach is the Variance-Optimal hedging: if H denotes the payoff of the option and
S¢ denotes the underlying price process, the goal is to minimize the mean squared hedging

error

T
E[(Vr — H))] with Vy=c +/ v, dSE .
0

over all initial endowments ¢ € R and all (in some sense) admissible strategies v. The
first paper specifically on this subject is due to Duffie and Richardson, see [30]. Among
significant early contributions there are [72, 73, 76, 66, 41], a fairly complete recent article
on the structure of mean-variance hedging, with a rich bibliography is provided by [17]. One
of the now classical tools is the so called Follmer-Schweizer decomposition. Given a square
integrable r.v. H and an (F;)-semimartingale S = (S;);>0, that decomposition consists
in finding a triple (Ho, &, L) where Hy is Fo-measurable, £ is (F;)-predictable and L is a
martingale being orthogonal to the martingale part M of S such that H = Hy + fOT EsdSs +
L7. In the recent years, some attention was focused on finding explicit or quasi explicit
formulae for the Follmer-Schweizer decomposition or the optimal strategy for the mean-
variance hedging problem. For instance [9] gave an expression based on Clark-Ocone type
decompositions related to Lévy type measures when the underlying is a Lévy martingale,
[23] still in the martingale case with techniques of partial integro differential equations. 49|
obtained significant explicit decompositions when the underlying is the exponential of a
Lévy process and the contingent claim is a vanilla type option appearing as some generalized
Laplace transform of a finite complexe measure. Other significant semi-explicite formulae
appear in [54, 55|. [49] was continued in chapter 2 of this thesis in the framework of processes
with independent increments with some applications to the electricity market.

However, in practice, the hedging strategy cannot be implemented continuously and the
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resulting optimal strategy has to be discretized. Hence, to be really relevant the hedging
error should take into account this further approximation.

An alternative approach, less investigated in the literature, is to consider directly the hedging
problem in discrete time as proposed by Cox Ross and Rubinstein [24]. The first incomplete
market analysis in the spirit of minimizing a quadratic risk is due to [35]. They worked
with the so-called local risk-minimisation. The problem of Variance-Optimal hedging in the
discrete time setup was proposed in |70, 74]. In the recent years some interest on discrete
time was rediscovered in [13, 15, 56]. [18] revisits the seminal paper [35] in the spirit of
global risk minimization. In the discrete-time context, a significant role was played by the
analogous of the previously mentioned FS-decomposition. It is recalled in Definition 3.2.8.
Recently, many approaches have been proposed to obtain explicit or quasi-explicit formulas
for computing both the variance optimal trading strategies and hedging errors in discrete
time. For instance, in 4], Angelini and Herzel derive closed formulas for the variance op-
timal hedge ratio and the corresponding hedging error variance when the underlying asset
is a geometric Brownian motion which is martingale. As we said, Kallsen and co-authors
contributed at providing semi-explicit formulae for the Variance-Optimal hedging problem
both in discrete and continuous time, for various kind of models. In particular in [49], semi-
explicit formula are derived for the (discrete and continuous time) Variance-Optimal hedging
strategy and for the resulting hedging error, in the specific case where the logarithm of the
underlying price is a process with stationary independent increments. One major idea pro-
posed in [49]and [16] consists in expressing the payoff as a linear combination of exponential
payoffs for which the variance optimal hedging strategy can be expressed explicitly. With a
similar methodology and in the same setting, Angelini and Herzel [5] determine the Laplace
transform of the variance of the error produced by a standard delta hedging strategy when
applied to several class of models. In |28] similar results are provided in the continuous time
setup. In this paper, we use the generalized Laplace transform approach to extend the results
of [49] to the case of processes with independent increments (PII) relaxing the stationary
assumption on log-returns. The semi-explicite discrete Féllmer-Schweizer decomposition is
stated in Proposition 3.3.11, the solution to the mean-variance hedging problem in Theorem
3.4.1. The expression of the quadratic hedging error in Theorem 3.4.3 gives a priori a crite-
rion of market completeness as far as vanilla options are concerned. This confirms that the
(even not stationary) binomial model is complete, see Proposition 3.4.5.

Our discrete time model consists in fact in the discretization of continuous time mod-
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els which are exponential of processes of independent increments. Given a continuous-
time model (S§)i>0 (the superscript ¢ referring to the continuous time setting), where
S¢ = spexp(XF) and X is a process with independent increments and discrete trading dates
to,t1,- - ,ty, our discrete model will be S = (S), such that S, = Sf , forall k =0,1,---N.
In this dicrete time setting, the Variance-Optimal pricing and hedging problem consists
in looking for the initial endowments ¢ € R and the admissible strategy v = (v;) which
minimizes v
E[(Vy — H)’] with V¥ =c+ ) wAS;.

k=1
This framework is indeed well suited to take into account together both the non-Gaussianity
of log-returns and hedging errors due to the discreteness of trading times. Our investigation
for quasi-explicit formulae when the underlying is the exponential of sums of independent

random variables is due to two reasons.

1. The first one comes from the fact that the basic continuous time model can be time-

inhomogeneous in a natural way, see for instance chapter 2 of this thesis.

2. The second, more original reason, is that the discretized times, which correspond in

our case to the rebalancing dates, are not necessarily uniformly chosen.

First, some prices exhibit non stationary and non-Gaussian log-returns. One common exam-
ple of this phenomena can be observed on electricity futures or forward market: the forwards
volatility increases when the time to delivery decreases whereas the tails of log-returns distri-
bution get heavier resulting in huge spikes on the Spot. The exponential Lévy factor model,
proposed in [11] and [21] allows to represent both the volatility term structure and the spikes
on the short term. More precisely, the forward price given at time ¢ for delivery of IMWh
at time Ty > t, denoted FtTd is then modeled by a two factors model, such that

t
S¢ = F" = FJexp(m]® + / ose MamIgN, + o W), forallt € [0,Ty] , (1.1)
0

where m is a real deterministic trend, A a real Lévy process and W a real Brownian motion.
Hence, forward prices are modeled as exponentials of PII with non-stationary increments
and existing results from [49] valid for stationary independent processes cannot be applied
for that kind of models.

Another announced motivation for our developement is to be able to analyse the impact of a

non-homogeneous discretization of the trading dates on the Variance-Optimal hedging error.
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The issue of considering non-homogeneous trading dates was first considered by Geiss S. in
[39] and Geiss S, Geiss C. in [40] who analysed the impact on the hedging error of discretizing
a continuously rebalanced hedging portfolio. He showed that for a given irregular payoff (e.g.
a digital call), concentrating rebalancing dates near the maturity instead of rebalancing
regularly can improve the convergence rate of the hedging error. Still in the continuous time
setup, recently, Gobet and Makhlouf [42] provided precise results quantifying the impact
of the choice of rebalancing dates on the convergence rate of the hedging error regarding
the payoff regularity. Hence, it seems to be of real interest to be able to consider such
non-homogeneous grids. However, if the continuous time log-price model X¢ = log(5¢) —
log(sp) has independent and stationary increments, considering non-homogeneous trading
dates involves a non stationary discrete time process X such that X, = X¢ for k=0,---N,
where tg,t1,--- ,ty denote the non-homogeneous trading dates. Hence, here again existing
results from [49] cannot be applied neither for hedging at non-homogeneous times nor for
evaluating the resulting hedging error.

