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Abstract

The goal of the work reported in this dissertation is to develop methods for the acquisition and re-
production of high quality digital colour images. To reach this goal it is necessary to understand and
control the way in which the different devices involved in the entire colour imaging chain treat colours.
Therefore we addressed the problencaibrimetric characterisatiorof scanners and printers, provid-

ing efficient and colorimetrically accurate means of conversion between a device-independent colour
space such as the CIELAB space, and the device-dependent colour spaces of a scanner and a printer.

First, we propose a new method for the colorimetric characterisation of colour scanners. It consists
of applying a non-linear correction to the scanner RGB values followed by a 3rd order 3D polyno-
mial regression function directly to CIELAB space. This method gives very good results in terms of
residual colour differences. The method has been successfully applied to several colour image acqui-
sition devices, including digital cameras. Together with other proposed algorithms for image quality
enhancements it has allowed us to obtain very high quality digital colour images of fine art paintings.

An original method for the colorimetric characterisation of a printer is then proposed. The method
is based on a computational geometry approach. It uses a 3D triangulation technique to build a tetra-
hedral partition of the printer colour gamut volume and it generates a surrounding structure enclos-
ing the definition domain. The characterisation provides the inverse transformation from the device-
independent colour space CIELAB to the device-dependent colour space CMY, taking into account
both colorimetric properties of the printer, and colour gamut mapping.

To further improve the colour precision and colour fidelity we have performed another study con-
cerning the acquisition of multispectral images using a monochrome digital camera together with a
set of K > 3 carefully selected colour filters. Several important issues are addressed in this study.
A first step is to perform a spectral characterisation of the image acquisition system to establish the
spectral model. The choice of colour chart for this characterisation is found to be very important, and
a new method for the design of an optimised colour chart is proposed. Several methods for an opti-
mised selection of colour filters are then proposed, based on the spectral properties of the camera, the
illuminant, and a set of colour patches representative for the given application. To convert the camera
output signals to device-independent data, several approaches are proposed and tested. One consists
of applying regression methods to convert to a colour space such as CIEXYZ or CIELAB. Another
method is based on the spectral model of the acquisition system. By inverting the model, we can es-
timate the spectral reflectance of each pixel of the imaged surface. Finally we present an application
where the acquired multispectral images are used to predict changes in colour due to changes in the
viewing illuminant. This method of illuminant simulation is found to be very accurate, and it works
well on a wide range of illuminants having very different spectral properties. The proposed methods
are evaluated by their theoretical properties, by simulations, and by experiments with a multispectral
image acquisition system assembled using a CCD camera and a tunable filter in which the spectral
transmittance can be controlled electronically.






Resune

Le but de ce travail est dectiélopper des athodes sgifiques pour I'acquisition et la reproduction
d'images nurefiques de &S haute quakt’colorimgtrique. Pour parvenia ce but, il est atessaire
de mafriser toute la chaie du traitement de l'information couleur. La premd partie de cettetlde
porte plus spcifiquement sur le probime de la caraetisation colorinetrique des scanners et des
imprimantes, en nougféranta un espace coloriatfique in&pendant : I'espace CIELAB.

L'algorithme propos’pour la caraeffisation colorinetrique d’'un scanner est le suivant : une mire
de couleurs standardis’est d’abord nuerisge, puis laeponse RVB du scanner est congmevec
les valeurs coloriretriques CIELAB de chaquechantillon de la mire. A partir de ce jeu de dees,
nous moelisons la €ponse du scanner par unetmbde deafression polynomiale d'ordre 3. Une
des originali€s de notre approche est d'optimiser directement dans I'espace CIELAB, sans passer
par l'intermédiaire de I'espace CIEXYZ : I'erreur ainsi minineis ‘correspond assez biar'érreur
visuelle.

