présentée à

l'Université Scientifique et Médicale de Grenoble

pour obtenir le grade de DOCTEUR DE 3ème cycle «mathématiques appliquées"

par

Victor HARISON
$\theta(0$

ETUDE DE QUELQUES MODELES DETERMINISTES ET

STOCHASTIQUES DE SYSTEMES DYNAMIQUES A TEMPS DISCRET.

$$
0 \phi
$$

Thèse soutenue le 31 mars 1983 devant la commission d'examen
A. LE BRETON
J.Y. OUVRARD

Examinateurs
D.T. PHAM

1
-

universite scientifique et medicale de grenobie
 année scolaira 1980-1981

Président de I'Université : M. J.J. PAYAN

MEMBRES DU CORPS ENSEIGNANT DE L’U.S.M.G.

Mlle	AGNIUS DELORD Claudine ALARY Josette	Biophysique Chimie analytique
MM.	AMBLARD Pierre	Clinique dermatologie
	AMBROISE THOMAS Pierre	Parasitologie
	ARNAUD Paul	Chimie
	ARVIEU Robert	Physique nucléaire
	AUBERT Guy	Physique
	AYANT Yves	Physique approfondie
Mme	BARBIER Marie-Jeanne	Electrochimie
MM.	BARBIER Jean-Claude	Physique expérimentale
	BARBIER Reynold	Géologie
	BARJON Robert	Physique nucléaire
	BARNOUD Fernand	Biosynthèse de la cellulose
	BARRA Jean-René	Statistiques
	BARRIE Joseph	Clinique chirurgicale A
	BEAUDOING Andre	Clinique pédiatrie et puériculture
	BELORISKY Elie	Physique
	BENZAKEN Claude	Mathématiques appliquées
Mme	BERIEL Hélène	Pharmacodynamie
M.	BERNARD Alain	Mathématiques pures
Mme	BERTRANDIAS Francoise	Mathématiques pures
MM.	BERTRANDIAS Jean-Paul	Mathématiques pures
	beZes Henri	Clinique chirurgicale \& traumatologie
	BILLET Jean	Géographie
	BONNET Jean-Louis	Clinique ophtalmologique
	BONNET EYMARD Joseph	Clinique Hépato-gastro-entérologie
Mme	BONNIER Jane-Marie	Chimie générale
MM.	BOUCHERLE Andre	Chimie et toxicologie
	BOUCHET Yues	Anatomie
	BOUCHEZ Robert	Physique nucléaire
	BRAVARD Yves	Géographie

MM. BUTEL Jean

CABANEL Guy
CARLIER Georges
CAU Gabriel
CAUQUIS Georges
CHARACHON Robert
CHATEAU Robert
CHIBON Pierre
COEUR André
COUDERC Pierre
CRABBE Pierre
DAUMAS Max
DEBELMAS Jacques
DEGRANGE Charles
DELOBEL Claude
DELORMAS Pierre
DENIS Bernard
DEPORTES Charles
DESRE Pierre
DODU Jacques
DOLIQUE Jean-Michel DUCROS Pierre
FONTAINE Jean-Marc
GAGNAIRE Didier
GASTINEL Noël
GAVEND Jean-Micnel
GEINDRE Michel
GERBER Robert
GERMAIN Jean-Pierre
GIRAUD Pierre
JANIN Bernard
JEANNIN Charles
JOLY Jean-René
KAHANE André
KAHANE Josette
KLEIN Joseph
KOSZUL Jean-Louis
LACAZE Albert
LACHARME Jean
LAJZEROWICZ Joseph

Orthopédie
Clinique rhumatologie et hydrologie
Biologie végétale
Médecine légale et toxicologie
Chimie organique
Clinique O.R.L.
Clinique neurologique
Biologie animale
Chimie analytique et bromotologique
Anatomie pathologique
C.E.R.M.O.

Géographie
Géologie générale
Zoologie
M.I.A.G.

Pneumo-phtisiologique
Clinique cardiologique
Chimie minérale
Electrochimie
Mécanique appliquée IUT 1
Physique des plasmas
Cristallographie
Mathématiques pures
Chimie physique
Analyse numérique
Pharmacologie
Electro-radiologie
Mathématiques pures
Mécanique
Géologie
Géographie
Pharmacie galénique
Mathématiques pures
Physique
Physique
Mathématiques pures
Mathématiques pures
Hermodynamique
Biologie cellulaire
Physique

Mine	LAJZEROWICZ Jeannine	Physique
MM.	LATREILLE Reń	Chirurgie thoracique
	LATURAZE Jean	Biochimie pharmaceutiques
	LAURENT Pierre	Mathématiques appliquées
	LE NOC Pierre	Bactériologie virologie
	LLIBOUTRY Louis	Geophysique
	LOISEAUX Jean-Marie	Sciences nucleaires
	LOUP Jean	Géographie
	LUU DUC Cuong	Chimie générale et minérale
	MALINAS Yves	Clinique obstétricale
Mille	MARIOTTE Anne-Marie	Pharmacognostie
MM.	MAYNARD Roger	Physique du solide
	MAZARE Yves	Clinique médicale A
	MICHEL Robert	Minéralogie et pétrographie
	MICOUD Max	Clinique maladies infectieuses
	mouriauand Claude	Histologie
	NEGRE Robert	Mécanique IUT 1
	MOZIERES Philippe	Spectrométrie physique
	OMONT Alain	Astrophysique
	OZENDA Paul	Botanique
	PAYAN Jean-Jacques	Mathématiques pures
	PEBAY PEYROULA Jean-Claude	Physique
	PERRET Jean	Sémeiologie médicale (neurologie)
	PERRIER Guy	Géophysique
	PIERRARD Jean-Marie	Mécanique
	RACHAIL Michel	Clinique médicale B
	RASSAT André	Chimie systématique
	RENARD Michel	Thermody ${ }^{\text {amique }}$
Mme	RENAUDET Jacqueline	Bactériologie
M.	REVOL Michel	Urologie
Mme	RINAUDO Marguerite	Chimie CERMAV
MM.	DE ROUGEMONT Jacques	Neuro-chirurgie
	SARRAZIN Roger	Clinique chirurgicale B
Mme	SEIGLE MURANDI Françoise	Botanique et crytogamie
MM.	: SENGEL Philippe	Biologie animale
	SIBILLE Robert	Construction mécanique IUT 1
	SOUTIF Michel	Physique
	TANCHE Maurice	Physiologie
	VAILLANT François	Zoologie
	VALENTIN Jacques	Physique nucléaire

MM.	VAN CUTSEM Bernard VAUQUOIS Bernard VERAIN Alice VERAIN André VIGNAIS Pierre	Mathématiques appliquées Mathématiques appliquées Pharmacie galénique Biophysique Biochimie médicale
PROFESSEURS DE 2ème CLASSE		
MM.	ARNAUD Yves	Chimie IUT 1
	AURIAULT Jean-Louis	Mécanique IUT 1
	BEGUIN Claude	Chimie organique
	BOITET Christian	Mathématiques appliquées
	BOUTHINON Michel	E.E.A. IUT 1
	BRUGEL Lucien	Energétique IUT 1
	BUISSON Roger	Physique IUT 1
	CASTAING Bernard	Physique
	CHARDON Michel	Géographie
	CHEHIKIAN Alain	E.E.A. IUT 1
	COHEN Henri	Mathématiques pures
	COHENADDAD Jean-Pierre	Physique
	COLIN DE VERDIERE Yves	Mathématiques pures
	CONTE René	Physique IUT 1
	CYROT Michel	Physique du solide
	DEPASSEL Roger	Mécanique des fluides
	DOUCE Roland	Physiologie végétale
	DUFRESNOY Alain	Mathématiques pures
	GASPARD François	Physique
	GAUTRON René	Chimie
	GIDON Maurice	Géologie
	GIGNOUX Claude	Sciences nucléaires
	GLENAT René	Chimie organique
	GOSSE Jean-Pierre	E.E.A. IUT 1
	GROS Yves	Physique IUT 1
	GUITTON Jacques	Chimie
	HACQUES Gérard	Mathématiques appliquées
	HERBIN Jacky	Geographie
	HICTER Pierre	Chimie
	IDELMAN Simon	Physiologie animale
	JOSELEAU Jean-Paul	Biochimie
	JULLIEN Pierre	Mathématiques appliquées
	KERCKOVE Claude	Géologie

Mathématiques appliquées
Mathématiques appliquées
Pharmacie galénique
Biophysique
Biochimie médicale

Chimie IUT 1
Mécanique IUT 1 :
Chimie organique
Mathématiques appliquées
E.E.A. IUT 1

Energétique IUT 1
Physique IUT 1
Physique
Géographie
E.E.A. IUT 1

Mathématiques pures
Physique
Mathématiques pures
Physique IUT 1
Physique du solide
Mécanique des fluides
Physiologie végétale
Mathématiques pures
Physique
Chimie
Géologie
Sciences nucléaires
Chimie organique
E.E.A. IUT 1

Physique IUT 1
Chimie
athématiques appliquees
Geographie
Chimie
Physiologie animale
Biochimie

Géologie

MM.	KRAKOWIACK Sacha	Mathématiques appliquées
	KUHN Gerard	Physique IUT 1
	KUPKA Yvon	Mathématiques pures
	LUNA Domingo	Mathématiques pures
	MACHE Régis	Physiologie végétale
	MARECHAL Jean,	Mécanique
	MICHOULIER Jean	Physique IUT 1
Mme	MINIER Colette	Physique IUT 1
MM.	NEMOZ Alain	Thermodynamique
	NOUGARET Marcel	Automatique IUT 1
	OUDET Bruno	Mathématiques appliquées
	PEFFEN René	Métallurgie IUT 1
	PELMONT Jean	Biochimie
	PERRAUD Robert	Chimie IUT 1
	PERRIAUX Jean-Jacques	Géologie minéralogie
	PERRIN Claude	Sciences nucleaires
	PFISTER Jean-Claude	Physique du solide
	PIERRE Jean-Louis	Chimie organique
Mile	PIERY Yvette	Physiologie animale
MM.	RAYNAUD Herve	Mathématiques appliquées
	RICHARD Lucien	Biologie végétale
	ROBERT Gilles	Mathématiques pures
	ROBERT Jean-Bernard	Chimie physique
	ROSSI André	Physiologie végétale
	SAKAROVITCH Michel	Mathématiques appliquées
	SARROT REYNAUD Jean	Géologie
	SAXOD Raymond	Biologie animale
Mme	SOUTIF Jeanne	Physique
MM.	STUTZ Pierre	Mécanique
	VIALON Pierre	Géologie
	VIDAL Michel	Chimie organique
	VIVIAN Robert	Géographie

CHARGES D'ENSEIGNEMENT PHARMACIE

MM. ROCHAS Jacques	Hygiène et hydrologie
DEMENGE Pierre	Pharmacodynamie

PROFESSEURS SANS CHAIRE (médecine)
M. BARGE Michel

Neuro-chirurgie

MM.	BOST Michel	Pédiatrie
	BOUCHARLAT Jacques	Psychiatrie
	CHAMBAZ Edmond	Biochimie (hormonologie)
	CHAMPETIER Jean	Anatomie
	COLOMB Maurice	Biochimie
	coulomb Max	Radiologie
Mme	ETERRADOSSI Jacqueline	Physiologie
MM.	FAURE Jacques	Médecine légale
	GROULADE Joseph	Biochimie A
	HOLLARD Daniel	Hématologie
	HUGONOT Robert	Gérontologie
	JALBERT Pierre	Histologie
	MAGNIN Robert	Hygiène
	PHELIP Xavier	Rhumatologie.
	REYMOND Jean-Charles	Chirurgie générale
	STIEGLITZ Paul	Anesthésiologie
	VROUSOS Constantin	Radiothérapie
MAITRES	DE Conferences Agreges	(médecine)
	BACHELOT Yvan	Endocrinologie
	BENABID Alim Louis	Médecine et chirurgie
	BERNARD Pierre	Gynécologie obstétrique
	CONTAMIN Charles	Chirurgie thoracique
	CORDONNIER Daniel	Néphrologie
	crouzet Guy	Radiologie
	DEBRU Jean-Luc	Médecine interne
	DYON Jean-François	Chirurgie infantile
	FAURE Claude	Anatomie et organogènèse
	FAURE Gilbert	Urologie
	Floyrac Roger	Biophysique
	FOURNET Jacques	Hépato-gastro-entérologie
	GAUTIER Robert	Chirurgie générale
	GIRARDET Pierre	Anesthésiologie
	gUidicelli Henri	Chirurgie générale
	GUIGNIER Michel	Thérapeutique (reanimation)
	JUNIEN-LAVILLAUROY Claude	Clinique O.R.L.
	KOLODIE Lucien	Hématologie biologique
	MALLION Jean-Michel	Médecine du travail
	MASSOT Christian	Médecine interne
	MOUILLON Michel	Ophtalmologie

MM. PARAMELLE Bernard

RACINET Claude
RAMBAUD Pierre
RAPHAEL Bernard
SCHAEFER René
SEIGNEURIN Jean-Marie
SOTTO Jean-Jacques
STOEBNER Pierre

Pneumologie
Gynécologie-Obstétrique
Pédiatrie
Stomatologie
Cancérologie
Bactériologie-virologie
Hématologie
Anatomie-pathologique
$:$

TABLE DES MATIERES

pages
INTRODUCTION 1
CHAPITRE I. - SYSTEMES DYNAMIQUES A TEMPS DISCRET : 5
LE CADRE DE L'ETUDE ET L'EXEMPLE DU CAS LINEAIRE.
I. - Quelques problèmes de nature déterministe. 7
II. - Quelques problèmes de nature stochastique. 13
III. - Quelques problẻmes de nature statistique. 26
CHAPITRE II. - ETUDE DU MODELE BILINEAIRE. 37

$$
Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t}+C u_{t} ; X_{t}=H Y_{t}
$$

I. - Etude des problèmes de nature déterministe. 38
II. - Caractéristiques du second-ordre et Stationnarités. 48
III. - Filtrage linéaire et filtrage non linéaire. 58
IV. - Etude d'un modẻle particulier de série chronologique 65 unidimensionnelle.
CHAPITRE III. - ETUDE DU MODELE BILINEAIRE81
$Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t-1}+C u_{t} ; X_{t}=H Y_{t}$.
I. - Etude des problèmes de nature déterministe. 82
II. - Caractéristiques du second-ordre et Stationnarités. 92
III. - Filtrage non linéaire optimal. 103
IV. - Etude d'un modèle particulier de série chronologique 105 unidimensionnelle.

INTP.ODUCTION

Dans la littérature consacrée aux systèmes déterministes à temps discret, on trouve denuis assez longtemps des études portant sur des modèles non-linéaires dits modèles bilinéaires ou réguliers (cf. A. ISIDORI (1973) ,R.R. MOHLER (1973), T.J. TARN et al (1973), T. GOKA et al (1973), M.E. EVANS and D.N.P. MURTHY (1977,1978),D.N.P. MURI'HY (1979) ,Y. FUNAHASHI (1979),...).Ce n'est que plus récemment que,dans la littérature concernant les séries chronologiques,les statisticiens se sont intéressés à certains analogues stochastiques de ces modèles déterministes (cf. C.W.J. GRANGEP and A.P. ANDERSEN (1978) ,T. SUBBA RAO (1978, 1979) ,T.D. PHAM et L.T. TRAN (1980,1981), D.F. NICHOLLS and B.G. QUINN (1980,1981 a),b),1982),M.M. GABR and T. SUBBA RAO (1981), D. GUEGAN(1981),E.J. HANNAN (1982),B.G. QUINN (1982)) .

Dans ce travail nous étudions quelques modèles bilinéaires de systèmes dynamiques à temos discret,issus soit de l'analyse des systèmes soit de l'analyse des séries chronologiques,d'abord dans leur version déterministe puis dans leur version stochastique.Dans le cas déterministe nous nous intéressons en particulier aux propriétés de contrôlabilité, d'observabilite et d'identifiabilité partielle de l'entrée.Dans le cas stochastique nous examinons principalement le problème de l'existence d'un processus d'état stationnaire, celui de l'inversibilité du processus observé ; nous abordons aussi les problèmes de nature statistique :filtrage et estimation de paramètres.Nous envisageons enfin certains liens entre des problèmes de nature déterministe et d'autres de nature probabiliste.

Dans le premier chapitre nous présentons le cadre d'étude que nous avons retenu pour des modèles de systèmes dynamiques à temps discret en illustrant les propriétés abordées par l'exemple du cas d'un modèle linéaire.Le deuxième chapitre est consacré à l' étude d'un modèle où l'entrée est unidimensionnelle et agit à la föis de manière multiplicative et de manière additive sur l'état du système. Dans le troisième chapitre nous considérons un modèle où la nouvelle entrée à chaque instant agit additivement,l'entrêe à l' instant antérieur restant présente et ayant une action multiplicativ Dans le quatrième chapitre nous examinons un modèle oũ l'entrée est bidimensionnelle, l^{\prime} une de ses composantes agissant de façon multipli. cative et l'autre de façon additive.

A cette présentation , qui suit la progression de notre travail,il aurait été possible et peut-être préférable de substituer une rédaction qui tienne compte du fait que les modèles que nous étudions sont tous du type

$$
\left\{\begin{array}{l}
Y_{t}=\dot{A Y_{t-1}}+B Y_{t-1} u_{t}^{1}+C u_{t}^{2} \\
X_{t}=H Y_{t}
\end{array}\right.
$$

la particularité de chacun correspondant à un choix d'hypothèses concernant les entrées $\left(u_{t}^{1}, u_{t}^{2}\right)$. Le modèle linéaire servant d'illustration dans le premier chapitre apparait comme le cas particulier où $u_{t}^{l}=0$; dans le modèle du deuxième chapitre les entrées sont soumises aux contraintes $u_{t}^{1}=u_{t}^{2}$; dans celui du troisième elles satisfont aux contraintes $u_{t}^{1}=u_{t-1}^{2}$; dans le modèle du quatrième chapitre les entrées sont libres.

Dans cet esprit nous aurions pu envisager avec une certaine unité l'étude des différents modèles,en particulier en ce qui concerne les versions stochastiques de ceux des deuxième et quatrième chapitres.

La présentation que nous avons choisie a l'inconvênient de masquer en partie cette unité et de conduire à certaines redites. Elle présente aussi quelques avantages : elle nous permet de bien situer chaque modèle dans son contexte bibliographique et autorise une lecture indépendante de chaque étude.

1

CHAPITRE I

SYSTEMES DYNAMIQUES A TEMPS DISCRET :

Le CADRE DE L'ETUDE ET L'EXEMPLE DU CAS LINEAIRE

Nous nous intéressons à des systèmes dynamiques, évoluant en temps discret, décrits par des modèles "en représentation d'état" c'est-àdire par des équations d'évolution et d'observation de la forme suivante
(1) $\left\{\begin{array}{l}Y_{t}=f\left(Y_{t-1}, u_{t}\right) ; t \in \mathbb{N}^{*} ; Y_{0} \text { donne } \\ X_{t}=g\left(Y_{t}\right) \quad ; t \in \mathbb{N}\end{array} \quad\right.$ ou (1') $\left\{\begin{array}{l}Y_{t}=f\left(Y_{t-1}, u_{t}\right) \\ X_{t}=g\left(Y_{t}\right)\end{array} \quad ; t \in \mathbb{Z}\right.$

- f et g sont des applications mesurables de $R^{r} \times R^{d}$ dans R^{r} et de R^{r} dans R respectivement ;
- Y_{t} représente l'état r-dimensionnel (i.e $Y_{t} \in \mathbb{R}^{r}$) du système à l'instant t;
- u_{t} représente l'entrée d-dimensionnelle (i.e $u_{t} \in \mathbb{R}^{d}$) agissant sur le système à l'instant t;
- X_{t} représente la sortie observée du système à l'instant t dont nous supposerons systématiquement qu'elle est scalaire.

Notons qu'il s'agit de modeles de systèmes autonomes dans la mesure où les applications f et g ne dépendent pas explicitement du temps t. Deux situations se présentent selon que l'entrée du système est déterministe ou stochastique :
. si pour tout t, u_{t} est un vecteur déterminé et la suite $\left(Y_{t}\right)$ est déterministe, le modèle est dit déterministe ;
. si (u_{t}) est une suite de vecteurs aléatoires (que nous supposerons alors définis sur un meme espace probabilisé (Ω, a, P), centrés et de meme loi possédant une matrice de covariance) l'évolution du système est aléatoire et le modèle est dit stochastique.

Dans ce chapitre nous nous proposons de présenter le cadre de l'étude que nous envisageons dans les chapitres suivants pour des modèles non linéaires particuliers, en illustrant les propriétés abordées par l'exemple du cas d'un modèle linéaire du type
(2) $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+C u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\ X_{t}=H Y_{t} \quad ; t \in \mathbb{N} .\end{array} \quad\right.$ ou (2') $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+C u_{t} \\ \\ X_{t}=H Y_{t}\end{array}\right.$
où A et C sont des matrices d'ordres $r \times r$ et $r \times d$ respectivement.
et H un vecteur ligne $1 \times r$.
Remarquons que ce modèle recouvre par exemple la situation d'une sortie scalaire décrite à chaque instant t par

$$
x_{t}=\sum_{j=1}^{r} a_{j} x_{t-j}+\sum_{\ell=1}^{d-1} b_{\ell} v_{t-\ell}+v_{t},(r \geq d)
$$

où (v_{t}) est une suite de réels. En effet (X_{t}) peut se représenter comme l'observation dans un modèle du type (2) où l'état r-dimensionnel
$Y_{t}=\left(Y_{t, 1}, \ldots, Y_{t, r}\right)^{\prime}$ défini par :
$y_{t, 1}=X_{t}$

$$
\begin{gathered}
Y_{t, k}=\sum_{j=k}^{r} a_{j} x_{t+k-1-j}+\sum_{j=k}^{r} b_{j-1} v_{t+k-j}, k=2, \ldots, r ; \\
\left(b_{0}=1, b_{\ell}=0 ; \ell \geq d\right)
\end{gathered}
$$

évolue selon l'équation

$$
Y_{t}=\left[\begin{array}{llllll}
a_{1} & 1 & 0 & \cdot & \cdot & 0 \\
a_{2} & 0 & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot & i \\
a_{r} & 0 & & \cdot & \cdot & 1 \\
a_{r} & \cdot & \cdot & 0
\end{array}\right) Y_{t-1}+\left(\begin{array}{l}
b_{0} \\
b_{1} \\
\cdot \\
\cdot \\
b_{r-1}
\end{array}\right] v_{t}
$$

l'équation d'observation étant

$$
X_{t}=H Y_{t}
$$

où H est le vecteur ligne $1 \times r: H=(10 \ldots 0)$.

Pour les modèles déterministes nous nous intéressons en particulier aux propriétés de controlabilité, d'observabilité et d'identifiabilité partielle de l'entrée.

Pour les modèles stochastiques nous nous proposons principalement d'étudier le problème de l'existence d'un processus d'état stationnaire vérifiant l'équation d'évolution et de certains de ses moments , le problème de l'inversibilité du processus observé, celui du filtrage de l'état au vu de l'observation et dans des cas simples le problème statistique de l'estimation des paramètres.

Nous examinons aussi certains liens entre des problèmes de nature deterministe et d'autres de nature probabiliste.

I. QUELQUES PROBLEMES DE NATURE DETERMINISTE.

Nous considérons lei le cas d'un système décrit par un modèle déterministe de type (1) ou l'état initial Y_{0} est un vecteur déterminé et la suite $\left(u_{t} ; t \in \mathbb{N}^{*}\right)$ est déterministe.

1.1. Controlabilité déterministe.

Le problème de la controlabilité dans un modèle déterministe con-
cerne la possibilité pour un observateur ayant le choix de l'entrée (alors appelée controle ou commande) d'imposer au système d'évoluer entre un état initial et un état final donnés. De façon précise on pose :

I.1.1. Définition.

Etant donhés $Y_{I}, Y_{F} \in \mathbf{R}^{r}$ (état initial et état final respectivement), le système déterministe décrit par (1) est dit controlable de Y_{I} à Y_{F} s'il existe un entier K et une suite finie ($\left.u_{i} ; i=1, \ldots, K\right)$ désignée par $u[1, K]$ telle que si $Y_{o}=Y_{I}$ et $Y_{t}=f\left(Y_{t-1}, u_{t}\right), 1 \leq t \leq K$, on ait $Y_{K}=Y_{F}$ Le système est dit controlable s'il est controlable de Y_{I} à Y_{F} pour tout Y_{I} et Y_{F}.

Pour le système linéaire déterministe décrit par (2), on a le résultat classique suivant :
I.1.2. Théorème (cf. par exemple R.E. KALMAN et al (1969))

Le système linéaire déterministe décrit par (2) est controlable si et seulement si $\quad \mathrm{ggC}_{r}=r$ où C_{r} est la matrice d'ordre $r \times r d$: $C_{r}=\left[C A C \ldots A^{r-1} C\right]$; on dit alors que le couple $[A, C]$ est controlable.

I.2. Observabilité déterministe.

Le problème de l'observabilité dans un modèle déterministe concerne la possibilité pour un observateur de retrouver l'état initial du système à partir de la donnée d'entrée et des sorties correspondantes. On distingue trois situations selon la nature de cette donnée.
a) Observabilité avec quelques entrées connues.

1.2.1. Définition.

Le système déterministe décrit par (1) est dit observable avec quelques entrées connues s'il existe des entiers j et q et des suites d'entrées $u^{1}[1, j], \ldots u^{q}[1, j]$ tels que Y_{o} puisse etre déterminé uniquement en fonction de $u^{1}[1, j], \ldots, u^{q}[1, j]$ et des suites de sorties correspondantes $X^{1}[0, j], \ldots, X^{q}[0, j]$
($u^{1}[1, j]$ désigne une suite d'entrées $u_{1}^{i}, \ldots, u_{j}^{i}$ et $X^{i}[0, j]$ désigne la suite de sorties $X_{0}^{1} \ldots \ldots, X_{j}^{i}$ qui lui correspond) on a le résultat classique suivant

I.2.2. Théorème (cf. par exemple T. YOSHIKAWA et al (1975))

Le système linéaire déterministe décrit par (2) est observable avec quelques entrées connues si et seulement si $r g O_{r}=r$ où O_{r} est la matrice. d'ordre rxa:

$$
\mathrm{O}_{\mathrm{r}}=\left[\begin{array}{l}
\mathrm{H} \\
\mathrm{HA} \\
\vdots \\
\mathrm{HA}^{\mathrm{r}-1}
\end{array}\right] ;
$$

on dit alors que le couple [A,H] est observable.
b) Observabilité avec n'importe quelle entrée connue.

1.2.3. Définition.

Le système déterministe décrit par (1) est dit observable avec $n^{\prime} i m-$ porte quelle entrée connue s'il existe un entier j tel que, pour toute suite d'entrées $u[1, j]$, Y_{0} puisse etre déterminé uniquement en fonction de $\mathrm{u}[1, j]$ et de la suite de sorties $\mathrm{X}[0, j]$.

Dans le cas linéaire les deux notions précédentes se confondent.

I.2.4. Proposition.

Le système linéaire décrit par (2) est observable avec n'importe quelle entrée connue si et seulement si il est observable avec quelques entrées connues et donc si et seulement si le couple [A,H] est observable i.e $\mathrm{rg} \mathrm{O}_{\mathrm{r}}=\mathrm{r}$.

Démonstration.

Le fait que la deuxième condition est nécessairement vérifiée si la première l'est, découle immédiatement des définitions. Montrons maintenant que si le système linéaire déterministe décrit par (2) est observable avec quelques entrées connues il est aussi observable avec n'importe quelle entrée connue. Soit donc $\left(u_{t}\right)$ une suite quelconque d'entrées et $\left(X_{t}\right)$ la suite de sorties correspondante. D'après l'équation (2) on a
$X[0, r-1]-M_{r} u[1, r-1]=O_{r} Y_{o}$
où
$X[0, r-1]$ désigne le vecteur colonne $r \times 1=\left(X_{o}, X_{1}, \ldots, X_{r-1}\right)^{\prime}$,
M_{r} est la matrice $M_{r}=\left[\begin{array}{ccccc}0 & \cdot & \cdot & 0 \\ H C & 0 & . & 0 \\ \vdots & \cdot & 0 & 0 \\ H_{A}{ }^{r-2} & \cdot & \cdot & 0 \\ & & H C\end{array}\right]$ d'ordre $r \times(r-1) d$,
$u[1, r-1]$ désigne le vecteur colonne $(r-1) d \times 1:\left(u_{1}^{\prime}, \ldots, u_{r-1}^{\prime}\right)^{\prime}$, et O_{r} est la matrice d'ordre $r \times r$ définie dans l'énoncé du Théorème I.2.2. Or d'après l'hypothèse et le théorème 1.2 .2 . on a $\mathrm{rg} \mathrm{O}_{\mathrm{r}}=\mathrm{r}$. Par suite on a

$$
Y_{o}=O_{r}^{-1}\left\{X[0, r-1]-M_{r} u[1, r-1]\right\}
$$

ce qui assure bien que le système est observable avec n'importe quelle entrée.
c) Observabilite avec entrée inconnue.

1.2.5. Définition.

Le système déterministe décrit par (1) est dit observable avec entrée inconnue s'il existe un entier j tel que, pour toute suite d'entrées $u[1, j]$, Y_{0} puisse etre déterminé uniquement en fonction de $X[0,1]$.
On a le résultat suivant qui se déduit par exemple du théorème général énoncé par T. YOSHIKAWA et al (1975).

1.2.6. Proposition.

Le système linéaire déterministe décrit par (2) est observable avec entrée inconnue si et seulement si on a

I.3. Identifiabilité partielle d'une entrée déterministe.

Le problème de l'identifiabilité partielle d'une entrée déterministe concerne la possibilité pour un observateur de "retrouver une partie de l'entrée ayant agi sur le système" à partir de la seule donnée de l'état initial et de la suite de sorties correspondante. De façon précise on pose :

I.3.1. Définition.

Etant donnée une matrice Q d'ordre $\ell \times d j$ (ℓ quelconque) on dit que l'entrée $u[1, j]$ est partiellement Q-identifiable dans le modele défini par (1) si le vecteur $Q u[1, j]$ peut s'exprimer uniquement en fonction de Y_{0} et de la suite de sorties correspondante $X[0,1]$.
Dans le cas linéaire on a le résultat suivant
1.3.2. Theorème (cf. par exemple T. YOSHIKAWA et al (1975))

Dans le modèle linéaire déterministe défini par (2),l'entrée $u[1, j]$ est partiellement Q-identifiable si et seulement si on a $r g \tilde{M}_{j}=r g\left[\begin{array}{l}\tilde{M}_{j} \\ Q\end{array}\right] \quad$ où $\tilde{M}_{j} \quad$ est la matrice d'ordre $j \times j d$

$$
\tilde{M}_{j}=\left[\begin{array}{cccccc}
H C & 0 & \cdot & \cdot & \cdot & 0 \\
\cdot & & \cdot & & & \cdot \\
\bullet & & \cdot & \cdot & 0 \\
\cdot & & & 0 \\
\text { HA }^{j-1} & C & \cdot & \cdot & . & H C
\end{array}\right]
$$

II. QUELQUES PROBLEMES DE NATURE STOCHASTIQUE.

Nous abordons ici la situation où la suite des entrées est une suite (e_{t}) de vecteurs aléatoires dans $R^{\mathbf{d}}$, équidistribués, d'espérance mathématique nulle et admettant une matrice de covariance Q_{e}. Nous considérons alors le modèle stochastique défini par

$$
\begin{cases}Y_{t}=f\left(Y_{t-1}, e_{t}\right) & ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \tag{3}\\ X_{t}=g\left(Y_{t}\right) & ; t \in \mathbb{N},\end{cases}
$$

où Y_{o} est un vecteur aléatoire donné dans $\mathbf{R}^{\mathbf{r}}$, représentant l'état initial du système, dont nous supposerons qu'il admet une espérance mathématique $m(0)$ et une matrice de covariance $C(0)$. A un tel modele correspond toujours un unique processus solution $\left(\left(Y_{t}, X_{t}\right) ; t \in \mathbb{N}\right)$ et on peut remarquer que dans le cas particulier où $\left(e_{t} ; t \in \mathbb{N}^{*}\right)$ est une suite de vecteurs aléatoires indépendants, indépendante de Y_{0}, alors le processus (Y_{t}) décri-. vant l'évolution de l'état du système est un processus de Markov homogène d'ordre 1 .

Nous envisageons aussi des modèles stochastiques de la forme
(3') $\quad\left\{\begin{array}{l}Y_{t}=f\left(Y_{t-1}, e_{t}\right) \\ X_{t}=H Y_{t}\end{array} \quad ; t \in \mathbb{Z}\right.$
pour lesquels 11 conviendra de préciser ce qu'on entend par processus solution. Le modèle linéaire qui nous sert d'illustration s'écrit

$$
\begin{cases}Y_{t}=A Y_{t-1}+C e_{t} & ; t \in \mathbb{N}^{*}, Y_{0} \text { donné } \tag{4}\\ X_{t}=H Y_{t} & ; t \in \mathbb{N}\end{cases}
$$

ou
(4)

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+C e_{t} \\
X_{t}=H Y_{t}
\end{array} \quad ; t \in \mathbb{Z}\right.
$$

On peut, par exemple consulter H. AKAIKE (1974) et M.B. PRIESTLEY (1981 b) pour l'étude d'un tel modèle en liaison avec le modèle classique A.R.M.A. (Autorégressif Moyenne Mobile) de séries chronologiques.

Nous envisageons en particulier l'étude des caractéristiques du second ordre du processus d'état et du processus observé dans un modèle du type (3).

II.1. Caractéristiques du second-ordre-Stationnarité au second-ordre.

II.1.1. Définition.

Lorsque $\left(E\left\|Y_{t}\right\|^{2}<+\infty\right.$ et $\left.E X_{t}^{2}<+\infty\right), t \in \mathbb{N}$, on dit que le processus solution de (3^{\prime}) est un processus du second ordre. On désigne alors par $m_{Y}(t)$ (resp. $\left.m_{X}(t)\right)$ l'espérance mathématique de Y_{t} (resp. X_{t}) et par $C_{Y}(t, s)$ (resp. $C_{X}(t, s)$) la covariance entre Y_{t} et $Y_{S}\left(r e s p . X_{t}\right.$ et X_{s}) pour $(t, s) \in \mathbb{N}^{2}$ i.e.

$$
\begin{aligned}
C_{Y}(t, s) & =E\left(Y_{t}-E Y_{t}\right)\left(Y_{s}-E Y_{s}\right)^{\prime} \\
\text { (resp. } \quad C_{X}(t, s) & \left.=E\left(X_{t}-E X_{t}\right)\left(X_{s}-E X_{s}\right)\right)
\end{aligned}
$$

Nous envisageons le calcul de ces caractéristiques du second-ordre pour les processus mis en jeu. Lorsque (Y_{t}) est donné par (4) on obtient aisément :

$$
Y_{t}=A^{t-s} Y_{s}+\sum_{j=s}^{t-1} A^{t-1-j} C e_{j+1} \quad \text { pour } t>s .
$$

Le résultat suivant se déduit immédiatement de cette égalité :

II.1.2. Théorème.

Si les vecteurs aléatoires $\left(Y_{o}, e_{t} ; t \in \mathbb{N}^{*}\right)$ sont deux à deux non corrélés, alors le processus solution du modèle linéaire stochastique (4) est
du second ordre et on a :

$$
m_{Y}(t)=A^{t} m(0) \quad ; \quad m_{X}(t)=H A^{t} m(0) \quad ; t \in \mathbb{N}
$$

$$
C_{Y}(t, s)=\left\{\begin{array}{lll}
A^{t-s} C_{Y}(s, s) & \text { si } t \geq s \geq 0 \\
C_{Y}(t, t)\left(A^{\prime}\right)^{s-t} & \text { si } 0 \leq t \leq s
\end{array}\right.
$$

et

$$
C_{X}(t, s)=H C_{Y}(t, s) H^{\prime},(t, s) \in \mathbb{N}^{2}
$$

avec
$C_{Y}(t, t)=A C_{Y}(t-1, t-1) A^{\prime}+C Q_{e} C^{\prime} ; t \in \mathbb{N}^{\star} ; C_{Y}(0,0)=C(0)$.

L'énoncé qui suit établit un lien entre la non-dégénérescence de la loi de probabilité de l'état du système stochastique (4) et la controlabilité d'un analogue déterministe du type (2) :

II. 1.3. Proposition.

Soit $Q_{e}^{1 / 2}$ une matrice telle que $Q_{e}^{1 / 2} \cdot\left[Q_{e}^{1 / 2}\right]^{\prime}=Q_{e} \cdot$ Si le couple $\left[A, C Q_{e}^{1 / 2}\right]$ est controlable i.e si la condition $\operatorname{rg}\left[C Q_{e}^{1 / 2}, A C Q_{e}^{1 / 2} \ldots \ldots A^{r-1} C Q_{e}^{1 / 2}\right]=r$ est satisfaite, alors pour $t \geq r$ la matrice de covariance $\mathbf{C}_{\mathbf{Y}}(\mathrm{t}, \mathrm{t})$ est définie positive.

Démonstration.

Constatons d'abord qu'il suffit de montrer le résultat pour $\mathrm{C}(0)=0$; en effet il est facile do voir que si $C_{1}(0) \geq C_{2}(0)$ au sens habituel, alors les covariances correspondantes sont telles que $C_{Y_{, 1}}(t, t) \geq C_{Y, 2}(t, t)$ pour tout t. Supposons donc que $C(0)=0$. On a alors

$$
\begin{aligned}
& C_{Y}(1,1)=C Q_{e} C^{\prime}, C_{Y}(2,2)=C Q_{e} C^{\prime}+A C Q_{e} C^{\prime} A^{\prime}, \ldots \\
& C_{Y}(t, t)=C Q_{e} C^{\prime}+A C Q_{e} C^{\prime} A^{\prime}+\ldots+A^{t-1} C Q_{e} C^{\prime}\left(A^{\prime}\right)^{t-1}
\end{aligned}
$$

Pour $t=r$ on a évidemment

$$
C_{Y}(t, t)=C_{Y}(r, r)=\left[C Q_{e}^{1 / 2} \ldots ., A^{r-1} C Q_{e}^{1 / 2}\right]\left[C Q_{e}^{1 / 2} \ldots ., A^{r-1} C Q_{e}^{1 / 2}\right]{ }^{\prime}
$$

et pour $\mathbf{t}>\mathrm{r}$

$$
C_{Y}(t, t)=C_{Y}(r, r)+\sum_{j=r}^{t-1} A^{j} C Q_{e} C^{\prime}\left(A^{\prime}\right)^{j}
$$

Or comme le rang de la matrice $\left[\mathrm{C}_{\mathrm{e}}^{1 / 2} \ldots, A^{r-1} C Q_{e}^{1 / 2}\right]$ est supposé égal à r, le rang de la matrice $C_{Y}(r, r)$ est lui aussi égal à r. Par suite, les égalités précédentes assurent que pour tout $t \geqslant r$ la matrice $C_{Y}(t, t)$ est inversible.

Remarquons que si Q_{e} est supposée définie positive, la condition de la proposition précédente se réduit à la condition de controlabilité du couple [A,C].

Dans la suite nous nous intéressons à des conditions assurant la stationnarité au second-ordre du processus d'état et du processus observé correspondant à un modèle de type (3) :

II.1.4. Définition.