In the present work, we have performed some numerical tests concerning both applica-
tions. One major observation is the remarkable robustness of the Black-Scholes strategy that
still achieves quasi-minimal hedging errors variances, with both non Gaussian log-returns and
discrete rebalancing dates. Besides, our tests show that when hedging with electricity for-
ward contracts, the impact of the choice of the rebalancing dates on the hedging error seems
to be more important than the choice of log-returns distribution (Gaussian or Normal In-
verse Gaussian, in our case). Concerning the case of hedging an irregular payoff (a digital
call, in our case), our numerical tests confirm the result of [39]. In almost Gaussian cases,
we observe that the variance optimal hedging error, can be noticeably reduced by optimiz-
ing the rebalancing dates. However, this phenomena is less pronounced when the tails of
the log-returns distribution get heavier for which the hedging error gets less sensitive to
the rebalancing grid. This suggests that the result of [39] and [42] could not be extended
straightforwardly to the non Gaussian case.

This article is organized as follows. In Section 2, notations and generalities on the
discrete Follmer-Schweizer decomposition are presented. In Section 3, we derive semi-explicit
Follmer-Schweizer decomposition for exponential of PII. Section 4 is devoted to the solution
to the global minimization problem. Illustrative example and simulation results are given in
Section 5; in particular, subsection 3.5.2 is concerned with data comimg from the electricity

market.
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3.2 Generalities and Discrete Follmer-Schweizer decom-
position

We present the context of the problem studied by [74|. Let (£2,F,P) be a probability
space, N € N* a fixed natural number and F = (Fj)x—1.. v a filtration. We shall assume
that F = Fy. Let (Si) be a real-valued, F-adapted, square-integrable process. We denote
by AS the increments Sy — Sy_q, for Kk = 1,---, N. We use the convention that a sum

(respectively product) over an empty set is zero (resp. one).

Definition 3.2.1. We denote by © the set of all predictable processes v (i.e.: vy is Fp_1-
measurable for each k > 1) such that v, ASy, € L*(Q) for k=1,--- ,N. Forv e 0, G(v) is
the process defined by

k
Gi(v) = ZUJASJ-, for k=1,--- N.
=1
The problem addressed in [74] is the following.
Given H € £*(Q), we look for (Vj, »*) which minimize the quantity
E[(H—Vo—Gr(9)] , (2.2)

over V) € R and ¢ € ©. It will be called discrete time optimization problem. The
expression E [(H — V' — GT(go*))Q] will be called the variance optimal hedging error.

Definition 3.2.2. Schweizer [7}] introduces the following non-degeneracy condition (ND).
We say that S satisfies the non-degeneracy condition (ND) if there exists a constant § €]0, 1]
such that

(E[ASk| Fi1])® < OE[(ASk)?|Fia]
P.a.s fork=1,--- N.
Remark 3.2.3. 1. If (Sk) is an F-martingale then (ND) is always verified.

2. Note that by Jensen’s inequality, we always have
(E[Ask‘kal])Q S E[(ASk)Qlfk,l] a.s.

The point of condition (ND) is to ensure a strict inequality uniformly in w.
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To obtain another formulation of (ND), we now express S in its Doob decomposition as
Sy = My, + Ay, where My, is a square-integrable (Fj)-martingale and Ay is a square-integrable
predictable process with Ag = 0. It is well-known that this decomposition is unique and is

given through
AAk = E[ASk\fk,l] y and AMk = ASk — AAk .

We will operate with the help of some conditional moments and conditional variance setting
Var[ASy| Fr_1] = E[(ASp)?| Fr_1] — E[ASy|Fr_1]* .
Remark 3.2.4. For k=1,..., N, we have the following.
1. E[(ASk)?*[Fi—1] = E[(AM)?*| Fia] + (AAR)* ;
2. Var[ASy|Fi-1] = E[(AM;)?|Fi-] 5
3. Previous conditional variance vanishes if and only if AM; =0 .

We introduce the predictable process A\, by

o AAyg _ E[ASk|Fr-]
A = 5 = 5 , (2.3)
E[(ASk)?|Fr-1]  E[(ASk)?|Fp-1]
forall k =1,---, N. These quantities could be theoretically infinite.

Remark 3.2.5. Suppose that P(AS, =0) =0 foranyk=1,---,N.

1. Then E[(ASL)?|Fr_1] > 0 a.s. In fact, let B = {w|E[(ASk)*(w)|Fr_1] = 0}. This
implies AA, =0 on B because of Remark 3.2.4 1. By the same Remartk,

0 = 15E[(AM;)?| Fii] = E[15(AM)?|Fi_1]

so AMy =0 on B. This implies that AS, =0 a.s. on B. By assumption, B is forced

to be a null set.

2. Previous point 1. guarantees in particular that (\;) are all finite.

Definition 3.2.6. The mean-variance tradeoff process of S is defined by

j
E[AS;|F_1]?
K= ASIFA]”
T = Var[AS)|Fi]
or att ) = L,---, . 18 e aiscrete version o € ConLinNuous trme CoOrresponaing process
forallj=1 N. K% is the discret jon of th ti ti di

K defined for instance in Definition 2.2.11 of chapter 2 of this thesis or in Section 1. of

[72].
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Proposition 3.2.7. The condition (ND) is fulfilled if and only if

E[ASk| Fr_1]?
Var [ASk ‘:kal]

15 a.s. bounded uniformly in w and k.
Proof. See (1.6) in [74]. O

A basic tool for solving the optimization problem (2.2) in [74] is the discrete Follmer-

Schweizer decomposition.

Definition 3.2.8. Denote by S = M + A the Doob decomposition of S into a martingale
M and a predictable process A. A complex-valued square integrable random variable H
is said to admit a discrete Follmer-Schweizer decomposition (or simply discrete FS-
decomposition) if there exists a Fo-measurable Hy, a complez-valued process & such that both

Re&(2), Im&(2) belong to ©, and a square integrable C-valued martingale L such that
1. LY M is an F-martingale;
2. B(LI =0,
9. H=Hy+ Y0 &ASy + LY.

When Point 1. is fulfilled L* and M are called strongly orthogonal.
If H is a real valued r.v. then H admits a real discrete FS decomposition if it admits a

FS decomposition with Hy € R and & being a real valued process. In this case £ € ©.

3.2.1 Existence and structure of an optimal strategy

Assumption 12. (Sy)i=1,... n salisfies the nondegeneracy condition (ND).

Remark 3.2.9. 1. Under Assumption 12, Proposition 2.6 of [74] guarantees that every

square integrable real random variable H admits a real discrete FS-decomposition.
2. That decomposition is unique because of Remark 4.11 of [70].

3. Previous two points imply the existence and uniqueness of the discrete Féllmer-Schweizer

decomposition when H is complex square integrable random variable.
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4. An immediate consequence is that the decomposition of a real square integrable random

variable is necessarily real.

Other tools for solving the optimization problem and evaluating the error are the follow-

ing.
Proposition 3.2.10. If S satisfies (ND), then Gy(0) is closed in L*(P).
Proof. See [74], Theorem 2.1. O

Theorem 3.2.11. Suppose that S = M + A has a deterministic mean-variance tradeoff pro-
cess. Let H be a square integrable real random variable with discrete real FS- decomposition
given by H = Ho + Gn (%) + LY.

1. The optimization problem (2.2) is solved by (Vi, ¢*) where Vi = Hy and ¢* is deter-
maned by

or = & 4+ M(Hy1 — Ho — Gi_1(9%)).

2. Suppose that Fy is a trivial o-field. The hedging error is given by

Jo= S (ALY T] (- vad,)

Proof. Point 1. follows from Proposition 4.3 of [74]. Concerning Point 2., LI = 0 a.s. since
Fo is trivial. The result follows from Theorem 4.4 of |74]; O

Similarly to [49], we will calculate it explicitely in the case where S is the exponential of

process with independent increments.