Nous avons ensuite elal@otine nethode originale pour la caraeiSation colorinetrique d’'une
imprimante couleur. Elle met en ceuvre des techniquesedetjfie algorithmique 3D permettant
la conversion de tout point de couleuresfié dans I'espace colorietrique CIELAB, en un point
dans l'espace de couleurs CMJ pro@rd’imprimante. Elle prend aussi en compte le pevhé
des couleurs non imprimables. Nous construisons deux structures tridimensionnelles partitionnant
'espace en deux ensembles @éraédres, la structure interne et la structure externe. La structure
interne couvre I'ensemble des couleurs reproductibles par I'imprimante,eafqmdur gamut”, et
'union des deux structures couvre emément le domaine desfihition de I'espace CIELAB. Ces
structures nous permettent detefminer facilement si une couleur edtinterieur ai a I'extérieur du
solide des couleurs, d’appliquer tout type de pigcde “gamut mapping” siegcessaire, et puis de cal-
culer par interpolationetraédrique non-uniforme les valeurs CMJ correspondantes. Bliaidissons
ainsi le moele inverse de I'imprimante.

Dans une deurime partie, pour atteindre uneepision et une fiellité des couleurs encore plus
grandes, nous avons nmeenheetude sur I'acquisition d'images multispectradebaide d’'une carafa
numerique professionnelle et d’'un ensemble de filtres chromatigiest®nrEs. Ainsi nous pouvons
reconstruire en chaque pixel efiéctance spectrale du point de la surface de I'objet exeace pixel.
Dans cetteefude nous proposons plus partieaiiment des Bthodes nouvelles pour la camgsation
spectrale du syste d'acquisition d'images, ainsi que pourédextion d’un ensemble de filtres. Cette
sélection est optimisé pour un ensemble damncangra, illuminant, eteflectances spectrales. Nous
atteignons ainsi uneds bonne quakt’spectrale et colorigifiqgue. En particulier nousedfiontrons
que I'estimation des couleurs d’'uneese sous n'importe quel illuminant est nettement meilleure en
utilisant des images multispectrales, qu'avec une approche classiqeesagies images couleur.
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Chapter

Introduction

1.1 Motivation

The use of colour in imaging continues to grow at an ever increasing pace. Every day, most people
in the industrialised parts of the world are users of colour images that come from a wide range of

imaging devices; for example colour photographs, magazines, and television at home, computers with
colour displays, and colour printers in the office.

As long as the colours are found to be approximatively as expected, people are generally happy with
their images. However, with the increased use of colour images, people’s quality requirements also
have increased considerably. Just a few years ago, a computer graphics system capable of producing
256 different colours was more than enough for most users, while today, most computers that are sold
havetrue colourcapabilities, being able to produce 16.7 milktaolours.

Furthermore, several professions have particular needs for high-quality colour images. Artists are very
concerned about colours in their works, and so are the art historians and curators studying their works.
The printing, graphic arts, and photography industries have been concerned about colour imaging for
a long time. Most of the colour imaging standards and equipment used today have their roots in these
industries. But the past twenty years have seen the field of digital colour imaging emerging from spe-
cialised scientific applications into the mainstream of computing. Colour is also extremely important
in several other fields, such as the textile and clothing industry, automotive industry, decoration and
architecture.

Digital colour imaging systems process electronic information from various sources: images may
come from the Internet, a remote sensing device, a local scanner, etc. After processing, a document is
usually compressed and transmitted to several places via a computer network for viewing, editing or
printing. To achieve colour consistency throughout such a widely distributed system, it is necessary
to understand and control the way in which the different devices involved in the entire colour imaging

'Note that this number represents only the number of different colours that can be specified to the aforifor2f =
16777216); the actual number of distinguishable resulting colours is much lower, approximatively on the order of 1 million
(Pointer and Attridge, 1998).
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chain treat colours. Each scanner, monitor, printer, or other colour imaging device, senses or displays
colour in a different, device-dependent, way. One approach to exchanging images between these
devices is to calibrate each colour image acquisition and reproduction device to a device-independent
colour space. The exchange of images can then be done in this colour space, which should conform
to international standards.

