A. Benabdallah, Y. Dermenjian, and J. L. Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, Journal of Mathematical Analysis and Applications, vol.336, issue.2, pp.865-887, 2007.
DOI : 10.1016/j.jmaa.2007.03.024

URL : https://hal.archives-ouvertes.fr/hal-00017486

A. Benabdallah, Y. Dermenjian, and J. L. Rousseau, On the controllability of linear parabolic equations with an arbitrary control location for stratified media, Comptes Rendus Mathematique, vol.344, issue.6, pp.357-362, 2007.
DOI : 10.1016/j.crma.2007.01.012

URL : https://hal.archives-ouvertes.fr/hal-00132289

A. Benabdallah, P. Gaitan, and J. L. Rousseau, Stability of Discontinuous Diffusion Coefficients and Initial Conditions in an Inverse Problem for the Heat Equation, SIAM Journal on Control and Optimization, vol.46, issue.5, 2007.
DOI : 10.1137/050640047

URL : https://hal.archives-ouvertes.fr/hal-00016490

H. Chauris, J. L. Rousseau, B. Beaudoin, S. Propson, and A. Montanari, Inoceramid extinction in the Gubbio basin (northeastern Apennines of Italy) and relations with mid-Maastrichtian environmental changes, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.139, issue.3-4, pp.177-193, 1998.
DOI : 10.1016/S0031-0182(97)00150-8

URL : https://hal.archives-ouvertes.fr/hal-01143810

M. V. De-hoop, J. L. Rousseau, and B. Biondi, Symplectic structure of wave-equation imaging: a path-integral approach based on the double-square-root equation, Geophysical Journal International, vol.153, issue.1, pp.52-74, 2003.
DOI : 10.1046/j.1365-246X.2003.01877.x

M. V. De-hoop, J. L. Rousseau, and R. Wu, Generalization of the phase-screen approximation for the scattering of acoustic waves, Wave Motion, vol.31, issue.1, pp.43-70, 2000.
DOI : 10.1016/S0165-2125(99)00026-8

M. V. De-hoop, A. E. Malcolm, and J. L. Rousseau, Seismic wavefield 'continuation' in the single scattering approximation : A framework for Dip and Azimuth MoveOut, Can. Appl. Math. Q, vol.10, pp.199-237, 2002.

J. and L. Rousseau, Fourier-Integral-Operator Approximation of Solutions to First-Order Hyperbolic Pseudodifferential Equations I: Convergence in Sobolev Spaces, Communications in Partial Differential Equations, vol.43, issue.6, pp.867-906, 2006.
DOI : 10.1002/cpa.3160280403

URL : https://hal.archives-ouvertes.fr/hal-00003815

J. and L. Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, Journal of Differential Equations, vol.233, issue.2, pp.417-447, 2007.
DOI : 10.1016/j.jde.2006.10.005

URL : https://hal.archives-ouvertes.fr/hal-00105669

J. and L. Rousseau, On the convergence of some products of Fourier integral operators, Asymptotic Anal, vol.51, pp.189-207, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00019924

J. , L. Rousseau, H. Calandra, and M. V. De-hoop, 3D depth imaging with generalized screens : A subsalt case study, Geophysics, vol.68, pp.1132-1139, 2003.

J. , L. Rousseau, and M. V. De-hoop, Modeling and imaging with the scalar generalized-screen algorithms in isotropic media, Geophysics, vol.66, pp.1551-1568, 2001.

J. , L. Rousseau, and M. V. De-hoop, Scalar generalized-screen algorithms in transversely isotropic media with a vertical symmetry axis, Geophysics, vol.66, pp.1538-1550, 2001.

J. , L. Rousseau, and M. V. De-hoop, Generalized-screen approximation and algorithm for the scattering of elastic waves, Q. J. Mech. Appl. Math, vol.56, pp.1-33, 2003.