3.3 Exponential of PII processes

From now on, we will suppose that (X,,),—1,... x is a sequence of random variables with in-
dependent increments, i.e. (X;— Xy, -+, Xy —Xy_1) are independent random variables.
From now on, without restriction of generality, it will not be restrictive to suppose Xy = 0.

We also define the process (S, )n=1... n as S, = sgexp(X,), 0 <n < N for some sy > 0.

Definition 3.3.1. We denote D = {z € C|exp(2Xy) € L'}.
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3.3.1 Discrete cumulant generating function

Definition 3.3.2. We define the discrete cumulant generating function as
m: D x{0,--- N} — C with m(z,n) = E[e*%"] for alln = 1,--- | N and by convention
m(z,0) = 1.

This function is a discrete version of the cumulant generating function investigated in

the previos chapter, chapter 2, of this thesis.

Remark 3.3.3. 1. If z € D then the property of independent increments implies that
m(z,n) = Elexp(zAX,,)] is well-defined for all z € D and n=10,1,---,N.

2. If v € Rt N D, Cauchy-Schwarz inequality implies that [0,~] +iR C D; ify € RN D
then [v,0] + iR C D. This shows in particular that D is conveze.

Remark 3.3.4. When X has stationary increments then we have m(z,n) = m(z,1) for all

n=1,---,N. We denote this quantity by m(z) similarly as in [49], Section 2.

We formulate some assumptions which are analogous to those in continuous time case,

see chapter 2 of this thesis.

Assumption 13. 1. AX, is never deterministic for everyn =1,--- N.
2.2€D.

Remark 3.3.5. In particular, S, € L*(Q), for everyn =0,1,---, N, because 2 € D.

Lemma 3.3.6. z +— m(z,n) is continuous for any n =0,1,--- | N. In particular, if K is a

compact real set then sup, .z |m(z,n)| < oo.

Proof. We set Y = AX,, for fixed n € {1,---,N}. Let z € D and (z,) be a sequence
converging to z. Obviously exp(z,Y) — exp(zY’) a.s. In order to conclude we need to show
that the sequence (exp(z,Y’)) is uniformly integrable. After extraction of subsequences, we

can separately suppose that
1. either min, Re(z,) < Re(z,) < Re(z),

2. or max, Re(z,) > Re(z,) > Re(z).
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This implies the existence of a, A € D NR such that a < Re(z,) < A, for all p € N.
Consequently if M > 0, for every p € N, we have

—M 00

exp(yRe(z))dpy (y) + / exp(yRe(zy))duy ()

Elexp(2,Y )Ly sum] < / o

—0o0

where py is the distribution law of Y. Previous sum is bounded by

/_ ! exp(ay)dpy (y) + / N exp(Ay)duy (y)

e’} M

Since M is arbitrarly big, the result is established. O
Lemma 3.3.7. Let n=20,---, N.

1. E[e®Xn —1]2 =m(2,n) — 2m(1,n) + 1.

2. Var[e®Xn — 1] = m(2,n) — m(1,n)>.

3. EleAXr —1] =m(1,n) — 1.

Proof. Statements 1. and 3. follow in elementary manner using the definition of m.
Statement 2. follows from statement 1. and the fact that E[e®*» — 1] = m(1,n) — 1. O

Remark 3.3.8. m(2,n) — m(1,n)? is strictly positive for anyn = 1,---  N. In fact As-

AXnp

sumption 13 1. implies that e — 1 18 never deterministic.

Remark 3.3.9. For z€ D andn € {1,--- N}, we have
E(S:) = s; [[m(z k).
k=1

Proposition 3.3.10. Forn € {1,--- N}, we have
1. AA, =E[AS,|F.-1] = (m(1,n) — 1)S,_1.
2. Var[AS,|F,_1] = (m(2,n) —m(1,n)?)S2_,.
3. Condition (ND) is always satisfied.

4.
1 m(1,n) —1

Spo1m(2,n) —2m(1,n) + 1

An =
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5. The mean-variance tradeoff process K? is deterministic.
Proof. 1. follows from E[AS,|F, 1] = S, 1E[eA*" — 1] and Lemma 3.3.7 3.

2. Since
E[(AS,)*|Foa] = S E[(e3¥ = 1), (3.4)

we can write

Var[AS,|Fn_1] = E[(AS,)*|Fn_i1] — E[AS,|Fn1]?,
= SB[ — 1) - 53 Bl — 1)

= S2 Var[eAX —1].
The conclusion follows from Lemma 3.3.7 2.

3. We make use of Proposition 3.2.7. In our context we have

E[AS,|F,.1]? _ (m(1,n) — 1) ' (3.5)
Var[AS,|F.-1]  m(2,n) —m(1,n)?
The denominator of the right-hand side never vanishes because of Remark 3.3.8.
4. Tt follows from (2.3), (3.4), Lemma 3.3.7 1. and point 1. of this Proposition.
5. It is a consequence of point 3. and Definition 3.2.6.
O

3.3.2 Discrete Follmer-Schweizer decomposition

Similarly to [49] and the previous chapter of this thesis, chapter 2, we would like to obtain
the discrete Follmer-Schweizer decomposition of a random variable of the type H = S%, for

some sutable z € C. The proposition below generalizes Lemma 2.4 of [49).

Proposition 3.3.11. Under Assumption 13, let z € D fized, such that 2Re(z) € D. Then

H(z) = S% admits a discrete Follmer-Schweizer decomposition

{ H(2), = H(2)o+ 0 E(2)rASk + L(2),
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where

H(z), = h(z,n)S., forall ne{0,---N}

£(2), = glz,n)h(z,n)S:"1, forall ne{l,---N}

L(2)n = H(2)n— H(z)o— Y &(2)kASp,  forall ne{0,---N} (3.6)
k=1

and g(z,n), h(z,n) are defined by

N
i=n+1
m(z+1,n) —m(1,n)m(z,n)
9(z:n) m(2,n) —m(1,n)? (3:8)
Remark 3.3.12. 1. z+1 € D because D is conveze, taking into account Assumption 13
2.

2. If 2Rez does not belong to D, for simplicity, we will set

g(z,n) = h(z,n) = H(z), =&(2), = L(2), = 0.

3. If K is a compact real interval, for any n € {0,--- N} we have sup,cpw(|g(z,n)| +
|h(z,n)]) < 0.

Remark 3.3.13. Suppose that (X,)n—o.. n is a process with stationary increments
i.e. such that (X1 — Xo, -+, Xy — Xn_1) are identically distributed random variables.
According to Remark 3.3.4, we have
m(z+ 1) —m(1)m(z)

m(2) —m(1)*

g(z,n) = (3.9)

We will denote in this case g(z) the right-hand side of (3.9). Moreover h(z,n) = h(z)N ™"

where
h(z) =m(z) — g(z)[m(1) — 1. (3.10)

Proof of Proposition 3.3.11. Since z+1 € D all the involved expressions are-well defined.

Since L(z)y = 0, we need to prove the following.

1. L(z) is an F-square integrable martingale.
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2. (L(2)M) is an F-martingale.
From (3.6), it follows that
AL(2)p = L(2)n — L(2)p_1 = W(2,n)S% — h(z,n —1)S?_| — g(z,n)h(z,n)S7_(e2 —1);

L(z), is square integrable for any n € {0,---, N} since 2z € D and (X,,) has independent
increments.