Le processus du second ordre $\left(Y_{t}\right)$ (resp. $\left.\left(X_{t}\right)\right)$ est dit stationnaire au second ordre si

$$
m_{Y}(t) \equiv m(0) \quad\left(\text { resp. } m_{X}(t) \equiv m_{X}(0)\right)
$$

et

$$
C_{Y}(t, s)=R_{Y}(t-s) \quad\left(\text { resp. } C_{X}(t, s)=R_{X}(t-s)\right) .
$$

L'application $R_{Y}\left(\right.$ resp. $\left.R_{X}\right)$ est alors appelée fonction de covariance du processus $\left(Y_{t}\right)$ (resp. ($\left.X_{t}\right)$).
Dans le cas linéaire on déduit immédiatement du Théorème II.1.2. la proposition suivante :

II.1.5. Proposition.

Si les vecteurs aléatoires $\left(Y_{0}, e_{t} ; t \in \mathbb{N}^{\star}\right)$ sont deux à deux non corrélés, une condition nécessaire et suffisante pour que le processus d'état $\left(Y_{t} ; t \geq 0\right)$ satisfaisant a (4) soit stationnaire au second-ordre est que le vecteur $m(0)$ vérifie

$$
A m(0)=m(0)
$$

et que la matrice $C(0)$ soit solution de l'équation matricielle

$$
\begin{equation*}
\Gamma=A \Gamma A^{\prime}+C Q_{e} C^{\prime} \tag{5}
\end{equation*}
$$

Alors la fonction de covariance du processus (Y_{t}) est donnée par

$$
R_{Y}(h)=\left\{\begin{array}{lll}
A^{h} \Gamma & \text { si } & h \geq 0 \\
\Gamma\left(A^{\prime}\right) & |h| & \text { si } \\
h \leq 0
\end{array} .\right.
$$

Notons que si $\left(Y_{t}\right)$ est stationnaire au second-ordre alors ($\left.\left(Y_{t}, X_{t}\right)\right)$ est également un processus stationnaire au second-ordre dont il est facile d'écrire la fonction de covariance. Notons aussi que lorsque les valeurs propres de A 'sont toutes strictement à l'intérieur du disque unité, l'équation matricielle (5) précédente admet une solution unique dans l'ensemble des matrices symétriques semi-définies positives, solution donnée par

$$
\Gamma=\sum_{j=0}^{\infty} A^{j} C Q_{e} C^{\prime}\left(A^{\prime}\right)^{j}
$$

Si de plus le couple $\left[A, \mathrm{CQ}_{\mathrm{e}}^{1 / 2}\right.$] est controlable, d'après la Proposition
II.1.3., cette solution est définie positive.Nous reviendrons plus loin sur cette question.

Nous considérons aussi le problème de la stationnarité stricte dans un modèle stochastique du type (3').

II.2. Stationnarité stricte.

Nous précisons d'abord ce qu'on entend par processus solution stationnaire d'un modèle du type (3') :

II.2.1. Définition.

On dit qu'un processus $\left(\left(Y_{t}, X_{t}\right) ; t \in \mathbb{Z}\right)$ est solution stationnaire du modèle (3^{\prime}) s'il satisfait aux équations correspondantes, s'il est stationnaire au sens strict et si, pour tout $t \in \mathbb{Z}, Y_{t}$ est un vecteur aléatoire mesurable par rapport à la tribu ε_{t} engendrée par la famille $\left\{e_{s} ; s \leq t\right\}$. On dit alors que la solution est adaptée à la famille (c_{t}) de tribus.

Remarquons que si $\left(e_{t} ; t \in \mathbb{Z}\right)$ est une suite de vecteurs aléatoires telle que, pour tout t, e_{t} est indépendant de la tribu ε_{t-1} (en particulier si $\left(e_{t}\right)$ est une suite de vecteurs aléatoires indépendants) alors pour tout t, e_{t} est indépendant de $\left\{Y_{s} ; s<t\right\}$ et par suite le processus solution $\left(Y_{t}\right)$ est un processus de Markov homogène d'ordre 1 .

Remarquons aussi que si $\left(\left(Y_{t}, X_{t}\right) ; t \in \mathbb{Z}\right)$ est une solution stationnaire de (3^{\prime}) alors le processus $\left(\left(Y_{t}, X_{t}\right) ; t \in \mathbb{N}\right)$ est solution stationnaire de (3) avec condition initiale Y_{o}; plus généralement si Y_{o} est un vecteur aléatoire dont la loi de probabilité est la loi commune aux états Y_{t} d'une solution stationnaire de (3^{\prime}), alors la solution de (3) issue de Y_{o} est un processus stationnaire.

Dans le cas linéaire on a (cf. par exemple E.J. HANNAN (1970) et M.B. PRIESTLEY (1981 a)) :

II.2.2. Théorème.

Si la suite $\left(e_{t} ; t \in \mathbb{Z}\right)$ est une suite de vecteurs aléatores indépendants et si la série $\sum_{j=0}^{\infty} A^{j} C Q_{e} C^{\prime}\left(A^{\prime}\right)^{j}$ est convergente, alors le modéle linéaire (4^{\prime}) admet une solution stationnaire $\left(\left(Y_{t}, X_{t}\right) ; t \in \mathbb{Z}\right)$ uniquement déterminé par

$$
Y_{t}=\sum_{j=0}^{\infty} A^{j} C \quad e_{t-j} \quad, X_{t}=H Y_{t} \quad ; t \in \mathbb{Z}
$$

où la série est convergente en moyenne quadratique et presque sarement. Une condition suffisante pour que la série matricielle de l'énoncé soit convergente est bien sar que les valeurs propres de la matrice A sont toutes de module strictement inférieur à 1 .

Il est clair que le processus $\left(\left(Y_{t}, X_{t}\right)\right)$ solution est un processus centré du second-ordre et qu'il est donc stationnaire au second-ordre de fonction de covariance donnée dans l'énoncé de la Proposition II.1.5. précédente, la matrice de covariance $\mathbf{C}_{\mathbf{Y}}(0,0) \quad$ n'étant autre que

$$
C_{Y}(0,0)=\sum_{j=0}^{\infty} A^{j} C Q_{e} C^{\prime}\left(A^{\prime}\right)^{j}
$$

laquelle est solution de l'équation matricielle (5).
Si on suppose de plus que la loi commune aux vecteurs aléatoires e_{t} est gaussienne alors le processus $\left(\left(Y_{t}, X_{t}\right)\right)$ est gaussien et, selon la remarque suivant la Definition II.2.1., si Y_{o} est un vecteur aléatoire gaussien centré de matrice de covariance $C(0)=C_{Y}(0,0)$ donnée ci-dessus, le processus d'état $\left(Y_{t}\right)$ solution de (4) issu de Y_{0} est gaussien centré markovien stationnaire.

En complément au qheorème II.2.2. on a

II.2.3. Proposition.

Sous les hypothèses du I'héorème II.2.2., 1a matrice de variance
covariance commune aux vecteurs aléatoires $Y_{t}, t \in \mathbb{Z}$ est définie positive si et seulement si le couple $\left[A, C Q_{e}^{1 / 2}\right]$ est controlable.

Démonstration.

La Proposition II.1.3. assure que la condition de controlabilité est suffisante. Le fait que cette condition est nécessaire peut etre déduit du Corollaire suivant le lemme 14.4. R.CH LIPTSER et A.N. SHYRIAEV (1978); nous en donnons une démonstration "probabiliste".

Remarquons d'abord que, pour tout $i \geq 0, E\left(Y_{t} \cdot e_{t-i}^{\prime}\right)$ peut s'écrire comme combinaison linéaire de $E\left(Y_{t} \cdot e_{t}^{\prime}\right), E\left(Y_{t} \cdot e_{t-1}^{\prime}\right), \ldots, E\left(Y_{t} \cdot e_{t-r+1}^{\prime}\right)$. En effet d'après l'égalité

$$
Y_{t}=\sum_{i=0}^{\infty} A^{i} C e_{t-i}
$$

on a

$$
E\left(Y_{t} \cdot e_{t-i}^{\prime}\right)=A^{i} C Q_{e} \quad ; i \geq 0
$$

et le théorème de Caylley-Hamilton prouve l'assertion.
Supposons maintenant que le couple $\left[A, C Q_{e}^{1 / 2}\right]$ n'est pas controlable i.e. que la matrice $C_{r}=\left[C_{e}^{1 / 2} \ldots . A^{r-1} C Q_{e}^{1 / 2}\right]$ est de rang strictement inférieur à r. Alors il existe un vecteur g non nul dans \mathbf{R}^{r} tel que l'on ait $g^{\prime} C_{r}=0$ et donc aussi $E\left(g^{\prime} Y_{t} e_{t-i}^{\prime}\right)=0$ pour tout $i \geq 0$. Comme les composantes de Y_{t} appartiennent à la fermeture, dans l'espace des variables aléatoires de carré intégrable, du sous-espace vectoriel engendré par les composantes des $e_{s} s \leq t$, on en déduit que $g^{\prime} Y_{t}$ est presque sorement nul et que la matrice $C_{Y}(0,0)$ n'est pas définie positive.

Nous examinerons également le problème de l'inversibilité.

II. 3 . Inversibilité.

De meme que nous nous intéressons à des conditions assurant
l'existence d'un processus stationnaire $\left(X_{t}\right)$ solution d'un modele du type (3') au sens de la Definition II.2.1., nous cherchons à savoir si, inversement, pour tout t, e_{t} est une fonction mesurable par rapport a la tribu engendrée par la famille $\left(X_{s} ; s \leq t\right)$. Il s 'agit du problème de l'inversibilité dans un modèle de série chronologique. Nous posons la

II.3.1. Définition.

Soit un modèle stochastique du type (3^{\prime}) admettant une solution stationnaire $\left(X_{t}\right)$ (adaptée à la famille de tribus $\left(\varepsilon_{t}\right)$). On dit que le modèle est inversible s'il existe une suite $\left(\varphi_{j} ; j \geq 0\right)$ d'applications mesurables de R^{j+1} dans R^{d} telle que définissant, pour tout t, la suite de vecteurs aléatoires $\left(\tilde{e}_{t}^{j} ; j \geq 0\right)$ par $\tilde{e}_{t}^{j}=\varphi_{j}\left(X_{t} \ldots \ldots X_{t-j}\right)$ on ait

$$
\lim _{i \rightarrow+\infty} \tilde{e}_{t}^{j}=e_{t}
$$

en un certain sens de convergence (presque sare, en probabilite....).

II.3.2. Remarques.

(a) Supposons qu'un modèle soit inversible au sens précédent pour la convergence en probabilité ou en moyenne dordre p. Compte tenu de la stationnarité, la loi du processus ($\left.\varphi_{j}\left(X_{t} \ldots, X_{t-j}\right)-e_{t} ; j \geq 0\right)$ ne dépend pas de t et est donc identique à celle du processus $\left(\varphi_{j}\left(X_{j}, \ldots, X_{0}\right)-e_{j} ; j \geq 0\right)$. Alors, posant $\hat{e}_{j}=\tilde{e}_{j}^{j}, j \geq 0$, on a aussi

$$
\lim _{j \rightarrow+\infty}\left(\hat{e}_{j}-e_{j}\right)=0 \quad \text { au sens de la convergence }
$$

considérée.
Inversement, supposons qu'il existe une suite ($\left.\psi_{t} ; t \geqslant 0\right)$ d'applications mesurables de R^{t+1} dans R^{d} telle que la suite de vecteurs aléatoires $\left(\hat{e}_{t} ; t \geq 0\right)$ définie par $\hat{e}_{t}=\psi_{t}\left(X_{t} \ldots . . X_{0}\right), t \geq 0$ vérifie \cdot

$$
\lim _{t \rightarrow+\infty}\left(\hat{e}_{t}-e_{t}\right)=0
$$

Alors, définissant pour tout t, la suite $\left(\tilde{e}_{t}^{j} ; j \geq 0\right)$ par

$$
\tilde{e}_{t}^{j}=\psi_{j}\left(x_{t}, \ldots, x_{t-j}\right) ; j \geq 0
$$

encore en raison de la stationnarité, on a aussi

$$
\lim _{j \rightarrow+\infty}\left(\tilde{e}_{t}^{j}-e_{t}\right)=0
$$

et donc le modèle est inversible.
(b) Pour étudier l'inversibilité d'un modèle (3') on peut alors penser utiliser l'approche suivante dans le cas où l'analogue déterministe (1) est à entrée partiellement identifiable (cf. Définition I.3.1.) ; si donc e_{t} peut etre déterminé uniquement à partir de X_{t-h}, \ldots, X_{t} et Y_{t-h} (ce qui revient à supposer que dans le modèle (1) l'entrée $u[1, h]$ est partiellement [$\left.0, \ldots, 0, I_{d}\right]$-identifiable), avec

$$
e_{t}=\rho\left(X_{t-h}, \ldots, X_{t}, Y_{t-h}\right)
$$

On peut par exemple définir

$$
\hat{e}_{t}=\rho\left(X_{t-h}, \ldots, X_{t}, E\left(Y_{t-h} / X_{o}, \ldots, X_{t-h}\right)\right) ; t \geq h
$$

et envisager l'étude de la convergence vers zéro de la suite ($\hat{e}_{t}-e_{t}$) lorsque t tend vers l'infini à l'aide, en particulier, de celle de la convergence de la suite ($E\left(Y_{t-h} / X_{0}, \ldots, X_{t-h}\right)-Y_{t-h} ; t \geq h$) qui relève de l'étude du comportement asymptotique des équations de filtrage dont nous parlons plus loin.

Considérons le cas du modèle (4') avec $d=1$ et $\mathrm{HC}=1$: on a bien sûr

$$
e_{t}=x_{t}-\operatorname{HAY}_{t-1} ; t \geq 1
$$

et posant

$$
\hat{e}_{t}=X_{t}-\operatorname{HAE}\left(Y_{t-1} / X_{o} \ldots . X_{t-1}\right) ; t \geq 1
$$

il vient

$$
\hat{e}_{t}-e_{t}=\operatorname{HA}\left[Y_{t-1}-E\left(Y_{t-1} / X_{0} \ldots \ldots, X_{t-1}\right)\right] ; t \geq 1 .
$$

Cela fournit la condition suffisante d'inversibilité :

$$
\lim _{t \rightarrow+\infty}\left\{X_{t-1}-E\left(Y_{t-1} / X_{o} \ldots, X_{t-1}\right)\right\}=0
$$

On peut aussi envisager de définir une suite $\left({\underset{f}{t}}_{v}^{v} ; t \geq h\right)$ de la manière suivante : étant donné $y_{0} \ldots \ldots, y_{h-1}$ fixés, on pose

$$
e_{t}^{v}=\rho\left(x_{t-h}, \ldots, x_{t} \cdot y_{t-h}\right) ; t=h, \ldots, 2 h-1
$$

et

$$
\stackrel{v}{e}_{t}=\rho\left(X_{t-h} \ldots X_{t}, \stackrel{Y}{t-h}\right) ; t \geq 2 h
$$

avec $\quad V_{t}=f\left(V_{t-1}, V_{t}\right) \quad ; t \geq h \quad ; \quad{\underset{Y}{Y-1}}^{V}=Y_{h-1}$.

Alors si la suite $\left({ }_{t}-e_{t}\right)$ tend vers zéro, le modèle est inversible. Dans le cas párticulier considéré plus haut, on définit donc, à partir d'un y_{o} donné

$$
\stackrel{V}{Y}_{t}=A \stackrel{V}{Y}_{t-1}+C \stackrel{V}{e}_{t} \quad ; i \geq 1 ; \stackrel{V}{Y}_{0}=Y_{0}
$$

avec

$$
\stackrel{V}{e}_{t}^{V}=X_{t}-H A Y_{t-1}^{V} ; t \geq 1
$$

Alors

$$
\stackrel{v}{e}_{t}-e_{t}=H A\left[Y_{t-1}-\stackrel{V}{Y}_{t-1}\right] ; t \geq 1
$$

où

$$
Y_{t-1}-Y_{t-1}=(A-C H A)^{t-1}\left(Y_{0}-Y_{0}\right) ; t \geq 1 .
$$

ce qui montre que si les valeurs propres de la matrice A-CHA sont toutes de module strictement inférieur à 1 , le modèle est inversible. En fait, dans le cas de ce modèle, on a le résultat précis :

II.3.3. Proposition.

Soit $\left(e_{t} ; t \in \mathbb{Z}\right)$ une suite de variables aléatoires réelles indépendantes, A une matrice $r \times r, C$ un vecteur $r \times 1$ et H un vecteur $1 \times \mathrm{r}$ tels que $\mathrm{HC}=1$.
Si $\operatorname{det}[I-A z]=1-\sum_{j=1}^{r} a_{j} z^{j} n^{\prime} a$ pas de zéro de module inférieur ou égal à 1 , alors le modèle (4') correspondant admet une solution stationnaire uniquement déterminée par

$$
X_{t}=H \sum_{j=0}^{\infty} A^{j} C e_{t-j} ; t \in \mathbb{Z}
$$

Si de plus $1+\sum_{i=1}^{r-1} b_{i} z^{i} n^{\prime} a$ pas de zéro de module inférieur ou égal à 1 où

$$
b_{i}=H\left[A_{0}^{i}+a_{1} A^{i-1}+\ldots+a_{i} I_{r}\right] C ; i=1, \ldots, r-1
$$

alors le processus est inversible (en moyenne quadratique) avec

$$
e_{t}=\sum_{j=0}^{\infty} d_{j} X_{t-j} ; t \in \mathbb{Z}
$$

où les coefficients d_{j} sont ceux du développement de Taylor de

$$
\left[1+\sum_{i=1}^{r-1} b_{i} z^{i}\right]^{-1} \cdot\left[1-\sum_{j=1}^{r} a_{j} z^{j}\right]
$$

Démonstration.

La première partie de l'énoncé résulte immédiatement du Théorème
11.2.2, et du fait que la condition concernant A équivaut à ce que cette matrice n'a pas de valeur propre de module supérieur ou égal à 1 . Pour démontrer la deuxième assertion remarquons que d'après le théorème Cayley-Hamilton on a $A^{r}=\sum_{j=1}^{r} a_{j} A^{r-j}$. Alors, compte tenu de ce que

$$
Y_{t+i}=A^{i} Y_{t}+\sum_{k=1}^{i} A^{i-k} C e_{t+k}
$$

il est facile de montrer que

$$
\begin{aligned}
X_{t} & =a_{1} X_{t-1}+\ldots+a_{r} X_{t-r}+b_{o} e_{t}+b_{1} e_{t-1}+\ldots+b_{r-1} e_{t-r+1} \\
o u ̀ b_{i} & =H\left[A^{i}+a_{1} A^{i-1}+\ldots+a_{i} I_{r}\right] C ; i=1, \ldots, r-1 ; b_{o}=1 .
\end{aligned}
$$

En d'autres termes le processus $\left(X_{t}\right)$ est un processus de la classe ARMA ($r, r-1$). On sait (cf. par exemple E.J. HANNAN (1970) et M.B. PRIESTLEY (1981 a)) que ce processus est inversible si $1+\sum_{i=1}^{r-1} b_{i} z^{i} n^{\prime}$ a pas de zéro dans le domaine $|z| \leqslant 1$ auquel cas on a la représentation annoncée de e_{t}.

Remarquons que le processus (e_{t}) est le processus d'innovation de $\left(X_{t}\right)$ i.e. $e_{t}=X_{t}-E\left(X_{t} / X_{t-1} \ldots\right)$. Notons aussi que la condition $A-C H A$ n'a que des valeurs propres de module strictement inférieur à 1 évoquée plus haut est équivalente à la condition $1+\sum_{i=1}^{r-1} b_{i} z^{1} n^{\prime} a$ pas de zéro de module inférieur ou égal à 1 .
III. QUELQUES PROBLEMES DE NATURE STATISTIQUE.

Dans le cadre stochastique du paragraphe précédent, on envisage d'une part le problème d'estimation (de filtrage) de l'état du système au vu de l'observation de la sortie du modèle et d'autre part le problème d'estimation (d'identification) des paramètres du modèle.

III. 1 . Filtrage de l'état.

Etant donné un processus stochastique du second ordre $\left(\left(\theta_{t}, \xi_{t}\right) ; t \geq 0\right)$ où $\left(\theta_{t}\right)$ (resp. $\left(\xi_{t}\right)$) est le processus d'état non observable (resp. de sortie observable) d'un système, on pose la définition :
III.1.1. Définition.

On dit que le vecteur aléatoire du second-ordre $\hat{\theta}_{t}$ est un filtre de l'état $\theta_{t}=\left(\theta_{t}^{1}, \ldots, \theta_{t}^{r}\right)^{\prime}$ du système à l^{\prime} instant $t \geq 0$ au vu de l'observation $\xi[0, t]$ de la sortie du système de 0 à t si $\hat{\theta}_{t}$ est mesurable par rapport à la tribu ${\underset{H}{t}}_{\xi}^{\xi}$ engendrée par les variables aléatoires ξ_{0}, \ldots, ξ_{t}. Si de plus $\hat{\theta}_{t}$ dépend linéairement de ξ_{0}, \ldots, ξ_{t} on dit que θ_{t} est un filtre linéaire.

Le problẻme de filtrage optimal (resp. filtrage linéaire optimal) est celui de la détermination du filtre optimal au sens suivant dans la classe de tous les filtres (resp. de tous les filtres linéaires) :

III.1.2. Définition.

Le filtre $\hat{\theta}_{t}=\left(\hat{\theta}_{t}^{1} \ldots, \hat{e}_{t}^{r}\right)^{\prime}$ est dit optimal dans une classe donnée de filtres si quel que soit le filtre $\bar{\theta}_{t}=\left(\bar{\theta}_{t}^{1}, \ldots, \bar{e}_{t}^{r}\right)^{\prime}$ appartenant à cette classe on a pour tout t

$$
E\left[\theta_{t}^{j}-\hat{\theta}_{t}^{j}\right]^{2} \leq E\left[\theta_{t}^{j}-\theta_{t}^{1}\right]^{2} \quad ; \quad j=1, \ldots, r .
$$

Il est clair que le filtre optimal est l'espérance conditionnelle

$$
\hat{\theta}_{t}=E\left(\theta_{t} / F_{t}^{\xi}\right)=E\left(A_{t} / \xi[0, t]\right) .
$$

Il est parfois possible de déterminer ce filtre de manière récurrente. L'étude du problème pour des modèles du type (3) que nous envisageons dans les chapitres suivants nécessite des résultats concernant la situation suivante. Considérons un processus $\left(\theta_{t}, F_{t}\right)$ défini par des équations
(5) $\quad\left\{\begin{array}{l}\theta_{t}=a(t-1, \xi[0, t-1]) \theta_{t-1}+b(t-1, \xi[0, t-1]) \varepsilon_{t} ; \theta_{0} \text { donné } ; t \in \mathbb{N} * \\ \xi_{t}=a(t-1, \xi[0, t-1]) \theta_{t-1}+\beta(t-1, \xi[0, t-1]) \varepsilon_{t} ; \xi_{0} \text { donné } ; t \in \mathbb{N} *\end{array}\right.$
où

$$
\theta_{t}=\left(\theta_{t}^{1} \ldots \ldots \theta_{t}^{k}\right)^{\prime}, \varepsilon_{t}=\left(\varepsilon_{t}^{1} \ldots \ldots, \varepsilon_{t}^{l}\right)^{\prime}, \varepsilon_{t}=\left(\varepsilon_{t}^{1} \ldots \ldots \varepsilon_{t}^{k}\right)^{\prime} .
$$

Supposons que $\left(\theta_{0}, \xi_{0}\right)$ est non corrélé avec $\left(\varepsilon_{t}\right)$ et que les vecteurs aléatoires $\varepsilon_{t}, t \in \mathbb{N}^{*}$ sont centrés de matrice de covariance I_{k}, deux à deux non corrélés. Supposons de plus que pour tout i, j on a :
(i) avec probabilité 1

$$
\left|a_{i j}(t-1, \xi[0, t-1])\right| \leq C ;\left|\alpha_{i j}(t-1, \xi[0, t-1])\right| \leq C
$$

(ii)

$$
E\left|b_{i j}(t-1, \xi[0, t-1])\right|^{2} \leq+\infty ; E\left|\beta_{i j}(t-1, \xi[0, t-1])\right|^{2}<+\infty
$$

on a alors le résultat :
III.1.3. Théorème (cf. Théorème 1 3.4. R.CH. LIPTSER et A.N. SHYRIAEV (1978)

Si les hypothèses (i) et (ii) sont satisfaites, si $\left(\theta_{0}, \xi_{0}\right)$ est
indépendant de $\left(\varepsilon_{t}\right)$, si de plus les vecteurs aléatoires ε_{t} sont gaussiens (centrés de matrice de covariance I_{k}) et si la loi conditionnelle $P\left[\theta_{0} \in . / \xi_{0}\right]$ est (P presque sarement) gaussienne alors le filtre optimal $\hat{\theta}_{t}{ }^{\circ}$ de θ_{t} au vu de l'observation de $\xi[0, t]$ dans le modèle (5) est donné par les équations de récurrence
(6) $\quad \hat{\theta}_{t}=a \hat{\theta}_{t-1}+\left[b \beta^{\prime}+a \gamma_{t-1} \alpha^{\prime}\right]\left[\beta \beta^{\prime}+\alpha \gamma_{t-1} \alpha^{\prime}\right]+\left[\xi_{t}-\alpha \hat{\theta}_{t-1}\right] ; t \geq 1$
et
(7) $\gamma_{t}=\left[a \gamma_{t-1} a^{\prime}+b b^{\prime}\right]-\left[b \beta^{\prime}+a \gamma_{t-1} a^{\prime}\right]\left[\beta \beta^{\prime}+a \gamma_{t-1} a^{\prime}\right]^{+}\left[b \beta^{\prime}+a \gamma_{t-1} a^{\prime}\right]^{\prime} ; t \geq 1$
avec $\hat{\theta}_{0}=E\left(\theta_{0} / \xi_{0}\right)$ et $\gamma_{0}=E\left\{\left(\theta_{0}-\hat{\theta}_{0}\right)\left(\theta_{0}-\hat{\theta}_{0}\right)^{\prime} / \xi_{0}\right\}$, où pour tout $t \geq 1, \gamma_{t}=E\left\{\left(\theta_{t}-\hat{\theta}_{t}\right)\left(\theta_{t}-\hat{\theta}_{t}\right)^{\prime} / \Sigma[0, t]\right\}$.
(Dans l'énoncé on a omis l'argument ($t-1, \zeta[0, t-1]$) dans a, b, α, β et le symbole + désigne la pseudo-inverse). On a le corollaire suivant dans le cas linéaire qui nous intéresse :

III.1.4. Corollaire.

Si les vecteurs aléatoires e_{t} sont indépendants gaussiens centrés de matrice de covariance Q_{e} et si le vecteur aléatoire Y_{o} est gaussien indépendant de (e_{t}), alors le filtre optimal \hat{Y}_{t} dans le modèle (4) est donné par :
(6') $\hat{Y}_{t}=A \hat{Y}_{t-1}+\left[C Q_{e} C^{\prime} H^{\prime}+A Y_{t-1} A^{\prime} H^{\prime}\right]\left[H C Q C^{\prime} H^{\prime}+H A Y_{t-1} A^{\prime} H^{\prime}\right]{ }^{+}\left[X_{t}-H A \hat{Y}_{t-1}\right]$ et
(7') $\quad \gamma_{t}=\left[A \gamma_{t-1} A^{\prime}+C Q C_{e} C^{\prime}\right]-\left[C Q C^{\prime} H^{\prime}+A \gamma_{t-1} A^{\prime} H^{\prime}\right]\left[H C Q C_{e} C^{\prime} H^{\prime}+H A \gamma_{t-1} A^{\prime} H^{\prime}\right]+$

$$
\left[C Q_{e} C^{\prime} H^{\prime}+A \gamma_{t-1} A^{\prime} H^{\prime}\right]^{\prime}
$$

$\operatorname{avec} \hat{Y}_{0}=E\left(Y_{0}\right)+\operatorname{cov}\left(Y_{0}, Y_{0}\right) \cdot H^{\prime}\left[H \operatorname{cov}\left(Y_{0}, Y_{0}\right) H^{\prime}\right]^{+}\left(X_{0}-E\left(X_{0}\right)\right)$ et $\quad Y_{0}=\operatorname{cov}\left(Y_{0}, Y_{0}\right)-\operatorname{cov}\left(Y_{0}, Y_{O}\right) H^{\prime}\left[H \operatorname{cov}\left(Y_{0}, Y_{O}\right) H^{\prime}\right]^{+} H \operatorname{cov}\left(Y_{0}, Y_{0}\right)$.

Notons que dans ce cas la matrice γ_{t} est déterministe et n'est autre que $Y_{t}=E\left(\left(Y_{t}-\hat{Y}_{t}\right)\left(Y_{t}-\hat{Y}_{t}\right)^{\prime}\right)$.

Démonstration.

$$
\begin{aligned}
& \text { D'aprés (4) on } a_{i}^{a} \\
& \qquad\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+C e_{t} \\
X_{t}=H A Y_{t-1}+H C e_{t}
\end{array}\right.
\end{aligned}
$$

qui, compte tenu de ce que $\operatorname{cov}\left(C e_{t}, C e_{t}\right)=C Q C^{\prime}$, peut se réécrire sous la forme

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+\left(C Q_{e} C^{\prime}\right)^{1 / 2} \varepsilon_{t} \\
X_{t}=H A Y_{t-1}+H\left(C Q_{e} C^{\prime}\right)^{1 / 2} \varepsilon_{t}
\end{array}\right.
$$

où ϵ_{t} est un vecteur aléatoire gaussien centré de matrice de covariance I_{r}. Il est clair que sous l'hypothèse la loi $P\left[Y_{0} \in \cdot / X_{o}\right]$ est gaussienne (en fait le processus $\left(Y_{t}, X_{t}\right)$ est gaussien). Il suffit alors d'appliquer le Théorème III.1.3. avec $\theta_{t}=Y_{t}, \zeta_{t}=X_{t}, a \equiv A, b \equiv\left(C Q_{e} C\right)^{1 / 2}, a \equiv H A$ et $\beta \equiv H\left(C Q_{e} C\right)^{1 / 2}$ pour obtenir les relations de récurrence de l'énoncé. Le Théorème III.1.3. a aussi le corollaire suivant, compte tenu du Lemme 14.1 de R.C.H. LIPTSER et A.N. SHYRIAEV (1978).
III. 1.5. Corollaire.

Sous les hypothèses suivant les équations (5), le filtre linéaire
optimal $\hat{\theta}_{\mathbf{t}}^{\ell}$ de $\hat{\theta}_{\mathbf{t}}$ au vu de l'observation $\xi[0, \mathrm{t}]$ dans le modèle (5) est fourni par les équations de récurrence (6) et (7) avec

$$
\begin{aligned}
& \hat{\theta}_{0}^{l}=E\left(\theta_{0}\right)+\operatorname{cov}\left(\theta_{0}, \xi_{0}\right) \operatorname{cov}^{+}\left(\xi_{0}, \xi_{0}\right)\left(\xi_{0}-E\left(\xi_{0}\right)\right) \\
& \gamma_{0}^{l}=\operatorname{cov}\left(\theta_{0}, \theta_{0}\right)-\operatorname{cov}\left(\theta_{0}, \xi_{0}\right) \operatorname{cov}^{+}\left(\xi_{0}, \xi_{0}\right) \operatorname{cov}^{\prime}\left(\theta_{0}, \xi_{0}\right) ;
\end{aligned}
$$

on a aussi

$$
\gamma_{t}^{l}=E\left(\left(\hat{\theta}_{t}^{l}-\theta_{t}\right)\left(\hat{\theta}_{t}^{l}-\theta_{t}\right)^{\prime}\right) ; t \geq 0 .
$$

En particulier les équations (6^{\prime}) et (7^{\prime}) du Corollaire III.1.4. sont valables pour le filtre linéaire optimal dans le modèle (4) sous la seule hypothèse que les vecteurs aléatoires $Y_{o}, e_{t} ; t \in \mathbb{N}^{\star}$ sont deux à deux non corrélés.

Un problème important est celui de l'étude du comportement asymptotique de la matrice γ_{t} lorsque t tend vers l'infini. Dans le cas linéaire, l'étude concernant la suite définie par (7') se ramène (cf. §14.4.1 R.CH. LIPTSER et A.N. SHYRIAEV (1978)) par les changements

$$
\begin{array}{ll}
a=A-\left(C Q_{e} C^{\prime}\right) H^{\prime}\left(H C Q_{e} C^{\prime} H^{\prime}\right)^{+} H A & ; \alpha=H A \\
b=\left[C Q_{e} C^{\prime}-C Q_{e} C^{\prime} H^{\prime}\left(H C Q_{e} C^{\prime} H^{\prime}\right)^{+} H C Q_{e} C^{\prime}\right]^{1 / 2} ; \beta=\left(H C Q_{e} C^{\prime} H^{\prime}\right)^{1 / 2}
\end{array}
$$

à celle de la suite définie par :

$$
\begin{equation*}
\gamma_{t+1}=a \gamma_{t} a^{\prime}+b b^{\prime}-a \gamma_{t} \alpha^{\prime}\left[\beta \beta^{\prime}+\alpha \gamma_{t} \alpha^{\prime}\right]^{+} \alpha \gamma_{t} a^{\prime} \tag{8}
\end{equation*}
$$

pour laquelle on a
III.1.6. Théorème (cf. Théorème 14.3 R.CH. LIPTSER et A.N. SHYRIAEV (1978))

Si le couple (a, a) est observable, si le couple (a, b) est controlable et si la matrice $\beta \beta^{\circ}$ est inversible, alors, pour la suite (γ_{t}) definie par (8), la limite $\underset{t \rightarrow+\infty}{\lim } \gamma_{t}=\gamma^{\star}$ existe et ne dépend pas de la condition initiale γ_{0}. On a de plus $\operatorname{Tr} \gamma^{\star}<+\infty$ et γ^{*} est l'unique solution (dans la classe des matrices symétriques définies positives) de l'équation matricielle

$$
\gamma=a \gamma a^{\prime}+b b^{\prime}-a \gamma \alpha^{\prime}\left[\beta \beta^{\prime}+\alpha \gamma \alpha^{\prime}\right]^{+} \alpha \gamma a^{\prime} .
$$

Dans la situation particulière envisagée au § II. 3 on a :

III.1.7. Proposition.

Soit A une matrice $r \times r, C$ un vecteur $r \times 1, H$ un vecteur $1 \times r$ tels que $H C=1$ et la matrice $A-C H A \quad n ' a q u e d e s ~ v a l e u r s$ propres de module strictement inférieur à 1 . Alors si le vecteur aléatoire Y_{0} et les variables aléatoires $e_{t}, t \geq 1$ sont gaussiens indépendants (resp. sont du second ordre et deux à deux non corrélés), le filtre optimal (resp. linéaire optimal) dans le modèle (4) correspondant, fourni par les équations (6°) et (7^{\prime}) est tel que

$$
\lim _{t \rightarrow+\infty} \gamma_{t}=0
$$

quelle que soit la condition initiale γ_{0}.

Démonstration.

D'après la remarque qui précède l'équation (8), la suite $\left(\gamma_{t}\right)$ est définie par

$$
\gamma_{t}=(A-C H A) \gamma_{t-1}(A-C H A)^{\prime}
$$

$$
-(A-C H A) \gamma_{t-1} A^{\prime} H^{\prime}\left[Q e+H A \gamma_{t-1} A^{\prime} H^{\prime}\right]^{+} H A \gamma_{t-1}(A-C H A)^{\prime}
$$

Alors il vient

$$
\begin{aligned}
\gamma_{t} & \leq(A-C H A) \gamma_{t-1}(A-C H A)^{\prime} \\
\text { puis } \gamma_{t} & \leq(A-C H A)^{t} \gamma_{0}(A-C H A)^{\prime t}
\end{aligned}
$$

d'où $1 l$ est facile de déduire le résultat compte tenu de l'hypothèse concernant la matrice A-CHA.

Ce résultat peut bien sar servir dans le cadre de l'étude de l'inversibilité dans le modèle (4') correspondant (cf. Remarque II.3.2.b).

III. 2 . Estimation de paramètres.

Lorsqu'on observe à partir de l'instant $t=0$ une trajectoire d'un processus stochastique $\left(\xi_{t}\right)$ dont la loi de probabilité dépend d'un paramètre inconnu $\theta \in \Theta \subset \mathbf{R}^{\mathbf{p}^{t}}$, le problème statistique de l'estimation de ce paramètre est celui de la construction d'une suite d'estimateurs ($\hat{\theta}_{t}$) telle que pour chaque $t, \hat{\theta}_{t}$ soit $\mathscr{F}_{\mathrm{t}}^{\xi}$-mesurable, et qui possède certaines propriétés souhaitables en particulier de convergence :

III.2.1. Définition.

On dit que la suite d'estimateurs $\left(\hat{\theta}_{\mathbf{t}}\right)$ est convergente presque sarement (resp. en probabilité...) si pour tout $\theta \in \Theta$ on a $\lim _{t \rightarrow+\infty} \hat{\theta}_{\mathbf{t}}=\theta$ presque sarement (resp. en probabilité...) lorsque la vraie valeur du paramẻtre est θ.

On dit que la suite d'estimateurs $\left(\hat{\theta}_{\mathbf{t}}\right)$ est asymptotiquement gaussienne si pour tout $\quad \theta \in 巴$ ll existe une suite $\left(I_{t}(\theta)\right)$ telle que la suite de vecteurs aléatoires p-dimensionnels $\left(I_{t}^{1 / 2}(\theta)\left(\hat{\theta}_{t}-\theta\right)\right)$ converge en loi vers un vecteur aléatoire gaussien centré de matrice de covariance I_{p} lorsque la vraie valeur du paramètre est 6 .

Dans la suite, pour l'étude de ce problème, nous nous restreindrons à des situations où le processus observé est un processus unidimensionnel, de façon précise, à des modeles du type (3), (3') où $r=1$ et g est l'application identité l.e. où le processus observé est le processus d'état lui-meme, celui-ci étant supposé scalaire.