J. , L. Rousseau, and G. Hörmann, Fourier-integral-operator approximation of solutions to pseudodifferential first-order hyperbolic equations II : microlocal analysis, J. Math. Pures Appl, vol.86, pp.403-426, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00005759

A. E. Malcolm, M. V. De-hoop, and J. L. Rousseau, The applicability of dip moveout/azimuth moveout in the presence of caustics, GEOPHYSICS, vol.70, issue.1, pp.1-17, 2005.
DOI : 10.1190/1.1852785

B. Zadler, J. Le-rousseau, J. Scales, and M. Smith, Resonant Ultrasound Spectroscopy: theory and application, Geophysical Journal International, vol.156, issue.1, pp.154-169, 2004.
DOI : 10.1111/j.1365-246X.2004.02093.x

URL : http://gji.oxfordjournals.org/cgi/content/short/156/1/154

A. Benabdallah, Y. Dermenjian, and J. L. Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient, and applications, Comptes Rendus M??canique, vol.334, issue.10, pp.582-586, 2006.
DOI : 10.1016/j.crme.2006.07.001

URL : https://hal.archives-ouvertes.fr/hal-00463326

J. and L. Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, Comptes Rendus Mathematique, vol.344, issue.3, pp.175-180, 2007.
DOI : 10.1016/j.crma.2006.12.011

URL : https://hal.archives-ouvertes.fr/hal-00105669

J. and L. Rousseau, FIO-product representation of solutions to symmetrizable hyperbolic systems, PAMM, vol.56, issue.1, 2006.
DOI : 10.1002/pamm.200700905

[. Khodja, A. Benabdallah, and C. Dupaix, Null-controllability of some reaction???diffusion systems with one control force, Journal of Mathematical Analysis and Applications, vol.320, issue.2, pp.928-943, 2006.
DOI : 10.1016/j.jmaa.2005.07.060

URL : https://hal.archives-ouvertes.fr/hal-00474055

[. Aubin and I. Ekeland, Applied Non Linear Analysis, 1984.

L. [. Alessandrini and . Escauriaza, Null-controllability of one-dimensional parabolic equations, ESAIM: Control, Optimisation and Calculus of Variations, vol.14, issue.2, 2007.
DOI : 10.1051/cocv:2007055

]. S. Agm65 and . Agmon, Lectures on Elliptic Boundary Values Problems, 1965.

]. Aub79 and . Aubin, Applied Functional Analysis, 1979.

]. V. Bar00 and . Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim, vol.42, pp.73-89, 2000.

]. M. Bel03 and . Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization, Asymptotic Anal, vol.35, pp.257-279, 2003.

]. Ber94 and . Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys, vol.114, pp.185-200, 1994.

M. [. Bukhgeim and . Klibanov, Global uniqueness of class of multidimensional inverse problems, Soviet Math. Dokl, vol.24, pp.244-247, 1981.

M. [. Benabdallah and . Naso, Null controllability of a thermoelastic plate, Abstract and Applied Analysis, vol.7, issue.11, pp.585-599, 2002.
DOI : 10.1155/S108533750220408X

]. Bon99 and . Bony, Sur l'inégalité de Fefferman-Phong, Sémin. Équ. Dériv. Partielles, École Polytech, 1999.

J. [. Baudouin and . Puel, Uniqueness and stability in an inverse problem for the Schr??dinger equation, Inverse Problems, vol.23, issue.3, pp.1537-1554, 2002.
DOI : 10.1088/0266-5611/23/3/C01

]. H. Bre83 and . Brezis, Analyse Fonctionnelle, 1983.

]. A. Bre00 and . Bressan, Hyperbolic Systems of Conservation Laws : The One Dimensional Cauchy Problem, 2000.

]. J. Cla85 and . Claerbout, Imaging the Earth's Interior, Blackwell Scientific Publications, 1985.

]. H. Cor95 and . Cordes, The Technique of Pseudodifferential Operators, 1995.

