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Abstract

The goal of the work reported in this dissertation is to develop methods for the acquisition and re-
production of high quality digital colour images. To reach this goal it is necessary to understand and
control the way in which the different devices involved in the entire colour imaging chain treat colours.
Therefore we addressed the problem ofcolorimetric characterisationof scanners and printers, provid-
ing efficient and colorimetrically accurate means of conversion between a device-independent colour
space such as the CIELAB space, and the device-dependent colour spaces of a scanner and a printer.

First, we propose a new method for the colorimetric characterisation of colour scanners. It consists
of applying a non-linear correction to the scanner RGB values followed by a 3rd order 3D polyno-
mial regression function directly to CIELAB space. This method gives very good results in terms of
residual colour differences. The method has been successfully applied to several colour image acqui-
sition devices, including digital cameras. Together with other proposed algorithms for image quality
enhancements it has allowed us to obtain very high quality digital colour images of fine art paintings.

An original method for the colorimetric characterisation of a printer is then proposed. The method
is based on a computational geometry approach. It uses a 3D triangulation technique to build a tetra-
hedral partition of the printer colour gamut volume and it generates a surrounding structure enclos-
ing the definition domain. The characterisation provides the inverse transformation from the device-
independent colour space CIELAB to the device-dependent colour space CMY, taking into account
both colorimetric properties of the printer, and colour gamut mapping.

To further improve the colour precision and colour fidelity we have performed another study con-
cerning the acquisition of multispectral images using a monochrome digital camera together with a
set ofK > 3 carefully selected colour filters. Several important issues are addressed in this study.
A first step is to perform a spectral characterisation of the image acquisition system to establish the
spectral model. The choice of colour chart for this characterisation is found to be very important, and
a new method for the design of an optimised colour chart is proposed. Several methods for an opti-
mised selection of colour filters are then proposed, based on the spectral properties of the camera, the
illuminant, and a set of colour patches representative for the given application. To convert the camera
output signals to device-independent data, several approaches are proposed and tested. One consists
of applying regression methods to convert to a colour space such as CIEXYZ or CIELAB. Another
method is based on the spectral model of the acquisition system. By inverting the model, we can es-
timate the spectral reflectance of each pixel of the imaged surface. Finally we present an application
where the acquired multispectral images are used to predict changes in colour due to changes in the
viewing illuminant. This method of illuminant simulation is found to be very accurate, and it works
well on a wide range of illuminants having very different spectral properties. The proposed methods
are evaluated by their theoretical properties, by simulations, and by experiments with a multispectral
image acquisition system assembled using a CCD camera and a tunable filter in which the spectral
transmittance can be controlled electronically.





Resuḿe

Le but de ce travail est de d´evelopper des m´ethodes sp´ecifiques pour l’acquisition et la reproduction
d’images num´eriques de tr`es haute qualit´e colorimétrique. Pour parvenir `a ce but, il est n´ecessaire
de maˆıtriser toute la chaˆıne du traitement de l’information couleur. La premi`ere partie de cette ´etude
porte plus sp´ecifiquement sur le probl`eme de la caract´erisation colorim´etrique des scanners et des
imprimantes, en nous r´eférantà un espace colorim´etrique indépendant : l’espace CIELAB.

L’algorithme propos´e pour la caract´erisation colorim´etrique d’un scanner est le suivant : une mire
de couleurs standardis´ee est d’abord num´erisée, puis la r´eponse RVB du scanner est compar´ee avec
les valeurs colorim´etriques CIELAB de chaque ´echantillon de la mire. A partir de ce jeu de donn´ees,
nous mod´elisons la réponse du scanner par une m´ethode de r´egression polynomiale d’ordre 3. Une
des originalités de notre approche est d’optimiser directement dans l’espace CIELAB, sans passer
par l’intermédiaire de l’espace CIEXYZ : l’erreur ainsi minimis´ee correspond assez bien `a l’erreur
visuelle.

Nous avons ensuite elabor´e une méthode originale pour la caract´erisation colorim´etrique d’une
imprimante couleur. Elle met en œuvre des techniques de g´eométrie algorithmique 3D permettant
la conversion de tout point de couleur sp´ecifié dans l’espace colorim´etrique CIELAB, en un point
dans l’espace de couleurs CMJ propre `a l’imprimante. Elle prend aussi en compte le probl`eme
des couleurs non imprimables. Nous construisons deux structures tridimensionnelles partitionnant
l’espace en deux ensembles de t´etraèdres, la structure interne et la structure externe. La structure
interne couvre l’ensemble des couleurs reproductibles par l’imprimante, appel´e “colour gamut”, et
l’union des deux structures couvre enti`erement le domaine de d´efinition de l’espace CIELAB. Ces
structures nous permettent de d´eterminer facilement si une couleur est `a l’intérieur où à l’extérieur du
solide des couleurs, d’appliquer tout type de proc´edé de “gamut mapping” si n´ecessaire, et puis de cal-
culer par interpolation t´etraédrique non-uniforme les valeurs CMJ correspondantes. Nous ´etablissons
ainsi le modèle inverse de l’imprimante.

Dans une deuxi`eme partie, pour atteindre une pr´ecision et une fid´elité des couleurs encore plus
grandes, nous avons men´e uneétude sur l’acquisition d’images multispectrales `a l’aide d’une cam´era
numérique professionnelle et d’un ensemble de filtres chromatiques s´electionnés. Ainsi nous pouvons
reconstruire en chaque pixel la r´eflectance spectrale du point de la surface de l’objet imag´e en ce pixel.
Dans cette ´etude nous proposons plus particuli`erement des m´ethodes nouvelles pour la caract´erisation
spectrale du syst`eme d’acquisition d’images, ainsi que pour la s´election d’un ensemble de filtres. Cette
sélection est optimis´ee pour un ensemble donn´e : caméra, illuminant, et r´eflectances spectrales. Nous
atteignons ainsi une tr`es bonne qualit´e spectrale et colorim´etrique. En particulier nous d´emontrons
que l’estimation des couleurs d’une sc`ene sous n’importe quel illuminant est nettement meilleure en
utilisant des images multispectrales, qu’avec une approche classique bas´ee sur des images couleur.
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Chapter 1
Introduction

1.1 Motivation

The use of colour in imaging continues to grow at an ever increasing pace. Every day, most people
in the industrialised parts of the world are users of colour images that come from a wide range of
imaging devices; for example colour photographs, magazines, and television at home, computers with
colour displays, and colour printers in the office.

As long as the colours are found to be approximatively as expected, people are generally happy with
their images. However, with the increased use of colour images, people’s quality requirements also
have increased considerably. Just a few years ago, a computer graphics system capable of producing
256 different colours was more than enough for most users, while today, most computers that are sold
havetrue colourcapabilities, being able to produce 16.7 million1 colours.

Furthermore, several professions have particular needs for high-quality colour images. Artists are very
concerned about colours in their works, and so are the art historians and curators studying their works.
The printing, graphic arts, and photography industries have been concerned about colour imaging for
a long time. Most of the colour imaging standards and equipment used today have their roots in these
industries. But the past twenty years have seen the field of digital colour imaging emerging from spe-
cialised scientific applications into the mainstream of computing. Colour is also extremely important
in several other fields, such as the textile and clothing industry, automotive industry, decoration and
architecture.

Digital colour imaging systems process electronic information from various sources: images may
come from the Internet, a remote sensing device, a local scanner, etc. After processing, a document is
usually compressed and transmitted to several places via a computer network for viewing, editing or
printing. To achieve colour consistency throughout such a widely distributed system, it is necessary
to understand and control the way in which the different devices involved in the entire colour imaging

1Note that this number represents only the number of different colours that can be specified to the monitor (28 �28 �28 =
16777216); the actual number of distinguishable resulting colours is much lower, approximatively on the order of 1 million
(Pointer and Attridge, 1998).
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chain treat colours. Each scanner, monitor, printer, or other colour imaging device, senses or displays
colour in a different, device-dependent, way. One approach to exchanging images between these
devices is to calibrate each colour image acquisition and reproduction device to a device-independent
colour space. The exchange of images can then be done in this colour space, which should conform
to international standards.

However, colours represent an important but nevertheless limited aspect of the objects that surround
us. They correspond to the human perception of its surface under given light conditions. For the
needs of, for example, an art curator wanting to control any changes or ageing of the materials in a
fine arts painting, or a publisher wanting extra high-fidelity colour reproduction, it becomes necessary
to provide a more complete spectral analysis of the objects. This requires technology and devices
capable of acquiring multispectral images. A multispectral image may also be used to reproduce an
image of the object as it would have appeared under a given illuminant.

In this research, we have investigated several of the aspects mentioned above. We have developed
novel algorithms for the colorimetric characterisation of scanners and printers providing efficient and
colorimetrically accurate means of conversion between a device-independent colour space such as
CIELAB, and the device-dependent colour spaces of a scanner and a printer. Furthermore, we have
developed algorithms for multispectral image capture using a CCD camera with carefully selected
optical filters. The developed algorithms have been used for several applications, such as fine-arts
archiving and colour facsimile.

1.2 Dissertation outline

This thesis is organised as follows. Chapter 2 provides an introduction to light, objects, human colour
vision, and the interaction between them, gives an introduction to important elements of colorimetry,
and finally presents the subject of colour imaging.

In Chapter 3, a methodology for the colorimetric characterisation of colour scanners is proposed. It
consists of applying a non-linear correction to the scanner RGB values followed by a 3rd order 3D
polynomial regression function directly to CIELAB space. This method gives very good results in
terms of residual colour differences. This is partly due to the fact that the RMS error that is minimised
in the regression corresponds to�Eab which is well correlated to visual colour differences. The
method has been successfully applied to several colour image acquisition devices.

In Chapter 4, various techniques for the digital acquisition and processing of high quality and high
definition colour images using a CCD camera are developed. The techniques have been applied to
fine arts paintings on several occasions,e.g.for the making of a CDROM on the French painter Jean-
Baptiste Camille Corot (1796-1876).

A novel method for the colorimetric characterisation of a printer is proposed in Chapter 5. The method
is based on a computational geometry approach. It uses a 3D triangulation technique to build a tetra-
hedral partition of the printer colour gamut volume and it generates a surrounding structure enclos-
ing the definition domain. The characterisation provides the inverse transformation from the device-
independent colour space CIELAB to the device-dependent colour space CMY, taking into account
both colorimetric properties of the printer, and colour gamut mapping.
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We construct two 3D structures which provide us with a partition of the space into two sets of non-
intersecting tetrahedra, an inner structure covering the printer gamut (i.e. the full set of the printable
colors), and a surrounding structure, the union of these two structures covering the entire definition
domain of the CIELAB space. These 3D structures allow us to easily determine if a CIELAB point
is inside or outside the printer color gamut, to apply a gamut mapping technique when necessary, and
then to compute by non-regular tetrahedral interpolation the corresponding CMY values. We establish
thus an empirical inverse printer model. This algorithm has been protected by a patent, and is now
transferred to industry and used in commercial colour management software.

In Chapter 6, we describe a system for the acquisition of multispectral images using a CCD camera
with a set of optical filters. Several important issues are addressed in this study.

First, a spectral model of the acquisition system is established, and we propose methods to estimate
its spectral sensitivities by capturing a colour chart with patches of known spectral reflectance and
by inverting the resulting system of linear equations. By simulations we evaluate the influence of
acquisition noise on this process. The choice of colour chart is found to be very important, and a
method for the design of an optimised colour chart is proposed.

We further discuss how the surface spectral reflectance of the imaged objects may be reconstructed
from the camera responses. We perform a thorough statistical analysis of different databases of spec-
tral reflectances, and we use the resulting statistical information along with the spectral properties of
the camera and the illuminant to choose a set of optimal optical filters for a given application.

Finally we present an application where the acquired multispectral images are used to predict changes
in colour due to changes in the viewing illuminant. This method of illuminant simulation is found to be
very accurate, and applicable to a wide range of illuminants having very different spectral properties.

In Chapter 7 the theoretical models and simulations of the previous chapter are validated in practice.
An experimental multispectral camera was assembled using a professional monochrome CCD camera
and an optical tunable filter. To be able to recover colorimetric and spectrophotometric information
about the imaged surface from the camera output signals, two main approaches are proposed. One
consists of applying an extended version of the colorimetric scanner characterisation method described
above to convert from the camera outputs to a device-independent colour space such as CIEXYZ or
CIELAB. Another method is based on the spectral model of the acquisition system. By inverting the
model, we can estimate the spectral reflectance of each pixel of the imaged surface.

Finally, Chapter 8 concludes this dissertation and contains a discussion of possible future work based
on the results reported here.
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1.3 Notation used throughout this document

Vectors are represented in lowercase boldface letters,e.g.a and�. They are generally written as
column vectors,

a =

2
6664
a1
a2
...
aN

3
7775 :

Matrices are represented using uppercase boldface letters,e.g.A and�. The entry of matrixA in the
ith line and thejth column is generally denotedaij . This may also be expressed as

A = [aij ] =

2
6664
a11 a12 � � � a1M
a21 a22 � � � a2M
...

...
. . .

...
aN1 aN2 � � � aNM

3
7775 :

An (N �M) matrix hasN lines andM columns.

The transpose of a matrix is represented with at in superscipt,e.g.At.

The identity matrix of size(N �N) is denotedIN .

A vector space spanned by theP column vectors of a matrixP = [p1p2 : : :pP ] is denoted therange
of P, R(P).

rank(P) is the dimension ofR(P).

Unless otherwise stated, the normkxk of aN -vector is the 2-norm, defined as
�PN

i=1 x
2
i

�1=2
.

The pseudoinverse is denoted by the� sign in superscript,e.g.A�.

Note that a slightly different notation is used in Chapter 5 where uppercase boldface letters are used
to denote vectors, and where the inner product of two vectors is denotedA �B instead ofatb which
would be the case in the rest of the document.



Chapter 2
Colour and imaging

The increased use of colour images has brought with it new challenges and prob-
lems. In order to meaningfully record and process colour images, it is essential to
understand the interaction between light, objects, and human colour vision and fur-
thermore the capabilities and limitations of colour imaging devices. In this chapter
we present an overview of these basics, without in any way aspiring to compete with
comprehensive textbooks on these subjects (LeGrand, 1957, Kowaliski, 1990, Sève,
1996, Wyszecki and Stiles, 1982, Hunt, 1995).
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2.1 Introduction

What is colour? This apparently simple question turns out to be rather difficult to answer concisely.
The distinguished researcher Lars Sivik expresses it as follows (Sivik, 1997).

Blessed are the “naive”, those who do not know anything about color in a so-called
scientific meaning — for them color is no problem. Color is as self-evident as most other
things and phenomena in life, like night and day, up and down, air and water. And all
seeing humans know what color is. It constitutes, together with form, our visual world.
I have earlier used the analogy with St. Augustine’s sentence about time: “Everybody
knows what time is — until you ask him to explain what it is.” It is the same with color.

Misunderstandings are quite common when it comes to colour. One reason is that the word colour is
given so many meanings — paint, CIE-values, RGB-values, spectral radiation, perceptual sensations,
colour system notation, etc. In the following sections we will discuss some of the important aspects
of colour and the relations between them. We establish a scientific framework for the quantisation of
colour. As a starting point we cite the most widely accepted technical definition of colour, given by
the Committee on Colorimetry of the Optical Society of America in 1940, as cited in Nimeroff (1972).

Color consists of the characteristics of light other than spatial and temporal inhomo-
geneities; light being that aspect of radiant energy of which a human observer is aware
through the visual sensations which arise from the stimulation of the retina of the eye.

We see that this definition relates thepsychologicalentities colour and light to thephysicallydefined
radiant energy in the part of the spectrum having a visual effect on the observer. The termpsy-
chophysicsis thus often employed in colour science, meaning the science dealing with the relation
between the physical attributes of stimuli and the resulting sensations.

We will start this chapter by a presentation of the physical properties of light and surfaces in Sec-
tion 2.2. Coloured light has varying radiant energy for different wavelengths. Coloured surfaces
transmit and reflect different amounts of the incident light for different wavelengths. The spectral
interaction between light and surfaces represents the basis for all representations of colour. Another
very important subject when describing colour is human colour vision, which will be discussed briefly
in Section 2.3. We then proceed to an introduction to colorimetry, the study of numerical treatment of
colours, in Section 2.4. Having defined these basics of colour, we proceed to issues related to colour
imaging in Section 2.5, in particular colour management and colorimetric characterisation of imaging
devices.
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2.2 Light and surfaces

Aristotle viewed all colour to be the product of a mixture of white and black, and this was the prevail-
ing belief until Sir Isaac Newton’s prism experiments provided the scientific basis for the understand-
ing of colour and light (Newton, 1671). Newton showed that a prism could break up white light into
a range of colours, which he called the spectrum (see Figure 2.1), and that the recombination of these

orange
yellow

red

green 
blue
indigo
violet

glass prism

window
sunlight
white

shade

hole

white
card

spectrum

Figure 2.1:Newton’s experiment with sunlight and a prism which led to the realisation that the colour
of light depended on its spectral composition.

spectral colours re-created the white light. Although he recognised that the spectrum was continuous,
Newton used the seven colour names red, orange, yellow, green, blue, indigo, and violet for different
parts of the spectrum by analogy with the seven notes of the musical scale. He realised that colours
other than those in the spectral sequence do exist, but noted that (Newton, 1730, p.158)

All the Colours in the Universe which are made by Light, and depend not on the Power
of Imagination, are either the Colours of homogeneal Lights[i.e., spectral colours], or
compounded of these,: : :

Light is an important aspect of colour. But equally important is the notion of the colour ofobjects
such as green grass, red roses, yellow submarines, etc. The colour of an object is strongly dependent
on its spectral reflectance, that is, the amount of the incident light that is reflected from the surface for
different wavelengths.1 If we represent the spectral radiance of the illuminant by the functionl(�), �
being the wavelength, and the spectral reflectance in a given surface point of an object byr(�), the

1Note that a more precise term might bespectral reflectance factor. In this document we will not distinguish between
the spectral reflectance and the spectral reflectance factor (CIE 17.4, 1989, CIE 15.2, 1986, p.23-24).
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radiance of the light reflected from this surface pointf(�) is, by definition of reflectance, given in
Equation 2.1 and illustrated in Figure 2.2.

f(�) = l(�)r(�) (2.1)

Note that the model presented in Equation 2.1 is limited in several respects. It does not take into
account geometrical effects, for example that the spectral reflectance of an object may depend on
the angles of incident light and of observation. One important example of this effect is specular
reflection, that is, for a given combination of angle of incidence, surface orientation, and observation
angle, the incident light is almost completely reflected, while for other angles, this is not the case.
To take into account such effects, the spectral bidirectional reflectance function (SBDRF) should be
considered (Nicodemuset al., 1977, Wyszecki and Stiles, 1982, Souami, 1993, Souami and Schmitt,
1995). Additional limitations of this model are its inability to account for effects such as fluorescence,
polarisation, sub-surface penetration, etc. However, with these limitations in mind, the model of
interaction between light and objects presented in Equation 2.1 turns out to be very useful for our
further analysis.
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Figure 2.2: A simple spectral model for the interaction between light and surfaces. The spectral
radiancef(�) of the light reflected from a surface with a spectral reflectancer(�), illuminated by an
illuminant with spectral radiancel(�) is given by spectralwise multiplication,f(�) = l(�)r(�).
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2.3 Colour vision

In the human eye, an image is formed by light focused onto the retina by the eye’s lens. The retina
contains two main types of light-sensitive cells, therods and thecones. The rods are responsible
for night (scotopic) vision and the cones for daylight (photopic) vision under normal levels of illu-
mination. There are three types of cones, namedL, M , andS, which are sensitive mainly to light
containing long, middle and short wavelengths, respectively (see Figure 2.3). As we will see in Sec-
tion 2.4, this is the physiological foundation of the so-calledvisual trivariancewhich is the basis for
our perception of colour, and thus also the basis for the colorimetry discussed in this chapter.
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Figure 2.3:Normalised spectral sensivity curvesl(�), m(�), ands(�), of the three different types of
cones,L, M , andS, being responsible for photopic vision, according to Stockmanet al.(1993).

If f(�) is the spectral distribution of light incident on a given location on the retina, the responses of
the three cones can be represented as the 3-component vectorc = [c1c2c3]

t where

ci =

Z �max

�min

f(�)si(�)d�; i = 1; 2; 3; (2.2)

andsi(�) denotes the spectral sensitivity of theith type of cone, and�min; �max denote the interval of
wavelengths of the visible spectrum outside of which the spectral sensitivities are all zero.

The scope of this dissertation brings us to pay special attention to the colour of nonluminous, reflective
objects. For such objects, the spectral distributionf(�) of the light incident on the retina is the product
of the spectral reflectancer(�) of the object surface and the spectral radiancel(�) of the viewing
illuminant, cf. Equation 2.1, as shown in Figure 2.4. We may thus rewrite Equation 2.2 as follows.

ci =

Z �max

�min

l(�)r(�)si(�)d�; i = 1; 2; 3: (2.3)

By uniformly sampling the spectra above with a proper wavelength interval, we can rewrite Equa-
tion 2.3 in a matrix form as follows:

c = StLr; (2.4)
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Object reflectance r(  )

Observed light f(  )λ

λ

λiEye cones sensivities s (  )

λIlluminant radiance l(  )

Figure 2.4:Human vision of a reflective object. The cone response depends on its spectral sensivity,
the spectral reflectance of the viewed object, and the spectral radiance of the illuminant.

whereS = [s1s2s3] is the matrix of eye sensor sensitivitiessi = [si(�1)si(�2) : : : si(�N )]t, �1 =
�min, �N = �max, and the sampling intervalÆ� = �i � �i�1 = 1

N�1(�max� �min), i = 2; : : : ; N . L
is the diagonal illuminant matrix with entries from the samples ofl(�) along the diagonal, andr is the
sampled spectral reflectance of the object. One of the first to apply such a matrix notation to colour
issues was Wandell (1987), and this notation has been widely accepted and used since, for example by
Jaaskelainenet al. (1990), Trussell (1991), Trussell and Kulkarni (1996), Vrhelet al. (1994), Sharma
and Trussell (1997a).

The spectral sensitivities of the three types of cones define a functional (Hilbert) space, and thus
the cone response mechanism corresponds to a projection of the incident spectrum onto the space
spanned by the sensitivity functionssi(�); i = 1; 2; 3. This space is called theHuman Visual Sub-
Space(HVSS) (Horn, 1984, Vora and Trussell, 1993). In the sampled case, the HVSS corresponds to
thevector spacespanned by the columns ofS.

The cone response functions are quite difficult to measure directly. However, non-singular linear
transformations of the cone responses are readily determined through colour matching experiments,
cf. Section 2.4.3. A standardised set of colour matching functions�x(�), �y(�), and �z(�) is defined
by the CIE (see Section 2.4), and is widely used in colorimetric definitions. The CIE XYZ colour
matching functions are traced in Figure 2.9 on page 18. DefiningA = [�x�y�z] as the matrix of sampled
colour matching functions, we can represent a colour stimulus using itsCIE XYZ tristimulus valuest
as follows,

t = Atf : (2.5)

Note that the linear model of colour vision of Equation 2.2 describes only a small part of the complex
colour-perception process. For example, the model does not explain the intriguing effect ofcolour
constancy, that is that the perceived colours of usual objects of vision remain nearly constant indepen-
dent of the illuminant throughout a wide range, despite the validity of Equation 2.3 (seee.g.Hering,
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1905, Kroh, 1921, Judd, 1933). In particular, the cone responses cannot be directly related to the
common colour attributes ofhue, saturationand lightness. For a thorough description of the human
visual system, refer, for example, to the books of Wandell (1995) or Kaiser and Boynton (1996).

2.4 Colorimetry

In the two previous sections, we have described two aspects of colour, the physical aspects of the spec-
tral composition of coloured light, and the physiological characteristics of the human visual system.
We will now continue to describe the interaction between these two factors, thepsychophysicalaspect
of colour, as defined by colorimetry. Colorimetry is the branch of colour science concerned with the
quantitative specificationof the colour of a physically defined visual stimulus in such a manner that
(Wyszecki and Stiles, 1982):

1. when viewed by an observer with normal colour vision, under the same observing conditions,
stimuli with the same specification look alike,

2. stimuli that look alike have the same specification, and

3. the numbers comprising the specification are continuous functions of the physical parameters
defining the spectral radiant power distribution of the stimulus.

In colorimetry, we adopt a definition of colour which is justified by the experimental fact of visual
trivariance, based on the laws of Grassmann which will be described in the following sections.

2.4.1 Grassmann’s laws

The laws of Grassmann (1853) represent one of the bases of colorimetry. They are often given in
different forms and orders (seee.g.Judd and Wyszecki, 1975, Wyszecki and Stiles, 1982, Kowaliski,
1990, Sève, 1996).

Grassmann’s first law: Three independent variables are necessary and sufficient to psy-
chophysically characterise a colour.

This law states that the colour space is tridimensional. Every colour stimulus can be completely
matched in terms of three fixed primary stimuli whose radiant powers can be adjusted by the observer
to suitable levels. The only restraint on the choice of primaries is that they arecolorimetrically in-
dependent, that is, none of the primaries can be colour-matched by a mixture of the two others. The
most common set of primaries is red, green and blue. This law is the background for colour matching
experiments (see Section 2.4.3).

We denote a colour stimulus asX, the three primary stimuli asA,B andC, the factors of adjustment
proportional to the energy for each primary stimuli as�, � and
, and a visual equivalence as�. We
may then express Grassmann’s first law as follows:

8X; 9�; �; 
; such that X � �A+ �B + 
C (2.6)



12 Colour and imaging

The tridimensionality of colour is also justified by biological studies of the human eye, as described
in Section 2.3.

Grassmann’s second law states the principle of colour additivity.

Grassmann’s second law:The result of an additive mixture of coloured light depends
only on the psychophysical characterisation, and not on the spectral composition of the
colours.

The term additive mixture means a colour stimulus for which the radiant power in any wavelength
interval is equal to the sum of the powers in the same interval of the constituents of the mixture.
Using the same notation as before, we may state the law as follows:

8X1 � �1A+ �1B + 
1C;X2 � �2A+ �2B + 
2C;

X1 +X2 � (�1 + �2)A+ (�1 + �2)B + (
1 + 
2)C (2.7)

Grassmann’s third law may be stated as follows.

Grassmann’s third law: If the components of a mixture of colour stimuli are moderated
with a given factor, the resulting psychophysical colour is moderated with the same factor.

That is, ifk is a constant,

8X; k; X � �A+ �B + 
C ) kX � k�A+ k�B + k
C (2.8)

This law implies that all the scales used in colorimetry are continuous.

2.4.2 Tristimulus space

Because of the linear algebraic properties stated by Grassmann’s laws, it is possible and convenient to
represent colour stimuli by vectors in a three-dimensional space, called thetristimulus space.

To define this tristimulus space, we need the reference whiteW , which is defined by the three pri-
mariesR,G andB, asW � �WR+ �WG+ 
WB. We then consider a given colour

Q � �QR+ �QG+ 
QB: (2.9)

Defining the three basis vectors asr = �WR, g = �WG andb = 
WB, and denoting the quantities
of each of the basis vectors of the primaries as thetristimulus valuesRq = �Q=�W , Gq = �Q=�W
andBq = 
Q=
W , the colourQ can be defined by the vectorq as follows:

q = Rqr+Gqg +Bqb: (2.10)

Once the primary stimuli are defined and fixed, we often represent this equation simply asq =
[RqGqBq]

t. Note that we have now evolved from the term of visual equivalence denoted by� to a
simple mathematical equality (=).
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This vector equation, Eq. 2.10, can be interpreted geometrically, as shown in Figure 2.5. The primary
stimuli are represented by unit length vectorsr, g, andb, with a common originO. A colour stimulus
is represented by the tristimulus vectorqwhose components have lengths (tristimulus values)Rq,Gq,
andBq along the directions defined byr, g, andb, respectively. The(r; g; b) trichromatic coordinates
are defined by the intersection between the tristimulus vector and the unit plane(R + G + B = 1),
giving r = Rq=S, g = Gq=S, andb = Bq=S = 1� (r + g), whereS = Rq +Gq +Bq. The union
of a set of colours presented in the two-dimensional representation defined by the equilateral triangle
defined byR+G+ B = 1 is often referred to as theMaxwell Colour Triangle, see Maxwell (1857)
or Wyszecki and Stiles (1982), p. 121. A more convenient representation is the(r; g)-chromaticity
diagram in which ther andg coordinate axes are perpendicular to each other.

O

r

g

B=1

R=1

G=1

R+G+B=1

B

q

q

R

q

G

b

q

Figure 2.5:(R,G,B)-tristimulus space. A colour stimulus is represented by the tristimulus vectorq

whose components have lengths (tristimulus values)Rq, Gq, andBq along the directions defined by
the basis vectorsr, g, andb, respectively.

2.4.3 Colour matching

An important notion in colorimetry iscolour matching, referring to visual stimuli typically presented
in the two halves of a bipartite visual field, and to judgements of similarities or degrees of difference
between the two stimuli. The colorimetric terms are distinguished from thepsychologicalterms of
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colour, such as hue, saturation and brightness, which apply to visual concepts that enable the individ-
ual observer to describe colour perceptions.

Two spectra, represented by the vectorsf andg produce the same cone reponses,cf. Equation 2.4, if

Stf = Stg: (2.11)

These colours are then said to match. In a colour matching experiment (see Figure 2.6), the observer
is asked to adjust the amounts of three primary sourcesp1, p2, andp3, so that the resulting colour
matches that of a given lightf , that is,

Stf = StPa; (2.12)

whereP = [p1p2p3] denotes the primaries anda = [a1a2a3]
t corresponds to the three weights.

It can be shown that if the primaries are colorimetrically independent, the vector of weights exists
and is equal toa = (StP)�1Stf . However, for a given spectrumf , the vector of weights may take
negative values. Since negative intensities of the primaries cannot be produced, the spectrumPa is
not realisable using the primaries. In practice a colour matching experiment is arranged by mixing the
primaries having negative strengths with the considered colour, instead of with the other primaries.
This might be represented, for example, as matchinga1p1+a2p2 with (�a3)p3+ f in the case where
a3 is negative.

2.4.4 Colour matching functions

If colour matching experiments are conducted with the set of stimuliei, i = 1; : : : ; N being mono-
chromatic light of varying wavelengths and constant unit energy, we may obtain the weightsai for
each wavelength. Doing this for all theN wavelengths of the sampling interval that is used, we may
combine the colour matching results into one equation,

StI = StPAt; (2.13)

whereI = [e1e2 : : : eN ] is the(N �N) unit matrix andA = [a1a2 : : : aN ]t is thecolour matching
matrix corresponding to the primariesP. The columns ofA are referred to as thecolour matching
functionsassociated with the primariesP. Since any spectrum can be represented as a linear com-
bination of the unit spectra, its colour tristimulus values can be readily calculated ast = Atf , cf.
Equation 2.5.

2.4.5 Metamerism

From Equation 2.11,Stf = Stg, and the fact thatS is aN � 3 matrix,N > 3, it is clear that there are
several different spectra that can appear as the same colour to the observer. A set of two such spectra
having different spectral compositions but giving rise to the same psychophysical characterisation are
calledmetamers(CIE 15.2, 1986, CIE 80, 1989). An example of metamerism is given in Figure 2.7.

Metamerism implies that two objects which appear to have exactly the same colour, may have very
different colours under different lighting conditions. The colour mismatch due to loss of metamerism
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Figure 2.6:Principle of trichromatic colour matching by additive mixing of lights. The observer views
a small circular field which is split into two halves, one on which the colourf which is to be matched
is displayed, the other displaying an additive mixture of the three primary sourcesp1, p2, andp3,
typically red, green and blue.

when changing observer or lighting can be predicted numerically (seee.g.Ohta and Wyszecki, 1975,
Schmitt, 1976, Wyszecki and Stiles, 1982, ch. 3.8.5). This may be an important practical problem,
e.g.in the clothing industry, where the colours of fabrics of different types should match, both inside
and outside the store.

Notice, however, that even though it may cause some problems, metamerism is the basis of the entire
science of colour. Without metamerism, there would be no colorimetry and no colour image repro-
duction on paper or screen as we know it. The only possible way of reproducing images would be
to recreate the spectral reflectance of the orginal objects, creating aspectral matchas opposed to a
metameric match.
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Figure 2.7:Spectral radiant power distributions of daylight (D65) reflected from a violet flower and
emitted by a computer monitor tuned to match the colour of the flower. The two spectra are metamers.

2.4.6 CIE standard illuminants

The most important of all colour specification systems is that developed by the Commission Interna-
tionale de l’Eclairage (CIE). It provides a standard method for describing the stimulus of a colour,
under controlled lighting and viewing conditions, based on the average known response of the human
visual system. It is derived from careful psychophysical experiments and is thoroughly documented.
The CIE system has the force of an international standard, and has become the basis of all industrial
colorimetry.

Because the appearance of a colour strongly depends on the colour of the illuminant, it is clear that
an essential step in specifying colour is an accurate definition of the illuminants involved. In 1931,
the CIE recommended the use of three standard illuminants, denoted A, B and C, whose spectral
power distribution curves are shown in the left part of Figure 2.8. Standard illuminant A consists of a
tungsten filament lamp at a given colour temperature, while B and C consist of A together with certain
liquid colour filters (Wyszecki and Stiles, 1982, p. 148). A is intended to be representative of tungsten
filament lighting, B of direct sunlight, and C of light from an overcast sky.

However, even if the illuminants B and C fairly well represent the spectral power distribution of
daylight over most of the spectrum, they are seriously deficient at wavelengths below 400 nm. Due
to the increasing use of dyes and pigments which have fluorescent properties, the CIE later defined
several power distributions representing daylight at all wavelenghts between 300 and 830 nm. In the
right part of Figure 2.8 on the facing page the distributions D50 and D65 are shown. D65 represents a
standard daylight for general use, and D50 is somewhat more yellow. The subscripts 50 and 65 refer
to the colour temperature of the illuminants,e.g.D50 has a correlated colour temperature2 of 5000K.
In addition to these sources, the hypothetical equienergetic illuminant E, having equal radiance power
per unit wavelength throughout the visible spectrum, is also defined.

2The correlated colour temperature is defined as the temperature of the Planckian radiator whose perceived colour most
closely matches that of a given stimulus seen at the same brightness and under specified viewing conditions (Hunt, 1991,
CIE 17.4, 1989).
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These standard illuminants are widely used in colour systems and standards. In television, D65 is the
reference white for PAL and C for the NTSC television system. D50 is extensively used in the graphic
arts industry.
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Figure 2.8:Relative spectral power distributions of the standard illuminants A, B, and C (left) and
D65 and D50 (right).

2.4.7 CIE standard observers

There are slight differences in the amounts of colour stimuli required to obtain a given colour percep-
tion between different observers. Some of these differences are random, and disappear if the results
of several tests by each observer are averaged. But there remain some discrepencies which must be
attributed to differences in the colour vision of the individual observers.

In 1931 the CIE defined astandard observer, based on experimental results obtained by W. D. Wright
and J. Guild, and by K. S. Gibson and E. P. T. Tyndall, seee.g.Chapter 8 of Hunt (1995) or Chapter 3
of Wyszecki and Stiles (1982).

These standard-observer data consist of the colour matching functions obtained with the monochro-
matic primaries of wavelengthsR0 = 700 nm, G0 = 546:1 nm, andB0 = 435:8 nm, and for
the reference equienergetic whiteE. The colour matching functions for the standard observer are
sketched in the left part of Figure 2.9 on the next page. From these functions, given the spectral power
distribution curve of any colour, it is possible to calculate the amount of the three stimuli required by
the standard observer to match a given colour,cf. Section 2.4.3. This defines the CIE 1931 Standard
RGB Colorimetric System, which is a basis in colorimetry. A given colour stimulus with spectral
radiant power distributionf(�) can be represented as three RGB tristimulus values by the following
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formulae:

R =

Z �max

�min

f(�)�r(�)d� (2.14)

G =

Z �max

�min

f(�)�g(�)d� (2.15)

B =

Z �max

�min

f(�)�b(�)d�: (2.16)
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Figure 2.9:CIE �r(�), �g(�), �b(�) (left) and�x(�), �y(�), �z(�) (right) colour matching functions.

The CIE 1931 Standard XYZ Colorimetric System is defined in a similar manner, using the colour
matching functions�x(�), �y(�) and�z(�), shown in Figure 2.9. The tristimulus valuesX, Y andZ are
defined as follows:

X =

Z �max

�min

f(�)�x(�)d� (2.17)

Y =

Z �max

�min

f(�)�y(�)d� (2.18)

Z =

Z �max

�min

f(�)�z(�)d�: (2.19)

The set of colour matching functions�x(�), �y(�) and�z(�) is a linear transformation of the set�r(�),
�g(�) and�b(�), as follows:2

4 �x(�)
�y(�)
�z(�)

3
5 =

2
4 0:49 0:31 0:2

0:17697 0:81240 0:01063
0:0 0:01 0:99

3
5 �

2
4 �r(�)

�g(�)
�b(�)

3
5 (2.20)

Note that the XYZ colour matching functions do not correspond to a set of physical primaries, as
was the case with the RGB colour matching functions defined above. They correspond to three non-
physical primaries with the reference equienergetic whiteE, chosen so that the colour matching func-
tions have only positive values. The numbers in the matrix of Equation 2.20 were carefully chosen by
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the CIE to ensure that the tristimulus valuesX, Y andZ are all positive and so that the value ofY is
proportional to the luminance of the given colour.

To graphically visualise a colour, the CIE(x; y) chromaticity diagram (see Figure 2.10) is often used.
Thex andy values are tristimulus values normalised such thatx+ y + z = 1, cf. Section 2.4.2.
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Figure 2.10: Chromaticity diagram(x; y) of CIE 1931 XYZ standard colorimetric observer. The
curved line shows where the colours of the spectrum lie and is called thespectral locus; the wave-
lengths are indicated in nanometres along the curve. If two colours are additively mixed together,
then the point representing the mixture is located in the diagram by a point that always lies on the line
joining the two points representing the original colours. This means that, if the two ends are joined
by a straight line, that line represents mixtures of light from the two ends of the spectrum; as those
colours are mixtures of red and blue, this line is known as thepurple boundary. The area enclosed by
the spectral locus and the purple boundary encloses the domain of all possible colours.

2.4.8 Uniform colour spaces and colour differences

Psychophysical experiments have shown that the human eye’s sensitivity to light is not linear. The
RGB and XYZ colour spaces defined by the CIE are related linearly to the spectral power distribution
of the coloured light.

When changing the tristimulus values XYZ (or RGB) of a colour stimulus, the observer will perceive
a difference in colour only after a certain amount, equal to the Just Noticeable Difference (JND). In
both RGB and XYZ spaces the JND depends on the location in the colour space.

These are two major drawbacks of the colour spaces presented in the previous section. To remedy
this, the CIE proposed in 1976 twopseudo-uniform3 colour spaces, denoted CIELUV and CIELAB

3A colour space is calleduniform, or psychometric, when equal visually perceptible differences are produced with
equi-spaced points throughout the space, that is, the JND is constant throughout the entire colour space. In practice, this
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(see CIE 15.2, 1986). The CIELUV space was often used for describing colours in displays, while
CIELAB was initially designed for reflective media. Now CIELAB is used for most applications
and has been chosen as standard colour space for several fields,e.g. in graphic arts (ISO 12639,
1997), multimedia (IEC 61966-8, 1999), colour facsimile (ITU-T T.42, 1994). In our work, we make
extensive use of the CIELAB space, and we will therefore describe it in detail in the following section.

2.4.8.1 CIELAB colour space

The CIELAB pseudo-uniform colour space is defined by the quantitiesL�, a� and b�, defined as
follows:4

L� = 116f(
Y

Yn
)� 16 (2.21)

a� = 500

�
f(

X

Xn
)� f(

Y

Yn
)

�
(2.22)

b� = 200

�
f(

Y

Yn
)� f(

Z

Zn
)

�
(2.23)

where

f(�) =

�
�

1
3 ; � � 0:008856

7:787� + 16
116 ; otherwise

The tristimulus valuesXn, Yn andZn are those of the nominally white stimulus. For the example of
illuminantD50 the values are calculated as follows:

Yn =

Z �max

�min

1 � lD50(�) � �y(�)d� = 96:42 (2.24)

Xn =

Z �max

�min

1 � lD50(�) � �x(�)d� = 100:00 (2.25)

Zn =

Z �max

�min

1 � lD50(�) � �z(�)d� = 82:49 (2.26)

L� represents thelightnessof a colour, known as the CIE 1976 psychometric lightness. The scale of
L� is 0 to 100, 0 being the ideal black, and 100 being the reference white. The chromacity of a colour
can be represented in a two-dimensional(a�; b�) diagram (see Figure 2.11(b)),a� representing the
degree of green versus red, andb� the degree of blue versus yellow. Note that, in contrast to the(x; y)
chromaticity diagram (Fig. 2.10), a mixture of two colours is not necessarily situated on the straight
line joining the two colours. The(a�; b�) chroma diagram isnot a chromaticity diagram.

An alternative representation of colours in the CIELAB space emanates when using cylindrical coor-
dinates, defining theCIE 1976 chroma, designating the distance from theL�-axis, as

C�
ab =

p
a�2 + b�2; (2.27)

condition is only fulfilled approximatively, thus we normally use the termpseudo-uniform. Notice that the notion of JND is
observer-dependent and somewhat subjective. CIE’s colour spaces are based on a standard observer.

4The asterisks are used mostly for historical reasons, and we will sometimes omit them to simplify notation.
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and theCIE 1976 hue-angle,

hab = arctan

�
b�

a�

�
: (2.28)

The use of these quantities, lightnessL�, chromaC�
ab, and hue anglehab may facilitate the intuitive

comprehension of the CIELAB colour space, by relating it to perceptual attributes of colours.

An illustration of the uniformness of the CIELAB colour space is shown in Figure 2.11, where we
compare the loci of constant hue and chroma according to Munsell in thexy and thea�b� planes. We
see that the loci are far more distorted in the CIE 1931(x; y) chromacity diagram than in the(a�; b�)
chroma diagram. We note, however, that the CIELAB space is not perfectly uniform.

(a) CIE 1931(x; y) chromacity diagram (b) CIELAB (a�; b�) chroma diagram

Figure 2.11:Munsell loci of constant hue and chroma (from Billmeyer and Saltzman, 1981). We see
that the loci are far more distorted in the CIE 1931(x; y) chromacity diagram (a) than in the(a�; b�)
chroma diagram (b). This illustrates the fact that the CIELAB colour space is more perceptually
uniform than the XYZ colour space.

2.4.8.2 Colour difference formulae

When comparing two colours, specified by[L�
1; a

�
1; b

�
1] and[L�

2; a
�
2; b

�
2], one widely used measure of

the colour difference is theCIE 1976 CIELAB colour-differencewhich is simply calculated as the
Euclidean distance in CIELAB space, as follows:

�E�
ab =

q
(L�

1 � L�
2)

2 + (a�1 � a�2)
2 + (b�1 � b�2)

2 (2.29)

The interpretation of�E�
ab colour differences is not straightforward, though. It is commonly stated

(Kang, 1997) that the JND is equal to 1. However Mahyet al. (1994a) found a JND of�E�
ab = 2:3.
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A rule of thumb for the practical interpretation of�E�
ab when two colours are shown side by side

is presented in Table 2.1. Another interpretation of�E�
ab errors for the evaluation of scanners is

proposed by Abrardoet al. (1996). They classify mean errors of 0-1 aslimit of perception, 1-3 as
very good quality, 3-6 asgood quality, 6-10 assufficient, and more than 10 asinsufficient. We note
the disagreement between these classifications, underlining the fact that the evaluation of quality and
acceptability is highly subjective and depends on the application.

�E�
ab Effect

< 3 Hardly perceptible
3 < 6 Perceptible, but acceptable
> 6 Not acceptable

Table 2.1: Rule of thumb for the practical interpretation of�E�
ab measuring the colour difference

between two colour patches viewed side by side.

It may also be interesting to evaluate the differences of each of the components of the CIELAB space
separately. This is straightforward forL�, a�, b�, andC�

ab, however, for the hue anglehab this merits
some special consideration. Of course, the direct angle difference in degrees may be instructive.
However, to allow colour differences to be broken up into components of lightness, chroma and hue,
whose squares sum to the square of�E�

ab, a quantity�H�, called theCIE 1976 hue-difference, is
defined as

�H� =
q

(�E�
ab)

2 � (�L�)2 � (�C�
ab)

2: (2.30)

The colour difference formula of Equation 2.29 is supposed to give a measure of colour differences
that is perceptually consistent. However, since it has been found that the CIELAB space isnot com-
pletely uniform, the colour difference�E�

ab is not perfect. Several attempts have been made to define
better colour difference formulae,e.g.the CMC formula (Clarkeet al., 1984, McLaren, 1986) and the
BFD formula (Luo and Rigg, 1987a;b). A comparison of these and other uniform colour spaces using
perceptibility and acceptability criteria is done by Mahyet al. (1994a).

Recently, the CIE defined theCIE 1994 colour-difference model(McDonald and Smith, 1995), abbre-
viated CIE94, denoted�E�

94, based on the CIELAB space and the previously cited works on colour
difference evaluation. They defined reference conditions under which the new metric, with default
parameters, is expected to perform well:

1. The specimens are homogeneous in colour.

2. The colour difference�E�
ab is less than 5 units.

3. They are placed in direct edge contact.

4. Each specimen subtends an angle of more than 4 degrees to the assessor, whose colour vision
is normal.

5. They are illuminated at 1000 lux, and viewed against a background of uniform grey, withL� =
50, under illumination simulating D65.



2.5 Colour imaging 23

The colour difference is calculated as a weighted mean-square sum of the differences in lightness,
�L�, chroma,�C�, and hue,�H�.

�E�
94 =

s�
�L�

kLSL

�2

+

�
�C�

kCSC

�2

+

�
�H�

kHSH

�2

(2.31)

The weighting functionsSL, SC , andSH vary with the chroma of the reference specimen5 C� as
follows,

SL = 1; SC = 1 + 0:045C�; SH = 1 + 0:015C�: (2.32)

The variableskL, kC andkH are calledparametric factorsand are included in the formula to allow
for adjustments to be made independently to each colour difference term to account for any devia-
tions from the reference viewing conditions, that cause component specific variations in the visual
tolerances. Under the reference conditions explained above, they are set to

kL = kC = kH = 1: (2.33)

We note that under reference conditions,�E�
94 equals�E�

ab for neutral colours, while for more
saturated colours,�E�

94 becomes smaller than�E�
ab.

This colour difference formula is now extensively used both in literature and industry, and is expected
to replace�E�

ab as the most popular way of expressing colour differences.

2.5 Colour imaging

The main subject of this dissertation is colour imaging. Especially important is colour consistency
throughout a colour imaging system. To achieve this, it is necessary to understand and control the
way in which the different devices involved in the entire colour imaging chain treat colours. We will
mainly be concerned withdigital imaging, in which the different devices are connected to a computer,
as illustrated in Figure 2.12. Our goal is to make sure that all these devices work properly together.

We will first present the concept ofcolour management, providing a framework in which colour
information can be processed consistently throughout a digital imaging system. Then we proceed to
a brief presentation of digital image acquisition and reproduction devices. It is not in the scope of
this thesis to describe in detail the different technologies used in such devices. We will, however,
concentrate on how they can be characterised colorimetrically.