L'exemple linéaire correspondant est celui d'un processus stationnaire obéissant au modèle $A R(1)$ autorégressif d'ordre 1 scalaire :

$$
\begin{equation*}
X_{t}=a X_{t-1}+e_{t} \quad ; t \in \mathbb{Z} \tag{9}
\end{equation*}
$$

où on suppose, conformément aux considérations du §II. 2 que $|a|<1$. les variables aléatolres $\left(e_{\mathbf{t}}\right)$ étant indépendantes équidistribuées centrées de meme variance Q_{e}.
La méthode des moindres carrés conduit (cf. par exemple G.E.P BOX et G.M. JENKINS (1970) et M.B. PRIESTLEY (1981 a)) à estimer a et Q_{e} respectivement par

$$
\begin{aligned}
\hat{a}_{t} & =\frac{\sum_{s=1}^{t} x_{s} x_{s-1}}{\sum_{s=1}^{t} x_{s-1}^{2}} \\
\hat{Q}_{e}(t) & =\frac{1}{t} \sum_{s=1}^{t}\left[x_{s}-\hat{a}_{t} x_{s-1}\right] \\
& =\frac{1}{t} \sum_{s=1}^{t} x_{s}^{2}-\hat{a}_{t} \frac{1}{t} \sum_{s=1}^{t} x_{s} \cdot x_{s-1}
\end{aligned}
$$

Remarquons que ces estimateurs sont aussi, dans le cas où la loi commune aux e_{t} est supposée gaussienne, des estimateurs du maximum de vraisemblance approchée obtenus par maximisation de l'approximation

$$
L_{t}^{*}\left(X_{o}, \ldots . X_{t} ; a, Q_{e}\right)=-\frac{t}{2} \log Q_{e}-\frac{1}{2 Q_{e}} \sum_{s=1}^{t}\left(X_{s}-a X_{s-1}\right)^{2}
$$

de la fonction de Log-vraisemblance (facile à calculer, le processus étant gaussien markovien ; cf. § II.2)

$$
\begin{gathered}
L_{t}\left(X_{o}, \ldots, X_{t} ; a, Q_{e}\right)=-\frac{(t+1)}{2} \log 2 \pi-\frac{1}{2} \log \frac{Q_{e}}{1-a^{2}}-\frac{t}{2} \log Q_{e} \\
-\frac{1-a^{2}}{2 Q_{e}} \quad x_{0}^{2}-\frac{1}{2 Q_{e}} \sum_{s=1}^{t}\left(X_{s}-a X_{s-1}\right)^{2} .
\end{gathered}
$$

D'autres estimateurs, dits estimateurs de Yule-Walker, sont définis par

$$
\begin{aligned}
& \tilde{a}_{t}=\frac{\sum_{s=1}^{t} X_{s} x_{s-1}}{\sum_{s=0}^{t} x_{s}^{2}} \\
& \tilde{Q}_{e}(t)=\frac{1}{t+1} \sum_{s=0}^{t} x_{s}^{2}-\tilde{a}_{t} \cdot \frac{1}{t+1} \sum_{s=1}^{t} X_{s} X_{s-1} .
\end{aligned}
$$

Les propriétés asymptotiques des estimateurs de moindres carrés et des estimateurs de Yule-Walker sont données par
III.2.2 Théorème (cf. par exemple G.E.P. BOX et G.M. JENKINS (1970) et M.B. PRIESTLEY (1981 a)).

Les suites $\left(\hat{a}_{t}, \hat{Q}_{e}(t)\right)$ et $\left(\tilde{a}_{t}, \tilde{Q}_{e}(t)\right)$ d'estimateurs du paramétre (a, Q_{e}) sont convergentes presque sarement. De plus chacune des suites ($\hat{a}_{\mathbf{t}}$) et ($\tilde{a}_{\mathbf{t}}$) est asymptotiquement gaussienne au sens que $\left(t^{1 / 2}\left(1-a^{2}\right)^{-1 / 2} \hat{a}_{t}\right)$ et $\left(t^{1 / 2}\left(1-a^{2}\right)^{-1 / 2} \tilde{a}_{t}\right)$ convergent en loi vers une variable aléatoire gaussienne centrée réduite.

CHAPITRE II

ETUDE DU MODELE BILINEAIRE

$$
Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t}+C u_{t} \quad ; X_{t}=H Y_{t}
$$

Dans la littérature concernant l'analyse des systèmes déterministes, différents auteurs comme R.R. MOHLER (1973), T.J. TARN et al (1973), M.E. EVANS et D.N.P. MURTHY (1978) et S. HARA et J. FURUTA (1977) par exemple, ont proposé et étudié des modèles dits bilinéaires ou réguliers ou encore à entrées multiplicatives de la forme

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+\sum_{i=1}^{d}\left[B_{i} Y_{t-1}+C_{i}\right] u_{t}^{i} \\
X_{t}=H Y_{t}
\end{array}\right.
$$

où $u_{t}=\left(u_{t}^{l} \ldots \ldots u_{t}^{d}\right)^{\prime}$ est l'entrée d-dimensionnelle à l'instant t, $A, B_{1} \ldots, B_{d}$ sont des matrices $r \times r, C_{1} \ldots, C_{d}$ sont des vecteurs colonnes $r \times 1$ et H est une matrice a r-colonnes.

Dans ce chapitre, nous nous intéressons à ce type de modèle lorsque l'entrée est unidimensionnelle i.e $d=1$ et aussi à son analogue stochastique, lequel a été en partie étudié par H. TONG (1981) dans le cas particulier où $X_{t}=Y_{t}$, l'état du système étant lui-meme scalaire.

I. ETUDE DES PROBLEMES DE NATURE DETERMINISTE.

Le système considéré ici est décrit par le modèle
(1) $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t}+C u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\ X_{t}=H Y_{t} ; t \in \mathbb{N}\end{array}\right.$
où l'entrée déterministe u_{t} est scalaire, A et B sont des matrices $r \times r$, C est un vecteur colonne $r \times 1$ et H est un vecteur ligne $1 \times r$. Par commodité nous imposerons parfois la condition $\mathrm{HC}=1$; remarquons que cette condition n'est pas vraiment restrictive car si elle n'est pas satisfaite mais que $H C \neq 0$, le changement de B, C et u_{t} en $\left(\mathrm{HC}^{-1} B\right.$, $(H C)^{-1} C$ et $H C u_{t}$ respectivement permet de s'y ramener.

Nous suivons le plan d'étude proposé dans le chapitre I.

I.1. Controlabilité déterministe.

Remarquons que si on suppose la matrice A inversible et le rang de la matrice $r \times(r+1)[B, C]$ égal à 1 (i.e. il existe un vecteur $r \times 1 \gamma$ tel que $B=C \gamma^{\prime}$) alors le système déterministe décrit par le modèle bilinéaire (1) peut s'écrire sous la forme
(1') $\left\{\begin{array}{l}Y_{t}=A\left\{\left[I+\tilde{C} \gamma^{\prime} u_{t}\right] Y_{t-1}+\tilde{C}_{u_{t}}\right\} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\ X_{t}=H Y_{t} \quad ; t \in \mathbb{N}\end{array}\right.$
où $\tilde{C}=A^{-1} C$ est un vecteur $r \times 1$.

Sous ces conditions M.E. EVANS et D.N.P. MURTHY (1978)
ont démontré le résultat suivant

1.1.1. Théorème.

Supposons $\gamma \neq 0$. Soit m le rang de la matrice $r \times r$ $\left[\gamma, A^{\prime} \gamma, \ldots,\left(A^{\prime}\right)^{r-1} \gamma\right]^{\prime}, k$ le plus grand commun diviseur de l'ensemble $\left\{j \in\left\{1, \ldots m^{2}\right\}: \gamma^{\prime} A^{j-1} C \neq 0\right\}$. Alors k. est diviseur de m
et le système déterministe décrit par le modẻle bilinéaire (1) est controlable si et seulement si les deux conditions suivantes sont vérifiées :
(i) le couple [A,C] est controlable
(ii) le rang de la matrice $(a+1) \times(r+1)\left[\begin{array}{cc}1 & \gamma^{\prime} \\ 1 & \gamma^{\prime} A^{k} \\ \vdots & \vdots \\ 1 & \gamma^{\prime} A^{u k}\end{array}\right]$ est $u+1$ où $\alpha=\frac{\mathbf{m}}{\mathbf{k}}$.
1.1.2. Exemple.

Le système déterministe décrit par

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] Y_{t-1} u_{t}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\
X_{t}=\left[\begin{array}{ll}
h_{1} & h_{2}
\end{array}\right] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

avec a différent de 0 et de 1 est controlable.

En effet on vérifie aisément qu'on a
$r g[C, A C]=\operatorname{rg}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=2$ puis $m=2, k=1$ et $\alpha=2$.

I.2. Observabilité déterministe.

Les résultats suivants peuvent se déduire aisément de ceux de
S. HARA et K. FURUTA (1977).
a) Observabilité avec quelques entrées connues.

On a la représentation suivante de l'état $\left(Y_{t}^{u}\right)$ et de la sortie $\left(X_{t}^{u}\right)$ du modèle (1) correspondant à la suite d'entrées $u=\left(u_{t}\right)$: posant

$$
\begin{aligned}
& \xi_{t}^{u}=A \xi_{t-1}^{u}+B \xi_{t-1}^{u} u_{t}+C u_{t} ; t \geq 1 \quad, \quad \xi_{0}^{u}=0 \\
& A_{u}(t)=A+B u_{t} ; t \geq 1
\end{aligned}
$$

et

$$
\left\{\begin{array}{l}
\bar{Y}_{t}^{u}=A_{u}(t) \quad \bar{Y}_{t-1}^{u} \quad ; t \geq 1 \quad ; \bar{Y}_{o}=Y_{o} \\
\bar{X}_{t}^{u}=H \bar{Y}_{t}^{u} \quad ; t \geq 0
\end{array}\right.
$$

on a

$$
Y_{t}^{u}=\bar{Y}_{t}^{u}+\xi_{t}^{u} ; X_{t}^{u}=\bar{X}_{t}^{u}+H \xi_{t}^{u} ; t \geq 0
$$

On voit alors que la propriété d'observabilité avec les entrées $u^{1} \ldots . u^{q}$ connues pour le modèle (1) est liée à la propriété d'observabilité pour un modèle (linéaire non autonome sans entrée) de la forme :

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=\tilde{A}^{(}(t) \tilde{Y}_{t-1} \\
\tilde{X}_{t}=\tilde{H}_{t} \tilde{Y}_{t}
\end{array}\right.
$$

où $\tilde{A}(t)$ est la matrice d'ordre $\operatorname{qr} \times \operatorname{qr}: \tilde{A}(t)=\left[\begin{array}{cc}A_{u 1}(t) & 0 \\ A_{u 2}(t) \\ \ddots \\ 0 & \dot{A}_{u q}(t)\end{array}\right]$.
et \tilde{H} est la matrice d'ordre $q \times q r: \tilde{H}=\left[\begin{array}{lll}H & & 0 \\ H & \\ & \ddots & \\ 0 & & H\end{array}\right]$.

Par suite on est conduit à définir pour chaque u et $j \geq 1$ la matrice $N(u, j)$ d'ordre $j \times r: N(u, j)=\left[\begin{array}{c}H R(u, 0) \\ \vdots \\ H R(u, j-1)\end{array}\right]$ et pour toute famille $u^{1} \ldots \ldots, u^{q}$ et $j \geq 1$ la matrice $n\left(u^{1}, \ldots, u^{q}, j\right)$ d'ordre $j q \times r$: $n\left(u^{1}, \ldots, u^{q}, j\right)=\left[\begin{array}{l}N\left(u^{l}, j\right) \\ \vdots \\ N\left(u^{q}, j\right)\end{array}\right]$ où $R(u, \ell)=\left\{\begin{array}{llll}I & \text { si } & \ell=0 \\ A_{u}(\ell) \ldots & A_{u}(1) & \text { si } & \ell \geq 1\end{array}\right.$.

On a alors la condition nécessaire eit suffisante :

1.2.1. Proposition.

Le système déterministe décrit par le modèle bilinéaire (1) est observable avec quelques entrées connues si et seulement si l'une des deux conditions équivalentes suivantes est satisfaite :
(i) 11 existe un entier q et des.suites d'entrées $u^{1}[1, r] \ldots, \ldots u^{q}[1, r]$ tels que $r g n\left(u^{1} \ldots, u^{q}, r\right)=r$
(ii) le rang de la matrice $(2 r-1) \times r\left[\begin{array}{l}H \\ H A \\ H B \\ \vdots \\ H A^{r-1} \\ H B^{r-1}\end{array}\right]$ est r.

1.2.2. Exemples.

(a) Il est clair que dans le cas linéaire i.e. $B=0$ la condition (ii) se réduit au critère d'observabilité du couple [A,H].
(b) Le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & a_{3} \\
a_{2} & a_{4}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{3} \\
b_{2} & b_{4}
\end{array}\right] Y_{t-1} u_{t}+\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] u_{t} ; t \in \mathbb{N}^{\star} ; Y_{o} \text { donn } \\
X_{t}=[0,1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{2} \neq 0$ ou $b_{2} \neq 0$ est observable avec quelques entrées connues.

En effet on vérifie facilement la condition (ii) i.e

$$
\mathrm{rg}\left[\begin{array}{l}
\mathrm{H} \\
\mathrm{HA} \\
\mathrm{HB}
\end{array}\right]=\mathrm{rg}\left[\begin{array}{ll}
0 & 1 \\
\mathrm{a}_{2} & \mathrm{a}_{4} \\
\mathrm{~b}_{2} & \mathrm{~b}_{4}
\end{array}\right]=2 .
$$

b) Observabilité avec n'importe quelle entrée connue.

Soit \bar{H} une matrice d'ordre $(r-1) \times r$ telle que la matrice d'ordre $r \times r \quad\left[\frac{H}{H}\right]$ soit inversible et $\left[\frac{H}{H}\right]^{-1}=[K, \bar{K}] \quad$ où $\quad K$ est d'ordre $r \times 1$ et $\overline{\mathrm{K}}$ d'ordre $\mathrm{r} \times(\mathrm{r}-1)$. On peut alors définir

$$
\left[\frac{X_{t}}{X_{t}}\right]=\left[\begin{array}{c}
H \\
H
\end{array}\right] Y_{t} \quad \text { ou } \quad Y_{t}=[K, \bar{K}]\left[\frac{X_{t}}{X_{t}}\right]=K X_{t}+\bar{K}_{t}
$$

On peut alors réćcrire le modèle (1) sous la forme
(2) $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B \widetilde{K X}_{t-1} u_{t}+B K X_{t-1} u_{t}+C u_{t} \\ X_{t}=H Y_{t} .\end{array}\right.$

Lorsque la suite (u_{t}) est connue dans la représentation (2), les termes $B K X_{t-1} u_{t}$ et $C u_{t}$ sont connus, seul le terme $B \bar{X}_{X_{t-1}} u_{t}$ est inconnu ; on voit donc que la proprlété d'observabilité avec n'importe quelle entrée connue dans (1) est liée à la propriété d'observabilité avec entrée inconnue dans un modèle linéaire autonome de la forme :

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=A \tilde{Y}_{t-1}+B \bar{K}_{t} \\
\tilde{X}_{t}=H \tilde{Y}_{t}
\end{array}\right.
$$

où (v_{t}) est une suite d'entrées de dimension ($\boldsymbol{r}-1$) (cf. Proposition I.2.6. du Chapitre I). On a la condition suffisante :

1.2.3. Proposition.

Si le couple $[A, H]$ est observable et $H A^{j} B \bar{K}=0$ pour $j=0, \ldots,{ }^{r-2}$ alors le système décrit par le modèle bilinéaire (1) est observable avec n'importe quelle entrée connue.

1.2.4. Exemples.

(a) 'Il est clair que dans le cas linéaire i.e. $B=0$ la condition se réduit au critère d'observabilité du couple $[A, H]: r g O_{r}=r$.
(b) Le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right] Y_{t-1} u_{t}+\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} d c \\
X_{t}=[1,-1] Y_{t} \quad ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{1} \neq a_{2} \quad, a_{1} a_{2} \neq 0$ et $b_{1} b_{2} \neq 0$ est observable avec n'importe quelle entrée connue.
En effet on vérifie facilement qu'on a :

$$
\mathrm{rg}\left[\begin{array}{l}
\mathrm{H} \\
\mathrm{HA}
\end{array}\right]=\mathrm{rg}\left[\begin{array}{ll}
1 & -1 \\
\mathrm{a}_{1} & -\mathrm{a}_{2}
\end{array}\right]=2 \text { et } \mathrm{HB} \widehat{\mathrm{~K}}=0 .
$$

c) Observabilité avec entrée inconnue.

La propriété d'observabilité avec entrée inconnue dans (1) est liée à la meme propriété dans un modèle linéaire autonome du type :

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=A \tilde{Y}_{t-1}+[B, C] w_{t} \\
\tilde{X}_{t}=H \tilde{Y}_{t}
\end{array}\right.
$$

où ($w_{\mathbf{t}}$) est une suite d'entrées de dimension $\mathrm{r}+1$ (cf. Proposition I.2.6. du Chapitre I). On a la condition suffisante :

I.2.5. Proposition.

Si le couple $[A, H]$ est observable et $H A^{j}[B, C]=0$ pour $j=0, \ldots, r-2$ alors le système décrit par le modèle bilinéaire (1) est observable avec entrée inconnue.

1.2.6. Exemples.

(a) Dans le cas linéaire i.e. $B=0$, on voit que la condition n'est autre que celle de la Proposition 1.2.6. du Chapitre I.
(b) Le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right] Y_{t-1} u_{t}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\
X_{t}=[1,-1] Y_{t} \quad ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{1} \neq a_{2}, a_{1} a_{2}$ non nul et $b_{1} b_{2}$ non nul est observable avec entrée inconnue.

En effet on vérifie facilement qu'on a :

$$
\operatorname{rg}\left[\begin{array}{l}
H \\
H A
\end{array}\right]=\operatorname{rg}\left[\begin{array}{ll}
1 & -1 \\
a_{1} & -a_{2}
\end{array}\right]=2 \text { et } H[B, C]=0 .
$$

1.3. Identifiabilité partielle d'une entrée déterministe.

Soit $\mathbf{j} 21$ et Q une matrice quelconque d'ordre $\ell \times j$. On a la condition suffisante sulvante :

1.3.1., Proposition.

Si $\mathrm{HB}=0$ et $\mathrm{HC} \neq 0$, l'entree $u[1, j]$ est partiellement Q-identifiable dans le modèle défini par (1).

Il suffit bien sor de montrer le résultat pour $Q=I_{j}$.
Or si $H B=0$ on a (supposant que $H C=1$) pour tout $t \geq 1$

$$
X_{t}=H A Y_{t-1}+u_{t}
$$

d'où

$$
u_{t}=X_{t}-H A Y_{t-1}
$$

Alors connaissant X_{1} et Y_{o} on sait calculer u_{1}. Puis on peut calculer

$$
Y_{1}=A Y_{0}+B Y_{0} u_{1}+C u_{1}
$$

et u_{2} en fonction de X_{1}, X_{2} et Y_{o} par

$$
u_{2}=X_{2}-H A Y_{1}
$$

Une récurrence facile permet alors de montrer le résultat annoncé.

I.3.2. Exemples.

(a) Dans le cas linéaire i.e. $B=0$, la condition $H B=0$ est évidemment satisfaite et l'énoncé assure que dès que $\mathrm{HC} \neq 0$ l'entrée est identifiable.
(b) Dans le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & a_{3} \\
a_{2} & a_{4}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right] Y_{t-1} u_{t}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\
X_{t}=[1,-1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

l'entrée $u[1, j]$ est $I_{\text {-identifiable. }}$ -
En effet on a

$$
\mathrm{HB}=[1,-1]\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \quad \text { et } \quad H C=[1,-1]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1 \text {. }
$$

II. CARACTERISTIQUES DU SECOND-ORDRE ET STATIONNARITES.

Dans ce paragraphe on considère le système stochastique décrit par l'analogue du modèle (1) i.e
(3) $\quad\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B Y_{t-1} e_{t}+C e_{t} ; t \in \mathbb{N}^{\star} ; Y_{o} \text { donné } \\ X_{t}=H Y_{t} \quad ; t \in \mathbb{N}\end{array}\right.$
ou (3') $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B Y_{t-1} e_{t}+C e_{t} \\ X_{t}=H Y_{t}\end{array} \quad ; t \in \mathbb{Z}\right.$
où (e_{t}) est une suite de variables aléatoires réelles équidistribuées centrées, de variance $Q_{e}>0$. Notons que ce modèle recouvre par exemple le modèle de série chronologique unidimensionnelle

$$
x_{t}=\sum_{j=1}^{p} a_{j} x_{t-j}+\sum_{k=1}^{q} b_{k} x_{t-k} e_{t}+e_{t} \quad ; t \in \mathbb{Z} .
$$

En effet (X_{t}) peut se représenter comme l'observation dans un modèle du type (3^{\prime}) ou l'état r-dimensionnel $Y_{t}=\left(X_{t}, \ldots, X_{t-r+1}\right)^{\prime}$ avec $r=\max (p, q)$ évolue selon l'équation

$$
Y_{t}=\left[\begin{array}{ccccc}
a_{1} & \cdot & \cdot & \cdot & a_{r} \\
1 & 0 & . & . & 0 \\
0 & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
0 & . & 0 & 1 & 0
\end{array}\right] Y_{t-1}+\left[\begin{array}{cccc}
b_{1} & \cdot & \cdot & \cdot \\
0 & b_{r} \\
. & & & 0 \\
. & & & . \\
. & & & . \\
0 & . & . & 0
\end{array}\right] Y_{t-1} e_{t}+\left[\begin{array}{c}
1 \\
0 \\
. \\
. \\
0
\end{array}\right] e_{t}
$$

(avec la convention que $a_{j}=0$ si $j>p$ et $b_{k}=0$ si $k>q$) l'équation d'observation étant

$$
X_{t}=H Y_{t}
$$

oû H est le vecteur ligne $1 \times r: H=\left(\begin{array}{lll}1 & 0 & \ldots\end{array}\right)$.
Nous étudions les modeles (3) - (3') pour des matrices A, B et des vecteurs C, H arbitraires. Par commodité nous imposerons encore parfois la condition $\mathrm{HC}=1$.

II.1. Caractéristiques du second-ordre - Stationnarité au second-ordre.

Le résultat sulvant montre que la structure au second-ordre dans le modẻle bilinéaire (3) est semblable à celle correspondant au modèle linéaire (cf. Théorème II.1.2. du Chapitre I).
II.1.1. Proposition.

Si $\left(Y_{o}, e_{t} ; t \in \mathbb{N}^{\star}\right)$ est une suite d'éléments aléatoires indépendants, alors le processus solution du modele (3) est du second-ordre et on a :

$$
\begin{aligned}
& m_{Y}(t)=A^{t} m(0) \quad ; m_{X}(t)=H A^{t} m(0) ; t \in \mathbb{N}, \\
& C_{Y}(t, s)= \begin{cases}A^{t-s} C_{Y}(s, s) & \text { si } t \geq s \geq 0 \\
C_{Y}(t, t)\left(A^{\prime}\right)^{s-t} & \text { si } 0 \leq t \leq s\end{cases}
\end{aligned}
$$

et

$$
C_{X}(t, s)=H C_{Y}(t, s) H^{\prime} \quad ;(t, s) \in \mathbb{N}^{2}
$$

avec

$$
\begin{aligned}
C_{Y}(t, t)= & A C_{Y}(t-1, t-1) A^{\prime}+Q_{e} B C_{Y}(t-1, t-1) B^{\prime}+ \\
& +Q_{e}\left(B m_{Y}(t-1)+C\right)\left(B m_{Y}(t-1)+C\right)^{\prime} ; t \in \mathbb{N}^{*} \\
C_{Y}(0,0)= & C(0) .
\end{aligned}
$$

(1) y, du second-ordre

Démonstration.

De la définition (3) on déduit aisément que pour $t>s$ on a

$$
Y_{t}=\prod_{k=0}^{t-s-1}\left\{A+B e_{k+1+s}\right\} Y_{s}+\sum_{j=s}^{t-2} \prod_{\ell=0}^{t-2-j}\left\{A+B e_{\ell+s+2}\right\} C e_{j+1}+C e_{t}
$$

Il vient

$$
\begin{aligned}
m_{Y}(t) & \left.=E\left\{\prod_{k=0}^{t-s-1}\left\{A+B e_{k+1+s}\right\}\right\} m_{Y}(s)+E \sum_{j=s}^{t-2} \prod_{\ell=0}^{t-2-j}\left\{A+B e_{\ell+s+2}\right\} C e_{j+1}+C e_{t}\right\} \\
& =A^{t-s} m_{Y}(s)
\end{aligned}
$$

soit

$$
m_{Y}(t)=A^{t} m(0) \quad, m_{X}(t)=H A^{t} m(0) \quad ; t \in \mathbb{N}
$$

Pour $t \geq s \geq 0$

$$
\begin{aligned}
C_{Y}(t, s)= & E\left\{\prod_{k=0}^{t-s-1}\left\{A+B e_{k+1+s}\right\} Y_{s}-A^{t-s} m_{Y}(s)+\sum_{j=s}^{t-2 t-2-j} \prod_{\ell=0}\left\{A+B e_{\ell+s+2}\right\} C e_{j+1}+C t\right. \\
& \times\left\{Y_{s}-m_{Y}(s)\right\}^{\prime} . \\
= & \left\{\prod_{k=0}^{t-s-1}\left\{A+B e_{k+1+s}\right\} Y_{s}-A^{t-s} m_{Y}(s)\right\}\left\{Y_{s}-m_{Y}(s)\right\}^{\prime}+ \\
+ & E\left\{\sum_{j=s}^{t-2} \prod_{l=0}^{t-2-j}\left\{A+B e_{\ell+s+2}\right\} C e_{j+1}+C e_{t}\right\}\left\{Y_{s}-m_{Y}(s)\right\}^{\prime} \\
= & A^{t-s} C_{Y}(s, s) .
\end{aligned}
$$

Un raisonnement analogue fournit le résultat pour $0 \leq t \leq s$.

On a aussi, pour $t \in \mathbb{N}^{\star}$

$$
\begin{aligned}
C_{Y}(t, t) & =E\left\{A Y_{t-1}-A m_{Y}(t-1)+\left(B Y_{t-1}+C\right) e_{t}\right\}\left\{A Y_{t-1}-A m_{Y}(t-1)+\left(B Y_{t-1}+C\right) e_{t}\right\}^{\prime} \\
& =A C_{Y}(t-1, t-1) A^{\prime}+E\left\{\left(B Y_{t-1}+C\right) e_{t}\right\}\left\{\left(B Y_{t-1}+C\right) e_{t}\right\}^{\prime} \\
& =A C_{Y}(t-1, t-1) A^{\prime}+Q_{e} B E\left\{Y_{t-1} Y_{t-1}^{\prime}\right\} B^{\prime}+Q_{e}\left\{C m_{Y}^{\prime}(t-1) B^{\prime}+B m_{Y}(t-1) C^{\prime}+C C^{\prime}\right\} \\
& =A C_{Y}(t-1, t-1) A^{\prime}+Q_{e} B C_{Y}(t-1, t-1) B^{\prime}+Q_{e}\left(B m_{Y}(t-1)+C\right)\left(B m_{Y}(t-1)+C\right)^{\prime}
\end{aligned}
$$

On déduit immédiatement de la Proposition précédente et de la Proposition II.1.3. du Chapitre I :

II.1.2. Proposition.

Sous les hypothèses de la Proposition II.1.1., si $m(0)=0$ et si le couple $[A, C]$ est controlable, alors la matrice de covariance $C_{Y}(t, t)$ est définie positive pour $t \geq r$.

On donne maintenant une caractérisation de la stationnarité au second-ordre :

II.1.3. Proposition.

Sous les hypothèses de la Proposition II.1.1., une condition nécessaire et suffisante pour que le processus d'état ($\left.Y_{t} ; t \geq 0\right)$ satisfaisant à (3) soit stationnaire au second-ordre est que le vecteur $m(0)$ vérifie

$$
A m(0)=m(0)
$$

et que la matrice $\mathbf{C (0)}$ soit solution de l'équation matricielle

$$
\begin{equation*}
\Gamma=A \Gamma A^{\prime}+Q_{e} B \Gamma B^{\prime}+Q_{e}(B m(0)+C)(B m(0)+C)^{\prime} . \tag{4}
\end{equation*}
$$

Alors la fonction de covariance du processus $\left(Y_{t}\right)$ est donnée par

$$
R_{Y}(h)=\left\{\begin{array}{lll}
A^{h} \Gamma & \text { si } & h \geq 0 \\
\Gamma\left(A^{\prime}\right)|h| & \text { si } & h \leq 0
\end{array}\right.
$$

Notons que l'équation matricielle (4) peut s'écrire sous la forme

$$
\text { vec } \Gamma=\left\{A \otimes A+Q_{e} B \otimes B\right\} \text { vec } \Gamma+Q_{e} \operatorname{vec}(B m(0)+C)(B m(0)+C)^{\prime}
$$

où si $\Gamma=\left[\gamma_{1}, \ldots, \gamma_{r}\right]$ on a posé vec $\Gamma=\left[\gamma_{1}^{\prime}, \ldots, \gamma_{r}^{\prime}\right]^{\prime}$ et si H et K sont deux matrices, $H \otimes K$ désigne leur produit de Kronecker. On voit alors que si les valeurs propres de la matrice $A \otimes A+Q_{e} B \otimes B$ sont toutes de module strictement plus petit que 1 , l'équation (4) admet une solution unique dans l'ensemble des matrices symétriques semi-définies positives. Si de plus le couple [A,C] est controlable alors, d'après la proposition II.1.2., cette solution est définie positive.

II. 2 . Stationnarité stricte et inversibilité.

En ce qui concerne la stationnarité stricte dans le modèle (3^{\prime}) on a le résultat :

II.2.1. Proposition.

Si la suite $\left(e_{t} ; t \in \mathbb{Z}\right)$ est une suite de variables aléatoires indépendantes équidistribuées et si les valeurs propres de la matrice $A \otimes A+Q_{e} B \otimes B$ sont toutes de module strictement inférieur à 1 alors le modèle $\left(3^{\prime}\right)$ admet une solution stationnaire $\left(\left(Y_{t}, X_{t}\right) ; t \in \mathbb{Z}\right)$ uniquement déterminée par

$$
Y_{t}=C e_{t}+\sum_{j=1}^{\infty}\left\{\prod_{k=0}^{j-1}\left[A+B e_{t-k}\right]\right\} C e_{t-j} ; X_{t}=H Y_{t} ; t \in \mathbb{Z}
$$

où la série précédente est convergente en moyenne quadratique.

Démonstration.

Supposons d'abord qu'il existe un processus stationnaire $\left(Y_{t}\right)$ vérifiant la première équation de (3^{\prime}) et montrons qu'll est nécessairement déterminé par

$$
Y_{t}=C e_{t}+\sum_{j=1}^{\infty}\left\{\sum_{k=0}^{j-1}\left[A+B e_{t-k}\right]\right\} C e_{t-j} .
$$

On a $\quad Y_{t}=C e_{t}+\left(A+B e_{t}\right) Y_{t-1}$ puis, par récurrence :

$$
\begin{aligned}
& \left.\qquad Y_{t}=C e_{t}+\sum_{j=0}^{n-1}\left\{\int_{k=0}^{j-1}\left[A+B e_{t-k}\right]\right\} C e_{t-j}+\|_{k=0}^{n-1}\left[A+B e_{t-k}\right] Y_{t-n}\right] \\
& \text { Posons } P(t, n)=\prod_{k=0}^{n-1}\left[A+B e_{t-k}\right] .
\end{aligned}
$$

On vérifie aisément que :
$\operatorname{vec} E\left\{P(t, 1) P^{\prime}(t, 1)\right\}=\operatorname{vec} A A^{\prime}+Q_{e}$ vec $B B^{\prime}$
vec $E\left[P(t, 2) P^{\prime}(t, 2)\right\}=\left[A \otimes A+Q_{e} B \otimes B\right]\left[\operatorname{vec} A A^{\prime}+Q_{e}\right.$ vec $\left.B B^{\prime}\right]$
et , par récurrence
$\operatorname{vec} E\left\{P(t, n) P^{\prime}(t, n)\right\}=\left[A \otimes A+Q_{e} B \otimes B\right]^{n-1}\left[\operatorname{vec} A A^{\prime}+Q_{e} \operatorname{vec} B B^{\prime}\right]$.

Comme les valeurs propres de $A \otimes A+Q_{e} B \otimes B$ sont à l'intérieur du disque unité on a

$$
\lim _{n \rightarrow+\infty} P(t, n)=0 \quad \text { en moyenne quadratique. }
$$

Comme les vecteurs aléatoires Y_{t-n} ont tous la meme loi de probabilité on a aussi

$$
\lim _{n \rightarrow+\infty} P(t, n) Y_{t-n}=0 \quad \text { en probabilité. }
$$

Ainsi il vient

$$
Y_{t}=C e_{t}+\sum_{j=1}^{\infty} P(t, j) C e_{t-j}
$$

où la série converge en probabilité.
Considérons maintenant le terme $P(t, j) C e_{t-j}$. On vérifie encore par récurrence que

$$
\operatorname{vec} E\left\{\left[P(t, j) C e_{t-j}\right]\left[P(t, j) C e_{t-j}\right]^{\prime}\right\}=Q_{e}\left[A \otimes A+Q e^{B \& B]^{j} \operatorname{vec}\left(C C^{\prime}\right) .}\right.
$$

Comme on a aussi

$$
E\left\{\left[\sum_{j=1}^{n} P(t, j) C e_{t-j}\right]\left[\sum_{j=1}^{n} P(t, j) C e_{t-j}\right]^{\prime}\right\}=\sum_{j=1}^{n} E\left\{\left[P(t, j) C e_{t-j}\right]\left[P(t, j) C e_{t-j}\right]^{\prime}\right\}
$$

l'hypothèse sur les valeurs propres de $A \otimes A+Q_{e} B \otimes B$ assure que la série de terme général $P(t, j) C e_{t-j}$ est convergente en moyenne quadratique.
Il reste à montrer que la série $Y_{t}=C e_{t}+\sum_{j=1}^{\infty} P(t, j) C e_{t-j} ; t \in \mathbb{Z} \quad$ définit bien un processus stationnaire solution de la première équation de (3'). Comme (e_{t}) est une suite de variables aléatoires indépendantes équidistribuées, la formule précédente définit bien un processus stationnaire. On vérifie enfin que ce processus satisfait à

$$
Y_{t+1}=\left[A+B e_{t+1}\right] Y_{t}+C e_{t+1} ; t \in \mathbb{Z}
$$

En effet

$$
\begin{aligned}
{\left[A+B e_{t+1}\right] Y_{t} } & +C e_{t+1}=C e_{t+1}+\left[A+B e_{t+1}\right] C e_{t}+ \\
& \left.+\left[A+B e_{t+1}\right] \sum_{j=1}^{\infty} \prod_{k=0}^{j-1}\left[A+B e_{t-k}\right]\right\} C e_{t-j} \\
& =C e_{t+1}+\sum_{j=1}^{\infty}\left\{\prod_{k=0}^{j-1}\left[A+B e_{t+1-k}\right] C e_{t+1-j}=Y_{t+1} .\right.
\end{aligned}
$$

Il est clair que le processus solution est aussi stationnaire au second-ordre centré de structure de covariance donnée dans la Proposition II.1.3.

Remarquons aussi que lorsqu'une solution stationnaire existe pour le modèle ($\mathbf{3}^{\prime}$), le processus (Y_{t}) défini par (3) est un processus de Markov d'ordre 1 stationnaire lorsque l'état initial Y_{o} est une variable aléatoire indépendante de $\left(e_{t} ; t \in \mathbb{N}^{*}\right)$ et distribuée selon la lol commune aux état d'une solution stationnaire de (3').

Abordons maintenant le problème de l'inversibilité du modẻle (3').

II.2.2. Proposition.

Supposons que $B=K H$ avec $H K=0, H C \neq 0$ et que les hypothèses de la Proposition II.2.1. sont satisfaites. Alors si $E\left\|A-\left[K X_{0}+C\right] H A\right\|<$ le modèle (3^{\prime}) est inversible. (Pour une matrice M on a posé $\|M\|^{2}=\operatorname{tr} M^{\prime}$).

Démonstration.

On suit la démarche décrite dans la Remarque III.3.2. (b) du Chapitre I. Sous les hypothèses faites on $\mathrm{a} H B=0$ et (supposant $H C=1$) pour tout t

$$
e_{t}=X_{t}-H A Y_{t-1}
$$

Définissons alors, Y_{o} étant un vecteur fixé,

$$
\stackrel{V}{e}_{t}^{V}=X_{t}-H A \stackrel{V}{Y}_{t-1} \quad ; t \geq 1
$$

où

$$
\stackrel{V}{Y}_{t}=A Y_{t-1}^{V}+K X_{t-1} \stackrel{V}{t}^{v}+C \stackrel{V}{e_{t}} ; t \geq 1 ; Y_{o}^{V}=Y_{o} .
$$

On a

$$
\stackrel{V}{e_{t}}-e_{t}=\operatorname{HA}\left(Y_{t-1}-\stackrel{V}{Y}_{t-1}\right)
$$

où

$$
Y_{t}-V_{t}=\left\{A-\left[K X_{t-1}+C\right] H A\right\}\left(Y_{t-1}-Y_{t-1}\right)
$$

soit $\quad Y_{t}-Y_{t}=\left\{\prod_{i=0}^{t-1}\left\{A-\left[K X_{i}+C\right] H A\right\}\right\}\left(Y_{0}-Y_{o}\right) ; t \geq 1$.

Il vient donc

$$
\left.\left\|Y_{t}-Y_{t}\right\|^{2}=\left(Y_{0}-Y_{0}\right) \cdot\left\{\begin{array}{l}
t-1 \\
i=0
\end{array}\left\{A-\left[K x_{i}+C\right] H A\right\}\right\}_{i=0}^{1}\left\{A-\left[K x_{i}^{t-1}+C\right] H A\right\}\right\}\left(Y_{0}-Y_{0}\right)
$$

puis

$$
\left\|Y_{t}-Y_{t}^{V}\right\| \leq\left\|Y_{0}-Y_{0}\right\| \underset{i=0}{t-1}\left\|A-\left[K X_{i}+C\right] H A\right\| .
$$

D'après l'inégalité de Jensen et l'hypothèse on a, $\left(X_{t}\right)$ étant station-
naire au sens strict

$$
E\left\{\log \left\|A-\left[K X_{i}+C\right] H A\right\|\right\}<\log E\left\|A-\left[K X_{i}+C\right] H A\right\|<0 .
$$

En vertu du théorème ergodique on a donc, presque sarement

$$
\lim _{t \rightarrow+\infty} \frac{1}{t} \sum_{t=0}^{t-1} \log \left\|A-\left[K X_{i}+C\right] H A\right\|=E\left\{\log \left\|A-\left[K X_{0}+C\right] H A\right\|\right]<0
$$

d'où

$$
\lim _{t \rightarrow+\infty} \operatorname{li}_{i=0}^{t-1}\left\|A-\left[K X_{i}+C\right] H A\right\|=0
$$

et par suite

$$
\lim _{t \rightarrow+\infty}\left(e_{t}^{v}-e_{t}\right)=0
$$

Remarquons que si
$E\left\|A-\left[K X_{0}+C\right] H A\right\|^{2}=\operatorname{tr} A A^{\prime}-2 \operatorname{tr} C H A A^{\prime}+(H A)(H A)^{\prime}\left[E X_{0}^{2} \operatorname{tr} K K^{0}+\operatorname{tr} C C^{\prime}\right]<1$
alors $E\left\|A-\left[K X_{0}+C\right] H A\right\|<1$.
III. Filtrage lineaire et filtrage non lineaire.

On aborde ici le problème de filtrage dans le modèle (3) défini au paragraphe II précédent.
III.1. Filtrage linéaire optimal.

On démontre un résultat préliminaire :

III.1.1. Proposition.

Sous les hypothèses de la Proposition II.1.1., il existe une suite $\left(e_{t}^{*} ; t \in \mathbb{N}^{*}\right)$ de vecteurs aléatoires dans \mathbb{R}^{r} centrés, de matrice de covariance I_{r}, deux à deux non corrélés, non corrélés avec Y_{o}, telle que le processus solution du modèle (3) admette la représentation linéaire :

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+\sum_{t-1}^{1 / 2} e_{t}^{\star} \\
X_{t}=H A Y_{t-1}+H \Sigma_{t-1}^{1 / 2} e_{t}^{\star} ; t \in \mathbb{N}^{\star} ; X_{o}=H Y_{0}
\end{array}\right.
$$

où
pour $t \in \mathbb{N} \Sigma_{t}^{1 / 2}$ est une matrice d'ordre $r \times r$ telle que
(5) $\quad \Sigma_{t}^{1 / 2} \cdot\left(\Sigma_{t}^{1 / 2}\right)^{\prime}=\Sigma_{t}=Q_{e} B C_{Y}(t, t) B^{\prime}+Q_{e}\left[B m_{Y}(t-1)+C\right]\left[B m_{Y}(t-1)+C\right]^{\prime}$.