A. [. Chazarain and . Piriou, Introduction to the Theory of Linear Partial Differential Equations, 1982.

R. [. Calderón and . Vaillancourt, A Class of Bounded Pseudo-Differential Operators, Proc. Nat. Acad. Sci. U.S.A, pp.1185-1187, 1972.
DOI : 10.1073/pnas.69.5.1185

]. M. De-hoop and A. T. De-hoop, Elastic wave up/down decomposition in inhomogeneous and anisotropic media: an operator approach and its approximations, Wave Motion, vol.20, issue.1, pp.57-82, 1994.
DOI : 10.1016/0165-2125(94)90032-9

E. [. Doubova, M. Fernandez-cara, E. Gonzales-burgos, and . Zuazua, On the Controllability of Parabolic Systems with a Nonlinear Term Involving the State and the Gradient, SIAM Journal on Control and Optimization, vol.41, issue.3, pp.798-819, 2002.
DOI : 10.1137/S0363012901386465

L. [. Duistermaat and . Hörmander, Fourier integral operators. II, Acta Mathematica, vol.128, issue.0, pp.183-269, 1972.
DOI : 10.1007/BF02392165

A. [. Doubova, J. Osses, and . Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM: Control, Optimisation and Calculus of Variations, vol.8, pp.621-661, 2002.
DOI : 10.1051/cocv:2002047

S. [. Fernández-cara and . Guerrero, Global Carleman Inequalities for Parabolic Systems and Applications to Controllability, SIAM Journal on Control and Optimization, vol.45, issue.4, pp.1395-1446, 2006.
DOI : 10.1137/S0363012904439696

E. [. Fernández-cara, . Zuazuafcz02-]-e, E. Fernández-cara, and . Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Analyse non lin On the null controllability of the one-dimensional heat equation with BV coefficients, Comput. Appl. Math, vol.17, issue.21, pp.583-616, 2000.

O. [. Fursikov, . Yu, and . Imanuvilov, Controllability of evolution equations, Seoul National University, vol.34, 1996.

]. D. Fkg05 and N. Fujiwara, Kumano-go. Smooth functional derivatives in feynman path integrals by time slicing approximation, Bull. Sci. Math, vol.129, pp.57-79, 2005.

D. [. Fefferman and . Phong, On positivity of pseudo-differential operators, Proc. Nat
DOI : 10.1073/pnas.75.10.4673

J. [. Fabre, E. Puel, and . Zuazua, Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.31, issue.01, pp.31-61, 1995.
DOI : 10.1007/978-1-4612-5561-1

]. W. Gau97 and . Gautschi, Numerical Analysis : an Introduction, 1997.

]. J. Gaz78 and . Gazdag, Wave equation migration with the phase-shift method, Geophysics, vol.43, pp.1342-1351, 1978.

P. [. Gazdag and . Sguazzero, Migration of seismic data by phase shift plus interpolation, GEOPHYSICS, vol.49, issue.2, pp.124-131, 1984.
DOI : 10.1190/1.1441643

J. [. Grigis and . Sjöstrand, Microlocal Analysis for Differential Operators, 1994.
DOI : 10.1017/CBO9780511721441

]. V. Gui85 and . Guillemin, On some results of Gel'fand in integral geometry, Amer. Math. Soc, pp.149-155, 1984.

C. [. Hairer, G. Lubich, and . Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, 2002.

S. [. Hairer, G. Nørsett, and . Wanner, Solving Ordinary differential equations I : nonstiff problems, 1993.
DOI : 10.1007/978-3-662-12607-3

]. L. Hör63 and . Hörmander, Linear Partial Differential Operators, 1963.

]. L. Hör71 and . Hörmander, Fourier integral operators I, Acta Math, vol.127, pp.79-183, 1971.

]. L. Hör79 and . Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math, vol.32, pp.359-443, 1979.