2.5.1 Colour management

Whenever a computer is used for the acquisition, visualisation, or reproduction of coloured objects, it
is important to assure colour consistency throughout the system (Hardeberg and Schmitt, 1998). By

5If neither of the two samples can be considered to be a reference specimen, the geometric mean of the chroma of the
two samples is used.
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Figure 2.12:Different digital imaging devices connected to a central computer. A typical imaging
workflow goes from an original document, scanned, visualised on the monitor, and finally printed.
Ideally, the printed result should be an exact facsimile of the original document.

calibrating colour peripherals to a common standard, Colour Management System (CMS) software
makes it easier to match the colours that are scanned to those that appear on the monitor and printer,
and also to match colours designed on the monitor, using for example CAD software, to the printed
document. Colour management is highly relevant to persons using computers for working with art,
architecture, desktop publishing or photography, but also to non-professionals, as for example, when
displaying and printing images downloaded from the Internet or from a Photo CD (Photo CD, 1991).

But where is the problem in all this? For example, one might say: “I know that my scanner provides
me with a description of each colour as a unique combination of red, green, and blue (RGB) and so
does my monitor, and even my ink-jet printer accepts RGB images!” The problem is that even if these
devices all ’speak’ RGB, the way they describe colours (scanner-RGB, monitor-RGB and printer-
RGB) are substantially different, even for peripherals of the same type. An obvious example of this
is that an image printed on glossy paper by a sublimation printer is considerably more colourful than
the same image printed on plain paper by an old ink-jet printer.

To obtain faithful colour reproduction, a Colour Management System (CMS) has two main tasks.
First, colorimetric characterisation of the peripherals is needed, so that thedevice-dependentcolour
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representations of the scanner, the printer, and the monitor can be linked to adevice-independent
colour space, the Profile Connection Space (PCS), see Figure 2.13. This is the process ofprofiling.
Furthermore, efficient means for processing and converting images between different representations
are needed. This task is undertaken by the Colour Management Module (CMM), see Figure 2.14. For
further information about the architecture of CMS, refere.g.to MacDonald (1993a), Murch (1993),
Schläpfer et al. (1998), ICC.1:1998.9 (1998). In Figure 2.15 we present an example of a colour
management system for a colour facsimile system.

Figure 2.13:Different digital imaging devices connected in a colour management system. Each device
is characterised by a profile. Note the workflow simplification compared to Figure 2.12 on the facing
page.

The industry adoption of CMS depends strongly on standardisations (Stokes, 1997). The International
Color Consortium6 (ICC) plays a very important role in this concern. The ICC was established in 1993
by eight industry vendors for the purpose of creating, promoting and encouraging the standardisation
and evolution of an open, vendor-neutral, cross-platform colour management system architecture and
components. Today there is wide acceptance of the ICC standards.

Several vendors offer CMS software solutions, for example the following:7

6Seehttp://www.color.org for more information about the ICC.
7See http://www.tsi.enst.fr/˜hardeber/work/cms.html or http://www.deviceguys.com/

jonh/cms.html for a more comprehensive list of available Colour Management System software.
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Figure 2.14: A typical Colour Management System architecture, as described in the ICC Profile
Format Specification (ICC.1:1998.9, 1998).
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1996). The transformations between the device-dependent colour coordinates (RGB and CMY) and
the CIELAB colour space are performed using 3D look-up tables and a tetrahedral interpolation tech-
nique (cf. Appendix B). The look-up tables are determined by the characterisation algorithms.
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■ Agfa Gevaert N.V. with ColorTune,http://www.agfahome.com/products/dtp/ soft-
ware/colortune.html

■ Apple Inc. with ColorSync,http://www.apple.com/colorsync/

■ CCE S.A.R.L. with AffixColorhttp://www.affixcce.com/

■ Eastman Kodak Company with ColorFlow,http://www.kodak.com/go/colorflow

■ E-Color, Inc. with Colorific,http://www.ecolor.com

■ FotoWare AS with Color Factory,http://www.fotoware.com

■ Heidelberg CPS GmbH with LinoColor,http://www.linocolor.com

■ Imaging Technologies Corporation with ColorBlind,http://www.color.com

■ LOGO GmbH with ProfileMaker/LogoSync,http://www.logosoft.de

It has been concluded in a recent study (Schl¨apferet al., 1998) undertaken by the Association for the
Promotion of Reseach in the Graphic Arts Industry (UGRA) that the colour management solutions
offered by different vendors are approximately equal, and that colour management now has passed
the breakthrough phase and can be considered a valid and useful tool in image reproduction.

However, there is still a long way to go, both when it comes to software development (integration
of CMS in operating systems, user-friendliness, simplicity,: : : ), research in colour and imaging
science and technology (better colour consistency, gamut mapping, colour appearance models,: : : ),
and standardisation. Colour imaging is a very active research domain, and in the next sections, we
will briefly review different approaches to the colorimetric characterisation of image acquisition and
reproduction devices.

2.5.2 Digital image acquisition

In order to process images digitally, the continuous-space, analog, real-world images need to be sam-
pled and quantised. This is typically done by a digital camera or scanner. There have been significant
improvement in the quality of digital image acquisition devices over the last several years, and at the
same time, prices are reduced dramatically. Traditional analog imaging is constantly loosing market
shares. However, there are several technical issues that still need to be solved in digital image acqui-
sition. In Chapter 4 we present our approach to the acquisition of high quality digital colour images.
A very important problem is how to attain a high colorimetric fidelity, and this issue is addressed in
Chapter 3.

2.5.2.1 Colorimetric characterisation of scanners and cameras

To colorimetrically characterise image acquisition devices such as CCD cameras and scanners, two
different approaches are typically used, applying spectral and analytical models. The goal of aspec-
tral characterisation technique will be to estimate the functionf(�) in Equation 2.34, this function
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representing the transformation performed by the scanner, from object reflectancer(�) to scanner
RGB values, that is, the spectral model of the scanner. Eventually, this information can be used to
obtain device-independent colour information by defining an “optimal” functiong(�). If f(�) meets
theLuther-Ives condition(Ives, 1915, Luther, 1927) this is trivial. Otherwise we have to define what
is meant by “optimal”.

A scanner characterisation based onanalytical models, however, seeks to minimise the difference
between the known device-independent CIELAB values (Lab)t of the colour patches of a target and
the values (Lab)c as obtained by the desired transformationg(�) from the scanner RGB values. Notice
that a device-independent colour representation other than CIELAB may be used.

f(�)
r(�) ! RGB

h(�) # # g(�)
(Lab)t

?
= (Lab)c
�E

(2.34)

Analytical models. For the colorimetric characterisation of electronic image input devices, it is
current practice to use standard colour targets such as the ANSI IT8.7/2 (1993) chart and to apply
analytical models for the mapping of the input device data into a standardised device-independent
colour space. The mapping function is typically obtained by polynomial regression, seee.g.Berns
(1993a), Lenzet al. (1996b), Hardeberget al. (1996), as well as the surveys by Johnson (1996) and
Kang (1997). Quite often, the transformation from scanner RGB to CIEXYZ is performed using a
3� 3 matrix.

An important limitation of such methods is that, for a given experimental setup of the lighting con-
ditions and for a given choice of the illuminant, individual characterisation data have to be obtained
for each type of input media, the failure to do this resulting in considerable errors due to metamerism.
However, for a given input medium, such methods give very satisfactory results. We report on our
approach to the analytical colorimetric characterisation of desktop scanners in Chapter 3.

Spectral models For a more complete characterisation, the knowledge of the physical characteris-
tics of the different optical and electrooptical components which are involved in the image conversion
process would be desirable. This is particularily the case for applications where the camera will be
used for the acquisition of multispectral images. A simple spectral model of the image acquisition
process may be formulated in terms of algebraic matrix operations. The spectral characterisation con-
sists in estimating the different spectral characteristics of the sensor, the optics and the illumination,
or eventually, the joint characteristics of these elements (seee.g.Farrell and Wandell, 1993, Sharma
and Trussell, 1996c, Hardeberget al., 1998b).

In Section 6.2, we investigate an approach to this problem based on the acquisition of a number of
samples with known reflectance spectra. By observing the camera output to known input, we perform
an estimation of the spectral sensitivity of a CCD camera.
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2.5.3 Digital image reproduction

Colour may be produced in many different ways. According to Nassau (1983), as many as fifteen
distinct physical mechanisms are responsible for colour in nature. Only few of these mechanisms are
suitable for digital image reproduction, but there exists nevertheless considerable diversity in avail-
able technologies for displaying and printing colour images. Image reproduction devices can can be
broadly classified into two categories,additiveandsubtractivedevices. Some devices also combine
these two technologies, they are calledhybrid devices.

2.5.3.1 Additive colour devices

In additive colour devices, the colours are produced by adding light of different colours, following
the theories of additive colour mixture described earlier in this chapter. The most common choice of
additive primary colours is red, green and blue (RGB).

Visual display units8 (VDU) emit light and are therefore additive devices. They can be characterised
almost completely in terms of a few parameters, such as the white point, the gamma curve etc. When
these parameters are known, the required RGB drive signals needed to produce a given XYZ colour
stimulus can be calculated, seee.g.NPL QM 117 (1995), Bernset al.(1993), and Chapter 14 of Kang
(1997).

Recently, a new standard colour space was proposed, the sRGB colour space9 (Andersonet al., 1996,
IEC 61966-2.1, 1999). Its definition is based on the average performance of PC displays under normal
viewing conditions. We present here the steps involved in the conversions between CIEXYZ and
sRGB as an example. If exact colorimetric reproduction is needed on a particular VDU, formulas
resembling the following should be used, but with different parameters, obtained from a colorimetric
characterisation of the device.

The sRGB tristimulus values are defined simply as a linear transformation of the CIEXYZ values,
based on phosphor chromaticities andD65 white point, as follows,2

4 RsRGB

GsRGB

BsRGB

3
5 =

2
4 3:2406 �1:5372 �0:4986
�0:9689 1:8758 0:0415
1:0570 �0:2040 0:0557

3
5
2
4 X
Y
Z

3
5 : (2.35)

Then the non-linear sR’G’B’ values are defined as

R0
sRGB=

(
12:92RsRGB; RsRGB� 0:00304

1:055R
1:0=2:4
sRGB � 0:055; elsewhere;

(2.36)

and likewise forG0
sRGB andB0

sRGB. The 8-bit digital values that should be transmitted to the display
are finally calculated asR8bit = 255:0R0

sRGB.
8Visual display units, display, monitor, and computer screen, are different names used for this device. Two important

types are Cathode-Ray Tubes (CRT) and Liquid Crystal Displays (LCD).
9Seehttp://www.srgb.com for more information on how the use of the sRGB colour space can facilitate colour

consistency, as a simpler alternative to ICC-based colour management.
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2.5.3.2 Subtractive colour devices

In additive colour devices, the colours are typically produced by adding different proportions of the
three primary colours red, green and blue. In subtractive colour devices, the colours are produced by
multiplying a white spectrum by the spectral transmission curves�(�) of the three subtractive primary
colours cyan, magenta and yellow (CMY). Thus, for each of the subtractive primaries, frequency
components are removed from the white spectrum. An ideal subtractive colour device can be presented
as in Figure 2.16, where we observe that the result of a multiplication of an ideal white spectrum with
the three ideal rectangular bandstop filters gives a resulting colour spectrum exactly equal to the one
obtained in an ideal additive system.
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Figure 2.16:An ideal subtractive colour reproduction system. We see that the resulting colour of a
subtractive colour system results from a multiplication of a white spectrum with the spectra of yellow,
magenta and cyan inks. We note that the resulting spectrum equals the sum of three ideal additive
RGB primaries which are the spectral complimentaries of the ideal inks.

We remark that no concepts in the field of colour have traditionally been more confused than that of
additive and subtractive colour mixture. This confusion can be traced to two prevalent misnomers: the
subtractive primary cyan, which is properly a blue-green, is commonly called blue; and the subtractive
primary magenta is commonly called red. In these terms, the subtractive primaries become red, yellow,
and blue; and those whose experience is confined for the most part to subtractive mixtures have
good cause to wonder why the physicist insists on regarding red,green, and blue as the primary
colours. The confusion is at once resolved when it is realised that red, green, and blue are selected as
additive primaries because they provide the greatest colour gamut in mixtures. For the same reason,
the subtractive primaries are, respectively, red-absorbing (cyan), green-absorbing (magenta), and blue-
absorbing (yellow).
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The principle of subtractive colour mixture is used in colour printers, where a white sheet is covered
with layers of yellow, magenta and cyan inks or other materials. The pigments in the inks absorb
certain wavelengths from the incident light, and thus constitutes a subtractive colour system.

The input to a typical printer is a quadruple[C;M; Y;K]. TheC, M andY represents the amount of
cyan, magenta and yellow ink, whileK represents the black ink, often denoted as the black separation.
The black separation is introduced to accomplish two things: to increase the contrast by increasing
the density in the dark areas of the picture, and to replace some percentage of the three primaries for
economic or mechanical reasons, as explainede.g.by Stoneet al. (1988). There are several strategies
for how the amount of black ink is determined. One is grey-component replacement (GCR), in which
the neutral or grey component of a three-colour image is replaced with a certain level of black ink. The
least predominant of the three primary inks is used to calculate a partial or total substitution by black,
and the colour components of the image are reduced to produce a print image of a nearly equivalent
colour to the original three-colour print (Sayanagi, 1986, Johnson, 1992, Kang, 1997). In the further,
we will often omit theK when describing the output to a printer, as we treat this black separation as
a device characteristic.

The relation between the ideal componentsC, M , Y and the RGB-space based on ideal bandpass
shaped colour matching functions,cf. Figure 2.16, is as follows:

C = 1�R; M = 1�G; Y = 1�B (2.37)

In reality, the reflectance curves�(�) for the cyan, magenta and yellow inks are far from rectangular
(see Figure 2.17) and the relation between CMYK and RGB is not trivial. The problem of obtaining
this relation is discussed briefly in Section 2.5.3.3, and we propose an original solution to this problem
in Chapter 5.
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Figure 2.17:Comparison of ideal and real printer inks.
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2.5.3.3 Colorimetric characterisation of printers.

The characterisation of a colour output device such as a digital colour printer defines the relationship
between the device colour space and a device-independent colour space, typically based on CIE col-
orimetry. This relationship defines a (forward) printer model. Several approaches to printer modeling
exist in the literature. They may be divided into two main groups, physical and empirical modeling
(seee.g.Stoneet al., 1988, Hardeberg and Schmitt, 1997, Kang, 1997).

■ Physical models.Such models are based on knowledge of the physical or chemical behavior
of the printing system, and are thus inherently dependent on the technology used (ink jet, dye
sublimation, etc.). An important example of physical models for halftone devices is the Neuge-
bauer model, (Neugebauer, 1937, Kang, 1997) which treats the printed colour as an additive
mixture of the tristimulus values of the paper, the primary colours, and any overlap of primary
colours. More recent applications of analytical modeling are illustrated with a study of Berns
(1993b) which applies a modified version of the Kubelka-Munk spectral model (Kubelka and
Munk, 1931) to a dye diffusion thermal transfer printer.

■ Empirical models. Such models do not explicitly require knowledge of the physical properties
of the printer as they rely only on the measurement of a large number of colour samples, used
either to optimise a set of linear equations based on regression algorithms, or to build lookup-
tables for 3D interpolation. Regression models have not been found to be very successful in
printer modeling (Hung, 1993), while the lookup-table method is used by several authors, for
example Hung (1993) and Balasubramanian (1994).

However, to be of practical use for image reproduction, these printer models have to be inverted, and
the solution to this problem is rather difficult to find (Iino and Berns, 1998a;b). Iterated optimisation
algorithms are often needed to determine the device colour coordinates which reproduce a given colour
defined in a device-independent colour space, as proposed for example by Mahy and Delabastita
(1996).

Another issue which cannot be avoided when discussing printer characterisation is gamut mapping
(Morovic, 1998). The colour gamut of a device such as a printer is defined as the range of colours that
can be reproduced with this device. Gamut mapping is needed whenever two imaging devices do not
have coincident colour gamuts, in particular when a given colour in the original document cannot be
reproduced with the printer that is used. We treat this subject briefly in Appendix E.

We propose in Chapter 5 a novel characterisation technique which provides a practical tool to trans-
form any point of the CIELAB space into its corresponding CMY values (Hardeberg and Schmitt,
1997, Schmitt and Hardeberg, 1997). This process also includes a colour gamut mapping technique
which can be of any type.

2.5.4 Multi-channel imaging

As early as in 1853 Hermann G¨unter Grassmann stated that three variables are necessary and sufficient
to characterise a colour (Section 2.4.1). This principle, the three-dimensionality of colour, has since
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been confirmed by thorough biological studies of the human eye. This is the reason why digital colour
images are composed of three channels or layers, typically red, green and blue.

However, for digital image acquisition and reproduction, three-channel images have several limita-
tions. First, in a colour image acquisition process, the scene of interest is imaged using a given illumi-
nant. Due to metamerism, the colour image of this scene under another illuminant cannot be accurately
estimated. Furthermore, since the spectral sensitivities of the acquisition device generally differ from
the standardised colour matching functions, it is also impossible to obtain device-independent colour.
By increasing the number of channels in the image acquisition device we can remedy these problems,
and thus increase the colour quality significantly. Several research groups worldwide are working on
these matters, for example at the university of Chiba, Japan (Haneishiet al., 1997, Yokoyamaet al.,
1997, Miyake and Yokoyama, 1998), at Rochester Institute of Technology, USA (Burns and Berns,
1996, Burns, 1997, Berns, 1998, Bernset al., 1998), and at RWTH Aachen, Germany (Keusen, 1996,
König and Praefcke, 1998a;b, Hill, 1998). In Chapter 6 we describe our approach to the acquisition of
multispectral images with the use of a high definition digital camera and a given number of chromatic
filters.

For printing applications more than three image channels have been used for a long time, in particular,
a black ink (K) is used in addition to the three subtractive primaries (CMY), as described previously.
This has two main advantages, reducing the cost (black can be made with one ink instead of three),
and increasing the gamut (more nuances in the dark colours).

Quite recently, desktop printers with six and seven inks have become available. The use of more than
four printing inks is often denoted Hi-Fi colour, and was up till now only used in very expensive
high-end printing systems. Two main methods are used, adding intermediary colours between the
subtractive primaries to increase the gamut (and economise), and adding lighter versions of the pri-
mary inks, to produce smoother images with less visible dithering. The colorimetric characterisation
of such printers is an important research field today (seee.g.MacDonaldet al., 1994, Herron, 1996,
Van De Capelle and Meireson, 1997, Mahy and DeBaer, 1997, Bernset al., 1998, Tzeng and Berns,
1998). Another possibility of multi-ink printing is to reproduce not only the wanted colour, but the
desired spectral reflectance, for example to create a spectral match to an orginal, and thus avoiding the
problems caused by a metameric match, when changing observer or illumination. This is a very new
research area (Bernset al., 1998, Tzeng and Berns, 1998).

2.6 Conclusion

In this chapter we have first given our view of the relations and interactions between light, objects, and
human colour vision. Hopefully this has shed some light on the difficult question concerning what
colour really is. Having defined these basic principles, we have proceeded to a review of different
aspects of the science and technology of digital colour imaging. Important points are colour manage-
ment, colorimetric characterisation of image acquisition and reproduction devices, and imaging using
more than three channels.
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Chapter 3
Colorimetric scanner characterisation

In this chapter, methods for the colorimetric characterisation of colour scanners are
proposed. These methods apply equally to other colour image input devices such
as digital cameras. The goal of our characterisation is to establish the relation-
ship between the device-dependent colour space of the scanner and the device-
independent CIELAB colour space. The scanner characterisation is based on poly-
nomial regression techniques. Several regression schemes have been tested. The
retained method consists in applying a non-linear correction to the scanner RGB
values followed by a 3rd order 3D polynomial regression function directly to CIELAB
space. This method gives very good results in terms of residual colour differences.
This is partly due to the fact that the RMS error that is minimised in the regression
corresponds to �Eab which is well correlated to visual colour differences.
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3.1 Introduction

To achieve high image quality throughout a digital image system, the first requirement is to ensure
the quality of the device that captures real-world physical images to digital images. Several different
types of such devices exist, we treat here the case of a flatbed scanner, but the results can also be
applied to other devices such as digital cameras. Several factors have influence on this quality, optical
resolution, bit depth, spectral sensitivities, noise, to mention a few. In this chapter we will concen-
trate on the colorimetric faculties of the scanner, that is, the scanner’s ability to deliver quantitative
device-independent digital information about the colours of the original document. Very few scanners
deliver directly colorimetric data, thus we perform acolorimetric characterisationof the scanner to
obtain the relation between the scanner’s device dependent RGB colour coordinates and a device-
independent colour space, in our case we use the CIELAB pseudo-uniform colour space, as defined
in Section 2.4.8.1. Several approaches to this characterisation exist, as described in Section 2.5.2.1.

For the colorimetrical characterisation of a scanner we propose to use an analytical model. The term
analytical signifies that it is only based on measurements, no assumption is made about the physical
properties of the scanner, as opposed to when using spectral models, see Sections 2.5.2.1 and 6.2. The
method is based on polynomial regression and the minimisation of�Eab, the Euclidean distance in
CIELAB space.

In order to characterise the scanner we seek to define the transformation

[L�; a�; b�] = g(R;G;B); (3.1)

which converts the RGB scanner components into CIELAB values. Unless the scanner iscolorimet-
ric, that is, the spectral sensitivities of the three scanner channels equals the CIEXYZ colour matching
functions or any nonsingular linear transformation of them, an exact analytical representation of Equa-
tion 3.1 does not exist.1 We must thus try to approximate this function. In the literature (seee.g.Hung,
1991, Kang, 1992, Wandell and Farrell, 1993, Berns, 1993a, Haneishiet al., 1995, Johnson, 1996),
the most common solution to this problem is to apply linear or higher order regression algorithms
to convert from scanner RGB values to CIEXYZ values, and then apply the formulae given in Sec-
tion 2.4.8.1 to obtain the CIELAB values if those are needed. The main drawback with such methods
is that the error that is minimised by the regression algorithm, the RMS error in CIEXYZ space, is
very poorly correlated to visual colour differences.

1The requirement forcolorimetricscanners is often referred to as theLuther-Ives condition(Ives, 1915, Luther, 1927).
More recent work on colorimetric scanner requirements has been done by Hung (1991) and Engeldrum (1993). For image
acquisition devices with more than three channels, this requirement can be generalised to requiring that the Human Visual
Sub-Space (HVSS, see Section 2.3) be contained in thesensor visual spacedefined as the subspace spanned by the spectral
sensitivity functions of the image acquisition device, see Sharma and Trussell (1997a).
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One way to remedy this is to make sure that the output values of the regression algorithm are CIELAB
values, instead of CIEXYZ values, since the Euclidean distance in CIELAB space corresponds quite
well to perceptual colour differences. There is clearly not a linear relationship between scanner RGB
and CIELAB space, and we propose thus to model the transformationg(�) given above bynth order
polynomials whose coefficients may be optimised by standard regression techniques (Albert, 1972).
In addition to the main step defined by the polynomial regression, we can add other non-linear trans-
formations steps before and after.

In the following sections we propose several methods for the colorimetric scanner characterisation,
and we perform a rigorous analysis of their performance.

3.2 Characterisation methodology

The characterisation is done as follows, see Figure 3.1. A colour chart containing a set ofN colour
samples with known CIELAB values is scanned. By a picture processing routine we segment each
colour sample and calculate the mean values of its RGB scanner components. By comparing the
scanned values with the known theoretical CIELAB values for each test patch, we can find the char-
acterisation of the scanner. From this characterisation, we will be able to correct the values given by
the scanner, to obtain colour consistency, in particular by creating a 3D look-up table for the RGB-
CIELAB transformation that can serve as ascanner profilefor a Colour Management System (CMS).

Figure 3.2 illustrates the method of approximating the functiong(�) by the functiong0(�). For each
colour Pi = [Ri; Gi; Bi], i = 1; : : : ; N on the test chart, the corresponding theoretical values

O
(t)
i = [L

(t)
i ; a

(t)
i ; b

(t)
i ] in CIELAB space are known. The valuesO(t)

i have been calculated from
the reflectance spectra of the patches measured by spectrophotometry. Nominal values provided by
the colour chart manufacturer can also be used, if we are confident in the quality of the colour chart
we use, and in the data provided by the manufacturer.

Using these valuesO(t)
i and the valuesPi as input to the characterisation algorithm, we seek to find

the best coefficients of the functiong0(�), minimising the mean square�Eab error between all the

theoretical valuesO(t)
i = g(Pi) and the approximated onesO(c)

i = g0(Pi), as described in the next
section and in Appendix A.1.

3.2.1 Regression

The core of our characterisation method is in the linear regression step. A linear regression on a
vectorial transformation fromR3 to R3 (such as Equation 3.1) is equivalent to three independent
linear regressions on a scalar transformation fromR3 to R corresponding to each of its components
(see Appendix A.1). To simplify the notation, let us consider simply a general transformation

y = g(x); (3.2)

wherex 2 R3 (RGB space) andy 2 R (one of the components of CIELAB space). We approximate
the functiong(�) by the following expression,

~y = g0(x) = vta; (3.3)
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Figure 3.1:The scanner characterisation process, providing a 3D look-up table that can be used as
device profile in a Colour Management System (CMS) for the conversion of images from scanner
RGB to CIELAB.

where the entries of the vectorv areM functionshi(x) of the input values,

v = [h0(x); hq(x); : : : ; hM�1(x)]
t; (3.4)

anda = [a0; a1; : : : ; aM ]t is a vector of coefficients to be optimised. For the simple example of linear
regression with a first order polynomial,M = 4, v = [1; R;G;B]t, and Equation 3.3 becomes simply
~y = a0 + a1R + a2G + a3B. For the example of a 3rd order polynomial with all the cross-product
terms,M = 20, and

v =
�
1RGBR2RGRBG2GBB2R3R2GR2BRG2RGBRB2G3G2BGB2B3

�t
: (3.5)

Given i) a set of input dataxj , j = 1; : : : N , ii) their corresponding vectorsvj, andiii) the observed
output datayj, then the coefficient vectora which minimises the RMS difference between observed
and predicted data, is given by (see Appendix A.1)

a = (VtV)�1Vty = V�y; (3.6)

whereV = [v1 v2 : : :vN ]t, y = [y1 y2 : : : yN ]
t, andV� is the Moore-Penrose pseudo-inverse ofV

(Albert, 1972).

A very important factor concerning the success of a regression algorithm is the choice of the function
hi(�) defining the vectorsv, so that the regression functiong0(x) provides a good approximation of
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Figure 3.2:The transformation from scanner RGB-space to CIELAB-space using the functiong0(P).
The difference between the theoretical CIELAB colour pointO(t) = g(P) and the approximated
colourO(c) = g0(P) corresponds to the psychophysically relevant colour difference�Eab. The
function g0(P) is defined by polynomial regression to minimise the RMS�Eab over theN patches
of a colour chart.

g(x). Typically, formth order polynomial regression, if we choosem too low, g0(x) will not have
enoughdegrees of freedomto “follow” g(x), while if m is chosen too large,g0(x) can tend to oscillate,
see Figure 3.3. An important step for the choice ofhi(�) is the linearisation of the scanner RGB values,
as described in the next section.
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Figure 3.3:1D example of first and third order polynomial regression functions~y = g0(x) applied
to a data setyi = g(xi), i = 1; : : : ; 5 marked with stars (�). The third order polynomial function
(—) gives zero residual error, but nevertheless it is obviously less adapted than the first order function
(� � �) outside of the domain.
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3.2.2 Linearisation of the scanner RGB values

The CCD scanner is inherently a linear electro-optic conversion device, that is, it converts the optical
energy of the incoming light into proportional amounts of electric signals, see Section 6.2.1. These
signals are in turn discretised and presented as digitalk-bit RGB values at the output (typicallyk = 8
for a low-cost scanner,10 or 12 for more professional ones). However, we have observed in practice
that the scanner RGB values are often not proportional to the spectral energy. This non-linearity may
have several causes, and we mention some.

1. Black offset. Even in total absence of incident light, the CCD sensor produces a small electric
signal due to leak currents.

2. Deliberate corrections to enhance the quality of the display on a computer monitor by coun-
teracting the non-linear transfer function of the monitor.2 Such corrections are often called
gamma-corrections (Poynton, 1996), and may also be applied to minimise the noise due to
quantisation. For a given scanner with its scanner driver software, the parameters of this cor-
rection may or may not be known to the user.

3. Stray light in the acquisition system may cause image-dependent deviation from linearity.

4. Fluorescence of the scanned reflective media causes the linear model of the scanner to fail.

5. Limited dynamic range of the detector.

6. Inclusion of ultraviolet and infrared radiation in the measurements.

In general, the user has limited knowledge of these factors, and we proceed thus to an automatic
characterisation of the linearity and eventually to a linearisation of the scanner RGB values.

What we wish to achieve through the linearisation3 of the scanner RGB values is to obtain RGB
values that are proportional to the optical energy of the input light, as illustrated in Figure 3.4. This
correction is calledgray balanceby some authors (Kang, 1992; 1997)

Two different approaches for the linearisation are presented in the following sections, a global and
a piecewise linear approach. They both rely on the comparison of measuredreflectance factorsri,
i = 1; : : : ; Ng of each of theNg patches of a grayscale colour chart with the corresponding meanRi,
Gi andBi device coordinates from the scanner.

3.2.2.1 A global approach

Using this approach, we assume that the non-linearity of the scanner stems mainly from a CRT
gamma-correction (Bernset al., 1993, Poynton, 1996), thus there is a power-law relation between

2The intensity of light generated by a display device is not usually a linear function of the applied signal. A conventional
CRT has a power-law response to voltage: light intensity produced at the face of the display is approximately the applied
voltage, raised to the 2.5 power. Gamma correction is the process of compensating for this non-linearity by transforming
linear scanner values to a nonlinear video signal by a power-law function (Poynton, 1996).

3What wee seek to do is to ”remove” the gamma correction that was imposed by the scanner,cf. item 2 above.
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Figure 3.4:Linearisation of the scanner output values. The scanner device coordinates(R;G;B) are
corrected to obtain values(RL; GL; BL) that are proportional to the optical energy of the incident
light.

the optical and electrical values, as given by

O = k(e� ed)

 (3.7)

Here, we useO to indicate the optical signal,e the electrical signal,ed the electrical signal corre-
sponding to dark current,k a scaling factor and
 the exponent. If we denote the linearised RGB
values asRL, GL andBL we have the following three equations.

RL = kR(R� edR)

R (3.8)

GL = kG(G� edG)

G

BL = kB(B � edB )

B

To perform the linearisation we then need to estimate the unknown parameters in these equations. The
dark current values which are the device coordinates resulting from a black object may be measured
experimentally. For the Sharp JX-300 flatbed scanner we obtained the following mean values simply
by performing a scan, with an open cover, without any document, and in a completely dark room:

edR = 7:05 edG = 3:80 edB = 6:10

To estimate the gamma values, we would like the linearised values to be equal to the measured re-
flectance factorsri, i = 1; : : : ; Ng, for theNg grayscale chart patches. We then have the following
set of equations.

ri = kR(Ri � edR)

R ;

ri = kG(Gi � edG)

G ;

ri = kB(Bi � edB )

B ; i = 1; : : : ; Ng (3.9)

To solve this for
R; 
G; 
B , we take the logarithm on both sides of the equations.

log(ri) = log kR + 
R log(Ri � edR) (3.10)

log(ri) = log kG + 
G log(Gi � edG) (3.11)

log(ri) = log kB + 
B log(Bi � edB ) i = 1; : : : ; Ng (3.12)
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This set ofNg equations can easily be solved by a least mean squares approach. We note that with this
method, we do not get an exact match between the reflectances and the linearised grayscale values, as
can be seen in Figure 3.5.
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Figure 3.5:Linearisation curve with a global approach (—) compared with the measured reflectance
values (+). We see that the linearisation curve differs from the reflectance values, especially at low
levels. For clarity we have only included the result for the blue (B) channel.

3.2.2.2 A piecewise linear approach

Using this approach, we consider the linearisation curve to be piecewise linear in thesemilogspace.
By ordering the reflectance values such thatri < ri+1, i = 1; : : : ; Ng (see Figure 3.6) we obtain the
following set ofNg � 1 equations for theR channel (similarly for theG andB channels):

logRL = aiR+ bi; Ri < R � Ri+1; 1 � i � Ng � 1 (3.13)

The coefficientsai andbi, i = 1; : : : ; Ng of Equation 3.13 are calculated as follows:

ai =
log ri+1 � log ri
Ri+1 �Ri

; bi =
Ri+1 log ri �Ri log ri+1

Ri+1 �Ri
(3.14)

For input valuesR > RNg we simply perform an extrapolation of the(Ng�1)’th segment. For values
R < R1 we perform a linear interpolation in linear space between the point(R1; r1) and(edR ; 0). We
can not do this interpolation in semilog space, as we need to reach zero.

This method guarantees that on the grayscale, the linearised values will be exactly equal to the re-
flectance values. Furthermore, it assures proper handling of the input values near zero. The resulting
linearisation curves forR,G, andB are shown in Figure 3.7.
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Figure 3.6:Illustration of a piecewise linear linearisation curve in semilog space. This approach guar-
antees that the linearised values equal the measured reflectance values on the points of the grayscale
chart.
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Figure 3.7:The linearisation curves for R (—), G (� � �) and B (� ��) obtained with a piecewise linear
approach. The ordinate axes represent the input values(R;G;B), the abscissa axes represent the
linearised values(RL; GL; BL). We see that we get an exact match between the reflectances marked
with crosses and the linearised grayscale values. We also note the behaviour near the origin, where
special considerations have been taken.

3.2.2.3 Testing of the linearisation algorithms

Linearisation of the RGB scanner output have been done for several different scanners and digital
cameras and several different gray-scale colour charts. The preferred method depends ont the appli-
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cation and on the device. The quality of the proposed linearisation methods is not easy to evaluate,
since the linearisation is normally only the first step of a series of correction algorithms, of which the
final outcome depend.

We have tested several combinations of linearisation methods (piecewice linear, global, none) together
with following polynomial corrections for the Sharp JX-300 24 bit/pixel flatbed colour scanner and
an AGFA photographic grayscale colour chart withNg = 18 colour patches. The graphs and numbers
presented in this section is from this experiment which is explained in detail in (Hardeberg, 1995). No
clear conclusions are drawn, however the tendancy is that the piecewise linear method gives the best
results.

For the experiments with the AGFA Arcus II 36 bits/channel flatbed colour scanner (see Section
3.3.2) no linearisation was needed, while to obtain the very high accuracy needed for the multispectral
experiments of Chapter 7 with the PCO SensiCam digital camera, a correction for the black offset was
needed.

Note that other linearisation schemes could have been used, such as first, second or third order poly-
nomial regression, piecewise linear interpolation in linear or log-log space, or spline interpolation.

In the remaining of this chapter we will assume that the scanner output has been linearised if this has
been found necessary.

3.2.3 Choice of the approximation function

Crucial for the performance of the characterisation is the choice of the function to approximateg(�).
We have tested a great number of different implementations, using different colour charts, different
polynom orders, including or not linearisation and a preliminary power-law correction, etc. Prelim-
inary results can be found in (Schmittet al., 1990; 1995; 1996, Hardeberg, 1995, Hardeberget al.,
1996). Here we present some of the proposed methods. To obtain a better understanding of the
successive steps of the methods, we illustrate them with symbolic equations.

3.2.3.1 Linear regression to XYZ space

With this classical method (Hung, 1991, Kang, 1992, Wandell and Farrell, 1993, Berns, 1993a, Haneishi
et al., 1995, Johnson, 1996), a linear regression algorithm ’T1’ (without the constant term, that is,
a0 = 0) is applied to convert from scanner RGB values to CIEXYZ values, and then the standardised
formula (labeled ’CIE’) given in Section 2.4.8.1 is applied to obtain the CIELAB values if those are
needed. Practically, the XYZ values are obtained by multiplying the RGB values by a 3x3 matrix of
parameters.
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3.2.3.2 Second order polynomial regression to XYZ space

Here, we hope to obtain a better fit by applying a second order polynomial regression algorithm ’T2’
to convert from scanner RGB values to CIEXYZ values. This corresponds to a 3x10 correction matrix
when we include a constant term.
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3.2.3.3 Third order polynomial regression to XYZ space

With this method, a third order polynomial regression algorithm ’T3’ is applied to convert from scan-
ner RGB values to CIEXYZ values, corresponding to a 3x20 correction matrix.
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3.2.3.4 Polynomial regression to CIELAB space

The main drawback with all the methods presented up to now is that the error that is minimised
by the regression algorithm, the RMS error in CIEXYZ space, is very poorly correlated to visual
colour differences. We propose thus a regression scheme in which the output values of the regression
algorithm are CIELAB values, instead of CIEXYZ values, since the Euclidean distance in CIELAB
space corresponds quite well to perceptual colour differences. There is clearly not a linear relationship
between scanner RGB and CIELAB space, and we propose thus to model the transformationg(�) of
Equation 3.1 directly bynth order polynomial regression,n = 1; 2; 3.
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3.2.3.5 Non-linear correction followed by polynomial regression

With this method, we have applied a non-linear correction of the RGB values before the regres-
sion by applying the cubic root function,i.e. the functionshi(R;G;B) (cf. Eq.3.4) are replaced by
hi(R

1=3; G1=3; B1=3). The use of this cubic root function is motivated from considering the CIELAB
transformations, which involves such cubic root functions on the XYZ tristimulus values which again
are proportional to the optical energy.



46 Colorimetric scanner characterisation

(p=1/3, Tn, LAB):
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where ’p = 1
3 ’ indicates that the components are raised to the power of one third.

3.3 Experimental results

We have successfully applied the described colorimetric characterisation algorithms to several differ-
ent scanners and also digital cameras. Some of these results are reported in other chapters of this
dissertation. We will here report the results with the AGFA Arcus II scanner on which most of the
experimentation has been effectuated.

3.3.1 Evaluation measures

To be able to evaluate and compare the different approaches, the following measures are provided:

■ �E which is the mean�Eab colour difference (Section 2.4.8.1) between the calculated and
theoretical CIELAB-values for the complete test chart.

■ �Emax which represents the maximum�Eab colour difference between the calculated and the
theoretical CIELAB-values.

■ �L,�a,�b,�Lmax,�amax,�bmax, which are the mean and maximal absolute errors measured
on each channel seperately.

■ �E which is the standard deviation of the�Eab error over the patches, that is,�2E = 1
N

PN�1
i=1 (�Ei�

�E)2

3.3.2 Results

We have applied the described characterisation methods to the AGFA Arcus II flatbed scanner, using
two different IT8.7/2 colour charts (Ohta, 1993, ANSI IT8.7/2, 1993) containingN = 288 colour
patches, one from AGFA, with nominal CIELAB values provided by the manufactor, and another
from FUJI, being calibrated, that is, provided with CIELAB values measured on this copy of the chart.
We have tested first, second and third order polynomial regression from scanner RGB to XYZ and
CIELAB, as well as 1-3rd order regression between the square root of the RGB values and CIELAB
space, as described in Section 3.2.3. For the AGFA chart we obtain the results given in Table 3.2, and
for the FUJI chart we obtain the results given in Table 3.1.

From these results, several comments may be made. First, we note that mean errors always gets
smaller as higher order regression is used, as expected. However, maximum errors sometimes gets
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Method �E �Emax �L �Lmax �a �amax �b �bmax �E
T1, XYZ 5.079 17.658 1.676 5.162 2.925 14.157 3.379 11.970 3.868
T2, XYZ 2.145 18.457 0.554 6.136 1.303 16.672 1.243 8.273 2.557
T3, XYZ 1.574 15.046 0.468 5.008 0.955 13.270 0.898 7.128 2.013
T1, LAB 19.38 45.269 13.63 35.089 7.719 32.522 7.450 35.796 9.486
T2, LAB 7.288 36.194 2.504 15.418 4.282 24.528 3.979 25.483 5.305
T3, LAB 4.563 25.965 1.294 10.909 2.673 20.541 2.633 16.124 3.763

p=1/3, T1, LAB 5.462 18.393 2.352 11.748 2.509 17.901 3.640 12.083 3.602
p=1/3, T2, LAB 1.350 8.503 0.486 3.321 0.953 8.448 0.548 4.413 1.108
p=1/3, T3, LAB 1.006 5.515 0.432 2.430 0.606 3.649 0.488 3.644 0.681

Table 3.1:Results of the different characterisation methods for the AGFA Arcus II scanner, with the
FUJI IT8.7/2 colour chart.

Method �E �Emax �L �Lmax �a �amax �b �bmax �E
T1, XYZ 4.841 22.939 1.276 3.715 2.782 20.932 3.135 15.354 3.800
T2, XYZ 2.989 28.246 0.458 3.585 1.653 21.718 1.956 28.089 3.811
T3, XYZ 2.170 20.903 0.427 2.490 1.306 18.576 1.348 13.276 2.772
T1, LAB 22.27 49.111 15.31 34.052 8.422 37.251 9.056 40.062 9.298
T2, LAB 8.858 40.349 2.854 14.054 5.077 25.858 5.024 29.930 5.682
T3, LAB 5.386 30.792 1.385 9.775 3.207 23.060 3.114 19.784 4.065
p=1/3, T1, LAB 5.652 23.961 3.241 11.345 2.234 23.304 2.987 12.645 3.339
p=1/3, T2, LAB 1.496 12.448 0.348 2.352 1.166 12.348 0.579 3.311 1.341
p=1/3, T3, LAB 0.918 4.666 0.289 2.069 0.621 4.588 0.427 2.792 0.658

Table 3.2:Results of the characterisation methods for the AGFA Arcus II scanner, with the AGFA
IT8.7/2 colour chart.

worse. For the regressions to XYZ space, we see that errors on theL� component are quite small com-
pared to ona� andb�. Polynomial regression directly from linear RGB values to CIELAB is clearly
not a good solution, while applying a pre-correction that “mimics” the non-linear function involved
in the XYZ-CIELAB conversion gives very good results, especially when third order polynoms are
used, giving a mean residual error of about one�E unit. When relating these results to the rule of
thumb described in Table 2.1 on page 22, we see that our results are very good. The mean error is
hardly perceptible, while the maximal error is perceptible, but acceptable.

Also when comparing to results found in the literature, our results are excellent. For example Haneishi
et al. (1995) obtained mean/max�Eab errors of 4.9/16.6 and 2.0/14.0 using respectively first and
second order polynomials to transform from scanner RGB to XYZ for a Canon CLC500 scanner
using a chart of 125 patches. Rao (1998) obtained mean/max�E errors4 of 2.33/11.95 using linear
least squares from RGB to XYZ, and 1.62/4.55 using a non-linear least squares method minimising
�E by a Levenberg-Marquardt iterative optimisation scheme. This was done for a IBM TDI/Pro
3000 scanner using the Kodak Q60 IT8 chart. Kang (1992) obtained mean�Eab errors of 2.52 and
1.85, using3� 6 and3� 14 matrices, respectively, for the RGB-XYZ conversion for a Sharp JX-450
scanner using a Kodak Q60-C IT8 colour chart.

To gain more insight into the performance of the proposed methods, we present in Figure 3.8 his-
tograms of the residual�Eab errors, in Figure 3.9 the distribution of errors versus lightness, and in

4Rao (1998) define a somewhat peculiar�E =
p
�L�2=4 + �a�2 +�b�2. This is clearly lowering their�E values

compared to the standardised�Eab =
p
�L�2 +�a�2 +�b�2 used in our work.
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Figures 3.10 and 3.11, graphical visualisations of the errors in CIELAB space. For a more detailed
presentation of the numerical data involved in the characterisation process, refer to Appendix C.
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Figure 3.8:Error histograms for the FUJI IT8.7/2 chart using first, second and third order regression
to XYZ space (upper), and to CIELAB space, including a cubic-root pre-correction function (lower).
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Figure 3.9:Error distribution for the FUJI IT8.7/2 chart using traditional linear regression (T1, XYZ)
(left) and our preferred method (p=1/3, T3, LAB) (right). (Notice the scale difference.)
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Figure 3.10:Visualisation of the difference between the measured and the estimated CIELAB values
of some of the patches of the FUJI chart using the linear regression method (T1, XYZ). The residual
colour differences appear as black spikes.

3.3.3 Generalisation

An important question concerning our approach is the generalisation. Would the polynomial fit those
colours that are not used in the regression? With which colorimetric errors? How many colour patches
are needed in the regression to warrant an acceptable error? To answer these questions we have
conducted the following experiment. Using the AGFA IT8.7/2 colour chart which hasN = 288
patches, we systematically reduce the number of patches used for the regressionNtraining, and use the
Ntesting = N � Ntraining removed patches for testing. The results, using the best method (p=1/3, T3,
LAB) are reported in Table 3.3. We see that even when reducing the training set to 54, the mean and
max total error only increases by 0.48 and 1.45�E units, respectively. When the training set contains
less patches than the number of parameters (20) the system gets underdetermined and the estimation
is unusable. With a sufficient number of patches, approximatively the half, the error on the testing set
is only slightly higher than on the training set. These results are in good agreement with what was
found for lower order polynoms by Kang (1992).
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Figure 3.11:Visualisation of the difference between the measured and the estimated CIELAB values
of some of the patches of the FUJI chart using the proposed characterisation method (p=1/3, T3,
LAB).

3.3.4 Comparison of results with and without characterisation

To evaluate the results of our characterisation process, it would be interesting to compare the error in
terms of�Eab with and without characterisation, that is, for each patch of the colour chart, to com-
pare the CIELAB-values obtained by our characterisation with the CIELAB-values obtainedwithout
characterisation. This is, however, not a straightforward task, the problem being how to obtain ”good”
uncharacterisedCIELAB-values.

In the absence of a characterisation procedure, a natural approach would be to follow what a typi-
cal user probably would do, by first adjusting the gamma corrections at the scanning step in order
to choose the preferred image displayed on a CRT monitor and then by considering the displayed
image as it appears on the screen as a reference. With this in mind, it makes sense to define theun-
characterisedtransformation from gamma corrected RGB scanner to CIELAB as the transformation
between the RGB space of the CRT monitor and CIELAB.
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# Patches Training Testing Total

Ntraining Ntesting �E �Emax �E �Emax �E �Emax

288 0 0.918 4.666 — — 0.918 4.666
270 18 0.901 4.483 1.164 3.958 0.918 4.483
252 36 0.897 4.437 1.062 3.881 0.918 4.437
216 72 0.896 4.037 1.105 3.757 0.948 4.037
180 108 0.940 3.945 0.982 3.629 0.956 3.945
144 144 0.978 3.931 0.961 3.358 0.969 3.931
108 180 0.956 3.818 1.019 4.764 0.995 4.764
72 216 0.929 3.341 1.060 7.171 1.027 7.171
63 225 0.937 3.208 1.145 6.032 1.100 6.032
54 234 0.901 2.820 1.249 6.118 1.184 6.118
45 243 0.744 2.245 1.515 15.009 1.394 15.009
36 252 0.720 2.179 1.916 19.808 1.766 19.808
27 261 0.329 0.881 4.048 33.273 3.699 33.273
18 270 0.000 0.000 212.5 2104.9 199.2 2104.9

Table 3.3:Results for the (p=1/3, T3, LAB) method and the AGFA IT8.7/2 colour chart using different
numbers of patches for training and testing. We see that the overall error increases only slightly even
when the number of patches used for training is reduced to 25% of the total number of patches.
However, the errors increase rather quickly if the number of patches is reduced even further.

For the uncharacterised transformation we chose a gamma correction of 2.2 at the scanner step, and
then applied a classical CRT model (Bernset al., 1993), this giving a mean error of�E = 9:18, and
a maximum error of�Emax = 26:1, which have to be compared to�E = 1:01 and�Emax = 5:52
obtained with our characterisation algorithm.

3.4 Conclusion

With the methods described in this chapter, a link between the device-dependent colour space of a
scanner and the device-independent CIELAB colour space standardised by the CIE is provided.

The proposed characterisation method consists of three steps:i) a linearisation of the RGB scanner
values,ii) a preprocessing with a cubic root function, andiii) a third order 3D regression polynom. The
preprocessing step serves as a first approximation of the cubic root function involved in the conversion
from CIEXYZ to CIELAB.