However, colours represent an important but nevertheless limited aspect of the objects that surround
us. They correspond to the human perception of its surface under given light conditions. For the

needs of, for example, an art curator wanting to control any changes or ageing of the materials in a
fine arts painting, or a publisher wanting extra high-fidelity colour reproduction, it becomes necessary

to provide a more complete spectral analysis of the objects. This requires technology and devices
capable of acquiring multispectral images. A multispectral image may also be used to reproduce an
image of the object as it would have appeared under a given illuminant.

In this research, we have investigated several of the aspects mentioned above. We have developed
novel algorithms for the colorimetric characterisation of scanners and printers providing efficient and
colorimetrically accurate means of conversion between a device-independent colour space such as
CIELAB, and the device-dependent colour spaces of a scanner and a printer. Furthermore, we have
developed algorithms for multispectral image capture using a CCD camera with carefully selected
optical filters. The developed algorithms have been used for several applications, such as fine-arts
archiving and colour facsimile.

1.2 Dissertation outline

This thesis is organised as follows. Chapter 2 provides an introduction to light, objects, human colour
vision, and the interaction between them, gives an introduction to important elements of colorimetry,
and finally presents the subject of colour imaging.

In Chapter 3, a methodology for the colorimetric characterisation of colour scanners is proposed. It
consists of applying a non-linear correction to the scanner RGB values followed by a 3rd order 3D
polynomial regression function directly to CIELAB space. This method gives very good results in
terms of residual colour differences. This is partly due to the fact that the RMS error that is minimised
in the regression corresponds 40F,;, which is well correlated to visual colour differences. The
method has been successfully applied to several colour image acquisition devices.

In Chapter 4, various techniques for the digital acquisition and processing of high quality and high
definition colour images using a CCD camera are developed. The techniques have been applied to
fine arts paintings on several occasiong).for the making of a CDROM on the French painter Jean-
Baptiste Camille Corot (1796-1876).

A novel method for the colorimetric characterisation of a printer is proposed in Chapter 5. The method

is based on a computational geometry approach. It uses a 3D triangulation technique to build a tetra-
hedral partition of the printer colour gamut volume and it generates a surrounding structure enclos-
ing the definition domain. The characterisation provides the inverse transformation from the device-

independent colour space CIELAB to the device-dependent colour space CMY, taking into account

both colorimetric properties of the printer, and colour gamut mapping.
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We construct two 3D structures which provide us with a partition of the space into two sets of non-
intersecting tetrahedra, an inner structure covering the printer gamuhé full set of the printable
colors), and a surrounding structure, the union of these two structures covering the entire definition
domain of the CIELAB space. These 3D structures allow us to easily determine if a CIELAB point

is inside or outside the printer color gamut, to apply a gamut mapping technique when necessary, and
then to compute by non-regular tetrahedral interpolation the corresponding CMY values. We establish
thus an empirical inverse printer model. This algorithm has been protected by a patent, and is now
transferred to industry and used in commercial colour management software.

In Chapter 6, we describe a system for the acquisition of multispectral images using a CCD camera
with a set of optical filters. Several important issues are addressed in this study.

First, a spectral model of the acquisition system is established, and we propose methods to estimate
its spectral sensitivities by capturing a colour chart with patches of known spectral reflectance and
by inverting the resulting system of linear equations. By simulations we evaluate the influence of
acquisition noise on this process. The choice of colour chart is found to be very important, and a
method for the design of an optimised colour chart is proposed.

We further discuss how the surface spectral reflectance of the imaged objects may be reconstructed
from the camera responses. We perform a thorough statistical analysis of different databases of spec-
tral reflectances, and we use the resulting statistical information along with the spectral properties of
the camera and the illuminant to choose a set of optimal optical filters for a given application.

Finally we present an application where the acquired multispectral images are used to predict changes
in colour due to changes in the viewing illuminant. This method of illuminant simulation is found to be
very accurate, and applicable to a wide range of illuminants having very different spectral properties.