Démonstration.

On a pour tout $t \geq 1$

$$
E\left\{\left[B Y_{t-1}+C\right] e_{t}\right\}=0
$$

et

$$
\begin{aligned}
E\left\{\left[B Y_{t-1}\right.\right. & \left.+C] e_{t}^{2}\left[B Y_{t-1}+C\right]^{\prime}\right\}=Q_{e} E\left\{\left[B Y_{t-1}+C\right]\left[B Y_{t-1}+C\right]^{\prime}\right\} \\
& =Q_{e} B E\left\{Y_{t-1} Y_{t-1}^{\prime} j B^{\prime}+Q_{e} B m_{Y}(t-1) C^{\prime}+Q_{e} C m_{Y}^{\prime}(t-1) B^{\prime}+Q_{e} C C^{\prime}\right. \\
& =Q_{e} B C_{Y}(t-1, t-1) B^{\prime}+Q_{e}\left[B m_{Y}(t-1)+C\right]\left[B m_{Y}(t-1)+C\right]^{\prime}=\Sigma_{t-1}
\end{aligned}
$$

On a aussi pour $t>s \geq 1$

$$
E\left\{\left[B Y_{t-1}+C\right] e_{t} e_{s}\left[B Y_{s-1}+C\right]^{\prime}\right\}=0
$$

Alors si Σ_{t} est définie positive pour $t \in \mathbb{N}$, définissant $e_{t}^{n}=\Sigma_{t-1}^{-1 / 2}\left[B Y_{t-1}+C\right] e_{t}$ ll est clair qu'on a la représentation annoncée.

Si Σ_{t} pour $t \in \mathbb{N}$ n'est pas toujours définie positive, définissons

$$
\left.e_{t}^{*}=\left[\Sigma_{t-1}^{1 / 2}\right]^{t}\left[B Y_{t-1}+^{\prime} C\right] e_{t}+\left[I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+}\right] \tilde{e}_{t} ; t \geq 1 \quad 1^{1}\right)
$$

où $\left(\tilde{e}_{t} ; t \geq 1\right)$ est une suite de vecteurs aléatoires centrés dans \mathbb{R}^{r} tels que $\operatorname{cov}\left(\tilde{e}_{t}, \tilde{e}_{s}\right)=\delta_{t, s} I_{r}$, non corrélée avec $\left(Y_{t} ; t \in \mathbb{N}\right)$. (Une telle suite ($\left.\tilde{e}_{t}\right)$ existe pourvu que l'espace probabilisé (Ω, a, P) soit "suffisamment riche" ; sl ce n'est pas le cas on peut toujours s'y ramener en "augmentant" convenablement cet espace). Il est facile de vérifier que $\left(e_{t}^{*} ; t \geq 1\right)$ satisfait aux conditions de l'énoncé. En effet, pour tout $t \geq 1$, on a :

$$
\begin{aligned}
E e_{t}^{*} & =\left[\Sigma_{t-1}^{1 / 2}\right]^{+} E\left\{\left[B Y_{t-1}+C\right] e_{t}\right\}+\left[I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]+\right] E \tilde{e}_{t} \\
& =0
\end{aligned}
$$

(1) ela notation + désigne ta pseudo-invense
et $\operatorname{cov}\left(e_{t}^{*}, e_{t}^{\star \cdot}\right)=\left[\Sigma_{t-1}^{1 / 2}\right]^{+} \Sigma_{t-1}\left[\Sigma_{t-1}^{1 / 2}\right]^{+}+\left[I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+}\right]\left[I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-}^{1 /}\right.\right.$
où, d'après les propriétés des matrices pseudo-inverses,

$$
\begin{aligned}
& \quad\left[\Sigma_{t-1}^{1 / 2}\right]^{+} \Sigma_{t-1}\left[\Sigma_{t-1}^{1 / 2}\right]^{+}=\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+} \\
& \text {et }\left[I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+}\right]\left[I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+}\right]=I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+}
\end{aligned}
$$

$$
\text { d'où } \operatorname{cov}\left(e_{t}^{*}, e_{t}^{* \prime}\right)=\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+}+I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+}=I_{r} .
$$

On a aussi compte tenu des hypothèses concernant les suites ($e_{t} ; t \geq 1$) et $\left(\tilde{e}_{t} ; t \geq 1\right)$:

$$
\text { - pour } t>s \geq 1 \quad E\left(e_{t}^{*} e_{s}^{\star^{\prime}}\right)=0
$$

$$
\left(e_{t}^{\star} ; t \in \mathbb{N}^{\star}\right) \text { non corrélés avec } Y_{o}
$$

Remarquons que dans le cas particulier où le processus solution de (3) est stationnaire au second-ordre (cf. Proposition II.1.3.), il admet la représentation

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+\Sigma^{1 / 2} e_{t}^{\star} \\
X_{t}=H A Y_{t-1}+H \Sigma^{1 / 2} e_{t}^{\star} ; t \in \mathbb{N}^{\star} ; X_{o}=H Y_{0}
\end{array}\right.
$$

où $\Sigma^{1 / 2}$ est une matrice d'ordre $r \times r$ telle que

$$
\Sigma^{1 / 2} \cdot\left(\Sigma^{1 / 2}\right)^{\prime}=\Sigma=Q_{e} B C_{Y}(0,0) B^{\prime}+Q_{e}\left[B m_{Y}(0)+C\right]\left[B m_{Y}(0)+C\right]^{\prime} .
$$

On est maintenant en mesure de démontrer :
III.1.3. Proposition.

Sous les hypothèses de la Proposition II.1.1 le filtre linéaire optimal \hat{Y}_{t}^{ℓ} de Y_{t} au vu de $X[0, T]$ dans le modele (3) est fournt par les équations de récurrence

$$
\hat{Y}_{t}^{l}=A \hat{Y}_{t-1}^{\ell}+\left[\Sigma_{t-1} H^{\prime}+A \gamma_{t-1}^{l} A^{\prime} H^{\prime}\right]\left[H \Sigma_{t-1} H^{\prime}+H A \gamma_{t-1}^{l} A^{\prime} H^{\prime}\right]^{+}\left[X_{t}-H A \hat{Y}_{t-1}^{\ell}\right] ; t \geq 1
$$

et

$$
\begin{aligned}
\gamma_{t}^{\ell} & =A \gamma_{t-1}^{\ell} A^{\prime}+\Sigma_{t-1}^{\prime}- \\
& -\left[\Sigma_{t-1} H^{\prime}+A \gamma_{t-1}^{\ell} A^{\prime} H^{\prime}\right]\left[H \Sigma_{t-1} H^{\prime}+H A \gamma_{t-1}^{\ell} A^{\prime} H^{\prime}\right]^{+}\left[\Sigma_{t-1} H^{\prime}+A \gamma_{t-1}^{\ell} A^{\prime} H^{\prime}\right]^{\prime} ; t \geq 1
\end{aligned}
$$

avec

$$
\begin{aligned}
& \hat{Y}_{0}^{\ell}=m_{Y}(0)+C_{Y}(0,0) H^{\prime}\left[\mathrm{HC}_{Y}(0,0) H^{\prime}\right]^{+}\left(X_{0}-H m_{Y}(0)\right) \\
& Y_{0}^{\ell}=C_{Y}(0,0)-C_{Y}(0,0) H^{\prime}\left[H C_{Y}(0,0) H^{\prime}\right]^{+}{ }_{H} C_{Y}(0,0)
\end{aligned}
$$

la suite $\left(\Sigma_{t} ; t \geq 0\right)$ définie par (5).

Démonstration.

Le résultat est une conséquence immédiate du Corollaire III.1.5. du Chapitre I et de la Proposition III.1.1. précédente.

Dans le cas particulier oun le processus solution est stationnaire au second-ordre,il est possible d'étudier le comporteasymptotique de la matrice

$$
\gamma_{t}^{\ell}=E\left(\left(Y_{t}-Y_{t}^{l}\right)\left(Y_{t}-Y_{t}^{l}\right)^{\prime}\right)
$$

Du Théorème III.1.6. du Chapitre I on déduit :
III.1.4. Proposition.

Supposons les hypothèses de la Proposition II.1.1. satisfaites et le processus solution stationnaire au second-ordre.

Si $H \Sigma H^{\prime}>0$, si le couple $\left(A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A, H A\right)$ est observable et si le couple $\left(A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A,\left[\Sigma-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H \Sigma\right]^{1 / 2}\right.$) est controlable où Σ est définie par (5'), alors la suite $\left(\gamma_{t}^{\ell} ; t \geq 1\right)$ a une limite γ^{\star} telle que $\operatorname{Tr} \gamma^{\star}<+\infty$ qui est l'unique solution (dans la classe des matrices symétriques définies positives) de l'équation matricielle

$$
\begin{aligned}
& \gamma=\left[A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A\right] \gamma\left[A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A\right]^{\prime}+\left[\Sigma-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H \Sigma\right]- \\
& -\left[A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A\right] \gamma[H A]^{\prime}\left\{\left[\Sigma-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H \Sigma+H A \gamma[H A]^{\prime}\right\}^{+} H A \gamma X\right. \\
& x\left[A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A\right]^{\prime} .
\end{aligned}
$$

III. 2 . Filtrage non linéaire optimal.

On fait l'hypothèse complémentaire suivante :
(B) la matrice B est de la forme $K H$ où K est un vecteur colonne $r \times 1$.

Alors le modèle (3) est du type du modèle (5) introduit au paragraphe III du Chapitre I, à savoir :

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+\left[K X_{t-1}+C\right] e_{t} \\
X_{t}=H A Y_{t-1}+\left[H K X_{t-1}+H C\right] e_{t} ; t \in \mathbb{N}^{*} ; X_{o}=H Y_{o}
\end{array}\right.
$$

On suppose de plus que la condition :

(G) ($\left.e_{t} ; t \in \mathbb{N}^{*}\right)$ est une suite de variables aléatoires indépendantes équidistribuées selon une loi gaussienne centrée de variance $Q_{e}>0$ est satisfaite. On a alors le résultat :
III.2.1. Proposition.

Sous les hypothèses (G) et (B) , si l'état initial Y_{x} est un vecteur aléatorre gaussien indépendant de la suite $\left(e_{t} ; t \in \mathbb{N}^{*}\right)$, alors le filtre optimal \hat{Y}_{t} de Y_{t} au vu de $X[0, t]$ dans le modèle (3) est fourni par les équations de récurrence :

$$
\begin{aligned}
& \hat{Y}_{t}=A \hat{Y}_{t-1}+\left[Q_{e}\left[K X_{t-1}+C\right]\left[H K X_{t-1}+H C\right]+A Y_{t-1} A^{\prime} H^{\prime}\right] x \\
& \times\left[Q_{e}\left[H K X_{t-1}+H C\right]^{2}+H A Y_{t-1} A^{\prime} H^{\prime}\right]^{+}\left[X_{t}-H A \hat{Y}_{t-1}\right] ; t z
\end{aligned}
$$

et

$$
\begin{aligned}
& \gamma_{t}=A \gamma_{t-1} A^{\prime}+Q_{e}\left[K X_{t-1}+C\right]\left[K X_{t-1}+C\right]^{\prime}- \\
& -\left[Q_{e}\left[K X_{t-1}+C\right]\left[H K X_{t-1}+H C\right]+A \gamma_{t-1} A^{\prime} H^{\prime}\right]\left[Q_{e}\left[H K X_{t-1}+H C\right]^{2}+H A \gamma_{t-1} A^{\prime} H^{\prime}\right]
\end{aligned}
$$

avec $\hat{Y}_{0}=m_{Y}(0)+C_{Y}(0,0) H^{\prime}\left[H C_{Y}(0,0) H^{\prime}\right]^{+}\left(X_{0}-H m_{Y}(0)\right)$

$$
\gamma_{0}=C_{Y}(0,0)-C_{Y}(0,0) H^{\prime}\left[H C_{Y}(0,0) H^{\prime}\right]^{+} H C_{Y}(0,0) .
$$

Démonstration.

D'après l'écriture du modèle précédent l'énoncé et la Proposition II.1.1,
les conditions du Théorẻme III.1.3 du Chapitre I sont toutes satisfaites puisque si Y_{0} vérifie l'hypothèse, $\left(Y_{0}, X_{o}\right)$ est un vecteur aléatoire gaussien indépendant de $\left(e_{t} ; t \in \mathbb{N}^{*}\right)$ et, en particulier, la loi conditionnelle $P\left[Y_{0} \in \cdot \mid X_{o}\right]$ est gaussienne.

Remarquons que si on suppose $B=K H$ le filtre optimal linéaire ne diffère du filtre optimal que par les termes $Q_{e} \cdot E\left\{\left[K X_{t-1}+C\right]\left[H K X X_{t-1}+H C\right.\right.$ et $Q_{e} E\left\{\left[H K X_{t-1}+H C\right]^{2}\right\}$ qui se substituent aux termes $Q_{e}\left[K_{t-1}+C\right]\left[H K X_{t-1}+H C\right]$ et $Q_{e}\left[H K X_{t-1}+H C\right]^{2}$ respectivement. Cette différence résulte bien évidemment de la "linéarisation" du modèle (3).

IV. ETUDE D'UN MODELE PARTICULIER DE SERIE CHRONOLOGIQUE UNIDIMENSIONNELLE.

Nous étudions ici le cas particulier du modèle de série chronologique scalaire correspondant à la situation (3)-(3') où

$$
r=1, \quad A=a, \quad B-b, \quad H=C=1 \text { i.e }
$$

$$
\begin{equation*}
X_{t}=a X_{t-1}+b X_{t-1} e_{t}+e_{t} ; t \in \mathbb{Z} \tag{6}
\end{equation*}
$$

on (6^{\prime})

$$
X_{t}=a X_{t-1}+b X_{t-1} e_{t}+e_{t} ; t \in \mathbb{N}^{*}, X_{o} \text { donné } .
$$

Les résultats concernant la stationnarité stricte et l'inversibilité sont plus précis que dans le cas vectoriel $r>1$; on est en mesure d'étudier le problème de l'existence des moments d'ordre supérieur à deux d'une solution stationnaire dans le cas où les variables (e_{t}) sont gaussiennes. On aborde aussi le probléme statistique d'estimation des paramètres du modèle.
IV. 1. Stationnarite stricte. Moments.

Solt (H) l'hypothèse : la loi commune aux variables aléatoires (e, ${ }_{t}$ n'est pas concentrée en une ou deux valeurs. Notons que (H) est vérifiée si et seulement si il n'existe pas de constantes α et β telles que $P\left[e_{t}^{2}=\alpha e_{t}+\beta\right]=1$.
IV.1.1. Proposition.

Supposons que ($e_{\mathbf{t}}$) est une suite de variables aléatoires indépen-
dantes équidistribuées telle que l'hypothèse (H) est satisfaite. Alors si $|a|<1$ et $a^{2}+b^{2} Q_{e} \leq 1$ il existe un processus stationnaire $\left(X_{t}\right)$ vérifiant l'équation (6) uniquement déterminé par

$$
\begin{equation*}
\left.x_{t}=e_{t}+\sum_{j=1}^{\infty} \sum_{k=0}^{j-1}\left[a+b e_{t-k}\right]\right\} e_{t-j} \tag{7}
\end{equation*}
$$

où la série du second membre converge presque sarement et si $a^{2}+b^{2} Q_{e}^{<1}$ la convergence a lieu aussi en moyenne quadratique.

Démonstration.

Suivant le schéma de la démonstration de la Proposition II.2.1. il suffit de démontrer que presque sarement $\underset{n \rightarrow+\infty}{\lim _{n \rightarrow+} P(t, n)=0}$ et la série de terme général $P(t, j) e_{t-j}$ est convergente.

Or si $P(t, n)=\prod_{k=0}^{n-1}\left[a+b e_{t-k}\right]$
on a $\quad \frac{1}{n} \log |P(t, n)|=\frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{2} \log \left[a+b e_{t-k}\right]^{2}$

L'inégalité de Jensen montre que pour $\mathrm{b} \neq 0$

$$
E\left\{\log \left[a+b e_{t}\right]^{2}\right\}<\log E\left[a+b e_{t}\right]^{2}=\log \left[a^{2}+b^{2} Q_{e}\right] \leq 0
$$

car, d'après l'hypothèse (H) , [a+be $\left.\mathbf{t}^{2}\right]^{2}$ n'est pas presque sarement une constante. De meme pour $b=0$ on a encore

$$
E\left\{\log \left[a+b e_{t}\right]^{2}\right\}<0
$$

puisque $a^{2}<1$.
Par la loi forte des grands nombres on obtient alors

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \log |P(t, n)|=\frac{1}{2} E\left\{\log \left[a+b e_{t}\right]^{2}\right\}<0
$$

ce qui implique que presque sarement $\underset{n \rightarrow+\infty}{ } \lim _{n \rightarrow+}|P(t, n)|=0$ et plus précisément

$$
\lim _{n \rightarrow+\infty}|P(t, n)|^{1 / n}=\rho=\exp \left\{\frac{1}{2} E\left\{\log \left[a+b e_{t}\right]^{2}\right\}\right\}<1
$$

Toujours d'après la loíforte des grands nombres, la quantité

$$
\frac{1}{j} \quad e_{t-j}=\frac{1}{j} \quad \sum_{k=1}^{j} e_{t-k}-\frac{j-1}{j}\left\{\frac{1}{j-1} \sum_{k=1}^{j-1} e_{t-k}\right\}
$$

converge vers zéro presque sarement quand j tend vers l'infini. Par conséquent pour j assez grand on a $e_{t-j} \leq j$ presque sarement, ce qui entrafne que

$$
\left|P(t, j) e_{t-j}\right| \leq j
$$

pour tout $\tilde{\rho}, \rho<\tilde{\rho}<1$. Ainsi la série $\sum_{j=1}^{\infty} P(t, j) e_{t-j}$ converge aussi presque sarement.

On a le résultat complémentaire
IV.1.2. Proposition.

Supposons que (e) satisfait aux hypothẻses de la Proposition
IV.1.1. Alors une condition nécessaire et suffisante pour qu'il existe une solution stationnaire $\left(X_{t}\right)$ de (6) qui soit un processus du second-ordre centré est que $a^{2}+b^{2} \stackrel{t}{Q}_{e}<1$ auquel cas le processus $\left(X_{t}\right)$ est uniquement déterminé par (7) où la série du second-membre est convergente presque sarement et en moyenne quadratique.

Démonstration.

D'après ce qui précède, il reste à montrer que la condition est nécessaire. Or on a nécessairement (cf. Proposition I.1.3.)

$$
\left(1-a^{2}-b^{2} Q_{e}\right) \operatorname{var}\left(X_{t}\right)=Q_{e}>0
$$

ce qui montre bien que $a^{2}+b^{2} Q_{e}<1$.

Remarquons qu'en vertu de la Proposition IV.1.1, si $|a|<1$ et $a^{2}+b^{2} Q_{e}=1$ il existe encore un processus stationnaire qui vérifie (6) mais qui n'est pas du second-ordre centré d'après la Proposition IV.1.2.

Venons-en à l'étude de l'inversibilité.

Soit (H^{\prime}) l'hypothèse : la loi commune aux variables aléatoires (e_{t}) est absolument continue par rapport à la mesure de Lebesgue. Sous l'hypothèse (H^{\prime}) la probabilité de transition $\mathrm{P}(.,$.

$$
P(x, A)=P\left[X_{t} \in A / X_{t-1}=x\right] ; x \in \mathbf{R}, A \in \mathbb{R}_{\mathbf{R}}, t \in \mathbb{N}^{*}
$$

est telle que pour $\mathrm{x} \neq-\frac{1}{\mathrm{~b}}, \mathrm{P}(\mathrm{x},$.$) est absolument continue par rapport$ à la mesure de Lebesgue et pour $x=-\frac{1}{b}$

$$
P\left(-\frac{1}{b}, A\right)=\left\{\begin{array}{lll}
1 & \text { si } & -a / b \in A \\
0 & \text { si } & -a / b \in A
\end{array}\right. \text {. }
$$

IV.1.3. Lemme.

Sous les hypothêses de la Proposition IV.1.1. avec (H) remplacée par (H^{\prime}), la lol commune ν_{o} aux variables aléatoires X_{t} du processus solution est absolument continue par rapport a la mesure de Lebesgue.

Démonstration.

La loi ν_{o} est une probabilité invariante pour la chafne de Markov $X_{t}=a X_{t-1}+b X_{t-1} e_{t}+e_{t}$.

Soit $A \in \mathbb{R}_{\mathbf{R}}$ de mesure de Lebesgue nulle

$$
\begin{aligned}
\nu_{0}(A) & =\int_{R} P(x, A) d \nu_{0}(x) \\
& =P\left(-\frac{1}{b}, A\right) \nu_{0}\left(\left[-\frac{1}{b}\right\}\right) .
\end{aligned}
$$

En particulier

$$
\nu_{0}\left(\left\{-\frac{1}{b}\right\}\right)=P\left(-\frac{1}{b},\left(-\frac{1}{b}\right\}\right) \cdot \nu_{0}\left(\left\{-\frac{1}{b}\right\}\right)
$$

et par suite, puisque par hypothèse $a \neq 1$.

$$
\nu_{0}\left(\left[-\frac{1}{b}\right]\right)=0 \quad \text { et } \quad \nu_{0}(A)=0
$$

IV.1.4. Proposition.

Sous les hypothèses de la Proposition IV.1.1. avec (H) remplacée par (H') le modèle (6) est inversible.

Démonstration.

Ecrivant (6) sous la forme

$$
x_{t}-a x_{t-1}=\left(b x_{t-1}+1\right) e_{t}
$$

on voit que, comp̣te tenu de ce que $P\left[b X_{t-1}+1 \neq 0\right]=1$ (nuisque d' après le lemme IV.1.3. la loi de probabilité ν_{o} commune aux $X_{t} n^{\prime}$ a pas de masse en $-\frac{1}{b}$), e_{t} peut être calculé par

$$
e_{t}=\left(x_{t}-a x_{t-1}\right)\left(b x_{t-1}+1\right)^{-1}
$$

Les hypothèses de la Proposition Iv.l.l. assurent l'existence $d^{\prime} u n$ processus de Markov stationnaire vérifiant l'équation (6') (en effet si X_{o} est une variable aléatoire de loi ν_{o} indénendante de (e_{t}; $t \in l N^{*}$) le processus (X_{t}) issu de X_{o} est de ce tyne). H. TONG (1981) a abordé cette question par une autre voie sous l'hypothèse (G) .Substituant à (G) l'hypothèse (H') et utilisant des arguments analogues à ceux de H. TONG, on peut démontrer :
IV.1.5. Théorème.

Supposons que $l^{\prime} h y p o t h e ̀ s e ~\left(H^{\prime}\right)$ soit satisfaite et que $E\left\{\left|a+b_{t}\right|\right\}<1$. Alors le processus de Markov associé à la famille ($P(x,.) ; x \in \mathbb{R})$ est ergodique.

Par exemple dans le cas où l'hypothèse (G) est satisfaite une condition suffisante nour que $E\left\{\left|a+b e_{t}\right|\right\}<1$ est évidemment que $|a|+|b|\left(\frac{2}{\pi} Q_{e}\right)^{1 / 2}<1 \quad$ (puisque $E\left|e_{t}\right|=\left(\frac{2}{\pi} Q_{e}\right)^{1 / 2}$), condition qui neut être comparée à la condition suffisante $a^{2}+b^{2} Q_{e}<1$ étudiée précédemment (cf. Figure ci-après).

Dans les conditions du Théorème IV.1.5. on est assuré de l'existence et de l'unicité d'une loi de probabilité invariante ν_{0} pour la famille ($P(x,.) ; x \in R)$ i.e. telle que :

$$
\nu_{0}(A)=\int_{\mathbf{R}} P(x, A) d \nu_{0}(x) \quad ; A \in B_{R}
$$

Il est facile (par un raisonnement analogue à celui de la preuve du Lemme IV.1:3.) de voir que $v_{0}\left\{-\frac{1}{b}\right\}=1$ ou 0 selon que $a=1$ ou $a \neq 1$. Dans le premier cas le processus $x_{t} \equiv-\frac{1}{b}, t \in \mathbb{N}$ est la solution stationnaire de (6^{\prime}) ; c'est évidemment un processus non centre qui admet des moments de tous ordres. Dans le cas ou $a \neq l$ et l'hypothèse (G) est satisfaite, la probabilité de transition s'écrit, pour $x \neq-\frac{1}{b}$:

$$
P(x, A)=\int_{A}\left(2 \pi[1+b x]^{2} Q_{e}\right)^{-1 / 2} \cdot \exp \left[-\frac{1}{2}(y-a x)^{2}\left([1+b x]^{2} Q_{e}\right)^{-1}\right\} \cdot d y .
$$

et on peut étudier l'existence des moments de la solution stationnaire de (6^{\prime}) à 1^{\prime} aide de la fonction caractéristique ψ de la loi ψ_{0}. ψ vérifie :

$$
\psi(u)=\int_{-\infty}^{+\infty} \exp \left\{i a x u-\frac{1}{2} Q_{e}(1+b x)^{2} u^{2}\right\} d \nu_{0}(x)
$$

Lorsque les moments non centrés $\mu_{k}=\int_{-\infty}^{+\infty} x^{k} d \nu_{o}(x)$ existent pour $k=0, \ldots, n$ on a (cf. H. TONG (1981)) :

$$
\|_{0}=1 ; \mu_{1}=0
$$

et

$$
\mu_{k}=\sum_{s=0}^{[k / 2]}\binom{k}{2 s}\left(-\frac{Q_{e}}{2}\right)^{s} C_{s} a^{k-2 s}\left[\sum_{j=0}^{2 s}\left(\sum_{j}^{2 s}\right) b^{j} \mu_{k-2 s+j}\right] ; k=2, \ldots, n
$$

où

$$
C_{s}=-2(2 s-1) C_{s-1} \quad ; s=1,2, \ldots \quad ; C_{0}=1
$$

Une condition suffisante pour que le moment $\mu_{2 n}$ existe est que pour $j=1,2, \ldots, n$ on ait :

$$
\begin{aligned}
& a^{2 j}+Q_{e}\binom{2 j}{2} 1 . a^{2 j-2} b^{2}+Q_{e}^{2}\binom{2 j}{4} 1.3 a^{2 j-4} b^{4}+ \\
& +Q_{e}^{3}\binom{2 j}{6} 1.3 .5 a^{2 j-6} b^{6}+\ldots+Q_{e}^{j}\binom{2 j}{2 j} 1.3 .5 \ldots(2 j+1) b^{2 j}<1 .
\end{aligned}
$$

En particulier μ_{4} existe si $1-a^{4}-6 a^{2} b^{2} Q_{e}-3 b^{4} Q_{e}^{2}>0$ et alors

$$
\begin{aligned}
& \mu_{2}=Q_{e} \cdot\left[1-a^{2}-b^{2} Q_{e}\right]^{-1} \\
& \mu_{3}=6 a b Q_{e} \mu_{2} \cdot\left[1-a\left(a^{2}+3 b^{2} Q_{e}\right)\right]^{-1} \\
& \mu_{4}=3 Q_{e}\left[4 b\left(a^{2}+b^{2} Q_{e}\right) \mu_{3}+2\left(a^{2}+3 b^{2} Q_{e}\right) \mu_{2}+Q_{e}\right]\left[1-a^{4}-6 a^{2} b^{2} Q_{e}-3 b^{4} Q_{e}^{2}\right]^{-1} .
\end{aligned}
$$

On représente dans la figure ci-dessous les frontières de domaines de valeurs de $\left(a, b Q_{e}^{1 / 2}\right)$ à l'intérieur desquels les moments $\mu_{2 n}$ existent pour $n=1,2,3$.

$181 a^{2}+b^{2} 2_{e}=1$
$181 a^{4}+6 a^{2} b^{2} Q_{e}+3 b^{4} Q_{e}^{2}=1$
$|3||a|+1 b \mid\left(2 Q_{e} / \pi\right)^{1 / 2}=1$
$14!a^{6}+15 a^{4} b^{2} 2_{e}+45 a^{2} b^{4} Q_{e}^{2}+15 b^{6} Q_{e}^{3}=1$
IV.2. Estimation de paramètres.

On suppose qu'on observe un processus stationnaire centré $\left(X_{t} ; t \in \mathbb{N}\right)$ solution de l^{\prime} équation (6^{\prime}) où $\left(e_{t} ; t \in \mathbb{N}{ }^{*}\right)$ satisfait l'hypothèse (G) avec $Q_{e}=1$. On envisage d'abord le problème d'estimation du paramètre $\left(a, b^{2}\right)$. On suppose que la vraie valeur ($\mathrm{a}_{\mathrm{o}}, \mathrm{b}_{\mathrm{o}}$) du paramètre (a, b) vérifie la condition

$$
a_{o}^{4}+6 a_{o}^{2} b_{o}^{2}+3 b_{o}^{4}<1
$$

i.e (cf. les résultats du paragraphe IV.1) que le processus admet des moments jusqu'à l'ordre 4 . La méthode des moments conduit à estimer a et $b^{2} a u$ vu de l'observation de 0 à n respectivement par

$$
\hat{a}_{n}=\frac{\sum_{t=1}^{n} x_{t} x_{t-1}}{\sum_{t=1}^{n} x_{t-1}^{2}} \quad \text { et } \quad \hat{b}_{n}^{2}=1-\left(\hat{a}_{n}\right)^{2}-\frac{n}{\sum_{t=1}^{n} x_{t-1}^{2}}
$$

On a le résultat suivant concernant le comportement asymptotique de l'estimateur $\left(\hat{a}_{n}, \hat{b}_{n}^{2}\right)$:
IV.2.1. Proposition.

La suite d'estimateurs $\left(\left(\hat{a}_{n}, \hat{b}_{n}^{2}\right) ; n \geq 1\right)$ de $\left(a, b^{2}\right)$ est presque sûrement convergente. De plus, lorsque n tend vers l'infini la suite $\left(n^{1 / 2}\left[\begin{array}{c}\hat{a}_{n}-a_{0} \\ \hat{b}_{n}^{2}-b_{o}^{2}\end{array}\right] ; n \geq 1\right)$ converge en loi vers un vecteur aléatoire gaussien centré de matrice de covariance $\left[E_{a_{o}, b_{o}}\left(x_{o}^{2}\right)\right]^{-2} \cdot\left[\begin{array}{cc}E_{a_{o}, b_{o}}\left[b_{o} x_{o}^{2}+x_{o}\right]^{2} & 0 \\ 0 & 2 E_{a_{o}, b_{o}}\left[\left(b_{o} x_{o}^{2}+1\right)^{2}+6 b_{o}^{2} x_{o}^{2}\right]\end{array}\right]$

La démonstration de cette proposition repose sur le théorème suivant de la limite centrale pour les martingales (cf. B.M. BROWN (1971))

IV.2.2 Theorème

Soit $\left(S_{n}, F_{n} ; n \geq 1\right)$ une martingale sur l'espace probabillse (Ω, F, P), avec $S_{0}=0$ et. $Y_{n}=S_{n}-S_{n-1}, n \geq 1$ (F_{o} n'est pas obligatoirement la tribu grossière) , $V_{n}^{2}=\sum_{t=1}^{n} E\left\{Y_{t}^{2} / F_{t-1}\right\}$ et $s_{n}^{2}=E V_{n}^{2}$. Si on a :
(i) $\lim _{n \rightarrow+\infty} v_{n}^{2} s_{n}^{-2}=1 \quad$ en probabilite
(ii) $\lim _{n \rightarrow+\infty} s_{n}^{-2} \sum_{t=1}^{n} E\left\{y_{t}^{2} \prod_{\left[\left|Y_{t}\right| \geq \varepsilon s_{n}\right]}\right\}=0$ pour tout $\varepsilon>0$ alors
$\lim _{n \rightarrow+\infty} P\left[S_{n} s_{n}^{-1} \leq x\right]=\Phi(x)=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left[-\frac{1}{2} y^{2}\right\} \cdot d y$ pour tout x.

Demonstration de la Proposition IV.2.1.

La convergence presque sare est une conséquence immédiate du théorème ergodique qui assure que

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{t=1}^{n} x_{t-1}^{2}=E_{a_{0}, b_{0}}\left(x_{0}^{2}\right)=\left(1-a_{0}^{2}-b_{0}^{2}\right)^{-1}
$$

et

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{t=1}^{n} x_{t} x_{t-1}=E_{a_{0}, b_{0}}\left(x_{1} x_{0}\right)=a_{0}\left(1-a_{0}^{2}-b_{0}^{2}\right)^{-1}
$$

Montrons maintenant la normalité asymptotique de l'estimateur $\left(\hat{a}_{n}, \hat{b}_{n}^{2}\right)$ 。

Rappelons d'abord que cet estimateur est solution du système :

$$
M_{n}\left(x_{0}, \ldots, x_{n} ; a, b^{2}\right)=0
$$

où

$$
M_{n}\left(x_{0}, \ldots, x_{n} ; a, b^{2}\right)=\left\{\begin{array}{l}
\frac{1}{n} \sum_{t=1}^{n} x_{t} x_{t-1}-a \frac{1}{n} \sum_{t=1}^{n} x_{t-1}^{2} \\
\frac{1}{n} \sum_{t=1}^{n} x_{t}^{2}-a^{2} \frac{1}{n} \sum_{t=1}^{n} x_{t-1}^{2}-b^{2} \frac{1}{n} \sum_{t=1}^{n} x_{t-1}^{2}-
\end{array}\right.
$$

On peut alors écrire, pour tout a et b :

$$
\begin{aligned}
& M_{n}\left(x_{0}, \ldots, x_{n} ; a, b^{2}\right)=M_{n}\left(x_{0}, \ldots, x_{n} ; a_{0}, b_{o}^{2}\right)+ \\
& +\left[\begin{array}{ccc}
-\frac{1}{n} \sum_{t=1}^{n} x_{t-1}^{2} & 0 \\
-\left(a+a_{0}\right) \frac{1}{n} \sum_{t=1}^{n} x_{t-1}^{2} & -\frac{1}{n} \sum_{t=1}^{n} x_{t-1}^{2}
\end{array}\right]\left[\begin{array}{l}
a-a_{0} \\
b-b_{0}
\end{array}\right]
\end{aligned}
$$

Ainsi

$$
\begin{gathered}
(n)^{1 / 2}\left[\begin{array}{c}
\hat{a}_{n}-a_{o} \\
\hat{b}_{n}^{2}-b_{o}^{2}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{n} & \sum_{t=1}^{n} x_{t-1}^{2} & & 0 \\
\left(\hat{a}_{n}+a_{0}\right) & \frac{1}{n} & \sum_{t=1}^{n} x_{t-1}^{2} & \frac{1}{n} \\
\sum_{t=1}^{n} x_{t-1}^{2}
\end{array}\right]^{-1} \times \\
\quad \times(n))^{1 / 2} M_{n}\left(x_{0}, \ldots, x_{n} ; a_{o}, b_{o}^{2}\right)
\end{gathered}
$$

ou la matrice dont l'inverse apparait au second membre converge presque surêment vers

$$
E_{a_{0}} \cdot b_{0}\left(x_{0}^{2}\right) \cdot\left[\begin{array}{ll}
1 & 0 \\
2 a_{0} & 1
\end{array}\right]
$$

Montrons que $(n)^{1 / 2} M_{n}\left(x_{0} \ldots \ldots x_{n} ; a_{0}, b_{0}^{2}\right)$ est asymptotiquement gaussien.
Soit $\lambda=\left(\lambda_{1}, \lambda_{2}\right)^{\prime} \quad \in \quad 1 R^{2}$ et $Y_{t}^{\lambda}=\lambda_{1}\left(X_{t} X_{t-1}-a_{0} X_{t-1}^{2}\right)+$ $\lambda_{2}\left(x_{t}^{2}-a_{0}^{2} x_{t-1}^{2}-b_{0}^{2} x_{t-1}^{2}-1\right)$. On verifie aisément que
$E_{a_{0}, b_{0}}\left(Y_{t}^{\lambda} / F_{t-1}^{X}\right)=0$.
$\left(V_{n}^{\lambda}\right)^{2}=\sum_{t=1}^{n} E_{a_{0}} \cdot b_{0}\left(\left(X_{t}^{\lambda}\right)^{2} / F_{t-1}^{x}\right\}=\sum_{t=1}^{n}\left(\lambda_{1}^{2}\left(b_{0} x_{t-1}^{2}+x_{t-1}\right)^{2}+\right.$
$+\lambda_{2}^{2}\left[2\left(b_{0} x_{t-1}^{2}+1\right)^{2}+12 b_{o}^{2} x_{t-1}^{2}+4\left(a_{0} b_{o} x_{t-1}^{2}+a_{o} x_{t-1}\right)^{2}\right]+$
$\left.+2 \lambda_{1} \lambda_{2}\left[2 a_{0}\left(b_{0} x_{t-1}^{2}+x_{t-1}\right)^{2}\right]\right\} \quad$.
Alors si $\left(s_{n}^{\lambda}\right)^{2}=E_{a_{0}, b_{o}}\left\{\left(v_{n}^{\lambda}\right)^{2}\right\}=n E_{a_{o}, b_{o}}\left\{\left(x_{1}^{\lambda}\right)^{2}\right\}$
$\left(v_{n}^{\lambda}\right)^{2}$
on a $\lim _{n \rightarrow+\infty} \frac{n}{}=1$ ipresque surêment.

$$
\left(s_{n}^{\lambda}\right)^{2}
$$

On a aussi pour $\varepsilon>0$,

$$
\left(s_{n}^{\lambda}\right)^{-2} \sum_{t=1}^{n} E_{a_{0}, b_{0}}\left\{\left(x_{t}^{\lambda}\right)^{2} \prod_{\left[\left|x_{t}^{\lambda}\right|>\varepsilon s_{n}\right]}=\frac{1}{E_{a_{0}, b_{0}}\left\{\left(y_{1}^{\lambda}\right)^{2}\right\}} \times\right.
$$

$\times E_{a_{o}, b_{o}}\left\{\left(Y_{1}^{\lambda}\right)^{2} \prod_{\left[\left|Y_{l}^{\lambda}\right|>\varepsilon S_{n}\right]}\right\}$
et par suite
$\lim _{n \rightarrow+\infty}\left(s_{n}^{\lambda}\right)^{-2} \sum_{t=1}^{n} E_{a_{o}, b_{o}}\left\{\left(Y_{t}^{\lambda}\right)^{2} \prod_{\left[\left|Y_{t}^{\lambda}\right|>\varepsilon s_{n}\right]}\right\}=0$

Ainsi, toutes les conditions du Théorème IV.2.2. étant vérifiées la suite $\left(\left(s_{n}^{\lambda}\right)^{-1} \sum_{t=1}^{n} Y_{t}^{\lambda} ; n \geq 1\right)$ converge en loi vers une variable aléatoire gaussienne centrée réduite et donc la suite $\left((\mathrm{n})^{-1 / 2} \sum_{\mathrm{E}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{t}}^{\lambda} ; \mathrm{n} \geq 1\right)$ converge en loi vers une loi gaussie ne de variance $\quad E_{a_{o}, b_{o}}\left\{\left(Y_{1}^{\lambda}\right)^{2}\right\}$. Comme

$$
\lambda^{\prime}(\mathrm{n})^{1 / 2} M_{n}\left(x_{0}, \ldots, x_{n} ; a_{0}, b_{o}^{2}\right)=(n)^{-1 / 2} \sum_{t=1}^{n} Y_{t}^{\lambda}
$$

et

$$
\mathrm{E}_{\mathrm{a}_{\mathrm{o}}, \mathrm{~b}_{\mathrm{o}}}\left\{\left(\mathrm{Y}_{1}^{\lambda}\right)^{2}\right\}=
$$

$\lambda \cdot \times\left[\begin{array}{l}E_{a_{o}, b_{o}}\left[b_{o} x_{o}^{2}+x_{o}\right]^{2} \\ 2 a_{o} E_{a_{o}}, b_{o}\left[b_{o} x_{o}^{2}+x_{o}\right]^{2}\end{array}\right.$

$$
\begin{aligned}
& 2 a_{o} E_{a_{o}, b_{o}}\left[b_{o} x_{o}^{2}+x_{o}\right]^{2} \\
& \left.E_{a_{o}, b_{o}}^{\left[2\left(b_{o} x_{o}^{2}+1\right)^{2}+12 b_{o}^{2} x_{o}^{2}+4\left(a_{o} b_{o} x_{o}^{2}+a_{o} x_{o}^{2}\right)^{2}\right]}\right]
\end{aligned}
$$

il s^{\prime} en suit que la suite $\left(n^{1 / 2} M_{n}\left(X_{o}, \ldots, x_{n} ; a_{o}, b_{o}^{2}\right) ; n \geq 1\right.$ converge en loi vers un vecteur gaussien centré de matrice de covariance $\Lambda_{a_{o}, b_{o}}$ la matrice 2×2 intervenant ci-dessus . En définitive la suite $\left.((n))^{1 / 2}\left[\begin{array}{c}\hat{a}_{n}-a_{0} \\ \hat{b}_{n}^{2}-b_{0}^{2}\end{array}\right] ; n \geq 1\right)$ converge en loi vers un vecteur gaussien centré de matrice de covariance

$$
E_{a_{0}, b_{0}}\left(x_{0}^{2}\right)^{-2}\left[\begin{array}{cc}
1 & 0 \\
-2 a_{0} & 1
\end{array}\right] \quad \Lambda_{a_{0}, b_{0}}\left[\begin{array}{cc}
1 & -2 a \\
0 & 1
\end{array}\right]
$$

Un calcul facile fournit alor's le résultat annoncé .
IV.2.2. Remarque .
(a) Les conclusions de la proposition IV.2.1. restent valables sans l'hypothèse (G) lorsqu'on suppose seulement que le moment d'ordre 4 du processus $\left(X_{t} ; t \in \mathbb{I N}\right)$ existe et qu'on remplace la matrice de covariance asymptotique par.

$$
E_{a_{o}, b_{o}}\left(x_{o}^{2}\right)^{-2} x
$$

$$
\begin{aligned}
& E_{a_{0}, b}\left[\left(b_{0} x_{0}^{2}+1\right)^{2}+4 b_{o}^{2} x_{o}^{2}\right] E e_{o}^{4}- \\
& -E_{a_{0}}, b_{0}^{\left.\left[\left(b_{0} x_{0}^{2}+1\right)^{2}+4 b_{0}\left(b_{0} x_{0}^{3}+x_{0}\right)\right]\right]}
\end{aligned}
$$

(b) Pour estimer b 11 reste a estimer son signe. Or le moment H_{3} est du signe de $a b$ et donc le signe de b est du signe de $a_{0} \mu_{3}$.Une estimation du signe de b est donc fournie par ie signe de $\dot{a}_{n} \cdot \sum_{t=1}^{n} x_{t}^{3}$

CHAPITRE III

ETUDE DU MODELE BILINEAIRE

$$
Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t-1}+C u_{t} ; X_{t}=H Y_{t}
$$

Partant des modeles bilinéaires déterministes de la forme de ceux décrits dans l'introduction du Chapitre II. introduits par des automaticiens, les statisticiens C.W.J. GRANGER et A.P. ANDERSEN (1978) ont proposé comme modèles de séries chronologiques scalaires des analogues stochastiques du type

$$
x_{t}=\sum_{i} a_{i} x_{t-1}+e_{t}+\sum_{j} c_{j} e_{t-j}+\sum_{k} \sum_{l} b_{k \ell} e_{t-k} x_{t-\ell}
$$

où (e) est une suite de variables aléatolres indépendantes équidistribuées.