Applying this method to an AGFA Arcus II flatbed scanner, we obtained a mean error of�Eab =
0:918, and a maximum error of�Eab = 4:666 between the computed and the measured CIELAB
values on the complete set of patches of the AGFA IT8.7/2 colour chart. These results are very
satisfactory, compared to results obtained in the literature. The algorithms have also been applied
to other image acquisition devices, and we conclude that the characterisation process introduces a
significant improvement of the colorimetric quality of the image acquisition device.
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Chapter 4
High quality image capture

In the context of archiving of fine art paintings, we have developed various tech-
niques for the digital acquisition and the processing of high quality and high defini-
tion colour images. After a short review of existing systems, we describe here briefly
the successive steps of our approach to this process. After a general set up, we
first record a set of experimental data corresponding to the calibration of the CCD
array of the digital camera and to the light distribution. The digital image of the paint-
ing is then successively corrected for light distribution inhomogeneities, chromatic
aberrations by a precise registration of the three channels, and poor colorimetric
quality of the spectral responses of the digital camera by a non-linear colorimetric
3D transformation optimised using an IT8.7/2 colour target. The corrected image is
then described by device-independent colour components and can be archived or
further converted for visualisation on a calibrated display or printer. For very high
definition an image mosaicing is further performed.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 High resolution digital cameras, a review . . . . . . . . . . . . . . . . . . . . . 55
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4.5.2 Visualisation and reproduction . . . . . .. . . . . . . . . . . . . . . . . . 63

4.5.3 Colorimetric analysis of fine art paintings . . . . . . . . . . . . . . . . . . 64

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Introduction

Traditionally, the image acquisition process using classical photographic techniques is quite complex
and it is difficult to control how colour is being processed in the different steps, see Figure 4.1. With

Figure 4.1:Traditional image acquisition process using classical photography.

the arrival of high-quality high-resolution electronic cameras new possibilities have emerged. The
proposed digital image acquisition process is performed directly from the painting, without a pho-
tographic intermediary, using a high resolution CCD camera, see Figure 4.2. The original methods
which are described in this chapter allow a perfect spatial resolution and an excellent colour fidelity.
The acquisition is therefore independent of the light source and the acquisition equipment. The pro-
cess of colorimetric characterisation of the camera provides the transformation from the RGB values
of the camera to the device-independent CIELAB colour space, using spectrally calibrated colour
targets.

Figure 4.2:Entirely digital image acquisition process using a CCD camera.

In the framework of the European VASARI project1 the Ecole Nationale Sup´erieure des T´elécommuni-
cations (ENST) developed in 1990/1991 a set of techniques for the direct digital acquisition of a

1European ESPRIT II project nÆ 2649, Visual Arts System for Archiving and Retrieval of Images
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painting with a digital camera. Twenty paintings belonging to the Louvre collection was digitised in
high resolution and high quality. The experiments were conducted at the French Museum Research
Laboratory (LRMF) for obvious security reasons and with the valuable collaboration of their experts.
The aim of the VASARI digitisation program at the Louvre Museum was to obtain digital acquisitions
of the best possible quality under the constraint of physical and technological limitations, so that a
painting could be analysed, displayed and reproduced, in part or totally, and so that it may be studied
at several stages of its life.

More recently the ENST and the LRMF again collaborated on the occation of the exhibition on Jean-
Baptiste Camille Corot (1796-1876) in Grand Palais, Paris (Jan.-May 1996). Eight paintings were
digitised with an improved colour calibration technique and stored on a CD-ROM which was pub-
lished and presented during the exhibition (Crettezet al., 1996, Schmitt, 1996, Maˆıtre et al., 1997).
On later occasions we also participated in the digitisation of paintings by Francisco de Goya (1746-
1828) and Georges de La Tour (1593-1652) (Crettez, 1998, Hardeberg and Crettez, 1998, Crettez and
Hardeberg, 1999)

In the following sections we describe the various operations developed to obtain high resolution and
high quality colour images in the museum context. Several people have participated in this work,
and significant research and development efforts have been done as student projects (M¨uller, 1989,
Camus-Abonneau and Camus, 1989, Allain, 1989, Goulam-Ally, 1990a;b, Deconinck, 1990, Bournay,
1991, Wuet al., 1991, Nagel, 1993). These works have provided indispensable tools and background
material for the work of this dissertation.

After giving a review of some existing high resolution digital cameras in Section 4.2, we present
in Section 4.3 the general experimental setup and initial calibration of the digital camera includ-
ing the lighting conditions. Then, in Section 4.4, we describe the three transformations which are
successively applied on the digital images recorded directly from a painting: the light distribution
homogenisation, the inter-channel registration and the colorimetric correction. Finally, different post-
processing algorithms are presented briefly in Section 4.5: mosaicing, visualisation and reproduction,
and colorimetric analysis of paintings.

4.2 High resolution digital cameras, a review

High-end digital cameras is a field of research and development in very rapid development. What was
considered as high-end five years ago is generally obsolete today. In this section we make no attempt
to give a complete survey of the past, present, and future of high resolution digital cameras. However,
we will describe shortly a few examples of such, in particular those developed in the framework of
the European ESPRIT projects, VASARI and MARC2.

4.2.1 The VASARI project

Martinezet al. (1993) present the seven-channel VASARI image acquisition system implemented at
the National Gallery in London. The system consists of a3000 � 2300 pixel camera, the Kontron

2European ESPRIT III project, Methodology for Art Reproduction in Colour.
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ProgRes 3000 (Lenz and Lenz, 1989), mounted on a repositioning system. By mosaicing they attain
a resolution of about20k � 20k. A high-quality lens is chosen having low geometric and radiometric
distortion, thus avoiding expensive and inaccurate correction of geometric distortion.

A lighting system with optic light guides which move with the camera is used. In this way the same
light-distribution correction can be applied for each sub-image. Furthermore the seven interference fil-
ters are introduced between the light source and the painting, not between the painting and the camera.
This is intended to reduce misalignment errors as well as reducing the exposure of the painting.

The presented system uses only 8 bit per channel, but an extension to twelve bit is reported to be under
investigation.

The seven filters are chosen as broad-band, nearly Gaussian filters with transmittances covering the
visible spectrum with considerable overlap. The authors refer to Deconinck (1990) where 12 narrow-
band filters are used, but claim that the use of seven instead of twelve filters represent a marginal loss
in quality, but a significant gain in processing time.

The conversion from the seven camera responses to CIE XYZ-space is performed using linear regres-
sion optimised on the Macbeth ColorChecker chart comprising only 24 colour patches. The result of
the calibration is evaluated on the same chart giving an average error of�E�

CMC = 2:3.

Refer to Cupitt (1996) for a practical summary for non-experts of the colour camera calibration expe-
rience gained at the National Gallery.

Other implementations of VASARI image capture systems can be founde.g.at the Neue Pinakothek
in Munich (Müller and Burmeister, 1993) and at the University of Firenze (Abrardoet al., 1996).

4.2.2 Further developments under the MARC project

MacDonald and Lenz (1994) present an ultra-high resolution digital camera, developed under the
MARC project. Two techniques for attaining high resolution in digital cameras are explained in this
paper, micro- and macro-scanning.

In a micro-scanned array camera the image is formed by micro-scanning the intermediate grid posi-
tions of a low resolution 2D CCD array (Lenz and Lenz, 1989). The technique is known as piezo-
controlled aperture displacement (PAD). The final image is constructed by interlacing the sub-images.
The macro-scanning technique consists of shifting the CCD array repeatedly by its width and heigth,
and constructing the final image by mosaicing. MacDonald and Lenz point out that it is convenient to
combine these two techniques, and describe two different implementations of this:

■ A micro-scanning camera is moved as a whole in front of the object. This is the implemen-
tation used by Martinezet al. (1993) presented above. Because the viewpoint is moved from
one mosaic patch to another, this approach is only useful for flat objects being no larger than
the travel capacity of the translation equipment. Furthermore, compensations for lens charac-
teristics such as vignetting which affects image quality near the borders of each patch should be
applied. However, there is no theoretical limit on image resolution using this technique.
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■ Both the micro- and the macro-scanning take place behind the lens. This is the method proposed
by the authors. This approach allows for imaging 3D objects of arbitrary size. The resolution of
the system is, however, now limited by the diffraction and the image field size of the lens. Such
a camera is being developed by the authors, attaining a resolution of20k � 20k pixels, and a
full-size scanning time of about 5 minutes.

They mention that a conversion from RGB to CIELAB will be performed on-line, but give no details
on the colorimetric calibration necessary for this conversion.

Lenzet al.(1996b) describe the calibration and characterisation of this camera , applied on the produc-
tion of an art paintings catalogue. Two colour charts were used for the characterisation, the Macbeth
ColorChecker with 24 patches, and a MARC chart with 112 colours specifically designed to contain
colours used in paintings. Two different illuminations were used, HMI light3 and 3200K tungsten
light.

To determine an analytical mapping from raw camera data (RGB) to XYZ, various variants of first,
second and third order transforms were investigated.

The proposed method seems to consist of two steps,i) a characterisation performed once using the
MARC chart and a full third order transform, andii) a simpler calibration, calledmatrix white balance,
using the Macbeth chart imaged beside each painting. This approach is preferred over an approach
imaging the MARC colour chart beside each painting, and performing a full third order correction for
each image because of specular reflection on the MARC chart under otherwise optimal lamp positions.

Their best results are RMS�E�
ab = 3:1, measured on all colours of the MARC chart taken under

HMI illuminations. The result using tungsten light is considerably worse.

4.3 Experimental setup and initial calibration

The digital camera we used is a Kodak Eikonix 1412 camera with a Nikon lens (50mm 1/2.8). It is
equiped with three built-in RGB filters mounted on a wheel and with a linear CCD array of 4096 light
sensible square elements. A stepper motor moves the array perpendicularly, scanning the image plane
in 4096 lines. The analogical signal of each element is AD converted into 12 bit and corrected by
the camera hardware with a linear transformation according to a dark current offset and a gain factor
which can be numerically adjusted for each individual element. The camera is connected to a PC and
driven by software.

4.3.1 General setup

The painting to be digitised is installed vertically on an easel, preferably without its external frame. An
ANSI IT8.7/2 (1993) colour target is fixed just above it, in the same plane as the painting surface. The

3The HMI metallogen lamp developed by Osram Corporation,http://www.osram.com , has a color temperature of
approximatively 5600K. In the name HMI, the H is an abbreviation for mercury (Hg), M indicates the presence of metals,
and I refers to the addition of halogen components such as iodide.
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distance of the camera to the painting is chosen according to the desired resolution: values between 5
to 10 pixels per mm are typically used. In order to avoid geometrical distorsions, the painting has to be
placed perpendicularly to the optical axis of the camera. This can be set precisely when the painting
is taken in one view by controlling the distance of its four corners to the centre of the camera lens.
When the painting needs to be taken in several views, the positioning constraints become too strong
for building a mosaiced image directly from a juxtaposition of the recorded subimages. A geometrical
correction must be done by software to match the overlapping parts with sub-pixel accuracy.

The illumination of the painting is a rather delicate matter when using a linear array camera which
requires long exposure time. It has to be powerful enough to provide a signal far above the dark current
of the CCD, but it should also avoid any risk of deterioration of the painting by satisfying experimental
condition constraints (illumination< 600 lux, room temperature< 25ÆC, hygrometry< 50%). In the
VASARI project 4 quartz tungsten-halogen lamps of 1 kilowatt were used in indirect lighting. With a
colour temperature of 3200K, their energy in the blue domain where the CCD sensitivity is low was
just sufficient. For the Corot paintings we used an HMI daylight lamp with a colour temperature of
5500K. The energy in the 3 channels of the camera was well equilibrated. But due to a technical
accident we used only a single lamp with a direction lighting of45Æ to the painting surface. The
spatial repartition of the lighting on the painting surface was very inhomogeneous, but was succesfully
corrected by a processing described in Section 4.4.1.

4.3.2 CCD calibration

After positioning the camera, the painting and the lighting, the general set-up terminates with the
settings of the lens aperture and of the camera integration time successively for each of the three
channels. These settings must be chosen in such a way that the integration time is minimal and the
image signal is as high as possible but without saturation. The integration time must also be a multiple
of 0.01 second to limit any coupling of the lighting with the 50Hz alternating current. The general
set-up is resumed in the first row of Figure 4.3.

The following two steps of the CCD calibration are the characterisations of the dark current (offset)
and the gain of the analogical signal delivered by the linear CCD array elements. Their values being
a function of the integration time and the temperature, we characterise these CCD parameters prior
to each acquisition and for each individual element and for the integration time chosen for each one
of the three channels. We first statistically estimate the dark current values by measuring the element
responses in the black. The resulting values are stored to be re-used as offset correction data (see row
2 of Fig. 4.3). We had previously experimentally verified that the offset corrected signal of an element
becomes well-linear with the energy of the light received,cf. Section 3.2.2.

We then characterise the electronic gain of each element with the defocused image of a diffuse white
chart placed in front of the painting and thus with similar lighting characteristics. We record a set of
measurements for a given position of the linear array, and for each element we determine the pixel
mean value of its offset corrected values (see row 3 of Fig. 4.3). The resulting curve for the 4096
elements is very jittered due to the variation of the gain from element to element. Fig. 4.4(a) shows a
portion of this curve for 200 successive elements (from column 100 to 300). We smooth this curve by
a spatial lowpass filter in order to retrieve a smooth curve which is a satisfactory approximation of the
unknown spatial energy distribution of the defocused white image area covering the current position
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Figure 4.3:General setup and CCD calibration.

of the linear array. A data set of 4096 gain correction factors is computed by dividing the filtered
curve by the jittered one and is stored with the gain correction data set (see Fig. 4.4(b)).

The fourth step is the characterisation of the light distribution. We place a large, uniform, light (but
not necessarily white), diffuse reflecting board in place of or close in front of the painting. We leave
the camera slightly out-of-focus in order to eliminate any local inhomogenity of the diffusing surface
(spot, particle, fiber, etc). We then scan, in the channel delivering the highest signal, the corresponding
12-bit pixel values corrected for offset and gain, and record them in a numerical image denoted LUM.
Each pixel value of LUM is proportional to the lighting energy received at the corresponding point
on the diffuse surface. LUM and its maximum value constitute the light distribution data (see row 4
of Fig. 4.3). Finally we carefully focus the image of the painting and control the acquisition set-up by
verifying that no saturation occurs in any of the three channels (see row 5 of Fig. 4.3).
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Figure 4.4:Characterisation and correction of the CCD electronic gain (simulated data).

4.4 Correction algorithms

When the experimental set-up and the CCD calibration have been carried out, we proceed with the
scanning of the painting itself. It results in three RGB images, each composed of 12 bit/pixel values
already corrected by hardware with CCD gain and offset correction data. These RGB images then un-
dergo a set of three successive corrections which are described in the next three sections. A flowchart
of this process is shown in Fig. 4.5.
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Figure 4.5:Flowchart of the main data processing. Three successive correction algorithms are applied
to the images: light distribution correction, inter-channel registration and colour correction.

4.4.1 Light distribution correction

The first correction eliminates the light distribution inhomogeneities. It is done by dividing each RGB
value by the value of the relative light distribution image (LUM normalised by its maximum) at the
corresponding pixel. This correction would transform the light image itself in a perfect constant image
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equal to the maximum of LUM. We can archive the resulting light-corrected RGB images with 3x12
bit quantised values and/or directly continue the following steps of the processing in floating point
precision, avoiding thus the introduction of any further quantisation effects.

4.4.2 Inter-channel registration

A misalignment of the three channels occur whenever the colour planes are not perfectly registered.
There are two main causes for this (Khotanzad and Zink, 1996), physical and optical misalignment.
The misalignment problem is studied in the field of colour segmentation (Khotanzad and Zink, 1996,
Hedley and Yan, 1992, Marcu and Abe, 1995)

Physical misalignment occurs if a relative movement between the sensor and the target takes place,
typically in a three-pass flatbed scanner, or with a digital multi-pass camera on a not-so-very rigid
tripod.

Optical misalignment is due to the prism effect of the lens material (see Figure 4.6). The light rays
with different wavelengths are refracted (bent) differently by the lens, and thus hitting the CCD at
slightly different locations. This effect is known as “lateral chromatic aberration”.
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Figure 4.6:RGB misalignment by optical colour dispersion. (Adapted from Khotanzad and Zink,
1996).

The use for each channel of a specific optical filter in front of or behind the lens (as is the case with
the Kodak Eikonix camera) introduces inevitably some chromatic aberrations in the optical path. As
a consequence we can observe that the three channels are not perfecly registered, the discrepancies
corresponding in particular to tiny differences in the magnification. Radial shifts of about 2 pixels are
commonly encountered between two channels on the border of a 4k x 4k image.

To correct these geometrical effects we register the R and B channels on the G one respectively
by two polynomial transformations of degree 2 in the image space coordinates. To determine the
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coefficients of these transformations we first detect with classical picture processing techniques the
main characteristic points corresponding to strong local features such as edge corners in each of
the 12-bit images (the images corrected for light distribution if available, otherwise the uncorrected
scanned ones). For each transformation (R/G and B/G respectively) we then match the best pairs
of characteristic points by correlation techniques under the hypothesis of small shifts. We finally
use robust statistics and linear RMS techniques for the estimation of the transformation coefficients.
The resulting inter-channel geometric registration increases the sharpness of the image and limits the
iridescences along the edges between contrasted regions, as shown in Figure 4.7.

Figure 4.7:Example of inter-channel registration. Magnified detail of the spear of the Cathedral of
Chartres by C. Corot. The original image (left) shows artefacts due to misalignment,e.g.irisation and
blurredness. In the empirically corrected image (right) these artefacts are greatly reduced.

4.4.3 Colorimetric correction

The third correction is a colour correction. The analysis of the spectral responses of the digital cam-
era,cf. Section 6.2.2, shows that they are far from being linear combinations of the colour matching
functions of the CIE-XYZ-1931 standard observer.

In order to increase the quality of our colour data we characterise the digital camera by using an
analytical model, as described in Chapter 3, based on the minimisation of the mean square error of a
set of measurement points by polynomial regression. By doing so, we achieve a very high colorimetric
fidelity, with a mean�Eab of approximately1:5. The exact results vary from image to image.
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4.5 Post-processing

The CIELAB digital image resulting from the main processing can be archived. It is generally further
processed for a given application. Various examples are presented in Fig. 4.8 such as an image mo-
saicing when very high definition is required, a colour conversion when the image has to be visualised
on a specific device, or a colour facsimile transmission.
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Figure 4.8:Various post-processing algorithms applied to the acquired CIELAB images.

4.5.1 Mosaicing

When the dimension of a painting requires more pixels than those provided by the digital camera, we
need to perform a mosaicing. This implies making several acquisitions covering the entire surface of
the painting. In order to maintain the validity of the CCD calibration data we follow the same general
set-up, in particular by keeping the same light distribution on the area of the painting viewed by the
camera, and we just translate the painting parallely to its surface in front of the camera. However it
is impossible to guarantee this translation as exactly parallel to the image plane. Small homographic
distorsions occur between adjacent images and thus geometric corrections have to be made for their
registration before building the mosaic. By reserving a large enough overlap between two adjacent
images we can match in their overlapping part a set of corresponding feature points and determine a
geometric transformation of the second image for it to coincide with the first one. For that we follow
a similar approach to the one used for the inter-channel registration. We start by choosing as fixed the
central CIELAB image of the painting and we progressively build around the mosaic by repeating the
registration step between each remaining CIELAB image and the set of the already registered images.

4.5.2 Visualisation and reproduction

We used for the visualisation in our experiments a BARCO Reference Calibrator monitor for which
we know precisely the phosphor colour point coordinates and the specific gamma of each channel. It
is calibrated for several white light references, in particular for the daylight D50. For each CIELAB
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triplet we directly derive, from computation and by using an usual CRT model, the corresponding
digital RGB gamma-corrected values for the D50 calibrated monitor,cf. Section 2.5.3.1. Other trans-
formations of the CIELAB triplets can also be made, such as the conversion to a colour printer as
explained in Chapter 5.

4.5.3 Colorimetric analysis of fine art paintings

We have proposed a methodology for using a computer to assist in the colorimetric analysis of fine art
paintings (Crettezet al., 1996, Crettez, 1998, Hardeberg and Crettez, 1998, Crettez and Hardeberg,
1999). This analysis provides valuable information on the colours in a painting, their distribution, the
techniques applied by the artist etc.

We perform a segmentation of the CIELAB space into different regions, such as light and dark colours,
pastels and saturated colours etc. This segmentation in CIELAB space also provides a segmentation of
the painting itself. We can then perform a colorimetric analysis of the resulting regions separately, and
extract several properties, such as the precision of the nuances, colour harmonies, principal colours
etc. We can also perform statistical analyses of the colour distributions.

The colorimetric analysis furthermore allows the demonstration and evaluation of different perceptual
effects, such as simultaneous contrast, known from the theories of colour appearance.

This methodology has been applied to several paintings,e.g.by Francisco de Goya (1746-1828), Jean-
Baptiste Camille Corot (1796-1876), and Georges de La Tour (1593-1652). Interesting colorimetric
information has been obtained, see Figure 4.9.

4.6 Conclusion

The complete process for the acquisition and the processing of high quality digital colour images
provides satisfactory results. The described methods have been applied to fine-art paintings on several
occasions, for example for the making of a CD-ROM on the French painter Jean-Baptiste Camille
Corot (1796-1876) in collaboration with the LRMF (Crettezet al., 1996).

We used in these studies a digital camera with a linear array which requires a long exposure time
for the scanning of the painting. An improvement would be to use a digital camera with a large
rectangular CCD array up to 4k x 4k, now available.

We would also like to improve the visualisation and adapt it to the surrounding conditions of viewing
by using advanced colour appearance models (see Fairchild, 1997). For the acquisition itself we
develop multi-spectral image techniques by increasing the number of filters in order to reconstruct,
from the multi-channel values recorded at each pixel, the spectral reflectance curve of the painting at
the corresponding point, as described in Chapter 6.
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Figure 4.9:Colorimetric analysis of “Le Forum” by Jean-Baptiste Camille Corot. The colour distri-
bution in CIELAB space, the lightness histogram, and the hue angle histogram of the blue/yellow sky
(Hardeberg and Crettez, 1998).



66 High quality image capture



Chapter 5
Colorimetric printer chacacterisation

A novel method for the colorimetric characterisation of a printer is proposed. It can
also be applied to any other type of digital image reproduction device. The method is
based on a computational geometry approach. It uses a 3D triangulation technique
to build a tetrahedral partition of the printer colour gamut volume and it generates a
surrounding structure enclosing the definition domain. The characterisation provides
the inverse transformation from the device-independent colour space CIELAB to the
device-dependent colour space CMY, taking into account both colorimetric proper-
ties of the printer, and colour gamut mapping.
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5.1 Introduction

The characterisation of a colour output device such as a digital colour printer defines the relationship
between the device colour space and a device-independent colour space, typically based on CIE col-
orimetry. This relationship defines a (forward) printer model. Several approaches to printer modeling
exist in the literature. They may be divided into two main groups:

■ Physical models.Such models are based on knowledge of the physical or chemical behaviour
of the printing system, and are thus inherently dependent on the technology used (ink jet, dye
sublimation, etc.). An important example of physical models for halftone devices is the Neuge-
bauer model (Neugebauer, 1937, Kang, 1997), which treats the printed colour as an additive
mixture of the tristimulus values of the paper, the primary colours, and any overlap of primary
colours. More recent applications of analytical modeling are illustrated with a study of Berns
(1993b) which applies a modified version of the Kubelka-Munk spectral model (Kubelka and
Munk, 1931) to a dye diffusion thermal transfer printer.

■ Empirical models. Such models do not explicitly require knowledge of the physical properties
of the printer as they rely only on the measurement of a large number of colour samples, used
either to optimise a set of linear equations based on regression algorithms, or to build lookup-
tables for 3D interpolation. Regression models have not been found very successful in printer
modeling (Hung, 1993), while the lookup-table method is used by several authors, for example
Hung (1993) and Balasubramanian (1994).

However, both these groups of printer models have to be inverted to be of practical use for image
reproduction, since what we typically need is to transform images colorimetrically defined in a given
colour space into the colour space specific to the printer. The solution to this inverse problem is
difficult to find. Iterated optimisation algorithms are often needed to determine the device colour
coordinates which reproduce a given colour defined in a device-independent colour space, as proposed
for example by Mahy and Delabastita (1996).

Another issue which cannot be avoided when discussing printer characterisation is gamut mapping.
The colour gamut of a device such as a printer is defined as the range of colours that can be reproduced
with this device. Gamut mapping is needed whenever two imaging devices do not have coincident
colour gamuts, in particular when a given colour in the original document cannot be reproduced with
the printer that is used.

We have chosen to use an empirical model to characterise a printer (Hardeberg and Schmitt, 1996;
1997, Schmitt and Hardeberg, 1997; 1998). The main reason for this is that an empirical model is
versatile. It may be applied to printers using different printing technologies, and even to other types of
image reproduction devices, such as monitors. In comparison, state-of-the-art physical printer models
are limited to one printing technology. Furthermore, the determination of the inverse transformation
with physical models requires very extensive computation with non-linear optimisation techniques,
which we prefer to avoid.

The proposed characterisation technique based on an empirical model provides a practical tool to
transform colours between any two colour spaces, for example between scanner RGB space and
printer CMY. In a colour management application, it is preferred to connect the device-dependent
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colour representations to some device-independent colour space (MacDonald, 1993a, Murch, 1993,
Hardeberget al., 1996, Hardeberg and Schmitt, 1998). We have chosen the CIELAB space (CIE 15.2,
1986) for this purpose since it is used extensively both in literature and industry. Thus our charac-
terisation technique provides the transformation between any colour point in CIELAB space and the
corresponding printer CMY values needed to reproduce the given colour. This process also includes
a colour gamut mapping technique which can be of any type.

We use an approach based on computational geometry with which we construct two 3D structures
which cover both the entire definition domain of the CIELAB space and the printer colour gamut.
It provides us with a partition of the space into two sets of non-intersecting tetrahedra, aninner
structure covering the printer gamut, and asurrounding structure , the union of these two struc-
tures covering the entire definition domain of the CIELAB space. These 3D structures allow us to
easily determine if a CIELAB point is inside or outside the printer colour gamut, to apply a gamut
mapping technique when necessary, and then to compute by non-regular tetrahedral interpolation the
corresponding CMY values. We establish thus an empirical inverse printer model.

In the next sections we describe the proposed method, starting by giving an overview of the method-
ology in Section 5.2. In Section 5.3 and 5.4 we present the construction of the inner struccture and the
surrounding structure, respectively. We describe in Section 5.5 how we calculate, by tetrahedral inter-
polation, the transformation from CIELAB to CMY values for any point belonging to the definition
domain of CIELAB space, this point being either inside or outside of the colour gamut.

5.2 Methodology overview

Our method, as presented in Figure 5.1, consists of first printing a numerical colour chart (the input
data) covering the entire colour gamut of the printer to be characterised. Then we measure colori-
metrically the printed chart to obtain the CIELAB values corresponding to each sample. When this is
done we dispose, for each colour sample of the chart, of their CIELAB values and their corresponding
CMY values. Storing these values in a lookup-table, we could thus easily establish an empirical for-
ward printer model for converting from CMY to CIELAB, using an interpolation technique (Kanamori
et al., 1990, Hung, 1993, Rajala and Kakodkar, 1993, Balasubramanian, 1994, Motomuraet al., 1994,
Fumotoet al., 1995, Kassonet al., 1995).

However, in practice, we have to convert colorimetric values in the other direction, from CIELAB to
CMY. We are then much more interested in establishing directly an empirical inverse printer model.

The main step of the proposed algorithm is the construction of a valid partition of the CIELAB space.
A naive approach to this problem would be to apply a 3D Delaunay triangulation directly to the
measured CIELAB values. However, this would not suit our purposes, mainly because the gamut is
generally not a convex hull in CIELAB space, and then the gamut boundaries would not be correctly
represented. In particular, any concavities of the gamut surface would be filled, and the corresponding
information about the gamut surface would be lost.

We propose an indirect approach where we apply a 3D Delaunay triangulation in CMY space by
taking the CMY triplets from the input data as vertices. Using this 3D triangulation, we would be
able to calculate the corresponding CIELAB values for a given CMY triplet simply by barycentric
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Figure 5.1:Printer characterisation. The numerical colour chart is printed, the output is analyzed, and
an empirical inverse printer model is established using non-regular tetrahedral interpolation.

interpolation of the CIELAB values of the vertices of the tetrahedron surrounding the CMY triplet, as
was also proposed by Bell and Cowan (1993). This would directly provide us with a forward printer
model. But because we are interested in the inverse printer model, we transport the CMY triangulation
into CIELAB space by simply replacing the CMY vertices of the triangulation by their measured
CIELAB counterparts. This corresponds to a geometric deformation of the triangulation of the gamut
cube in which the external boundaries are preserved, as shown in Figure 5.2. The construction of this
inner structure will be described in Section 5.3.
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Figure 5.2:Triangulated CMY colour gamut cube (left) and its corresponding geometrically deformed
CIELAB colour gamut (right).

At this point we dispose of an inner structure partitioning in tetrahedra the region of the CIELAB space
lying inside the printer colour gamut. We are able to calculate for any pointinsidethe CIELAB colour
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gamut, its corresponding CMY values by tetrahedral interpolation of the CMY values associated with
the vertices.

In order to be able to properly treat out-of-gamut colours, we have added a surrounding structure in
CIELAB space, defined by a set of sixfictive pointsas shown in Figure 5.3. The key issue here is the
definition of this surrounding structure in such a way that, together with the inner structure, it defines a
valid triangulation which includes the definition domain of the CIELAB space. This will be described
in Section 5.4.
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Figure 5.3:Octahedron surrounding the printer colour gamut and the definition domain in CIELAB
space. This octahedron, defined by 6 so-called fictive points, together with the triangulation of the
volume between its surface and the printer gamut, defines the surrounding structure.

5.3 Inner structure

In this section the construction of a valid tetrahedral partition of the printer colour gamut in CIELAB
space is presented. This corresponds to the inner structure as introduced before.
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As seen in the methodology overview, we need first to print an appropriate colour chart. This deserves
some discussion. Whereas a characterisation method using a physical model with few parametres
needs only few samples, our method requires that the chart covers the entire colour gamut quite
densely as it is based on local interpolation. The IT8.7/3 (ANSI IT8.7/3, 1993) input data or parts
of it, defined in the CMYK space, could be a good choice for our purpose. However, depending on
the precision and the repeatability of the measuring device as well as that of the printer, it may be
necessary to remove some colours from the data set. This is motivated by the fact that the charac-
terisation process, in particular, the transport of the triangulation from CMY to CIELAB space must
remain an topology-preservingelastic transformation without any mirroring of a tetrahedron. This
will be further elaborated in Section 5.3.2. Furthermore, a too fine subdivision of the CIELAB space
would introduce unnecessary complexity to the 3D structures, this being particularly unwanted for the
localisation algorithm (Section 5.5.1).

A preprocessing of the data set is thus done by comparing the measured colour of all patches of
the colour chart. If two patches have a colour difference less than a threshold�E value, the vertex
corresponding to one of these patches are removed from the data set. The selection of which colour
to remove is done by assigning the following priorities to each vertex.

1. Interior colours. Colours that belongs to the interior of the colour gamut,i.e.not on the gamut
surface.

2. Face colours.Colours belonging to one of the six gamut faces, but not belonging to the gamut
edges or corners.

3. Edge colours.Colours belonging to one of the 12 gamut edges, but not to the gamut corners.

4. Corner colours. Colours belonging to one of the 8 gamut corners.

When two colours are found to be too close, the one with the lowest priority is removed. Remark that
the corner colours, with priority 4, will never be removed.

This preprocessing ensures that the data set used for the creation of the data structure described in the
following sections, is more coherent, thus limiting possible sources of errors, and avoiding unneces-
sary data processing.

5.3.1 Delaunay triangulation of the CMY colour gamut

To construct our inner structure we use a 3D Delaunay triangulation (Delaunay, 1934, Bern and Epp-
stein, 1992, Fortune, 1992) in CMY space by taking the CMY triplets from the input data as vertices.
The resulting structure is then constituted of a set of tetrahedra (simplices) having the input data as
vertices, and whose circumsphere contains no other input point in its interior. This Delaunay property
is often denoted as theempty circumsphere criterion. Assuming general position of the input CMY
points (no five points lie on a single sphere), this defines a unique triangulation. In the degenerate
case of co-spherical points any completion of the Delaunay triangulation solves the problem, but the
resulting triangulation is no more unique.
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We recall that a triangulation can be defined by its adjacency graph whose nodes are the simplices
and whose edges are the pairs of adjacent simplices. For a Delaunay triangulation this graph is geo-
metrically realised by the set of the edges and vertices of the associated Vorono¨ı polyhedra. Delaunay
(1934) has shown that if for any edge of this graph its two nodes verify the empty circumsphere crite-
rion, then the criterion is verified for any couple of nodes. On this “Lemme g´enéral” are based several
incremental algorithms (Bowyer, 1981, Watson, 1981, Hermeline, 1982), with which the Delaunay
triangulation is built by inserting one by one the 3D points.

For each step of a point insertion, these algorithms are divided in three parts as follows:

1. Localisation and deletion of the simplices whose circumsphere contains the inserted point and
thus are no more empty. This set of tetrahedra forms a star polyhedron.

2. Creation of new simplices defined by the inserted point and the boundary faces of the star
polyhedron, forming a local triangulation of this polyhedron. Determination of the adjacency
relations between these new simplices.

3. The union of this local triangulation and the unchanged triangulation of the complementary of
the star polyhedron forms the updated Delaunay triangulation. Determination of the adjacency
relations between the new simplices and their adjacent unchanged simplices.

We use here the implementation proposed by Borouchaki (1993). To avoid expensive sorting in the
second and third parts of the algorithm, the adjacency graph is completed by associating to each
simplex a4 � 4 matrix which indicates for each one of its four adjacent simplices the indices cor-
responding to their 3 shared vertices, and to the opposite one (Borouchaki, 1993, Borouchakiet al.,
1994).

5.3.2 Transport of the triangulation into CIELAB space

As indicated previously, we transport the CMY triangulation into CIELAB space by simply replacing
the CMY vertices of the triangulation by their measured CIELAB counterparts. This corresponds to
a geometric deformation of the triangulation of the gamut cube in which the external boundaries are
preserved, as shown in Figure 5.2. The resulting triangulation is no more a Delaunay triangulation in
CIELAB space, the empty circumsphere criterion being no longer fulfilled. But, it remains generally
a valid partition of the CIELAB colour gamut, satisfying the following property: the intersection of
two of its simplices/tetrahedra is either empty or equal to a vertex, an edge or a face. This implies
that no tetrahedron has been mirrored during the transportation from CMY to CIELAB space (see the
upper left part of Figure 5.4).

However, in practice, this property must be verified since errors may occur due to eitheri) a too fine
subdivision of the gamut,ii) measurement errors, oriii) strange behaviour of either the printer driver
software1 or the physical or chemical properties of the printer itself. For example it has been observed
on some colour laser printers that, with a specific driver, a regular CMY grid may present a clearly
visible luminance order inversion for two particular adjacent patches.

1Sometimes very poor half-toning techniques or a very rough CMY to CMYK conversion are used.
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Figure 5.4:2D illustrations of the no-mirrored-tetrahedron property. Upper left part: After transport,
the simplex Y2Y3Y4 is mirrored. The two simplices overlap, thus violating the property of a valid
partition. Lower part: A bar-shaped polyhedronfXig is transformed into a horseshoe-shaped one
fYig. Even if, locally, the no-mirrored-tetrahedron property is satisfied, the triangulation is not valid,
due to the overlap.

If errors occur, some points of the input data may have to be eliminated from the triangulation. We
propose a procedure which checks the validity of the triangulation in CIELAB space by verifying that
no tetrahedron has been mirrored. This is denoted theno-mirrored-tetrahedron property, and it is
verified as follows. For each tetrahedron of the structure we compute the following two determinants:

DCMY =

��������
C1 C2 C3 C4

M1 M2 M3 M4

Y1 Y2 Y3 Y4
1 1 1 1

�������� ; DCIELAB =

��������
L�
1 L�

2 L�
3 L�

4

a�1 a�2 a�3 a�4
b�1 b�2 b�3 b�4
1 1 1 1

�������� ; (5.1)

where(Ci;Mi; Yi) and (L�
i ; a

�
i ; b

�
i ), i = 1 : : : 4, are the coordinates of the tetrahedron vertices in

CMY space and CIELAB space respectively. IfDCMY andDCIELAB have the same sign, the tetrahe-
dron has not been mirrored during the transport. The vertex order chosen to compute the determinants
does not matter, as long as it is the same for the two determinants. The absolute value of the deter-
minants is proportional to the volume of the tetrahedron before and after transport respectively (cf.
Equation 5.22).

It is easy to show that if two adjacent tetrahedra sharing a common face in the CMY triangulation are
both not mirrored during the transport, then their intersection in the CIELAB space is strictly equal
to the transported common face. If no tetrahedron of the complete 3D structure has been mirrored,
then the above property is true for any pair of adjacent tetrahedrons. However, this is not sufficient to
guarantee that the complete 3D structure after transport satisfies the property of a valid partition. As
an example, let us imagine an elastic distortion of the space which transforms a bar into a horseshoe
as shown in the lower part of Figure 5.4. Locally, the partition property is respected, but if the bending
is too strong, the two extremities of the horseshoe may overlap. However, when the convex hull of the
initial structure does not auto-intersect during the transport, the no-mirrored-tetrahedron property is
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sufficient to guarantee that the transported inner structure remains a valid partition. Since the colour
gamut boundary in CIELAB space generally does not present such degenerate cases, we avoid thus the
complete and very expensive checking procedure where any pair of non-adjacent tetrahedrons would
be tested for intersection after transport.

However, in some rare cases where the deformation in the CIELAB-space of the colour gamut is
extremely strong, our approach may fail. We have for example observed that on one particular sub-
limation colour printer some corner colours are strongly desaturated and stand inside the CIELAB
colour gamut. In this particular case, tetrahedra adjacent to such corner points are mirrored. Note
that, the no-mirrored-tetrahedron property being violated, such cases will be detected by the proposed
checking procedure.

5.4 Surrounding structure

The inner structure defines only the triangulation of the colour gamut. It is not sufficient to provide
a practical tool for gamut mapping, especially for clipping methods. We need efficient means to
determine the position in CIELAB space of any colour which is located outside the colour gamut
volume. For this purpose we propose the construction of asurrounding structurein CIELAB space
which fulfills the two following requirements:

■ It includes completely the current definition domain of the CIELAB-space, which is assumed
to include the gamut of any printer (see discussion below).

■ It provides an efficient data structure which allows to navigate easily around and inside the
colour gamut and to implement any geometrical algorithm for gamut mapping, both continuous
and clipping methods.

The definition domain of the CIELAB space depends mainly of the application fields and of the
standards which are used in this field. For colour facsimile communication services the default gamut
range is defined asL� 2 [0; 100], a� 2 [�85; 85], b� 2 [�75; 125], and the componentsL�, a� and
b� are each linearly encoded on 8 or 12 bits (ITU-T T.42, 1994). This basic gamut range is chosen
to span the union of available hard copy device gamuts (Beretta, 1996). Thus the colour gamut of a
given printer can be supposed strictly included in this definition domain.

The surrounding structure is defined by a set offictive pointsoutside of the colour gamut as shown in
Figure 5.3, and a partition of the space between the inner structure and the convex hull defined by the
fictive points. We will describe here an algorithm to define this surrounding structure so that, together
with the inner structure, it defines a valid triangulation which includes the definition domain of the
CIELAB space.

It would be natural to add only a minimal number of fictive points: four ones would be sufficient to
construct a surrounding tetrahedron. However, considering the symmetry of the colour gamut cube in
CMY space, we chose as external structure a dual polyhedron of the cube,i.e an octahedron defined
by 6 vertices, each vertex being associated to a face of the cube.
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But the main problem is to construct a triangulation on the full set of points (the fictive ones and those
belonging to the printer colour gamut) such that:

■ The extended triangulation is valid, satisfying the partition property defined previously.

■ It respects the colour gamut hull,i.e. the external triangular faces of the colour gamut (as ob-
tained in Section 5.3.1) belong to the set of the inner faces of the extended triangulation.

Because of the strong deformation of the colour gamut in CIELAB space compared to the regular
CMY cube (see Figure 5.3 and Appendix D), the determination of these fictive points is not straight-
forward. We propose a simple and robust method to determine these fictive points as well as the
triangulation of the resulting surrounding structure in a way that apply to most printer gamuts.

5.4.1 Construction of the surrounding structure in CIELAB space

We choose in CIELAB space a set of 6 fictive points, associated with the 6 faces of the gamut. It can
be shown that the position in CIELAB space of each of the six fictive points must lay in thekernelof
the corresponding distorted cube face, the kernel of a colour gamut face being defined as the set of 3D
points from where the complete outward surface of the colour gamut face is visible. The kernel can
then be defined as the intersection of the external half-spaces defined by the tangent planes of each
facet of the colour gamut face. It is then a convex hull.

We will assume in the following that the kernel of each of the six colour gamut faces is neither empty
nor closed and thus that it contains at least one infinite point in a specific direction, from where the
outward surfaces of all the triangles covering the corresponding colour gamut face are visible. We
will then place each of the six fictive vertices of the octahedron sufficiently far away from the colour
gamut to guarantee that the resulting triangulation is valid.

However, the kernel can be aclosedconvex hull, in the case of a very concave colour gamut face. It
can also be empty in the case of a very convex face: it exists no point from which the outward surface
of the face can be entirely seen (see Figure 5.5). Both situations can be only exceptional for CIELAB
colour gamut boundaries. They would correspond to degenerate cases of very peculiar printer systems.
In such exceptional cases our approach can not be used. To build a surrounding structure adapted to
such situations, we could consider the use of a constrained Delaunay triangulation. But this would
require the use of a set of Steiner points, and there is no known robust and efficient algorithm to solve
this problem (Bern and Eppstein, 1992, Preparata and Shamos, 1985). We have thus not tempted to
develop such an algorithm for cases which will maybe never occur. However, our approach allows us
to detect such cases if they do appear.

In the next section we describe a discrete approach in computational geometry which allows us to
easily define for each non-closed kernel avisibility direction from which, at the infinite point, the out-
ward surface of the corresponding colour gamut face is visible. In Section 5.4.3 we deduce from these
mean directions the position of the fictive points. The construction of the surrounding 3D structure is
presented in Section 5.4.4.
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Concave face with a closed kernel

Convex face with no kernel

Figure 5.5:A 2D example of a structure with two faces. One is very convex, and no kernel exists.
The other is very concave, and the kernel is a closed convex hull.

5.4.2 Determination of the visibility directions

In the following we will denoteFf , f = 1 : : : 6 the colour gamut faces,Tt the tth triangle belonging
to the faceFf , andNt its outward normal.

Let us consider for each colour gamut faceFf a Gauss sphere,i.e. a sphere of radius 1 on which are
mapped the outwards normal directions of its surface. We use a discrete version of the Gauss sphere by
tessellating it in small portionsGp of similar shape and area. Different techniques of tessellation can
be used. We have chosen the following one which is simple to implement (Maillot, 1991, Ben Jemaa,
1998): a unit cube parallel to the main axes (L�, a� and b�) is first tessellated following atan(�)
law along its edges,� 2 [��

4 ;
�
4 ], as shown in the left part of Figure 5.6. Then this cube is radially

projected onto a co-centred unit sphere. The tangent law provides a regular segmentation of the sphere
with quadrangular portionsGp, p = 1 : : : 6Ne

2, of nearly constant area, whereNe is the subdivision
number chosen for the cube edge (Ne = 6 in Figure 5.6). To each portionGp we associate a flagFp
and its principal normal directionNp defined as the normalised vector sum of the normals associated
to its four cornersNci

p , i = 1 : : : 4 (cf. Figure 5.7):

Np =
1

4

4X
i=1

Nci
p (5.2)

This technique allows us to determine quickly (3 tests and 1D look-up table) the portionGp to which
belongs a normalN (Maillot, 1991).

The visibility directions from which the infinite point belongs to the kernel of a colour gamut face
Ff can then be determined as follows. For each portionGp of the Gauss sphere we first set toTRUE

its flagFp. We then reset it toFALSE as soon as a directionN 2 Gp is not located in the positive
half-space defined by the outward normalNt of one of the trianglesTt belonging to the colour gamut
faceFf (see Figure 5.8).

This discrete approach guarantees us that the remaining portionsGp having their flagsFp still equal
to TRUE correspond to sampled directions from which, at the infinite point, the outward surface of
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Figure 5.6:Gauss sphere. A cube tessellated using a tangent law (left) projected onto a unit sphere
(right).
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Figure 5.7:Principal normal directionNp associated with a Gauss sphere portionGp.

Ff can be seen completely. However, due to the tessellation of the Gauss sphere in portionGp, some
valid directionsN can be eliminated when aGp is intersected by the plane defined by the normalNt

of a triangleTt (see Figure 5.8).

The algorithm is the following:

■ For each faceFf of the colour gamut:

◆ for each portionGp of the Gauss sphere:

★ setFp to TRUE

★ while Fp is TRUE and for each oriented triangleTt covering the colour gamut face
Ff :

● perform the following test:

if 9N 2 Gp such thatN �Nt � 0 thenFp = FALSE (5.3)

The portionsGp being small spherical lozenges, the test given by Equation 5.3 is equivalent2 to the
following, simpler one:

if 9i; i 2 f1 : : : 4g such thatNci
p �Nt;� 0 i = 1 : : : 4 thenFp = FALSE (5.4)

2The arc angles of their edges are by construction smaller than�
2

. This guarantees us that each lozenge is enclosed in a
half-sphere.
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tT

Gp

Nt

Nt

Figure 5.8:Intersection of the Gauss sphere and the plane defined by the outward normalNt of the
triangleTt belonging to a faceFf of the printer colour gamut. All the normals of the Gauss sphere
which are not located in the outward halfspace, correspond to directions from which, at the infinite
point, the triangleTt is not visible. The portionsGp to which belongs such a normal have their flags
Fp reset toFALSE.

This test can be replaced by another one 4 times quicker but more restrictive (it further eliminates
some valid directionsN) as follows:

if Np �Nt < sin(�) thenFp = FALSE (5.5)

where� is the maximal angle, among the portions of the Gauss sphere, between the principal direction
Np and the direction associated to one of its corners:

� = max
8p

i=1:::4

angle
�
Np;N

ci
p

�
(5.6)

To explain the theoretical basis of this test, let us consider a cone centred on the principal normalNp

of Gp with an aperture angle of�. N 2 Gp belongs then surely to this cone (see Figure 5.9). The
property

9N 2 Gp such thatN �Nt � 0 (5.7)

is then replaced by the larger property

9N 2 cone(Np; �) such thatN �Nt � 0: (5.8)
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This property is equivalent to the following one:

Np �Nt � cos(
�

2
� �) = sin � (5.9)

which justify the test of Equation 5.5.

θ

N

N

θ

π/2

p

t

Figure 5.9:A cone centred onNp.

For the construction of the surrounding structure, we have, for each face, to determine on the Gauss
sphere, the directionDf of an infinite point belonging to its kernel. We could choose any one of
the directions belonging to the remaining portions withFp = TRUE. However, to guarantee a robust
implementation we use the property that a kernel is a convex hull and choose as visibility direction
Df of the kernel of the cube faceFf the normalised vector sum of the principal normal directions
Np of the remaining portionsGp with Fp = TRUE, as indicated in Equation 5.10 and illustrated in
Figure 5.10.