In Chapter 7 the theoretical models and simulations of the previous chapter are validated in practice.
An experimental multispectral camera was assembled using a professional monochrome CCD camera
and an optical tunable filter. To be able to recover colorimetric and spectrophotometric information
about the imaged surface from the camera output signals, two main approaches are proposed. One
consists of applying an extended version of the colorimetric scanner characterisation method described
above to convert from the camera outputs to a device-independent colour space such as CIEXYZ or
CIELAB. Another method is based on the spectral model of the acquisition system. By inverting the
model, we can estimate the spectral reflectance of each pixel of the imaged surface.

Finally, Chapter 8 concludes this dissertation and contains a discussion of possible future work based
on the results reported here.
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1.3 Notation used throughout this document

Vectors are represented in lowercase boldface leteegsa and@. They are generally written as
column vectors,

ai

a

an

Matrices are represented using uppercase boldface lattgrd, and®. The entry of matrixA in the
ith line and thejth column is generally denoted;. This may also be expressed as

ail a2 e aipm

a1 a2 e aa2n
A =la;;] =

anNi1 an2 -+ aNM

An (N x M) matrix hasN lines andM columns.
The transpose of a matrix is represented withrasuperscipte.g. A’
The identity matrix of sizé N x N) is denoted y .

A vector space spanned by tiecolumn vectors of a matri® = [pip- ... pp] is denoted theange
of P, R(P).

rank(P) is the dimension oR(P).
. : : N 1/2
Unless otherwise stated, the nofix|| of a N-vector is the 2-norm, defined égizl xf) .

The pseudoinverse is denoted by theign in superscripte.g. A~

Note that a slightly different notation is used in Chapter 5 where uppercase boldface letters are used
to denote vectors, and where the inner product of two vectors is deAotdl instead ofa’b which
would be the case in the rest of the document.
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Colour and imaging

The increased use of colour images has brought with it new challenges and prob-
lems. In order to meaningfully record and process colour images, it is essential to
understand the interaction between light, objects, and human colour vision and fur-
thermore the capabilities and limitations of colour imaging devices. In this chapter
we present an overview of these basics, without in any way aspiring to compete with
comprehensive textbooks on these subjects (LeGrand, 1957, Kowaliski, 1990, Séve,
1996, Wyszecki and Stiles, 1982, Hunt, 1995).

2.1
2.2
2.3
2.4

2.5

Introduction . . . . . . . 6
Lightandsurfaces . . . . . . . . . . . 7
Colourvision . . . . . . . e 9
Colorimetry . . . . . . e 11
241 Grassmann'slaws. . . . . . . .. L 11
242 Tristimulusspace . . . . . . . ... 12
243 Colourmatching . . . . .. .. . . . 13
2.4.4 Colour matching functions . . . . . . ... ... ... ... 14
245 Metamerism . . . . ... e 14
24.6 ClEstandardilluminants .... . . ... ... .. ... ... ... 16
2.47 ClEstandardobservers . . . . . .. ... ... 17
2.4.8 Uniform colour spaces and colour differences..... . . . ... ... .. 19
248.1 CIELABcolourspace . . . .. . ... i 20
2.4.8.2 Colourdifferenceformulae . . . ... ... ... ... ..... 21
Colourimaging . . . . . . . o e 23
2.5.1 Colourmanagement . . . . . .. . ... ... 23
2.5.2 Digitalimage acquisition . . . . . . .. ... 27

2.5.2.1 Colorimetric characterisation of scanners and cameras . . . . . . 27
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2.5.3 Digitalimagereproduction.. . . . . . . ... L L. 29
2.5.3.1 Additive colourdevices . . . . .. ... ... ... 29
2.5.3.2 Subtractivecolourdevices . . . . . ... ... 30
2.5.3.3 Colorimetric characterisation of printers. . . . . . .. .. .. .. 32
2.5.4 Multi-channelimaging . . . . . . . .. . . 32
2.6 Conclusion . . . . . . . .. 33

2.1 Introduction

Whatis colour? This apparently simple question turns out to be rather difficult to answer concisely.
The distinguished researcher Lars Sivik expresses it as follows (Sivik, 1997).