Plusieurs auteurs comme T.D. PHAM et L.T. TRAN (1981), D. GUEGAN (1981) et B.G. QUINN (1982) ont étudié des cas particuliers de la forme

$$
X_{t}=a X_{t-1}+e_{t}+b e_{t-k} X_{t-l} ; k, l>0 .
$$

Dans ce chapitre nous nous intéressons au modele stochastique vectorlel siécrivant

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+B Y_{t-1} e_{t-1}+C e_{t} \\
X_{t}=H Y_{t}
\end{array}\right.
$$

qui a été en partie étudié par T. SUBBA RAO $(1978,1979)$ et T.D. PHAM et L.T. TRAN (1980) ef à son analogue déterministe.

I. ETUDE DES PROBLEMES DE NATURE DETERMINISTE.

Le système considéré ici est décrit par le modèle
(1) $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t-1}+C u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\ X_{t}=H Y_{t}\end{array}\right.$
où l'entrée déterministe u_{t} est scalaire, A est une matrice $r \times r, C$ est un vecteur colonne $r \times 1$ et H un vecteur ligne $1 \times r$. Notons que le modèle est de la forme générale présentée au Chapitre I dans la mesure où on peut écrire

$$
Y_{t}=f\left(Y_{t-1}, w_{t}\right)
$$

une suite d'entrées étant une suite $w_{t}=\left(w_{t}^{1}, w_{t}^{2}\right)^{\prime}$ dans R^{2} devant satisfaire les contraintes $w_{t+1}^{1}=w_{t}^{2} ; t \geq 0$.

Par commodité on est parfois amené à imposer la condition $\mathrm{HC}=1$ qui, remarquons le, n'est pas vraiment restrictive car si elle n'est pas satisfaite mais que $H C \neq 0$, le changement de B, C et u_{t} en $(H C)^{-1} B,(H C)^{-1} C$ et $H C u_{t}$ respectivement permet de s'y ramener.

I.1. Controlabilité déterministe.

Nous démontrons le résultat suivant :
I.1.1. Proposition.

Supposons que le rang de la matrice $r \times(r+1)[B, C]$ est égal à 1 (i.e qu'il existe un vecteur $r \times 1 \quad \gamma$ tel que $B=C \gamma^{\prime}$). Alors le système déterministe décrit par le modèle bilinéaire (1) est controlable si et seule-
ment si le couple $[A, C]$ est controlable.

Démonstration.

$$
\text { Si } B=C \gamma^{\prime} \text {, l'équation d'évolution dans le modèle (1) s'écrit }
$$

$$
\begin{equation*}
Y_{t}=A Y_{t-1}+C v_{t} \text { où (2') } \quad v_{t}=\gamma^{\prime} Y_{t-1} u_{t-1}+u_{t} \tag{2}
\end{equation*}
$$

Supposons alors que le système décrit par (1) est controlable : alors étant dọné Y_{I} et Y_{F} il existe une suite $u_{0} \ldots \ldots u_{K}$ telle que si $Y_{0}=Y_{I} \cdot, Y_{t}=A Y_{t-1}+C \gamma^{\prime} Y_{t-1} u_{t-1}+C u_{t}, 1 \leq t \leq K$, on ait $Y_{K}=Y_{F}$. On voit que le système décrit par (2) est controlable de Y_{I} à Y_{F} à l'aide de la suite d'entrées $\left(v_{1}, \ldots, v_{K}\right)$ définie par la relation (2').

Supposons maintenant que le système décrit par (2) est controlable : alors étant donné Y_{I} et Y_{F} il existe une suite v_{1}, \ldots, v_{K} telle que si $Y_{0}=Y_{I}, Y_{t}=A Y_{t-1}+C v_{t}, 1 \leq t \leq K$, on ait $Y_{K}=Y_{F}$.
Solt alors u_{0} quelconque, on voit que le systẻme décrit par (1) est controlable de Y_{I} à Y_{F} à l'aide de la suite d'entrées ($u_{0} \ldots \ldots u_{K}$) définie par $u_{t}=v_{t}-\gamma_{t-1} u_{t-1} ; 1 \leq t \leq K$.

En vertu du Théoręme I.1.2 du Chapitre I, la Proposition est démontrée.

1.1.2. Exemples.

(a) Il est clalr que dans le cas $B=0$ on retrouve le résultat du Théorème I.1.2 du Chapitre I.
(b) Le système déterministe décrit par

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] Y_{t-1} u_{t-1}+\left[\begin{array}{c}
0 \\
1
\end{array}\right] u_{t} ; t \in \mathbb{N}^{\star} ; Y_{o} \text { donné } \\
X_{t}=\left[\begin{array}{ll}
h_{1} & h_{2}
\end{array}\right] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

est controlable.
En effet on vérifie aisément qu'on a :

$$
\operatorname{rg}[C, A C]=\operatorname{rg}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=2 .
$$

I.2. Observabilité déterministe.

Les résultats suivants se déduisent de ceux de S. HARA et K. FURUTA (1977).
a) Observabilité avec quelques entrées connues.

On a la représentation suivante de l'état $\left(Y_{t}^{u}\right)$ et de la sortie $\left(X_{t}^{u}\right)$ du modèle (1) correspondant à la suite d'entrées $u=\left(u_{t}\right)$: posant

$$
\begin{aligned}
& \xi_{t}^{u}=A \xi_{t-1}^{u}+B \xi_{t-1}^{u} u_{t-1}+C u_{t} ; t \geq 1, \quad \xi_{0}^{u}=0 \\
& A_{u}(t)=A+B u_{t} ; t \geq 0
\end{aligned}
$$

et

$$
\left\{\begin{array}{l}
\bar{Y}_{t}^{u}=A_{u}(t-1) \bar{Y}_{t-1}^{u} ; t \geq 1 ; \bar{Y}_{o}=Y_{o} \\
\bar{X}_{t}^{u}=H \bar{Y}_{t}^{u} ; t \geq 0
\end{array}\right.
$$

on a

$$
Y_{t}^{u}=\bar{Y}_{t}^{u}+\xi_{t}^{u} ; X_{t}^{u}=\bar{X}_{t}^{u}+H \xi_{t}^{u} ; t \geq 0 .
$$

On voit alors que la propriété d'observabilité avec les entrées $u^{1} \ldots \ldots u^{q}$ connues pour le modèle (1) est liée à la propriété d'observabilité poưr un modèle (linéaire non autonome sans entrée) de la forme:

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=\tilde{A}(t-1) \tilde{Y}_{t-1} \\
\tilde{X}_{t}=\tilde{H}_{t}
\end{array}\right.
$$

ou $\tilde{A}(t-1)$ est la matrice d'ordre $\operatorname{qr} \times \operatorname{qr}: \tilde{A}(t-1)=$

$$
\left[\begin{array}{llll}
A_{1}(t-1) & & \\
u_{1} & & \\
& A_{2}(t-1) & & 0 \\
& u^{2} & & \\
0 & \ddots & & \\
& & A_{u} q^{(t-1)}
\end{array}\right]
$$

et \tilde{H} est la matrice d'ordre $q \times q r: \tilde{H}=\left[\begin{array}{lll}H & & 0 \\ H & \\ & \ddots & \\ 0 & & H\end{array}\right]$.

Par suite on est conduit à définir pour chaque u et $j \geq 0$ la matrice $N(u, j)$ d'ordre $(j+1) \times r: N(u, j)=\left[\begin{array}{c}H \\ H R(u, 0) \\ \vdots \\ H R(u, j-1)\end{array}\right]$ et pour toute famille $u^{1} \ldots \ldots u^{q}$ et $j \geq 0$ la matrice $n\left(u^{1} \ldots \ldots, u^{q}, j\right)$ d'ordre $(j+1) q \times r$:

$$
n\left(u^{1} \ldots \ldots u^{q}, j\right)=\left[\begin{array}{l}
N\left(u^{1}, j\right) \\
\vdots \\
N\left(u^{q}, j\right)
\end{array}\right]
$$

où $R(u, l)=A_{u}(\ell-1) \ldots A_{u}(0) \quad \ell \geq 1$.

On a alors la condition nécessaire et suffisante :

1.2.1. Proposition.

Le système déterministe décrit par le modèle bilinéaire (1) est observable avec quelques entrées connues si et seulement si l'une des deux conditions équivalentes suivantes est satisfaite :
(i) il existe un entier q et des suites d'entrées $u^{1}[0, r-1], \ldots u^{q}[0,1$ tels que $r g\left(u^{1}, \ldots u^{q}, r-1\right)=r$
(ii) le rang de la matrice $(2 r-1) \times r\left[\begin{array}{l}H \\ H A \\ H B \\ \vdots \\ H A^{r-1} \\ H B^{r-1}\end{array}\right]$ est r.

I.2.2. Exemples.

(a) Il est clair que dans le cas linéaire i.e $\mathrm{B}=0$ la condition (ii) se réduit au critẻre d'observabilité du couple [A,H].
(b) Le système déterministe décrit par

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & a_{3} \\
a_{2} & a_{4}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{3} \\
b_{2} & b_{4}
\end{array}\right] Y_{t-1} u_{t-1}+\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\
X_{t}=[0,1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{2} \neq 0$ ou $b_{2} \neq 0$ est observable avec quelques entrées connues. En effet on vérifie facilement la condition (ii) i.e.

$$
r g\left[\begin{array}{l}
H \\
H A \\
H B
\end{array}\right]=r g\left[\begin{array}{ll}
0 & 1 \\
a_{2} & a_{4} \\
b_{2} & b_{4}
\end{array}\right]=2 .
$$

b) Observabilite avec n'importe quelle entree connue.

Soit \bar{H} une matrice d'ordre $(r-1) \times r$ telle que la matrice d'ordre $\operatorname{rxr}\left[\begin{array}{l}\mathrm{H} \\ \mathrm{H}\end{array}\right]$ soit inversible et $\left[\begin{array}{l}\mathrm{H} \\ \overline{\mathrm{H}}\end{array}\right]^{-1}=[K, \bar{K}]$ où K est d'ordre $r \times 1$ et $\overline{\mathrm{K}}$ d'ordre $\mathbf{r} \times(r-1)$. On peut alors définir

$$
\left[\begin{array}{l}
X_{t} \\
\bar{X}_{t}
\end{array}\right]=\left[\begin{array}{l}
H \\
\bar{H}
\end{array}\right] Y_{t} \quad \text { ou } \quad Y_{t}=[K, \bar{K}]\left[\begin{array}{l}
X_{t} \\
\bar{X}_{t}
\end{array}\right]=K X_{t}+\bar{K}_{t}
$$

On peut alors récrire le modèle (1) sous la forme
(3)

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+B \bar{K} \bar{X}_{t-1} u_{t-1}+B K X_{t-1} u_{t-1}+C u_{t} \\
X_{t}=H Y_{t}
\end{array}\right.
$$

Lorsque la suite (u_{t}) est connue dans la représentation (3). les termes $B K X_{t-1} u_{t-1}$ et $C u_{t}$ sont connus, seul le terme $B \bar{K} X_{t-1} u_{t}$ est inconnu ; on voit donc que la propriété d'observabilité avec n'importe quelle entrée connue dans (1) est llée à la propriété d'observabilité avec entrée inconnue dans un modèle linéaire autonome de la forme:

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=A \tilde{Y}_{t-1}+B \bar{K} v_{t-1} \\
\tilde{X}_{t}=H \tilde{Y}_{t}
\end{array}\right.
$$

où (v_{t}) est une suite d'entrées de dimension ($r-1$) (cf. Proposition I.2.6 du Chapitre I).
On a la condition suffisante :

1.2.3. Proposition.

Si le couple [A,H] est observable et ${ }^{\circ} H A^{j} B \cdot \bar{K}=0$ pour
$j=0, \ldots, r-2$ alors le système décrit par le modèle bilinéaire (1) est observable avec n 'importe quelle entrée connue.

I.2.4. Exemples.

(a) Il est clair que dans le cas linéaire i.e $B=0$, la condition se réduit au critère d'observabilité du couple $[\mathrm{A}, \mathrm{H}]: \mathrm{rg} \mathrm{O}_{\mathrm{r}}=\mathrm{r}$.
(b) Le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right] Y_{t-1} u_{t-1}+\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donn } \epsilon \\
X_{t}=[1,-1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{1} \neq a_{2}, a_{1} a_{2} \neq 0$ et $b_{1} b_{2} \neq 0$ est observable avec n^{\prime} importe quelle entrée connue.

En effet on vérifie facilement qu'on a

$$
\operatorname{rg}\left[\begin{array}{l}
\mathrm{H} \\
\mathrm{HA}
\end{array}\right]=\operatorname{rg}\left[\begin{array}{ll}
1 & -1 \\
\mathrm{a}_{1} & -\mathrm{a}_{2}
\end{array}\right]=2 \quad \text { et } \quad \mathrm{HB} \overline{\mathrm{~K}}=0 .
$$

c) Observabilité avec entrée inconnue.

La propriété d'observabilité avec entrée inconnue dans (1) est liée à la méme propriété dans un modèle linéaire autonome du type

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=A \tilde{Y}_{t-1}+[B, C] \omega_{t} \\
\tilde{X}_{t}=H \tilde{Y}_{t}
\end{array}\right.
$$

où $\left(\omega_{t}\right)$ est une sulte d'entrées de dimension $r+1$ (cf. Proposition 1.2.6 du Chapitre I)

On a la condition suffisante :

1.2.5. Proposition.

Si le couple [A,H] est observable et $H A^{j}[B, C]=0$ pour $j=0, \ldots, r-2$ alors le système décrit par le modele bilinéaire (1) est observable avec entrée inconnue.

1.2.6. Exemples.

(a) Dans le cas linéaire l.e. $B=0$ on voit que la condition n'est autre que celle de la Proposition I.2.6 du Chapitre I.
(b) Le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right] Y_{t-1} u_{t-1}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u_{t} ; t \in \mathbb{N}^{*} ; Y_{0} \text { donné } \\
X_{t}=[1,-1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{1} \neq a_{2}, a_{1} a_{2} \neq 0$ et $b_{1} b_{2} \neq 0$ est observable avec entrée inconnue. En effet on verifie facilement quion a

$$
r g\left[\begin{array}{l}
H \\
H A
\end{array}\right]=r g\left[\begin{array}{ll}
1 & -1 \\
a_{1} & -a_{2}
\end{array}\right]=2 \text { et } H[B, C]=0 \text {. }
$$

I.3. Identifiabilité partielle d'une entrée déterministe.

Soit $j \geq 1$ et Q une matrice quelconque d'ordre $\ell \times j$. On a la condition suffisante suivante :

I.3.1. Proposition.

Si $H B=0$ et $H C \neq 0$, l'entrée $u[0, j]$ est partiellement $\left[\begin{array}{l}0 \\ Q\end{array}\right]$ identifiable dans le modèle défini par (1).

Démonstration.

Il suffit bien sar de montrer le résultat pour $Q=I_{j}$. Or on a (supposant que $\mathrm{HC}=1$) pour tout $\mathrm{t} \geq 1$

$$
X_{t}=\operatorname{HA} Y_{t-1}+u_{t}
$$

d'où

$$
u_{t}=X_{t}-\operatorname{HAY}_{t-1}
$$

La preuve est alors analogue à celle de la Proposition I.3.1 du Chapitre II.

I.3.2. Exemples.

(a) Dans le cas linéaire i.e $B=0$, la condition $H B=0$ est satisfaite et l'énoncé assure que dès que $H C \neq 0$ l'entrée est identifiable.
(b) Dans le système déterministe décrit par

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & a_{3} \\
a_{2} & a_{4}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right] Y_{t-1} u_{t-1}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u_{t} ; t \in \mathbb{N}^{*} ; Y_{0} \text { donne } \\
X_{t}=[1,-1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

l'entrée $u[0, j]$ est $\left[\begin{array}{l}0 \\ I_{j}\end{array}\right]$-identifiable.
En effet on $\mathrm{A} H B=0$ et $H C=1$.

1.3.3. Remarque.

En fait si la condition $H B=0$ n'est pas satisfaite la suite d'entrées $u[1,1]$ peut etre déterminée dès que l'on connáft l'entrée u_{0} et 1° état X_{o} - La démonstration, analogue à la précédente。est basée sur le falt que

$$
u_{t}=X_{t}-H A Y_{t-1}-H B Y_{t-1} u_{t-1}
$$

II. CARACTERISTIQUES DU SECOND-ORDRE ET STATIONNARITES

Dans ce paragraphe on considère le système stochastique décrit par l'analogue du modèle (1) i.e
(4) $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B Y_{t-1} e_{t-1}+C e_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\ X_{t}=H Y_{t}\end{array}\right.$
ou (4') $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B Y_{t-1} e_{t-1}+C e_{t} \quad ; t \in \mathbb{Z} \\ X_{t}=H Y_{t}\end{array}\right.$
où (e_{t}) est une suite de variables aléatoires réelles équidistribuées centrées, de variance $Q_{e}>0$. Notons que ce modèle recouvre par exemple le modèle de série chronologique unidimensionnelle

$$
X_{t}=\sum_{j=1}^{p} a_{j} X_{t-j}+\sum_{k=1}^{q} b_{k} X_{t-k} e_{t-1}+e_{t} ; t \in \mathbb{Z}
$$

En effet (X_{t}) peut se représenter comme l'observation dans un modèle du type (4') où l'état r-dimensionnel $Y_{t}=\left(X_{t}, \ldots, X_{t-r+1}\right)^{\prime}$ avec $r=\max (p, q)$ évolue selon l'équation
(avec la convention que $a_{j}=0$ si $j>p$ et $b_{k}=0$ si $k>q$) l'équation d'observation étant

$$
X_{t}=H Y_{t}
$$

où H est le vecteur ligne $1 \times r: H=(10 \ldots 0)$.

Nous étudions les modeles (4)-(4') qui, notons le, ne sont pas markoviens, pour des matrices $A_{0} B$ et des vecteurs C, H arbitraires. Par commodité nous imposerons encore parfols la condition $\mathrm{HC}=1$.
II.1. Caractéristiques du second-ordre-Stationnarité au second-ordre.

Les résultats suivants recouvrent ceux de T. SUBBA RAO (1979) et T.D. PHAM et L.T. TRAN (1980).

II.1.1. Proposition.

Si $\left(Y_{0},\left(e_{t} ; t \in \mathbb{N}\right)\right)$ est une suite d'éléments aléatolres telle que les sultes $\left(e_{t} ; t \in \mathbb{N}\right)$ et $\left(Y_{0}, e_{t} ; t \in \mathbb{N}^{*}\right)$ solent deux suites de variables aléatoires indépendantes et e_{t} admet un moment d'ordre 4 alors le processus solution du modèle (4) est du second ordre.

Sa moyenne est donnée par
$m_{Y}(0)=m(0) ; m_{Y}(1)=A m(0)+B V(0) ; V(0)=E\left\{Y_{0} 0_{0}\right\} ;$
$m_{Y}(t)=A^{t-1} m_{Y}(1)+Q_{e} \sum_{j=0}^{t-2} A^{t-2-j} B C \quad ; t \geq 2$
$m_{X}(t)=H m_{Y}(t) \quad ; t \in \mathbb{N}$.

Sa fonction de covariance est donnee par

If yo du second-ondre.

$$
\begin{aligned}
C_{Y}(0,0)= & C(0) ; \\
C_{Y}(s, s)= & A C_{Y}(s-1, s-1) A^{\prime}+Q_{e} B C_{Y}(s-1, s-1) B^{\prime}+Q_{e}^{-1} \cdot D(s-1) D^{\prime}(s-1)+ \\
& +B C C^{\prime} B^{\prime}\left[\operatorname{var}\left\{e_{o}^{2} \cdot\right\}-\left\{E e_{o}^{3}\right\}^{2} \cdot Q_{e}^{-1}\right]+Q_{e} C C^{\prime} \quad ; s \in \mathbb{N}^{*}
\end{aligned}
$$

où
$D(s)=Q_{e} A C+Q_{e} B m_{Y}(s)+B C E\left\{e_{o}^{3}\right\} ; s \in \mathbb{N}$
$C_{Y}(1,0)=A C(0)+B\left[W(0)-V(0) m^{\prime}(0)\right]$
où
$W(0)=E\left\{Y_{o} Y_{o}^{\prime} e_{o}\right\}$
$C_{Y}(s+1, s)=A C_{Y}(s, s)+B E\left\{Y_{s} Y_{s}^{\prime} e_{s}\right\}-Q_{e} B C m_{Y}^{\prime}(s) ; s \in \mathbb{N}{ }^{*}$
où
$E\left\{Y_{1} Y_{1}^{\prime} e_{1}\right\}=Q_{e} A m(0) C^{\prime}+Q_{e} B V(0) C^{\prime}+Q_{e} C m^{\prime}(0) A^{\prime}+Q_{e} C V^{\prime}(0) B^{\prime}+E\left\{e_{o}^{3}\right\} C C^{\prime} ;$
$E\left\{Y_{s} Y_{s}^{\prime} e_{s}\right\}=Q_{e} A m_{Y}(s-1) C^{\prime}+Q_{e}^{2} B C C^{\prime}+Q_{e} C m_{Y}^{\prime}(s-1) A^{\prime}+Q_{e}^{2} C C^{\prime} B^{\prime}+E\left\{e_{o}^{3}\right\} C C^{\prime} ; s>1$
et
$C_{Y}(t, s)=\left\{\begin{array}{lll}A^{t-s-1} C_{Y}(s+1, s) & \text { si } & t>s<1 \\ C_{Y}(t, t+1)\left(A^{\prime}\right)^{s-t-1} & \text { si } & 1 \leq t<s\end{array}\right.$
$C_{X}(t, s)=H C_{Y}(t, s) H^{\prime} \quad ; \quad(t, s) \in \mathbb{N}^{2}$.

Démonstration.

De la définition (4) on déduit aisément que pour $t>s$ on a

$$
Y_{t}=\prod_{k=0}^{t-s-1}\left\{A+B e_{k+s}\right\} Y_{s}+\sum_{j=s}^{t-2} \prod_{\ell=0}^{t-2-j}\left\{A+B e_{\ell+s+1}\right\} C e_{j+1}+C e_{t} .
$$

Il vient

$$
\begin{aligned}
m_{Y}(t) & =E\left\{\prod_{k=0}^{t-s-1}\left\{A+B e_{k+s}\right\} Y_{s}+\sum_{j=s}^{t-2} \prod_{l=0}^{t-2-j}\left\{A+B e_{\ell+s+1}\right\} C e_{j+1}+C e_{t}\right\} \\
& =A^{t-s} m_{Y}(s)+A^{t-s-1} B E\left\{Y_{s} e_{s}\right\}+Q_{e} \sum_{j=s}^{t-2} A^{t-2-j} B C
\end{aligned}
$$

soit $m_{Y}(t)=A^{t-1} m_{Y}(1)+Q_{E} \sum_{j=s}^{t-2} A^{t-2-j} B C ; t \geq 2$

$$
m_{Y}(1)=A m(0)+B V(0)
$$

$$
m_{X}(t)=H m_{Y}(t) ; t \in \mathbb{N}:
$$

Pour $t>s \geq 1$

$$
\begin{aligned}
& C_{Y}(t, s)=E\left[\prod_{k=0}^{t-s-1}\left(A+B e_{k+s}\right] Y_{s}-A^{t-s}{ }_{m_{Y}}(s)-A^{t-s-1} B E\left\{Y_{s} e_{s}\right\}+\right. \\
& \left.+\sum_{j=s}^{t-2} \sum_{\ell=0}^{t-2-j}\left\{A+B e_{\ell+s+1}\right\} C e_{j+1}-Q_{e} \sum_{j=s}^{t-2} A^{t-2-j} B C+C e_{t}\right\}\left(Y_{s}-m_{Y}(s)\right\}^{\prime} \\
& =E\left\{\prod_{k=0}^{t-s-1}\left\{A+B e_{k+s}\right] Y_{s}-A^{t-s} m_{Y}(s)-A^{t-s-1} B E\left\{Y_{Y_{s}} e_{s}\right\}\right\}\left\{Y_{s}-m_{Y}(s)\right\}^{\prime}+ \\
& +E\left[\sum_{j=s}^{t-2} \prod_{\ell=0}^{t-2-j}\left\{A+B e_{\ell+s+1}\right\} C e_{j+1}-Q_{e} \sum_{j=s}^{t-2} A^{t-2-j_{B C}}+C e_{t}\right\}\left\{Y_{s}-m_{Y}(s)\right]^{j} \\
& -E E\left[\int_{k=1}^{t-s-1}\left\{A+B e_{k+s}\right]\left\{Y_{s+1}-C e_{s+1}\right]-A^{t-s} m_{Y}(s)-A^{t-s-1} B E\left[Y_{s} e_{s}\right]\right\}\left\{Y_{s}-m_{Y}(s)\right\}^{\prime} \\
& =A^{t-s-1} C_{Y}(s+1, s)
\end{aligned}
$$

où

$$
\begin{aligned}
C_{Y}(s+1, s) & =E\left\{A\left(Y_{s}-m_{Y}(s)\right)+B\left(Y_{s} e_{s}-Q_{e} C\right)+C e_{s+1}\right\}\left\{Y_{s}-m_{Y}(s)\right\}^{\prime} \\
& =A C_{Y}(s, s)+B E\left\{\left(Y_{s} e_{s}-Q_{e} C\right)\left(Y_{s}-m_{Y}(s)\right)^{\prime}\right\} \\
& =A C_{Y}(s, s)+B E\left\{Y_{s} Y_{S}^{\prime} e_{s}\right\}-Q_{e} B C m_{Y}^{\prime}(s) \\
C_{Y}(1,0) & =E\left\{A\left(Y_{o}-m(0)\right)+B\left(Y_{o} e_{o}-V(0)\right)+C e_{1}\right\}\left\{Y_{o}-m(0)\right\}^{\prime} \\
& =A C(0)+B\left[W(0)-V(0) m^{\prime}(0)\right] .
\end{aligned}
$$

Posant $U_{S}=\left[A+B e_{S}\right] Y_{S} ; s \in \mathbb{N}{ }^{*}$
on a

$$
\left\{\begin{array}{l}
Y_{s}=U_{s-1}+C e_{S} \\
U_{S}=\left[A+B e_{S}\right]\left[U_{S-1}+C e_{s}\right]
\end{array}\right.
$$

puis $\quad U_{S}-m_{U}(s)=\left[A+B e_{s}\right]\left[U_{s-1}-m_{U}(s-1)\right]+\left[A C+B m_{U}(s-1)\right] e_{s}+B C\left[e_{s}^{2}-Q_{e}\right]$.
Alors

$$
\begin{aligned}
C_{Y}(s, s)= & A C_{Y}(s-1, s-1) A^{\prime}+Q_{e} B C_{Y}(s-1, s-1) B^{\prime}+Q_{e}^{-1} \cdot D(s-1) D^{\prime}(s-1)+ \\
& +B C C^{\prime} B^{\prime}\left[\operatorname{var}\left\{e_{o}^{2}\right\}-\left\{E e_{o}^{3}\right\}^{2} \cdot Q_{e}^{-1}\right]+Q_{e} C C^{\prime} \quad ; s \in \mathbb{N}^{*}
\end{aligned}
$$

avec $D(s)=Q_{e} A C+Q_{e} B m_{Y}(s)+B \subset E\left\{e_{o}^{3}\right\} ; s \in \mathbb{N}$.

Pour $s>1$ on a

$$
\begin{aligned}
E\left\{Y_{s} Y_{s}^{\prime} e_{s}\right\} & =E\left\{A Y_{s-1}+B Y_{s-1} e_{s-1}+C e_{s}\right\}\left\{A Y_{s-1} e_{s}+B Y_{s-1} e_{s-1} e_{s}+C e_{s}^{2}\right\}^{\prime} \\
& =Q_{e} A m_{Y}(s-1) C^{\prime}+Q_{e}^{2} B C C^{\prime}+Q_{e} C m_{Y}^{\prime}(s-1) A^{\prime}+Q_{e}^{2} C C^{\prime} B^{\prime}+E\left\{e_{o}^{3}\right\} C C^{\prime} .
\end{aligned}
$$

On a aussi
$E\left[Y_{1} Y_{1}^{\prime} e_{1}\right]=Q_{e} A m(0) C^{\prime}+Q_{e} B V(0) C^{\prime}+Q_{e} C m^{\prime}(0) A^{\prime}+Q_{e} C V^{\prime}(0) B^{\prime}+E\left\{e_{o}^{3}\right\} C C^{\prime}$. Un ralsonnement analogue fournit le résultat pour $1 \leq t<s$. La stationnarité au second-ordre est caractérisée par :

II.1.2. Proposition.

Sous les hypothèses de la Proposition II.1.1, une condition nécessaire et suffisante pour que le processus d'etat ($Y_{t} ; t 20$) satisfaisant à (4) soit stationnaire au second-ordre est que le vecteur $m(0)$ verifie

$$
m(0)=A m(0)+B V(0)
$$

et que la matrice $\mathbf{C}(0)$ soit solution de l'équation matricielle
(5) $\quad \Gamma=A \Gamma A^{\prime}+Q_{e} B \Gamma B^{\prime}+Q_{e}^{-1} D D^{\prime}+B C C^{\prime} B^{\prime}\left[\operatorname{var}\left[e_{o}^{2}\right\}-\left\{E e_{o}^{3}\right\}^{2} \cdot Q_{e}^{-1}\right]+Q_{e} C C^{\prime}$ où $D=Q_{e} A C+Q_{e} B m(0)+B C E\left\{e_{o}^{3}\right\}$.

Alors la fonction de covarlance du processus ($\mathbf{Y}_{\mathbf{t}}$) est donnée par

$$
R_{Y}(h)=\left\{\begin{array}{lll}
A^{h-1} R_{Y}(1) & \text { si } & h \geq 1 \\
\cdot & \text { si } & h \leq-1
\end{array}\right.
$$

avec

$$
\begin{aligned}
& R_{Y}(1)=A \Gamma+B W-Q_{e} B C m^{\prime}(0) ; \\
& W=Q_{e} A m(0) C^{\prime}+Q_{e}^{2} B C C^{\prime}+Q_{e} C m^{\prime}(0) A+Q_{e}^{2} C C^{\prime} B^{\prime}+E\left\{e_{o}^{3}\right\} C C^{\prime} .
\end{aligned}
$$

Notons que l'équation matricielle (5) peut s'écrire sous la forme
vec $\Gamma=\left\{A \otimes A+Q_{e} B \otimes B\right\} \operatorname{vec} \Gamma+\operatorname{vec}\left[D D^{\prime} Q_{e}^{-1}+B C C^{\prime} B^{\prime}\left\{\operatorname{var}\left\{e_{o}^{2}\right\}-\left\{E e_{o}^{3}\right\}^{2} Q_{e}^{-1}\right\}+Q_{e}\right.$ On voit alors que si les valeurs propres de la matrice $A \otimes A+Q_{e} B \otimes B$ sont toutes de module strictement inférieur à 1 , l'équation (5) admet une solution unique dans l'ensemble des matrices symétriques semi-définies positives. On verra plus loin que si de plus le couple [A,C] est controlable, cette solution est définie positive.

II.2. Stationnarité stricte et inversibilité.

En ce qui concerne la stationnarité stricte dans le modèle (4') T.D. PHAM et L.T. TRAN (1980) ont démontré le résultat suivant :

II.2.1. Théorème.

Si la suite $\left(e_{t} ; t \in \mathbb{Z}\right)$ est une suite de variables aléatoires indépendantes équidistribuées et si les valeurs propres de la matrice $A \otimes A+Q_{e} B \otimes B$ sont toutes de module strictement inférieur à 1 alors le modèle (4') admet une solution stationnaire $\left(\left(Y_{t}, X_{t}\right) ; t \in \mathbb{Z}\right)$ uniquement déterminée par

$$
Y_{t}=C e_{t}+\sum_{j=1}^{\infty}\left\{\prod_{k=1}^{j}\left[A+B e_{t-k}\right]\right\} C e_{t-j} ; X_{t}=H Y_{t} ; t \in \mathbb{Z}
$$

où la série précédente est convergente en moyenne quadratique.
Il est clair que le processus solution est aussi stationnaire au second-ordre de structure de covariance donnée dans la Proposition II.1.2. On déduit aussi :

II.2.2. Proposition.

Sous les hypothèses du Théorème II.2.1. si le couple [A,C] est controlable, alors la matrice de variance covariance commune aux vecteurs aléatolres $Y_{t}, t \in \mathbb{Z}$ est définie positive.

Démonstration.

Supposons que le couple [A,C] est controlable i.e que la matrice $C_{r}=\left[C, \ldots, A^{r-1} C\right]$ est de rang r mais que la distribution de Y_{t} est. dégénérée l.e qu'il existe un vecteur g non nul dans R^{r} tel que l'on ait presque sarement $g^{\circ}{ }^{\circ} Y_{t}=0$.
D'après l'égalité

$$
Y_{t}=C e_{t}+\sum_{j=1}^{+\infty}\left\{\prod_{k=1}^{j}\left[A+B e_{t-k}\right]\right] C e_{t-j}
$$

on a

$$
0=E\left(g^{\circ} \cdot Y_{t} e_{t-i}\right)=Q_{e} \cdot g^{\prime} \cdot A^{1} C ; 1 \geq 0
$$

d'où $g^{\circ} \mathrm{C}_{\mathrm{r}}=0$, ce qui est en contradiction avec l'hypothèse.

Abordons maintenant le problème de l^{\prime} inversibilité du modẻle (4'). Remarquons d'abord que si $B=K H$, posant $Z_{t}=\left(Y_{t}^{\prime}, e_{t}\right)^{\prime}$ le modèle s'écrit
(6) $\left\{\begin{array}{l}Z_{t}=\left[\begin{array}{ll}A & K X_{t-1} \\ 0 & 0\end{array}\right] Z_{t-1}+\left[\begin{array}{l}C \\ 1\end{array}\right] e_{t} \\ X_{t}=\left[\begin{array}{ll}H & 0\end{array}\right]\left[\begin{array}{ll}A & K X_{t-1} \\ 0 & 0\end{array}\right] Z_{t-1}+H C e_{t} .\end{array}\right.$

On énonce alors :

II.2.3. Proposition.

$$
\text { Supposons que } B=K H, H C \neq 0 \text { et que les hypothèses } d u
$$ Théorème II.2.1 sont satisfaites. Alors si $\quad \mathrm{E}\left\|\left[\begin{array}{ll}\mathrm{A}-\mathrm{CHA} & {[\mathrm{K}-\mathrm{CHK}] \mathrm{X}_{\mathrm{o}}} \\ -\mathrm{HA} & -\mathrm{HKX}\end{array}\right]\right\|<1$ le modèle (4') est inversible.

Démonstration.