Since SZ = 57 _,e*2Xn we have
AL(z), = S2_y [h(z,n)e*™ — h(z,n — 1) — g(z,n)h(z,n) (e — 1)] | (3.11)
therefore
E[AL(2),|Fni] = Si_ E [h(z,n)e* 2 — h(z,n — 1) — g(z,n)h(z,n)(e** — 1)] .
1. To show that L(z) is a martingale it is enough to show that
E [h(z,n)e*** — h(z,n — 1) — g(z,n)h(z,n) (> —1)] = 0.

Previous expression implies the relation h(z, n)m(z,n)—h(z,n—1)—g(z,n)h(z,n)(m(1,n)—

1) = 0 for any 0 < n < N which is equivalent to
h(z,n—1) =h(z,n) (m(z,n) — g(z,n)(m(1,n) — 1))

for any 0 < n < N.
Previous backward relation with h(z, N) =1 leads to (3.7).

2. It remains to prove that (L(z),M,) is a martingale. Since L(z), and M, are square
integrable for any n then L(2),M, € L. We prove now that E[AL(z),AM,|F,_1] = 0.
Proposition 3.3.10 1. implies that the Doob decomposition S = M + A of S satisfies

AA, = (m(1,n) —1)S,_1 .
Moreover
AM, = AS, — AA, = S,_1(e2 — 1) = S,_1(m(1,n) = 1) = S,_1 (> —m(1,n)).
Coming back to (3.11)

AL(2),AM, = S:H1(e2*"—m(1,n)) [h(z,n)e** " — h(z,n — 1) — g(z,n)h(z,n)(e>*" — 1)] .

111



CHAPTER 3. VARIANCE-OPTIMAL HEDGING IN DISCRETE TIME

Taking the conditional expectation with respect to F,,_1, we obtain

E[AL(2),AM,|Fr_y] = E[SZT1(eA* —m(1,n))

= Sﬁf}E[e(”l)AX"h(z,n)

— e h(z,n = 1) = e g(z,n)h(z,n) (e — 1)
— m(1,n)h(z,n)e* > +m(1,n)h(z,n — 1)
+ m(1,n)g(z,n)h(z,n)(e**" —1)].

Again by Lemma 3.3.7, previous quantity equals zero if and only if
h(z,n)m(z +1,n) — g(z,n)h(z,n)m(2,n) —m(1,n)h(z,n)m(z,n) +m(1,n)?g(z,n)h(z,n) =0,
or equivalently

m(z+1,n) — g(z,n)m(2,n) — m(1,n)m(z,n) +m(1,n)*g(z,n) = 0.

Remark 3.3.8 finally shows that the right-hand side must have the form (3.8). This
concludes the proof of Proposition 3.3.11.

O

3.3.3 Discrete Follmer-Schweizer decomposition of special contin-

gent claims

We consider now options f : C — R as in the first chapter of this thesis in continuous time,
2, of the type

_ F(Sy) . with f(s) = /C STI(d2) (3.12)

where II is a (finite) complex measure in the sense of Rudin [68], Section 6.1. An integral
representation of some basic European calls can be found in chapter 2 of this thesis or[49).
The European Call option H = (S — K ), and Put option H = (K — Sr), have a repre-
sentation of the form (4.28) provided by the lemma below.

112



CHAPTER 3. VARIANCE-OPTIMAL HEDGING IN DISCRETE TIME

Lemma 3.3.14. Let K > 0.

1. For arbitrary 0 < R <1, s > 0, we have
1 R+ico Klfz

—K)y —5=— f—dz . 3.13
(s Jr = 2700 J pioo ° z2(z—1) - (3:13)

2. For arbitrary R <0, s >0
1 R4-i0c0 Kl—z

K—s), = — S 3.14
(K=s)e=g5 | PO (3.14)

We need at this point an assumption which depends on the support of II. We set I :=
suppll N R.

Assumption 14. 1. I is compact.
2. 21, C D.

Remark 3.3.15. 1. Assumption 14 is always verified (for any 0 < R < 1) for the Call
since Iy = {R, 1} is always included in [0, 1] which is a subset of £ by Assumption 13
1.

2. Assumption 14 is also verified for the Put, choosing suitable R provided that D contains

some negative values.

Remark 3.3.16. 1. Since D is convexe, Assumption 14 2. and the fact that 2 € D imply

2. Since Iy is compact, taking I1 = 6, for some z € C, Assumption 14 is equivalent to the

assumptions of Proposition 3.5.11.

3. Since Iy s compact, Assumption 13 point 1. and Lemma 3.3.6 imply that

SUP,ear, ik |M(2,1)| < 00, for everyn =1,--- N.

4. Taking into account Remark 3.3.12 and points 2. and 3. we also get
sup,cc(lg(z,n)| + |h(z,n)|) < oo, for everyn=1,--- N.

Remark 3.3.17. Notice that Assumption 14 is relatively weak and verified for a large class of
models, whereas Assumption 8 required in the first chapter of this thesis, 2, to derive similar

results, in the continuous time setting, noticeably restricts the set of underlying dynamics.
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Lemma 3.3.18. For any n € {0,---, N}, according to the notations of Proposition 3.5.11

we have
1. sup,ec B[|H (2)a|*] < oo;
2. supcc E[|£(2)n*(AS,)%] < 00, forn > 1;
3. sup,ec E[(AL(2),)?] < oo.

Proof. Remark 3.3.5, together with point 4. of Remark 3.3.16 show the validity of point 1.
Point 3. is a consequence of points 1 and 2. Concerning this last point, let n € {1,--- , N}.
By Lemma 3.3.7 1.

E(l§"(2)al*(A82)7] = g(2,n)*h(z,n)°E(S;71)(m(2,n) — 2m(L,n) + 1)
= g(z,n)*h(z,n)*m(2z,n — 1)(m(2,n) — 2m(1,n) + 1)
The conclusion follows by Remark 3.3.16. U
Proposition below extends Proposition 2.5 of [49].

Proposition 3.3.19. We suppose the validity of Assumptions 13 and 14. Any contingent
claim H = f(Sy) admits the real discrete F'S decomposition H given by

{Hn = Ho+ Y7 &FAS, + LY

Hy = H
where
H, = /(C H(2),I1(dz) (3.15)
e = /@ £(2)T1(dz) (3.16)
L = / L(z)nH(dz):Hn—Ho—iffASk, (3.17)
C k=1

according to the same notations as in Proposition 3.5.11 and Remark 3.3.12. Moreover the

processes (H,),(E2) and (LE) are real-valued.

Proof. We proceed similarly to [49], Proposition 2.1. We need to prove that L (resp. LY M)
is a square integrable (resp. integrable) martingale. This will follow from Propostion 3.3.11
and Fubini’s theorem. The use of Fubini’s is justified by Lemma 3.3.18. The fact that H, ¢

and L are real processes follows from Remark 3.2.9 4. O
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3.4 The solution of the minimization problem

3.4.1 Mean-Variance Hedging

We can now summarize the solution to the optimization problem.

Theorem 3.4.1. We suppose the validity of Assumptions 13 and 14. Let H = f(Sn) with

discrete real F'S-decomposition

H, = Ho+> [ ¢HAS, + LY
Hy = H.

A solution to the optimal problem (2.2) is given by (Vi5, ¢*) with Vi = Hy and ¢* is deter-

mined by
n—1
on =&+, (Hnl — Hy — ZgofASi) (4.18)

where N\, is defined for alln € {1,--- N}, by

1 m(l,n) —1

Ap = .
Sp_1m(2,n) —2m(1l,n) +1

(4.19)

Moreover the solution is unique (up to a null set).

Remark 3.4.2. In the case that X has stationary increments, we obtain

1 m(1) — 1

An = Spo1m(2) —2m(1) + 17

where m(n) = E(exp(nXy)). This confirms the results of Section 2. in [49].