Df = mean
pjFp=TRUE

(Np) (5.10)

Because of our discrete approach it could happen that all the portions have been flagged toFALSE

although the actual kernel is not a strictly closed hull. This would correspond to a too coarse segmen-
tation of the Gauss sphere. To avoid this problem we just need to segment the Gauss sphere in finer
portions. There is then a compromise to choose between the total number of portions to be used and
the computing time which is proportional to this number. In practice a linear subdivision of the cube
edge into 6 elements has been sufficient in all the tested examples (a total of 216 portions).

5.4.3 Determination of the fictive points in CIELAB space

The visibility directionsDf , f = 1 : : : 6 being determined, we have now to define six fictive points
satisfying our requirements (situated at finite distance, enclosing the CIELAB definition domain, and
belonging to the kernels).

Let us denoteG the CIELAB point of coordinates(50; 0; 0) which corresponds to a medium grey
of lightness 50. For each colour gamut faceFf we consider the half-line withG as zero point and
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D

Figure 5.10:The visibility directionDf corresponding to the arithmetic mean of the normal vectors
Np that haveFp = TRUE.

Df as direction. Then we determine on this half-line the pointPf nearest toG and belonging to the
kernel of the colour gamut faceFf . This point does exist because the kernel has an infinite point in
this direction.

To determine the pointPf we can consider the following parametric representation of the half line:
Pf = G + kfDf , kf � 0. The kernel of a faceFf being the intersection of the kernels of all the
trianglesTt coveringFf ,3 we proceed as follows to determine the value ofkf definingPf . LetNt

be the outward normal of a triangleTt anddt the signed distance between its plane and the origin. A
pointP of its plane satisfies then the following equation:

P �Nt + dt = 0: (5.11)

We first determine the pointPt = G + ktDf on the half-line being nearest toG and belonging to
the kernel of the triangleTt. Pt being located at the intersection of the half-line with the plane of the
triangle, we have the following equation:

(G+ ktDf ) �Nt + dt = 0; (5.12)

from which we deduce itskt value:

kt = �G �Nt + dt
Df �Nt

: (5.13)

The pointPf with

kf = max
Tt2Ff

(kt) (5.14)

is then the nearest point on the half-line belonging to the kernel of the colour gamut faceFf , as shown
(in 2D) in Figure 5.11.

3These kernels are the positive half-spaces as illustrated in Figure 5.8.
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Figure 5.11:Determination for each gamut facesFf , of the pointPf nearest toG, situated on the
half-line of directionDf and belonging to the kernel of the faceFf (illustration in 2D).

The six pointsPf constructed as above for the six colour gamut facesFf , f = 1 : : : 6, define an
initial octahedron. This octahedron is the dual of the CMY cube, its 8 faces being in duality with the
8 corner points of the colour gamut. We will assume in the following that this octahedron encloses
the pointG. We have never encountered a degenerate case for which this was not the case. But it
remains theoretically possible that this could happen in the case of a colour gamut strongly distorted
in CIELAB space. We do not propose a solution for such an exceptional situation and we just verify
this assumption before pursuing the processing.

The problem now is to increase the size of the octahedron such that it encloses the CIELAB definition
domain, under the constraint that its six vertices remain in the kernel of the faceFf . According to our
assumption onG it is possible to increase the size of the initial octahedron according a similarity of
centreG and coefficients; s � 1. With this similarity we guarantee by construction that each of the
six new vertices will remain in the kernel of the corresponding colour gamut face.

The factors � 1 of the similarity must be chosen large enough to allow the transformed octahedron
to enclose the definition domain. Various approaches can be chosen. We propose the following (see
Figure 5.12). Let us denoteVf the new vertices obtained by similarity:

Vf = G+ s(Pf �G): (5.15)
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Figure 5.12: Determination of the final surrounding structure by a similarity operation. See also
Figure 5.3 for an illustration of the surrounding structure in 3D.

By construction each pointVf is on the half-lines of directionDf associated to the colour gamut
faceFf , s being greater than1 and the kernel being a convex hull,Vf still belongs to its kernel.
Considering a translation of the space by the vector�G and denoting the new points with a prime,
we have simply:

V0
f = sP0

f : (5.16)

Let us now consider a facePf1 ;Pf2 ;Pf3 of the initial octahedron. We calculate its outward unit
normalNf1f2f3 and determine the signed distancedf1f2f3 between its oriented plane andG,

df1f2f3 = P0
f1 �Nf1f2f3 : (5.17)

Our assumption onG will be satisfied,i.e.G is inside the initial octahedron, if the 8 signed distances
df1f2f3 corresponding to the 8 faces of this octahedron are all negative (df1f2f3 � 0). If this condition



84 Colorimetric printer chacacterisation

is fulfilled, we determine their minimum absolute value which is equal to the radiusrG of the maximal
sphere included in the octahedron and of centreG:

rG = min
f1f2f3

jdf1f2f3 j: (5.18)

If this radius is smaller than the maximum distancedD betweenG and the corners of the CIELAB
definition domain (as it is usually the case), we choose for the similarity the following coefficients:

s = (1 + �0)
dD
rG

: (5.19)

where�0 is a small positive value, in order to avoid any computational problems for data near the
limits of the definition domain.

This similarity will increase the size of the maximal enclosed sphere of centreG such that the defini-
tion domain will be enclosed by the transformed sphere and thus,a fortiori, by the final transformed
octahedron.

5.4.4 Triangulation of the surrounding structure

The fictive points being well defined in CIELAB space, we have now to construct the surrounding
structure. This could be done directly in CIELAB space according to the inner structure which already
has been constructed and which has been used for the determination of the six CIELAB fictive points.
For that we would first have to connect each fictive pointPf to the trianglesTt belonging to the
corresponding visible faceFf and then fill the remaining concavities with tetrahedra sharing 2 or 3
fictive points (see a 2D illustration in Figure 5.13). This would be theoretically possible but very
tedious to implement properly. It is indeed possible to obtain exactly the same surrounding structure
by a much simpler construction in CMY space as explained now.

Assume that we have triangulated the cube as described previously. We then first define another set of
6 fictive points in CMY space as indicated in Figure 5.14. We then triangulate the joint set of fictive
points and input data by constructing three distinct classes of external tetrahedra, having 1, 2, or 3
vertices being fictive points, and the other vertices being colour points belonging to the surface of the
colour gamut cube, as shown in Figure 5.15:

■ The 6 subsets of tetrahedra above each cube face. These tetrahedra have a single octahedron
vertex and their opposite triangular face belongs to a face of the cube.

■ The 12 subsets of tetrahedra associated to each edge of the cube. These tetrahedra have two
octahedron vertices and the two other ones belongs to an edge of the cube

■ The 8 remaining tetrahedra associated to each vertex of the cube. These large tetrahedra share
3 vertices with the octahedron and the remaining vertex with the cube.

The fictive octahedron must be big enough to contain the cube. The radius of its circumsphere must
thus be

p
3 times larger than the radius of the circumsphere of the cube. In practice we use a factor
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Figure 5.13:Triangulation of the surrounding structure (2D illustration).

2
p
3 in order to avoid any numerical problem in the construction of the external tetrahedra (see below).

The radius of the circumsphere of the octahedron is then equal to 2 times the length of the cube edge
(see Figure 5.14.)

We then transport the resulting triangulation to CIELAB space by replacing the CMY vertices (fictive
points and input data) with their CIELAB counterparts, as described in Section 5.2 and 5.3.2. We thus
define a valid triangulation of the joint inner and surrounding structures in CIELAB space.

Different approaches can be chosen for the construction of the surrounding triangulation. A direct
construction could easily be made when the colour patches on the surface of the CMY colour gamut
are regularly distributed. But because the cube and the octahedron are both convex hulls, the 3D CMY
surrounding triangulation is also a Delaunay triangulation, the criterion of the empty circumsphere
being satisfied. It is then more straightforward to use a Delaunay algorithm to build directly and
simultaneously in CMY space the inner and surrounding triangulations on the complete set of points:
the colour points belonging to the CMY colour gamut and the 6 octahedron vertices. We recall that
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Figure 5.14:Construction of a surrounding octahedron in CMY space.

Figure 5.15:Surrounding structure in CMY space. The 3 classes of external tetrahedra are indicated,
having respectively 1, 2, and 3 vertices being fictive points, and the rest belonging to the colour gamut

the Delaunay triangulation also has the advantage to work on any un-regular distribution of the colour
points allowing us to add more colours, such as skin tones inside the CMY cube or saturated colours
on its surface.

Finally we replace in the 3D data structures the CMY coordinates of the vertices by their CIELAB
counterparts, as already described in Section 5.3.2.

5.5 CIELAB-to-CMY transformation

Using these two structures, the inner structure and the surrounding structure as defined above, we are
now able to calculate, by tetrahedral interpolation, the transformation from CIELAB to CMY for any
point belonging to the definition domain of CIELAB space. This is typically done either

■ directly for all pixels of an image to be printed, or

■ for all the vertices of a regular grid composing a CIELAB-to-CMY 3D look-up table (see Ap-
pendix B) which can be stored in a device profile and then further used by a colour management
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system (see Section 2.5.1 ande.g.MacDonald, 1993a, Hardeberget al., 1996, ICC.1:1998.9,
1998).

The transformation comprises two main steps, the localisation of the tetrahedron enclosing the CIELAB
point that is to be transformed (Section 5.5.1), and the non-regular tetrahedral interpolation using the
vertices of this tetrahedron (Section 5.5.2). Any gamut mapping method may be integrated in this
process, as described in Section 5.5.3.

5.5.1 Localisation of a CIELAB point in the 3D structure

It would be too expensive to locate the tetrahedronTP which encloses the CIELAB input pointP
by checking systematically all tetrahedraTi. We have therefore implemented the so-calledwalking
algorithmas described in the following:

■ Pick an initial tetrahedronT0. If the algorithm is applied for the transformation of an image,T0
should be chosen as the tetrahedron enclosing the previous pixel. Statistically the new colour
will be near the previous one.

■ Iterate until the enclosing tetrahedronTP is found (by construction it exists whenP belongs to
the CIELAB definition domain).

◆ For each face of the current tetrahedronTi

★ If P is located in the outward halfspace delimited by the plane of the face, choose the
neighbouring tetrahedron sharing this face asTi+1, and reiterate.

◆ If the four tests are negative: thenP is located inside the tetrahedron, andTP = Ti.

■ Check ifTP belongs to the colour gamut (a flag in the 3D data structure informs if a tetrahedron
belongs to the inner triangulation or not).

◆ If it does, the output CMY values are calculated by interpolation as explained in Sec-
tion 5.5.2.

◆ ElseP is an out-of-gamut point. A gamut clipping technique is applied:

★ Either the mapping is defined explicitly asP0 = f(P). In this case we reiterate the
whole algorithm withP0.

★ Or the mapping is defined geometrically, but necessitate a search, as for example the
projection on the nearest point of the colour gamut with or without constraints (for ex-
ample hue, lightness and/or saturation constant). We can then utilise the triangulated
structures to implement the gamut mapping algorithm, as discussed in Section 5.5.3.

5.5.2 Non-regular tetrahedral interpolation

When the tetrahedronP0P1P2P3 that belongs to the colour gamut and that encloses the pointP

(or P0 whenP is out of gamut) is found, the resulting CMY values are calculated by barycentric
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interpolation as follows:P (orP0) divides the enclosing tetrahedron into 4 sub-tetrahedrons, as shown
in Figure 5.16, each having a volume�i determined by the following determinant,

�i =
1

6

���� Pi Pi+1 Pi+2 P

1 1 1 1

���� ; i = 0 : : : 3; (5.20)

where the indices are taken modulo 3. The positive barycentric coefficientsWi of the interior pointP
are then defined by4

Wi = j�i=�j; (5.21)

where� is the volume of the tetrahedronP0P1P2P3, given by

� =
1

6

���� P0 P1 P2 P3

1 1 1 1

���� : (5.22)

The final output valuesC,M , andY are then calculated as follows:

C =
3X
i=0

WiCPi ; M =
3X
i=0

WiMPi ; Y =
3X
i=0

WiYPi ; (5.23)

whereCPi , MPi , andYPi are the CMY values associated with the tetrahedron verticesPi; i =
0 : : : 3.

5.5.3 Colour gamut mapping

Gamut mapping is needed whenever two imaging devices do not have coincident colour gamuts, in
particular when a given colour in the original document cannot be reproduced with the printer that
is used. Several researchers have addressed this problem, see for example the following references:
(Stoneet al., 1988, Gentileet al., 1990, Stone and Wallace, 1991, Pariser, 1991, Hoshino and Berns,
1993, MacDonald, 1993b, Wolskiet al., 1994, Spauldinget al., 1995, MacDonald and Moroviˇc, 1995,
Katoh and Ito, 1996, Luo and Moroviˇc, 1996, Montag and Fairchild, 1997, Tsumuraet al., 1997,
Morovic and Luo, 1997; 1998).

Gamut mapping techniques may be divided into two categories, although an efficient practical solution
is likely to be a combination of these two categories:

■ continuous methodsapplied to all the colours of an image, such as gamut compression and
white point adaption, and

■ clipping methods, applied only to colours that are out of gamut.

A brief presentation of the various techniques of colour gamut mapping is given in Appendix E.

The 3D structures allow us to implement easily any gamut mapping technique, such as those men-
tioned above. Our geometrical approach is particularly well adapted to a combination of continuous
and clipping methods.

4The absolute values are used because the volumes�i are signed according to the order of the vertices of the determinant
(Eq. 5.20).
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P0PP2P3,P0P1PP3 andP0P1P2P, defined by the input pointP.

When needed, a continuous gamut mapping technique may be applied to each input point prior to
the interpolation described above. However, if the inverse gamut mapping function exists, it is more
computationally effective to apply it to the CIELAB vertices of the 3D structures, as shown for the
case of a simple compression in Figure 5.17. The advantage of this approach is to directly include
the gamut mapping transformation into the localisation step (Section 5.5.1). However, here also it is
important to verify that no tetrahedron is mirrored during the inverse gamut mapping transformation
in order to preserve the validity triangulation in CIELAB space. Other continuous gamut mapping
techniques such as 3D morphing (Spauldinget al., 1995) can also be applied.

If, after the continuous gamut mapping, the input colour point is still out of gamut,i.e. TP belongs
to the surrounding structure, as already discussed in the previous section, a gamut clipping method
must be applied. For example a radial clipping (Pariser, 1991) is easily effectuated by ’walking’ from
tetrahedron to tetrahedron in the surrounding structure, following a line fromP towards a mid-gamut
point until we reach the colour gamut boundary by encountering a tetrahedron belonging to the inner
structure.
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Figure 5.17:A gamut compression of 20% performed by applying the inverse compression onto all
the vertices of the 3D structures (only the inner structure is represented here).

5.6 Conclusion

The proposed printer characterisation method presents several strong points of interest. First, it per-
forms efficiently the inverse transformation from CIELAB (or any other 3D colour space) to CMY
directly without using numerical optimisation techniques. Secondly it is able to easily incorporate
different gamut mapping techniques, both continuous and clipping methods. Thirdly it is versatile,
not being limited to one specific printing technology. The extension to fourcolour CMYK printers is
straightforward when the amount of black ink is determined directly from the CMY values as in the
grey-component replacement (GCR) technique (Kang, 1997).

Unfortunately, we have not yet obtained quantifyable experimental results by using this technique.
The reason for this is the printers available in our laboratory:

■ An Epson Stylus Color II ink jet printer. The driver software does not permit us to control
the amount of inks, an RGB-to-CMYK transformation is always performed. The shape of the
CIELAB colour gamut thus is not well-behaved, see Appendix D.

■ A Mitsubishi S340-10 sublimation printer having a nice colour gamut (see Appendix D,) offer-
ing full control over the ink percentages, but being now out of order.

■ A Hewlett Packard Color Laser Jet 5M. It is impossible to control directly the amount of ink
printed on the paper, some hardware processing is directly done in the printer head, and cannot
be bypassed. This results for example in that a regular CMY grid presents a clearly visible
luminance order inversion for two particular adjacent green patches. Simple postscript com-
mands which are wrongly executed have shown us that explicitly. We specified one patch
with ink densities of[C;M; Y;K] = [100%; 0%; 100%; 0%], and another with[C;M; Y;K] =
[100%; 25%; 100%; 0%]. The second patch should logically be darker than the first, however it
turns out to be lighter. This results clearly in the mirroring of a tetrahedron.
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Nevertheless, the method is exploited industrially, the developed software has been transfered to the
company Couleur, Communication, Ecriture (CCE) S.A.R.L., which has included it in their commer-
cial colour facsimile and colour management software. Some foreign companies have also showed
their interest. A European patent is pending on the procedure (Schmitt and Hardeberg, 1997; 1998).
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Chapter 6
Multispectral image acquisition: Theory
and simulations

In this chapter we describe a system for the acquisition of multispectral images us-
ing a CCD camera with a set of optical filters. A spectral model of the acquisition
system is established, and we propose methods to estimate its spectral sensitivities
by capturing a carefully selected set of samples of known spectral reflectance and
by inverting the resulting system of linear equations. By simulations we evaluate the
influence of acquisition noise on this process. We further discuss how the surface
spectral reflectance of the imaged objects may be reconstructed from the camera re-
sponses. We perform a thorough statistical analysis of different databases of spec-
tral reflectances, and we use the obtained statistical information to choose a set of
optimal optical filters for the acquisition of objects of the same type as those used
for the reflectance databases. Finally we present an application where the acquired
multispectral images are used to predict changes in colour due to changes in the
viewing illuminant. This method of illuminant simulation is found to be very accurate,
and working on a wide range of illuminants having very different spectral properties.
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6.1 Introduction

A multispectral image is an image where each pixel contains information about the spectral reflectance
of the imaged scene. Multispectral images carry information about a number of spectral bands: from
three components per pixel for RGB colour images to several hundreds of bands for hyperspectral
images. Multispectral imaging is relevant to several domains of application, such as remote sensing
(Swain and Davis, 1978), astronomy (Rosseletet al., 1995), medical imaging, analysis of museolog-
ical objects (Maˆıtre et al., 1996, Haneishiet al., 1997), cosmetics, medicine (Farkaset al., 1996),
high-accuracy colour printing (Berns, 1998, Bernset al., 1998), or computer graphics (Peercy, 1993).
Hyperspectral image acquisition systems are complex and expensive, limiting their current use mainly
to remote sensing applications. Multispectral scanners are mostly based on a point-scan scheme
(Harding, 1997, Manabeet al., 1994, Manabe and Inokuchi, 1997), and are thus too slow for our
applications.

Rather than such point-scan systems, we used an approach in which a set of chromatic filters are used
with a CCD camera. It is well known that with 3 well-chosen filters, it is possible to obtain a fairly
good reconstruction of the colour tristimulus values of the reference human observer as defined in
colorimetry. Rather than just reconstructing colorimetric tristimulus values, our aim is to estimate the
spectral reflectancecurve by using more than three filters in sequence. We propose a solution where
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the filters are chosen sequentially from a set of readily available filters. This choice is optimised,
taking into account the statistical properties of the object spectra, the spectral characteristics of the
camera, and the spectral radiance of the lighting used for the acquisition.

The multispectral image acquisition system we describe here is inherently device independent, in that
we seek to record data representing the spectral reflectance of the surface imaged in each pixel of
the scene, by discounting the spectral characteristics of the acquisition system and of the illuminant.
We will suppose that the spectral radiance of the illuminant used for the acquisition is known, either
by direct measurement, or indirectly by estimation of the spectral characteristics of the acquisition
system. We thus do not discuss here issues such ascomputational colour constancy(Maloney and
Wandell, 1986, Hurlbertet al., 1994, Funt, 1995, Tominaga, 1996; 1997, Finlaysonet al., 1997, Zaidi,
1998), that is, the automatic determination of the colour image of a scene as it would have been
seen under a standard illuminant, from the camera responses obtained under an arbitrary unknown
illuminant.

To obtain device independent image data of high quality, it is important to know the spectral char-
acteristics of the system components involved in the image acquisition process. We propose in the
next section an approach to the estimation of the spectral characteristics of the acquisition system,
followed in Section 6.3 by a discussion on how the spectral reflectances of actual surfaces may be
estimated from the camera responses. In Section 6.4 we perform a statistical analysis of different
sets of spectral reflectances. This is an important prerequisit when a multispectral image acquisition
system is to be designed, in particular for the choice of the number of image channels to be used. In
Section 6.5, we discuss how to choose an optimal set of colour filters to be used with a given camera.
In Section 6.6, we perform an evaluation of the quality of the entire multispectral image acquisition
system, followed in Section 6.7 by an application where the acquired multispectral images are used to
simulate the image of a scene as it would have appeared under a given illuminant.

6.2 Spectral characterisation of the image acquisition system

In order to properly calibrate an electronic camera for multispectral applications, the spectral sensi-
tivity of the camera and the spectral radiance of the illuminant should be known.

Theoretically, in the absence of noise, the spectral sensitivities may be obtained to the desired spectral
accuracy by measuring a set ofP samples of known linearly independent spectral reflectances illumi-
nated by light of known spectral radiance, and by inverting the resulting system of linear equations,
for example by using the Moore-Penrose pseudoinverse. Thus the spectral characteristics can be de-
termined up to a sampling rate ofN wavelengths,N � P . However, in the presence of noise, and due
to linear dependence between the sample spectra, computing the pseudoinverse becomes hazardous.
We describe several approaches to this problem. In particular we show that the choice of samples is
of great importance for the quality of the characterisation, and we present an algorithm for the choice
of a reduced number of samples.

A common solution for this kind of inverse problem is to use a method based on a singular value de-
composition (SVD) and to use only those components whose singular values are greater than a certain
threshold value. This solution is often referred to as the principal eigenvector (PE) solution (Farrell
and Wandell, 1993, Sharma and Trussell, 1993; 1996c). Unfortunately, by using such a method, the
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resulting principal vectors are linear combinations of the full set of sample spectra,i.e. it is not ob-
vious which of the sample spectra are really relevant to the characterisation. This approach requires
then the use of a large sample set to provide good results.

We present here an alternative method in which we start from a small number of reflectance samples
which are chosen according to their spectral variance. Additional reflectance samples are added in
order to maximise the volume defined by the vector space spanned by these spectra. This method not
only allows for an efficient estimation of the spectral sensitivity functions of electronic cameras, but
also provides a tool for the design of optimised colour targets containing only those patches which are
most significant for the characterisation process.

In order to perform a spectral characterisation of an electronic camera, it is necessary to establish a
model of the system. In Section 6.2.1 we describe a general spectral model of an image acquisition
system. This model applies to several types of image acquisition systems, in particular to electronic
CCD cameras. Then, several methods for the spectral characterisation are proposed and evaluated in
Section 6.2.2, followed by a discussion of the results in Section 6.2.3.

6.2.1 Image acquisition system model

The main components involved in the image acquisition process are depicted in Figure 6.1. We denote
the spectral radiance of the illuminant bylR(�), the spectral reflectance of the object surface imaged
in a pixel byr(�), the spectral transmittance of the optical systems in front of the detector array by
o(�), the spectral transmittance of thekth optical colour filter by�k(�) and the spectral sensitivity
of the CCD array bya(�). Note that only one optical colour filter is represented in the figure. In a
multichannel system, a set of filters are used.

Supposing a linear optoelectronic transfer function of the acquisition system, the camera responseck
for an image pixel is then equal to

ck =

Z �max

�min

lR(�)r(�)o(�)�k(�)a(�) d� + �k =

Z �max

�min

r(�)!k(�) d� + �k (6.1)

where!k(�) = lR(�)o(�)�k(�)a(�) denotes the spectral sensitivity of thekth channel, and�k is
the additive noise. The assumption of system linearity comes from the fact that the CCD sensor
is inherently a linear device. However, for real acquisition systems this assumption may not hold,
for example due to electronic amplification non-linearities or stray light in the camera (Farrell and
Wandell, 1993, Maˆıtre et al., 1996). Then, appropriate nonlinear corrections may be necessary (see
Sections 3.2.2 and 7.3). By modeling the nonlinearities of the camera as

�ck = �(

Z �max

�min

r(�)!k(�) d� + �k); (6.2)

cf. Eq. 6.1, we may easily obtain the response

ck = ��1(�ck) (6.3)

of an ideal linear camera by inverting the function�.
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Figure 6.1:Schematic view of the image acquisition process. The camera response depends on the
spectral sensitivity of the sensor, the spectral transmittance of the colour filter and optical path, the
spectral reflectance of the objects in the scene, and the spectral radiance of the illumination.

By uniformly sampling1 the spectra atN equal wavelength intervals, we can rewrite Eq. 6.1 as a scalar
product in matrix notation as

ck = rt!k + �k; (6.4)

where!k = [!k(�1)!k(�2) : : : !k(�N )]t and r = [r(�1) r(�2) : : : r(�N )]t, are the vectors con-
taining the spectral sensitivity of thekth channel of the acquisition system, and the sampled spectral
reflectance, respectively.

6.2.2 Spectral sensitivity function estimation

Let us now consider aK channels acquisition system, the system unknowns of which are represented
by the vectors!k, k = 1 : : : K. Two classes of methods exist for the estimation of these vectors,
being referred to as the system’sspectral sensitivity functions. The first class of methods is based on
direct spectral measurements, requiring quite expensive equipment, in particular a wavelength-tunable
source of monochromatic light. The camera characteristics is determined by individually evaluating
the camera responses to monochromatic light from each sample wavelength of the visible spectrum
(Parket al., 1995, Burns, 1997, Mart´ınez-Verdú et al., 1998, Sugiuraet al., 1998).

The second type of approach is based on the acquisition of a number of samples with known re-
flectance or transmittance spectra. By observing the camera output to known input, we may estimate

1For a discussion of the sampling of colour spectra, see Trussell and Kulkarni (1996).
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the camera sensitivity. Several authors have reported the use of such methods,e.g.Pratt and Mancill
(1976), Sharma and Trussell (1993; 1996c), Farrell and Wandell (1993), Sherman and Farrell (1994),
Hubelet al. (1994), Burger and Sherman (1994), Farrellet al. (1994), Maˆıtreet al. (1996), Hardeberg
et al. (1998b). We adopt this second approach.

To perform an estimation of!k for a given channelk, the camera responsesck;p, p = 1 : : : P , corre-
sponding to a selection ofP colour patches with known reflectancesrp are measured. Denoting the
sampled spectral reflectances of all the patches as the matrixR = [r1r2 : : : rP ], the camera response
of the kth channel to thepth sample asck;p, the response of thekth channel to theseP samples,
ck;P = [ck;1ck;2 : : : ck;P ]

t, is given by

ck;P = Rt!k + �k: (6.5)

For P target patches and a spectral sampling rate ofN equally spaced wavelengths, the camera re-
sponsesck;P and the noise term�k are vectors ofP rows,Rt is a (P -rows�N -columns) matrix, and
!k is a vector ofN rows.

When the reflectance spectra of theP target patches and the corresponding camera responsesck;P
are known, Eq. 6.5 can be used as a basis for the estimation!̂k of the spectral sensitivities!k. We
present several methods for this estimation in the following sections.

6.2.2.1 Simulation setup

To illustrate the performance of the different estimation techniques, we have performed a simulation
of an image acquisition system. The spectral sensitivity curves of an Eikonix colour CCD camera as
provided by the manufacturer were used, together with the CIE illuminant A (see Section 2.4.6) as
shown in Figure 6.2 (the spectral transmittance of the optical path is assumed perfect:o(�) = 1).
The spectral reflectances of 1269 matte Munsell colour chips,cf. Section 6.4.3, were used as input to
the camera model. Following the scheme shown in Figure 6.3 we evaluate the quality of the spectral
characterisation methods by comparing the spectral sensitivity functions estimated by the methods, to
the real functions as defined by our simulation.

6.2.2.2 Noise considerations

To evaluate the robustness of the different methods to noise, we have simulated noisy image acqui-
sition process. But what kind of noise corresponds to real-life situations? A non-exhaustive list of
possible error sources that may have influence on the spectral sensitivity estimation quality follows:

■ Quantisation noise

■ Random noise in the acquisition system

■ Reflectance spectra measurement errors

■ Difference in viewing/illumination geometry betwen the image acquisition setup and the re-
flectance measurements using a spectrophotometer
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Figure 6.2:Spectral sensitivities of the three channels of the simulated camera (left) and the resulting
spectral sensitivities of the acquisition system using the illuminant A (right).

■ Deviation from linear acquisition model due to effects such asi) insufficiently corrected non-
linear transfer function��1(�), ii) too coarse spectral sampling,iii) residual camera sensitivity
outside of the wavelength interval used in the model,iv) fluorescence

In the literature several authors were concerned about acquisition noise. Hubelet al. (1994) showed
that in a simulation with 1% acquisition noise, the PE method yielded rather poor results. Finlayson
et al. (1998) also uses simulations with 1% noise. Sharma and Trussell (1996c) estimated the overall
noise level in a commercial 8 bit/channel flatbed color scanner to be 33 dB. For an in-depth analysis
of noise in multispectral image acquisition systems, refer to Burns (1997).

In our simulations, we have chosen to consider only the quantisation noise, and we have simulated ac-
quisitions using different numbers of bits for the data encoding. The camera responses are normalised
before quantisation so that the response of a perfect reflecting diffuser yields values ofck = 1:0,
k = 1 : : : K.

The relationship between the number of bitsb used to encode the camera response, and the signal-to-
noise ratio (SNR) is given by

SNR [dB]= 10 log10

� kck;P k2
kck;P � quantb(ck;P )k2

�
; (6.6)

where quantb(ck;P ) represents the quantisation/dequantisation ofck;P on b bits. Applied to the entire
Munsell database, we obtain the SNRs given in Table 6.1.

Number of bits,b 4 5 6 7 8 9 10 12 14 16
SNR [dB] 25.0 31.0 37.4 43.3 49.6 55.5 61.6 73.7 85.6 97.5

Table 6.1:Signal-to-noise ratio (SNR) for different number of bits used for quantisation. (Mean values
of the three channels SNR’s, estimated on the entire Munsell spectral database,cf. Section 6.4.3.)
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Figure 6.3:Simulation of the acquisition system and evaluation of the spectral characterisation meth-
ods, the Principal Eigenvector (PE) and Pseudoinverse (PI) methods, as described in the following
sections.

6.2.2.3 Pseudoinverse (PI) estimation

Based on Equation 6.5,ck;P = Rt!k + �k, we may estimate the system unknowns!k, k = 1 : : : K
from the following equation:

!̂k = (RRt)�1Rck;P = (Rt)
�
ck;P ; (6.7)

where(Rt)
� denotes the Moore-Penrose pseudoinverse (Albert, 1972) ofRt which, in the absence

of noise, minimises the root-mean-square (RMS) estimation error

dE = k!k � !̂kk: (6.8)

If rank(R) � N (requiring at least thatP � N ) and without noise, this solution is exact up to the
working precision. Under real world conditions, however, this system inversion is not straightforward.

We have evaluated the influence of quantisation noise on the pseudoinverse (PI) estimation as a func-
tion of the number of bits used for data encoding. We find that the error increases drastically as the
number of bits decreases, and that, even when using8 bits, the quality of the estimation is still poor,
see Figs. 6.4 and 6.5. This result illustrates the fact that the unmodified pseudoinverse method is not
suitable in the presence of noise.
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Figure 6.4:RMS sensitivity estimation error for different numbers of bits using the pseudoinverse (PI)
method.

6.2.2.4 Principal Eigenvector (PE) method

With the Principal Eigenvector (PE) method, also known as the rank-deficient pseudoinverse, several
authors (Sharma and Trussell, 1993; 1996c, Hubelet al., 1994, Farrell and Wandell, 1993, Hardeberg
et al., 1998b) reduced the noise sensitivity of the system inversion by only taking into account singular
vectors corresponding to the most significant singular values. A Singular Value Decomposition (SVD)
(Golub and Reinsch, 1971, Jolliffe, 1986) is applied to the matrixR of the spectral reflectances of the
observed patches.

We recall2 that for any(P �N) matrixX of rankR, there exist a(P � P ) unitary matrixU and an
(N �N) unitary matrixV for which

X = UWVt; (6.9)

whereW is a (P � N) matrix with general diagonal entrywi, i = 1 : : : R, called asingular value
of X, all the other entries ofW being zero. The columns of the unitary matrixU are composed of
the eigenvectorsui, i = 1 : : : P , of the symmetric matrixXXt. Similarily the columns of the unitary
matrixV are composed of the eigenvectorsvj , j = 1 : : : N of the symmetric matrixXtX. Since
U andV are unitary matrices, it can easily be verified that whenX = UWVt, cf. Equation 6.9,
thenX� = VW�Ut, whereW� has a general diagonal entry equal tow�1

i , i = 1 : : : R, and zeros
elsewhere.

If the noise�k is assumed to be uncorrelated and signal independent, with a variance of�2�k , the

expected estimation error depends upon the term
PR

i=1 �
2
�k
=w2

i (Sharma and Trussell, 1993). It is clear
that if any of the singular values are small, the error will be large. It has been found by several studies,
e.g.Maloney (1986), Wandell (1987), Parkkinenet al. (1989), Vrhelet al. (1994), that the singular
values of a matrix of spectral reflectances such asRt are strongly decreasing, and by consequence
that reflectance spectra can be described accurately by a quite small number of parameters. It has thus
been proposed to only take into account the firstr < R singular values in the system inversion. The

2See Appendix A.3 for a more thorough presentation of the singular value decomposition algorithm.
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Figure 6.5:Sensitivity estimation for different numbers of bits using the pseudoinverse (PI) method.
The estimated sensitivities are drawn with thin lines. We see that the pseudoinverse method is very
sensitive to noise.

spectral sensitivity of thekth channel may thus be estimated by

!̂k = VW(r)�Utck;P ; (6.10)

whereW(r)� has a general diagonal entry equal tow�1
i , i = 1 : : : r, (r < R), and zeros elsewhere.

For the PE method we have evaluated the influence of the choice of the number of eigenvectors,r,
that is to be considered as principal eigenvectors, for different levels of quantisation noise. From
Figure 6.6 we conclude that the estimation error is due to two factors,a) the inability of the model
of reduced dimension to fit the sensitivity curves, andb) the noise, being dominant when a greater
number of eigenvectors are used in the computations. When the noise is increased, this error becomes
predominant for lower dimensions. The optimal numbers of PE’s to use for different levels of ac-
quisition noise are shown in Figure 6.7, together with the resulting RMS estimation errors using the
optimal number of PE’s. We conclude that if the amount of noise increases, fewer eigenvectors should
be used for the spectral sensitivity estimation.
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Figure 6.6:RMS sensitivity estimation error for different levels of quantisation noise. We see that too
few and too many principal eigenvectors causes high estimation errors.

In Figure 6.8 we present some examples of sensitivity estimation using the PE method withr = 10
and r = 20 principal eigenvectors, and quantising on 10 and 8 bits. We see that when using 10
principal eigenvectors, the quantisation error has little influence on the estimation quality, whereas
when 20 principal components are used, and when quantising on 8 bits, the quantisation noise severely
deteriorates the estimation results.

6.2.2.5 Selection of the most significant target patches

In order to yield reliable results, the principal eigenvector method as described in the previous section
requires to use a very large number of target patches; this is a severe limitation for practical applica-
tions, in which one would seek to have,e.g., 20 patches rather than 1000. To solve this problem, we
propose the following method for the selection of those reflectance samplesrs1 ; rs2 ; rs3 ; : : : which
are most significant for the estimation of the camera’s spectral sensitivity.
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Figure 6.7:Optimal number of PE’s to use for the inversion for different levels of acquisition noise
(left) and the resulting RMS estimation errors using the optimal number of PE’s (right). The optimal
numbers are defined by the minima in Figure 6.6. As the amount of noise increases, fewer principal
eigenvectors should be used for the spectral sensitivity estimation. If the noise is too high, good results
cannot be obtained.

Starting from the full set of all available spectral reflectance functionsrp, p = 1 : : : P , we first select
thatrs1 which is of maximum RMS value:

krs1k � krpk for p = 1 : : : P (6.11)

Next, we select thatrs2 which minimises thecondition number(Matlab Language Reference Manual,
1996) of [rs1rs2 ], that is, the ratio of the largest to the smallest singular value. Denotingwmin(X)
andwmax(X) the minimum and maximum singular values of a matrixX, this minimisation may be
expressed by the following expression:

wmax([rs1rs2 ])

wmin([rs1rs2 ])
� wmax([rs1rp])

wmin([rs1rp])
for p = 1 : : : P; p 6= s1: (6.12)

Further sample spectra are added according to the same rule,i.e. for the choice of theith samplersi :

wmax([rs1rs2 : : : rsi ])

wmin([rs1rs2 : : : rsi ])
� wmax([rs1rs2 : : : rsi�1rp])

wmin([rs1rs2 : : : rsi�1rp])
for p = 1 : : : P; p =2 fs1; s2; : : : si�1g:

(6.13)

By this procedure, we obtain a set of most significant reflectance samples, for the spectral sensitiv-
ity estimation process. The motivation behind this method is to choose, for each iteration step, a
reflectance spectrum which is as “different” as possible from the other target spectra.

In order to evaluate the target patch selection method we compared the results obtained from ”step by
step” optimally chosen target samples with those obtained from a heuristically chosen set of samples.
The heuristically chosen set was obtained by simply selecting the patch of highest chroma from each
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Figure 6.8:Camera sensitivity estimation using the PE method with 10 (upper) and 20 (lower) prin-
cipal eigenvectors, and quantising on 10 (right) and 8 (left) bits. We see that when quantising on 8
bits the quantisation noise deteriorates the estimation results severely when using too many principal
eigenvectors in the estimation,cf. Fig. 6.6.

of the 20 hue angle pages of the Munsell atlas. The Munsell notations3 and CIELAB a� and b�

coordinates for both the optimally chosen set and the heuristically chosen set are shown in Figure 6.9.

We estimated the camera spectral sensitivities independently from both sets, for 8-bit, 10-bit and 12-bit
quantisation, using the PE method with 10 and 20 principal eigenvectors, denoted PE(10) and PE(20),
respectively. Figure 6.10 presents the estimated spectral sensitivities with 10-bit quantisation, on the
top for the heuristically chosen set, and in the middle for the optimally chosen set. The comparison
between the upper and middle panels of Figure 6.10 shows that the results obtained from the optimal
set of target patches present a much better fit to the camera’s spectral sensitivities than the results
obtained from the heuristically chosen set. In the lower part of the figure we present the estimations
using theMacbeth ColorChecker(McCamyet al., 1976), a colour target which is extensively used for

3The Munsell colour specification is given in the order Hue, Value, Chroma, for example, 5R 4/14 is on the principal
red axis, with a lightness slightly darker than a medium grey, and that it has a very strong chroma. Seee.g.Hunt (1991),
Section 7.4, for more details.
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Figure 6.9:The Munsell notations (left) and the CIELABa� andb� coordinates (right) for the Munsell
patches chosen either heuristically or optimally by the proposed method.

colour calibration tasks (see Section 7.2.4 ande.g.Farrell and Wandell, 1993, Finlaysonet al., 1998,
Burns, 1997).

We see from Figure 6.10 that the results are clearly better for the optimally chosen reflectances than
when using the heuristically selected and Macbeth patches. These results are in good accordance with
the results obtained from a Principal Component Analysis (PCA) of the three reflectance sets using
the methods that we will present in Section 6.4. In Figure 6.11 we compare the magnitudes of the
singular values, and wee see that the effective dimensionDe of the optimally selected Munsell patches
is generally higher than for the two other sets, while the condition number is smaller, see Table 6.2. We
can also conclude from this analysis that great attention must have been given to spectral properties
when the Macbeth chart was designed (McCamyet al., 1976).

OPTIMAL HEURISTIC MACBETH

Effective dimensionDe for Ereq = 0:90 5 4 5
Effective dimensionDe for Ereq = 0:99 13 11 12
Condition number 672 2274 2053

Table 6.2:Comparison of the results of a PCA analysis of the optimal/heuristic selections of Munsell
patches and of the Macbeth ColorChecker.
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Figure 6.10:Camera sensitivity estimation using the PE method with 10 (left) and 20 (right) princi-
pal eigenvectors, with 20 heuristically chosen reflectances (upper), 20 optimally chosen reflectances
(middle), and 20 Macbeth reflectances (lower). We see that we attain much better results when choos-
ing reflectance samples using a vectorspace approach than when choosing in a heuristic manner or
using the Macbeth ColorChecker.
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Figure 6.11:PCA analysis of the optimally selected subset of 20 Munsell patches, of the heuristically
selected ones, and of 20 patches of the Macbeth ColorChecker. (Four medium gray patches out of the
24 Macbeth patches are excluded from the data set to enable comparison with the same number of
colour patches.)

6.2.3 Discussion on spectral characterisation

In order to compare the results of the spectral sensitivity estimation using the different methods pro-
posed in the previous sections, we present in Table 6.3 the RMS estimation errors for quantisation us-
ing 8, 10 and 12 bits, using either all 1269 Munsell reflectances, 20 heuristically chosen reflectances,
or 20 optimally chosen reflectances. In Table 6.4 we present the estimation errors obtained with the
best method for each noise level, and for each of the selected data sets, relatively to the results ob-
tained with the complete set of Munsell chips. Several conclusions may be drawn from these results.

8 bit 10 bit 12 bit

All 1269
reflectances

PI 0.25797 0.07752 0.01800
PE(20) 0.04350 0.02027 0.01796
PE(10) 0.03178 0.03171 0.03170

20 optimally PE(20)=PI 0.19568 0.05365 0.02498
chosen reflectancesPE(10) 0.04712 0.03821 0.03772
20 heuristically PE(20)=PI 0.40801 0.10726 0.04472
chosen reflectancesPE(10) 0.04734 0.04261 0.04159

Table 6.3:Root-mean-square spectral sensitivity estimation errors using the different methods. For
simplicity, the mean values for the three channels are used. We see that the quality of the estimation is
almost as good using 20 optimally chosen samples than when using the complete set of 1269 Munsell
chips. See also Table 6.4.
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8 bit 10 bit 12 bit
All 100 100 100
Optimal 148 189 139
Heuristic 149 210 232

Table 6.4:Estimation errors for the optimal/heuristic data sets relative to the results obtained when
using the complete set of 1269 Munsell chips. For each of the data sets, the best method of Table 6.3
is used. We see that the difference between the optimally and heuristically chosen sets becomes larger
for lower levels of noise.

■ A coarser quantisation always increases the spectral sensitivity estimation error.

■ The unmodified pseudoinverse (PI) method is generally not suitable in the presence of noise.
The Principal Eigenvector (PE) method should be used instead.

■ The optimal number of principal eigenvectors used in the PE method depends on the noise level.

■ The results are always better when using ”step by step” optimally chosen samples than when
using samples chosen heuristically.

■ The quality of the estimation is almost as good using 20 optimally chosen samples as when
using the complete set of 1269 Munsell chips. In a practical situation, this is of great impor-
tance, as it decreases drastically the workload needed to perform a spectral characterisation of
electronic cameras.

We find that the obtained spectral sensitivity estimations are of rather high accuracy, for moderate
levels of noise. However, the results could be further improved by adding constraints such as smooth-
ness and positivity to the estimation methods. For example the Wiener estimation as used by Pratt
and Mancill (1976) and Hubelet al. (1994) or the technique of projection onto convex sets (POCS),
proposed by Sharma and Trussell (1993; 1996c) could be used.

When considering illuminants having spiky spectral radiances, such as fluorescent lamps, the spectral
sensitivity estimation becomes more difficult than in our case, where the illuminant A is used. The
use of fluorescent lamps in desktop scanners thus presents a severe difficulty for the spectral charac-
terisation. It could be considered to represent the spectra by a combination of smooth basis vectors
and ray spectra.

Furthermore, it should be emphasized that for real-life acquisitions, quantisation noise is only one of
many sources of error, as discussed in Section 6.2.2.2. Thus the quality of the estimation is likely to
be poorer than in the simulations, for the same number of bits.

6.3 Spectral reflectance estimation from camera responses

We will now consider a multispectral image capture system consisting of a monochrome CCD camera
and a set ofK colour filters, for a given illuminant. The spectral characteristics!(�) of the image
acquisition system including the illuminant but without the filters is supposed known,cf. Section 6.2.
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The known spectral transmittances of the filters are denoted by�k(�), k = 1 : : : K. Analogously to
Equation 6.1 the camera responseck obtained with thekth filter, discarding acquisition noise, is given
by

ck =

Z �max

�min

r(�)�k(�)!(�)d�: (6.14)

The vectorcK = [c1c2 : : : cK ]t representing the response to allK filters may be described using
matrix notation as

cK = �tr; (6.15)

where� is the knownN -line, K-column matrix of filter transmittances multiplied by the camera
characteristics, that is� = [�k(�n)!(�n)].

We now address the problem of how to retrieve spectrophotometric information from these camera
responses. A first approach is to define a direct colorimetric transformation from the camera responses
cK into for example the CIELAB space (see Section 2.4.8.1), under a given illuminant, minimising
typically the RMS error in a way similar to what is often done for conventional three-channel image
acquisition devices,cf. Section 3. Given an appropriate regression model, this is found to give quite
satisfactory results in terms of colorimetric errors (Burns, 1997). However, for our applications we are
often concerned not only with the colorimetry of the imaged scene, but also with the inherent surface
spectral reflectance of the viewed objects. Thus the colorimetric approach is not always sufficient.

In existing multispectral acquisition systems, the filters often have similar and rather narrow bandpass
shape and are located at approximatively equal wavelength intervals. For the reconstruction of the
spectral reflectance, it has been proposed to apply interpolation methods such as spline interpolation
or Modified Discrete Sine Transformation (MDST) (Keusen and Praefcke, 1995, Keusen, 1996). Such
methods are not well adapted to filters having more complex wide-band responses, and suffer from
quite severe aliasing errors (Burns, 1997, K¨onig and Praefcke, 1998a).

We adopt a linear-model approach and formulate the problem of the estimation of a spectral reflectance
~r from the camera responsescK as finding a matrixQ that reconstructs the spectrum from theK
measurements as follows

~r = QcK : (6.16)

Our goal will thus be to determine a matrixQ that minimises a distanced(r;~r), given an appropriate
error metricd. Some solutions to this problems are presented and discussed in the following sections.

6.3.1 Pseudo-inverse solution

An immediate solution4 for estimating the spectral reflectance consists in simply inverting Equa-
tion (6.15) by using a pseudo-inverse approach, which provides us with the following minimum norm
solution (Albert, 1972)

~r = (��t)�1�cK = (�t)�cK : (6.17)

4As implemented by Camus-Abonneau and Camus (1989)
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The pseudo-inverse reconstruction operatorQ0 is thus given by

Q0 = (�)t�: (6.18)

If the matrix� were of full rankN , and if we assume noiseless recordings, this method of recon-
struction would be perfect. However it is not very well adapted in practical situations.5 First, in order
to achieve that the rank of� equalsN , the number of colour filtersK should be at least equal to
the number of spectral sampling pointsN . Furthermore this representation is very sensitive to sig-
nal noise. In fact, by this solution we minimise the Euclidian distancedE(�

tr; cK) in the camera
response domain. A small distance does not guarantee the spectrar and~r to be close, only that their
projections into camera response space are close. Nevertheless, this approach is used by Tominaga
(1996; 1997) to recover the spectral distribution of the illuminant from a six-channel acquisition.
However, he applies a nested regression analysis to choose the proper number of components in order
to better describe the spectrum and to increase the spectral-fit quality.