En vertu de (6) on a (supposant $H C=1$) pour tout t

$$
e_{t}=X_{t}-\left[H A H K X_{t-1}\right] Z_{t-1}
$$

Suivant la démarche décrite dans la Remarque II.3.2. (b) du Chapitre I, on définit alors, z_{o} étant un vecteur fixé,

$$
e_{t}^{v}=X_{t}-\left[H A H K X_{t-1}\right]{\underset{z}{t-1}}^{v_{t-1}} ; t \geq 1
$$

où

On a

$$
e_{t}^{V}-e_{t}=\left[H A H K X_{t-1}\right]\left(Z_{t-1}-Z_{t-1}^{V}\right)
$$

où
solt $\quad Z_{t}-Z_{t}^{V}=\underset{i=0}{t-1}\left[\begin{array}{ll}A-C H A & {[K-C H K] X_{1}} \\ -H A & -C H A\end{array}\right]\left(Z_{0}-Z_{0}\right) ; t \geq 1$.

Il vient donc
$\left\|Z_{t}-Z_{t}^{v}\right\|^{2}=\left(Z_{0}^{-z_{0}}\right)^{\prime}\left[\begin{array}{cc}t-1 \\ i=0\end{array}\left[\begin{array}{cc}A-C H A & {[K-C H K] X_{1}} \\ -H A & -C H A\end{array}\right]\left[\begin{array}{ll}t-1 \\ i=0\end{array}\right] \begin{array}{ll}A-C H A & {[K-C H K] X_{i}} \\ -H A & -C H A\end{array}\right]\left(Z_{0}^{-2}\right.$
puis

$$
\left\|Z_{t}-Z_{t}^{v}\right\| \leq\left\|Z_{0}-z_{0}\right\| \prod_{i=0}^{t-1}\left\|\left[\begin{array}{ll}
A-C H A & {[K-C H K] X_{i}} \\
-H A & -C H A
\end{array}\right]\right\| .
$$

D'après l'inégalité de Jensen et l'hypothèse on a
$E\left\{\log \left\lvert\,\left\{\begin{array}{ll}\text { A-CHA } & {[K-C H K] X_{O}} \\ -H A & - \text { CHA }\end{array}\right]\right. \|\right\}<\log E\left[\begin{array}{ll}A-C H A & {[K-C H K] X_{o}} \\ -H A & - \text { CHA }\end{array}\right] \|<0$.
En vertu du theorème ergodique on a donc, presque sarement
$\lim _{t \rightarrow+\infty} \frac{1}{t} \sum_{i=0}^{t-1} \log \left\|\left[\begin{array}{ll}A-\text { CHA [K-CHK] } X_{i} \\ -H A & -C H A\end{array}\right]\right\|=E\left\{\log \left\|\left[\begin{array}{ll}A-C H A & {[K-C H K] X_{0}} \\ -H A & -C H A\end{array}\right]\right\|<0\right.$
d'où
$\lim _{t \rightarrow+\infty} \underset{i=0}{t-1} \left\lvert\,\left\|\left[\begin{array}{ll}\mathrm{A}-\mathrm{CHA} & {[\mathrm{K}-\mathrm{CHK}] \mathrm{X}_{1}} \\ -\mathrm{HA} & -\mathrm{CHA}\end{array}\right]\right\|=0\right.$.

Et comme (a cause de la stationnarité) la lol de [HA HKX ${ }_{t-1}$] ne dépend
pas de t, il s'ensuit que :

$$
\lim _{t \rightarrow+\infty}\left(e_{t}-e_{t}\right)=0 \quad \text { en probabilité. } ¥
$$

Remarquons que si $\left.E \| \begin{array}{ll}A-C H A & {[K-C H K] X_{o}} \\ -H A & -C H A\end{array}\right] \|^{2}=\operatorname{tr}[A-C H A][A-C H A]^{\prime}+$
$+\mathrm{EX}_{\mathrm{O}}^{2} \operatorname{tr}[\mathrm{~K}-\mathrm{CHK}][\mathrm{K}-\mathrm{CHK}]^{\prime}+[\mathrm{HA}][\mathrm{HA}]^{\prime}+\mathrm{EX}_{\mathrm{O}}^{2} \operatorname{tr}[\mathrm{HK}][\mathrm{HK}]^{\prime}<1$
alors $\mathrm{E}\left\|\left[\begin{array}{ll}\mathrm{A}-\mathrm{CHA} & {[\mathrm{K}-\mathrm{CHK}] \mathrm{X}_{\mathrm{O}}} \\ -\mathrm{HA} & -\mathrm{CHA}\end{array}\right]\right\|<1$.
III. FILTRAGE NON LINEAIRE OPTIMAL. (')

Si la matrice B est de la forme $B=K H$ où K est un vecteur colonne $\mathrm{r} \times 1$, le modele (4) se met sous la forme (6) qui est du type du modele (5) introduit au paragraphe III du Chapitre I.

On note (G) l'hypothèse :
(G) ($\left.e_{t}: t \in \mathbb{N}\right)$ est une suite de variables aléatoires indépendantes équidistribuées selon une lol gaussienne centrée de variance $Q_{e}>0$. On a alors le résultat

Proposition.

Si $B=K H$, si l'hypothêse (G) est satisfaite et si l'état initial X_{o} est un vecteur aléatoire gaussien indépendant de la suite ($e_{t} ; t \in \mathbb{N}$), alors le filtre optimal \hat{Y}_{t} de Y_{t} au vu de $X[0, t]$ dans le modele (4) est fourni par :

$$
\hat{Y}_{t}=\left[\begin{array}{ll}
I_{r} & 0
\end{array}\right] \hat{Z}_{t}
$$

où $\left(\hat{Z}_{t}: t \geq 0\right)$ est défint par les équations de récurrence:
$\hat{z}_{t}=\left[\begin{array}{ll}A & K X_{t-1} \\ 0 & 0\end{array}\right] \hat{z}_{t-1}+\left\{\left[\begin{array}{ll}A & K X_{t-1} \\ 0 & 0\end{array}\right] \Gamma_{t-1}\left[\begin{array}{ll}H A & H K X_{t-1}\end{array}\right]^{\prime}+\left[\begin{array}{l}C \\ 1\end{array}\right]\right\} x$
$x\left\{\left[\text { HA HKX }_{t-1}\right] \Gamma_{t-1}\left[\operatorname{HAHKX}_{t-1}\right]^{\circ}+\mathrm{HC}\right\}^{+}\left\{\mathrm{X}_{t}-\left[\mathrm{HAHAX}_{t-1}\right] \hat{Z}_{t-1}\right\} ; t \geq 1$
et
$\left.\Gamma_{t}=\left[\begin{array}{ll}A & K X_{t-1} \\ 0 & 0\end{array}\right] \Gamma_{t-1}\left[\begin{array}{ll}A & K X_{t-1} \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}C C^{\prime} & C \\ C^{\prime} & 1\end{array}\right]-\left\{\begin{array}{ll}A & K X_{t-1} \\ 0 & 0\end{array}\right] \Gamma_{t-1}\left[\begin{array}{lll}H A K X \\ t-1\end{array}\right]^{\prime}+\left[\begin{array}{l}C \\ 1\end{array}\right]\right\} x$

[^0]$x\left\{\left[\mathrm{HAHKX}_{\mathrm{t}-1}\right] \Gamma_{\mathrm{t}-1}\left[\mathrm{HAHKX}_{\mathrm{t}-1}\right]^{\prime}+\mathrm{HC}\right\}+\left\{\left[\begin{array}{ll}\mathrm{A} & \mathrm{KX} \\ \mathrm{t}-1 \\ 0 & 0\end{array}\right] \Gamma_{\mathrm{t}-1}\left[\mathrm{HAHKX}{ }_{\mathrm{t}-1}\right]^{\prime}+\left[\begin{array}{l}\mathrm{C} \\ 1\end{array}\right]\right\} ; \mathrm{t}$ avec $\hat{Z}_{o}=m_{Z}(0)+C_{Z}(0,0)\left[\begin{array}{ll}H & 0\end{array}\right]^{\prime}\left\{\left[\begin{array}{lll}H & 0\end{array}\right] C_{Z}(0,0)[H, 0]\right\}^{+}\left(X_{o}-\left[\begin{array}{ll}H & 0\end{array} m_{Z}(0)\right)\right.$;

$$
\begin{aligned}
& \left.\Gamma_{o}=C_{Z}(0,0)-C_{Z}(0,0)\left[\begin{array}{ll}
H & 0
\end{array}\right]^{\prime}\left\{\left[\begin{array}{ll}
H & 0
\end{array}\right] C_{Z}(0,0)\left[\begin{array}{ll}
H & 0
\end{array}\right]^{\prime}\right\}^{+}\left[\begin{array}{ll}
H & 0
\end{array}\right]^{\prime}\right\}^{+}\left[\begin{array}{ll}
H & 0
\end{array}\right] C_{Z}(0, \\
& m_{Z}(0)=\left[\begin{array}{l}
m(0) \\
0
\end{array}\right] \quad ; \quad C_{Z}(0,0)=\left[\begin{array}{ll}
C(0) & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Démonstration.

Il est clair que le filtre optimal \hat{Y}_{t} de Y_{t} se déduit du filtre optimal \hat{Z}_{t} de Z_{t} par $\hat{Y}_{t}=\left[\begin{array}{ll}I_{r} & 0\end{array}\right] \hat{Z}_{t}$. Or dans le modèle (6), d'après la Proposition II.1.1., les moments d'ordre 2, $E\left\{\left\|Z_{t}\right\|^{2}+X_{t}^{2}\right\}$, existent et donc les conséquences des hypothèses (i)-(ii) du Théorème III. 1.3 du Chapitre I utiles à sa démonstration (cf. R.CH. LIPTSER et A.N. SHYRIAEV (1978)) sont satisfaites. Enfin sous les hypothèses faites, la loi du vecteur aléatoire $\binom{Z_{0}}{X_{0}}=\left(\begin{array}{c}Y_{0} \\ e_{o} \\ H Y\end{array}\right)$ est gaussienne et donc la loi conditionnelle $P\left[Z_{o} \in . / X_{o}\right]$ est gaussienne. Ainsi les conclusions du Théorème III.1.3 du Chapitre I sont valables pour le filtre optimal de Z_{t}; elles se traduisent immédiatement comme dans l'énoncé. a

IV. ETUDE D'UN MODELE PARTICULIER DE SERIE CHRONOLOGIQUE

 UNIDIMENSIONNEILENous considérons ici le cas particulier du modele de série chronologique scalaire correspondant à la situation (4') où

$$
\begin{align*}
& r=1, A=a, B=b, H=C=1 \text { i.e } \\
& X_{t}=a X_{t-1}+b X_{t-1} e_{t-1}+e_{t} ; t \in \mathbb{Z} \tag{7}
\end{align*}
$$

Les résultats concernant la stationnarité stricte et l'inversibilité sont plus précis que dans le cas vectoriel $r>1$; on étudie le problème de l'existence des moments d'ordre superieur à deux d'une solution stationnaire dans le cas où les varlables (e_{t}) sont gaussiennes. On s'intéresse au problème statistique d'estimation des parametres du modèle.

IV.1. Stationnarité stricte, Moments.

Solt (H) l'hypothèse introduite dans le paragraphe IV du Chapitre II, à savoir : la loi commune aux variables aléatoires (e_{t}) n'est pas concentrée en une ou deux valeurs.
T.D. PHAM et L.T. TRAN (1981) ont démontré les résultats suivants :

IV.1.1. Théorème.

\mathbf{l}^{\prime}) Supposons que (e_{t}) est une suite de variables aléatoires indépendantes équidistribuees telle que l'hypothèse (H) est satisfâte. Alors si $|a|<1$ et $a^{2}+b^{2} Q_{e} \leq 1$ il existe un processus stationnaire $\left(X_{t}\right)$ verifiant l'équation (7) uniquement déterminé par

$$
\begin{equation*}
x_{t}=e_{t}+\sum_{j=1}^{\infty}\left\{\prod_{k=1}^{j}\left[a+b e_{t-k}\right]\right\} e_{t-j} \tag{8}
\end{equation*}
$$

[^1]où la série du second membre converge presque sarement et si $a^{2}+b^{2} Q_{e}<1$ la convergo a lieu aussi en moyenne quadratique.

IV.1.2. Théorème.

Supposons que les hypothèses du Théorème IV.1.1 sont satisfaites et que e_{t} admet des moments jusqu'à l'ordre 4. Alors une condition nécessaire et suffisante pour qu'il existe une solution stationnaire (X_{t}) de (7) qui soit un processus du second-ordre est que $a^{2}+b^{2} Q_{e}<1$ auquel cas le processus (X_{t}) est uniquement déterminé par (8) où la série du second membre est convergente presque sarement et en moyenne quadratique.

Quant à l'inversibilité, on a :

IV.1.3. Théorème.

Supposons que les hypothèses du Théorème IV.1.1 sont satisfaites. Alors le modèle (7) est inversible ou non (au sens de la convergence presque sare) selon que $E \log \left|b X_{o}\right|$ est strictement négatif ou strictement positif. Dans le premier cas, on a la représentation

$$
\left.e_{t}=x_{t}-\sum_{j=1}^{\infty}(-b)^{j-1} \prod_{k=1}^{j} x_{t-k}\right\}\left\{a+b x_{t-j}\right\}
$$

où la série du second membre converge presque sarement.

Remarquons que si on prend $\mathrm{r}=1, \mathrm{~A}=\mathrm{a}, \mathrm{K}=\mathrm{b}, \mathrm{H}=\mathrm{C}=1$ dans la Proposition II.2.3, la condition d'inversibilité devient $E\left|b X_{o}\right|<1$. Comme d'après l'inégalité de Jensen $E \log \left|b X_{o}\right|<\log E\left|b X_{o}\right|$, si $\mathrm{E}\left|\mathrm{b} \mathrm{X}_{\mathrm{o}}\right|<1$ alors $\mathrm{E} \log \left|\mathrm{b} \mathrm{X}_{\mathrm{o}}\right|<0$.

Abordons maintenant le problème d'existence des moments d'ordre
supérieur à deux.
On note, lorsqu'il existe, μ_{n} le moment non centré d'ordre n de la variable X_{t}. On a alors le résultat :

IV.1.4. Proposition.

Sous l'hypothèse (G) (cf. paragraphe III) et les hypothèses du Théoreme IV.1.1 si le moment d'ordre n existe, on a alors :

$$
\begin{aligned}
& \mu_{0}=1 ; \\
& \mu_{n}=\sum_{l=0}^{n}\binom{n}{\ell} E U_{0}^{\ell} E e_{0}^{n-\ell} ; n \geq 1 \\
& \text { ou }
\end{aligned}
$$

$$
U_{0}=\left(a+b e_{0}\right) x_{0}
$$

et
$E U_{0}^{\ell}=\frac{1}{1-E\left(a+b e_{0}\right)^{l}} \sum_{k=0}^{l-1}\left(\sum_{k}^{l}\right) E\left\{\left(a+b e_{0}\right)^{l} e_{0}^{l-k}\right\} E U_{0}^{k}: l \geq 1$.
$E U_{0}=\frac{b Q_{e}}{1-a}$.

Démonstration.

Si on pose $U_{t}=\left(a+b e_{t}\right) X_{t}$, le modele (7) admet la représentation suivante :

$$
\left\{\begin{array}{l}
X_{t}=U_{t-1}+e_{t} \\
U_{t}=\left(a+b e_{t}\right) U_{t-1}+\left(a+b e_{t}\right) e_{t}
\end{array}\right.
$$

d'où
$x_{t}^{n}=\sum_{l=0}^{n}\binom{n}{\ell} U_{t-1}^{\ell} e_{t}^{n-\ell}$
et
$E X_{t}^{n}=\sum_{l=0}^{n}\binom{n}{l} E \underset{t-1}{l} E e_{t}^{n-\ell}=\sum_{l=0}^{n}\binom{n}{\ell} E{ }_{o}^{\ell} E e_{o}^{n-\ell}$.
Comme

$$
\begin{aligned}
U_{t-1}^{\ell} & =\sum_{k=0}^{\ell}\binom{\ell}{k}\left(a+b e_{t-1}\right)^{k} U_{t-2}^{k}\left(a+b e_{t-1}\right)^{\ell-k} e_{t-1}^{\ell-k} ; \ell \geq 1 \\
& =\sum_{k=0}^{\ell}\binom{\ell}{k}\left(a+b e_{t-1}\right)^{\ell} e_{t-1}^{\ell-k} U_{t-2}^{k}
\end{aligned}
$$

soit $E U_{t-1}^{\ell}=\sum_{k=0}^{\ell}\binom{l}{k} E\left\{\left(a+b e_{t-1}\right)^{\ell} e_{t-1}^{\ell-k}\right\} E U_{t-2}^{k}$

$$
\begin{aligned}
& =\frac{1}{1-E\left(a+b e_{t-1}\right)^{\ell}} \sum_{k=0}^{\ell-1}\binom{\ell}{k} E\left\{\left(a+b e_{t-1}\right)^{\ell} e_{t}^{l-k}\right\} E U_{t-2}^{k} \\
& =\frac{1}{1-E\left(a+b e_{o}\right)^{\ell}} \sum_{k=0}^{l-1}\binom{l}{k=0} E\left\{\left(a+b e_{o}\right)^{\ell} e_{o}^{\ell-k}\right\} E U_{o}^{k} .
\end{aligned}
$$

Il est clair que le moment non centré d'ordre n, μ_{n}, existe si on a $E\left(\mathrm{a}+\mathrm{be} \mathrm{e}_{\mathrm{o}}\right)^{\ell}<1$ pour $\ell=1, \ldots, \mathrm{n}$. De plus on peut déterminer explicitement $E\left(a+b e_{0}\right)^{\ell}$ pour $\ell=1, \ldots, n$. En particulier μ_{3} existe si $1-a\left(a^{2}+3 b^{2} Q_{e}\right)>0$ et alors
$\mu_{1}=b Q_{e} \cdot[1-a]^{-1}$
$\mu_{2}=Q_{e}\left[1+2 b^{2} Q_{e}+4 a b^{2} Q_{e} \cdot[1-a]^{-1}\right]\left[1-a^{2}-b^{2} Q_{e}\right]^{-1}$

$$
\begin{aligned}
\mu_{3}= & 3 b Q_{e}^{2}\left[\left[3 a^{2}+5 b^{2} Q_{e}\right]+\left[1+6 a b^{2} Q_{e}\right][1-a]^{-1}+3\left[a^{2}+b^{2} Q_{e}\right]\left[a^{2}+3 b^{2} Q_{e}+\right.\right. \\
& \left.\left.+4 a b^{2} Q_{e}[1-a]^{-1}\right]\left[1-a^{2}-b^{2} Q_{e}\right]^{-1}\right]\left[1-a\left[a^{2}+3 a b^{2} Q_{e}\right]\right]^{-1}
\end{aligned}
$$

Remarquons alors que les frontlères de domaines de valeurs de (a,b $Q_{e}^{1 / 2}$) a d'intérieur desquels les moments $\mu_{2 n}$ existent pour $n=1,2,3$ sont identiques à celles obtenues pour le modele (7') du Chapitre II (cf. Figure dans le paragraphe IV du Chapitre II).

IV.2. Estimation des paramètres.

Nous décrivons lci brièvement l'approche proposée par T.D. PHAM et L.T. TRAN (1981) pour le problème de l'estimation des parametres a et b 'du modele (7) au vu de l'observation d'une trajectoire $X_{o} \ldots \ldots, X_{t} \ldots$ du processus stationnaire solution.

On suppose que la vraie valeur $\theta_{0}=\left(a_{0}, b_{0}\right)$ du paramètre $\theta=(a, b)$ est telle que
(10)

$$
\begin{aligned}
& \left|b_{o}\right|<\exp \left\{-E_{\theta^{o}} \log \left|X_{o}\right|\right\}-\delta / 2 \\
& \left(\text { i.e } E_{\theta}{ }^{\left.\log \left[\left(\delta / 2+\left|b_{o}\right|\right)\left|x_{o}\right|\right]<0\right)}\right.
\end{aligned}
$$

On définit alors une suite $\left(\Theta_{n} ; n \geq 0\right)$ d'ensembles aléatoires par

$$
\oplus_{n}=\left\{(a, b):|a| \leq 1,|b| \leq\left[\prod_{t=0}^{n} x_{t}\right]^{-1 / n+1}-\delta\right\}
$$

et on appelle estimateur des moindres carrés modifiés au vu de l'observation $X_{0} \ldots . . X_{n}$ un estimateur $\tilde{\theta}_{n}$ solution du problème

$$
\begin{equation*}
\operatorname{Min}\left\{\sum_{t=0}^{n} e_{\theta}^{2}\left(t, x_{0} \ldots \ldots, x_{t} / u\right) ; \theta \in \Theta_{n}\right\} \tag{11}
\end{equation*}
$$

où la suite $\left(e_{\theta}\left(t, X_{o}, \ldots, X_{t} / u\right) ; t \geqslant 0\right)$ est définie par :

$$
\begin{aligned}
& e_{\theta}\left(t, x_{0}, \ldots, x_{t} / u\right)=x_{t}-U_{t-1} \quad ; t \geq 1 \\
& U_{t}=\left\{a+b x_{t}\right\} x_{t}-b x_{t} U_{t-1} \quad ; t \geq 1 ; U_{o}=u,
\end{aligned}
$$

u étant une valeur réelle arbitraire.
T.D. PHAM et L.T. TRAN (1981) ont démontré le résultat suivant :

IV.2.1. Théorème.

Si la condition (10) est vérifiée, alors la suite d'estimateurs $\left(\theta_{n} ; n \geq 0\right)$ définie par (11) converge presque sarement.
IV.2.2. Remarques.
(a) La question de la normalité asymptotique de cet estimateur reste posée, les méthodes standards d'étude de cette propriété ne pouvant ici etre utilisées.
(b) On peut bien sar envisager d'utiliser des estimateurs construits par la méthode des moments.

ETUDE DU MODELE BILINEAIRE

$$
Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t}^{1}+C u_{t}^{2} \quad ; X_{t}=H Y_{t}
$$

Dans ce chapitre nous nous intéressons à un type de modele faisant partie de la famille de ceux décrits dans l'introduction du Chapitre II, proposés initialement dans un cadre déterministe.

Dans le Chapitre II nous avons considéré le cas d'une entrée unidimensionnelle agissant à la fois de manière multiplicative et de manière additive sur l'état du système. Ici nous étudions dans le cadre déterministe d'une part et dans le cadre stochastique d'autre part, la situation d'une entrée bidimensionnelle dont une composante agit multiplicativement et l'autre agit additivement. La version stochastique de ce modele fait partie de la famille des modèles étudiés dans la littérature sous le nom de modèles autorégressifs à coefficients aléatoires (cf. D.F. NICHOLLS and B.G. QUINN (1980, 1981 a), b). 1982).
I. ETUDE DES PROBLEMES DE NATURE DETERMINISTE.

Le système considéré ici est décrit par le modelle
(1)

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t}^{1}+C u_{t}^{2} ; t \in \mathbb{N}^{\star} ; Y_{0} \text { donné } \\
X_{t}=H Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

où l'entrée bidimensionnelle $u_{t}=\left(u_{t}^{1}, u_{t}^{2}\right)^{\prime}$ est déterministe, A et B sont des matrices $\mathrm{r} \times \mathrm{r}, \mathrm{C}$ est u vecteur colonne $\mathrm{r} \times 1$ et H est un vecteur ligne $1 \times r$.

Par commodité nous imposerons parfois la condition $\mathrm{HC}=1$ qui, remarquon le, n'est pas vraiment restrictive car si elle n'est pas satisfaite mais que $\mathrm{HC} \neq 0$, le changement de B, C et u_{t}^{2} en $(H C)^{-1} B,(H C)^{-1} C$ et $H C u_{t}^{2}$ respectivement permet de s'y ramener.

I.1. Controlabilité déterministe.

Il est évident qu'une condition suffisante pour la controlabilité du système déterministe décrit par le modèle bilinéaire (1) est que le couple [A,C] soit controlable.

I.2. Observabilité déterministe.

Le système déterministe décrit par le modèle bilinéaire (1) peut s'écrire sous la forme :

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t}^{1}+[0, C] u_{t} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\
X_{t}=H Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

et les résultats concernant l'observabilité peuvent se déduire aisément de ceux de S. HARA et K. FURUTA (1977).
a) Observabilité avec quelques entrées connues.

On a la représentation suivante de l'état $\left(Y_{t}^{u}\right)$ et de la sortie
$\left(X_{t}^{u}\right)$ du modele (1) correspondant à la suite d'entrées $u=\left(u_{t}\right)$: posant

$$
\begin{aligned}
& \xi_{t}^{u}=A \xi_{t-1}^{u}+B \xi_{t-1}^{u} u_{t}^{1}+[0, C] u_{t} ; t \geq 1 ; \xi_{0}^{u}=0 \\
& A_{u_{t}}=A+B u_{t}^{1} ; t \geq 1
\end{aligned}
$$

et

$$
\left\{\begin{array}{l}
\bar{Y}_{t}^{\mathrm{u}}=A_{u_{t}} \bar{Y}_{t-1}^{u} ; t \geq 1 ; \bar{Y}_{0}=Y_{0} \\
\bar{X}_{t}^{u}=H \bar{Y}_{t}^{u} ; t \geq 0
\end{array}\right.
$$

on a $\quad Y_{t}^{u}=\bar{Y}_{t}^{u}+\xi_{t}^{u} ; X_{t}^{u}=\bar{X}_{t}^{u}+H \xi_{t}^{u}: t \geq 0$.

On volt alors que la propriété d'observabilité avec les entrées $u(1) \ldots . . . u(q)$ connues pour le modèle (1) est liée à la propriété d'observabilité pour un modêle (linéaire non autonome sans entrée) de la" forme :

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=\tilde{A}(t) \tilde{Y}_{t-1} \\
\tilde{X}_{t}=\tilde{H}_{t} \tilde{Y}_{t}
\end{array}\right.
$$

où $\tilde{A}(t)$ est la matrice d'ordre $\operatorname{qr} \times$ qr : $\tilde{A}(t)=$
$\left[\begin{array}{llll}A_{u_{t}(1)} & & 0 \\ & A_{u_{t}(2)} & & \\ & & & \\ 0 & & & A_{u_{t}}(q)\end{array}\right]$
et \tilde{H} est la matrice d'ordre $q \times \operatorname{qr}: \tilde{H}=\left[\begin{array}{lll}H & & 0 \\ H & & \\ & \ddots & \\ 0 & & H\end{array}\right]$.

Par suite on est condult à définir pour chaque u et $j \geq 1$ la matrice
$N(u, j)$ d'ordre $j \times r: N(u, j)=\left[\begin{array}{c}\operatorname{HR}(u, o) \\ \vdots \\ \operatorname{HR}(u, j)\end{array}\right]$ et pour toute famille $u(1), \ldots, u(q)$ et $j \geq 1$ la matrice $\eta(u(1), \ldots, u(q), j)$ d'ordre
$j q \times r: \eta(u(1), \ldots, u(q), j)=\left[\begin{array}{l}N(u(1), j) \\ \vdots \\ N(u(q), j)\end{array}\right]$ où $R(u, \ell)=\left\{\begin{array}{lll}I_{r} & \text { si } & \ell=0 \\ & & \\ A_{u_{\ell}} & \ldots A_{u_{1}} & \text { si } \\ & \ell z\end{array}\right.$

On a alors la condition nécessaire et suffisante :

I.2.1. Proposition.

Le système déterministe décrit par le modèle bilinéaire (1) est observable avec quelques entrées connues si et seulement si l'une des deux conditions équivalentes suivantes est satisfaite :
(i) il existe un entier q et des suites d'entrées $u(1)[1, r], \ldots, u(q)[1$, tels que $\mathrm{rg} \pi(\mathrm{u}(1), \ldots, u(\mathrm{q}), \mathrm{r})=\mathrm{r}$
(ii) le rang de la matrice $(2 r-1) \times r$
$\left[\begin{array}{l}H \\ H A \\ H B \\ \vdots \\ H A^{r}-1 \\ H B^{r-1}\end{array}\right] \quad$ est $\quad r \quad$.

I.2.2. Exemples.

(a). Il est clair que dans le cas linéaire i.e $B=0$ la condition
(ii) se réduit au critère d'observabilité du couple $[\mathrm{A}, \mathrm{H}]$.
(b) Le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & a_{3} \\
a_{2} & a_{4}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{3} \\
b_{2} & b_{4}
\end{array}\right] Y_{t-1} u_{t}^{1}+\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] u_{t}^{2} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\
X_{t}=[0,1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{2} \neq 0$ ou $b_{2} \neq 0$ est observable avec quelques entrées connues.

En effet on vérifie facilement la condition (ii) i.e

$$
r g\left[\begin{array}{l}
H A \\
H A \\
H B
\end{array}\right]=r g\left[\begin{array}{ll}
0 & 1 \\
a_{2} & a_{4} \\
b_{2} & b_{4}
\end{array}\right]=2 .
$$

b) Observabilité avec n'importe quelle entrée connue.

Soit \bar{H} une matrice dordre $(r-1) \times r$ telle que la matrice d'ordre $r \times s\left[\begin{array}{l}\mathrm{H} \\ \overline{\mathrm{H}}\end{array}\right]$ soit inversible et $\left[\frac{\mathrm{H}}{\overline{\mathrm{H}}}\right]^{-1}=[K, \bar{K}]$ où K est d'ordre $r \times 1$ et $\overline{\mathrm{K}}$ d'ordre $\mathbf{r} \times(\mathrm{r}-1)$. On peut alors définir

$$
\left[\begin{array}{l}
X_{t} \\
\bar{X}_{t}
\end{array}\right]=\left[\begin{array}{l}
H \\
\bar{H}
\end{array}\right] Y_{t} \quad \text { ou } \quad Y_{t}=[K, \bar{K}]\left[\begin{array}{l}
X_{t} \\
\bar{X}_{t}
\end{array}\right]=K X_{t}+\bar{K}_{t}
$$

On peut alors réécrire le modèle (1) sous la forme
(2) $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B \bar{K} \bar{X}_{t-1} u_{t}^{1}+B K X_{t-1} u_{t}^{1}+[0, C] u_{t} \\ X_{t}=H Y_{t} .\end{array}\right.$

Lorsque la suite (u_{t}) est connue dans la représentation (2), les termes $B K X_{t-1} u_{t}^{1}$ et $[0, C] u_{t}$ sont connus, seul le terme $B \bar{K}_{t-1} u_{t}^{1}$ est inconnu ; on voit donc que la propriété d'observabilité avec n'importe quelle entrée connue dans (1) est liée à la propriété d'observabilité avec entrée inconnue dans un modèle linéaire autonome de la forme :

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=A \tilde{Y}_{t-1}+B K v_{t} \\
\tilde{X}_{t}=H \tilde{Y}_{t}
\end{array}\right.
$$

où (v_{t}) est une suite d'entrées de dimension ($\mathrm{r}-1$) (cf. Proposition I.2.6 du Chapitre I).

On a la condition suffisante :

I.2.3. Proposition.

Si le couple $[A, H]$ est observable et $H A^{j} B \bar{K}=0$ pour $j=0, \ldots, r-2$ alors le système décrit par le modèle bilinéaire (1) est observable avec n'importe quelle entrée connue.

I.2.4. Exemples.

(a) Il est clair que dans le cas linéaire i.e $B=0$ la condition se réduit au critère d'observabilité du couple $[\mathrm{A}, \mathrm{H}]: \operatorname{rg} \mathrm{O}_{\mathrm{r}}=\mathrm{r}$.
(b) Le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right] Y_{t-1} u_{t}^{1}+\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] u_{t}^{2} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\
X_{t}=[1,-1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{1} \neq a_{2}, a_{1} a_{2} \neq 0$ et $b_{1} b_{2} \neq 0$ est observable avec n^{\prime} importe quelle entrée connue.

En effet on verifie facilement qu'on a:
$\operatorname{rg}\left[\begin{array}{l}H \\ H A\end{array}\right]=r g\left[\begin{array}{ll}1 & -1 \\ a_{1} & -a_{2}\end{array}\right]=2$ et $H B \bar{K}=0$.
c) Observabilité avec entrée inconnue.

La propriété d'observabilité avec entrée inconnue dans (1) est liée à la meme propriété dans un modèle linéaire autonome du type:

$$
\left\{\begin{array}{l}
\tilde{Y}_{t}=A \tilde{Y}_{t-1}+[B, C] w_{t} \\
\tilde{X}_{t}=H \tilde{Y}_{t}
\end{array}\right.
$$

où (w_{t}) est une suite d'entrées de dimension $r+1$ (cf. Proposition 1.2.6 du Chapitre I).

On a la condition suffisante :

I.2.5. Proposition.

Si le couple $[A, H]$ est observable et $H A^{j}[B ; C]=0$ pour $j=0, \ldots, r-2$ alors le système décrit par le modèle bilinéaire (1) est observable avec entrée inconnue.

1.2.6. Exemples.

(a) Dans le cas linéaire i.e $B=0$, on voit que la condition n'est
autre que celle de la Proposition I.2.6 du Chapitre I.
(b) Le système déterministe décrit par :

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{2} \\
b_{1} & b_{2}
\end{array}\right] Y_{t-1} u_{t}^{1}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u_{t}^{2} ; t \in \mathbb{N}^{*} ; Y_{o} \text { donné } \\
X_{t}=[1,-1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

avec $a_{1} \neq a_{2}, a_{1} a_{2}$ non nul et $b_{1} b_{2}$ non nul est observable avec entrée inconnue.

En effet on vérifie facilement qu'on a :

$$
\operatorname{rg}\left[\begin{array}{c}
\mathrm{H} \\
\mathrm{HA}
\end{array}\right]=\mathrm{rg}\left[\begin{array}{cc}
1 & -1 \\
\mathrm{a}_{1} & -\mathrm{a}_{2}
\end{array}\right]=2 \text { et } \mathrm{H}[\mathrm{~B}, \mathrm{C}]=0 \text {. }
$$

I.3. Identifiabilité partielle d'une entrée déterministe.

Soit $j \geq 1$ et Q une matrice quelconque d'ordre $\ell x j$. On a la condition suffisante suivante :

I.3.1. Proposition.

Si HC $\neq 0$ et si $u^{1}[1, j]$ est connue, l'entrée $u^{2}[1, j]$ est partiellement Q-identifiable dans le modèle défini par (1).

Démonstration.

Il suffit bien sor de montrer le résultat pour $Q=I_{j}$.

On a (supposant $\mathrm{HC}=1$) pour tout $\mathrm{t} \geq 1$

$$
X_{t}=H A Y_{t-1}+H B Y_{t-1} u_{t}^{1}+u_{t}^{2}
$$

d'où

$$
u_{t}^{2}=X_{t}-H A Y_{t-1}-H B Y_{t-1} u_{t}^{1}
$$

Alors connaissant X_{1}, Y_{0} et u_{1}^{1} on sait calculer u_{1}^{2}. Puis on peut calculer

$$
Y_{1}=A Y_{0}+B Y_{0} u_{1}^{1}+C u_{1}^{2}
$$

et u_{2}^{2} en fonction de $X_{1}, X_{2}, Y_{0}, u_{1}^{1}$ et u_{2}^{1} par :

$$
u_{2}^{2}=X_{2}-H A Y_{1}-H B Y_{1} u_{2}^{1}
$$

Une récurrence permet alors de montrer le résultat annoncé.

1.3.2. Exemples.

(a) Dans le cas linéaire l.e $B=0$, la condition $H B=0$ est évidemment satisfaite et l'énoncé assure que dès que $H C \neq 0$ l'entrée est identifiable.
(b) Dans le système déterministe décrit par

$$
\left\{\begin{array}{l}
Y_{t}=\left[\begin{array}{ll}
a_{1} & a_{3} \\
a_{2} & a_{4}
\end{array}\right] Y_{t-1}+\left[\begin{array}{ll}
b_{1} & b_{3} \\
b_{2} & b_{4}
\end{array}\right] Y_{t-1}^{u_{t}^{1}}+\left[\begin{array}{ll}
1 & u^{2} \\
0 & u_{t}
\end{array}\right] ; t \in \mathbb{N}^{*} ; Y_{0} \text { donné } \\
X_{t}=[10-1] Y_{t} ; t \in \mathbb{N}
\end{array}\right.
$$

l'entrée $u^{2}[1, j]$ est I_{j}-identifiable si $u^{1}[1, j]$ est connue. En effet on a :

$$
\mathrm{HC}=[1,-1]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1 .
$$

II. CARACTERISTIQUES DU SECOND-ORDRE ET STATIONNARITES.

Dans ce paragraphe on considère le système stochastique décrit par l'analogue du modèle (1) 1.e
(3) $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B Y_{t-1} e_{t}+C f_{t} ; t \in \mathbb{N}^{\star} ; Y_{0} \text { donné } \\ X_{t}=H Y_{t} ; t \in \mathbb{N}\end{array}\right.$
ou (3') $\left\{\begin{array}{l}Y_{t}=A Y_{t-1}+B Y_{t-1} e_{t}+C f_{t} \\ X_{t}=H Y_{t}\end{array} \quad ; t \in \mathbb{Z}\right.$
où (e_{t}) et (f_{t}) sont deux suites indépendantes de variables aléatoires indépendantes, équidistribuées de moyennes nulles et de variances respectives $Q_{e}>0$ et $Q_{f}>0$. Notons que ce modele recouvre par exemple le modele de sérle chronologique unidimensionnelle

$$
x_{t}=\sum_{j=1}^{p} a_{j} x_{t-j}+\sum_{k=1}^{q} b_{k} x_{t-k} e_{t}+f_{t} ; t \in \mathbf{Z}^{\circ}
$$

En effet (X_{t}) peut se représenter comme l'observation dans un modèle du type (3^{\prime}) où l'état r-dimensionnel $Y_{t}=\left(X_{t} \ldots \ldots, X_{t-r+1}\right)$ avec $r=\max (p, q) \quad$ évolue selon l'équation
(avec la convention que $a_{j}=0$ si $j>p$ et $b_{k}=0$ si $k>q$) l'équation d'observation étant

$$
X_{t}=H Y_{t}
$$

où H est le vecteur ligne $1 \times r: H=(10 \ldots 0)$.

Nous étudions les modèles (3)-(3') pour des matrices A,B et des vecteurs C,H arbitraires. Par commodité nous imposerons encore parfois la condition $H C=1$.

II.1. Caractéristiques du second-ordre - Stationnarité au second-ordre.

Le résultat suivant montre que la structure au second-ordre dans le modèle bilinéaire (3) est semblable à celle correspondant au modèle linéaire (cf. Théorème II.1.2 du Chapitre I) et à celle correspondant au modèle bilinéaire étudié dans le Chapitre II (cf. Proposition II.1.1 du Chapitre II).

II.1.1. Proposition.