Proof of theorem 3.4.1. The existence follows from Theorem 3.2.11, Proposition 3.3.19
and Proposition 3.3.10 points 3., 4. and 5.
Uniqueness follows exactly as in the proof of Proposition 2.5 of [49]: in our case Lemma 3.3.7
gives

Var[e®* —1] = m(2,n) —m(1,n)>.
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3.4.2 The Hedging Error

The hedging error is given by Theorem 3.2.11 since the mean-tradeoff process is deterministic.

Theorem 3.4.3. We suppose the validity of Assumptions 18 and 1. The variance of the

hedging error in Theorem 3.4.1 equals

h= [ [ B Anms) (4.20)
cJc
with
oy, 2) = 38” Zszl b(y, z; k)h(z, k)h(y, k) H?:z m(y + 2z, — 1) H;V:kﬂ a(j) : y,z € supprw
’ 0 : otherwise
(4.21)
where
. m(2,7) —m(1,7)?
a(j) = (2,5) —m(1,5)
and

p(y, 2 k)p(1, 15 k) — ply, 1; k)p(z, 1; k)
p(1,1; k) ’
where p(y, z; k) = m(y + 2; k) —m(y, k)m(z,k), y, z € suppll.

by, z; k) = (4.22)

Remark 3.4.4. The function p above plays an analogous role to the complex valued func-
tion with the same name introduced in chapter 2 at Definition 2.4.3 in the continuous time

framework.

Proof. We proceed again similarly to the proof of theorem 2.1 of [49]. Theorem 3.2.11 gives
that the hedging error is given by

Jo=> E[AL)?] T (1 -x44)). (4.23)

Proposition 3.3.10 gives

AA; = E[AS)Fj] = (m(L,j) —1)Sj—
(4.24)
1 m(1,j) — 1
Si—1m(2,7) —2m(1,j)+ 1

)\j:
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SO

and it remains to calculate E[(AL)?]. Since
ALF - / AL(2)T1(d2)
C
we have
@1y = [ [ AL ALEMdIE:) (4.26)
cJc

and hence by Fubini’s Theorem

E[(AL{)] / / [AL(y)s AL(2)]TL(dy)T1(dz).
Relation (3.11) says that

ALk = SP5 [y, ke — h(y, k — 1) = g(y, k)h(y, k) (> = 1)]
[h(z, k)™ — h(z,k — 1) — g(z, k)h(z, k) (> —1)] .

Taking the expectation we obtain

E[ALy(y)ALi(2)] = E[SITH(h(z, k)h(y, k)m(y + 2, k) = h(z, k)h(y, k — 1)m(z, k)
— h(z,k)h(y, k)g(y, k)E[e* > (e —1)] = h(z, k — Dh(y, k)m(y, k)
+ h(z,k—Dh(y, k= 1) + h(z, k — Dh(y, k)g(y, k)E[eA*F — 1]

(2. k)h(y. k)

h(z, k)h(y, k)g(z, k)g(y, k)E[(e>** — 1)}

g(z, k) E[ev2%k (A% — 1)) 4 h(z, k)h(y, k — 1)g(z, k)E[e2X* —

Recalling that E[(e®** — 1)) = m(2,k) — 2m(1,k) + 1 and E[e2Xs — 1] = m(1,k) — 1, we

obtain

E[ALL(y)ALk(2)] = E[SPTH(R(z, k)h(y, k)m(y + 2, k) — h(z, k)h(y, k — 1)m(z, nk
— h(z, k)h(y, k)g(y, k)(m(z + 1 k) —m(z, k) — h(z, k — 1)h(y, k)m(y
+ h(z,k—Dh(y,k—1)+ h(z,k — 1)h(y, k)g(y, k)(m(1,k) — 1)
(4.2
— h(z, k)h(y, k)g(z,n)(m(y + 1, k) —m(y, k))
+ h(z,k)h(y,k— 1D)g(z, k)(m(1,n) —1)
+ h(z k)h(y, k)g(z, k)g(y, k)(m(2, k) — 2m(L, k) + 1)}.

k)

7)
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By Proposition 3.3.11 we have

h(y,k—1) = h(y,k)m(y, k) — g(y, k)(m(1, k) — 1)]
(4.28)

Wz k—1) = h(z,k)m(z,k) —g(z,k)(m(1, k) — 1)].

We replace the right-hand sides of (4.28) in (4.27) and we factorize by h(z, k)h(y, k). Finally,
after simplification we obtain
E[AL(y)AL(2)] = E[S{IA(z k)h(y, k){m(y + 2, k)
— m(z, k)m(y, k) +m(z, k)g(y, kym(1, k) +m(y, k)g(z, k)m(L, k)

— gy, k)ym(z+ 1,k) — g(z, k)m(y + 1, k)
— g(z.k)gly, k)[m(1, k) —1]°
+ g(z,k)g(y, k)[m(2, k) — 2m(1, k) + 1]}.
Hence,
E[ALy(y)ALy(2)] = B[S} {]R(z, k)h(y, k)bly, 2 k), (4.29)
where i
E[S{T5] = sy R84 %] = st [ m(y + 2,0 - 1) (4.30)
(=2
and

b(y,z, k) = {m(y+zk)—m(z,k)m(y, k) — gy, k)m(z+ 1,k) — g(z, k)m(y + 1, k)
+ m(z,k)g(y, k)m(1, k) +m(y, k)g(z, k)m(1, k)
— 9(z,k)gly, k)m(1,k)* + g(z, k)g(y, k)m(2, k)}.

We observe that

by, z, k) = p(y, 2:k) — g(y, k)p(2, L k) — g(2,k)p(y, 1, k) + g(y, k)g(z, k)p(1,1, k). (4.31)

Since,
p(y, 1; k)
) = A )
9y b) p(1,1; k)
p(z,1; k)
k f—
90z ) p(1,1; k)
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it follows that b(y, z, k) =b(y, z, k).
Finally, (4.24), (4.25), (4.26), (4.29), (4.30) and (4.31) give

k N
Joly,z) = y+szy,zk (z,k)h(y, k Hmy+z€—1)H(1—)\jAAj)
=2 j=k+1

k
— y+zzb Yy, 2, k)h(z, k)h(y, k Hm y+2z,0—1) H a(j)-
- (=2

j=h+1

0

From the expression of the hedging error variance (4.21), we can derive a sort of criterion

for completeness for market asset pricing models. More precisely, the condition
b(y,z;k) =0, forally,z€ Dand ke {l,---N} (4.32)

characterizes the prices models that are exponential of PII for which every payoff (that can
be written as an inverse Laplace transform) can be hedged. In the specific case of a Binomial
(even inhomogeneous) model, we retrieve the fact that Jy(y, z) = 0 and so Jy = 0. In fact,

that model is complete.

Proposition 3.4.5. Let a,b € R, Xy, = a with probability pr and X, = b with probability
(1 —pg). Then Jo(y,z) =0 for every y,z € %.