6.3.2 Reconstruction exploitinga priori knowledge of the imaged objects

We now define another reconstruction operatorQ1 that minimises the Euclidian distancedE(r;~r)
between the original spectrumr and the reconstructed spectrum~r = Q1cK . To achieve this minimi-
sation we take advantage ofa priori knowledges on the spectral reflectances that are to be imaged. We
know that the spectral reflectances of typical objects are smooth. We present this by assuming that the
reflectance in each pixel is a linear combination of a set of smoothbasis functions. We will typically
use a set ofmeasuredspectral reflectances as basis functions, but other sets of functions could be used,
e.g.a Fourier basis. Denoting the basis function “reflectances” asR = [r1r2 : : : rP ], our assumption
implies that, for any observed reflectancer, a vector of coefficientsa exists6 such that any reflectance
r may be expressed as

r = Ra: (6.19)

Hence, we obtain~r from a by using Equations 6.16, 6.15, and 6.19:

~r = Q1cK = Q1�
tr = Q1�

tRa: (6.20)

With Equations 6.19 and 6.20 the ideal expressionr = ~r becomes

Q1�
tRa = Ra: (6.21)

Assuming thatR is a statistically significant representation of the reflectances that will be encountered
for a given application, Equation 6.21 should be true for anya, and hence

Q1�
tR = R: (6.22)

This gives then the reconstruction operator minimising the RMS spectral error by a pseudo-inverse
approach as

Q1 = RRt�(�tRRt�)�1: (6.23)

5This was observed by Goulam-Ally (1990b) and Nagel (1993)
6See Bournay (1991).
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The choice of the spectral reflectances inR should be well representative of the spectral reflectances
encountered in the applications. In our experiments on paintings we used a set of 64 spectral re-
flectances of pure pigments used in oil painting and provided to us by the National Gallery in London
(Maı̂tre et al., 1996). For other applications, we could use sets that are supposed to be representa-
tive of general reflectances, such as the object colours of Vrhelet al. (1994) or the natural colours of
Jaaskelainenet al. (1990), see Section 6.4.

Note that slightly different methods exist for the estimation of a spectral reflectance from the camera
responses, such as the Wiener estimation method (K¨onig and Praefcke, 1998a, Vrhel and Trussell,
1994, Haneishiet al., 1997) based on the autocorrelation matrix ofR, and a principal component
analysis method where the principal components (cf. Appendix A.2) of the spectral reflectance are
estimated by a least mean square approach from the camera responses (Burns, 1997).

6.3.3 Evaluation of the spectral reflectance reconstruction

We have performed a rapid evaluation of the two reconstruction operators presented in Sections 6.3.1
and 6.3.2. The experimental results shown in Figure 6.12 indicate clearly that the reconstruction
operatorQ1 is much better thanQ0, as expected.
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Figure 6.12:Reconstruction of the spectral reflectance of the cadmium orange (left) and the man-
ganese blue (right) pigments from the camera responses using seven filters. Note the clear superiority
of using operatorQ1, which takes into accounta priori knowledge on the spectral reflectances en-
countered in oil painting.

6.4 Analysis of spectral reflectance data sets

As noted in Section 6.3 it may be of strong interest to have knowledge about the nature of the re-
flectance spectra which are of interest for an image acquisition. The effective dimension of reflectance
spectra, that is, the number of components needed to describe a spectrum in a vectorial space is dis-
cussed extensively in the litterature, see Appendix F.
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For Munsell colours, Cohen (1964) states that three components is sufficient, Eemet al. (1994) pro-
pose four, Maloney (1986) proposes five to seven, Burns propose five (Burns and Berns, 1996) or six
(Burns, 1997), Lenzet al. (1995; 1996a) use six and Parkkinenet al. (1989) and Wanget al. (1997)
say eight.

For data including natural reflectances, Dannemiller (1992) states that three is sufficient, Vrhelet al.
(1994) propose three to seven basis functions, Praefcke (1996) propose five, while Keusen (1996)
states that up to ten is needed.

For human skin, three components is proposed by Imaiet al. (1996a;b). For oil painting, five is
proposed by Tsumura and coworkers (Haneishiet al., 1997, Yokoyamaet al., 1997), while Maˆıtre
et al. (1996) claims that ten to twelve factors are needed. Garc´ıa-Beltrán et al. (1998) use a linear
basis of seven vectors to represent the spectral reflectance of acrylic paints.

For a practical realisation of a multispectral scanner using filters, these results should be taken into
account when designing the system, in particular when choosing the number of acquisition channels.
Also here, the choices found in the literature are many: three (Imaiet al., 1996a;b), (Shiobaraet al.,
1995; 1996), four (Chen and Trussell, 1995), five (Haneishiet al., 1997, Yokoyamaet al., 1997,
Kollarits and Gibbon, 1992), six (Tominaga, 1996; 1997), seven (Saunders and Cupitt, 1993, Martinez
et al., 1993, Burns and Berns, 1996), five to ten (Hardeberget al., 1998a; 1999), ten to twelve (Maˆıtre
et al., 1996), twelve to fourteen (Keusen and Praefcke, 1995, Keusen, 1996), and sixteen (K¨onig and
Praefcke, 1998b).

We see that the existing conclusions concerning the dimension of spectral reflectances, and the number
of channels needed to acquire multispectral images, are rather dispersed. Often the applied statistical
analysis is quite elementary, and conclusions are drawn without clear backlying objectives.

We will thus proceed to a comparative statistical analysis of sets of spectral reflectances, using tools
such as the Principal Component Analysis. We define some design criterions, and apply the analysis
to different sets of reflectances.

6.4.1 Principal Component Analysis

A Principal Component Analysis (PCA), see Section A.2, is applied to the data set of reflectances.
The reason for applying such an analysis is mainly twofold.

■ To acquire information about the dimensionnality of the data. Are all theN reflectances lin-
earily independent? This may give an indication on the number of filters to be chosen for the
acquisition, see Section 6.5.

■ To allow a compression of the spectral information. A reflectance spectrum can be represented
approximately by a reduced number of principal components.

To implement this analysis, we apply the Singular Value Decomposition (SVD), see Section A.3. Nu-
merous variants of the SVD algorithm exist. We apply here the version presented in Section A.3.2, as
implemented in Matlab (Matlab Language Reference Manual, 1996). We recall that for any arbitrary
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(N �P ) matrixX of rankR, there exist an(N �N) unitary matrixU and a(P �P ) unitary matrix
V for which

X = UWVt; (6.24)

whereW is an(N�P ) matrix with general diagonal entrieswi, i = 1 : : : R, denotedsingular values7

of X, and the columns of the unitary matrixU are composed of the eigenvectorsui, i = 1 : : : N , of
the symmetric matrixXXt, cf. Section A.3.

For our PCA analysis, we denote our data set ofP reflectancesri as theN -line, P -column matrix
R = [r1r2 : : : rP ], and we define the matrixX as

X =
�
r1 � �r r2 � �r � � � rP � �r

�
; (6.25)

where�r contains the mean values of the reflectance spectra,

�r =
1

P

PX
j=1

rj : (6.26)

Applying the SVD, the resulting matrixU (cf. Eq. 6.24) is a(N � N) column-orthogonal matrix
describing an orthogonal basis of the space spanned byX or equivalently byR. We denote this space
byR(R), therangeof R, and note thatR(R) = R(X) = R(U). We will denote the columns ofU,
callednodesin PCA terminology, as thecharacteristic reflectancesof the data set.W is a diagonal
matrix containing on its diagonal the singular valueswi, in order of decreasing magnitude,

W =

2
64w1 0

.. .
0 wN

3
75 : (6.27)

An example of such singular values for the case of a set of oil pigments as presented in Section 6.4.3
is shown in Figure 6.13. We note that there is a strong concentration of variance/energy in the first
few singular values. This suggests that the spectral reflectances may be approximated quite correctly
using a small number of components, as described in the following section.

6.4.2 Effective dimension

The dimensionD of the spaceR(R) is rigorously determined byD = rank(R), which is given by
the number of non-null singular values. If the columns ofR, the reflectance spectra, are linearily
independent, thenD = N .8 However, if some singular values are very close to zero, which is often
the case,cf. Figure 6.13 on the facing page, theeffectivedimensionDe of the space may be much
smaller. That is, it is possible to represent the spectral data in a more compact form, using merelyDe

principal components,De being generally significantly smaller thanD. Given a reflectance spectrum
7Thesingular valuesofX correspond to the square roots of theeigenvaluesofXXt.
8This supposing thatN < P . If, however,N > P , thenD = P .
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Figure 6.13:An example of the singular values of the matrixR containing the reflectance spectra
of the pigments of the National Gallery chart. We note that there is a strong concentration of vari-
ance/energy in the first few singular values.

represented by theN -vectorx = r� r, the vector of principal componentsz = [z1z2 : : : z ~P ]
t is given

by (cf. Equation A.36)

z = ~Utx; (6.28)

~U being defined as the first~P < P characteristic reflectances,z thus being a~P -vector. The recon-
struction of an approximation~r of the original reflectance is obtained by (cf. Equation A.38)

~x = ~Uz = ~U~Utx; (6.29)

and consequently

~r = ~Uz+ r = ~U~Ut(r� r) + r: (6.30)

The spectral reconstruction error is thus identified as

dE = kr�~rk = kr� ~U~Ut(r� r)� rk = kx� ~U~Utxk (6.31)

To determine an estimation of the effective dimension of the spaceR(R), that is, a good choice
of De, we need to determine how many principal components that must be taken into account to
represent the data. To do this, in addition to the measurement of spectral reconstruction errors, the
notion ofaccumulatedenergyEa( ~P ), that is the amount of the total energy, or signal variance, that is
represented by the first~P singular vectors, turns out to be useful:

Ea( ~P ) =

Pi= ~P
i=1 wiPi=P
i=1 wi

: (6.32)
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We may also define theresidual energyEr( ~P ) = 1 � Ea( ~P ), that is, the energy represented by
the principal components that are not taken into account. As an example, we present in Figure 6.14
the mean and maximal spectral reconstruction errorkr � ~rk, over the spectral reflectances of the
base, compared to the residual energy, using~P principal components. We see that the mean spectral
reconstruction error is highly correlated to the residual energy, while the maximal error shows a more
random variation, although still correlated.
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Figure 6.14:The mean and maximal spectral reconstruction error compared to the energy contained
in the ~P first principal components. Example is using the oil pigment data.

This result suggests that we may use the accumulated (or equivalently the residual) energy as a crite-
rion to define an appropriate choice of dimensionnalityDe. We define thus

De
def
= minf ~P jEa( ~P ) � Ereqg (6.33)

The definition of the effective dimension depends thus on the choice of required accumulated energy
Ereq.

An example value seen in literature (Haneishiet al., 1997, Burns, 1997) isEreq = 99%, a choice which
would giveDe = 16 and a RMS error of0:14% for the data in the example shown in Figure 6.14. A
choice ofDe = 12 as proposed by Maˆıtre et al. (1996) givesEa = 97:9%.9

6.4.3 Application to real reflectance data sets

We have chosen to apply our analysis to five distinct sets of reflectance spectra, examples of which
are found in Figure 6.15.

9Note that a slightly different result (Ea = 98:2%) was found in (Maˆıtreet al., 1996) since the PCA/SVD analysis was
performed on non-centred data.
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Figure 6.15:Examples of reflectance spectra from the different databases:PIGMENTS, MUNSELL,
NATURAL, OBJECT, and SUBLIM .
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1. PIGMENTS. We dispose of a significant set of colour patches provided by the National Gallery
in London (courtesy of David Saunders), providing the essential oil pigments used in the
restoration of old paintings. This set containsP = 64 pure pigments covering all the shades
of colours of the spectrum. The patches have been measured with a PhotoResearch PR-704
spectrophotometer on a wavelength interval of 380 nm - 780 nm, and a wavelength resolution
of 2 nm.

2. MUNSELL. Thanks to Parkkinenet al. (1989) and their group at the University of Kuopio,
Finland, we have access10 to the reflectance spectra of 1269 matt Munsell colour chips, (Mun-
sell, 1976), measured using a Perkin-Elmer lambda 9 UV/VIS/NIR spectrophotometer, on a
wavelength interval of 380 nm - 800 nm, and a wavelength resolution of 1 nm.

3. NATURAL. From the same source, we dispose of the reflectance spectra of 218 coloured sam-
ples collected from the nature (Jaaskelainenet al., 1990). Samples include flowers and leaves
and other colourful plants. Each spectrum consists of 61 elements that are raw data got from
the output of the 12 bit A/D-converter of an Acousto-Optical Tunable Filters (AOTF) colour
measuring equipment, this corresponding to a wavelength interval of 400 nm - 700 nm, and a
wavelength resolution of 5 nm.

4. OBJECT. Provided by Vrhelet al. (1994) and generously made available online11, we dispose
of 170 reflectance spectra from various natural and man-made objects measured by a PhotoRe-
search PR-703 spectroradiometer, and postprocessed to 10 nm intervals in the range from 400
nm - 700 nm.

5. SUBLIM . We have also measured using the PR-704 spectrophotometer a set of 125 patches of
a Mitsubishi S340-10 sublimation printer. The patches are equally spaced in the printer CMY
space.

To be able to compare these different reflectance spectrum databases, and to avoid the handling of
extensively large matrices, we have resampled all data to a common wavelength resolution of 10nm,
and a wavelength interval from 400nm - 700nm.

We then apply the PCA analysis as described in Section 6.4.1 to the different databases. The relative
magnitude of the singular values, that is the eigenvalues of the covariance matrixXXt are shown
in Figure 6.16. In Figure 6.17 and Table 6.5, the accumulated energy represented by the~P first
characteristic vectors is shown.

Analysing the data reported in Table 6.5 we may conclude that a different number of basis vectors
should be chosen, depending on the database used to calculate the covariance matrix, see Table 6.6.
As expected, the NATURAL data shows the highest complexity, and the SUBLIM data the lowest, but
they do exhibit a rather similar behaviour. If, for example we require thatEreq = 99% of the signal
variance should be accounted for, we can encode the spectra using 10 components for the SUBLIM

reflectances, while as many as 23 components would be needed for the NATURAL data.
10http://www.it.lut.fi/research/color/database/database.html
11ftp://ftp.eos.ncsu.edu/pub/spectra
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Figure 6.16:Comparison of singular values of the 5 different databases in logarithmic scale. The
steeper the curves decrease, the more the energy is concentrated in the first singular vectors.

6.4.4 Discussion

By our analysis we have shown that spectral reflectances from different databases have different sta-
tistical properties. When fixing the amount of signal variance that should be accounted for, twice as
many components are needed to encode a spectrum from the NATURAL database than for the SUBLIM

data. These results have quite important practical consequences when designing a multispectral image
acquisition system.

The goal of this study is to draw conclusions on the importance of the data set being adapted to the
application. Is it important to use oil painting reflectances when designing a multispectral image
acquisition system for paintings, or could a standard set of Munsell reflectances equally well be used?
Unfortunately, time did not allow us to further elaborate this study. Several other measures could have
been applied to these reflectance data sets, such as the similarity measure proposed by Sharmaet al.
(1998), the Vora-measure (Vora and Trussell, 1993), a measure of how good a set of reflectance curves
is approximated with a set of basis function proposed by Mahyet al.(1994b), and the goodness-fitting-
coefficients proposed by Romeroet al. (1997) and Garc´ıa-Beltránet al. (1998).
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~P MUNSELL NATURAL OBJECT PIGMENT SUBLIM

1 0.4783 0.4235 0.4833 0.4344 0.4005
2 0.6955 0.5836 0.6710 0.6714 0.6724
3 0.8288 0.7265 0.7841 0.7944 0.8491
4 0.8763 0.7953 0.8345 0.8583 0.9108
5 0.9094 0.8363 0.8750 0.8992 0.9426
6 0.9282 0.8695 0.9067 0.9242 0.9626
7 0.9446 0.8999 0.9273 0.9449 0.9737
8 0.9554 0.9204 0.9462 0.9593 0.9825
9 0.9652 0.9344 0.9581 0.9701 0.9871
10 0.9718 0.9448 0.9674 0.9788 0.9907
11 0.9767 0.9533 0.9749 0.9848 0.9926
12 0.9801 0.9596 0.9795 0.9888 0.9943
13 0.9829 0.9655 0.9836 0.9917 0.9951
14 0.9854 0.9701 0.9875 0.9942 0.9960
15 0.9871 0.9738 0.9903 0.9955 0.9967
16 0.9883 0.9766 0.9925 0.9963 0.9972
17 0.9896 0.9791 0.9941 0.9971 0.9975
18 0.9908 0.9814 0.9954 0.9977 0.9978
19 0.9917 0.9835 0.9962 0.9981 0.9981
20 0.9925 0.9854 0.9970 0.9984 0.9984
21 0.9933 0.9872 0.9976 0.9987 0.9986
22 0.9941 0.9889 0.9981 0.9989 0.9988
23 0.9949 0.9904 0.9985 0.9991 0.9990
24 0.9956 0.9918 0.9989 0.9993 0.9991
25 0.9963 0.9932 0.9992 0.9994 0.9993
26 0.9970 0.9945 0.9994 0.9996 0.9994
27 0.9977 0.9957 0.9996 0.9997 0.9996
28 0.9983 0.9969 0.9997 0.9998 0.9997
29 0.9989 0.9981 0.9998 0.9999 0.9998
30 0.9995 0.9991 0.9999 0.9999 0.9999
31 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6.5:Accumulated energyEa( ~P ) of the different databases. The entries corresponding to design
choices ofEreq = 0:90 andEreq = 0:99 are underlined, and reported in Table 6.6.

Ereq MUNSELL NATURAL OBJECT PIGMENT SUBLIM

0.90 5 8 6 6 4
0.99 18 23 15 13 10

Table 6.6:Effective dimensionDe for the different databases for a choice of required accumulated
energy ofEreq = 0:90 andEreq = 0:99.
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Figure 6.17:Comparison of the accumulated energyEa( ~P ) of the different databases. For example
if Ereq = 99% of the signal energy should be preserved, 23 singular vectors should be used for the
NATURAL data, while only 10 are requested for theSUBLIM data.

6.5 Choice of the analysis filters

The quality of the spectral reflectance reconstruction depends not only on the reconstruction operator,
but also heavily on the spectral characteristics of the acquisition system: illuminant, camera and filters.
The design of optimal filters given an optimisation criterion has been proposed by several authors, as
for example in (Voraet al., 1993, Vora and Trussell, 1997, Vrhel and Trussell, 1994, Vrhelet al.,
1995, Sharma and Trussell, 1996b, Lenzet al., 1995; 1996a, Wanget al., 1997). A drawback with
such methods is the cost and difficulty involved in the production of the optimised filters. Another
approach encountered in most existing multispectral scanner systems is to use a set of heuristically
chosen colour filters which are typically equi-spaced over the visible spectrum (Burns, 1997, Keusen
and Praefcke, 1995, Keusen, 1996, K¨onig and Praefcke, 1998b, Martinezet al., 1993, Abrardoet al.,
1996). For example, the VASARI scanner implemented at the National Gallery in London uses seven
broad-band nearly-Gaussian filters covering the visible spectrum (Martinezet al., 1993). Although
promising results are reported using such systems, the choice of filters seems to remain rather heuristic
and likely sub-optimal.
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An intermediate solution can be used where the camera filters are chosen from a set of readily available
filters (Vora et al., 1993, Maˆıtre et al., 1996, Vora and Trussell, 1997). This choice is optimised,
taking into account the statistical spectral properties of the objects that are to be imaged, as well as
the spectral transmittances of the filters, the spectral characteristics of the camera, and the spectral
radiance of the illuminant,cf. Section 6.2.2. The main idea is to choose the filters so that, when
multiplied with the illuminant and camera characteristics, they span the same vector space as the
reflectances that are to be acquired in a particular application, as suggestede.g.by Changet al.(1989),
Schmittet al. (1990), Vora and Trussell (1993), Mahyet al. (1994b). Different schemes for selecting
the filters are presented in the following section.

6.5.1 Filter selection methods

In this section we review different methods to select a subset of~K filters out of a set ofK available
filters. We suppose known the spectral transmittances�k(�), k = 1 : : : K, of the filters as well as the
spectral sensitivity!(�) of the camera. After having mixed these functions together, we represent the
filters (or more precisely the associated camera channel sensitivities) by the vectorsyk,

yk = �k[�k(�1)!(�1); �k(�2)!(�2); : : : ; �k(�N )!(�N )]t; k = 1 : : : K: (6.34)

The normalisation factors�k maybe chosen such thatkykk = 1.

The goal is to select, among a set ofK available colour filters, a subset of~K filters being well suited
for our spectral reconstruction.

6.5.1.1 Equi-spacing of filter central wavelengths

A simple strategy is to choose a set of filters where the central wavelengths are relatively equally
spaced throughout the visible spectrum (Martinezet al., 1993, Keusen and Praefcke, 1995, Keusen,
1996, König and Praefcke, 1998b, Abrardoet al., 1996, Burns, 1997).

6.5.1.2 Exhaustive search

It is clear that an optimal solution would emerge from a combinatorial approach, where all possible
filter combinations are evaluated. The complexity of such an approach could be prohibitive, since it
requires the evaluation of

nc =

�
K
~K

�
=

K!
~K!(K � ~K)!

(6.35)

filter combinations. For a small number of filters, this method may be applicable, seee.g.Yokoyama
et al.(1997) who evaluates thenc = 80730 combinations needed for a selection of~K = 5 filters from
a set ofK = 27, or Voraet al. (1993), Vora and Trussell (1997) who selects~K = 3 filters from a
set ofK = 100 Wratten filters, requiringnc = 1:6 � 105 filter combinations. However, when the
number of available filters as well as the number of filters to be chosen increase, the complexity grows
considerably, as shown in Figure 6.18. For the example presented by Maˆıtre et al. (1996), where
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K = 37 and ~K = 12, the number of filter combinations to be evaluated attainsnc = 1:8�109, giving
a computation time in the order of days on a 100 MFLOP/s computer.

To reduce the computational cost, several constructive approaches are proposed in the following sec-
tions, taking into account the spectral properties of the available filters, the acquisition system, as well
as the statistical spectral properties of the surfaces that are to be imaged.
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Figure 6.18:Illustration of the computational complexity involved when comparing all possible filter
combination from a set of real filters. Note the logarithmic ordinate axis.

6.5.1.3 Progressive optimal filters

As seen in Section 6.4.1, a set of reflectances may be characterised by itscharacteristic reflectances,
that is, an orthogonal basis of the vector space spanned by the reflectances, sorted in order of de-
creasing importance. The idea of using linear combinations of the characteristic reflectances as filter
transmittances was introduced by Changet al. (1989). Mahyet al. (1994b) introduces the notion of
progressive optimal filters, where thekth progressive optimal filter is defined as a linear combination
of the firstk characteristic reflectances, having only positive values. The exact manner in which this
linear combination is determined is not described in the paper. They do not consider how to realise in
practice the progressive optimal filters.

We propose here to select thekth filter from the set of available filters as the one that shows the highest
correlation to the progressive optimal filter.
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6.5.1.4 Maximising filter orthogonality

The idea of this method is to choose a set of filters whose non-normalised12 vectorsyk have a max-
imised orthogonality. The algorithm consists of the following steps.

1. As the first filterb1 = yk1 we choose the one of maximal norm:kyk1k � kykk, k = 1 : : : K.
That is, the filter that transfers most energy is chosen.

2. The second filterb2 = yk2 is chosen among the other filters as maximising its component
orthogonal tob1:

k2 = arg
k

max 1�k�K
k 6=k1

kyk � bn1(btn1yk)k; (6.36)

wherebn1 denote the normalised vectorbn1 = b1=kb1k.
3. We continue for the(i + 1)th vector which is chosen if it maximises its component normal to

the spaceR([b1;b2; : : : ;bi]), spanned by the set of vectorsfb1;b2; : : : ;big.
We denote the orthonormal basis of the spaceR([b1;b2; : : : ;bi]) asB(i)

n , which is constructed
iteratively as

B(i)
n =

h
B(i�1)
n bni

i
; (6.37)

whereB(1)
n = bn1, and

bni =
bi �B(i�1)

n (B
(i�1)t
n bi)

kbi �B(i�1)
n (B

(i�1)t
n bi)k

: (6.38)

We then chose the(i + 1)th basis vectorbi+1 = yki+1
for the k = ki+1 that maximises the

following expression:

ki+1 = arg
k

max 1�k�K
k=2fk1;k2;::: ;kig

kyk �B(i)
n (B(i)t

n yk)k (6.39)

6.5.1.5 Maximising orthogonality in characteristic reflectance vector space

This method13 is more physically related to the problem which we have to solve. The central idea of
the method is to select filters that have a high degree of orthogonalityafter projectioninto the vector
spaceR(U(r)) spanned by ther most significant characteristic reflectancesui, i = 1 : : : r, calculated
by PCA/SVD analysis of a setR of sample reflectances. The matrix

U(r) = [u1u2 : : :ur]; r � rank(R) (6.40)

12It would also be possible to apply this method to the normalised vectorsyk. This would typically yield a selection of
filters with high degree of orthogonality, but lower transmission factors. For the image acquisition this can be accounted for
to a certain extent by increasing the exposure time and/or aperture width, but for practical applications, it is clear that higher
transmission factors are preferrable.

13The presented method is slightly modified compared to what we presented in (Maˆıtreet al., 1996).
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represents thus the orthonormal basis of the vector spaceR(U(r)), cf. Eq. 6.24.

The projection of thekth filter on thejth characteristic reflectance vector isutjyk and its projection

in R(U(r)) is denoted as ther � 1 coordinate vectorgk = U(r)tyk. Note thatgk corresponds to the
camera responses through thekth filter to a set of characteristic reflectancesU(r).

1. Considering the set of projectionsgk, k = 1 : : : K, we choose as the first basis vectoryk1 the
one which transfers most energy from ther most significant characteristic reflectances:

k1 = arg
k

max
1<k<K

kgkk (6.41)

of maximal norm as the first basis vectorb1 = yk1 . That is, the filter that transfers most energy
from the characteristic reflectances is chosen.

2. The second filteryk2 is then the filter whose projection ontoR(U(r)) has a maximal component
orthogonal togk1 :

k2 = arg
k

max 1<k<K
k 6=k1



gk � gnk1 �gtnk1gk�

 ; (6.42)

wheregnk1 = gk1=kgk1k.
3. LetG(i) = [gk1 ;gk2 ; : : : ;gki ] denote the projections of thei first selected filters inR(U(r)).

The filter yki+1
is then chosen such that its projectiongki+1

= U(r)tyki+1
has the largest

component orthogonal toR(G(i)).

The orthonormal basis of the spaceR(G(i)) spanned by the selected filters projected onto the

characteristic reflectance space is denotedG
(i)
n . It could be determined easily by a SVD applied

toG(i). However, this would imply a complete recalculation of the basis for each iteration. We
propose to determine it in an iterative manner as follows. The first component is determined
simply in step 1 byG(1)

n = gnk1 . For theith iteration step,G(i)
n = [G

(i�1)
n gni], where

gni =
gi �G(i�1)

n (G
(i�1)t
n gi)

kgi �G(i�1)
n (G

(i�1)t
n gi)k

(6.43)

We then choose the(i+ 1)th basis vectoryki+1
for thek = ki+1 that maximises the following

expression:

ki+1 = arg
k

max 1�k�K
k=2fk1;k2;::: ;kig

kgk �G(i)
n

�
G(i)t
n gk

�
k (6.44)

By this algorithm, given the choice of the number of characteristic vectorsr that are taken into ac-
count, we can choose a set of~K filters, having spectral transmittances of�k(�), k = k1; k2; : : : ; k ~K .
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6.5.2 Discussion

The presented methods present several advantages and disadvantages. We resume some of their key
features in Table 6.7. The heuristic selection of equi-spaced filters is simple and intuitive, but clearly
not optimised. An exhaustive combination of all filter combination can fulfill any optimisation crite-
rion, but if a large number of filters are to be considered, it is too slow. The progressive optimal filter
method takes into account information about the spectral characteristics of the filters, camera, illumi-
nant and the reflectances that will be imaged. However, the method is clearly sub-optimal since each
filter is chosen sequentially considering only the correspondingprogressive optimal filterregardless
of the filters already chosen.

In the last two methods the vector sub-space spanned by the(i � 1) chosen filters is considered
when selecting theith filter. The first of them maximises the orthogonality, that is, the independence
of the camera channels regardless of the imaged reflectances. In the last method, we maximise the
orthogonality when applied to a set of characteristic reflectances. By doing this we adapt our filter
selection to one specific application, and we achieve thus better results than with a general selection
for this application. We have obtained very promising results by using this last method proposed in
Section 6.5.1.5, these results are presented in Section 6.6.

Selection method Considered informa-
tion

Comput.
complex.

Optimisation
criterion

Scheme

Equi-spacing
(6.5.1.1)

None Immediate None Heuristic

Exhaustive search
(6.5.1.2)

a posteriori Very high Any Combinatorial

Progressive optimal
(6.5.1.3)

Filter, camera, illu-
minant, reflectances

Very low Correlation to
optimal filters

Each filter chosen individually.
Clearly sub-optimal

Max orthogonality
(6.5.1.4)

Filter, camera, illu-
minant

Low Filter/channel
orthogonality

Sub-optimal. Constructive (each
filter chosen considering already
chosen filters)

Orth. in charac. refl.
space (6.5.1.5)

Filter, camera, illu-
minant, reflectances

Low “Camera re-
sponse” orthog-
onality

Sub-optimal. Constructive

Table 6.7:Comparison of key properties of the proposed filter selection methods.

Unfortunately, time did not allow us to perform a comprehensive testing and comparison of the de-
scribed filter selection methods. One interesting experiment would be to first select a reduced number
of filters, say 15, using our approach, and then compare the performance of the different methods in
selecting a smaller subset, say 5, of these filters. With such a rather small number of filters, an ex-
haustive search would be realisable, thus we could compare all the methods to this optimal selection.

6.6 Evaluation of the acquisition system

We resume in Figure 6.19 the complete chain of a multi-channel image acquisition system with the
final spectral reconstruction step.
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Figure 6.19:The complete chain of multi-channel image acquisition system with the final spectral
reconstruction step.

We have performed a simulation to evaluate the complete multispectral image acquisition system. We
used D65 as the scanning illuminant, the Eikonix CCD camera spectral characteristics, filters chosen
from a set of 37 Wratten, Hoffman, and Schott filters, and the spectral reflectances of a colour chart
of 64 pure pigments used in oil painting. The resulting spectral sensitivities of the camera channels,
following the selection method described in Section 6.5.1.5, are shown in Figure 6.20(b) for the case of
a selection of seven filters with transmittances shown in Figure 6.20(a). We note that, as expected, the
peak sensitivities of the camera channels are distributed over the entire wavelength interval, however,
they are not equally spaced.

To evaluate the quality of the multispectral acquisition system with a given set of filters, it makes
sense to compare the original reflectances with the ones estimated from the camera responses. In
Figure 6.20(c) we show some examples of spectral reflectance reconstruction, along with the cor-
responding RMS spectral reconstruction errors, that is, the Euclidian distance between original and
reconstructed spectral reflectances.14 We see that smooth reflectances such as the “Emerald Green”
is reconstructed very precisely, while the the reconstruction of the “Mercuric Iodide” pigment which
has a very steep transition near 590 nm, is much less accurate. When considering, for all the oil
pigment reflectances, the maximal and minimal signed reconstruction errors for each wavelength, we
present the spectral reconstruction error band in Figure 6.20(d). By comparing this diagram with Fig-
ure 6.20(b) we see that low maximal absolute errors occur approximatively for the peak wavelengths
of the channel sensitivites.

To quantify the quality of the multispectral image acquisition system we have chosen to use the mean
and maximum RMS spectral reconstruction errors as a quality measure. This measure presents the
advantage to be simple and general. In Table 6.8, the RMS spectral reconstruction errors using differ-
ent number of filters are reported. As expected, we see that the mean reconstruction error decreases
when an increasing number of filters are used. The maximum error shows some exceptions to this,
however it follows the same decreasing trend.

Other quality measures could also have been used (Neugebauer, 1956, Vora and Trussell, 1993,
Tajima, 1996, Sharma and Trussell, 1996a; 1997b). Depending on the intent, these may be based
on colorimetric or spectral properties, on mean or maximal errors in a data set, or alternatively on crit-
ical samples for which the reconstruction quality is particularly important for a specific application.
In the next section we will evaluate the colorimetric quality of the system, that is, to which degree the

14The spectral reflectances having values between 0 and 1, the extreme example of a perfect white being reconstructed
as a perfect black, would give a ”maximal” RMS error of 1. A mean RMS error of0:0357 as seen in the first column of
Table 6.8 can then be roughly interpreted as a proporsion of 3.57% of the maximal error.
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Figure 6.20:Evaluation of an acquisition system using seven filters chosen according to the method
described in Section 6.5.1.5. (The numbers in (b) denote the sequence in which the filters are chosen.)

colour of a surface as it would appear under a given illuminant can be estimated from the acquired
multispectral image.
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Number of filters 3 4 5 6 7
Mean RMS error 0.0357 0.0239 0.0178 0.0132 0.0111
Max RMS error 0.0879 0.0677 0.0538 0.0493 0.0616

8 9 10 11 12
0.0087 0.0057 0.0056 0.0036 0.0030
0.0323 0.0174 0.0184 0.0122 0.0105

Table 6.8:Comparison of the RMS spectral reconstruction error for varying number of filters using
the reconstruction operatorQ1 (cf. Section 6.3).

6.7 Multimedia application: Illuminant simulation

In the previous sections we have presented different aspects of the acquisition of a multispectral image.
This multispectral image may be used for many purposes: object recognition, colour constancy, high-
quality reproduction, etc. We present here a particular application which is the simulation of the
original scene as it would have appeared when viewed under different illuminants. Applied to fine
arts paintings, museological objects, jewellery, textiles, etc., such simulations displayed on a colour
calibrated computer monitor could be of particular interest in

■ a high-end multimedia application for the open market, the user himself choosing his preferred
light source, or

■ a computer aided tool for specialists, for example a curator having to decide the appropriate
light sources for an art exhibition.

It is well known that the appearance of an object or a scene may change considerably when the illumi-
nant changes, due to physical and psychophysical effects. These effects are taken into account in most
colour appearance models in a somewhat heuristic manner. However, such models can not predict
correctly changes for arbitrary illuminants, one important reason for this being metamerism. To make
quantitative predictions about the physical phenomena involved when the illuminant is changed, a
complete spectral description of the illuminants and the scene reflectances is required.

We will here present two methods for the simulation of objects viewed under different illuminants.
First, a classical method based on the CIELAB space is described in Section 6.7.1. Then, we describe
in Section 6.7.2 the method applying multispectral imaging techniques. In Section 6.7.3 we compare
the two methods using�E�

94 under the simulated illuminant as an error measure.

6.7.1 Illuminant simulation using CIELAB space

It is found by several studies (Loet al., 1996, Braun and Fairchild, 1997) that the CIELAB space
(CIE 15.2, 1986) performs well in simulating a change in illuminant, and that it can be compared to
more complicated colour appearance models such as RLAB (Fairchild and Berns, 1993) or the Hunt
model (Hunt, 1995). It is clear, however, that CIELAB does not make an attempt to take into account
parameters such as ambient light, surround, etc.
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To evaluate the ability of CIELAB space to account for changes in viewing illuminant, we first define
an ideal colorimetric image capture device having its spectral sensitivities equal to the colour matching
functions of the CIE XYZ-1931 standard observer (cf. Figure 2.9 on page 18), and for which we
use D65 as illuminant. The three channels of this ideal camera provide us directly with the exact
tristimulus values of the surface imaged in each pixel,

[XD65 YD65 ZD65]
t = AtLD65 r; (6.45)

whereA = [�x �y�z] represents the colour matching functions, andLD65 is a diagonal matrix containing
the D65 spectral radiance.

The key point in the way CIELAB treats the illuminant is that when converting from XYZ to CIELAB,
the XYZ values are takenrelative to the XYZ values of the illuminant. Thus,

[L�
D65; a

�
D65; b

�
D65] = g(XD65=XW;D65; YD65=YW;D65; ZD65=ZW;D65); (6.46)

the functiong(�) being defined by the well-known functions given in Section 2.4.8.1, and [XW;D65,
YW;D65, ZW;D65] being the tristimulus values of a perfect diffuser under D65 lighting. Since we
assume an ideal image capture device, these CIELAB values are colorimetrically exact for illuminant
D65.

When using CIELAB as a colour appearance model, we assume that the CIELAB values of a given
surface colour are constant and independent of illuminant changes. The estimation of the CIELAB
values of this colour under a simulated illuminantLsim are thus given by

[L̂�
sim; â

�
sim; b̂

�
sim] = [L�

D65; a
�
D65; b

�
D65]: (6.47)

By applying the inverse transformationg�1(�) to Equation 6.47, we obtain the following relation"
X̂sim

XW;sim
;

Ŷsim

YW;sim
;
Ẑsim

ZW;sim

#
=

�
XD65

XW;D65
;
YD65

YW;D65
;
ZD65

ZW;D65

�
; (6.48)

where[X̂sim; Ŷsim; Ẑsim] and [XW;sim; YW;sim; ZW;sim] are the tristimulus values of the surface and
of the perfect diffuser, respectively, under the illuminantLsim. We see from Equation 6.48 that the
CIELAB space takes into account the effects of chromatic adaptation by applying a von Kries-like
(von Kries, 1902) transform in the XYZ space.

6.7.2 Illuminant simulation using multispectral images

We now consider the simulation of spectral changes in lighting if multispectral images are available.
Such images may be acquired as described in the previous sections or by other means, the essential
being that they contain, in each pixel, information from which the spectral reflectance imaged on it
can be reconstructed.

To simulate the scene as it would have appeared when lit by a given illuminantLsim, the multispectral
image provides us with a straightforward approach: the reconstructed spectra~r in each pixel is first
reconstructed from its multispectral coordinatescK using Equation 6.16,~r = QcK . We then calculate
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colorimetrically the estimated XYZ tristimulus values of the surface imaged in this pixel and lit by
illuminantLsim as in Equation 6.45:

[ ~Xsim; ~Ysim; ~Zsim]
t = AtLsim~r; (6.49)

whereLsim is the diagonal matrix corresponding to the spectral radiance of the simulated illuminant.
These values are then used to estimate the CIELAB values under this particular illuminant:

[ ~L�
sim; ~a

�
sim;

~b�sim] = g( ~Xsim=XW;sim; ~Ysim=YW;sim; ~Zsim=ZW;sim) (6.50)

6.7.3 Evaluation of the two illuminant simulation methods

When evaluating the ability of different methods to take into account a change in illuminant, psy-
chophysical tests using real observers should be applied (Loet al., 1996, Braun and Fairchild, 1997).
However, a numerical criterion for this evaluation may also be of great interest because of its simplic-
ity and rapidity. For example we may perform an analysis based on the CIE�E�

94 (McDonald and
Smith, 1995). For a simulated illuminantLsim, the exact CIELAB values under this illuminant are
calculated as follows

[Xsim; Ysim; Zsim]
t = AtLsimr; (6.51)

[L�
sim; a

�
sim; b

�
sim]

t = g(Xsim=XW;sim; Ysim=YW;sim; Zsim=ZW;sim): (6.52)

These values are then compared to the estimated values by the CIELAB model,[L̂�
sim; â

�
sim; b̂

�
sim]

(cf. Equation 6.47), and to those estimated by the multispectral image approach[ ~L�
sim; ~a

�
sim;

~b�sim] (cf.
Equation 6.50).

We have performed an analysis of the illuminant-simulation quality for the multispectral image ap-
proach with 5, 7 and 10 channels, and for the CIELAB space as a colour appearance model with
D65 as starting reference. These four methods are evaluated using five illuminants: the CIE daylight
illuminants D65 and D50, the CIE standard illuminant A (representative of a typical tungsten lighting
with a colour temperature of 2856K), a normal fluorescent lamp F2, and a low-pressure sodium lamp
(LPS) widely used in street lighting (see Figure 6.21). The spectral reflectances used for evaluation
are those of the 64 oil pigments previously introduced in Section 6.5.

The results in terms of mean and maximal�E�
94 errors are listed in Table 6.9, the error histograms

are given in Figure 6.22, and a graphical representation of the results for the case of a seven-channel
acquisition system is given in Figure 6.23. The obtained results are found to be comparable to those
obtained in previous research,e.g.by Vrhel and Trussell (1992; 1994).

We note that at the evident exception of D65 which serves as reference for the CIELAB model, the
multispectral approach performs generally significantly better than the CIELAB model. For example
for the illuminant A, the mean error is approximatively ten times smaller using the multispectral
approach with 7 filters than with the CIELAB model. The CIELAB model performs reasonably well
for the D50 case. This was expected since D65 and D50 have similar spectra, the change from D65 to
D50 introducing only limited metameric problems. The D50 illuminant simulation using the CIELAB
model is even better than the multispectral approach when using only 5 filters (Mean�E�

94 = 1:71),
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Figure 6.21:Relative spectral radiances of the five illuminants used in the experiment.

Simulated CIELAB Multisp. (5) Multisp. (7) Multisp. (10)
illuminant Mean Max Mean Max Mean Max Mean Max

D65 0.00 0.00 1.58 10.53 0.56 2.45 0.14 0.53
A 4.94 11.33 1.92 15.51 0.54 3.90 0.14 0.67
F2 3.63 7.67 2.15 14.31 0.71 3.79 0.31 2.00

D50 1.56 4.27 1.71 12.23 0.56 2.87 0.14 0.54
LPS 20.10 52.68 1.40 10.06 1.37 11.61 1.01 7.82

Table 6.9:Mean and maximal�E�
94 errors obtained for the simulations of five illuminants with four

different methods: CIELAB space used as a colour appeareance model and the three multispectral
approaches using 5, 7 and 10 filters, respectively.

the spectral reconstruction errors becoming greater than the errors induced by the CIELAB model
(Mean�E�

94 = 1:56). Almost complete failure, with a mean�E�
94 error of 20.10, is found for the

CIELAB model in the case of low-pressure sodium (LPS) lamp. This was also expected, since its
spectral power distribution consists almost entirely of two spectral lines at 589.0 and 589.6 nm (Hunt,
1991). We see also that if we only look at the maximal errors, the CIELAB method outperforms the
5-filter multispectral approach (except for the LPS lamp).
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Figure 6.22:Histograms of�E�
94 simulation errors for the CIELAB method and the multispectral

methods using 5, 7, and 10 filters. The models’ performance is compared to direct spectral calculation
of CIELAB under the simulated illuminant.

6.8 Conclusion

We have described several aspects concerning the design, application and setup of a system for the
acquisition of multispectral images in which a set of chromatic filters are used with a CCD camera.

We have presented several approaches to the problem of spectral characterisation of an electronic cam-
era. The characterisation is obtained by measuring a set of patches of known spectral reflectances and
by inverting the resulting system of linear equations. In the presence of noise, this system inversion is
not straightforward. We have shown that the choice of samples is of great importance for the quality
of the characterisation, and we have presented an algorithm for the selection of a reduced number of
patches. Using this optimised selection method allowed us to get comparable performance using only
20 optimally selected colour patches, as compared to using the spectral reflectances of the complete
set of 1269 Munsell chips.
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Figure 6.23:Simulation results for a seven-channel acquisition system with the illuminants A, F2,
D50 and a low-pressure sodium lamp. The models’ performance is compared to direct spectral cal-
culation of CIELAB under the simulated illuminant. The results are projected in the a*-b*-plane of
the CIELAB space. The reference CIELAB values under the simulated illuminant are marked with
circles (Æ), the values predicted by the CIELAB model by asterisks (�), and those predicted by the
multispectral image approach by crosses (�). We note a clear superiority of the simulation obtained
by using the multispectral image approach.

An efficient method was proposed for the estimation of the spectral reflectance of each pixel of the
scene, from the camera responses using the set of filters. This reconstruction is optimised by taking
into account the statistical spectral properties of the objects to be imaged, as well as the spectral
characteristics of the camera and the spectral radiance of the illuminant used for the acquisition.

We have performed a comparative statistical analysis of different sets of spectral reflectances, finding
that theeffective dimensionsDe of the different vector spaces spanned by the reflectances of the
databases, may be very different from one database to another. These results may give an indication
on the number of acquisition filters that should be used for a given application, and also on how much
the spectral information may be compressed.
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We further proposed several methods for the selection of a set of filters that permits a good quality of
the estimation of spectral reflectances from camera responses. The main idea is to choose the filters so
that, when multiplied with the illuminant and camera characteristics, their orthogonality is maximised
after projection in the characteristic reflectance vector space corresponding to a particular application.

We then proposed a methodology to evaluate the overall quality of a multispectral image acquisition
system with a given set of filters. We were concerned in particular with the system’s ability to produce
accurate information about the spectral reflectances of the scene.

Finally, we presented an application in which multispectral imaging excels. In order to reveal the
modifications in the colour appearance of an object or a scene when the illuminant is changed, a col-
orimetric simulation can be of particular interest in multimedia applications, especially in the museum
field. We have investigated two methods for such an illuminant simulation, a classical method using
the CIELAB colour space as a colour appearance model, and a method using multispectral images.
The multispectral image approach is found to be very performant, even when applied to illuminants
that are particularily difficult to handle with conventional methods.
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Chapter 7
Multispectral image acquisition:
Experimentation

In this chapter we describe the experimental setup of a multispectral image acqui-
sition system consisting of a professional monochrome CCD camera and a tunable
filter in which the spectral transmittance can be controlled electronically. We have
performed a spectral characterisation of the acquisition system taking into account
the acquisition noise. To convert the camera output signals to device-independent
data, two main approaches are proposed. One consists in applying an extended
version of the colorimetric scanner characterisation method described previously to
convert from the K camera outputs to a device-independent colour space such as
CIEXYZ or CIELAB. Another method is based on the spectral model of the acqui-
sition system. By inverting the model using a Principal Eigenvector approach, we
estimate the spectral reflectance of each pixel of the imaged surface.
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7.1 Introduction

In the previous chapter, we have have developed several algorithms concerning the acquisition of
multispectral images, and their performances were evaluated by simulations. We will here examine
how these algorithms perform in practice. An experimental multispectral camera was assembled
using aPCO SensiCammonochrome CCD camera and aCRI VariSpecLiquid Crystal Tunable Filter
(LCTF). This setup has permitted to test and validate several of the algorithms described in Chapter 6.

In Section 7.2 we describe the important features of our equipment, and in Section 7.3 we describe
how he make sure that the camera response is linear with regards to the energy of the incident light in
the entire scene. In Section 7.4 we perform a spectral characterisation of the image acquisition system,
and in Section 7.5 an experimental 17 channel multispectral image acquisition of the Macbeth chart is
described. Finally, in Section 7.6 we examine how colorimetric and spectrophotometric information
can be determined from the camera responses.

7.2 Equipment

In this section we describe the different components we have used in our experiments, and discuss
briefly some of their important features.

7.2.1 CCD camera

The camera we used in our experiments is a SensiCam “Super-VGA” monochrome CCD camera from
PCO Computer Optics GmbH.1 It has a resolution of1280 � 1024 pixels, a dynamic range of 12 bit,
exposure times from 1 ms to 1000 s, and it operates at a 12.5 MHz readout frequency. The CCD is
grade 0 (no defective pixels), and it is cooled to�12ÆC to reduce noise to a minimum. Its spectral
sensitivity function as given by the manufacturer is reported in Figure 7.1. The camera is controlled
from a PC via a PCI-board. It is delivered with a Software Developers Kit (SDK) which has enabled
us to develop efficient image acquisition software corresponding to our needs.2 By grouping several
pixels within rows or columns with a technique calledbinning, the sensitivity can be increased while
reducing the resolution proportionally.

1http://www.pco.de/
2This software have been developed in C and Java by Hans Brettel with the participation of Jerˆome Neel.
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Although having a rather limited spatial resolution compared to our first camera (the Kodak Eikonix
1412 line-scan CCD camera described in Section 4.3) the SensiCam has the enormous advantage of
being several orders of magnitude faster. This is of great importance since several acquisitions must
be made for each scene in order to acquire a multispectral image. In our earlier experiments done with
the Eikonix camera, this process was prohibitively slow. If a higher resolution is required, for example
for fine-art paintings (Maˆıtre et al., 1996), we can either upgrade to a higher resolution camera, once
all the algorithms have been developed and tested, or apply mosaicing techniques as described in
Section 4.5.1.
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Figure 7.1:Typical spectral sensitivity of PCO SensiCam CCD camera as given by the manufacturer
(SensiCam Specification, 1997).