(${ }^{1}$) \quad Si $\left(Y_{o}, e_{t}, f_{t} ; t \in \mathbb{N}^{*}\right)$ est une suite d'éléments aléatoires indépendants, alors le processus solution du modèle (3) est du second-ordre et on a :

$$
\begin{aligned}
& m_{Y}(t)=A^{t} m(0) \quad ; \quad m_{X}(t)=H A^{t} m(0) \quad ; t \in \mathbb{N}, \\
& C_{Y}(t, s)= \begin{cases}A^{t-s} C_{Y}(s, s) & \text { si } t \geq s \geq 0 \\
C_{Y}(t, t)\left(A^{\prime}\right)^{s-t} & \text { si } 0 \leq t \leq s\end{cases}
\end{aligned}
$$

et

$$
C_{X}(t, s)=\mathrm{HC}_{Y}(\mathrm{t}, \mathrm{~s}) \mathrm{H}^{\prime} \quad ;(\mathrm{t}, \mathrm{~s}) \in \mathbb{N}^{2}
$$

avec

$$
\begin{aligned}
& C_{Y}(t, t)=A C_{Y}(t-1, t-1) A^{\prime} \\
& +Q_{e} B C_{Y}(t-1, t-1) B^{\prime}+Q_{e} B m_{Y}(t-1) m_{Y}^{\prime}(t-1) B^{\prime}+ \\
& \\
& \quad+Q_{f} C C^{\prime} ; t \in \mathbb{N}^{*} \\
& \left(^{1}\right) \quad y_{o} \text { du second-ordre }
\end{aligned}
$$

$$
C_{Y}(0,0)=C(0) .
$$

On omet la démonstration qui est en tous points analogue à celle de la Proposition II.1.1 du Chapitre II.

On déduit immédiatement de la Proposition précédente et de la Proposition II. 1.3 du Chapitre I :

II.1.2. Proposition.

Sous les hypothèses de la Proposition II.1.1. si $m(0)=0$ et si le couple $\left[A_{0} C\right]$ est controlable, alors la matrice de covariance $C_{Y}(t, t)$ est definie positive pour $t \geq r$.

On donne maintenant une caracterisation de la stationnarité au second-ordre qui recoupe les résultats de D.F. NICHOLLS et B.G. QUINN (1981 a)).

II.1.3. Proposition.

Sous les hypothèses de la Proposition II.1.1, une condition necessalre et suffisante pour que le processus d'etat ($Y_{t} ; t \geq 0$) satisfaisant à (3) soit stationnaire au second-ordre est que le vecteur $m(0)$ verifie

$$
A m(0)=m(0)
$$

et que la matrice $\mathbf{C (0)}$ soit solution de l'équation matricielle

$$
\begin{equation*}
\Gamma=A \Gamma A^{0}+Q_{e} B \Gamma B^{\prime}+Q_{e} B m(0) m^{\prime}(0) B^{\prime}+Q_{f} C C^{\prime} . \tag{4}
\end{equation*}
$$

Alors la fonction de covariance du processus (Y_{t}) est donnée par

$$
R_{Y}(h)=\left\{\begin{array}{lll}
A^{h} \Gamma & \text { si } & h \geq 0 \\
\Gamma\left(A^{\prime}\right)|h| & \text { si } & h \leq 0 .
\end{array}\right.
$$

Notons que l'équation matricielle (4) peut s'écrire sous la forme $\operatorname{vec} \Gamma=\left\{A \otimes A+Q_{e} B \otimes B\right\} \operatorname{vec} \Gamma+Q_{e} \operatorname{vec}\left(B m(0) m^{\prime}(0) B^{\prime}\right)+Q_{f}$ vec $C C^{\prime}$. On voit alors que si les valeurs propres de la matrice $A \otimes A+Q_{e} B \otimes B$ sont toutes de module strictement inférieur à 1 , l'équation (4) admet une solution unique dans l'ensemble des matrices symétriques semi-définies positives Si de plus le couple [A,C] est controlable alors, d'après la Proposition II. 1.2, cette solution est définie positive.

II.2. Stationnarité stricte.

En ce qui concerne la stationnarité stricte dans le modèle (3') on a le résultat :

II.2.1. Proposition.

Si les suites $\left(e_{t} ; t \in \mathbb{Z}\right)$ et $\left(f_{t} ; t \in \mathbb{Z}\right)$. Sont deux suites indépendantes de variables aléatoires indépendantes équidistribuées et si les valeurs propres de la matrice $A \otimes A+Q_{e} B \otimes B$ sont toutes de module strictement inférieur à 1 alors le modèle (3^{\prime}) admet une solution stationnaire $\left(\left(Y_{t}, X_{t}\right) ; t \in \mathbb{Z}\right)$ uniquement déterminée par

$$
Y_{t}=C f_{t}+\sum_{j=1}^{\infty}\left\{{\underset{M I}{j=0}}_{j-1}\left[A+B e_{t-k}\right]\right\} C f_{t-j} ; X_{t}=H Y_{t} ; t \in \mathbb{Z}
$$

où la sêrie précédente est convergente en moyenne quadratique.

On omet la démonstration qui est en tous points analogue à celle de la Proposition II.2.1 du Chapitre II.

II.2.2. Remarques.

(a) Il est clair que le processus solution est aussi stationnaire au second-ordre centré dont la structure de covarlance est donnée dans la Proposition II.1.3.
(b) Remarquons aussi que lorsqu'une solution stationnaire existe pour le modèle (3^{\prime}), le processus (Y_{t}) défini par (3) est un processus de Markov d'ordre 1 stationnaire lorsque l'état initial Y, est une variable aléatoire indépendante de $\left(e_{t}: t \in \mathbb{N}^{*}\right)$ et de ($f_{t} ; t^{\circ} \in \mathbb{N}^{*}$) et distribuée selon la loi commune aux états d'une solution stationnaire de (3').
(c) Notons enfin que nous n'envisageons pas icl le problème de l'inversibilité du modèle (3^{\prime}) : en effet nous sommes en présence d'une situation où l'entrée est bidimensionnelle alors que l'observation est unidimensionnelle.
III. FILTRAGE LINEAIRE ET FILTRAGE NON LINEAIRE.

On aborde ici le problème de filtrage dans le modèle (3) défini au paragraphe II précédent.

III. 1. Filtrage linéaire optimal.

On démontre un résultat préliminaire :
III.1.1. Proposition.

Sous les hypothèses de la Proposition II.1.1, il existe une suite $\left(e_{t}^{*} ; t \in \mathbb{N}^{*}\right)$ de vecteurs aléatoires dans \mathbb{R}^{r} centrés, de matrice de covariance I_{r}, deux à deux non corrélés, non corrélés avec Y_{o}, telle que le processus solution du modèle (3) admette la représentation linéaire :

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+\Sigma_{t-1}^{1 / 2} e_{t}^{\star} \\
X_{t}=H A Y_{t-1}+H \Sigma_{t-1}^{1 / 2} e_{t}^{\star} ; t \in \mathbb{N}^{\star} ; X_{o}=H Y_{o}
\end{array}\right.
$$

où
pour $t \in \mathbb{N} \Sigma_{t}^{1 / 2}$ est une matrice d^{\prime} ordre $r \times r$ telle que

$$
\begin{equation*}
\Sigma_{t}^{1 / 2} \cdot\left(\Sigma_{t}^{1 / 2}\right)^{\prime}=\Sigma_{t}=Q_{e} B C_{Y}(t, t) B^{\prime}+Q_{e} B m_{Y}(t-1) m_{Y}^{\prime}(t-1) B^{\prime}+Q_{f} C C^{\prime} \tag{5}
\end{equation*}
$$

Démonstration.

On a pour tout $t \geq 1$

$$
E\left(\left[B Y_{t-1} e_{t}+C f_{t}\right]\right\}=0
$$

et
$E\left\{\left[B Y_{t-1} e_{t}+C f_{t}\right]\left[B Y_{t-1} e_{t}+C f_{t}\right]^{\prime}\right\}=Q_{e} B E\left\{Y_{t-1} Y_{t-1}^{\prime}\right] B^{\prime}+Q_{f} C C^{\prime}$

$$
\begin{aligned}
& =Q_{e} B C_{Y}(t-1, t-1) B^{\prime}+Q_{e} B m_{Y}(t-1) m_{Y}^{\prime}(t-1) B^{\prime}+Q_{f} C C^{\prime} \\
& =\Sigma_{t-1} .
\end{aligned}
$$

On a aussi pour t>s 21
$E\left\{\left[B Y_{t-1} e_{t}+C f_{t}\right]\left[B Y_{s-1} e_{s}+C f_{s}\right\}\right\}=0$.

Alors si Σ_{t} est définte positive pour $t \in \mathbb{N}$, définissant $e_{t}^{*}=\Sigma_{t-1}^{-1 / 2}\left[B Y_{t-1} e_{t}+C f_{t}\right]$ il est clalr qu'on a la représentation annoncée.
Sl Σ_{t} pour $t \in \mathbb{N}$ n'est pas toujours définie positive, définissons
$e_{t}^{*}=\left[\Sigma_{t-1}^{1 / 2}\right]^{+}\left[B Y_{t-1} e_{t}+C f_{t}\right]+\left[I_{r}-\left[\Sigma_{t-1}^{1 / 2}\right]\left[\Sigma_{t-1}^{1 / 2}\right]^{+}\right] \tilde{e}_{t} ; t \geq 1$
où ($\left.\tilde{e}_{t} ; t \geq 1\right)$ est une suite de vecteurs aléatoires centrés dans \mathbf{R}^{r} tels que $\operatorname{cov}\left(\tilde{e}_{t}, \tilde{e}_{s}\right)=\delta_{t, s} I_{r}$, non corrélée avec $\left(Y_{t} ; t \in \mathbb{N}\right)$.
(Une telle suite $\left(e_{t}\right)$ existe pourvu que l'espace probabilisé (Ω, a, P) soit "suffisamment riche" ; si ce n'est pas le cas on peut toujours s'y ramener en "augmentant" convenablement cet espace).

Ensuite compte tenu des hypothèses concernant les suites $\left(e_{t} ; t \geq 1\right)$. ($\left.f_{t} ; t \geq 1\right)$ et $\left(\tilde{e}_{t} ; t \geq 1\right)$ et des propriétés des matrices pseudoInverses : 11 est facile de vérifier (cf. Démonstration de la Proposition III.1.1 du Chapitre II) que ($e_{t}^{*} ; t \geq 1$) satisfait aux conditions de l'énoncé. ©

Rémarquons que dans le cas particulier où le processus solution de (3) est stationnaire au second-òrdre (cf. Proposition II.1.3), il admet
la représentation

$$
\left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+\Sigma^{1 / 2} e_{t}^{*} \\
X_{t}=H A Y_{t-1}+H \Sigma^{1 / 2} e_{t}^{*} ; t \in \mathbb{N}^{*} ; X_{o}=H Y_{o}
\end{array}\right.
$$

où $\Sigma^{1 / 2}$ est une matrice d'ordre $r \times r$ telle que
(5') $\quad \Sigma^{1 / 2} \cdot\left(\Sigma^{1 / 2}\right)^{\prime}=\Sigma=Q_{e} B C_{Y}(0,0) B^{\prime}+Q_{e} B m_{Y}(0) m_{Y}^{\prime}(0) B^{\prime}+Q_{f} C C^{\prime}$.

On est maintenant en mesure de démontrer :
III.1.3. Proposition.

Sous les hypothèses de la Proposition II.1.1 le filtre linéaire optimal \hat{Y}_{t}^{ℓ} de Y_{t} au vu de $X[0, t]$ dans le modèle (3) est fourni par les équations de récurrence
$\hat{Y}_{t}^{\ell}=A \hat{Y}_{t-1}^{\ell}+\left[\Sigma_{t-1} H^{\prime}+A \gamma_{t-1}^{\ell} A^{\prime} H^{\prime}\right]\left[H \Sigma_{t-1} H^{\prime}+H A \gamma_{t-1}^{\ell} A^{\prime} H^{\prime}\right]{ }^{+}\left[X_{t}-H A \hat{Y}_{t-1}^{\ell}\right] ; t \geq 1$ et
$\gamma_{t}^{\ell}=A \gamma_{t-1}^{\ell} A^{\prime}+\Sigma_{t-1}-$
$-\left[\Sigma_{t-1} H^{\prime}+A \gamma_{t-1}^{\ell} A^{\prime} H^{\prime}\right]\left[H \Sigma_{t-1} H^{\prime}+H A \gamma_{t-1}^{\ell} A^{\prime} H^{\prime}\right]^{+}\left[\Sigma_{t-1} H^{\prime}+A \gamma_{t-1}^{\ell} A^{\prime} H^{\prime}\right]^{\prime} ; t \geq 1$
avec $\quad \hat{Y}_{\mathrm{O}}^{\ell}=\mathrm{m}_{\mathrm{Y}}(0)+\mathrm{C}_{\mathrm{Y}}(0,0) \mathrm{H}^{\prime}\left[\mathrm{HC}_{\mathrm{Y}}(0,0) \mathrm{H}^{\prime}\right]^{+}\left(\mathrm{X}_{\mathrm{O}}-\mathrm{H} \mathrm{m}_{\mathrm{Y}}(0)\right)$

$$
Y_{O}^{\ell}=C_{Y}(0,0)-C_{Y}(0,0) H^{\prime}\left[\operatorname{HC}_{Y}(0,0) H^{\prime}\right]+{ }_{H C}(0,0),
$$

la suite $\left(\Sigma_{t} ; t \geq 0\right)$ étant définie par (5).

Démonstration.

Le résultat est une conséquence immédiate du Corollaire III. 1.5 du Chapitre I et de la Proposition III.1.1 précédente.

Dans le cas particulier ou le processus solution est stationnaire au second-ordre, il est possible d'étudier le comportement asymptotique de la matrice

$$
Y_{t}^{l}=E\left\{\left(Y_{t}-\hat{Y}_{t}^{l}\right)\left(Y_{t}-\hat{Y}_{t}^{l}\right)^{\prime}\right\} .
$$

Du Theorème III.1.6 du Chapitre I on déduit :

III.1.4. Proposition.

Supposons les hypothẻses de la Proposition III.1.1 satisfaites et le processus solution stationnaire au second-ordre.

Si $H \Sigma H^{+}>0$, si le couple $\left(A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A, H A\right)$ est observable et si le couple $\left(A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A,\left[\Sigma-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H \Sigma\right]^{1 / 2}\right)$ est controlable où Σ est définie par (51), alors la suite $\left(\gamma_{t}^{\ell} ; t \geq 1\right)$ a une limite γ^{\star} telle que $\operatorname{Tr} \gamma^{\star}<+\infty$ qui est l'unique solution (dans la classe des matrices symétriques définies positives) de l'équation matricielle
$\gamma=\left[A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A\right] \gamma\left[A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A\right]^{\prime}+\left[\Sigma-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H \Sigma\right]-$ $-\left[A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A\right] \gamma[H A]^{\prime}\left\{\left[\Sigma-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H \Sigma+H A \gamma[H A]^{\prime}\right\}^{+} H A \gamma X\right.$ $x\left[A-\Sigma H^{\prime}\left(H \Sigma H^{\prime}\right)^{-1} H A\right]^{\circ}$.
III. 2 . Filtrage non linéaire optimal.

On fait l'hypothẻse complémentaire suivante :
(B) la matrice B est de la forme $K H$ où K est un vecteur colonne $r \times 1$.

Alors le modèle (3) est du type du modèle (5) introduit au paragraphe III du Chapitre I, à savoir :

$$
\begin{aligned}
& \left\{\begin{array}{l}
Y_{t}=A Y_{t-1}+\left[K X_{t-1}, C\right] \varepsilon_{t} \\
X_{t}=H A Y_{t-1}+H\left[K X_{t-1}, C\right] \epsilon_{t} ; t \in \mathbb{N}^{\star} ; X_{o}=H Y_{o}
\end{array}\right. \\
& \text { avec } \epsilon_{t}=\left(e_{t}, f_{t}\right)^{\prime} .
\end{aligned}
$$

On suppose de plus que la condition :
(G) $\quad\left(\epsilon_{t} ; t \in \mathbb{N}^{x}\right)$ est une suite de vecteurs aléatoires indépendants équidistribués selon une loi gaussienne centrée, de matrice de variance covariance $\left[\begin{array}{ll}Q_{e} & 0 \\ 0 & Q_{f}\end{array}\right]$ (avec $Q_{e}>0$ et $Q_{f}>0$), est satisfaite. On a alors le résultat :

III.2.1. Proposition.

Sous les hypothèses (G) et (B), si l'état initial Y_{o} est un vecteur aléatoire gaussien indépendant de la suite $\left(\epsilon_{t} ; t \in \mathbb{N}^{*}\right)$, alors le filtre. optimal \hat{Y}_{t} de Y_{t} au vu de $X[0, t]$ dans le modèle (3) est fourni par les équations de récurrence :
$\hat{Y}_{t}=A \hat{Y}_{t-1}+\left[Q_{e} K K^{\prime} H^{\prime} X_{t-1}^{2}+Q_{f} C C^{\prime} H^{\prime}+A Y_{t-1} A^{\prime} H^{\prime}\right]\left[Q_{e} H K K^{\prime} H^{\prime} X_{t-1}^{2}+Q_{f} H C C^{\prime} H^{\prime}+\right.$

$$
\left.+H A Y_{t-1} A^{\prime} H^{\prime}\right]^{+} \times\left[X_{t}-H A \hat{Y}_{t-1}\right] ; t \geq 1
$$

et

$$
\begin{aligned}
& \gamma_{t}=A \gamma_{t-1} A^{\prime}+Q_{e} K K^{\prime} X_{t-1}^{2}+Q_{f} C C^{\prime}- \\
& -\left[Q_{e} K K^{\prime} H^{\prime} X_{t-1}^{2}+Q_{f} C C^{\prime} H^{\prime}+A \gamma_{t-1} A^{\prime} H^{\prime}\right]\left[Q_{e} H K K^{\prime} H^{\prime} X_{t-1}^{2}+Q_{f} H C C^{\prime} H^{\prime}+H A \gamma_{t-1} A^{\prime} H^{\prime}\right]^{+} x \\
& \\
& \quad x\left[Q_{e} K K^{\prime} H^{\prime} X_{t-1}^{2}+Q_{f} C C^{\prime} H^{0}+A \gamma_{t-1} A^{\prime} H^{\prime}\right]^{\prime} ; t \geq 1
\end{aligned}
$$

avec

$$
\begin{aligned}
& \hat{Y}_{0}=m_{Y}(0)+C_{Y}(0,0) H^{\cdot}\left[H C_{Y}(0,0) H^{\prime}\right]^{+}\left(X_{0}-H m_{Y}(0)\right) \\
& Y_{0}=C_{Y}(0,0)-C_{Y}(0,0) H^{\cdot}\left[H C_{Y}(0,0) H^{\prime}\right]^{+} H C_{Y}(0,0)
\end{aligned}
$$

Démonstration.

D'après l'écriture dus modèle précédent l'énoncé et la Proposition II.1.1. les conditions du Thérème III.1.3 du Chapitre I sont toutes satisfaites pulsque si Y_{0} vérifie l'hypothèse, $\left(Y_{0}, X_{0}\right)$ est un vecteur aléatoire gaussien indépendant de $\left(\varepsilon_{t} ; t \in \mathbb{N}^{\star}\right)$ et, en particulier, la loi conditionnelle $P\left[Y_{0} \in . / X_{0}\right]$ est gaussienne.

Remarquons que si on suppose $B=K H$ le filtre optimal linéaire ne diffère du filtre optimal que par les termes $Q_{e} E X_{t-1}^{2} K K^{\prime} H^{\prime}$ et $Q_{e} E X_{t-1}^{2} H K K^{\prime} H^{\prime} \quad \dot{q u i}$ se substituent aux termes $Q_{e} X_{t-1}^{2-1} K K^{\prime} H^{\prime}$ et $Q_{e} X_{t-1}^{2} H K K^{\prime} H^{\prime}$ respectivement. Cette différence résulte bien évidemment de la "linéarisation" du modèle (3).

IV ETUDE D'UN MODELE PARTICULIER DE SERIE CHRONOLOGIQUE UNIDIMENSIONNELLE.

Nous étudions ici le cas particulier du modèle de série chronologique scalaire correspondant à la situation (3)-(3') où

$$
r=1, A=a, B=b, H=C=1 \quad \text { i.e }
$$

$$
\begin{equation*}
X_{t}=a X_{t-1}+b X_{t-1} e_{t}+f_{t} ; t \in \mathbb{Z} \tag{6}
\end{equation*}
$$

ou

$$
X_{t}=a X_{t-1}+b X_{t-1} e_{t}+f_{t} ; t \in \mathbb{N}^{\star}, X_{o} \text { donné. }
$$

Les résultats concernant la stationnarité stricte sont plus précis que dans le cas vectoriel $r>1$; on est en mesure d'étudier le problème de l'existence des moments d'ordre supérieur à deux d'une solution stationnaire dans le cas où les variables (e_{t}) et (f_{t}) sont toutes gaussiennes. On aborde aussi le problème statistique d'estimation des paramètres du modèle.
IV.1. Stationnarité stricte. Moments.

Soit (H) l'hypothèse introduite dans le paragraphe IV du Chapitre II, à savoir : la loi commune aux variables aléatoires (ef) n'est pas concentrée en une ou deux valeurs.

IV.1.1. Proposition.

Supposons que les suites $\left(e_{t} ; t \in \mathbb{Z}\right)$ et ($\left.f_{t} ; t \in \mathbb{Z}\right)$ sont deux suites indépendantes de variables aléatoires indépendantes équidistribuées
telles que la condition (H) soit satisfalte. Alors si $|a|<1$ et $a^{2}+b^{2} Q_{e} \leq 1$ Il existe un processus stationnaire $\left(X_{t}\right)$ vérifiant l'équation (6) uniquement déterminé par :

$$
\begin{equation*}
X_{t}=f_{t}+\sum_{j=1}^{\infty}\left\{\prod_{k=0}^{j-1}\left[a+b e_{t-k}\right]\right\} f_{t-j} \tag{7}
\end{equation*}
$$

où la sérle du second membre converge presque sarement et si $a^{2}+b^{2} Q_{e}<1$ la convergence a lieu aussi en moyenne quadratique. On omet la demonstration qui est en tous points analogue a celle de la Proposition IV.1.1 du Chapitre II.

On a le résultat complémentaire.

IV.1.2. Proposition.

Supposons que ($\mathbf{e}_{\mathbf{t}}$) et ($f_{\mathbf{t}}$) satisfont aux hypothèses de la Proposition IV.1.1. Alors une condition nécessaire et suffisante pour qu'il existe une solution stationnalre $\left(X_{t}\right)$ de (6) qui soit un processus du second-ordre centré est que $a^{2}+b^{2} Q_{e}<1$ auquel cas le processus $\left(X_{t}\right)$ est uniquement déterminé par (7) où la série du second membre est convergente presque sarement et en moyenne quadratique.

Démonstration.

D'après ce qui précède, il reste à montrer que la condition est nécessaire. Or on a nécessairement (cf. Proposition I.1.3)

$$
\left(1-a^{2}-b^{2} Q_{e}\right) \operatorname{var}\left(X_{t}\right)=Q_{f}>0
$$

ce qui montre blen que $a^{2}+b^{2} Q_{e}<1$.

Remarquons qu'en vertu de la Proposition IV.1.1, si $|a|<1$ et $a^{2}+b^{2} Q_{e}=1$ il existe encore un processus stationnaire vérifiant (6) mais qui n'est pas du second-ordre centré d'après la Proposition IV.1.2.

On peut aussi remarquer que les hypothèses de la Proposition IV.1.1 assurent l'existence d'un processus de Markov stationnaire vérifiant l'équation (6') (en effet si X_{o} est une variable aléatoire de loi ν_{o} indépendante de $\left(e_{t} ; t \in \mathbb{N}^{\star}\right)$ et de $\left(f_{t} ; t \in \mathbb{N}^{*}\right)$ le processus $\left(X_{t}\right)$ issu de X_{o}^{o} est de ce type) .

Nous nous proposons d'aborder cette question par une autre voie, sous l'hypothèse (G) introduite au paragraphe III.
En effet la probabilité de transition correspondante s'écrit :

$$
P(x, A)=\int_{A}\left(2 \pi\left[Q_{f}+Q_{e} b^{2} x^{2}\right]\right)^{-1 / 2} \cdot \exp \left\{-\frac{1}{2}[y-a x]^{2}\left[Q_{f}+Q_{e} b^{2} x^{2}\right]^{-1}\right\} \cdot d y
$$

On a alors le résultat suivant :

IV.1.3. Proposition.

Supposons que l'hypothèse (G) soit satisfaite et que $E\left\{\left|a+b e_{t}\right|\right\}<1$. Alors le processus de Markov associé à la famille $(P(x,.) ; x \in \mathbb{R})$ est ergodique.

La démonstration de cette Proposition s'appuie sur le Théorème suivant :
IV.1.4. Théorème (cf. par exemple R.L. TWEEDIE (1975)).

Soit $\left(X_{t}\right)$ un processus de Markov dont la transition $\{P(x,)$.
est continue. Si $\gamma_{x}=E\left\{\left|X_{t}\right|-\left|X_{t-1}\right| \mid X_{t-1}=x\right\}$, alors une condition suffisante pour l'ergodicité de $\left(X_{t}\right)$ est qu'll existe un compact K de $\mathcal{I R}$ de mesure de Lebesgue strictement positive et deux constantes $C>0$, $B>0$ tels que.

$$
\begin{aligned}
& \gamma_{x} \leq-C \quad \text { pour tout } x \notin K \\
& \gamma_{x} \leq B<+\infty \quad \text { pour tout } x \in K .
\end{aligned}
$$

Démonstration de la Proposition IV, 1,3.

Il est clair que, pour A fixe, $P(x, A)$ est une fonction continue en x.

$$
\text { Posant } \begin{aligned}
\eta & =E\left\{\left|a+b e_{t}\right|\right\} \text { et } \delta=E\left\{\left|f_{t}\right|\right\}=\left(\frac{2}{\pi} Q_{f}\right)^{1 / 2} \text { on } a: \\
\gamma_{x} & =E\left\{\left|\left(a+b e_{t}\right) x+f_{t}\right|\right\}-|x| \\
& \leq E\left\{\left|a+b e_{t}\right|\right\}|x|+E\left\{\left|f_{t}\right|\right\}-|x|
\end{aligned}
$$

d'où $Y_{x} \leq(\eta-1)|x|+\delta$.
Alors choisissant une constante $C>0$ et $K=\left\{x \in R:|x| \leq(C+\delta)(1-\eta)^{-1}\right\}$
(K est de mesure de Lebesgue non nulle puisque $\eta<1$) on a

$$
\gamma_{x} \leq-C \text { pour tout } x \notin K
$$

et $\gamma_{x} \leq \delta<+\infty$ pour tout $x \in K$ (en fait pour tout $x \in R$).
Les hypothèses du Théorème IV.1.4 sont donc toutes vérifiées et par suite l'ergodicité de (X_{t}) est démontrée. a

Une condition suffisante pour que $E\left\{\left|a+b e_{t}\right|\right\}<1$ est Évidemment que $|a|+|b|\left(\frac{2}{\pi} \quad Q_{e}\right)^{1 / 2}<1 \quad$ (puisque $E\left[\left|e_{t}\right|\right\}=\left(\frac{2}{\pi} Q_{e}\right)^{1 / 2}$) condition qui peut etre comparée à la condition suffisante $a^{2}+b^{2} Q_{e}<1$ étudiée
précédemment (cf. Figure dans le paragraphe IV du Chapitre II).

Dans les conditions de la Proposition IV.1.3 on est assuré de l'existence et de l'unicité d'une loi de probabilité invariante ν_{0} pour la famille $(p(x,.) ; x \in \mathbb{R})$ i.e telle que :

$$
\nu_{0}(A)=\int_{\mathbb{R}} P(x, A) d \nu_{o}(x) \quad ; A \in \mathbb{R}_{\mathbb{R}} .
$$

Etudions maintenant l'existence des moments de la solution stationnaire de $\left(6^{\prime}\right)$ à l'aide de la fonction caractéristique ψ de la loi ν_{o}. ψ vérifie :

$$
\psi(u)=\int_{-\infty}^{+\infty} \exp \left\{i a x u-\frac{1}{2}\left(Q_{f}+Q_{e} b^{2} x^{2}\right) u^{2}\right\} d \nu_{o}(x) .
$$

Lorsque le moment non centré $\int_{-\infty}^{+\infty} x^{n} d \nu_{0}(x)$ existe on le note μ_{n}, on a le résultat :

IV.1.5. Proposition.

Supposons que les hypothèses de la Proposition IV.1.1 et l'hypothèse (G) sont toutes satisfaites et que le moment d'ordre n de X_{t} existe. Alors on a :
$\mu_{0}=1 ; \mu_{1}=0$
et
$\mu_{n}=\left\{\begin{array}{l}0 \quad \text { pour } n \text { impair } \\ \sum_{s=0}^{n / 2}\binom{n}{2 s}\left(-\frac{1}{2}\right)^{s} C_{s} a^{n-2 s}\left[\sum_{j=0}^{s}\binom{s}{j} b^{2 j} Q_{f}^{s-j} Q_{e}^{j} \mu_{n-2 s-2 j}\right] \text { pour } n \text { pair }\end{array}\right.$
où

$$
\begin{aligned}
& C_{s}=-2(2 s-1) C_{s-1} \quad: s \geq 1 \\
& C_{0}=1 .
\end{aligned}
$$

Démonstration.

Rappelons que, d'après la formule d'Hermite, on a :

$$
\frac{d^{r}}{d u^{r}} \exp \left\{-\xi u^{2}\right\}=(-1)^{r} H_{r}(u) \cdot \exp \left\{-\xi u^{2}\right\}
$$

avec

$$
\left\{\begin{array}{l}
H_{0}(u)=1, H_{1}(u)=25 u \\
H_{r+1}(u)-25 u H_{r}(u)+2 r 5 H_{r-1}(u)=0 ; r \geq 1
\end{array}\right.
$$

(en particulier : $\mathrm{H}_{\mathrm{o}}(0)=1_{0} \mathrm{H}_{1}(0)=0$ et $\left.\mathrm{H}_{\mathrm{r}}(0)=-2(r-1) 5 \mathrm{H}_{\mathrm{r}-2}(0) ; r \geq 2\right)$.
Ainsi si est la fonction caractéristique de la ν_{0} définie ci-dessus, sa dérivée n -lème est donnée par :

$$
\begin{aligned}
\psi^{(n)}(u) & =\int_{-\infty}^{+\infty} \sum_{r=0}^{n}\binom{n}{r} \frac{d^{r}}{d u^{r}} \exp \left\{-\frac{1}{2}\left(Q_{f}+Q_{e} b^{2} x^{2}\right) u^{2}\right\} \cdot \frac{d^{n-r}}{d u^{n-r}} \exp \{1 a x u\} \cdot d \nu_{o}(x) \\
& =\int_{-\infty}^{+\infty} \sum_{r=0}^{n}\binom{n}{r}(-1)^{r} H_{r}(u) \cdot \exp \left\{-\xi u^{2}\right\} \cdot(1 a x)^{n-r} \cdot \exp \{1 a x u\} \cdot d \nu_{0}(x)
\end{aligned}
$$

avec $\xi=\frac{1}{2}\left\{Q_{f}+Q_{e} b^{2} x^{2}\right\}$.
Comme $\mu_{n}=\frac{\psi^{(n)}(0)}{1^{n}}$, il vient :
$\mu_{n}=\int_{-\infty}^{+\infty} \sum_{r=0}^{n}\binom{n}{r}(-1)^{r} H_{r}(0) 1^{-r}(a x)^{n-r} d \nu_{0}(x)$.
D'après la formule de récurrence ci-dessus, on a:

$$
H_{r}(0)=\left\{\begin{array}{lll}
(-2)^{r / 2} 1.3 \ldots(r-1) \xi^{r / 2} & ; r \geq 2 & \text { pour } r \text { pair } \\
0 & & \text { pour } r \text { impair. }
\end{array}\right.
$$

Posant $H_{r}=H_{r}(0) 5^{-r / 2} ; r \geq 2$ on vérifie facilement que H_{r} satisfait à

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{r}}=-2(\mathrm{r}-1) \mathrm{H}_{\mathrm{r}-2} ; \mathrm{r} \geq 2 \\
& \mathrm{H}_{1}=0 \\
& \mathrm{H}_{\mathrm{o}}=1 .
\end{aligned}
$$

Par suite μ_{n} peut s'écrire

$$
\mu_{n}=\sum_{r=0}^{n} \int_{-\infty}^{+\infty}\binom{n}{r} H_{r}\left(i \xi^{1 / 2}\right)^{r}(a x)^{n-r} d \nu_{o}(x) .
$$

Alors comme $\mu_{0}=1$ et $\mu_{1}=0$ et que $H_{2 s+1}=0$ pour $s \geq 0$, il vient
$\mu_{n}=\sum_{s=0}^{[n / 2]} \int_{-\infty}^{+\infty}\binom{n}{2 s} H_{2 s^{i}}{ }^{2 s} \dot{\xi}^{s}(a x)^{n-2 s} d \nu_{o}(x) \quad$.
où $\xi^{s}=\frac{1}{2^{s}}\left(Q_{f}+Q_{e} b^{2} x^{2}\right)^{s}=\frac{1}{2^{s}} \sum_{j=0}^{S}\binom{s}{j} b^{2 j} Q_{f}^{s-j} Q_{e}^{j} x^{2 j}$ et $[n / 2]$ désigne la partie entière de $n / 2$.

On en déduit que

$$
\begin{gathered}
\left.\mu_{n}=\sum_{s=0}^{[n / 2]}\binom{n}{2 s}(-)^{1}\right)^{s} C_{s} a^{n-2 s}\left[\sum_{j=0}^{s}\left({ }_{j}^{s}\right) b^{2 j} Q_{f}^{s-j} Q_{e}^{j} \int_{-\infty}^{+\infty} x^{n+2 j-2 s} d \nu(x)\right] \\
=\sum_{s=0}^{[n / 2]}\binom{n}{2 s}\left(-\frac{1}{2}\right)^{s} C_{s} a^{n-2 s}\left[\sum_{j=0}^{s}\binom{s}{j} b^{2 j} Q_{f}^{s-j} Q_{e}^{j} \mu_{n+2 j-2 s}\right] \\
\text { où } \quad C_{s}=H_{2 s} \quad \text { vérifie } \quad C_{s}=-2(2 s-1) C_{s-1} \quad ; s \geq 1 \\
C_{o}=1 .
\end{gathered}
$$

Il s'ensuit donc que :
$\mu_{n}= \begin{cases}0 & \text { pour } n \\ n & \text { impair } \\ n / 2 \\ \sum_{s=0} & \left({ }_{2 s}^{n}\right)\left(-{ }^{1}\right)^{s} C_{s} a^{n-2 s}\left[\sum_{j=0}^{s}\left({ }_{j}^{s}\right) b^{2 j} Q_{f}^{s-j} Q_{e}^{j} \mu_{n+2 j-2 s}\right] \text { pour } n \text { pair。 }\end{cases}$ Une condition suffisante pour que le moment $\mu_{2 n}$ existe est que pour $j=1,2 \ldots, n$ on alt :
$a^{2 j}+Q_{e}\left(2_{2}^{2 j}\right) 1 . a^{2 j-2} b^{2}+Q_{e}^{2}\binom{2 j}{4} 1.3 a^{2 j-4} b^{4}+$
$+Q_{e}^{3}\left(\begin{array}{c}2 j\end{array}\right) 1.3 .5 a^{2 j-6} b^{6}+\ldots+Q_{e}^{j}\binom{2 j}{2 j} 1.3 .5 \ldots(2 j+1) b^{2 j}<1$.

En particulier μ_{6} existe si $1-a^{6}-15 a^{4} b^{2} Q_{e}-45 a^{2} b^{4} Q_{e}^{2}-15 b^{6} Q_{e}^{3}>0$ et alors

$$
\begin{aligned}
\mu_{2}= & Q_{f} \cdot\left[1-a^{2}-b^{2} Q_{e}\right]^{-1} \\
\mu_{4}= & 3 Q_{f} \cdot\left[2 a^{2} \mu_{2}+Q_{f}\right]\left[1-a^{4}-6 a^{2} b^{2} Q_{e}-3 b^{4} Q_{e}^{2}\right]^{-1} \\
\mu_{6}= & 15 Q_{f} \cdot\left[\left(a^{4}+6 a^{2} b^{2} Q_{e}+3 b^{4} Q_{e}^{2}\right) \mu_{4}+3 Q_{f}\left(a^{2}+b^{2} Q_{e}\right) \mu_{2}+Q_{f}^{2}\right] \times \\
& \quad \times\left[1-a^{6}-15 a^{4} b^{2} Q_{e}-45 a^{2} b^{4} Q_{e}^{2}-15 b^{6} Q_{e}^{3}\right]^{-1}
\end{aligned}
$$

On peut aussi remarquer que les frontières de domaines de valeurs de $\left(a, b Q_{e}^{1 / 2}\right)$ à l'intérieur desquels les moments $\mu_{2 n}$ existent pour $\mathrm{n}=1,2,3$ sont identiques à celles représentées dans la figure du paragraphe IV du Chapitre II.

IV.2. Estimation des paramètres.

On suppose qu'on observe un processus stationnaire, centré
$\left(X_{t} ; t \in \mathbb{N}\right)$ solution de l'équation (6^{\prime}) où $\left(e_{t}, f_{t} ; t \in \mathbb{N}^{*}\right)$ satisfait l'hypothèse (G) avec $Q_{e}=Q_{f}=1$ (cas auquel on peut toujours se ramener si Q_{e} et Q_{f} sont supposées connues). Il est clair que la loi de $\left(X_{t} ; t \in \mathbb{N}\right)$ ne dépend pas de b qu'à travers b^{2}.

On envisage donc le problème d'estimation du paramètre (a, b^{2}) par la méthode du maximum de vraisemblance approché. On fait l'hypothèse : (@) la vraie valeur $\theta^{\circ}=\left(\theta_{1}^{\circ}, \theta_{2}^{0}\right)^{\prime}=\left(a_{0}, b_{o}^{2}\right)^{\prime}$ du paramètre $\theta=\left(\theta_{1}, \theta_{2}\right)^{\prime}=\left(a, b^{2}\right)^{\prime} \quad$ vérifie

$$
\left(\theta_{1}^{\circ}\right)^{2}+\theta_{2}^{\circ}<1
$$

(i.e cf. Proposition IV.1.2) que le processus est du second-ordre. Le processus étant markovien homogène d'ordre 1, on dispose de résultats classiques pour étudier les propriétés asymptotiques des estimateurs du maximum de vraisemblance approché (cf. par exemple P. BILLINGSLEY (1961) et P.D. FEIGIN (1975)).

Soit $\left(X_{t} ; t \in \mathbb{N}\right)$ un processus de Markov homogène d'ordre 1 stationnaire dont la densité de transition $f_{\theta}(x / y)$ dépend d'un paramètre $\theta=\left(\theta_{1}, \ldots, \theta_{s}\right)^{\prime}$.

$$
\text { On pose } L_{n}^{*}\left(X_{o} \ldots, X_{n} ; \theta\right)=\sum_{t=1}^{n} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)
$$

Définissons lorsque les dérivées partielles existent
$u_{t}(\theta)=\operatorname{grad}_{\theta} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)$;
$v_{t}(\theta)=\left(\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)\right){ }_{i, j=1, \ldots, s} ;$
$w_{t}^{j}(\theta)=\frac{o}{\partial \theta_{j}} \quad v_{t}(\theta) \quad ;$
$U_{n}(\theta)=\sum_{t=1}^{n} u_{t}(\theta) ; V_{n}(\theta)=\sum_{t=1}^{n} v_{t}(\theta) \quad ; \quad W_{n}^{j}(\theta)=\sum_{t=1}^{n} w_{t}^{j}(\theta)$.

On désigne par θ^{0} la vraie valeur du parametre θ.

Conditions de régularité.