]. L. Hör85a and . Hörmander, The Analysis of Linear Partial Differential Operators, volume III, 1985.

]. L. Hör85b and . Hörmander, The Analysis of Linear Partial Differential Operators, volume IV, 1985.

]. L. Hör90 and . Hörmander, The Analysis of Linear Partial Differential Operators, volume I, 1990.

]. C. Huy90 and . Huygens, Traité de la Lumière, 1962.

]. I. Hwa87 and . Hwang, The L 2 -boundedness of pseudodifferential operators, Trans. Amer. Math. Soc, vol.302, pp.55-76, 1987.

]. O. Ima01, . Yu, and . Imanuvilov, Remarks on the exact controllability of Navier-Stokes equations, ESAIM : Control Optim. Calc. Var, vol.6, pp.39-72, 2001.

]. V. Isa93 and . Isakov, Carleman type estimates in an anisotropic case and applications, J. Differential Equations, vol.105, pp.217-238, 1993.

]. V. Isa98, T. Isakov, H. Ichinose, and . Tamura, Inverse problems for partial differential equations Note on the norm convergence of the unitary trotter product formula, Lett. Math. Phys, vol.70, pp.65-81, 1998.

. [. Yu, M. Imanuvilov, and . Yamamoto, Lipschitz stability in inverse problems by Carleman estimate, Inverse problems, vol.14, pp.1229-1245, 1998.

. [. Yu, M. Imanuvilov, and . Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Lecture Notes in Pure and Applied Mathematics, vol.218, pp.113-137, 2001.

]. T. Kat70 and . Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo, Sec. I, vol.17, pp.241-258, 1970.

]. T. Kat80 and . Kato, Perturbation Theory for Linear Operators, 1980.

]. H. Kgt79, K. Kumano-go, and . Taniguchi, Fourier integral operators of multi-phase and the fundamental solution for a hyperbolic system, Funkcialaj Ekvacioj, vol.22, pp.161-196, 1979.

]. H. Kgtt78, K. Kumano-go, Y. Taniguchi, and . Tozaki, Multi-products of phase functions for Fourier integral operators with an application, Comm. Partial Differential Equations, vol.3, issue.4, pp.349-380, 1978.

]. H. Kkg81 and . Kitada, Kumano-go. A family of Fourier integral operators and the fundamental solultion for a Schrödinger equation, Osaka J. Math, vol.18, pp.291-360, 1981.

]. M. Kli04 and . Klibanov, Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation by a Carleman estimate, Inverse problems, vol.20, pp.1003-1032, 2004.

]. P. Lax57 and . Lax, Asymptotic solutions of oscillatory initial value problems, Duke Mathematical Journal, vol.24, issue.4, pp.627-646, 1957.
DOI : 10.1215/S0012-7094-57-02471-7

L. [. Lax and . Nirenberg, On stability for difference schemes; a sharp form of g??rding's inequality, Communications on Pure and Applied Mathematics, vol.17, issue.4, pp.473-492, 1966.
DOI : 10.1002/cpa.3160190409

L. [. Lebeau and . Robbiano, Contr??le Exact De L??quation De La Chaleur, Communications in Partial Differential Equations, vol.52, issue.1-2, pp.335-356, 1995.
DOI : 10.1016/0022-0396(87)90043-X

L. [. Lebeau and . Robbiano, Stabilisation de l????quation des ondes par le bord, Duke Mathematical Journal, vol.86, issue.3, pp.465-491, 1997.
DOI : 10.1215/S0012-7094-97-08614-2

E. [. Labbé and . Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems & Control Letters, vol.55, issue.7, pp.597-609, 2006.
DOI : 10.1016/j.sysconle.2006.01.004

]. G. Lz98a, E. Lebeau, and . Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal, vol.141, pp.297-329, 1998.

]. A. Lz98b, E. Lopez, and . Zuazua, Some new results to the null controllability of the 1-d heat equation, Séminaire sur les Équations aux Dérivées Partielles, 1997.

