Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique

Marc Durufle 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this thesis, time-harmonic Maxwell's equations are our main interest,
in order to compute accurately the radar cross section of electromagnetic targets.
To have a good precision in large-scale experiments, higher-order finite element methods are used.

In the scalar case, hexahedral spectral finite element, with mass lumping,
provide a fast matrix-vector product with a low storage.
In the vectorial case, Nedelec's first family hexahedral element
doesn't lead to mass lumping, but a fast matrix-vector can be found.
Numerical results in 3-D show the efficiency of this algorithm.

The case, where the geometry is invariant under rotation, is treated.
This symmetry leads to solve a sequence of 2-D independent problems.
A higher-order finite element method is proposed. This method
is coupled with higher-order boundary element method.
Complete list of metadatas

https://pastel.archives-ouvertes.fr/tel-00068590
Contributor : Marc Duruflé <>
Submitted on : Friday, May 12, 2006 - 2:01:20 PM
Last modification on : Friday, April 12, 2019 - 10:56:14 AM
Long-term archiving on : Monday, September 17, 2012 - 2:25:51 PM

Identifiers

  • HAL Id : tel-00068590, version 1

Collections

Citation

Marc Durufle. Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique. Modélisation et simulation. ENSTA ParisTech, 2006. Français. ⟨tel-00068590⟩

Share

Metrics

Record views

1010

Files downloads

3314