A1 . Il existe $\alpha>0$ tel que $f_{\theta}(x / y)$ admet des dérivees partielles jusqu'à l'ordre 3 sur $S_{\alpha}=\left\{\theta:\left\|\theta-\theta^{\circ}\right\| \leq \alpha\right\}$, mesurables en (x, y), pour θ fixé dans S_{α};

A2 . Les espérances mathématiques $\mathrm{E}_{\theta^{\mathrm{o}}}\left\{\mathrm{V}_{\mathrm{n}}\left(\theta^{\circ}\right)\right\}$ et $\mathrm{E}_{\theta^{o}}\left\{\mathrm{U}_{\mathrm{n}}^{0}\left(\theta^{\circ}\right) \mathrm{U}_{\mathrm{n}}\left(\theta^{\circ}\right)\right\}$ existent pour tout $n \geq 1$;

A3

- E ${ }_{\theta}{ }_{o}\left\{u_{t}\left(\theta^{\circ}\right) \mid F_{t-1}^{X}\right\}=0$ et $E\left[u_{t}\left(\theta^{o}\right) u_{t}^{0}\left(\theta^{O}\right) \mid F_{t-1}^{X}\right\}=-E{ }_{\theta}\left\{v_{t}\left(\theta^{o}\right) \mid F_{t-1}^{X}\right\}$ pour tout $t \geq 1$;

A4 . La matrice $E_{\theta^{\circ}}\left\{u_{1}\left(\theta^{0}\right) u_{1}^{\prime}\left(\theta^{\circ}\right)\right\}$ est non singulière ;
A5 . Pour tout $\theta \in S_{\alpha}$, tout $1, j, k=1 \ldots \ldots s$ et tout $n \geq 1$ $n^{-1}\left|\frac{\partial^{3}}{\partial \theta_{i} \partial \theta_{j} \partial \theta_{k}} L_{n}^{*}\left(X_{0} \ldots . X_{n} ; \theta\right)\right| \leq M_{n}\left(X_{0} \ldots . . X_{n}\right)$ où $M_{n}\left(X_{0} \ldots \ldots X_{n}\right)$ est une variable aléatoire indépendante de. θ telle que $E_{\theta^{o}}\left\{M_{n}\right\}<C<+\infty$.

On a alors l'énoncé
IV.2.1. Theorème (cf. P.D. FEIGIN (1975)).

Supposons que le processus est stationnaire et ergodique et que les conditions de régularité A1,....A5 sont vérifiées. Alors il existe une
suite d'estimateurs $\left(\hat{\theta}_{n} ; n \geq 1\right)$ de ϵ basés respectivement sur l'observation $\left(X_{o}, \ldots, X_{n}\right)$ telle que :

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} P\left[U_{n}\left(\hat{\theta}_{n}\right)=0\right]=1 ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} P\left[V_{n}\left(\hat{\theta}_{n}\right) \text { définie négative }\right]=1 ; \tag{ii}
\end{equation*}
$$

(iii) $\quad \lim _{n \rightarrow+\infty} \hat{\theta}_{n}=\theta^{\circ}$ en probabilité.

De plus la suite $\left(\sqrt{n}\left(\hat{\theta}_{n}-\theta^{O}\right) ; n \geq 1\right)$ converge en loi vers un vecteur aléatoire gaussien de matrice de covariance $\left[E_{\theta^{\circ}}\left\{u_{1}\left(\theta^{\circ}\right) u_{1}^{\prime}\left(\theta^{\circ}\right)\right\}\right]^{-1}$

Dans le cas qui nous intéresse la densité de transition s'écrit $f_{\theta}(x / y)=\left[2 \pi\left(1+\theta_{2} y^{2}\right)\right]^{-1 / 2} \cdot \exp \left\{-\frac{1}{2}\left[x-\theta_{1} y\right]^{2} \cdot\left[1+\theta_{2} y^{2}\right]^{-1}\right\}$.

L'équation $U_{n}(\theta)=0$ s'écrit sous la forme
(8) $\left\{\begin{array}{l}\sum_{t=1}^{n} x_{t-1}\left(x_{t}-\theta_{1} X_{t-1}\right)\left(1+\theta_{2} x_{t-1}^{2}\right)^{-1}=0 \\ \sum_{t=1}^{n} \\ \left\{-x_{t-1}^{2}\left(1+\theta_{2} x_{t-1}^{2}\right)^{-1}+x_{t-1}^{2}\left(X_{t}-\theta_{1} X_{t-1}\right)^{2}\left(1+\theta_{2} x_{t-1}^{2}\right)^{-2}\right\}=0 .\end{array}\right.$

On a alors le résultat suivant :

IV.2.2. Corollaire.

Soit (X_{t}) un processus stationnaire solution de (6^{\prime}), les hypothèses (G) et (Θ) étant satisfaites. Alors il existe une suite ($\hat{\theta}_{\mathrm{n}} ; \mathrm{n} \geq 1$) d'estimateurs de θ basés respectivement sur l'observation (X_{o}, \ldots, X_{n}) vérifiant
les conditions (i), (ii) et (ili) du Theorème IV.2.1 avec $U_{n}(\theta)=0$ remplacée par (ℓ) et $\left[E_{\theta^{o}}\left[u_{1}\left(\theta^{0}\right) u_{1}^{\prime}\left(\theta^{\circ}\right)\right]\right]^{-1}$ remplacée par

$$
\left[\begin{array}{cc}
{\left[E_{\theta_{o}^{o}}\left\{x_{t-1}^{2}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-1}\right\}\right]^{-1}} & 0 \\
& 2\left[E_{\theta_{o}}\left[x_{t-1}^{4}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-2}\right]^{-1}\right.
\end{array}\right]
$$

Démonstration.

La démonstration consiste en une simple vérification des conditions A1,....A5 pour tout θ^{0} tel que $\left(\theta_{1}^{0}\right)^{2}+\theta_{2}^{0}<1$.

A1

Elle est évidente : vue l'expression de $f_{\theta}(x / y)$ alors nous nous contentons de donner les expressions des quantités qui seront utilisees dans la suite. Pour $t \geq 1$ on a donc:
$\frac{\partial}{\partial \theta_{1}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=X_{t-1}\left(X_{t}-\theta_{1} X_{t-1}\right)\left(1+\theta_{2} X_{t-1}^{2}\right)^{-1}$
$\frac{\partial}{\partial \theta_{2}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=-\frac{1}{2} X_{t-1}^{2}\left(1+\theta_{2} X_{t-1}^{2}\right)^{-1}+\frac{1}{2} x_{t-1}^{2}\left(X_{t}-\theta_{1} X_{t-1}\right)^{2}\left(1+\theta_{2} X_{t-1}^{2}\right)^{-1}$

- $\frac{\partial^{2}}{\partial \theta_{1}^{2}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=-X_{t-1}^{2}\left(1+\theta_{2} x_{t-1}^{2}\right)^{-1} \frac{\partial}{\partial \theta_{1} \partial \theta_{2}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=$

$$
=-x_{t-1}^{3}\left(x_{t}-\theta_{1} x_{t-1}\right)\left(1+\theta_{2} x_{t-1}^{2}\right)^{-2}
$$

$\frac{\partial^{2}}{\partial \theta_{2}^{2}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=\frac{1}{2} X_{t-1}^{4}\left(1+\theta_{2} X_{t-1}^{2}\right)^{-2}-X_{t-1}^{4}\left(X_{t}-\theta_{1} X_{t-1}\right)^{2}\left(1+\theta_{2} X_{t-1}^{2}\right)^{-3}$

$$
\begin{aligned}
& \frac{\partial^{3}}{\partial \theta_{1}^{3}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=0 ; \frac{\partial^{3}}{\partial \theta_{1}^{2} \partial \theta_{2}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=X_{t-1}^{4}\left(1+\theta_{2} X_{t-1}^{2}\right)^{-2} \\
& \frac{\partial^{3}}{\partial \theta_{1} \partial \theta_{2}^{2}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=2 X_{t-1}^{5}\left(X_{t}-\cap_{1} X_{t-1}\right)\left(1+\theta_{2} X_{t-1}^{2}\right)^{-3} \\
& \frac{\partial^{3}}{\partial \theta_{2}^{3}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)=-X_{t-1}^{6}\left(1+\theta_{2} X_{t-1}^{2}\right)^{-3}+3 X_{t-1}^{6}\left(X_{t}-\theta_{1} X_{t-1}\right)^{2}\left(1+\theta_{2} X_{t-1}^{2}\right)^{-4}
\end{aligned}
$$

A2
. $E_{f_{0}}\left\{\left|\frac{\partial^{2}}{\partial A_{1}^{2}} \log f_{\theta}{ }_{o}\left(X_{t} \mid X_{t-1}\right)\right|\right\}=E_{\theta}\left\{X_{t-1}^{2}\left(1+\theta_{2}^{o} X_{t-1}^{2}\right)^{-1}\right\} \leq E_{\theta^{O}}\left\{X_{t-1}^{2}\right\}<+\infty$.

- $E_{\rho^{o}}\left\{\left|\frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{2}} \log f_{\theta^{o}}\left(X_{t} \mid X_{t-1}\right)\right|\right\}=E_{\theta^{\circ}}\left\{\left|-X_{t-1}^{3}\left(X_{t}-\theta_{1}^{O} X_{t-1}\right)\left(1+\theta_{2}^{O} x_{t-1}^{2}\right)^{-2}\right|\right\}$

$$
=2 \times(2 \pi)^{-1 / 2} E_{\theta^{\circ}}\left\{\left|X_{t-1}\right|^{3}\left(1+\theta_{2}^{0} x_{t-1}^{2}\right)^{-3 / 2}\right\}
$$

$$
=2 \times(2 \pi)^{-1 / 2}\left(\theta_{2}^{\circ}\right)^{-3 / 2} \quad \text { pour } \quad \theta_{2}^{0} \neq 0
$$

On remarque que, pour $\theta_{2}^{0}=0$, le processus ainsi obtenu est de classe $A R(1)$, par conséquent il admet des moments de tous ordres. Alors $\mathrm{E}_{\theta^{\circ}}\left\{\left|\frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{2}} \log \mathrm{f}_{\theta^{\circ}}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)\right|\right\}$ existe pour tout θ^{O}. . $E_{\theta^{\circ}}\left\{\left|\frac{\partial^{2}}{\partial \theta_{2}^{2}} \log f_{\theta^{o}}\left(X_{t} \mid X_{t-1}\right)\right|\right\}=E_{\theta_{0}}\left\{\left\lvert\, \frac{1}{2} x_{t-1}^{4}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-2}-\right.\right.$

$$
\begin{aligned}
& \left.-X_{t}^{4}\left(X_{t}-\theta_{1}^{o} X_{t-1}\right)^{2}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-3} \mid\right\} \\
& \leq \frac{3}{2} E_{\theta^{\circ}}\left\{X_{t-1}^{4}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-2}\right\}
\end{aligned}
$$

$$
\leq \frac{3}{2}\left(\theta_{2}^{\mathrm{O}}\right)^{-2} \text { pour } \theta_{2}^{\mathrm{O}} \neq 0
$$

Pour $\theta_{2}^{0}=0$ on se réfère al la remarque précédente.
Alors $E \theta_{\theta^{\circ}}\left\{\left|\frac{\partial^{2}}{\partial \theta_{2}^{2}} \log f_{\theta^{\circ}}\left(X_{t} \mid X_{t-1}\right)\right|\right\}$ exist pour tout θ°.
 tout $\mathrm{n} \geq 1$.

Ensulte

$$
\begin{aligned}
& \text { - } E_{\theta^{\circ}}\left\{\frac{\partial}{\partial \theta_{1}} \log f_{\theta^{\circ}}\left(X_{t} \mid X_{t-1}\right)\right\}^{2}=E_{\theta^{\circ}}\left\{X_{t-1}^{2}\left(X_{t}-\theta_{1}^{o} X_{t-1}\right)^{2}\left(1+\theta_{2}^{o} X_{t-1}^{2}\right)^{-2}\right\} \\
& =E_{\theta^{\circ}}\left\{X_{t-1}^{2}\left(1+\theta_{2}^{o} X_{t-1}^{2}\right)^{-1}\right\} \leq E_{\theta}{ }_{\theta}\left\{X_{t-1}^{2}\right\}<+\infty . \\
& \text { - } E_{\theta^{\circ}}\left(\frac{\partial}{\partial \theta_{2}} \log f_{\theta^{O}}\left(X_{t} \mid X_{t-1}\right)\right\}^{2}=E_{\theta^{o}}\left\{\frac{1}{4} x_{t-1}^{4}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-2}-\right. \\
& -\frac{1}{2} x_{t-1}^{4}\left(x_{t}-\theta_{1}^{0} x_{t-1}\right)^{2}\left(1+\theta_{2}^{0} x_{t-1}^{2}\right)^{-3}+ \\
& \left.+\frac{1}{4} x_{t-1}^{4}\left(x_{t}-\theta_{1}^{0} x_{t-1}\right)^{4}\left(1+\theta_{2}^{0} x_{t-1}^{2}\right)^{-4}\right\} \\
& =\frac{1}{2} E{ }_{\theta^{0}}\left\{X_{t-1}^{4}\left(1+\theta_{2}^{0} X_{t-1}^{2}\right)^{-2}\right\} \\
& \leq \frac{1}{2}\left(\theta_{2}^{0}\right)^{-2} \text { pour } \theta_{2}^{0} \neq 0 \text {. }
\end{aligned}
$$

Pour $\quad \theta_{2}^{0}=0$ on se réfère encore ad la remarque précédente. Alors $E{ }_{\theta}{ }^{\circ}\left\{\frac{\partial}{\partial \theta_{2}} \log f_{\theta^{0}}\left(X_{t} \mid X_{t-1}\right)\right\}^{2}$ exist pour tout θ^{0}. In s'ensult que $E_{\theta^{o}}\left\{\dot{U}_{n}^{\prime}\left(\theta^{0}\right) U_{n}\left(\theta^{0}\right)\right\}=E_{\theta}{ }_{\theta}\left\{\sum_{t=1}^{n} \frac{\partial}{\partial \theta_{1}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)\right\}^{2}+$

$$
+E_{\theta^{\circ}}\left\{\sum_{t=1}^{n} \frac{\partial}{\partial \theta_{2}} \log f_{\theta^{\circ}}\left(X_{t} \mid X_{t-1}\right)\right\}^{2} \text { exists pour tout } n \geq 1 .
$$

AB

Come (X_{t}) est un processes de Markov d'ordre 1, on a alors $E{ }_{\theta^{\circ}}\left\{u_{t}\left(\theta^{O}\right) / F_{t-1}^{X}\right\}=E{ }_{\theta}{ }^{O}\left\{u_{t}\left(\theta^{O}\right) / X_{t-1}\right\}, E_{\theta^{o}}\left\{u_{t}\left(\theta^{O}\right) u_{t}^{\prime}\left(\theta^{O}\right) / F_{t-1}^{X}\right\}=E\left\{u_{t}\left(\theta^{O}\right) u_{t}^{\prime}\left(\theta^{O}\right) / X_{t-}\right.$ et $E_{\theta^{\circ}}\left\{v_{t}\left(\theta^{O}\right) / F_{t-1}^{X}\right\}=E_{\theta^{\circ}}\left\{v_{t}\left(\theta^{O}\right) / X_{t-1}\right\}$ pour tout $t \geq 1$.

Par suite on vérifie que :

- $E \theta_{\theta^{\circ}}\left\{\frac{\dot{\partial}}{\partial \theta_{1}} \log f{ }_{\theta^{\circ}}\left(X_{t} \mid X_{t-1}\right) / X_{t-1}\right\}=E_{\theta}{ }_{\theta}\left\{X_{t-1}\left(X_{t}-\theta_{1}^{O} X_{t-1}\right)\left(1+\theta_{2}^{o} X_{t-1}^{2}\right)^{-1} / X_{t-1}\right\}$

$$
\begin{aligned}
& =X_{t-1}\left(1+\theta_{2}^{\circ} x_{t-1}^{2}\right)^{-1 / 2} E_{\theta^{\circ}}\left\{\left(X_{t}-\theta_{1}^{\circ} X_{t-1}\right)\left(1+\theta_{2}^{\circ} x_{t-1}^{2}\right)^{-1 / 2} / X_{t-1}\right\} \\
& =0 \text { pour tout } t \geq 1 .
\end{aligned}
$$

- $E{ }_{\theta^{\circ}}\left\{\frac{\partial}{\partial \theta_{2}} \log f_{\theta^{O}}\left(X_{t} \mid X_{t-1}\right) / X_{t-1}\right\}=E E_{\theta^{O}}\left\{\left[-\frac{1}{2} X_{t-1}^{2}\left(1+\theta_{2}^{O} X_{t-1}^{2}\right)^{-1}+\right.\right.$

$$
\left.\left.+\frac{1}{2} x_{t-1}^{2}\left(X_{t}-\theta_{1}^{\circ} x_{t-1}\right)^{2}\left(1+\theta_{2}^{\circ} x_{t-1}^{2}\right)^{-2}\right] / x_{t-1}\right\}
$$

$$
=-\frac{1}{2} x_{t-1}^{2}\left(1+\theta_{2}^{\circ} x_{t-1}^{2}\right)^{-1}+\frac{1}{2} x_{t-1}^{2}\left(1+\theta_{2}^{\circ} x_{t-1}^{2}\right)^{-1}
$$

$$
\times \quad E{ }_{\theta}\left\{\left(X_{t}-\theta_{1}^{o} X_{t-1}\right)^{2}\left(1+\theta_{2}^{\circ} X_{t-1}^{2}\right)^{-1} / X_{t-1}\right\}
$$

$=0$ pour tout $t \geq 1$.

Par consequent $E \theta_{\theta^{\circ}}\left\{u_{t}\left(\theta^{\circ}\right) / X_{t-1}\right\}=0$ pour tout $t \geq 1$.
Puls,

$$
\begin{aligned}
\cdot E_{\theta^{\circ}}\left\{\left(\frac{\partial}{\partial \theta_{1}} \log f_{\theta^{o}}\left(x_{t} \mid x_{t-1}\right)\right)^{2} / x_{t-1}\right\} & =E_{\theta^{o}}\left\{x_{t-1}^{2}\left(x_{t}-\theta_{1}^{o} x_{t-1}\right)^{2}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-2} / x_{t-1}\right\} \\
& =x_{t-1}^{2}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-1} \text { pour tout } t \geq 1
\end{aligned}
$$

$$
\mathcal{E}_{\theta^{\circ}}\left\{\left(\frac{\partial}{\partial \theta_{2}} \log f_{\theta^{o}}\left(X_{t} \mid X_{t-1}\right)\right)^{2} / X_{t-1}\right\}=E_{\theta^{o}}\left\{\left[\frac{1}{4} x_{t-1}^{4}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-2}-\right.\right.
$$

$$
-\frac{1}{2} x_{t-1}^{4}\left(x_{t}-\theta_{1}^{\circ} x_{t-1}\right)^{2}\left(1+\theta_{2}^{0} x_{t-1}^{2}\right)^{-3}+
$$

$$
\left.\left.+\frac{1}{4} x_{t-1}^{4}\left(x_{t}-\theta_{1}^{0} x_{t-1}\right)^{4}\left(1+\theta_{2}^{0} x_{t-1}^{2}\right)^{-4}\right] / x_{t-1}\right\}
$$

$$
=\frac{1}{2} x_{t-1}^{4}\left(1+\theta_{2}^{0} x_{t-1}^{2}\right)^{-2} \quad \text { pour tout } t \geq 1
$$

$$
\text { - } \begin{aligned}
E_{\theta^{\circ}}\left\{\frac{\partial^{2}}{\partial \theta_{1}^{2}} \log f_{\theta^{o}}\left(x_{t} \mid X_{t-1}\right) / X_{t-1}\right\} & =-E_{\theta^{o}}\left\{x_{t-1}^{2}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-1} / X_{t-1}\right\} \\
& =-x_{t-1}^{2}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-1} \text { pour tout } t \geq 1 .
\end{aligned}
$$

$$
\begin{aligned}
\cdot E_{\theta^{o}}\left\{\frac{\partial^{2}}{\partial \theta_{1} \partial \theta} \log f_{\theta^{o}}\left(X_{t} \mid X_{t-1}\right) / X_{t-1}\right\} & =-E_{\theta_{0}}\left\{X_{t-1}^{3}\left(X_{t}-\theta_{1}^{o} X_{t-1}\right)\left(1+\theta_{2}^{o} X_{t-1}^{2}\right)^{-2} / X_{t-1}\right\} \\
& =0 \text { pour tout } t \geq 1 .
\end{aligned}
$$

$$
\begin{array}{r}
E_{\theta^{\circ}}\left\{\left.\frac{\partial^{2}}{\partial \theta_{2}^{2}} \log f_{\theta_{0}}\left(x_{t} \mid x_{t-1}\right) \right\rvert\, x_{t-1}\right\}=E_{\theta^{o}}\left[\left[\frac{1}{2} x_{t-1}^{4}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-2}-\right.\right. \\
\left.\left.-x_{t-1}^{4}\left(x_{t}-\theta_{1}^{o} x_{t-1}\right)^{2}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-3}\right] / x_{t-1}\right\}
\end{array}
$$

$$
\begin{aligned}
& \text { - } E_{\theta^{o}}\left\{\left(\frac{\partial}{\partial \theta_{1}} \log f_{\theta^{o}}\left(X_{t} j X_{t-1}\right)\right)\left(\frac{\partial}{\partial \theta_{2}} \log f_{\theta^{o}}\left(X_{t} \mid X_{t-1}\right)\right) / X_{t-1}\right\} \\
& =E_{\theta_{0}}\left(\left[-\frac{1}{2} x_{t-1}^{3}\left(X_{t}-0_{1}^{o} x_{t-1}\right)\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-2}+\right.\right. \\
& \left.\left.+\frac{1}{2} x_{t-1}^{3}\left(x_{t}-\theta_{1}^{0} x_{t-1}\right)^{3}\left(1+\theta_{2}^{0} x_{t-1}^{2}\right)^{-3}\right] / x_{t-1}\right\} \\
& =0 \text { pour tout } t \geq 1 \text {. }
\end{aligned}
$$

$$
=-\frac{1}{2} x_{t-1}^{4}\left(1+6_{2}^{0} x_{t-1}^{2}\right)^{-2} \text { pour tout } t \geq 1
$$

Il s'ensuit qu'on a, pour tout $t \geq 1$,

$$
E_{\theta^{O}}\left\{u_{t}\left(\theta^{O}\right) u_{t}^{\prime}\left(\theta^{O}\right) \mid x_{t-1}\right\}=-E \theta_{\theta^{o}}\left\{v_{t}\left(\theta^{O}\right) / x_{t-1}\right\}=-\left[\begin{array}{cc}
x_{t-1}^{2}\left(1+\theta_{2}^{o} x_{t-1}^{2}\right)^{-1} & 0 \\
0 & \frac{1}{2} x_{t-1}^{4}\left(1+\theta_{2}^{O} x_{t-1}^{2}\right)^{-}
\end{array}\right.
$$

On déduit du résultat précédent que
$E_{\theta^{\circ}}\left\{u_{1}\left(\theta^{O}\right) u_{1}^{\prime}\left(\theta^{O}\right)\right\}=\left[\begin{array}{cc}E_{\theta^{O}}\left\{x_{o}^{2}\left(1+\theta_{2}^{O}\right)^{-1}\right\} & 0 \\ 0 & \frac{1}{2} \\ E_{\theta^{O}}\left\{X_{o}^{4}\left(1+\theta_{2}^{O} X_{o}^{2}\right)^{-2}\right\}\end{array}\right]$
Comme $E \theta_{\theta^{\circ}}\left\{X_{o}^{2}\left(1+\theta_{2}^{\circ} X_{o}^{2}\right)^{-1}\right\}>0$ et $E \theta_{O^{\circ}}\left\{X_{o}^{4}\left(1+\theta_{2}^{O} X_{o}^{2}\right)^{-2}\right\}>0$ alors la matrice $E \theta_{\theta^{O}}\left\{u_{1}\left(\theta^{\circ}\right) u_{1}^{\prime}\left(\theta^{\circ}\right)\right\}$ est non singulière.

A5

Pour tout $\forall \in S_{\alpha}$, on a :

- $\left|\frac{\partial^{3}}{\partial \theta_{1}^{3}} \log f_{\theta}\left(x_{t} \mid x_{t-1}\right)\right|=0<x_{t-1}^{2}$
d'où $\left.\frac{1}{n} i_{t=1}^{n} \frac{\partial^{3}}{\partial \theta_{1}^{3}} \log f_{\theta}\left(X_{t} \mid x_{t-1}\right) \right\rvert\,<\frac{1}{n} \sum_{t=1}^{n} x_{t-1}^{2}=M_{n}^{1}$
avec $E_{\theta^{\circ}} M_{n}^{1}<C^{1}<+\infty \quad$ pour tout $n \geq 1$.
- $\left\lvert\, \frac{\partial^{3}}{\partial \theta_{1}^{2} \partial \theta_{2}} \log f_{\theta}\left(x_{t} \mid x_{t-1}\right) i=x_{t-1}^{4}\left(1+\theta_{2} x_{t-1}^{2}\right)^{-2}\right.$

$$
\leq\left(\theta_{2}^{0}-a\right)^{-2} \text { pour } \theta_{2}^{0} \neq 0
$$

doou $\frac{1}{n}\left|\sum_{t=1}^{n} \frac{\partial^{3}}{\partial \theta_{1}^{2} \partial \theta_{2}} \log f_{\theta}\left(X_{t} \mid X_{t-1}\right)\right| \leq\left(\theta_{2}^{o}-\alpha\right)^{-2}=M_{n}^{2}$ pour $\quad \theta_{2}^{o} \neq 0$.

On peut encore remarquer que, pour $\theta_{2}^{0}=0$. le processus ains obtenu est de classe AR(1) par conséquent il admet des moments de tous les ordres.

Alors $E \theta_{0} M_{n}^{2}<C^{2}<+\infty$ pour tout $n \geq 1$.

$$
\begin{aligned}
& \text { - } \left.\left|\frac{\partial^{3}}{\partial \theta_{1} \partial \theta_{2}^{2}} \log \varepsilon_{\theta}\left(x_{t} j x_{t-1}\right) i=2\right| x_{t-1}^{5}\left(x_{t}-\theta_{1} x_{t-1}\right)\left(1+\theta_{2} x_{t-1}^{2}\right)^{-3} \right\rvert\, \\
& \leq 2\left\{\left(\theta_{2}^{0}-a\right)^{-3}\left[\left|x_{t}\right|+\max \left(\left|\theta_{1}^{0}-a\right|,\left|\theta_{1}^{0}+\alpha\right|\right) \mid x_{t-1} i\right] \|\left.\right|_{t-1} \mid>1+\right. \\
& \left.+\left[\left|x_{t}\right|+\max \left(\left|\theta_{1}^{o}-a\right|,\left|\theta_{1}^{o}+a\right|\right)\left|x_{t-1}\right|\right] \|\left.\right|_{t-1} \mid \leq 1\right\} \\
& \leq 2\left(\theta_{2}^{0}-\alpha\right)^{-3}\left(\left|x_{t}\right|+\max \left(\left|\theta_{1}^{o}-\alpha\right| \cdot\left|\theta_{1}^{o}+\alpha\right|\right)\left|x_{t-1}\right|\right) \\
& \text { pour } \theta_{2}^{0} \neq 0
\end{aligned}
$$

d'ou $\frac{1}{n} \left\lvert\, \sum_{t=1}^{n} \frac{\partial^{3}}{\partial \theta_{1} \partial \theta_{2}^{2}} \log f_{\theta}\left(X_{t} \mid x_{t-1}\right) i \leqslant \frac{1}{n} \sum_{t=1}^{n}\left(\theta_{2}^{0}-\alpha\right)^{-3}\left(\left|x_{t}\right|+\right.\right.$

$$
\left.+\max \left(\left|\theta_{1}^{0}-a\right|, \mid \theta_{1}^{o}+a j\right)\left|x_{t-1}\right|\right)=M_{n}^{3} \text { pour } \quad \theta_{2}^{0} \neq 0
$$

Pour $\theta_{2}^{0}=0$ on se réfêre à la remarque précédente.
Alors ${ }_{E_{0}} \mathrm{M}_{\mathrm{n}}^{3}<\mathrm{C}^{3}<+\infty$ pour tout $\mathrm{n} \geq 1$.

$$
\begin{aligned}
& \cdot i \frac{\partial^{3}}{\partial \theta_{2}^{3}} \log f_{\theta}\left(x_{t} \mid x_{t-1}\right)|=|-x_{t-1}^{6}\left(1+\theta_{2} x_{t-1}^{2}\right)^{-3}+3 x_{t-1}^{6}\left(X_{t}-\theta_{1} X_{t-1}\right)^{2}\left(1+\theta_{2} x_{t-1}^{2}\right)^{-4} \\
& s\left(\theta_{2}^{\circ}-\alpha\right)^{-3}+3\left(\theta_{2}^{O}-\alpha\right)^{-4}\left(\left|x_{t}\right|+\max \left(\left|\theta_{1}^{O}-\alpha\right|,\left|\theta_{1}^{O}+\alpha\right|\right) \mid x_{t-1} i\right)^{2} \|_{\left|X_{t-1}\right|>1}+ \\
& +3\left(\left|x_{t}\right|+\max \left(\left|\theta_{1}^{0}-\alpha\right|,\left|e_{1}^{0}+\alpha\right|\right)\left|x_{t-1}\right|\right)^{2} 11{ }_{i x_{t-1}} \mid \leq 1 \\
& \leq\left(\theta_{2}^{\circ}-\alpha\right)^{-4}\left(1+3\left(\left|x_{t}\right|+\max \left(\left|\theta_{1}^{\circ}-\alpha\right|,\left|\theta_{1}^{\circ}+\alpha\right|\right)\left|X_{t-1}\right|\right)^{2}\right) \text { pour } \theta_{2}^{\circ} \neq 0 \\
& \text { d'où } \frac{1}{n}\left|\sum_{t=1}^{n} \frac{o^{3}}{o \theta_{2}^{3}} \log f_{\theta}\left(x_{t} \mid x_{t-1}\right)\right|=\frac{1}{n} \sum_{t=1}^{n}\left(\theta_{2}^{0}-\alpha\right)^{-4}\left(1+3\left(\left|x_{t}\right|+\right.\right. \\
& \left.+\max \left(\left|\theta_{1}^{\circ}-\alpha\right|,\left|\theta_{1}^{O}+\alpha\right|\right)\left|X_{t-1}\right|\right)^{2}=M_{n}^{4} \quad \text { pour } \quad \epsilon_{2}^{0} \neq 0 .
\end{aligned}
$$

Pour $\quad \theta_{2}^{0}=0$, on se réfère encore à la remarque précédente.
Alors $E \theta_{\theta} M_{n}^{4}<C^{4}<+\infty \quad$ pour tout $n \geq 1$.
Ainsi la condition A5 est vérifiée. a

Pour des études statistiques complémentaires de la précédente concernant les modèles autorégressifs à coefficients aléatoires, on peut consulter les articles de D.F. NICHOLLS and B.G. QUINN (1980, 1981 b), 1982).

BIBLIOGRAPHIE

H．AKAIKE－（1974）．＂Markovian representation of a stochastic process and its application to the analysis of autoregressive moving average process＂．Ann．Inst．Stat．Math．，Vol 26 ， p：363－387．

P。BILLINGSLEY－（1961）．＂Statistical inference for Markov process ${ }^{\infty}$ ．The University of Chicago Press．

G．E．P．BOX and G．M．JENKINS－（1970）．＂Time series forecasting and control＂．Holden－Day＂San Francisco．

B．M．BROWN－（1971）．＂Martingale central limit theorems＂． Ann．Math．Stat，，Vol 42 ，p：59－66．

M．E．EVANS and D．N．P．MURTHY－（1977）。＂Controllability of a class of discrete time bilinear systems＂．I．E．E．E．Trans．Automatic Control ，Vol AC－22，p：78－83．

M．E．EVANS and D．N．P．MURTHY－（1978）．＂Controllability of discrete time inhomogeneous bilinear systems＂．Automatica ，Vol 14 ， p：147－151．

P．D．FEIGIN－（1975）＂Maximum likelihood estimation for stochastic process－a martingale approach＂．Thesis Ph．D．Australian National University．

Y．FUNAHASHI－（1979）．＂An observable canonical form of discrete time bilinear systems＂．I．E．E．E．Trans．Automatic Control ，Vol AC－24／5 ，p：802－803．

M．M．GABR and T．SUBBA RAO－（1981）．＂The estimation and prediction of subset bilinear time series models with applications＂－ J．of Time series Anal．，Vol 2／3 ，p：155－171．
T．GOKA，T．J．TARN and J．ZABORSKY－（1973）．＂On the controllability of a class of discrete bilinear systems＂．Automatica ，VOl 9 ， p：615－622．

C．W．J．GRANGER and A．P．ANDERSEN－（1978）．＂An introduction to bi－ linear time series models＂．Vandenhoeck \＆Ruprecht－Göttingen．
C．W．J．GRANGER and A．P．ANDERSEN－（1978）．＂On the Invertibility of time series models＂．Stoch．Processes and their Appl．Vol 8 ， p：87－92．

D．GUEGAN－（I981）。＂Etude d＇un modèle non linéaire，le modèle superdiagonal d＇ordre 1 ＂．C．R．A．S．，t． 293 serie I ，p：95－98． E．J．HANNAN－（1970）．＂Multiple time series＂．J．Wiley ，New－York
 Stoch．Processes and their Appl．Vol 12，p：221－224．
S. HARA and K. FURUTA -(1977) . " Observability for bilinear systems " . Int. J. Control ,Vol 26/4 , D:559-572.
A. ISIDORI - (1973) . " Direct construction of minimal bilinear realizations from non-linear input-output maps " . I.E.E.E. Trans. Automatic Control, Vol 18 ,p:626-631.
R.E. KALMAN "P.L. FALB and M.A. ARBIB - (1969) . " Topics in Mathematical system theory " . Mc Graw-Hill Book Company.
R.CH. LIPTSER and A.N. SHYRIAEV -(1978) . " Statistics of Stochastic Processes " . Springer-Verlag.
R.R. MOHLER - (1973) . " Bilinear Control Process " . Academic Press New-York .
D.N.P. MURTHY - (1979) . " Controllability of a discrete time bilinear system " . I.E.E.E. Trans. Automatic Control ,Vol AC-24/6 , p:974-975.
D.F. NICHOLLS and B.G. QUINN - (1980) . " The estimation of random coefficient autoregressive models.I. " . J. of Time Series Anal. , Vol $1 / 1, p: 37-46$.
D.F. NICHOLLS and B.G. QUINN -(1981 a)) . " Multiple autoregressive models with random coefficients " . J. of Mult. Anal. ,Vol ll, p:185-198.
D.F. NICHOLLS and B. G. QUINN - (1981 b)) . "The estimation of random coefficient autoregressive models.II. " .J. of Time Series Anal. , Vol 2/3 ,p:185-203.
D.F. NICHOLLS and B.G. QUINN - (1982) . " Testing for the randomness of autoregressive coefficients " . J. of Time Series Anal. ,Vol 3/2, p :123-135.
D.T. PHAM et L.T. TRAN $-(1980)$. " Quelques résultats sur les modèles bilinéaires de séries chronologiques ". C.R.A.S. ,t;290 série A , p:335-338.
D.T. PHAM and L.T. TRAN $-(1981)$. " On the first order bilinear time series model " . J. Appl. Proba.
M.B. PRIESTLEY - (1981 a),b)) . " Spectral analysis and time series ". Academic Press ,New-Yofk.
B.G. QUINN - (1982) . "stationnarity and invertibility of simple bilinear models ". Stoch. Processes and their Appl. ,Vol 12. p:225-230.
T. SUBBA RAO - (1978) . " On the theory of bilinear time series models -I " . Technical Report N° 87,Department of Mathematics , University of Mancheter •
T. SUBBA RAO - (1979) . "On the theory of bilinear time series models -II ". Technical Report $N^{\circ} 121$, Department of Mathematics , University of Manchester.
T.J. TARN, D.L. ELLIOTT and T. GOKA - (1973) . " Controllability of discrete bilinear systems with bounded control ". I.E.E.E. Trans. Automatic Control, Vol AC-18, p:298-301.
H. TONG - (1982) "A note on a farkov bilinear stochastic prosess in discrete time". J. of Time Series Anal. Vol 2/4, p:225-230.
R.L. TWEEDIE - (1975) ." Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space " . Stoch. Processes and their Appl. Vol 3 ,p:385-403.
T. YOSHIKAWA and S.P. BHATMACHARYYA - (Y975) " Partial uniqueness : observability and input identifiability" . I.E.E.E. Trans. Automatic Control , Vol 20 , p:713-714.

- Derniexe page d'unc thése
vu

Grenoble, le 1/02/83

Le l'résident de la thèse

$$
\begin{aligned}
& \text { S. Va Ludir } \\
& \text { r VNは } \because 1 \therefore 1 \mathrm{~A}
\end{aligned}
$$

Vu, et permis d'iaptimer,

Grenoble, le Y !

Le Président de l'Université Scientifique et llédicale

Le Président
M. Tanche

Résumé : Le travail présenté concerne l'étude de différents modèles bilinéaires de systèmes dynamiques à temps discret dans leurs versions déterministe et stochastique . Dans le cas déterministe on précise des conditions assurant des propriétés de contrôlabilité, d'observabilité et d'identifiabilité partielle de l'entrée. Dans le cas stochastique on examine les problèmes d'existence d'un processus d'état stationnaire , d'existence des moments d'un tel processus ainsi que les problèmes statistiques de filtrage de l'état et d'estimation des paramètres .

Mots clefs :
Systèmes dynamiques à temps discret Modèles bilinéaires
Contrôlabilité , observabilité , identifiabilité Séries chronologiques
Stationnarité , filtrage , estimation
CHAPITRE IV. - •ETUDE DU MODELE BILINEAIRE 111
$Y_{t}=A Y_{t-1}+B Y_{t-1} u_{t}^{1}+C u_{t}^{2} ; X_{t}=H Y_{t}$.
I. - Etude des problèmes de nature déterministe. 111
II. - Caractéristiques du second-ordre et Stationnarités. 121
III. - Filtrage linéaire et filtrage non linéaire. 126
IV. - Etude d'un modèle particulier de série chronologique 132 unidimensionnelle.151

Je remercie vivement Monsieur B. VAN CUTSEN pour ℓ 'honneur qu'il me fait de présider le jury de cette thèse.

Je tiens à exprimer ma profonde reconnaissance à Monsieur A. LE BRETON qui a dinigé ce travail. Il m'a apporté un grand soutien par beaucoup de disponibilitē et de gentillesse. Ses conseiks et encouragements ont été déterminants. Pour tout cela je le prie d'accepter mes sincères remerciements.

Je remercie beaucoup Monsieur J.y. OUVRARD qui a accepté de critiquer la rédaction de ce travail et de participer au jury.

A Monsieur PHAM DINH TllAN j'adresse toute ma gratitude pour l'intérêt qu'il a porté à mon travail pour ses precieux conseils qui m'ont aidé à l'élaborer et pour sa participation au jury.

Enfin je remercie Madame STRANO qui a assuré la dactylographie du manuscrit et le personnel du service de reprographie du Laboratoine I.M.A.G. qui en a réalisé le tirage. Je salue leur goût pour le travail bien fait.

[^0]: If La shucture as second-ondre de y^{\prime}, ne conduit pas ici à une Leprésantation linéaire de ce processust et à la solution correspondante du problème de filtrage linéaire.

[^1]: it et du second-orcore.