]. A. Mar02 and . Martinez, An Introduction to Semiclassical and Microlocal Analysis, 2002.

J. [. Melin and . Sjöstrand, Fourier integral operators with complex-valued phase functions, pp.120-223, 1974.
DOI : 10.1007/BF01350124

J. [. Melin and . Sjöstrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Communications in Partial Differential Equations, vol.130, issue.1973, pp.313-400, 1976.
DOI : 10.1080/03605307608820014

K. [. Métivier and . Zumbrun, Hyperbolic boundary value problems for symmetric systems with variable multiplicities, Journal of Differential Equations, vol.211, issue.1, pp.61-134, 2005.
DOI : 10.1016/j.jde.2004.06.002

]. L. Pay75 and . Payne, Improperly Posed Problems in Partial Differential Equations, SIAM, 1975.

]. A. Paz83 and . Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983.

]. D. Rus73 and . Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Appl. Math, vol.52, pp.189-221, 1973.

]. C. Sdh02, M. V. Stolk, and . De-hoop, Microlocal analysis of seismic inverse scattering in anisotropic , elastic media, Comm. Pure Appl. Math, vol.55, pp.261-301, 2002.

M. [. Stolk, . De, and . Hoop, Modeling of Seismic Data in the Downward Continuation Approach, SIAM Journal on Applied Mathematics, vol.65, issue.4, pp.1388-1406, 2005.
DOI : 10.1137/S0036139904439545

]. C. Sdh06, M. V. Stolk, and . De-hoop, Seismic inverse scattering in the downward continuation approach, Wave Motion, vol.43, pp.579-598, 2006.

]. P. Sfdlfk90, J. T. Stoffa, R. M. Fokkema, W. P. De-luna-freire, and . Kessinger, Split-step Fourier migration, Geophysics, vol.55, pp.410-421, 1990.

]. M. Shu01 and . Shubin, Pseudodifferential Operators and Spectral Theory, 2001.

]. H. Smi98 and . Smith, A parametrix construction for wave equations with C 1,1 coefficients, Ann. Inst. Fourier, vol.48, pp.797-835, 1998.

[. Raymond, Elementary Introduction to the Theory of Pseudodifferential Operators, 1991.

]. R. Sto78 and . Stolt, Migration by Fourier transform, Geophysics, vol.43, pp.23-48, 1978.

]. C. Sto04 and . Stolk, A pseudodifferential equation with damping for one-way wave propagation in inhomogeneous media, Wave Motion, vol.40, issue.2, pp.111-121, 2004.

]. C. Sto05 and . Stolk, Parametrix for a hyperbolic intial value problem with dissipation in some region, Asymptotic Anal, vol.43, issue.12, pp.151-169, 2005.

]. M. Tay75 and . Taylor, Reflection of singularities of solutions to systems of differential equations, Comm. Pure Appl. Math, vol.28, pp.457-478, 1975.

]. M. Tay81 and . Taylor, Pseudodifferential Operators, 1981.

]. F. Trè80a and . Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, 1980.

]. F. Trè80b and . Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, 1980.

]. R. Vai70 and . Vaillancourt, A simple proof of Lax-Nirenberg Theorems, Comm. Pure Appl. Math, vol.23, pp.151-163, 1970.

J. [. Yamamoto and . Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, vol.17, issue.4, pp.1181-1202, 2001.
DOI : 10.1088/0266-5611/17/4/340

]. J. Zab92 and . Zabczyk, Mathematical Control Theory : an Introduction, Birkhauser, System & Control : Foundations & Applications, 1992.

]. E. Zua06 and . Zuazua, Control and numerical approximation of the wave and heat equations, International Congress of Mathematicians, pp.1389-1417, 2006.

]. C. Zui83 and . Zuily, Uniqueness and Non Uniqueness in the Cauchy Problem, Birkhauser, 1983.