Proof. Writing p = pg, k € {0,1,---, N}, we have
ply, 2 k) = pe@) 4+ (1= p)e’@=) — (pe + (1 — p)e™)(pe™ + (1 — p)e”)
(ea(y-l—z +eb(y+z) +eby+az +€bz+ay)
( ay +eby) (6az +ebz) ]
So
p(y, 2 k)p(1, 1; k) = p*(1 — p)* (e® + €”) (e** + ) (e* + eb)2
On the other hand, this obviously equals p(y, 1; k)p(z, 1; k). a

If X is a process with stationary and independent increments we reobtain the result of
[49]].
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Proposition 3.4.6. Let(X}) be a process with stationary increments. We denote

m(y) = E(exp(yX1))
o m(1) —
H(y) = m(y)—m@)_m(l)g(m(wl)—m(l)m(y))
~ m(2) —m(1)?
CT @) —2m) + 1
Then
%zéé%@dﬁ@ﬂ@)
with 0 ()N
sy By, 2) ML G a(y, 2) £ m(y + 2)
Joly, 2) = a(y,2)—m(y+2) . .
) { st By, 2 )Nm(y+ )1 if a(y,z) =m(y +2) 439
where

a(y,z) = aH(y)H(z),
Bly,z) = my+z)—

m(2)m(y)m(z) — m(1)m(y + 1)m(z) — m(1)m(y)m(z + 1) + m(y + \)m(z + 1).

Proof. We observe that for k£ € {0,---, N}, we have

m(y+ z,k) = m(y+ 2)
hy.k) = Hy) "
h(z, k) = H(z)N "

So

= N m(2) —m(1) N_k_ N—k
II““*‘Qmm—mmn+1) -

Consequently, expression (4.21) for y, z € supp(Il),

Jo(y,2) = s By, 2 Zm y+ 2" (Hy)H(2)a)

Ioges) = B PSSR if mly+2) # aH)H(: w34)
0\Y> - .

so By, 2)Nm(y + N1 vif m(y +2) = aH(y)H(z)
This concludes the proof of the proposition. O
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3.5 Numerical results

As announced in the introduction, we will now apply the quasi-expicit formulae derived in
previous sections to measure the impact of the choice of the rebalancing dates on the hedging

error. We will consider two cases that motivated the present work:

1. the underlying continuous time log-price model has stationary increments but the pay-
off to hedge is irregular, such as a Digital call, so that, as shown in |39, 42|, hedging

near the maturity can improve the hedge;

2. the payoff is regular (e.g. classical call) but the underlying continuous time model
shows a volatility term structure which is exponentially increasing near the maturity,
such as electricity forward prices. For this reason it seems again judicious to hedge

more frequently near the maturity, where the volatility accelerates.

3.5.1 The case of a Digital option

We consider the problem of hedging and pricing a Digital call, with payoff f(s) = 1k c0)(5)
of maturity 7" > 0. From (35) in [49], the payoff of this option can be expressed as

1 R+ic K~
f(s) = lim —/ s* dz , (5.35)

c—00 270 J p_ic z
for an arbitrary R > 0. This implies that the complex measure II is given by

1 K77

However, such measure is only o-finite so that application of Theorem 3.4.1 is not rigourously
valid. Nevertheless, using improper integrals one should be able to recover the main state-
ment. In this section, this will be assumed so that formula (4.20) will be used in the case of
a Digital option.

The underlying process S¢ is given as the exponential of a Normal Inverse Gaussian Lévy
process (see Appendix 3.5.2) i.e. for all ¢ € [0, 7],

S¢ =X | where X¢is a Lévy process with X¢ ~ NIG(a, 3,0, ) .

Given N + 1 discrete dates 0 =ty < t; < --- < ty = T, we associate the discrete model
pricing X = XV where X, = X¢,k € {0,...,N}. X is a discrete time process with

tro
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indepedent increments. The related cumulant generating function z +— m(z, k) associated
to the increment AX), = X — Xj .y = X{ — X{  for k € {1,---N} is defined on D =
[—a — ;. — B]. We refer for this to chapter 2 Remark 2.3.21 2., since X¢ is a NIG process.
By additivity we can show that

m(z, k) = Elexp(zAXy)] = exp (Atk [z + (5(\/042 — 32— /a2 - (B+ 2)2)}) (5.37)

for z€ D, ke {0,...,N}.
For other informations on the NIG law, the reader can refer to Appendix 3.5.2.

Assumption 13 1. is trivially verified, Assumption 13 2. is verified as soon as
2<a-—0

Thanks to Remark 3.3.15 Assumption 14 is automatically verified for the call and put rep-
resentations given by Lemma 2.4.26, and, by similar arguments, even for the digital option.
The time unit is the year and the interest rate is zero in all our tests. The initial value of
the underlying is sqo = 100 Euros. The maturity of the option is 7" = 0.25 i.e. three months
from now. Four different sets of parameters for the NIG distribution have been considered,
going from the case of almost Gaussian returns corresponding to standard equities, to the
case of highly non Gaussian returns. The standard set of parameters is estimated on the

Month-ahead base forward prices of the French Power market in 2007:
a=3846, f=-385, 60 =640, n=0.64 . (5.38)

Those parameters imply a zero mean, a standard deviation of 41%, a skewness (measuring
the asymmetry) of —0.02 and an excess kurtosis (measuring the fatness of the tails) of
0.01. The other sets of parameters are obtained by multiplying parameter o by a coefficient
C, (8,6, ) being such that the first three moments are unchanged. Note that when C
grows to infinity the tails of the NIG distribution get closer to the tails of the Gaussian
distribution. For instance, Table 2.1 shows how the excess kurtosis (which is zero for a
Gaussian distribution) is modified with the four values of C' chosen in our tests. We compute
the Variance Optimal (VO) hedging error given by (4.20), for different grids of rebalancing
dates. The corresponding initial capital Vj denoted by V| = Hj in Theorem 3.4.1 is computed
using Proposition 3.3.19.

In particular, we consider the parametric grid introduced in [39], [40] and [42]

bN .__ _ 4bN JbN b,N
m .—{O—to 7t1 ,"',tN}
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Coefficient C=014|C=021C=1|C=2

o 5.38 7.69 38.46 76.92
Excess kurtosis 0.61 0.30 0.01 | 4.1073

Figure 3.1: Excess kurtosis of X; for different values of «, (3,9, 1) insuring the same three first

moments.

defining, for any real b € (0, 1], N rebalancing dates such that

k
N =T -T(1 - N)l/b for all k € {0,--- ,N —1} . (5.39)
Note that 71V coincides with equidistant rebalancing dates whereas when b converges to zero,
the rebalancing dates concentrate near the maturity. To visualize the impact of parameter b
on the rebalancing dates grid, we have reported on Figure 3.2 the sequences of rebalancing

dates generated by 7% for different values of b.

0.25
0.2292 |-
0.2083 |
0.1875}
0.1667 |
— 0.1458 |
§ : : : : : : : o1
é/ 0.125} : : 03
= .5
= 0.1042 ™
T[0.7
0.0833 | ‘ ‘ : ; : ‘ ‘ : —_
0.0625 |
0.0417 |
0.0208 |-
o i i i i i i i i i i i
1 2 3 4 5 6 7 8 9 10 11 12

Rebalancing moment

Figure 3.2: Sequences of rebalancing dates for different values of b, for N = 12.
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We have reported on Figure 3.3 the standard deviation of the Variance Optimal hedging
error for different values of coefficient C' and different choices of rebalancing grids. More
precisely, we have considered three types of rebalancing grids, for N = 12 rebalancing dates.

1. Equidistant rebalancing dates (corresponding to 71%)

2. 7N where b* is obtained by minimizing the Variance Optimal hedging error w.r.t. to

parameter b;

3. The non parametric optimal grid 7* obtained by minimizing the Variance Optimal

hedging error w.r.t. the N rebalancing dates.

Notice that in both cases the optimal (parametric and non parametric) grid is estimated by
an optimization algorithm based on Newton’s method.

First, one can notice that for any choice of rebalancing grid, the hedging error increases
when C' decreases. Hence, one can conclude, as expected, that the degree of incompleteness
increases when the tails of log-returns distribution get heavier.