Blessed are the “naive”, those who do not know anything about color in a so-called

scientific meaning — for them color is no problem. Color is as self-evident as most other
things and phenomena in life, like night and day, up and down, air and water. And all

seeing humans know what color is. It constitutes, together with form, our visual world.
| have earlier used the analogy with St. Augustine’s sentence about time: “Everybody
knows what time is — until you ask him to explain what it is.” It is the same with color.

Misunderstandings are quite common when it comes to colour. One reason is that the word colour is
given so many meanings — paint, CIE-values, RGB-values, spectral radiation, perceptual sensations,
colour system notation, etc. In the following sections we will discuss some of the important aspects
of colour and the relations between them. We establish a scientific framework for the quantisation of
colour. As a starting point we cite the most widely accepted technical definition of colour, given by
the Committee on Colorimetry of the Optical Society of America in 1940, as cited in Nimeroff (1972).

Color consists of the characteristics of light other than spatial and temporal inhomo-
geneities; light being that aspect of radiant energy of which a human observer is aware
through the visual sensations which arise from the stimulation of the retina of the eye.

We see that this definition relates thgychologicakentities colour and light to thphysicallydefined
radiant energy in the part of the spectrum having a visual effect on the observer. Thpsierm
chophysicss thus often employed in colour science, meaning the science dealing with the relation
between the physical attributes of stimuli and the resulting sensations.

We will start this chapter by a presentation of the physical properties of light and surfaces in Sec-
tion 2.2. Coloured light has varying radiant energy for different wavelengths. Coloured surfaces
transmit and reflect different amounts of the incident light for different wavelengths. The spectral
interaction between light and surfaces represents the basis for all representations of colour. Another
very important subject when describing colour is human colour vision, which will be discussed briefly
in Section 2.3. We then proceed to an introduction to colorimetry, the study of numerical treatment of
colours, in Section 2.4. Having defined these basics of colour, we proceed to issues related to colour
imaging in Section 2.5, in particular colour management and colorimetric characterisation of imaging
devices.
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2.2 Light and surfaces

Aristotle viewed all colour to be the product of a mixture of white and black, and this was the prevalil-
ing belief until Sir Isaac Newton'’s prism experiments provided the scientific basis for the understand-
ing of colour and light (Newton, 1671). Newton showed that a prism could break up white light into

a range of colours, which he called the spectrum (see Figure 2.1), and that the recombination of these

spectrum

red
orange
yellow
green
blue
indigo
violet

white
sunlight

...................

glass prism

Figure 2.1:Newton’s experiment with sunlight and a prism which led to the realisation that the colour
of light depended on its spectral composition.

spectral colours re-created the white light. Although he recognised that the spectrum was continuous,
Newton used the seven colour names red, orange, yellow, green, blue, indigo, and violet for different
parts of the spectrum by analogy with the seven notes of the musical scale. He realised that colours
other than those in the spectral sequence do exist, but noted that (Newton, 1730, p.158)

All the Colours in the Universe which are made by Light, and depend not on the Power
of Imagination, are either the Colours of homogeneal Lights, spectral colours]or
compounded of these,.

Light is an important aspect of colour. But equally important is the notion of the coloabjetts

such as green grass, red roses, yellow submarines, etc. The colour of an object is strongly dependent
on its spectral reflectance, that is, the amount of the incident light that is reflected from the surface for
different wavelengths. If we represent the spectral radiance of the illuminant by the funétioy A

being the wavelength, and the spectral reflectance in a given surface point of an objéx},lthe

'Note that a more precise term might &ectral reflectance factoin this document we will not distinguish between
the spectral reflectance and the spectral reflectance factor (CIE 17.4, 1989, CIE 15.2, 1986, p.23-24).
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radiance of the light reflected from this surface pofiid) is, by definition of reflectance, given in
Equation 2.1 and illustrated in Figure 2.2.