7.2.2 Tunable filter

We recently acquired a Liquid Crystal Tunable Filter (LCTF), theVariSpecfrom Cambridge Research
& Instrumentation (CRI), Inc.3 This system is made of two units which provide us with two set-ups,
one for narrow-band filters, the other for wide-band filters. We will not go into details on the physics
behind the functionnality of such filters here (refere.g.Chrienet al., 1993, Kopp and Derks, 1997,
Harding, 1997, Savin, 1998), but only mention that it consists of several consecutive layers of Lyot-
type bi-refringent filters (Lyot, 1933, Wyszecki and Stiles, 1982, p.51), each layer containing linear
parallel polarisers sandwiching a liquid crystal retarder element. Each layer is operating in a higher
order than the previous ones, thus being able to select narrower bandpass characteristics of varying
peak wavelengths. The peak wavelength can be controlled electronically from an external controller
unit, or from a computer via a RS-232 interface, in the range [400 nm, 720 nm]. The average Full-

3http://www.cri-inc.com/
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Width-at-Half-Maximum (FWHM) bandwidth is approximatively 5 nm or 30 nm for the narrow-band
and wide-band set-up, respectively.

Compared to another type of tunable filters, the Acusto-Optical Tunable Filters (AOTF) (Chang,
1976), the LCTF technology offers a reasonably wide field of view (�7Æ from the normal axis) but,
nevertheless, the limitation in field-of-view is a parameter that has to be treated with care for imaging
applications.

The spectral transmittances of the filter when varying the peak wavelength in 10 nm steps from 400 to
720 nm was measured with the Ocean Optics Model SD100 spectrometer (Brettelet al., 1997, Savin,
1998). See Figure 7.2. Several interesting conclusions can be drawn from these transmittance spectra:

■ The transmittances have more or less a Gaussian-like shape, except for the wide-band set-ups
at peak wavelengths> 650 nm.

■ Clearly, there is an additional infrared filter present, since the filter spectral transmittances are
cut at the red end of the spectrum.

■ The FWHM is not constant; for the wide-band set-up, it varies from 15 to 80 nm.

■ For the wide-band set-up and peak wavelengths� 440 nm, the filters have an unwanted sec-
ondary peak at long wavelengths (see Figure 7.2(b)).

Even if the filter characteristics do not completely fullfill the manufacturer’s promises, we consider it
as a very valuable tool for multispectral imaging.
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(a) Narrow-band set-up
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(b) Wide-band set-up

Figure 7.2:Spectral transmittances of the two different set-ups of the LTCF filter when varying the
peak wavelength in 10 nm steps from 400 to 720 nm (Savin, 1998). Notice the unwanted secondary
peaks in low wavelengths for the wide-band setup.



7.2 Equipment 141

7.2.3 Illumination

The importance of the illumination in image acquisition systems is often underestimated. Factors that
need to be taken into consideration include the following:

■ Geometry. The lamps should be placed to ensure a good spatial uniformity. A non-uniform
lighting can however be corrected for, as described in Sections 4.4.1 and 7.3, so spatial uni-
formity is not necessarily a crucial requirement. If the camera is used for spectrophotometric
or colorimetric measurement, a lighting/viewing geometry recommended by the CIE should be
used, typically (45/0) in which the illuminant is placed at 45Æ off the normal axis, or (d/0) in
which diffuse lighting is used, typically by means of an integrating sphere (CIE 15.2, 1986,
Wyszecki and Stiles, 1982, p.155). For the acquisition of paintings, an important requirement is
to avoid specular reflection on the painting surface, while for other types of objects (silverware,
china, jewellery, etc.), specular reflections may be desired.

■ Power. The lamps should have enough power to give a sufficient signal even through a narrow-
band spectral filter. Low intensity can be compensated with long integration times, but that may
pose additional problems,e.g.giving prohibitively slow acquisitions if a line-scan camera is
used, or amplifying acquisition noise if the camera is not of high quality.

■ Spectral properties. First, sufficient spectral power is needed in all parts of the visible spec-
trum. Secondly, if we seek to reconstruct the spectral reflectance of the scene, it is preferred
that the spectral power distribution of the illuminant is as smooth as possible. If several lamps
are used, it is also important that they have the same spectral power distribution, in order to
guarantee the spatial homogeneity of the spectral power distribution.

■ Stability and repeatability. The stability of the illumination is of utmost importance when a
line-scan camera is used. But, if the camera is used to make precise, quantifyable acquisitions,
the stability is also important for a CCD-matrix camera.

For our experiment we have used one 12V tungsten halogen lamp connected to a stabilised power
supply. We used no diffuse reflectors to make sure that the spectral properties were spatially constant,
and we also made sure there were no unwanted reflections by covering surrounding items with a black
cloth.

7.2.4 Colour chart

To characterise and evaluate our multispectral image acquisition system we chose to use theMacbeth
ColorChecker Color Rendition Chart(McCamyet al., 1976) because of its availability, its widespread
use in colour imaging (e.g.Farrell and Wandell, 1993, Burns, 1997, Finlaysonet al., 1998), and its
spectral properties (Sec. 6.2.2.5). It is supposed to give a good representation of natural spectra. The
chart and the measured spectral reflectances are shown in Figure 7.3.
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(a) Scanned colour image

 Dark skin     Light skin    Blue sky      Foilage       Blue flower   Bluish green 

 Orange        Purplish blue  Moderate red  Purple        Yellow green  Orange yellow

 Blue          Green         Red           Yellow        Magenta       Cyan         

 White         Neutral 8     Neutral 6.5   Neutral 5     Neutral 3.5   Black        

(b) Spectral reflectances measured with the Ocean Optics Model SD100 spectrometer.
Displayed wavelength range is from 400 to 760 nm.

Figure 7.3:The Macbeth ColorChecker Color Rendition Chart used in our experiments.
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7.3 Illumination and dark current compensation

For our analysis we need to make sure that the camera response is linear with regards to the energy
of the incident light,cf. Section 3.2.2. We obtain this by correcting for the camera’s dark current.
Furthermore, we correct for the uneven distribution of the lighting,cf. Section 4.4.1.

The first step of our calibration is to measure the dark noise of the camera. To do so, we acquire
a set of images where no light was entering the objective,i.e. with the lens cap on in a dark room,
using varying integration times. We found that the dark noise was approximatelyed = 60 � 5 (on
a scale of digital counts on 12 bit, giving values from 0 to212 � 1 = 4095). This number shows
almost no variation with the integration time. A slight augmentation was found only for integration
times of several seconds, and we thus assume that the black noise is constant and independent of the
acquisition parameters.

In the second step, we acquire an imageW (i; j) of a uniform diffuse surface. This provides us
information about the spatial distribution of the illuminant. An imageI(i; j) of the Macbeth chart is
then acquired, and we calculate a normalised imageIn(i; j) as follows;

In(i; j) = kI
I(i; j) � ed
W (i; j) � ed

; (7.1)

the normalisation factorkI being chosen so that the pixel values of the normalized image are limited
to a given maximal value. The imagesW (i; j) and I(i; j) are encoded as 12 bits per pixel, and
the normalised imageIn(i; j) on 16 bit per pixel and saved to a file for further use. Note that the
normalisation factorkI is image-dependent. Having done this we verify the linearity of the image
In(i; j) by extracting the mean pixel values of the grey patches of the Macbeth chart, and comparing
these to the reflectance factors of the patches,cf. Section 3.2.2. From Figure 7.4 we see that the data
can be fitted reasonably well to a straight line, and we conclude thus that no further linearisation is
needed.
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Figure 7.4:Verification of linearity of the SensiCam CCD camera after normalisation for black current
and lighting distribution. The measured data fit reasonably well to a straight line, and no further
linearisation is needed.
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7.4 Spectral sensitivity estimation

The next step is to perform a spectral characterisation of the image acquisition system, as described
in Section 6.2. We recall from Equation 6.4 that the acquisition process can be modeled as4

c = rt! + �; (7.2)

wherec is the camera response for an acquisition system with a spectral sensitivity of!, to a surface
with a spectral reflectancer. The acquisition noise is denoted�. The spectral sensitivity that we seek
to estimate includes thus the camera and the illuminant.

7.4.1 Preliminary experiment

In a preliminary experiment we assumed that the acquisition system could be characterisedi) simply
using the spectral sensitivity provided by the manufacturer as given in Figure 7.1, andii) supposing
the halogen lamp spectral power distribution is equivalent to the illuminant A. We used then the linear
model of Equation 7.2 with 5nm sampling intervals from 400 to 700 nm, to predict the camera output.
In Figure 7.5 we compare the predicted camera responses to the experimentally observed responses
for all the patches of the Macbeth chart. We have normalised the responses to a maximum of one for
easy comparison. We see that there is a quite good fit for the grey patches (19-24), while for the other
colours the differences are very large. Note in particular the logical inversion for patches 5 and 6 (blue
flower and bluish green). We also tried to model the system as an ideal camera (flat spectral response)
with an equienergetic illuminant, but the predicted values with this model were even further from the
observed ones, see Figure 7.5.
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Figure 7.5:Comparison of real experimental camera response on the MacBeth patches to the pre-
dicted response using two linear models, one with the camera spectral sensitivity as given by the
manufacturer and illuminant A, and another with an ideal flat spectral sensitivity and the equiener-
getic illuminant. These preliminary models show poor performance.

4Since we here treat a monochrome camera, we omit in Equation 7.2 the subscriptk used in Equation 6.4.
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This preliminary experiment made us aware of a very important factor, namely the wavelength range
used in our model compared to the real wavelength range in which the spectral sensitivity is non-zero.
This is illustrated in Figure 7.6. The camera response to a given target patch is proportional to the
area under the curve defined by the multiplication of the spectral sensitivity of the camera, the spectral
radiance of the illuminant, and the spectral reflectance of the surface. If a reduced wavelength range
is used in the model,e.g.from 400 to 700 nm, the error (red areas) becomes large.

These errors became extremely important when trying to estimate the spectral sensitivity as described
in the next section. To avoid these problems, we decided to extend the wavelength range of 400 to
760 nm in our calculations, and to add an infrared (IR) cut-off filter in the optical path. It has a cut-off
wavelength of about 720nm.

Camera sensitivity

Illu
minant

White patch

300 400 500 600 700 800 900 1000

nm

1.0

E R R O R

Surface = camera response

Figure 7.6: Illustration of error induced when using a wavelength range of 400 to 700 nm. The
difference between the observed and estimated camera response is very large. This error may be
reduced in two ways: by extending the model’s wavelength range, and by reducing the range in which
the camera is sensitive, typically by adding an infrared cut-off filter.

7.4.2 Estimation results

We applied the two methods proposed in Section 6.2.2 to estimate the spectral sensitivity! (cam-
era+illuminant,cf. Eq. 7.2), namely the Pseudoinverse (PI) and the Principal Eigenvector (PE) meth-
ods, on the experimental data, that is, on the normalised mean pixel valuesIn(i; j) of the patches
of the Macbeth chart. Note that we would have preferred to use a colour chart of carefully selected
Munsell patches, as proposed in Section 6.2.2.5, but we did not dispose of the necessary patches to do
this. The observed camera responses of theP patches of the chart with spectral reflectancesR can be
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expressed ascP = Rt! + �, cf. Equation 6.5 on page 98. After estimating the spectral sensitivity~!
we may then simulate the camera response as~cP = Rt ~!

As expected, the PI method performed very poorly. We show in Figure 7.7 the results of the PE
method with the number of Principal Eigenvectors,r, varying from 1 to 6. For each value of the
parameterr, the estimated sensitivity is shown together with a comparison of the experimentally
observed camera responses and those predicted using the model with this sensitivity. We report the
RMS ratiokcP � ~cP k=kcP k between the observed and predicted values, and observe that the RMS
ratio decreases with increasingr. However, it is clear that the estimate becomes poor whenr � 6.
As will be justified later in this chapter, we choose the estimate obtained withr = 5 for the further
analysis.

7.5 Experimental multispectral image acquisition

As a basis for further analysis we have performed an acquisition of a 17-channel multispectral image
of the Macbeth chart, varying the peak wavelength of the tunable filter in 20 nm steps from 400 nm
to 720 nm. Nine channels of this multispectral image are shown in Figure 7.8. By selecting subsets
of these images, we can simulate multispectral image acquisition with different numbers of channels.
A tungsten halogen lamp driven by 4.0A/10.4V, a CCD binning of (H2, V2) giving a resolution of
640 � 512 pixels, and an aperture of f/2.8 was used. The integration times were chosen individually
for each of the channels so as to yield a maximum digital signal without causing signal clipping, see
Table 7.1. Then we corrected these images for the illuminant and the dark current as described in
Section 7.3. The image-dependent normalisation factorskI (cf. Eq. 7.1) for each of the channels are
also given in Table 7.1.

Worth noting is the particularily low integration time used for the 400 nm filter. We had expected
this integration time to be higher than for the 420 nm filter since both the spectral distribution of the
illuminant and the spectral transmittance of the LCTF filter decrease for decreasing peak wavelength.
However, this behaviour can be explained from the fact that the 400 nm filter has a considerable side-
lobe around 700 nm (see Section 7.2.2). This un-wanted side-lobe also explains why the acquired
images for 400 and 700 nm are very similar (see Figure 7.8)

Peak wavelength [nm] 400 420 440 460 480 500 520
Integration timetk [ms] 1000 6000 2000 1300 700 400 250
Normalisation factorkIk 0.7452 0.3122 0.3022 0.3212 0.3254 0.3354 0.3659

540 560 580 600 620 640 660 680 700 720
200 170 140 120 80 80 70 70 90 130

0.3941 0.4220 0.4689 0.5005 0.4736 0.4614 0.5447 0.6341 0.6756 0.7517

Table 7.1:Integration timestk and normalisation factorskIk for the 17 channels of our experimental
multispectral image acquisition of the Macbeth chart.
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Figure 7.7:Spectral sensitivity estimation of the image acquisition system consisting of a PCO SVGA
SensiCam CCD camera and a tungsten halogen illuminant, using the PE method withr = 1 : : : 6
Principal Eigenvectors and the Macbeth colour chart. The estimated sensitivity obtained withr = 5
has been chosen for the further experimentation.
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(a) 400 nm (b) 440 nm (c) 480 nm

(d) 520 nm (e) 560 nm (f) 600 nm

(g) 640 nm (h) 680 nm (i) 720 nm

Figure 7.8: Nine channels of a multispectral image of the Macbeth colour checker using the PCO
SensiCam CCD camera and the LCT filter with varying peak wavelengths.

7.5.1 Model evaluation

We will now establish a linear model for the multispectral image acquisition based on the theory
of Section 6.3, taking into account the integration times and the normalisation factors. The vector
cK = [c1c2 : : : cK ]t representing the response to allK filters (after normalisation) may be described
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as

cK = A�tr; (7.3)

where� is the known matrix of filter transmittances multiplied by the estimated spectral sensitivity,
i.e. the matrix element of� is �kn = �k(�n)!(�n), 1 � k � K, 1 � n � N . The matrixA consists
of the weightsakk (see Table 7.1) on the diagonal, and zeros elsewhere:

akk = �kIktk (7.4)

The common normalisation factor� is introduced in the model to be able to work with relative mea-
surements of the spectral sensitivity, spectral power distribution of the illuminant, etc. It is determined
by minimising the RMS camera response estimation error.

Using this model, we can estimate the camera response to the Macbeth patches for each of the 17
filters, and we compare the estimates to the observed camera responses. We perform this simulation
using six different estimations of the spectral sensitivity, obtained by a PE(r) estimation with the
number of PE’sr varying from 1 to 6,cf. Figure 7.7. The results of this simulation are shown in
Figure 7.9. By examining the overall RMS ratio corresponding to the estimation errors for different
choices ofr, as defined in Section 7.4.2, we see thatr = 3; 4; 5 gives reasonably small estimation
errors, with a minimum of 0.137 forr = 3. However, we know that an IR cut-off filter is present in
the optical path, and we can thus excluder = 3 since it has an important sensitivity in the red end of
the spectrum,cf. Figure 7.7. We confirm therefore the choice ofr = 5 as the optimal parameter for
the spectral sensitivity estimation,cf. Section 7.4.2.

Having chosen PE(5) as the spectral sensitivity we perform a further comparison of the observed
and estimated camera responses for the 24 Macbeth patches using the 17 different filters, as shown
in Figure 7.10. We see that the differences between the observed and estimated camera responses
are relatively large, especially for the 420 nm filter. These results are not satisfactory. We see from
the figure that the errors are not randomly distributed. For a given filter there is often a tendency to
either over- or under-estimation. We propose thus to modify the normalisation matrixA in the model
of Equation 7.3 to allow for independent normalisation of each channel, that is, we redefineakk as
compared to Equation 7.4, as

akk = �kkIktk; (7.5)

and we choose the normalisation factors�k such that the camera response estimation errorsfor each
channelare minimised. By using this modified model, we reduce the mean RMS camera estimation
error by more than a factor 2, from 0.161 to 0.077, see Figure 7.11. The use of separate normalisation
factors�k for each channel is mainly justified from the fact that we have limited confidence in the
spectral sensitivity estimation.

7.6 Recovering colorimetric and spectrophotometric image data

We now examine how colorimetric and spectrophotometric information can be determined from the
camera responses,cf. Section 6.3.
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7.6.1 Model-based spectral reconstruction

Given the camera responsescK = A�tr (cf. Equation 7.3) for a given surface, our goal is to estimate
the spectral reflectance of the surface by using a reconstruction matrixQ as given by Equation 6.16,
~r = QcK .

The simple pseudo-inverse solution of Section 6.3.1,Q0 = (A�t)�, being abandoned, we tried to
use the method described in Section 6.3.2, exploitinga priori statistical spectral information of the
imaged objects,Q1 = RRt�A(A�tRRt�A)�1.

It became rapidly clear from the tests that the unmodifiedQ1 method did not give satisfactory results.
This is due to the relatively important deficiences of our model in estimating the camera output,
as seen for example in Figure 7.10. The problem of estimating the spectral reflectance given the
camera outputs and spectral sensitivities is very much similar to the problem of estimating the spectral
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Figure 7.9:RMS camera response estimation errors over the 24 Macbeth patches using the 17 different
filters. We have also included in the figure the mean RMS of these over the 17 camera channels, and
we note thatr = 3; 4; 5 might be good solutions. Note the relationship between high errors for given
wavelengths, and obvious errors in acquisition system sensitivity estimations (Figure 7.7), especially
for r = 6.
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Figure 7.10:Observed and predicted camera responses for the 24 Macbeth patches using the 17 dif-
ferent filters and the spectral sensitivity estimation PE(5). The overall mean RMS camera estimation
ratio is 0.161.
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Figure 7.11: Observed and predicted camera responses for the 24 Macbeth patches using the 17
different filters and the spectral sensitivity estimation PE(5), and seperate�k for each channel. The
overall mean RMS camera estimation ratio is 0.077.
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sensitivity given the camera outputs and spectral reflectances. Both are inverse problems, and noise
is present in both systems. We propose thus to apply a Principal Eigenvector (PE) approach for
the estimation of spectral reflectances similar to the one presented in Section 6.2.2.4 for the spectral
sensitivity estimation.

Four cases were defined, using 3, 6, 9, and 17 channels, defined by the following filter sets:

■ K=3: f460, 560, 660g nm,

■ K=6: f400, 460, 520, 580, 640, 700g nm,

■ K=9: f400, 440,: : : , 680, 720g nm, and

■ K=17: f400, 420,: : : , 700, 720g nm.

For each case, we evaluate the mean RMS spectral reconstruction error5 while varying the parameter
r. We evaluate this model-based estimation using two variants of the acquisition model, with a global
normalisation factor� or with individual ones�k for each channel, as described in the previous
section.

The results for the first variant of the model are shown in Figure 7.12(a). We see that due to the
high level of noise onlyr = 3 Principal Eigenvectors can be used in the reconstruction process, no
improvement of the results being achieved by using more than three filters (see Figure 7.12(b)). When
too many Eigenvectors are taken into account in the system inversion, the noise severely deteriorates
the estimation results.

For the modified model, the results are significantly better, as expected. The mean RMS spectral
reconstruction errors for the four filter sets varying the parameterr is showed in Figure 7.12(c). For
the 9 and 17 filter sets, a minimal mean RMS spectral reconstruction error of 0.24 is attained with the
PE(5) estimation method. We achieve thus a much better spectral reconstuction (see Figure 7.12(d)).

To gain more insight in how the PE(r) spectral reconstruction method succeeds in estimating re-
flectance spectra, we show in Figure 7.13 the spectral reflectance estimations of three of the Macbeth
patches, for the set of 9 filters, varyingr from 1 to 9. For PE(1) and PE(2) the dimensionality of the
solution is too low, for PE(3) the reconstructions start to resemble the original spectra, forr = 4 to 7
they are quite good, but for 8 and 9 the estimations are slightly worse.

In Table 7.2 we resume the estimation results for different filter sets, and different values forr. We
report the mean and maximal RMS difference between the original and reconstructed spectra. The
differences are also expressed colorimetrically, in CIEXYZ and CIELAB colour spaces (illuminant A)
by applying standard formulae. An additional filter set marked 3’, having peak wavelengths of 440,
560, and 600 nm, was chosen in order to be closer to the XYZ colour matching functions (Figure 2.9 on
page 18). Compared to the original 3-filter set the spectral errors are larger, while the colorimetrical
errors are smaller, as would be expected. We see that generally, using more filters gives smaller
reconstruction errors. This result was in accordance with the simulations, see Table 6.8 on page 129.

5Note that the RMS spectral reconstruction error corresponds to the Euclidean distance inspectral reflectance space,
cf. Section 6.6. It isnot normalised, as it is the case for the RMSratio introduced earlier in this chapter to compare the
observed and predictedcamera response values.
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(a) Mean RMS spectral reconstruction errors for the four
filter sets varying the parameterr using the first model
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(b) Example of spectral reconstruction using the set of
three filters and PE(3) reconstruction

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

Number of Principal Eigenvectors

M
ea

n 
R

M
S

 s
pe

ct
ra

l r
ec

on
st

ru
ct

io
n 

er
ro

r 3 filters 
6 filters 
9 filters 
17 filters

(c) Mean RMS spectral reconstruction errors for the four
filter sets varying the parameterr using the modified
model
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(d) Example of spectral reconstruction using the set of
nine filters and PE(5) reconstruction

Figure 7.12:Spectral reconstruction of the Macbeth patches from the SensiCam camera responses
with different filter sets using a Principal Eigenvector approach PE(r). The modified model with�k
normalisation factors used in the lower figures allows for reasonably good spectral reconstruction
quality.

However, this trend is true only up to a certain number of filters; there is no significant improvement by
using 17 instead of 9 filters. Results better than a mean�Eab error of 3 are not obtained. The reason
for this relatively poor performance when using many channels is mainly the fact that our spectral
model of the image acquisition system does not predict the camera output values as precisely as we
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Figure 7.13:Spectral reconstruction of three of the Macbeth patches from the Sensicam camera re-
sponses using the nine-filter set, and the PE(r) reconstruction method, withr varying from 1 to 9.

had hoped. The prediction of the spectral reflectances by model inversion then becomes somewhat
hazardous. We will therefore in the next section evaluate an alternative way of using the camera output
values.

7.6.2 Direct colorimetric regression

The idea here is to consider the acquisition system parameters as a completely unknown system, a
black box, and simply try to recover directly the XYZ values from the camera output by regression. We
have conducted two experiments, selecting sets of filters heuristically (Section 7.6.2.1) and optimally
(Section 7.6.2.2).
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# of Recon. Spectral RMS �XY Z �E

filters method Mean Max Mean Max Mean Max

3 PE(3) 0.346 0.956 0.0264 0.0872 7.96 23.6
3’ PE(3) 0.507 1.466 0.0250 0.114 6.86 15.2
6 PE(3) 0.314 0.777 0.0268 0.0900 9.81 31.3
6 PE(5) 0.295 1.112 0.0221 0.111 4.42 13.1
9 PE(5) 0.244 0.782 0.0211 0.123 3.33 9.13
9 PE(9) 0.421 1.515 0.0211 0.117 3.44 8.75
17 PE(5) 0.243 0.729 0.0215 0.124 3.30 8.22
17 PE(9) 0.281 1.416 0.0213 0.119 3.08 8.56

Table 7.2:Mean and maximal errors expressed in spectral reflectance space, XYZ space and CIELAB
space, for different filter sets and different spectral reconstruction methods. The filter set marked 3’
was chosen in order to be closer to the XYZ colour matching functions.

7.6.2.1 Heuristical filter selection

In a first experiment we selected heuristically different subsets of the 17 channels to evaluate the
method for different numbers of filters. Two sets of three and four filters were chosen with regards to
the CIEXYZ colour matching functions (Figure 2.9), while sets of 6, 7, 9, 15 and 17 filters were chosen
to have equidistant peak wavelengths. The CIEXYZ tristimulus values were estimated bylinear
regression, and we report the mean Euclidean distance in XYZ space,�XY Z, as well as the mean
and maximal�Eab reconstruction errors taken under illuminant A in Table 7.3. The reconstructions
using three and seven filters are illustrated in Figure 7.14. These results are quite as expected,e.g.

# Wavelengths Method �XY Z �E �Emax

3’ 440 560 600 Linear to XYZ 0.0244 6.60 16.4

4 440 520 560 600 Linear to XYZ 0.0234 6.38 24.8

6 400 460 520 580 640 700 Linear to XYZ 0.0182 4.40 13.8

7 440 480 520 ... 640 680 Linear to XYZ 0.0130 3.20 8.01

9 400 440 480 ... 680 720 Linear to XYZ 0.0124 2.56 8.41

15 420 440 460 ... 680 700 Linear to XYZ 0.00588 1.26 2.42

17 400 420 440 ... 700 720 Linear to XYZ 0.00345 0.95 2.91

3’ 440 560 600 3rd order to CIELAB — 0.63 1.91

Table 7.3: Resulting colorimetric reconstruction errors (using CIE illuminant A) using regression
methods and different numbers of filters.

when comparing our result using 6 filters (�E = 4:4), with Abrardoet al. (1996), who attains a
mean�E error of 2.9 by linear regression from 6 camera channels to XYZ space using a subset of
20 patches of an AGFA IT8.7/3 colour chart. It is however worth noting that the maximal error is
greater using four filters than when using three. This may seem surprising. However, such effects
are well-known when optimising a RMS error. A minimal RMS error does not necessarily imply a
minimal maximal error.
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For the set of three filters, we also applied the non-linear method described in Section 3.2.3.5, in
which 3rd order 3D polynomial regression is applied on the cubic root of the camera output (see the
last line of Table 7.3). This method withthreefilters outperforms the linear regression withseventeen
filters! It is however worth noting that the Macbeth chart is not well suited for this method, since the
20 coefficients of the polynomial is optimised using only 24 patches.

If we compare the results obtained by colorimetric linear regression (Table 7.3) with those obtained
by model-based spectral reconstruction (Table 7.2) for the same filter sets and the preferred (PE(5))
reconstruction methods, we can draw some interesting conclusions. For the sets of three (marked 3’)
and six filters, the results are nearly equivalent. For nine filters the colorimetric methods is slightly
better. For the set of seventeen filters the colorimetric regression gives much smaller residual errors.
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Figure 7.14: Examples of colorimetric reconstructions using three and seven channel images and
linear regression from camera responses to XYZ. The spectrally measured(x; y) values of the patches
are marked with circles (Æ), and those estimated from the acquired camera values with crosses (�).

7.6.2.2 Filter selection by exhaustive search

We performed an evaluation of all possible combinations of three and four out of the seventeen filters.
This required 680 comparisons for 3 filters and 2380 for 4. We then selected the combinations that
minimised the mean errors in XYZ and CIELAB spaces as well as the maximal error in CIELAB
space, and compared these results to our first heuristic selections. The results are reported in Table 7.4.
We see that, especially for the 4-filter set, significantly better results are obtained by an exhaustive
search, and the set of filters with peak wavelengths of 440, 460, 540, and 600 nm would seem a very
good choice.
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# Wavelengths Select. meth. Recon. meth. �XY Z �E �Emax

3 440 560 600 Heuristic Lin. XYZ 0.0244 6.60 16.4

3 460 540 600 Min. �XY Z Lin. XYZ 0.0218 4.64 12.51

3 460 540 600 Min. �E Lin. XYZ idem idem idem

3 460 540 600 Min. �Emax Lin. XYZ idem idem idem

3 440 560 600 Heuristic 3rd ord. LAB 0.63 1.91

3 440 560 600 Min. �E 3rd ord. LAB idem idem

3 460 520 600 Min. �Emax 3rd ord. LAB 0.98 1.88

4 440 520 560 600 Heuristic Lin. XYZ 0.0234 6.38 24.8

4 440 460 560 620 Min. �XY Z Lin. XYZ 0.0165 5.94 26.0

4 460 500 540 620 Min. �E Lin. XYZ 0.0254 3.63 9.18

4 440 460 540 600 Min. �Emax Lin. XYZ 0.0175 3.67 8.65

Table 7.4:Resulting reconstruction errors (illuminant A) using combinatorial search to select the best
set of filters among the 17 compared to the heuristic selections of Table 7.3.

7.7 Conclusion

The multispectral image acquisition experiment presented here has been enriching in several ways.
First of all, it has reminded us that simulations and reality are two very different things. We have seen
that the noise involved in the image acquisition process was much larger than the quantisation noise
used in the simulations (Sec. 6.2.2.2).

This has led usi) to propose a modified image acquisition model with separate normalisation factors
for each channel;ii) to propose a new method using a Principal Eigenvector approach for the estima-
tion of a spectral reflectance given the camera responses through several filters; andiii) to consider
using simpler regression techniques to obtain colorimetric information from the camera responses.
Note however that by doing the latter, we only obtain information about the colour of a surface under
a given illuminant, not about its spectral reflectance as with the model-based spectral reconstruction
method.

Several different ways to convert the output values of the camera into device-independent colour or
spectral reflectance information might be investigated and tested, for example to estimate the first
K 0 principal components of a reflectance spectrum from theK camera output as proposed by Burns
(1997), or to estimate the reflectance values for given wavelengths directly by interpolation between
the camera responses using narrow-band filters of varying peak wavelengths,e.g.by spline interpo-
lation or Modified Discrete Sine Transformation (Keusen and Praefcke, 1995, Keusen, 1996, K¨onig
and Praefcke, 1998a).

As seen in Table 7.3 the residual�Eab colour differences are very much smaller when using non-
linear regression to CIELAB space than using linear regression to XYZ space. This confirms the
results obtained for a flatbed scanner in Chapter 3. A possible extension to improve further the results
would be to use non-linear regression methods also withK > 3 filters. One would need to make sure
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that the number of patches of the colour chart remains larger than the number of parameters of the
model, though.

We have seen that the choice of filters is important. For example with four filters, the maximum�Eab

colour difference was reduced from 24.8 to 8.65 by optimising the filter selection. It would be inter-
esting to pursue these tests to evaluate the different filter selection methods proposed in Section 6.5.

We conclude that the multispectral image acquisition system we have assembled presents several
strong interests. The computer-controlled CCD camera and LCTF tunable filters are easy to use, and
the colorimetric and spectrophotometric quality is quite good. Unfortunately, time has not allowed
us to use this system as much as we would have preferred. One interesting application that we could
have realised in practice is the simulation of a fine arts painting as seen under different illuminants, as
described in Section 6.7.
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Chapter 8
Conclusions and perspectives

Conclusions

In this research, we have worked on several problems, all aimed towards a common goal: To achieve
high image quality throughout a digital imaging chain. We have been especially concerned with the
quality of colour acquisition and reproduction.

We have developed novel algorithms for the colorimetric characterisation of scanners and printers,
providing efficient and colorimetrically accurate means of conversion between a device-independent
colour space such as the CIELAB space, and the device-dependent colour spaces of a scanner and a
printer. The algorithms we have developed have been implemented and transfered to industry and are
currently being used in commercial colour management software. Some of the proposed methods are
protected by a patent.

The scanner characterisation process (Chapter 3) has been shown to introduce a significant improve-
ment of the colorimetric quality of the image acquisition performed by the scanner. A mean�Eab

colour difference of 1 between the colours of the colour chart and the colours estimated from the
scanner RGB values is achieved. This difference is hardly perceptible. This method and several other
methods for correcting for image artefacts have been applied to achieve very high quality in image
acquisition of fine art paintings (Chapter 4).

The proposed printer characterisation method (Chapter 5) presents several strong points of interest.
First, it performs efficiently the transformation from CIELAB (or any other 3D colour space) to CMY
directly without additional numerical optimisation techniques. Secondly it is able to easily incorporate
different gamut mapping techniques, both continuous and clipping methods. Thirdly it is versatile,
not being limited to a specific printing technology.

To go a step further in image quality and fidelity, we have developed algorithms for multispectral
image capture using a CCD camera with carefully selected optical filters (Chapter 6). A new method
for the selection of a reduced number of spectral samples to be used for the estimation of the spectral
sensitivity functions of an electronic camera has been developed. This optimised selection method
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allowed to get virtually the same performance using only 20 patches, compared to using the complete
set of 1269 Munsell chips. Several methods have been developed and tested for the choice of filters
and for the estimation of the spectral reflectance, taking into account the statistical spectral properties
of the objects that are to be imaged, as well as the spectral characteristics of the camera and the spectral
radiance of the illuminant that is used for the acquisition. We have shown that multispectral image
data present several advantages compared to conventional colour images, in particular for simulating
a scene as seen under a given illuminant.

Finally, an experimental multispectral camera was assembled using a professional monochrome CCD
camera and an optical tunable filter (Chapter 7), validating in practice the theoretical models and simu-
lations of the previous chapter. To be able to recover colorimetric and spectrophotometric information
about the imaged surface from the camera output signals, two main approaches were proposed. One
consists in applying an extended version of the colorimetric scanner characterisation method described
above to convert from the camera outputs to a device-independent colour space such as CIEXYZ or
CIELAB. Another method is based on the spectral model of the acquisition system. By inverting the
model, we can estimate the spectral reflectance of each pixel of the imaged surface.

To conclude, we feel that the work described in this dissertation has been interesting in several aspects.
It contains elements from several fields of science, such as signal and image processing, computer
science, applied mathematics, physics, and colour science, the latter being itself indeed an interdisci-
plinary field. But the different algorithms developed in this work have also been successfully utilised
for several applications, such as fine-arts archiving, colour facsimile, and colour management systems,
and some of them have been transfered to industry.

Perspectives

Time did not allow us to develop all of the many ideas that were suggested in the discussions around
this thesis and numerous important topics remain to be addressed. In the following, we try to indicate
what seems to us to be interesting trails to follow starting from the results of this work.

■ It would be interesting to apply the algorithm of printer characterisation to several types of
printing systems, to verify its versatility and robustness. The development of algorithms for
automatic detection and elimination of erroneous vertices would be helpful.

■ An extension of the printer characterisation algorithm from three to four or more inks would
also be of great interest. Multi-ink printing is a field of research and development that is in rapid
growth (seee.g.MacDonaldet al., 1994, Herron, 1996, Van De Capelle and Meireson, 1997,
Mahy and DeBaer, 1997, Bernset al., 1998, Tzeng and Berns, 1998). Note that if there exists
a unique invertible transformation from CMY to a multi-ink representation, the current method
may be used. If this is not the case, a more complex geometric structure should be developed.

■ It could be interesting to evaluate the colorimetric quality of a colour facsimile system, that is,
by comparing the colours of an original document with a facsimile of this document obtained
by successive scanning and printing. Several iterations of this process could be made. The
results of such an experiment depend not only on the quality of the colorimetric characterisation
algorithms, but also on the choice of gamut mapping method.
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■ The proposed methods for colorimetric characterisations of scanners and printers require a suf-
ficiently large number of colour patches to give accurate results. This might be a practical
limitation, especially for printer characterisation. A very interesting research subject would be
to investigate the use of a simpler method ofcalibration requiring only a small number of colour
patches, to perform minor adjustments of the geometrical structure determined by the proposed
characterisation procedure.

■ The capability of the printer characterisation method to incorporate different types of colour
gamut mapping methods could be exploited for the design and evaluation of such methods.
Psychophysical tests with human observers should then be effectuated, to be able to quantify
the resulting image quality after gamut mapping (Morovic, 1998).

■ To further improve the degree of colour consistency between different media, colour appear-
ance models could be used instead of the CIELAB space for data exchange. Several authors
have proposed colour appearance models (CAM),e.g.RLAB by Fairchild and Berns (1993)
or the Hunt model (Chapter 31 of Hunt, 1995). Refer to Fairchild (1997) for a comprehensive
presentation of existing CAMs. Recently, the CIE agreed on a standardised colour appearance
model, the CIECAM97s (CIE TC1-34, 1998). This model would be a natural choice for further
work.

■ Concerning the comparative statistical analysis of different sets of spectral reflectances, it would
be very interesting to evaluate several proposed measures to compare the vector space spanned
by the different sets of spectral reflectances. We would then seek to find correlations between
the different measures and the quality of spectral reconstruction when an encoding adapted for
one data set is applied to another.

■ For the spectral characterisation of image acquisition devices, the results could be further im-
proved by adding constraints on the estimations such as smoothness and positivity, for example
by using the Wiener estimation method (Pratt and Mancill, 1976), the technique of projection
onto convex sets (POCS) (Sharma and Trussell, 1993; 1996c), or quadratic programming (Fin-
laysonet al., 1998).

Furthermore, special consideration could be made for representing illuminants having spiky
spectral radiances, such as fluorescent lamps. Such illuminants are very common in flatbed
scanners. One possibility is to represent such spectra by a combination of smooth basis vectors
and ray spectra as donee.g.by Sharma and Trussell (1996c).

Further experiments could also be done to evaluate the possible gain obtained by taking into
accounta priori information about the spectral distribution of the illuminant,i.e. by measuring
it spectrophotometrically.

It would be very interesting to compare the spectral sensitivity curves obtained by our indirect
method to those obtained by direct measurements using a device that emits wavelength-tunable
monochromatic light.

■ To evaluate the quality of a match between an observed spectral reflectance and one estimated
from camera responses, more sophisticated measures than the Euclidean spectral distance could
be used, such as the Goodness-Fitting-Coefficients proposed by Romeroet al. (1997) and
Garcı́a-Beltránet al. (1998).
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■ The experimental multispectral camera consisting of a monochrome CCD camera and a LCTF
tunable filter constitutes a very powerful tool for colour and multispectral image acquisition.
This should be exploited in the future. Further testing, research and software development is
required in order to improve its quality and usability. Objectives may be to develop an imaging
spectrophotometer or colorimeter of high accuracy, for example by simulating CIEXYZ colour
matching functions by a linear combination of the camera sensitivities ofK channels. The
limits of attainable accuracy may be studied (Burns, 1997).

Digital colour imaging is a research field with great prospects. Many problems are still unsolved. We
hope that the work described in this dissertation may serve the community, both through developed
methods, and by giving ideas for further work concerning the technology, science, and art of colour.
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Appendix A
Mathematical background

A.1 Least mean square (LMS) error minimisation

This section describes a solution for finding a polynomial approximation for a three-dimensional
transformation, given a known set of corresponding points for that transformation. The method for
finding this transformation is based on minimising the mean square error (MSE) between all known
theoretical function valuesyi, and the calculated values'(xi), i = [0; : : : ;m]. '(�) is called the
interpolation function. The general expression for the MSE is given as:

MSE=
1

m+ 1

mX
i=0

('(xi)� yi)
2 (A.1)

Before considering the 3D interpolation problem, the method of finding the mean square solution is
introduced by a 1D interpolation problem.

A.1.1 1D Interpolation Functions of degreen

Our interpolation function may be a polynomial function of degreen as shown in Equation A.2.
Supposing we have more valuesyi; i = 0; : : : ;m than unknowns, that isn + 1 < m, it is generally
impossible to find an interpolation function'(�) that fits exactly into the given set of valuesyi.

'n(x) = a0 + a1x+ : : : + anx
n; (ak 2 R; k = 0; : : : ; n) (A.2)

To minimise the MSE given in Equation A.1, the coefficientsa0, a1, : : : , an have to be chosen such
that

F (a0; a1; : : : ; an) =

mX
i=0

[a0 + a1xi + : : :+ anx
n � yi]

2 (A.3)
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is minimised. In other words:

@F

@ak
= 2

mX
i=0

[a0 + a1xi + : : :+ anx
n � yi]x

k
i = 0; k = 0; : : : ; n (A.4)

Equations A.4 generates a system ofn+ 1 equations to find the unknown coefficientsa0; : : : ; an as
follows:

a0(m+ 1) + a1

mX
i=0

xi + : : :+ an

mX
i=0

xni =

mX
i=0

yi

a0

mX
i=0

xi + a1

mX
i=0

x2i + : : :+ an

mX
i=0

xn+1i =
mX
i=0

xi yi

...

a0

mX
i=0

xni + a1

mX
i=0

xn+1i + : : : + an

mX
i=0

x2ni =

mX
i=0

xni yi (A.5)

We introduce the following matrix notation to solve Equations A.5 :

y =

2
6664

y0
y1
...
ym

3
7775 ; a =

2
6664
a0
a1
...
an

3
7775 ; V =

2
6664

1 x0 x20 : : : xn0
1 x1 x21 : : : xn1
...

...
...

. . .
...

1 xm x2m : : : xnm

3
7775

Using this notation, Eq. A.5 can be written in matrix form as:

VtVa = Vty (A.6)

whereVtV is a(n+ 1)� (n+ 1) symmetric invertible matrix. Thus the solution for the vectora is:

a = (VtV)�1Vty = V�y (A.7)

whereV� is called the pseudo-inverse ofV.

A.1.2 3D interpolation function of the first degree

After this introduction on how to find an interpolation function that minimises the mean square error
in one dimension, we now try to find such a function in 3D to be used for the transformation from the
device coordinates given by the scanner to the tristimulus values in CIELAB space. The inputs are
thus the three independent variablesR, G andB; the outputs are the valuesL(c), a(c) andb(c).1 The
3D interpolation function is denotedf(�) as follows:�

L(c) a(c) b(c)
�
= f

��
R G B

��
(A.8)

1In the following we will use the superscriptc to denote calculated values. The superscriptt denotes theoretical values.
We thus omit the asterisk normally associated with the valuesL�, a� andb�.
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To get accomodated with this function, we treat the example of a first order polynomial approximation.
This linear transformation can be written as a matrix multiplication as follows:

L(c) =
�
R G B

� �
2
4 �1
�2
�3

3
5 = R�1 +G�2 +B�3 (A.9)

a(c) =
�
R G B

� �
2
4 �1
�2
�3

3
5 = R�1 +G�2 +B�3 (A.10)

b(c) =
�
R G B

� �
2
4 
1

2

3

3
5 = R
1 +G
2 +B
3 (A.11)

Our task is to find the optimal set (�j , �j , 
j), j = 1; 2; 3, based on minimizing the mean square

error between the calculated values(L
(c)
i ; a

(c)
i ; b

(c)
i ) and the theoretical ones(L(t)

i ; a
(t)
i ; b

(t)
i ), corre-

sponding to them+ 1 colour patches. The subscripti refers to thei’th patch. This error is defined in
Equation A.12.

MSE=
1

m+ 1

mX
i=0

�
(L

(t)
i � L

(c)
i )2 + (a

(t)
i � a

(c)
i )2 + (b

(t)
i � b

(c)
i )2

�
(A.12)

This equation is an application of theCIE 1976 L*a*b* colour-difference formulagiven in Equa-
tion 2.29 on page 21. Considering Equation A.12 we see that the three right parts of the equation
are all positive. This implies that we can do the minimization seperately for each of theL, a andb
channels, by differentiating separately with respect to the unknown coefficients.

By replacingL(c)
i , a(c)i andb(c)i in Equation A.12 by the expressions given in Eqs. A.9 - A.11, we get

the following expressions for the mean square errors for each of the channels.

MSEL =
1

m+ 1

mX
i=0

(L
(t)
i � (Ri�1 +Gi�2 +Bi�3))

2 (A.13)

MSEa =
1

m+ 1

mX
i=0

(a
(t)
i � (Ri�1 +Gi�2 +Bi�3))

2 (A.14)

MSEb =
1

m+ 1

mX
i=0

(b
(t)
i � (Ri
1 +Gi
2 +Bi
3))

2 (A.15)

In the following calculations, we will only treat the systems of equations forL, since the calculation
for a and b are similar. The mean square error in Equation A.13 is similar to Equation A.3 for the
following overdetermined system:

L
(t)
0 = �0R0 + �1G0 + �2B0 (A.16)

L
(t)
1 = �0R1 + �1G1 + �2B1

...

L(t)
m = �0Rm + �1Gm + �2Bm
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Ri; Gi andBi are data values playing the same role as the constant1, xi andx2i , respectively. This
system of equations can be written using a matrix form as follows.2

66664
L
(t)
0

L
(t)
1
...

L
(t)
m�1

3
77775 =

2
6664

R0 G0 B0

R1 G1 B1
...

...
...

Rm Gm Bm

3
7775 �

2
4 �0
�1
�2

3
5 (A.17)

or, in a more compact notation,

L = V� (A.18)

As developped in Section A.1.1, the optimal solution, found by minimizing the mean square error of
this overdetermined system is obtained as follows:

� = (VtV)�1VtL (A.19)

We proceed similarly for the vectors� and
. We thus have expressions to find our coefficients�j,
�j and
i, j = 1; 2; 3, which is necessary to perform the polynomial approximation of the first degree
of the conversion from RGB space to CIELAB space shown in Eqs. A.9, A.10 and A.11.

We note that Eq. A.19 is equivalent to Eq. A.7 and represents the mean square error solution for the
polynomial approximationf(�) of the first degree.

A.1.3 3D interpolation function of general degreen

The method described in the previous section can be extended to an arbitrary degreen.

The equations A.9, A.10 and A.11 extend to

L(c) = v(n)t�; a(c) = v(n)t�; b(c) = v(n)t
 (A.20)

wherev(n) is a vector, depending on the degreen, that contains all possible products and cross-
products of the inputR, G andB. We have defined the followingv(n) for the first, second and third
degree.

v(1) =
�
1 R G B

�t
(A.21)

v(2) =
�
1 R G B R2 RG RB G2 GB B2

�t
(A.22)

v(3)=
�
1RGBR2RGRBG2GBB2R3R2GR2BRG2RGBRB2G3G2BGB2B3

�t
(A.23)

We remark that the 0’th degree element, that is a constant, is included.

The numberM(n) of elements in the vectorv(n) depends on the ordern of the 3D interpolation
function. We see that we haveM(1) = 4, M(2) = 10, M(3) = 20, M(4) = 35.
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In the following, we will denotevi(j), the j’th element of the vectorv(n)i built from the triplet
Ri; Gi; Bi. With this notation we extend Equation A.16 to arbitrary order, and get the following
set of equations.

L
(t)
0 = v

(n)t
0 � (A.24)

L
(t)
1 = v

(n)t
1 � (A.25)

... (A.26)

L(t)
m = v(n)tm � (A.27)

or shorter

L = V�; (A.28)

whereV = [v
(n)
0 v

(n)
1 : : : v

(n)
m ] is a (m + 1) � M(n) matrix. We obtain similarilya = V� and

b = V
. We can then follow the same steps as for the first order approximation, and get the following
solutions for the coefficient vectors�, � and
.