Besides, one can notice that the parametrization (5.39) of the rebalancing grid seems re-
markably relevant since the optimal parametric grid 7% achieves similar performances as
the optimal non-parametric grid 7*.

Moreover, we observe that the hedging error can be noticeably reduced by optimizing the
rebalancing dates essentially for C' > 1 i.e. around the Gaussian case. In these cases, one can
observe on Figure 3.4 that the optimal rebalancing grid is noticeably different from the uni-
form grid since rebalancing dates are much more concentrated near maturity. This confirms
the result of [39] that shows that, in the Gaussian case, taking a non uniform rebalancing
grid (corresponding to b = 0.5) allows to obtain a hedging error with the convergence order

1/4 achieved with a

for the L? norm of N='/2 (up to a log factor) improving the rate N~
uniform rebalancing grid (i.e. b = 1), obtained in [43]. However, it is interesting to notice
that this phenomenon is less pronounced when the tails of the log-returns distribution get
heavier. In particular, one can observe on Figure 3.5 that the hedging error gets less sensitive
to the rebalancing grid when C decreases even if the optimal grid seems to get closer to the

uniform grid.
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C=2 C=1 C =02 C =014
10 X STDyogeey || 1483 (30.82) | 1.652 (34.33) | 2.663 (54.80) | 3.017 (61.53)

10 X ST Dy o) || 1.520 (31.58) | 1.685 (35.01) | 2.665 (54.84) | 3.017 (61.53)
10 X STDyoery || 1.892 (39.32) | 1.952 (40.56) | 2.691 (55.38) | 3.028 (61.76)

Vo(mh) 0.4903 0.4859 0.4813 0.4812
Vo () 0.4903 0.4860 0.4814 0.4813
b* 0.4078 0.4394 0.6106 0.6710

Figure 3.3: Standard deviation of the Variance Optimal hedging error (x10) (reported within
parenthesis in percent of the option value Vy(n')), initial capitals, optimal grid parameters, for

different choices of parameters C' and b with N = 12 and K =99 (Digital option).

0.25
0.2292
0.2083
0.1875

0.1667

0.1458

Time (year)
o
P
N
a1

0.1042

0.0833

0.0625

0.0417

0.0208

I I I I I I I I J
1 2 3 4 5 6 7 8 9 10 11 12
Rebalancing moment

Figure 3.4: Parametric and non parametric optimal rebalancing grids for different choices of pa-

rameter C' with NV = 12 and K = 99 (Digital option).
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0.32 L
0.31 I I S

0.3
0.29
BT~
0.27 T TE——
0.26 -
025 vt
0.24
0.23 - I
0.22
0.21

0.2
0.19
0.18
0.17
0.16
0.15

Standard Deviation (euro)

0.1 . . . 0.5 0.6 0.7 0.8 0.9 1
Value of b

Figure 3.5: Standard deviation of the Variance Optimal hedging error as a function of b, for different
choices of parameter C' (b* being indicated by the dashed line abscissa) with N = 12 and K = 99
(Digital option).

126



CHAPTER 3. VARIANCE-OPTIMAL HEDGING IN DISCRETE TIME

3.5.2 The case of electricity forward prices

We consider the problem of hedging and pricing a European call, with payoff (Fg‘i —K)y,on
an electricity forward, with a maturity 7" = 0.25 of three month. The maturity 7" is supposed
to be equal to the delivery date of the forward contract T" = T;. Because of non-storability
of electricity, the hedging instrument is the corresponding forward contract. Then we set
S¢ = FF', where the forward price F'T is supposed to follow the NIG one factor model (1.1)

with m = 0,0, =0 and o4, = 0 > 0. This gives

S¢ =X where X¢ = /t oe M =WdA, where A is a NIG process with Ay ~ NIG(a, 3,6, 1) .
’ (5.40)

Given N + 1 discrete dates 0 = tg < t; < --- < ty = T, we consider the discrete process

X = X% where X = X{,0 <k < N. We denote again by z + m(z, k) the cumulant

generating function associated with the increment AXy = X — Xy for k € {1,---N}.

That function and its domain can be deduced from Lemma 2.3.24 and Proposition 2.6.2 in

chapter 2 of this thesis, see also(5.45). The domain D contains D := [—#, O‘U;ﬂ] + 1R and

given for any z € D,k =0,..., N,

tr
m(z, k) = E[exp(z/ oe MIAN)]

te—1

173
= exp (/ KA(ZJEA(TU))dU) . with z, = zoe MY

tk—1

= exp (/tk [z, + (/a2 — 32— /a2 — (B+ zu)Q)}du> : (5.41)

tp—1
Hence Assumption 13 1. is obviously satisfied since A # 0 and Assumption 13 2. is verified
as soon as 0 < #; thanks to Remark 3.3.15, Assumption 14 is automatically verified for
the call representation given by Lemma 2.4.26.
Parameters are estimated on the same data as in the previous section, with Month-ahead
base forward prices of the French Power market in 2007. For the distribution of A this

yields the following parameters
a=1581, f=—-1581, 6 =15.57, p=1.56,

corresponding to a standard and centered NIG distribution with a skewness of —0.019 and

excess kurtosis 0.013. The estimated annual short-term volatility and mean-reverting rate
are 0 = 57.47% and \ = 3.
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We have reported on Figure 3.6, the standard deviation of the hedging error as a function

of the number of rebalancing dates for four types of hedging strategies.

e Variance Optimal strategy (VO) with the uniform rebalancing grid (dark line)
and with the optimal rebalancing grid 7* (dark dashed line). Both variances are

computed using formula (4.20) applied to the process (5.40);

e Black-Scholes strategy (BS) implemented at the discrete instants of the uniform
rebalancing grid (light line) and of the rebalancing grid 7* (optimal for the
Variance Optimal strategy) (light dashed line). Both variances are computed by

a Monte Carlo approximation using 10° independent simulations of the process (5.40).

Notice that simulations of model (5.40) (resp. computations of X’s cumulant generating
function) is performed using a stochastic (resp. deterministic) Euler scheme with 100 dis-
cretization steps of the interval [0, 7.

Observing Figure 3.6, one can notice that, as expected, in all cases, the hedging error de-
creases when the number of trading dates increases. Observing the continuous lines, cor-
responding to a uniform rebalancing grid, one can notice the remarkable robustness of the
Black-Scholes strategy. Indeed, in spite of the non Gaussianity of log-returns and the dis-
creteness of the rebalancing grid, the Black-Scholes strategy is still quasi optimal in terms
of variance.

Besides, in this case, the impact of the choice of the rebalancing grid seems to be more im-
portant than the choice of log-returns distribution (Gaussian or Normal Inverse Gaussian).
For instance, using the VO strategy with the optimal rebalancing grid 7* instead of 7! allows
to reduce 9% (for N = 10) of the hedging error standard deviation.

However, contrarily to what we observe with the uniform grid 7!, the BS strategy shows
performances that differ noticeably from the VO performances, when implemented at the
rebalancing times 7*. This suggests that the BS optimal rebalancing grid (in terms of vari-
ance) is probably noticeably different from 7*. It would be interesting to minimize the BS
hedging error w.r.t. the rebalancing grid and verify if it achieves similar performances as
VO(7*). But this requires a great amount of computing time since the standard deviation of
the BS hedging error is approximated by Monte Carlo simulations. An alternative would be
to extend results of [5| to non-stationary log-returns, to derive a quasi-explicit formula for
the variance of the BS hedging error. Indeed, in [5], the authors uses the Laplace transform

approach, to derive quasi-explicit formulae for the mean squared hedging error of various dis-
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crete time hedging strategies including Black-Scholes delta when applied to Lévy log-returns
models. Finally, one can observe on Figure 3.7 that here again, the parametrization (5.39)
of the rebalancing grid seems to be particularly well suited since it achieves minimal hedging

errors comparable to the one achieved with the nonparametric optimal grid 7*.