� = (VtV)�1VtL (A.29)

� = (VtV)�1Vta (A.30)


 = (VtV)�1Vtb (A.31)

A.2 Principal Component Analysis (PCA)

The central goal of the principal component analysis (PCA) is to reduce the dimensionality of a data
set which consists of a large number of interrelated variables, while retaining as much as possible of
the variation present in the data set. (Jolliffe, 1986, p.1)

Generally we have a set ofP observations ofN variables.2 We arrange this in a(N � P ) matrix
denotedR, where the columnsrj are the observations.3

R = [r1r2 � � � rP ] =

2
6664
r11 r12 � � � r1P
r21 r22 � � � r2P
...

...
.. .

...
rN1 rN2 � � � rNP

3
7775 (A.32)

If the observationsrj are not centred around their mean, we define the centred matrix of observations
as

X =
�
r1 � �r r2 � �r � � � rP � �r

�
; (A.33)

2In our work, this corresponds mostly to the spectral reflectances ofP samples, quantifyed onN wavelengths.
3Note that in the notation of Jolliffe (1986), theN � P matrixR will invariably be a matrix ofN observations onP

variables. This is exactly the opposite of our notation.
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where�r contains the mean values of the observations,

�r =
1

P

PX
j=1

rj (A.34)

We have thus a centred(N � P ) observation matrixX, and we wish to represent each observation
using ~N < N components. The PCA identifies~N so-called modes, being defined as the~N -vectorsuj,
j = 1 : : : ~N corresponding to the directions inN -dimensional space where the observations exhibit
maximum variance. That is, the first modeu1 corresponds to the direction of maximum variance,u2
should be the direction of maximum variance, subject to being uncorrelated tou1, and so on. The set
of chosenuj defines thus an orthogonal basis of a vector sub-space of dimension~N .

The representation of an observationx using its principal components may be expressed as the~N -
vectorz = [z1; z2; : : : ; z ~N ]t, wherezj represents thejth principal component (PC) of the observation,
expressed by

zj = utjx (A.35)

Defining the modes matrix~U = [u1u2 � � �u ~N ], we may reformulate this as a matrix multiplication,

z = ~Utx (A.36)

If the representation using PCs is used for the purpose of information compression, it is of great
interest to proceed to the reconstruction of an approximation of the original observation, using the
PCs. This reconstruction~r can be expressed as a sum of the modesuj weighted by the PCszj , as
follows.

~x =

~NX
j=1

zjuj =

~NX
j=1

utjxuj : (A.37)

Using matrix notation, Equation A.37 becomes

~x = ~Uz = ~U~Utx; (A.38)

this representation making it even clearer that the representation using the modes corresponds to a
projection of the observation vectorx onto the subspace defined by the modesuj.

Equation A.38 my also equivalently be represented as

~r = ~U~Ut(r� �r) + �r (A.39)

Figure A.1 gives an example of the principal component analysis of 50 observations of the two highly
correlated variablesx1 andx2. If we transformx1 andx2 to the PCsz1 andz2 we get the plot A.1(c),
and we note that the variation is concentrated inz1.

We have not yet discussed the actual determination of the modes for a given data set. An important
criterion for this is the reconstruction errord = k~x � xk, that is the distance between the original
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Figure A.1:Illustration of PCA

observation and its projection onto the subspace defined by the modes. We define the mean square
error on all the observationsxj as follows

Æ2 =

PX
j=1

k~x� xk2 (A.40)

It can be shown, (Jolliffe, 1986, p.4) that the optimaljth PC in the sense of minimizing the mean
square errorÆ given above, is given by the eigenvectoruj of the covariance matrix

S =
1

P
XXt; (A.41)

corresponding to itsjth largest eigenvalue�j :

Suj = �juj : (A.42)

Furthermore, ifuj is chosen to have unit length, then the variance of the modezj is given by the
eigenvalue�j. The diagonalization of the covariance matrixS does always exist, sinceS is symmetric.
By denoting as aboveU = [u1u2 � � �uN ], the unitary matrix of the eigenvectors, and

� =

2
6664
�1 0 � � � 0
0 �2 � � � 0
...

...
. ..

...
0 0 � � � �N

3
7775 (A.43)

the diagonal matrix of eigenvalues�j arranged in decreasing order, we have the following relation:

SU = U�; (A.44)

from which we deduce

S = U�Ut; (A.45)

Note that in the case ofrank(S) = R,R < N , then�j = 0 for R < j � N .
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A.3 Singular Value Decomposition (SVD)

Numerous variants of the singular value decomposition (SVD) algorithm exist, seei.e. Dresset al.
(1992), Pratt (1978), Golub and Reinsch (1970), Dongarraet al. (1979), Jolliffe (1986). We present
here two slightly different variants, the differences being mainly the sizes of the involved matrices,
the result being equal.

A.3.1 SVD of Jolliffe (1986)

In Chapter 3.5 and Appendix A.1 of Jolliffe (1986) the singular value decomposition is presented
as follows. (The notation is modified for consistency.) Given an arbitrary matrix,X, of dimension
N � P ,X can be written

X = UWVt; (A.46)

where

1. U, V are(N � R), (P � R) matrices respectively, each of which has orthonormal columns
such thatUtU = IR,VtV = IR;

2. W is a(R�R) diagonal matrix;

3. R is the rank ofX.

N R=
R

N

R

R

P
P

VX U W t

Figure A.2:Singular values decomposition according to Jolliffe (1986)

The author presents an important property of the SVD related to PCA, namely that it provides a
computationally efficient method of finding the principal components. If we findU, W, V which
satisfy Equation A.46, thenU andW gives us the eigenvectors and the square roots of the eigenvalues
of the matrixXXt, and hence the principal components and their variances for the sample covariance
matrixS = 1

PXX
t, as defined in Equation A.41, whereX is measured about its mean.

This representation of the SVD has the advantage to be compact, see Figure A.2, compared to the
version we present in the next section, see Figure A.3 on the facing page, but the practical disadvantage
that the matrix dimensions are depending on the nature of the data, in particular on the rankR of
the observation matrix. In the following we present a sligthly different variant of the SVD with
predetermined matrix sizes, as founde.g.in Pratt (1978), this variant corresponding to what we use in
our implementations with Matlab (Matlab Language Reference Manual, 1996).
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A.3.2 SVD of Pratt (1978)

It is known (Pratt, 1978, p.126), that for any arbitrary(N � P ) matrixX of rankR, there exist an
(N �N) unitary matrixU and a(P � P ) unitary matrixV for which

X = UWVt; (A.47)

whereW is an(N �P ) matrix with general diagonal entrieswi, i = 1 : : : R, denotedsingular values
of X. The nature of these matrices are further illustrated in Figures A.3 and A.4.

N P

P

N N

N PP

= U W tVX

Figure A.3:Singular values decomposition according to Pratt (1978) forN < P

W =
w

R P-R

R

N-R0 0

0
1

Rw

Figure A.4:The matrixW containing the singular values ofX

The columns of the unitary matrixU are composed of the eigenvectorsui, i = 1 : : : N , of the symmet-
ric matrixXXt. Similarily, the columns ofV are the eigenvectorsvi, i = 1 : : : P , of the symmetric
matrixXtX.

It is possible to express the matrix decomposition of Equation A.47 in the series form (Pratt, 1978,
p.127), this shows us thatX is a weighted sum of the outer product of the eigenvectorsui andvi.

X =

RX
i=1

wiuiv
t
i (A.48)

Note that the SVD may also be presented in a slightly different form, forN � P , ase.g. in Dress
et al. (1992), Golub and Reinsch (1970), where the size ofW is reduced to(N �N), by eliminating
the corresponding zeros off the diagonal, the matrix sizes still being independent of the rankR � N
of the observation matrix.
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A.3.3 Application of the SVD to PCA

As indicated above, the SVD may be used to perform the PCA. We will now relate the matrices
involved in the SVD to the PCA.

By multiplicating both sides of Equation A.47 byUt we obtain the relation

UtX = UtUWVt =WVt (A.49)

Applying this, in particular for theith line and thejth column of the resulting matrix, we haveutixj =
wivij , wherevij denotes thejth entry ofvi. We can thus express Equation A.48 as follows

xj =

RX
i=1

wiuivij =

RX
i=1

(utixj)ui; (A.50)

and, using a reduced number~N < R of components, we get the approximation~xj as

~xj =

~NX
i=1

(utixj)ui; (A.51)

which may be generalised to arbitraryx, giving the same reconstruction formula as employed in PCA,
see Equation A.37. Thus the matrixU contains the modesuj of the PCA. This may also be proved
by the following result. By combining Equations A.47 and A.41 we have

XXt = (UWVt)(UWVt)t = UW2Ut = U�Ut; (A.52)

SinceS = 1
NXX

t = 1
NU�U

t (cf. Equations A.41 and A.45), we have� = 1
NW

2 and the entries
on the diagonal of� are 1

Nw
2
j , j = 1 : : : N , this showing furthermore that the singular values of

X correspond to the non-negative square roots of the eigenvalues ofXXt i.e. the variances of the
principal components ofX.

If the matrixV is not needed, one might argue that it would be easier to apply the usual diagonalization
algorithms to the symmetric matrixXXt. However, as pointed out by Golub and Reinsch (1970), the
computation ofXXt may cause numerical inaccuracy. For example, let

X =

�
1 0 �
1 � 0

�
; (A.53)

then

XXt =

�
1 + �2 1

1 1 + �2

�
; (A.54)

so that the singular values are given by

w1 =
p

2 + �2; w2 = j�j (A.55)

If �2 < �0, the machine precision, the computedXXt has the form

]XXt =

�
1 1
1 1

�
; (A.56)
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and the best one may obtain from diagonalization is

~w1 =
p
2; ~w2 = 0: (A.57)

The SVD algorithm avoids the calculation ofXXt, by first reducing the matrixX to a bidiagonal form
using Householder transformations and then finding the singular values of the bidiagonal matrix using
theQR algorithm, as first described by Golub and Reinsch (1970), and used by numerous numerical
computing systems (Matlab Language Reference Manual, 1996, Dongarraet al., 1979, Dresset al.,
1992).

We conclude thus, as indicated above, that the SVD provides an efficient mean for the realization of
the PCA.

A.3.4 Application of the SVD to LMS minimisation/pseudoinverse

LetA be a real(N �M) matrix. An (M � N) matrixB is said to be the pseudoinverse ofA if it
satisfies the following fourMoore-Penrose conditions(see Golub and Reinsch (1970) or Golub and
van Loan (1983), p.139):

1. ABA = A;

2. BAB = B;

3. (AB)t = AB;

4. (BA)t = BA:

The unique solution to the above conditions is denoted byA�. Remark that these conditions amount
to the requirement thatAA� andA�A be orthogonal projections ontoR(A) andR(At), respec-
tively.

It can easily be verified that ifA = UWVt, cf. Equation A.46, thenA� = VW�Ut, where
W� = diag(w�

i ) and

w�
i =

(
w�1
i for wi > 0

0 for wi = 0;
(A.58)

wherewi is the singular values ofA. Thus the pseudoinverse may readily be calculated by the SVD.
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Appendix B
Colour transformation by 3D interpolation

Introduction

A general colour transformation between two colour spaces can be described by the following equa-
tion:

O = f(P) (B.1)

whereP is the input colour signal, andO denotes the output signal.1

For the colour transformations needed in our applications, we use a 3D tetrahedron interpolation al-
gorithm proposed by Kanamoriet al. (1990). The algorithm is able to perform an arbitrary colour
transform, given the output values for a given subset of the input colour space. The two main applica-
tions for this algorithm applied to the colour facsimile will be the transformation from the RGB-values
provided by the scanner to CIELAB- space, as well as from CIELAB- space to the printer device co-
ordinates.

Of course, these transformations could have been performed directly, using the 3rd degree 3D poly-
nomial approximation descibed in Chapter 3, or using a full 3D look-up table (LUT), but we wish to
gain speed, storage space and flexibility by using this algorithm.

The speed gain is achieved by a reduced number of operations, as compared to the polynomial ap-
proximation. The storage space gain is evident when compared to a conventional LUT. The flexibility
stems from the fact that the algorithm is able to perform an arbitrary colour transform, or in fact any
transform, from one three-dimensional space to another; the performed transform depends uniquely
on the choice of output values in the LUT.

We will describe the algorithm by starting with a conventional 3D lookup table and then evolve
through conventional 3D interpolation, towards the 3D tetrahedron interpolation algorithm proposed
by Kanamoriet al. (1990).

1In our presentation we will often use the convertion RGB) CIELAB as example. This givesP = [RGB] and
O = [L� a� b�]. However, the choice ofP andO is irrelevant to the definition of the algorithm, since it is general.
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General transformation using a lookup table

We may represent the general colour transformation using a 3D LUT as follows:

OP = LUT(i; j; k) = LUT(P) (B.2)

whereP = [i; j; k] is the quantized input colour signal. The implementation of this three-dimensional
LUT requires a very large amount of memory (about 50 Mb when input and output values are stored
with 8-bit accuracy).

Transformation using conventional 3D interpolation

To reduce the memory requirements we use a 3D interpolation technique where we store the output
values denotedOi for a limited number of pointsPi in the input RGB space. We then calculate the
output values for any pointP by an interpolation between some of these values.

Figure B.1:Partition of the RGB-space into cubic sub-spaces.

We divide the RGB - space into a given number of cubic sub-spaces, as shown in Figure B.1. With a
conventional 3D interpolation method we would calculate the resulting value by first finding the cube
in which the input point lies. Then the output values are calculated as an interpolation of the output
valuesO1, : : : ,O8 in the eight cornersP1, : : : , P8, weighted by the linear interpolation coefficients
W1, : : : ,W8. This is indicated in Equation B.3.

OP =

8X
i=1

WiOi (B.3)

Transformation using 3D tetrahedral interpolation

It is possible to further reduce by a factor of 2 the computational complexity by introducing tetrahedral
sub-spaces. We divide each cubic sub-space into 5 tetrahedral sub-spaces following one of the two
schemes outlined in Figure B.2 on the facing page. These two subdivisions are just the mirror of each
other. We choose each of these two subdivisions for any pair of face-adjacent cubes. The common
face will be subdivided in the same two triangles for each of the two cubes. This will guarantee the
C 0 continuity of the interpolation scheme when crossing any face shared by two cubes.
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Figure B.2:The two possible schemes for dividing a cube into five tetrahedrons. We see that there
exists ten different types of tetrahedron.

We thus calculate the interpolation with 4 multiplications and 3 additions instead of 8 and 7, respec-
tively (Eq. B.3), as follows:

OP =

4X
i=1

�i

�
Oi (B.4)

whereOi are the 4 vertices of the tetrahedron containingP, � is the volume of the tetrahedron
P1P2P3P4, as shown in Equation B.5, while�i is the volume of the sub-tetrahedron generated by
replacing the pointPi byP, as shown in Equation B.6 and Figure B.3 on the next page.

� =
1

6

��������
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

�������� (B.5)

�i =
1

6

col i|{z}��������
1 1 1 1
x1 x x3 x4
y1 y y3 y4
z1 z z3 z4

�������� (B.6)

In Eqs. B.5 and B.6,(x; y; z) and (xi; yi; zi), i = 1; 2; 3; 4, denotes the coordinates ofP andPi,
respectively.

Thus we obtain an algorithm where the given convertion is calculated as an interpolation between four
output values. The operations done offline consist in calculating the output values for all the lattice
points, according to the desired transform, and for each point in a cube, the type of the corresponding
tetrahedron to which it belongs, and the 4 weighting factors�i=� of Equation B.4. The algorithm is
shown graphically in Figure B.4.
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Figure B.3:The division of a tetrahedronP1P2P3P4 into four sub-tetrahedraPP2P3P4, P1PP3P4,
P1P2PP4 andP1P2P3P , defined by the input pointP . We note the graphical interpretation of the
volumes� and�i given in Equation B.4.
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Figure B.4:3D tetrahedron interpolation colour transformation algorithm. The input signals are di-
vided into two parts, the most and least significant bits. The most significant bits are used to find the
cubes containing the RGB signal, while the least significant bits determine the tetrahedron containing
the signal, as well as the 4 weighting coefficients.
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Appendix C
Scanner characterization data

The tables in this appendix are intended to give more detailed quantitative data for the scanner char-
acterisation methods described in Chapter 3. The reported data is obtained by using the IT8.7/2 target
from AGFA, and the proposed method labeled (p=1/3, T3, LAB), as described in Section 3.2.3.5.

First, the IT8.7/2 target is scanned with a gamma correction1 of 1/3, see Figure C.1, and the mean RGB
values of each patch are computed, see columns 3-5 of Table C.2. We then apply the characterisation
algorithm as described in Section 3.2.3.5, using the nominal CIELAB values provided by AGFA
(columns 6-8 of Table C.2) as target values for the regression.

We recall that the outcome of the characterisation algorithm is a third order polynomial that defines
the transformation from the cube-root corrected scanner RGB values to CIELAB values, or more
specifically the coefficients�j , �j and
j , j = 0 : : : 19, of the polynomials, as given in Equations C.2-
C.4.

L(c) = �0 + �1R+ �2G+ �3B + �4R
2 + �5RG+ �6RB + �7G

2 + �8GB (C.1)

+ �9B
2 + �10R

3 + �11R
2G+ �12R

2B + �13RG
2 + �14RGB + �15RB

2

+ �16G
3 + �17G

2B + �18GB
2 + �19B

3

a(c) = �0 + �1R+ �2G+ �3B + �4R
2 + �5RG+ �6RB + �7G

2 + �8GB (C.2)

+ �9B
2 + �10R

3 + �11R
2G+ �12R

2B + �13RG
2 + �14RGB + �15RB

2

+ �16G
3 + �17G

2B + �18GB
2 + �19B

3

b(c) = 
0 + 
1R+ 
2G+ 
3B + 
4R
2 + 
5RG+ 
6RB + 
7G

2 + 
8GB (C.3)

+ 
9B
2 + 
10R

3 + 
11R
2G+ 
12R

2B + 
13RG
2 + 
14RGB + 
15RB

2

+ 
16G
3 + 
17G

2B + 
18GB
2 + 
19B

3

(C.4)

Using the aforementioned equipment and method, we obtain the interpolation coefficients given in
Table C.1. Using the resulting polynomial function, we may calculate the resulting CIELAB values of

1A gamma correction of 1/3 is achieved by specifying the value of 3 in the scanner’s user interface.
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each patch of the target. These values are given in columns 9-11 of Table C.2, and the residual colour
differences expressed in CIELAB�E units are given in the last column. The mean error is 0.918
(cf. Table 3.2 on page 47) and a maximal error of 4.666 occur for patch number L19, a saturated blue
colour.

Table C.1:Regression polynomial coefficients for the scanner characterisation.

Element j �j �j 
j
1 0 -1.48E+01 -2.12E+00 3.48E+00
R 1 1.10E-01 6.18E-01 1.39E-01
G 2 2.58E-01 -7.28E-01 6.25E-01
B 3 1.01E-01 1.18E-01 -7.28E-01

RR 4 9.38E-04 -1.45E-03 1.73E-03
RG 5 -1.37E-03 3.88E-03 -2.03E-03
RB 6 -5.56E-04 -9.25E-04 -1.41E-03
GG 7 8.11E-04 1.57E-03 6.65E-04
GB 8 3.03E-04 -7.64E-03 1.61E-03
BB 9 -3.46E-04 4.46E-03 -9.53E-04

RRR 10 -1.71E-06 5.30E-06 -3.90E-06
RRG 11 1.87E-09 -6.29E-06 8.20E-07
RRB 12 8.79E-07 -4.12E-06 4.57E-06
RGG 13 3.04E-06 -1.90E-05 6.59E-06
RGB 14 5.00E-07 3.58E-05 -7.38E-06
RBB 15 -1.85E-07 -1.23E-05 1.51E-06
GGG 16 -2.43E-06 4.19E-06 -2.32E-06
GGB 17 -9.00E-07 7.04E-06 -6.41E-06
GBB 18 3.57E-07 -1.49E-05 8.55E-06
BBB 19 7.11E-07 4.71E-06 -1.35E-06

Table C.2:Scanner characterisation data. Average RGB values of all the patches of the AGFA IT7.7.2
colour chart, scanned with an AGFA Arcus 2 scanner with a gamma correction of 0.3333, as well as
the calculated and nominal CIELAB values. The calculated values are obtained using the third order
regression method described in Section 3.2.3.5, and the nominal values are those supplied with the
target by AGFA.

Patch # Scanned RGB Calculated CIELAB Nominal CIELAB

i R
1=3
i G

1=3
i B

1=3
i L

(c)
i a

(c)
i b

(c)
i L

(t)
i a

(t)
i b

(t)
i �Ei

A1 1 87.54 66.25 72.08 18.25 11.67 3.03 18.50 11.00 3.23 0.74

A2 2 101.46 61.36 66.71 18.75 22.15 7.38 18.97 21.84 7.48 0.40

A3 3 114.54 55.60 61.69 19.32 32.33 11.43 19.26 32.70 10.52 0.99

A4 4 126.78 56.61 64.23 21.75 38.49 13.05 21.53 39.27 11.78 1.51

A5 5 133.77 112.61 115.22 38.19 11.24 4.73 38.14 11.94 4.31 0.82

A6 6 153.03 106.50 110.35 38.93 26.04 8.79 38.71 27.39 8.16 1.51

A7 7 172.65 98.66 103.59 39.72 41.55 14.41 39.28 43.25 13.65 1.91

A8 8 187.57 92.82 98.65 40.67 53.25 19.09 40.17 54.70 18.02 1.87

A9 9 203.01 187.70 185.42 69.00 7.69 5.13 69.78 7.14 4.81 1.01

continued on next page
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continued from previous page
i R

1=3
i G

1=3
i B

1=3
i L

(c)
i a

(c)
i b

(c)
i L

(t)
i a

(t)
i b

(t)
i �Ei

A10 10 213.18 185.12 183.67 69.31 15.45 6.56 70.01 15.08 6.18 0.88

A11 11 223.08 181.43 180.93 69.27 23.71 8.16 70.09 23.30 8.18 0.92

A12 12 226.80 177.36 176.09 68.43 28.27 10.32 69.04 28.10 10.49 0.65

A13 13 242.26 241.35 242.47 89.83 0.59 -1.52 90.57 0.33 -1.82 0.84

A14 14 243.00 242.05 243.21 90.12 0.64 -1.56 90.58 0.66 -1.70 0.48

A15 15 243.44 242.38 241.08 90.15 0.44 0.25 90.42 0.39 0.28 0.27

A16 16 243.01 242.20 240.99 90.06 0.28 0.16 90.31 0.36 -0.06 0.34

A17 17 243.63 242.64 241.43 90.26 0.41 0.17 90.36 0.53 0.13 0.16

A18 18 243.33 242.80 241.46 90.27 0.12 0.19 90.35 0.22 0.31 0.17

A19 19 242.63 241.98 242.84 90.05 0.42 -1.38 90.38 0.58 -1.32 0.37

A20 20 71.41 49.43 53.22 10.82 11.69 5.01 8.75 14.45 4.15 3.55

A21 21 118.08 54.60 50.57 19.35 33.97 21.31 19.85 34.16 21.85 0.76

A22 22 155.03 59.38 49.61 27.22 51.80 35.24 28.07 51.20 36.55 1.67

B1 23 84.37 66.85 67.86 17.82 8.79 6.35 18.53 8.10 7.11 1.25

B2 24 96.68 64.23 59.90 18.49 16.86 13.81 18.95 16.69 14.36 0.74

B3 25 106.61 60.40 52.78 18.80 24.39 19.78 19.21 24.51 20.50 0.84

B4 26 113.88 60.76 52.96 20.09 28.23 21.66 20.31 28.66 22.74 1.18

B5 27 135.59 111.72 106.83 37.95 11.96 11.63 37.88 12.72 11.54 0.77

B6 28 153.16 107.23 93.73 38.79 24.33 23.58 38.50 25.38 23.42 1.10

B7 29 174.21 99.88 78.30 39.83 40.89 37.49 39.26 41.81 37.13 1.14

B8 30 186.26 94.95 70.56 40.53 51.11 44.46 39.90 51.09 44.16 0.69

B9 31 204.07 187.76 180.64 69.01 7.77 9.24 69.28 7.07 8.73 0.90

B10 32 213.07 186.50 174.52 69.48 13.55 14.90 69.60 12.84 14.72 0.75

B11 33 225.46 185.21 170.14 70.37 21.67 19.77 70.55 20.94 19.78 0.75

B12 34 229.29 182.32 165.09 69.89 25.62 22.88 69.79 24.99 23.15 0.69

B13 35 231.38 239.25 242.45 88.18 -4.58 -4.15 88.12 -4.95 -4.61 0.60

B14 36 243.66 236.39 241.65 88.59 4.80 -3.60 88.27 4.93 -4.03 0.55

B15 37 244.89 241.68 225.51 89.46 0.34 11.70 89.27 -0.08 11.86 0.49

B16 38 229.38 229.98 228.87 84.89 -0.95 0.31 84.64 -1.07 0.14 0.33

B17 39 242.89 232.68 222.44 86.73 4.79 8.64 86.51 4.76 8.86 0.31

B18 40 230.27 237.20 223.79 86.73 -5.79 8.47 86.53 -6.07 8.47 0.34

B19 41 228.16 230.04 238.13 85.17 -0.54 -6.79 85.09 -0.20 -7.03 0.42

B20 42 94.94 55.29 54.49 15.79 21.15 12.56 14.86 21.93 13.77 1.72

B21 43 154.31 62.86 52.44 27.81 49.59 34.38 28.11 49.25 35.84 1.53

B22 44 191.73 150.90 139.67 56.45 21.79 18.63 57.34 21.98 18.57 0.91

C1 45 92.00 82.56 77.41 23.49 3.28 9.89 23.84 3.10 9.98 0.40

C2 46 97.47 82.20 68.41 23.69 6.21 18.05 23.95 6.43 17.95 0.35

C3 47 105.29 82.20 59.57 24.35 10.79 26.89 24.67 11.53 26.63 0.84

C4 48 110.63 83.46 58.67 25.40 13.25 29.54 25.51 14.04 28.80 1.09

C5 49 168.96 151.11 131.08 53.62 7.43 21.92 53.70 7.69 21.68 0.37

C6 50 184.41 148.95 110.22 54.46 17.97 41.14 54.27 17.81 41.36 0.33

C7 51 196.06 145.56 86.02 54.53 28.25 62.34 54.21 27.33 62.40 0.98

C8 52 198.42 132.24 72.25 51.13 38.26 66.97 50.43 36.91 65.95 1.83

continued on next page
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continued from previous page
i R

1=3
i G

1=3
i B

1=3
i L

(c)
i a

(c)
i b

(c)
i L

(t)
i a

(t)
i b

(t)
i �Ei

C9 53 215.63 205.45 190.24 75.45 3.65 13.97 75.39 3.28 13.28 0.78

C10 54 226.39 206.52 179.23 76.59 8.86 25.14 76.31 8.43 24.81 0.61

C11 55 233.47 205.32 169.43 76.78 13.58 33.58 76.66 13.02 33.15 0.72

C12 56 235.66 203.14 159.37 76.20 16.06 41.02 75.97 15.60 40.73 0.58

C13 57 210.64 232.22 239.47 84.10 -12.70 -8.63 83.76 -13.11 -9.39 0.93

C14 58 240.66 219.81 234.14 83.39 13.88 -8.22 82.86 14.22 -8.99 1.00

C15 59 244.82 239.71 211.18 88.41 0.63 21.57 88.13 0.12 21.92 0.68

C16 60 204.95 203.17 201.29 74.03 -0.24 2.23 73.59 -0.17 1.96 0.52

C17 61 238.29 212.02 202.12 79.92 14.06 11.77 79.81 13.85 12.04 0.35

C18 62 207.98 226.97 207.14 81.10 -14.02 12.34 81.04 -14.50 12.64 0.57

C19 63 204.07 207.06 226.95 75.93 0.41 -15.56 75.83 0.93 -16.18 0.81

C20 64 75.62 55.64 55.52 13.12 10.06 7.81 12.20 10.91 9.08 1.78

C21 65 186.89 128.36 106.43 49.25 31.79 32.57 49.33 32.54 32.81 0.79

C22 66 198.81 170.90 159.07 63.21 14.17 15.82 63.95 14.30 15.45 0.84

D1 67 86.76 85.64 78.46 23.81 -2.02 10.20 24.22 -2.00 10.45 0.48

D2 68 88.39 86.91 70.22 23.98 -2.37 18.00 24.50 -2.05 18.12 0.62

D3 69 91.37 90.72 63.25 25.08 -2.91 26.58 25.24 -2.12 26.24 0.88

D4 70 95.25 91.59 62.07 25.73 -0.97 28.76 25.68 -0.15 27.80 1.26

D5 71 168.56 167.24 142.47 58.43 -2.82 22.43 58.58 -2.68 22.43 0.20

D6 72 170.28 170.12 124.24 58.98 -3.40 39.63 58.83 -3.77 39.88 0.47

D7 73 170.68 172.99 101.25 59.18 -2.91 60.80 58.87 -3.99 61.19 1.19

D8 74 168.30 162.52 82.46 55.40 3.37 69.96 54.60 2.44 69.41 1.35

D9 75 223.58 223.68 202.92 81.67 -2.58 15.83 81.50 -2.64 15.44 0.43

D10 76 228.10 226.01 191.10 82.41 -1.86 27.17 82.07 -1.86 26.82 0.49

D11 77 228.40 226.95 179.28 82.36 -2.49 37.26 82.02 -2.39 36.95 0.47

D12 78 230.47 227.06 169.36 82.35 -1.37 45.75 81.85 -1.19 45.54 0.57

D13 79 193.68 225.56 236.46 80.52 -18.83 -12.26 80.15 -18.88 -12.99 0.82

D14 80 236.33 202.59 225.58 77.77 22.75 -12.79 77.24 23.23 -13.58 1.07

D15 81 244.20 237.17 196.24 87.19 1.19 31.78 86.85 0.86 32.16 0.61

D16 82 183.65 181.07 178.42 64.90 -0.22 3.84 64.40 -0.18 3.39 0.68

D17 83 232.73 192.36 180.94 73.35 22.14 16.33 73.33 21.87 16.29 0.27

D18 84 189.48 217.06 190.56 75.98 -20.05 17.04 76.01 -20.74 17.18 0.70

D19 85 181.80 185.06 214.91 66.98 2.53 -23.24 67.11 2.71 -23.86 0.65

D20 86 157.94 110.21 90.77 40.18 25.26 28.96 39.73 26.72 29.67 1.68

D21 87 166.30 150.88 141.50 53.48 6.63 12.58 53.70 6.82 12.15 0.52

D22 88 203.96 184.69 168.67 67.86 8.79 17.15 68.42 8.79 17.31 0.58

E1 89 81.21 87.35 79.90 23.78 -6.62 9.37 24.01 -6.46 9.57 0.34

E2 90 75.78 91.02 72.62 23.97 -13.16 16.98 24.22 -12.32 17.18 0.90

E3 91 73.76 96.22 66.11 24.99 -17.86 25.33 25.28 -16.25 25.05 1.66

E4 92 76.35 96.99 65.81 25.45 -16.60 26.40 25.39 -15.27 26.22 1.34

E5 93 123.78 134.54 120.12 43.57 -10.08 13.42 43.54 -9.60 13.39 0.48

E6 94 119.02 138.63 105.92 43.82 -16.12 27.05 43.57 -16.27 27.47 0.51

E7 95 111.55 146.12 93.17 44.82 -24.41 41.17 44.54 -25.13 42.09 1.20
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E8 96 107.32 158.51 89.95 47.99 -33.02 51.13 47.43 -34.58 51.44 1.69

E9 97 188.38 196.39 179.57 69.79 -7.84 13.12 69.50 -7.30 12.93 0.64

E10 98 188.28 202.09 174.07 71.22 -11.88 20.99 70.89 -11.52 20.38 0.78

E11 99 184.02 205.09 166.18 71.39 -16.47 28.53 70.92 -16.40 28.03 0.69

E12 100 179.99 206.95 159.10 71.28 -19.89 34.77 70.78 -20.03 34.41 0.63

E13 101 171.75 215.24 231.68 75.48 -25.66 -17.08 75.47 -25.40 -17.32 0.35

E14 102 231.27 186.49 216.71 72.38 30.45 -16.63 72.02 30.98 -17.24 0.88

E15 103 243.11 233.79 180.53 85.75 2.18 42.36 85.48 2.19 42.75 0.47

E16 104 162.07 160.98 160.09 56.38 -1.13 2.95 55.98 -0.97 2.40 0.70

E17 105 226.93 175.10 163.30 67.61 28.81 19.66 67.60 28.60 19.80 0.26

E18 106 167.08 204.71 173.86 69.83 -26.96 20.07 70.01 -27.73 19.90 0.81

E19 107 160.43 165.95 203.14 58.92 3.57 -29.31 59.20 3.50 -29.91 0.67

E20 108 200.61 121.29 68.62 48.71 45.97 64.27 48.69 44.70 64.62 1.31

E21 109 166.30 126.02 89.68 45.46 21.03 41.18 45.69 21.22 41.10 0.31

E22 110 195.19 156.78 126.53 58.26 19.66 34.03 58.57 19.70 34.23 0.37

F1 111 55.12 66.01 68.46 14.38 -8.42 1.04 14.75 -8.90 1.68 0.88

F2 112 47.40 70.67 66.38 15.02 -17.55 5.18 15.50 -18.89 5.88 1.59

F3 113 44.63 75.99 66.01 16.44 -23.69 8.98 16.69 -25.55 9.52 1.95

F4 114 45.28 79.51 67.96 17.72 -25.82 9.98 17.74 -27.54 10.17 1.73

F5 115 95.19 114.52 111.14 34.55 -14.67 4.00 34.28 -14.26 3.59 0.64

F6 116 82.33 119.97 108.35 35.11 -27.94 8.94 34.84 -27.41 8.88 0.60

F7 117 66.56 122.73 102.75 34.76 -41.79 14.54 34.20 -39.91 14.48 1.97

F8 118 53.61 127.44 100.52 35.65 -55.39 19.53 34.94 -53.61 19.32 1.93

F9 119 185.75 196.62 188.16 69.84 -8.92 6.04 69.92 -8.14 5.90 0.80

F10 120 178.68 199.26 187.09 69.85 -15.32 7.65 69.76 -14.53 7.55 0.80

F11 121 172.78 203.49 187.90 70.50 -21.94 8.97 70.40 -21.25 8.74 0.74

F12 122 167.31 205.21 185.56 70.39 -26.81 11.27 70.14 -26.40 11.23 0.48

F13 123 157.98 208.13 228.29 72.20 -29.51 -20.04 72.17 -29.46 -20.04 0.06

F14 124 227.51 175.68 210.44 68.72 35.39 -19.01 68.61 35.78 -19.36 0.54

F15 125 242.27 231.30 170.32 84.74 3.04 49.21 84.54 3.28 49.56 0.47

F16 126 146.73 146.73 146.46 50.27 -1.81 2.78 49.90 -1.81 2.02 0.85

F17 127 222.69 163.89 150.68 63.86 32.79 22.84 63.87 32.59 23.23 0.44

F18 128 152.61 196.07 162.36 65.67 -31.04 22.27 65.83 -32.13 21.79 1.20

F19 129 145.27 153.19 195.05 53.45 4.04 -33.31 53.42 3.87 -34.27 0.97

F20 130 179.50 162.60 143.17 58.35 6.92 20.73 58.40 7.31 21.22 0.63

F21 131 201.82 172.76 138.49 63.67 13.96 34.75 63.61 13.88 34.70 0.11

F22 132 205.79 183.50 156.17 67.46 10.04 27.08 67.63 9.85 27.03 0.26

G1 133 60.90 76.16 83.52 18.73 -10.34 -3.49 18.93 -10.54 -2.71 0.83

G2 134 51.56 80.79 87.74 19.69 -19.78 -4.23 19.69 -20.14 -3.84 0.53

G3 135 45.63 84.13 91.29 20.61 -26.22 -4.81 20.48 -28.01 -4.49 1.83

G4 136 45.98 88.74 95.64 22.38 -29.31 -4.81 22.10 -30.52 -4.71 1.24

G5 137 103.68 124.88 126.89 39.04 -15.07 -0.88 39.01 -14.82 -1.23 0.43

G6 138 91.09 128.69 130.54 39.41 -26.16 -2.07 39.35 -25.56 -2.43 0.70
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G7 139 72.42 130.90 133.16 39.22 -41.22 -2.93 39.01 -38.86 -3.72 2.50

G8 140 57.05 133.14 138.13 39.78 -54.53 -4.44 39.35 -51.71 -5.38 3.00

G9 141 183.19 196.54 192.61 69.70 -9.99 2.14 69.79 -9.38 2.66 0.81

G10 142 173.87 200.20 196.03 69.96 -18.17 0.68 69.81 -17.30 1.01 0.94

G11 143 164.88 202.38 198.79 69.86 -25.31 -0.95 69.88 -24.44 -0.52 0.97

G12 144 160.54 204.94 202.18 70.34 -29.72 -2.28 70.27 -29.10 -1.83 0.77

G13 145 137.02 196.46 222.27 67.06 -34.81 -24.18 67.22 -34.88 -23.91 0.33

G14 146 221.35 158.89 200.16 63.07 42.76 -22.29 63.06 43.14 -22.43 0.40

G15 147 240.88 226.70 152.93 82.96 4.91 60.97 82.88 5.42 60.91 0.52

G16 148 127.24 127.43 127.49 42.05 -1.96 3.09 41.42 -1.74 2.32 1.02

G17 149 216.00 147.25 131.79 58.36 38.48 27.83 58.34 38.59 27.91 0.14

G18 150 135.15 184.94 146.83 60.41 -35.48 25.84 60.70 -36.79 25.71 1.34

G19 151 125.98 134.85 182.98 45.80 6.54 -38.48 45.91 6.17 -39.44 1.04

G20 152 201.02 185.93 153.43 67.55 5.54 30.03 67.94 5.49 30.12 0.40

G21 153 200.28 183.49 136.30 66.42 6.57 42.78 66.69 6.30 42.63 0.41

G22 154 219.55 199.92 101.06 72.26 10.13 86.73 72.67 10.81 86.62 0.80

H1 155 63.01 74.25 88.12 18.56 -6.30 -8.38 18.96 -6.80 -7.53 1.07

H2 156 55.28 78.58 99.76 19.87 -12.06 -15.34 20.13 -12.17 -14.72 0.69

H3 157 45.56 77.76 105.49 19.34 -15.75 -20.94 19.37 -17.44 -20.25 1.82

H4 158 46.12 83.15 112.23 21.46 -18.57 -22.26 21.33 -19.68 -22.14 1.12

H5 159 107.42 123.37 134.37 39.16 -9.96 -7.72 39.12 -9.82 -8.01 0.33

H6 160 95.56 126.67 145.67 39.68 -17.93 -15.49 39.58 -17.42 -16.07 0.78

H7 161 79.10 127.17 156.67 39.40 -26.27 -24.34 39.22 -24.59 -25.27 1.93

H8 162 65.23 127.43 166.90 39.56 -32.49 -31.73 39.23 -30.23 -32.88 2.56

H9 163 182.36 194.79 198.58 69.31 -8.42 -3.80 69.35 -7.74 -3.09 0.98

H10 164 176.97 197.43 205.73 69.80 -12.70 -8.34 69.79 -12.01 -7.57 1.04

H11 165 170.33 200.22 216.88 70.43 -17.07 -15.82 70.37 -16.28 -15.29 0.95

H12 166 164.14 202.27 223.98 70.81 -21.25 -20.37 70.77 -20.80 -19.85 0.68

H13 167 121.04 187.04 217.29 63.09 -38.41 -27.16 63.34 -38.55 -26.65 0.58

H14 168 214.28 141.31 188.74 57.19 49.92 -25.16 57.43 50.16 -25.01 0.37

H15 169 239.56 223.13 141.37 81.61 6.34 68.61 81.58 7.17 68.79 0.85

H16 170 109.88 109.87 111.83 34.59 -1.60 2.01 33.62 -1.54 1.18 1.28

H17 171 209.26 131.67 116.37 53.30 43.56 30.66 53.06 44.14 31.01 0.71

H18 172 118.33 174.60 134.68 55.57 -40.13 27.36 55.62 -41.53 27.45 1.40

H19 173 107.65 116.12 170.44 38.12 10.37 -43.48 38.04 10.02 -44.54 1.12

H20 174 204.94 199.11 155.67 71.70 -0.10 36.71 72.33 -0.16 36.70 0.64

H21 175 183.15 182.25 166.34 64.88 -2.49 14.35 65.51 -2.20 13.66 0.98

H22 176 190.02 197.75 141.66 69.34 -7.93 45.10 69.93 -8.29 45.10 0.69

I1 177 80.78 84.50 104.63 23.94 0.02 -13.03 23.65 -0.36 -13.07 0.47

I2 178 74.59 83.85 116.12 23.65 0.68 -23.79 23.73 0.58 -23.72 0.14

I3 179 66.89 84.43 129.46 23.79 1.24 -35.19 23.68 2.12 -35.26 0.89

I4 180 58.13 84.94 141.52 23.98 1.95 -45.33 23.93 3.57 -45.43 1.62

I5 181 126.40 130.57 143.52 43.36 -2.14 -8.27 43.53 -1.90 -8.00 0.40
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I6 182 122.74 130.21 154.34 43.22 -1.35 -17.99 43.31 -1.38 -17.90 0.13

I7 183 119.67 130.90 165.88 43.52 -0.11 -27.49 43.29 -0.46 -27.50 0.42

I8 184 117.77 132.64 177.32 44.28 1.53 -36.00 44.08 0.80 -36.03 0.76

I9 185 191.76 193.32 197.89 69.79 -1.60 -3.00 69.86 -1.32 -2.20 0.85

I10 186 191.13 194.34 205.97 70.28 -1.45 -8.86 70.14 -1.24 -7.92 0.97

I11 187 188.66 193.64 213.96 70.10 -0.81 -15.96 70.02 -0.42 -15.36 0.72

I12 188 188.93 195.22 221.24 70.85 -0.28 -20.63 70.60 0.10 -20.08 0.71

I13 189 106.88 177.79 211.92 59.35 -40.92 -29.53 59.62 -41.45 -29.10 0.73

I14 190 209.23 129.42 180.34 53.26 54.34 -26.45 53.48 54.66 -26.39 0.39

I15 191 238.53 220.11 132.38 80.49 7.65 74.50 80.52 8.60 74.74 0.98

I16 192 96.87 96.05 99.49 28.75 -0.87 1.21 27.56 -1.15 0.48 1.43

I17 193 203.28 118.83 102.47 49.13 47.42 34.06 48.84 48.12 34.82 1.08

I18 194 103.60 164.76 122.32 51.04 -43.67 29.57 50.99 -45.09 29.80 1.44

I19 195 93.66 103.30 161.65 32.76 12.43 -46.83 32.52 12.32 -47.78 0.98

I20 196 198.32 208.21 157.59 73.52 -9.42 39.46 74.22 -9.58 39.82 0.80

I21 197 116.15 150.43 100.97 46.85 -24.65 38.27 46.86 -25.59 38.80 1.08

I22 198 156.83 194.10 158.91 65.40 -27.02 24.23 66.39 -27.47 23.64 1.24

J1 199 63.42 57.71 81.46 13.44 6.79 -14.35 13.86 6.17 -14.10 0.79

J2 200 63.96 56.50 94.20 13.70 12.90 -25.97 13.93 12.51 -25.72 0.52

J3 201 64.31 57.58 109.64 14.65 19.42 -38.62 14.69 19.52 -38.20 0.44

J4 202 61.27 56.24 120.37 14.37 25.83 -49.52 14.51 26.24 -48.63 0.99

J5 203 119.49 116.98 133.04 38.33 2.65 -9.67 38.45 2.52 -9.68 0.18

J6 204 121.70 114.76 141.76 38.13 8.21 -18.32 38.36 7.73 -18.54 0.57

J7 205 122.81 113.43 153.49 38.15 14.10 -29.23 38.20 13.15 -29.05 0.97

J8 206 124.80 113.85 161.49 38.68 18.07 -35.64 38.52 16.77 -35.31 1.35

J9 207 194.60 191.78 197.97 69.64 1.29 -3.66 70.04 1.12 -2.52 1.22

J10 208 197.07 190.58 204.24 69.73 4.76 -9.11 69.74 4.55 -8.48 0.66

J11 209 200.00 191.44 214.34 70.59 7.85 -16.23 70.45 7.74 -15.54 0.72

J12 210 200.55 189.84 218.68 70.32 10.49 -20.68 70.15 10.27 -20.11 0.63

J13 211 86.63 164.05 203.44 53.97 -44.07 -32.38 54.09 -44.49 -32.27 0.45

J14 212 200.70 110.84 166.87 47.22 60.62 -28.06 47.37 60.90 -27.92 0.35

J15 213 236.33 214.94 118.46 78.56 9.76 83.35 78.75 10.95 83.54 1.22

J16 214 74.76 72.71 77.68 18.75 0.13 0.52 18.61 -0.99 0.12 1.20

J17 215 194.93 102.08 82.69 43.71 52.08 39.96 43.64 52.50 40.15 0.46

J18 216 86.32 152.71 107.31 45.55 -47.46 32.21 45.74 -48.19 32.48 0.80

J19 217 71.56 80.76 146.00 23.58 17.95 -52.31 23.60 18.35 -52.31 0.40

J20 218 159.02 197.24 173.14 66.96 -27.46 15.19 68.21 -27.77 15.39 1.31

J21 219 59.45 124.60 76.22 33.46 -46.56 35.58 33.58 -44.51 35.09 2.11

J22 220 45.09 72.10 60.35 14.91 -20.80 10.67 15.26 -23.87 11.67 3.25

K1 221 93.92 75.67 97.86 22.55 13.48 -11.56 23.06 11.98 -11.26 1.62

K2 222 106.24 70.92 106.41 23.05 26.80 -20.00 23.23 24.88 -19.43 2.01

K3 223 117.90 66.98 116.94 23.86 39.96 -29.70 24.03 37.87 -29.14 2.18

K4 224 126.25 65.36 125.93 24.80 49.15 -37.19 25.03 46.48 -36.39 2.80
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K5 225 138.15 125.42 141.58 43.00 8.74 -8.54 43.30 8.66 -8.50 0.31

K6 226 148.73 119.88 148.25 42.75 20.99 -16.29 42.98 20.90 -16.30 0.25

K7 227 160.80 117.25 158.19 43.62 32.69 -24.59 43.75 32.39 -24.60 0.33

K8 228 175.50 114.95 169.55 44.98 46.03 -33.36 45.09 45.24 -32.70 1.04

K9 229 200.80 189.14 197.17 69.49 6.90 -3.81 69.70 6.24 -3.08 1.01

K10 230 209.58 187.50 203.15 70.09 14.38 -8.38 69.95 13.96 -7.88 0.67

K11 231 217.30 185.63 209.94 70.52 21.66 -13.90 70.43 21.28 -13.25 0.76

K12 232 222.97 184.98 214.89 71.05 26.48 -17.44 70.99 26.09 -17.07 0.54

K13 233 76.13 155.57 197.83 50.75 -44.49 -33.90 50.94 -45.38 -33.81 0.92

K14 234 192.54 95.27 154.33 42.20 64.76 -28.25 42.18 64.99 -28.22 0.23

K15 235 228.96 195.58 92.47 71.96 18.16 93.60 72.21 18.66 93.48 0.57

K16 236 60.43 57.21 62.13 12.03 0.82 0.88 11.79 -0.13 0.00 1.32

K17 237 186.70 86.47 65.56 38.72 56.09 44.36 39.11 55.40 43.72 1.02

K18 238 71.44 141.75 93.77 40.58 -50.28 34.51 41.01 -49.62 34.87 0.87

K19 239 57.77 64.15 133.09 16.98 22.87 -54.94 17.25 23.99 -54.46 1.25

K20 240 62.80 80.72 77.62 19.97 -13.79 4.61 20.94 -13.59 5.84 1.59

K21 241 49.13 63.98 70.22 13.35 -10.31 -2.37 14.36 -12.34 -1.07 2.61

K22 242 50.33 68.34 88.08 15.75 -9.03 -13.59 16.40 -10.85 -12.70 2.13

L1 243 87.09 66.51 80.09 18.57 12.69 -3.63 18.71 11.51 -3.29 1.24

L2 244 99.63 60.91 80.90 18.84 24.06 -5.47 18.99 22.72 -5.58 1.35

L3 245 111.42 54.54 82.03 19.13 35.15 -7.70 19.07 34.53 -8.63 1.12

L4 246 122.27 56.71 87.78 21.54 40.39 -8.80 21.15 39.98 -9.68 1.05

L5 247 133.92 111.86 124.55 38.22 13.45 -3.69 38.30 13.60 -3.79 0.20

L6 248 153.73 106.96 126.80 39.43 28.79 -5.09 39.33 29.43 -5.46 0.75

L7 249 174.06 98.39 127.47 40.11 46.09 -6.52 39.87 46.86 -7.20 1.06

L8 250 183.54 94.59 128.34 40.63 53.90 -7.29 40.10 54.78 -7.72 1.12

L9 251 203.74 187.81 191.87 69.27 8.86 0.08 69.56 8.02 0.86 1.18

L10 252 212.66 186.60 193.71 69.90 15.37 -0.81 69.82 14.88 -0.50 0.58

L11 253 224.75 184.01 194.90 70.46 24.63 -1.47 70.46 24.04 -0.92 0.81

L12 254 228.30 179.10 194.42 69.43 30.25 -3.53 69.66 29.60 -3.02 0.85

L13 255 59.83 137.53 185.25 43.94 -40.45 -37.22 44.04 -44.39 -36.46 4.01

L14 256 186.52 85.81 145.99 39.08 66.44 -27.85 38.94 66.65 -27.91 0.26

L15 257 223.93 180.42 85.90 67.19 24.76 89.21 67.39 24.17 89.20 0.62

L16 258 50.71 47.21 51.17 7.55 0.82 1.72 6.36 0.63 -0.65 2.66

L17 259 177.77 73.02 52.76 34.20 58.22 46.04 34.78 56.56 45.77 1.78

L18 260 53.15 116.59 73.37 30.39 -46.10 32.01 30.67 -45.64 31.32 0.87

L19 261 47.72 51.62 120.21 11.93 24.54 -54.02 11.62 29.13 -54.81 4.67

L20 262 44.71 48.89 58.43 7.83 -2.88 -3.77 7.20 -3.30 -4.37 0.97

L21 263 51.98 47.18 58.09 8.08 2.89 -3.70 7.86 4.41 -5.14 2.10

L22 264 75.97 54.18 64.94 13.22 12.76 -0.86 13.67 13.24 -0.77 0.66

Dmin 265 242.96 242.60 243.95 90.30 0.32 -1.80 90.70 0.59 -1.75 0.49

1 266 241.95 241.35 239.19 89.65 0.03 0.86 89.77 0.14 0.87 0.16

2 267 230.76 230.83 227.78 85.22 -0.82 1.83 85.19 -0.72 2.12 0.31

continued on next page
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i R

1=3
i G

1=3
i B

1=3
i L

(c)
i a

(c)
i b

(c)
i L

(t)
i a

(t)
i b

(t)
i �Ei

3 268 215.48 217.73 214.74 79.61 -2.51 1.99 79.44 -2.23 2.04 0.33

4 269 205.30 203.90 203.50 74.34 -0.28 0.98 74.05 -0.06 1.20 0.42

5 270 194.83 193.62 193.80 70.07 -0.52 0.88 69.89 -0.34 1.05 0.30

6 271 182.70 180.84 182.13 64.84 -0.15 0.54 64.71 0.05 0.62 0.25

7 272 172.37 171.65 173.23 60.88 -0.92 0.48 60.68 -0.70 0.64 0.34

8 273 162.92 161.94 164.00 56.85 -0.78 0.46 56.73 -0.46 0.48 0.34

9 274 152.83 152.85 154.98 52.92 -1.45 0.58 52.84 -1.18 0.74 0.32

10 275 145.46 146.41 148.73 50.10 -2.03 0.51 49.97 -1.93 0.82 0.35

11 276 136.39 136.56 138.56 46.00 -1.64 1.20 45.71 -1.44 1.24 0.36

12 277 126.27 126.70 128.83 41.78 -1.82 1.36 41.37 -1.67 1.42 0.44

13 278 116.49 116.63 119.65 37.52 -1.52 0.93 36.97 -1.18 0.65 0.71

14 279 108.20 107.55 111.60 33.73 -0.88 0.42 33.38 -0.73 0.33 0.39

15 280 100.07 99.51 104.32 30.27 -0.81 -0.04 30.02 -0.97 0.01 0.31

16 281 90.91 90.64 95.90 26.41 -0.91 -0.27 26.15 -1.03 -0.05 0.36

17 282 79.89 79.08 85.16 21.46 -0.44 -0.66 21.90 -0.87 0.03 0.92

18 283 69.12 68.01 75.05 16.68 -0.08 -1.25 17.48 -0.73 -0.27 1.42

19 284 60.49 59.22 67.08 12.87 0.16 -1.81 13.71 0.05 -0.82 1.30

20 285 54.43 54.15 61.01 10.46 -0.64 -1.08 10.70 -0.27 -0.85 0.50

21 286 50.36 49.97 56.43 8.59 -0.66 -0.73 8.91 -0.05 -1.10 0.78

22 287 47.74 47.31 53.31 7.38 -0.71 -0.34 7.28 0.48 -1.23 1.49

Dmax 288 42.24 42.22 48.45 5.08 -0.94 -0.58 3.47 1.17 -3.37 3.85
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Figure C.1:The AGFA IT8.7/2 characterisation target scanned using an AGFA Arcus 2 flatbed scanner
with a gamma correction of 1/3.



Appendix D
Some printer gamuts

We show here some views in the CIELAB space of the colour gamuts of different printers, using
different paper types and dithering techniques. The gamuts are illustrated using a basis of5 � 5 � 5
target colours regularly distributed in the printer RGB/CMY printer space, by using the colour chart
of Figure D.1, and the triangulation algorithm described in Chapter 5. The rendering of the gamuts is
done using Matlab (Matlab Language Reference Manual, 1996).

In Figure D.2, we show the gamut of the Mitsubishi S340-10 sublimation printer. We see that the
gamut is very regular. The CIELAB-values are measured using a SpectraScan spectrophotometer, and
they are reported in Table D.1.

In Figure D.3, we show the gamut of the Epson Stylus 2 ink jet printer using coated paper. The
dithering is regular, performed by a Ghostscript driver. The CIELAB-values are obtained using a
scanner AGFA Arcus 2, calibrated by the methods described in Chapter 3. We see that this gamut is
comparable to the sublimation gamut.

In Figure D.4, we show the gamut of the Epson Stylus 2 ink jet printer using glossy paper. Error
diffusion dithering is performed using the printer driver for Windows delivered by Epson (a newer
version). We note that the gamut is very distorted when compared to the previous ones. This is
probably due to the fact that the printer driver incorporates a conversion from RGB monitor values to
CMYK.

In Figure D.5, we show the gamut of the Epson Stylus 2 ink jet printer using normal paper. As
expected, we note that the colours are much less saturated, compared to glossy paper. Another obser-
vation is that the black is far away from the other colours. It seems that this printer driver (the first
version we used, the one that was delivered with the printer) adds black ink in an abrupt manner when
approaching black.

In Figure D.6, we show the gamut of the Kodak sublimation printer. We see that the gamut is quite
large, but that it has quite strange behavior when compared to the Mitsubishi gamut. It is very
’rounded’.
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To conclude, we observe large differences in the sizes and shapes of the colour gamuts of different
printers, and also using the same printer with different paper and dithering methods.

Figure D.1: The regular5 � 5 � 5 color chart used for the printer characterization described in
Chapter 5, and for defining the colour gamuts of this appendix. The lower part of the chart is mainly
used for visual quality assessment.

Table D.1:Printer RGB values and CIELAB values measured using a SpectraScan spectrophotometer
for the5� 5� 5 regular colour chart printed on a Mitsubishi S340-10 sublimation printer

R G B L� a� b�

255 255 255 94.7911 1.5955 -6.8684
192 255 255 84.0797 -17.8578 -17.6875
128 255 255 72.0422 -31.8078 -26.2133
64 255 255 62.9013 -39.4568 -30.7851
0 255 255 55.3688 -43.4886 -33.0856

255 192 255 75.5800 32.1785 -21.2899
192 192 255 70.1576 7.3172 -26.5871
128 192 255 62.1554 -13.9569 -31.1581
64 192 255 55.8448 -26.3830 -33.7420
0 192 255 50.0107 -32.9923 -35.1696

255 128 255 59.6239 53.9842 -25.1015
192 128 255 55.1744 32.4066 -31.6210
128 128 255 48.8970 9.7969 -36.2631
64 128 255 44.0945 -5.1532 -38.7098
0 128 255 40.8377 -15.3952 -39.1232

255 64 255 49.3922 66.8936 -24.6462
192 64 255 44.3251 49.2984 -32.4310
128 64 255 37.9678 29.1272 -39.2814
64 64 255 32.1464 12.9999 -40.9025
0 64 255 32.0358 1.6803 -42.6085

255 0 255 42.7946 73.3206 -21.8379
192 0 255 37.2602 59.0166 -30.4858

continued on next page
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continued from previous page
R G B L� a� b�

128 0 255 29.6293 41.5856 -38.9437
64 0 255 25.5686 27.6855 -43.7222
0 0 255 23.4675 16.1338 -44.5828

255 255 192 93.1684 -6.8833 26.2514
192 255 192 81.9985 -27.1124 8.6954
128 255 192 69.9304 -41.1033 -6.4384
64 255 192 60.7626 -47.6620 -16.2789
0 255 192 53.9492 -50.2212 -21.6511

255 192 192 74.4967 23.0797 4.9723
192 192 192 68.7936 -1.3803 -4.9399
128 192 192 61.1589 -21.7049 -15.3098
64 192 192 54.5825 -33.2980 -22.3473
0 192 192 48.9658 -38.7392 -26.2695

255 128 192 59.4418 47.9730 -7.9950
192 128 192 54.6585 26.0822 -15.7178
128 128 192 48.4687 3.8596 -23.8192
64 128 192 43.6237 -11.1695 -29.3715
0 128 192 40.1234 -20.2493 -31.7986

255 64 192 49.5749 62.6982 -12.2663
192 64 192 43.8511 44.7651 -20.5739
128 64 192 37.3261 24.1746 -28.8352
64 64 192 33.1185 8.1827 -34.2998
0 64 192 31.4640 -3.2578 -36.1161

255 0 192 42.4879 70.1752 -11.6463
192 0 192 36.4176 55.2515 -20.5704
128 0 192 29.5067 37.8333 -30.2856
64 0 192 25.2595 22.8294 -36.3859
0 0 192 23.5805 11.5306 -38.5804

255 255 128 91.4948 -10.6066 57.2467
192 255 128 80.6532 -32.7740 39.8274
128 255 128 68.3913 -48.9341 20.0761
64 255 128 59.3573 -56.9432 6.3887
0 255 128 52.9891 -59.9529 -2.3397

255 192 128 73.8660 15.2095 35.1096
192 192 128 68.1522 -9.4638 24.6715
128 192 128 59.7129 -30.6848 10.0268
64 192 128 53.5371 -43.4988 -0.5847
0 192 128 48.2964 -49.2802 -7.9236

255 128 128 58.6989 41.0806 16.6695
192 128 128 53.6376 18.3041 8.5068
128 128 128 46.7449 -4.6495 -2.6147
64 128 128 42.7194 -20.7832 -10.6433
0 128 128 39.0482 -29.6854 -16.0468

continued on next page
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continued from previous page
R G B L� a� b�

255 64 128 48.7261 57.2471 9.5510
192 64 128 43.0867 38.4412 0.0501
128 64 128 36.3744 16.8608 -10.8185
64 64 128 32.9135 -0.6972 -18.1295
0 64 128 30.5845 -11.7242 -22.3896

255 0 128 42.4778 66.1599 6.5373
192 0 128 36.5380 50.4223 -2.6073
128 0 128 29.2820 31.2173 -13.7199
64 0 128 24.7424 15.0922 -21.9196
0 0 128 22.3717 3.5016 -26.2323

255 255 64 91.5884 -11.0630 76.6991
192 255 64 82.1921 -31.7721 61.6557
128 255 64 69.4131 -50.4391 42.0293
64 255 64 59.9342 -60.8450 27.1295
0 255 64 51.8248 -66.8276 15.8290

255 192 64 75.7238 11.1285 56.9625
192 192 64 70.5586 -11.6472 48.2367
128 192 64 61.4111 -35.2094 33.8942
64 192 64 53.3225 -49.1434 20.5018
0 192 64 46.8250 -56.1747 10.5789

255 128 64 60.1234 34.5927 39.5181
192 128 64 55.7033 13.8508 31.5727
128 128 64 48.0872 -10.0487 19.2921
64 128 64 42.5174 -27.0552 9.1625
0 128 64 38.0642 -37.9667 1.7805

255 64 64 49.4438 51.9812 28.2829
192 64 64 44.2822 34.3503 20.4524
128 64 64 36.7970 11.0085 8.7455
64 64 64 32.1028 -6.7321 -0.3339
0 64 64 28.9294 -19.3686 -6.6491

255 0 64 42.2257 61.9382 23.3849
192 0 64 36.8812 47.0011 15.3282
128 0 64 28.9768 26.3447 3.3116
64 0 64 23.9661 8.7011 -5.3829
0 0 64 21.0778 -3.8731 -11.4199

255 255 0 90.0119 -9.7284 89.5759
192 255 0 80.9503 -29.9992 75.8667
128 255 0 67.7903 -50.1668 56.4221
64 255 0 58.1977 -61.8021 41.2901
0 255 0 50.7141 -68.3713 28.8505

255 192 0 75.5604 9.5194 71.6834
192 192 0 70.0461 -12.0482 63.1327
128 192 0 60.5593 -36.1611 48.6978

continued on next page
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R G B L� a� b�

64 192 0 52.7365 -50.9991 35.7617
0 192 0 46.3704 -59.5632 24.3783

255 128 0 59.7103 32.5537 54.0855
192 128 0 55.1988 12.8982 47.1941
128 128 0 47.5119 -11.3343 35.0374
64 128 0 41.9822 -30.1078 24.8570
0 128 0 37.3402 -42.3133 15.9954

255 64 0 48.7629 49.4398 42.9982
192 64 0 43.8249 32.7111 35.9934
128 64 0 36.5525 9.0782 24.3247
64 64 0 31.6048 -10.3024 14.7665
0 64 0 28.4563 -24.0073 7.1881

255 0 0 41.6645 60.2547 37.0043
192 0 0 36.4131 45.2382 29.1444
128 0 0 28.6380 24.6906 17.2451
64 0 0 23.3157 5.9978 7.7766
0 0 0 20.9685 -7.3417 0.7809



200 Some printer gamuts

−80 −60 −40 −20 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

b*

L*
Side view of Mitsubishi sublimation gamut

−60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

100

b*

a*

Top view of Mitsubishi sublimation gamut

Figure D.2:Two views of the colour gamut of the Mitsubishi S340-10 sublimation printer.
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Figure D.3:Two views of the colour gamut of the Epson Stylus 2 ink jet printer using coated paper.
The dithering is performed using a Ghostscript driver with regular dithering.
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Figure D.4:Two views of the colour gamut of the Epson Stylus 2 ink jet printer used on glossy paper.
The dithering is performed using the Epson printer driver for Windows.
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Figure D.5:Two views of the colour gamut of the Epson Stylus 2 ink jet printer using normal paper.
The dithering is performed using the Epson printer driver for Windows.



204 Some printer gamuts

−80 −60 −40 −20 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

b*

L*
Side view of Kodak sublimation gamut
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Figure D.6:Two views of the colour gamut of the Kodak sublimation printer
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Gamut mapping techniques

The colour gamut of a device such as a printer is defined as the range of colours that can be reproduced
with this device. Gamut mapping is needed whenever two imaging devices do not have coincident
colour gamuts, in particular when a given colour in the original document cannot be reproduced with
the printer that is used. Several researchers have addressed this problem, see for example the following
references: (Stoneet al., 1988, Gentileet al., 1990, Stone and Wallace, 1991, Pariser, 1991, Hoshino
and Berns, 1993, MacDonald, 1993b, Wolskiet al., 1994, Spauldinget al., 1995, MacDonald and
Morovič, 1995, Katoh and Ito, 1996, Luo and Moroviˇc, 1996, Montag and Fairchild, 1997, Tsumura
et al., 1997, Morovic and Luo, 1997; 1998).

We present here a resume of the gamut mapping techniques most frequently reported in the literature.
First differentgamut clippingtechniques are presented. Gamut clipping is absolutely necessary in any
image reproduction system, to assign a reproducible in-gamut colour to any out-of-gamut colour. In-
gamut colours are not modified. Then we present different continuous gamut mapping transformations
that modifies all colours of the image, both in-gamut and out-of gamut colours. These transformations
are intended to reduce the unwanted effects of gamut clipping, by assuring smooth and continuous
colour changes.

1. Gamut clipping. This is the basic gamut mapping technique that consists in clipping out-of-
gamut colours to a colour on the gamut boundary. Colours that are inside the gamut are not
changed. Different strategies might be employed, as illustrated in Figure E.1.

(a) Orthogonal clipping. This is the clipping that induces the smallest perceptual�Eab

error. However it might give unwanted hue changes.

(b) Constant-luminance clipping.Out-of-gamut colours are clipped to the nearest boundary
colour with the same hue and luminance. That is, only the saturation is changed. However,
this method induces problems for colours with luminance that exceeds the minimum or
maximum luminance of the reproduction gamut.

(c) Radial clipping. Out-of-gamut colours are clipped to the nearest gamut boundary colour
in the direction towards the mid-gamut pointL� = 50, a� = b� = 0.
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(d) Truncating in output colour space. This clipping method consists in simply truncating
the colour coordinates in the output (CMY/RGB printer) colour space. F.ex. if the result
of a transformation from CIELAB to CMY results in[C;M; Y ] = [�10%; 50%; 110%],
this would be truncated to[C;M; Y ] = [0%; 50%; 100%]. This method does not provide
any control of visual colour difference, as opposed to the previously mentioned methods.

2. Gamut compression.It is generally regarded as more important to preserve the relative colour
differences between all colours, rather than to preserve the absolute coordinates of those in
gamut.(MacDonald and Moroviˇc, 1995) To obtain this, gamut compression can be applied to
all colours of an image by radial scaling of all coordinates in CIELAB towards a mid-gamut
point, as shown in Figure E.2. The compression factor might be determined dependent on the
image such that all colours of the image is compressed to be in gamut, or chosen as a standard
value, in which case care must be taken to clip properly colours that are still out of gamut after
compression, such asC0

1 in Figure E.2.

3. Lightness compression.This is a one-dimensional mapping along theL� axis such that the
range of luminances in the original image is mapped onto the range of luminances in the repro-
duction gamut. This method is also called tonal mapping.

4. White point adaption. This technique accounts for the colour of the printing paper by apply-
ing a geometrical translation or deformation of the colours of the original image such that the
white of the original image, or eventually the white point of the input technology, is reproduced
as clean paper with no ink. This corresponds torelative colorimetryin the ICC terminology
(ICC.1:1998.9, 1998).

All these gamut mapping techniques can be combined to find the best compromise to solve the gamut
mismatch problem.
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Figure E.1:Gamut clipping methods.C Represents the original out-of-gamut colour,Ca the colour
after orthogonal clipping,Cb after constant-luminance clipping, andCc after radial clipping.
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Appendix F
Bibliography on the dimensionality of
spectral reflectances

How many components are needed to represent the spectral reflectance of a surface? What is the
dimension of a reflectance spectrum? how many channels are needed for the acquisition of a spectral
reflectance? Such questions have been discussed extensively in the litterature. We have done a survey
of the literature concerning this question. See Section 6.4 for our analysis of this subject.

Munsell spectra

■ Possibly the first attempt to fit a linear model to a set of empirical surface spectral reflectances
was performed by Joseph Cohen (1964) of the University of Illinois back in 1964. He analyses
a subset of 150 out of 433 Munsell chips, and concludes that they depend on only three com-
ponents, which account for 99.18% of the variance. (92.72, 97.25, 99.18, 99.68). He do not,
however evaluate spectral reconstruction from these 3 values. Furthermore it may be noted that
Cohen’s analysis is applied to a quite small subset of the Munsell colours.

■ Eemet al. (1994) of Kum Oh National University of Technology and Dae Jin University in
Korea find that the spectral reflectance functions of the Macbeth Color Checker can be re-
constructed very closely by the first four characteristic vectors calculated by PCA from the
reflectance spectra of 1565 glossy Munsell chips. The first eight characteristic vectors and
eigenvalues (5.1775, 0.3695, 0.1193, 0.0204, 0.0091, 0.0050, 0.0031, 0.0022) are reported.
The original and reconstructed spectra are represented in the CIE chromaticity diagram, and no
quantitative data is given for the errors.

■ Maloney (1986) of the University of Michigan applies the same analysis as Cohen to a more
complete set of 462 Munsell surface spectral reflectances, as well as to a set of natural spectra
measured by Krinov (1947). The proportions of variance accounted for by a linear model with
2-6 parameters are given to be 0.9583, 0.9916, 0.9959, 0.9985 and 0.9992. The linear model
based on Munsell data is found to be quite appropriate also when applied to the Krinov data.
He concludes that a linear model of five to seven paramers is appropriate.
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■ Burns and Berns (1996) of the Munsell Color Science Laboratory at the Rochester Institute of
Technology, NY present a seven-channel camera for multispectral image capture using a set of
seven interference filters manufactured by Melles Griot, sampling the visible wavelength range
at intervals of approximately 50nm. They evaluate three methods of spectral reconstruction
from the seven camera signals: cubic spline interpolation, modified-discrete-sine-transform
(MDST) interpolation (Keusen, 1994, Keusen and Praefcke, 1995), and principal component
analysis (PCA). The PCA is applied using Munsell colours, apparently using only the first five
characteristic vectors. The 7 camera responses is mapped onto the 5-dimensional spectral rep-
resentation using a LMS approach.

The procedures are evaluated using a MacBeth Color Checker chart, with�Eab as error mea-
sure, calculated from the spectra using CIE Illuminant A and the2Æ observer, using 10nm spec-
trophotometric measurements as reference. A direct mapping from the seven camera signals to
CIELAB using a first order least-square model is also evaluated. The PCA method outperforms
the rest; giving mean and max�Eab errors of 2.2 and 4.7.

In (Burns, 1997) it is stated that at least six basis vectors are needed for critical applications
where an average error of�Eab � 1:0 is needed.

■ In (Jaaskelainenet al., 1990), Jaaskelainen, Parkkinen, and Toyooka performs an analysis of
the Munsell chips reported earlier (Parkkinenet al., 1989) together with a set of 218 naturally
occuring spectral reflectances, to form two linear bases by PCA. They find that the basis deter-
mined using the Munsell spectra can be used to represent the natural spectra. However, more
components are needed to attain the same accuracy.

■ In a recent study, Lenz and̈Osterberg of Link¨oping University together with the fins Hiltunen,
Jaaskelainen and Parkkinen (Lenzet al., 1995; 1996a) investigate three databases of spectral
reflectances, the Munsell colours of Parkkinenet al. (1989), a new set of 1269 Munsell colours
measured by a more accurate (1nm) spectrophotometer, and a set of 1513 spectra based on the
NCS (Hårdet al., 1996) colour system. They find by PCA that the databases have very similar
statistical properties, and that the first few eigenvectors developed from the different databases
are highly correlated. They further present a class of systems that find a set of positive basis
vectors for these spaces with only slightly higher reconstruction errors compared to the PCA
basis. No conclusion is drawn on the number of basis spectra needed, but 6 is used as an
example, giving a reconstruction error of about 4%.

■ Parkkinenet al. (1989) measured and analysed by PCA/K-L a set of 1257 reflectance spectra
of the Munsell chips measured by a acusto-optic spectrophotometer. Contrary to both Cohen’s
(Cohen, 1964) and Maloney’s (Maloney, 1986) previous analyses, it was found that as many as
eight eigenvectors were necessary, giving mean and max spectral reconstruction errors of 0.008
and 0.02, respectively. Interesting graphical representations of the errors presented include the
error bands, that is the area between the maximum positive and maximum negative wavelenght-
wise reconstruction error. The cumulative information content is not reported, but it may be
calculated approximatively from the eigenvalues of the correlation matrix, (1129.2, 72.7, 28.8,
12.7, 5.0, 3.4, 2.2, 0.8), giving (0.900, 0.958, 0.981, 0.991, 0.995, 0.998, 0.999, 1)1.

■ Wanget al. (1997) analyses the database of 1269 Munsell spectra mentioned above (Parkkinen
et al., 1989). By a neural network approach they design a set of 8 filters having strictly positive

1Remark that this is surely an overestimation of the cumulative information content, since the variance of the eigenvec-
tors beyond 8 is not taken into account.
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spectral reflectances. The space spanned by these filters are found (by visual comparison) to be
quite close to the space spanned by the first 8 optimal basis vectors calculated by Karhunen-
Loeve expansion (PCA). The mean and maximal spectral reconstruction error using these 8
filters is found to be 0.07% and 2.6%, respectively.

See also (Hauta-Kasariet al., 1998) which is more complete than the above.

Natural reflectances

■ Dannemiller (1992) of the University of Wisconsin makes an attempt to answer the question
of how many basis functions that are necessary to represent the spectral reflectance of natural
objects. His analysis is applied to the set of 337 spectral reflectance functions measured by Kri-
nov (Krinov, 1947). He realises that statistical measures based only on the spectral data might
not be appropriate to evaluate the quality of the approximation of a spectrum by a reduced set
of basis functions. He propose to apply anideal observer analysiswith which an ideal observer
was placed at the level of photon catch in the foveal photoreceptors of a typical human eye. The
performance is evaluated using a measure of visual colour matchingd0 based on the number of
photons absorbed by the cones. Based on this measured0, or rather on its rate of decrease of
d0, as the absolute value depends on irrelevant factors such as the level of illuminance etc., he
comes to the conclusion that three PCA eigenvectors are necessary and probably sufficient for
representing the spectral reflectance functions of natural objects.

In his analysis, an interesting illustration is presented, namely the frequency distribution show-
ing the number of basis functions required in an approximation to produce a givend0, this
revealing a bimodality of his data set. A further analysis suggests that inanimate materials have
simpler reflectance spectra than animate materials.

■ Vrhel et al. (1994) present a new set of 354 spectral reflectances of an ensemble of different
materials, including 64 Munsell chips, 120 Du Pont paint chips, and 170 reflectance spectra
from various natural and man-made objects. These data are proposed as a replacement of the
data measured in 1947 by Krinov (1947), as this dataset is somewhat limited. A principal
component analysis is performed using these data to create the covariance matrix. They report
the reconstruction error using from 3 to 7 basis functions determined by PCA. The errors are
measured as average and maximum�Eab and square spectral error. The square errors in the
CIE xy chromaticity diagram are also reported graphically.

We note that even with seven basis functions, the maximum�Eab = 5:05. The cumulative
information content is not reported, but may be calculated from the spectra found atftp:
//ftp.eos.ncsu.edu/pub/spectra/ to be (0.4471, 0.6810, 0.8053, 0.8536, 0.8874,
0.9110, 0.9304, 0.9452 0.9567, 0.9661, 0.9729, 0.9782, 0.9828, 0.9866, 0.9893, 0.9915). We
note that as much as 16 basis vectors have to be taken into account if 99% of the information
content is to be preserved.

■ Praefcke and Keusen (1995) of Aachen University of Technology propose to represent re-
flectance spectra using a set of basis function optimised to minimise the mean or maximum
�Eab errors under a set of different illuminants. Two different nonlinear stochastic optimi-
sation algorithms are evaluated, and the results are compared to those obtained by PCA. The
analysis is applied on the dataset as published by Vrhelet al. (1994). They obtain generally
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smaller errors when compared to the PCA approach. Note however that as a result of choos-
ing the mean or maximum�Eab error as optimisation criterion, the other error measure often
turns out to be greater compared to PCA. It is concluded that five basis vectors seems to be
appropriate.

This analysis is pursued in (Praefcke, 1996) where it is noted that the basis functions optimised
as described above do have a high degree of cragginess or roughness. This is not desirable, and
Praefcke proposes thus a solution where the criterion to be minimised comprises both�Eab and
a measure of roughness. The resulting basis functions are only slightly less performant than the
optimal ones.

■ Keusen and Praefcke (1995), Keusen (1996) of Aachen University of Technology propose a
multispectral colour system with an encoding format compatible with the conventional tristim-
ulus model. Twelve (Keusen and Praefcke, 1995) or fourteen (Keusen, 1996) interference filters
are used for acquisition, giving reconstruction errors lower than�Eab = 1. They evaluate the
reconstruction error of 354 spectra measured by Vrhelet al. (1994) in terms of�Eab under
different illuminants, using their basis spectra compared to basis spectra issued from a PCA
anaysis, and from 3 to 7 components. When defining that the maximal error should be less than
�Eab = 3, seven components are needed when only natural illuminants are used, but up to 10
when illuminants such as F2 is introduced.

Human skin reflectances

■ In an analysis by Imaiet al. (1996b;a) from the group of Miyake at the university of Chiba,
a set of 108 reflectance spectra of skin in faces of 54 Japanese woman are analysed by PCA.
The cumulative contribution ratios of the PCs is presented, and it is noted that the three first
components represent 99.5% of the signal. They proceed thus to an estimation of spectral
reflectance from tristimulus values, and from a 3-channel HDTV camera.

Painting reflectances

■ Tsumura, Miyake and others from the university of Chiba (Haneishiet al., 1997, Yokoyama
et al., 1997) perform a PCA on a set of 147 oil paint samples. They present the cumulative
contribution ratio of the principal components, and conclude that the spectral reflectance of the
paintings can be estimated 99.32% by using a linear combination of 5 principal components.
(Remark that it is not completely clear from (Yokoyamaet al., 1997) if the analysis is based
merely on the 147 oil paint samples, or on ’several thousands colour patches’) They decide
thus to acquire spectral images using a CCD camera with 5 filters. They present a simulated
annealing method to design five optimal Gaussian filters, giving a mean and max�Euv error
applied to the 147 oil paint samples of 0.22 and 0.63, respectively. They also present an optimal
choice of 5 filters from a set of 24 available filters by an exhaustive search, giving an average
colour difference of�Euv = 1:16.

■ Maı̂treet al.(1996) of the Ecole Nationale Sup´erieure des T´elécommunications in Paris present
a method for the reconstruction of the spectral reflectance function of every pixel of a fine-art
painting, from a series of acquisitions made through commercially available chromatic filters.
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Procedures for the choice of filters is presented. It is stated that the 12 largest eigen-vectors
represent 98.2% of the global energy, and that the use of 10 to 12 acquisition filters is necessary
for adequate spectral reconstruction.

■ Garcı́a-Beltrán et al. (1998) of the University of Granada, Spain, performs an analysis of a set
of 5574 samples of acrylic paint on paper. The samples were generated by a mixture of 24 basic
commercial acrylic colours for artists. They found that the first seven vectors of the linear basis
were sufficient for a more than adequate mathematical representation of the spectral-reflectance
curves. They use a goodness-fitting coefficient (GFC) to evaluate the quality of fit. They also
perform another analysis dividing the data into five hue groups, red, yellow, green, blue, and
purple. By doing this they reduce the number of vectors needed.

Other spectra

■ Young (1986) found that the first three basis spectra accounted for 93% of the variability in a set
of spectra constisting of 441 twelve-component spectra of macaque lateral geniculate nucleus.

■ In an approach to classification of optical filters, the transmission spectra of a set of 23 blue
transparent filters was analysed by Karhunen-Loeve (PCA) analysis by Parkkinen and Jaaske-
lainen (1987) of the University of Kuopio, Finland. The cumulative information content for the
first ten eigenvectors is reported (79.5, 89.7, 94.1, 98.0, 99.0, 99.5, 99.8, 99.9, 100.0, 100.0)
along with the reconstruction error presented in a figure. The reconstruction error decreases
rapidly, from approximatively 5.5% using only one eigenvector, via 3% using three and 1%
using six eigenvectors. Another interesting measure which is presented graphically is the min-
imum length fo the projections to the subspace formed from the sample set. This increases
quite rapidly towards a value of one. For their classification purpose, the representation of the
spectral transmittances using three eigenvectors was found to be apropriate.

■ Satoet al. (1997) from Toyohashi University of Technology, Japan, estimates the spectral re-
flectance from RGB values using PCA and a neural network. They analyse a set of spectral
reflectances of 1803 JIS (Japan Industrial Standard) colour chips. They analyse the dimension-
nality of the data by PCA. Using three parameters, 99.45% of the signal variance is accounted
for, and the mean and maximal reconstruction error expressed in�Eab underD50 illuminant is
of 2.92 and 21.67, respectively. The corresponding numbers using four parameters is 0.9989,
1.01 and 9.59. Based on these results, they find that a representation using the first four prin-
cipal component vectors is appropriate. In a practical experiment with RGB acquisition under
unknown illuminant the accuracy of conversion from RGB to 4-dimensional surface reflection
using a trained NN is reported to be better than 98.5%, giving mean colour differences between
measured and estimated spectral reflectances ranging from about�Eab = 4:74 to 7.17.

In an earlier study by Araiet al. (1996), their NN colour correction method is compared to
two classical methods based on PCA and white point mapping. The NN method outperforms
the other methods. To explain this result, they compare the spectral reconstruction error using 3
and 4 principal components with their NN approach. The MSE (root?) on 1115 samples printed
by a dye sublimation printer is found to be 0.123% using 3 PCs, 0.0691% using 4, and 0.0364
using NN.
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Realisation of multispectral acquisition systems

For a practical realisation of a multispectral scanner using filters, the dimensionnality of reflectances
is highly relevant when designing the system, in particular when choosing the number of acquisition
channels. Also here, the choices found in the literature are many:

■ Imai et al. (1996b;a) uses only three channels, see above.

■ Another analysis by Shiobaraet al. (1995; 1996) from the same research group is applied to a
set of 310 spectral reflectances of the gastric mucuos membrane. The cumulative contribution
ratio is presented, and also here the three first components represent 99.5% of the signal. Given
the actual spectral characteristics of an electronic endoscope camera, including the three colour
filters, a spectral reconstruction is simulated on the 310 samples, giving mean and max�Euv

reconstruction errors of 2.66 and 9.14, respectively. A practical realisation is done.

■ Chen and Trussell (1995) of North Carolina State University presents an approach to design-
ing colour filters for a colorimeter that uses multiple internal illuminants and multiple filtered
detectors. A set of four filters were used, giving an average�Eab of 2.3 for photometric mea-
surements. The correlation matrix was obtained from a Dupont reflectance data set.

■ Haneishiet al. (1997), Yokoyamaet al. (1997) use 5 filters, see above.

■ Kollarits and Gibbon Kollarits and Gibbon (1992) tested the use of five filters for a television
application, achieving significant improvement in colour errors compared to a typical three-filter
camera.

■ Tominaga (1996; 1997) of the Osaka Electro-Communication University presents a multichan-
nel vision system comprising six colour channels, designed to recover both the surface spectral
reflectance and the illuminant spectral power distribution from the image data. Six bandpass
Kodak Wratten filters, noted B, BG, G, Y, R and R2, having peak transmission values spread
over the visible spectrum are used. The choice of 6 channels were motivated from literature
studies (Maloney, 1986, Parkkinenet al., 1989, Vrhelet al., 1994) where it is stated that spec-
tral reflectances of natural and artificial objects may be represented using five to seven basis
functions. However, when modeling spectral reflectance, Tominaga finds that a dimension of
5 is appropriate. The average reflectance estimation error in an experiment using two scenes
containing three cylinders of coloured plastic and paper is reported to be 0.023 and 0.032, re-
spectively. Note that this systems aims for colour constancy, in that it estimates the illuminant
as well, by taking into account specular reflections in the scene.

■ Saunders, Cupitt and Martinez (Saunders and Cupitt, 1993, Martinezet al., 1993) at the National
Gallery of London presents an image acquisition system using a set of seven broad-band nearly
Gaussian filters. The filters have peak transmittances ranging from 400 to 700 nm in steps of
50 nm, and a half-height bandwidth of about 70 nm.

■ Burns and Berns (1996) use seven filters, see previous description.

■ Abrardo et al. (1996) at Universit di Firenze, Italy, presents a multispectral scanner using 7
colour filters. Using this scanner, and a colour calibration, they obtain a colour accuracy of
�Eab = 2:9, evaluated on a subset of 20 patches of the AGFA IT8.7/3 colour target.
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■ Vrhel and Trussell (1994) evaluates the colorimetric quality of an aquisition system using from
3 to 7 optimised filters. A practical realisation is presented in (Vrhelet al., 1995).

■ Hardeberget al. (1998a; 1999) propose five to ten channels.

■ Maı̂tre et al. (1996) propose ten to twelve channels.
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Appendix G
Resuḿe long

Dans ce r´esumé nous reprenons bri`evement et dans le mˆeme ordre les diff´erentes parties successives
de la thèse.

Introduction

Le but de ce travail est de d´evelopper des m´ethodes sp´ecifiques pour l’acquisition et la reproduction
d’images num´eriques de tr`es haute qualit´e colorimétrique. Pour parvenir `a ce but, il est n´ecessaire de
maı̂triser toute la chaˆıne du traitement de l’information couleur. Dans le premier chapitre nous don-
nons la motivation pour ce travail, et nous pr´esentons les grandes lignes ainsi que quelques pr´ecisions
concernant la notation employ´ee dans le document.

Couleur et imagerie

Dans la deuxi`eme chapitre nous pr´esentons diff´erentséléments de base de l’interaction entre la lumi`ere
et des surfaces, ainsi que quelques principes de la vision color´ee au sens de la perception. Les lois
de mélange sont d´ecrites ainsi que des standards CIE (Commission Internationale de l’Eclairage)
qui en sont d´eduites. L’espace des couleurs CIELAB est d´ecrit de mani`ere plus d´etaillée car il est
constamment utilis´e dans les diff´erentes parties de ce travail.

La seconde partie de ce chapitre porte sur l’imagerie couleur. Nous constatons que l’information
couleur est trait´ee différemment selon les p´eriphériques d’acquisition ou de reproduction des im-
ages. Par exemple une mˆeme image num´erique imprimée sur deux imprimantes diff´erentes procure
généralement des r´esultats visuellement tr`es différents. Il est en effet tr`es difficile d’assurer la fid´elité
des couleurs dans des syst`emes d’imagerie couleur ouverts et complexes. Pour tenter de r´esoudre ce
problème, nous exposons le principe de la ”gestion de la couleur” (color management) dans lequel
chaque p´eriphérique est caract´erisé par rapport `a un standard ind´ependant de tout p´eriphérique et
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fondé sur le système visuel humain. Différentes méthodes pour la caractérisation colorimétrique des
périphériques d’acquisition et de reproduction des images sont rapidement présentées. Finalement
nous évoquons l’i dée d’utiliser plus que trois canaux pour représenter une image couleur.

Caractérisation colorimétrique d’un scanner

Le troisième chapitre aborde la caractérisation colorimétrique d’un système d’acquisition d’image
par scanner numérique. Une correspondance entre l’espace de couleur RVB propre au scanner et
l’espace de couleur indépendant CIELAB est recherchée. Il nous faut pour cela définir une fonc-
tion [L�; a�; b�]= g(R;V;B ) . Généralement une représentation analytique exacte de cette fonction
n’existe pas et nous allons donc essayer de l’approximer.

L’algorithme proposé pour la caractérisation colorimétrique d’un scanner est le suivant (voir figure
3.1) : une mire de couleur standardisée est d’abord numérisée, puis, pour chaque échantillon de
la mire, les réponses RVB du scanner sont comparées avec les valeurs colorimétriques CIELAB
mesurées. A partir de ce jeu de données, nous modélisons la réponse du scanner par une méthode
de régression polynomiale d’ordre 3, illustrée par l’ équation 3.18.

Unedesoriginalitésdenotreapprocheest d’optimiser directement dansl’espaceCIELAB, sanspasser
par l’intermédiaire de l’espaceCIEXYZ : l’erreur ainsi minimiséecorrespond assez bien à l’erreur vi-
suelle. Nousavonsobtenu detrèsbonsrésultatsavec cetteméthode, l’erreur�Eab résiduellemoyenne
de 1 étant à comparer à une valeur approximative de 5 obtenue avec une méthode classique. La
différence de couleur�Eab correspond à la distance Euclidienne dans l’espace CIELAB, le seuil
de perception d’une différence de couleur ayant été évalué par des expériences de psychophysique
commeétant égal à un�Eab de2,3.

Acquisition des imagesde hautequalité

Lechapitre 4 est consacré à laprésentation d’un systèmed’acquisition d’images couleur de trèshaute
qualité que nous avons misau point dans le contexte d’œuvres d’art. Lorsdu processus d’acquisition
numérique, l’image d’un tableau est obtenue directement à partir de l’œuvre sans passer par le sup-
port photographique, à l’aide d’une camera CCD à très haute résolution. Comparée à une approche
par photographie classique, cette approche numérique directe nous permet de mieux contrôler les
paramètres de l’acquisition et atteindre ainsi une plus grande qualité de l’image et une plus grande
fidélité des couleurs.

Desprocédures rigoureuses decalibrage d’unecaméranumérique dehaute résolution sont proposées,
dans lesquelles chaque cellule du CCD est caractérisée et corrigée. Nous tenons compte ensuite des
inhomogénéités de l’ éclairage et des aberrations chromatiques du système optique, pour finalement
corriger la couleur par une des méthodes décrites dans lechapitre précédent.

Commeapplication, nousavons réalisé unenumérisation directe de trèshaute qualité dehuit desplus
célèbres toiles de J.-B. Corot (1796-1875) pour la réalisation d’un cédérom édité par la Réunion des
Musées Nationaux.
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Caractérisation colorimétrique d’une imprimante

Dans le chapitre suivant, une m´ethode originale pour la caract´erisation colorim´etrique d’une impri-
mante est pr´esentée. Elle met en œuvre des techniques de g´eométrie algorithmique 3D pour assurer
la conversion de tout point de couleur sp´ecifié dans l’espace colorim´etrique CIELAB en un point
dans l’espace de couleur CMJ propre `a l’imprimante. Elle permet ´egalement de prendre en compte le
problème des couleurs non imprimables.

Nous construisons deux structures tridimensionnelles formant une partition de l’espace en deux en-
sembles de t´etraèdres, la structure interne et la structure externe. La structure interne couvre l’ensemble
des couleurs reproductibles par l’imprimante, appel´e solide des couleurs, et l’union des deux struc-
tures couvre enti`erement le domaine de d´efinition de l’espace CIELAB. Ces structures nous permet-
tent de déterminer facilement si une couleur est `a l’intérieur où à l’extérieur du solide des couleurs,
d’appliquer tout type de proc´edé de ”gamut mapping” si n´ecessaire, et puis de calculer par interpo-
lation tétraédrique non-uniforme les valeurs CMJ correspondantes. Nous ´etablissons donc ainsi un
modèle inverse de l’imprimante.

Notre méthode consiste `a sortir sur l’imprimante `a caract´eriser une mire num´erique couvrant le solide
de couleurs, puis `a l’analyser colorim´etriquement pour d´eterminer les valeurs CIELAB de chacune
des plages de couleur de la mire (voir figure 5.1).

Nous construisons ensuite une triangulation de Delaunay 3D dans l’espace CMJ et la transportons
dans l’espace CIELAB (figure 5.2). Nous pouvons alors calculer, pour chaque point de couleur
CIELAB du solide des couleurs, les valeurs CMJ correspondantes par interpolation t´etraédrique des
valeurs CMJ associ´ees aux sommets du t´etraèdre englobant ce point de couleur.

Pour traiter les couleurs non-imprimables, c’est `a dire situées hors du solide des couleurs, nous util-
isons la structure externe. Sa construction g´eométrique met en jeu six points fictifs (figure 5.3) dont
la position dans l’espace CIELAB doit ˆetre soigneusement d´efinie pour garantir la validit´e de la tri-
angulation globale d´efinie sur l’ensemble des deux structures. Lorsqu’un point de couleur est hors
du solide des couleurs, nous pouvons alors facilement effectuer un proc´edé dit de ”gamut mapping”
par la détermination de la meilleure couleur imprimable en utilisant une technique de navigation de
tétraèdre en t´etraèdre au sein des deux structures 3D. Ainsi, nous pouvons calculer pour tout point
contenu dans le domaine de d´efinition de l’espace CIELAB les valeurs CMJ imprimables associ´ees.

La méthode propos´ee aété brevetée et elle est actuellement utilis´ee dans des produits industriels de
gestion de couleur.

Acquisition des images multispectrales : Th́eorie et simulations

Pour atteindre une pr´ecision et une fid´elité des couleurs encore plus grandes, nous avons men´e une
étude sur l’acquisition d’images multispectrales `a l’aide d’une cam´era numérique et d’un ensemble de
filtres chromatiques. Le sixi`eme chapitre porte sur des aspects th´eoriques d’un tel syst`eme, et plusieurs
méthodes pour assurer la qualit´e tant colorimétrique que spectrale sont propos´ees et valid´ees par des
simulations.
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D’abord nousproposonsun modèlespectral d’un tel systèmed’acquisition d’imagesmultispectraleset
nous évaluons différentes méthodes pour l’estimation des paramètres du modèle àpartir des réponses
caméra sur des échantillons de réflectances spectrales connues. Cette analyse est faite en présence
de bruit de quantification. Nous proposons en particulier une nouvelle méthode pour sélectionner un
nombre réduit d’ échantillons appropriés pour cette caractérisation spectrale.

Ensuite, nous évaluons et testons différentes méthodes pour la reconstruction de la réflectance spec-
trale du point de lasurface de l’objet imagé en chacun des pixels de l’image.

Basésur uneanalysestatistiquedesensemblesderéflectancesspectrales, nousproposonsuneméthode
nouvellepour lasélection d’un ensembledefiltrescolorés fondésur l’orthogonalité desmesuresissues
des différents filtres. Cette sélection est optimisée pour un ensemble donné : caméra, illuminant, et
réflectances spectrales. Nous atteignons ainsi une très bonne qualité spectrale et colorimétrique.

Dans la dernière partie de ce chapitre nous présentons une application dans lequel l’imagerie multi-
spectrale présente plusieurs avantages par rapport à l’imagerie trichrome classique ; lasimulation des
couleurs d’une scène vue sous différents illuminants.

Acquisition des imagesmultispectrales : Expérimentation

Leseptième chapitre décrit lamiseen œuvred’un systèmed’acquisition des imagesmultispectrales à
l’aided’unecaméraCCD monochromeet d’un filtreaccordable àcristaux liquides. Cefiltrepermet de
sélectionner un grand nombredetransmittancesspectrales lelong du domainevisibleet d’ajuster ainsi
la sensibilité spectrale du système d’acquisition selon les besoins. Ce système offre ainsi beaucoup
plus de flexibili té que lasolution plus conventionnelle utilisant une roue à filtres interférentiels.

Cette expérimentation nous a permis de valider le travail théorique présenté au chapitre précédent.
Il nous a aussi rappelé l’importance du bruit d’acquisition. Ceci nous a incités i) à proposer un
nouveau modèled’acquisition d’image, avec un facteur denormalisation séparé pour chaquecanal, ii)
à proposer une nouvelle approche pour l’estimation d’une réflectance spectrale à partir des réponses
caméra, et iii ) à considérer l’utilisation des techniques de régression plus simples pour convertir les
réponses caméra directement en valeurs colorimétriques.
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