4.5

w
o
T

Standard Deviation (euro)
w
T

25

1.5

0 5 10 15 20 25 30 35 40 45 50
Number of trading dates

Figure 3.6: Standard deviation of the hedging errors as a function of the number of rebalancing

dates N, for K =99 (Call option).

To analyse the impact of the rate of volatility increase on the optimal rebalancing grid,
we have computed the hedging error standard deviation for several values of parameter A
chosing the corresponding volatility parameter o such that Var(Xr) = & (1—e~2T) is fixed.
The resulting pairs (A, o) are reported on Figure 3.8. Coupling those parameters allows us
to obtain comparable options for different parameters \; at least this ensures a fixed initial
capital in the BS framework (with VOpg(7') = 8.7037).
On Figure 3.9, we have reported the optimal grid parameter b* minimizing the standard
deviation of the VO hedging error for different values of \. As expected, when A increases, i.e.

when the volatility increases more rapidly near the maturity, then 0* decreases indicating that
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N =2 N =5 N =10 N =25 N =50
STDyo(+y || 4.5683 (53.23) | 3.1129 (36.10) | 2.3807 (27.56) | 1.7790 (20.57) | 1.5233 (17.61)
ST Dyo(riwy || 457167 (53.27) | 3.1550 (36.59) | 2.4186 (28.00) | 1.8023 (20.84) | 1.5354 (17.75)
STDyoey || 4.8331 (56.32) | 3.4012 (39.44) | 2.6154 (30.28) | 1.9275 (22.29) | 1.6145 (18.66)
STDpgry | 4.9252 (57.39) | 3.3536 (38.89) | 2.6405 (30.57) | 1.9631 (22.70) | 1.6769 (19.39)
STDps(x+) || 4.6486 (54.17) | 3.2611 (37.82) | 2.6478 (30.65) | 2.1619 (25.00) | 1.9303 (22.32)
Vo(r!) 8.5818 8.6232 8.6380 8.6469 8.6499
Vo(m*) 8.5895 8.6275 8.6406 8.6493 8.6531
b* 0.5917 0.6298 0.6284 0.6203 0.6172

Figure 3.7: Standard deviation of the Variance Optimal hedging error (reported within parenthesis
in percent of the option value Vy(7!)), initial capitals, optimal grid parameters, for different choices

of rebalancing dates N (Call option).

the optimal rebalancing dates concentrate near the maturity. On Figure 3.10, one can observe
that the hedging error increases with A even when the rebalancing dates are optimized.
However, optimizing the rebalancing dates allows to reduce noticeably the hedging error,
specifically for high values of A. For instance, it allows to reduce 7.5% of the error standard
deviation when A = 3 and 17.9% when A = 9.

A 1 2 3 6 9

o 0.4662 | 0.5202 | 0.5747 | 0.7349 | 0.8823
Vo(m!) | 8.6630 | 8.6511 | 8.6380 | 8.5936 | 8.5450
Vo(P*) | 8.6615 | 8.6516 | 8.6406 | 8.6022 | 8.5597

Figure 3.8: Short term volatility o (s.t. Var(Xr) = %(1 — e~ 2T s fixed) and initial capitals for
different values of parameter A with N = 10 and K = 99 (Call option).
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0.8

0.75

0.7F

0.65

Value of b*

0.6 -

055

051

0.45F

0.4

Figure 3.9: Optimal rebalancing grid parameter b* as a function of A for K = 99 and N = 10 (Call

option).
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3.8 | R R

VO 1
vo "

3.6 - } RS RRRPPPPERRERERRRRIN SERRES

Standard Deviation (euro)

22 1 1 1 ]

Figure 3.10: Standard deviation of the hedging error as a function of A for K = 99 and N = 10
(Call option).
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Appendix: The Normal Inverse Gaussian distribution

The Normal Inverse Gaussian (NIG) distribution is a specific subclass of the Generalized
Hyperbolic family introduced by Bandorf-Nielsen in 1977, see for instance [6]. The density

of a Normal Inverse Gaussian distribution of parameters («, 3,9, i) is given by

04/1+ )2 /62
e (z; o B, 0, 1) —exp ((5\/042 BP+6(x—p ) <fd/1\/ 2/62/ ) , foranyx eR,
(5.42)

where K denotes the Bessel function of the third type with index 1 and where the parameters
are such that 6 > 0, « > 0 and « > ||. Afterwards, NIG(«, (3,0, 1) will denote the Normal
Inverse Gaussian distribution of parameters (a, 3, 9, ).

A useful property of the NIG distribution is its stability under convolution i.e.
NIG(a, B,61, 1) * NIG(a, B, 62, o) = NIG(av, 8,61 + G2, p1 + pa) -

This property shared with the Gaussian distribution allows to simplifies many computations.
If X is a NIG(«, 3, 4, 1) random variable then for any a € Rt and b e R, Y =aX + b is
also a NIG random variable with parameters (a/a, 3/a, ad, ap + b).

The mean and the variance associated to a NIG(«, 3,9, u) random variable X are given

by,

) da’?
Ex = u+ 2 VarX = 0 | with v = /a2 - 2. (5.43)
8 8
The characteristic function of the NIG distribution is given by exp(V ;o) where ¥y s
verifies
Unre(u) = logE[exp(iuX)] = ipu + 6(\/a2 — 32 — /a2 — (B +iu)?) forany ueR.

(5.44)

The moment generating function of the NIG distribution is particularly simple,

knic(z) = log Elexp(2X)] = pe+6 (/a2 — B2—y/a2 — (B+2)%), for Re(2) € [~(a+3);a—p].
(5.45)
The Lévy measure of the NIG distribution is given by

Fnic(dr) = eﬂx%l{l(am) dr forany x € R. (5.46)
|

Notice that the Lévy measure does not depend on parameter pu.
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RESUME en francais: La thése porte sur une décomposition explicite de Follmer-Schweizer
d’une classe importante d’actifs conditionnels lorsque le cours du sous-jacent est un processus a
accroissements indépendants ou une exponentielle de tels processus. Ceci permet de mettre en
oeuvre un algorithme efficace pour établir des stratégies optimales dans le cadre de la couverture

quadratique. Ces résultats ont été implémentés dans le cas du marché de 1’électricité.

TITRE en italien: Copertura sulla base dello scarto quadratico medio nei mercati incompleti per

dei processi a incrementi indipendenti e applicazioni al mercato elettrico.

RESUME en italien: In questa tesi di dottorato di ricerca vengono calcolate esplicitamente le
scomposizioni dette di Follmer-Schweizer per una famiglia significativa di opzioni finanziarie quando
il prezzo del soggiacente é un processo a incrementi indipendenti o un esponenziale di tali processi.
Le formule ottenute permettono di produrre un algoritmo efficiente per la risoluzione del problema
della copertura che minimizza lo scarto quadratico medio nei mercati incompleti. I risultati sono

stati implementati numericamente nell’ambito del mercato elettrico.

TITRE en anglais: Variance Optimal Hedging in incomplete market for processes with indepen-

dent increments and applications to electricity market.

RESUME en anglais: For a large class of vanilla contingent claims, we establish an explicit
Follmer-Schweizer decomposition when the underlying is a process with independent increments
(PII) and an exponential of a PII process. This allows to provide an efficient algorithm for solving
the mean variance hedging problem. Applications to models derived from the electricity market are

performed.
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