F) = 1X)r() (2.1)

Note that the model presented in Equation 2.1 is limited in several respects. It does not take into
account geometrical effects, for example that the spectral reflectance of an object may depend on
the angles of incident light and of observation. One important example of this effect is specular
reflection, that is, for a given combination of angle of incidence, surface orientation, and observation
angle, the incident light is almost completely reflected, while for other angles, this is not the case.
To take into account such effects, the spectral bidirectional reflectance function (SBDRF) should be
considered (Nicodemuwet al,, 1977, Wyszecki and Stiles, 1982, Souami, 1993, Souami and Schmitt,
1995). Additional limitations of this model are its inability to account for effects such as fluorescence,
polarisation, sub-surface penetration, etc. However, with these limitations in mind, the model of
interaction between light and objects presented in Equation 2.1 turns out to be very useful for our
further analysis.

Red flower (petunia) Fluorescent illuminant F2
spectral reflectance spectral radiance
1 1
0.8 I‘()\) ] 0.8
0.6 / 0.6
0.4 0.4
02 : 0.2
N4 1)
EBO 500 600 560 500 600 700

Spectral radiance of light
reflected from flower

o8} f(A)

AN

400 500 600 700

Figure 2.2: A simple spectral model for the interaction between light and surfaces. The spectral
radiancef (\) of the light reflected from a surface with a spectral reflectatiée, illuminated by an
illuminant with spectral radiandé)) is given by spectralwise multiplicatioff(X) = I[(X)r(X).
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2.3 Colour vision

In the human eye, an image is formed by light focused onto the retina by the eye’s lens. The retina
contains two main types of light-sensitive cells, tioels and thecones The rods are responsible
for night (scotopic) vision and the cones for daylight (photopic) vision under normal levels of illu-
mination. There are three types of cones, namhed/, and S, which are sensitive mainly to light
containing long, middle and short wavelengths, respectively (see Figure 2.3). As we will see in Sec-
tion 2.4, this is the physiological foundation of the so-calsiial trivariancewhich is the basis for

our perception of colour, and thus also the basis for the colorimetry discussed in this chapter.

1— = : = : : :
LY 12 N
0.9l 0 . . — |=bar(A) ||
Do , | ---  m-bar(A)
0.8} Y ! A\ s—bar() |1
! 1 ! \
0.7¢ ! ' K '
: \ B
06 Voo \
i ! 1 I \
1 1 1
0.5+ ! ‘\ ! “
: i O \
N 1 1
o4l ! Vo |
. ! vl \
[ v )
03r ! V' N
: LAY \
0.2t ; ' \
b 7 A \
1 4 AY
01f « . . '
7 s S S
’ L S - I =
500 550 600 650 700

400 450
Wavelength, A [nm]

Figure 2.3:Normalised spectral sensivity curvds.), mm()\), ands()), of the three different types of
cones,L, M, andS, being responsible for photopic vision, according to Stocketaa. (1993).

If f(X) is the spectral distribution of light incident on a given location on the retina, the responses of
the three cones can be represented as the 3-componentweeter coc3)’ where

/\max
c; = / fXN)si(N)dX,  1=1,2,3,
/\min

ands; () denotes the spectral sensitivity of tiik type of cone, andmin, Amax denote the interval of
wavelengths of the visible spectrum outside of which the spectral sensitivities are all zero.

(2.2)

The scope of this dissertation brings us to pay special attention to the colour of nonluminous, reflective

objects. For such objects, the spectral distribufioh) of the light incident on the retina is the product

of the spectral reflectaneg\) of the object surface and the spectral radiai{cg of the viewing

illuminant, cf. Equation 2.1, as shown in Figure 2.4. We may thus rewrite Equation 2.2 as follows.
(2.3)

Arna)(
Ci:/ IN)r(N)si(VdA, i =1,2,3,
A

min

By uniformly sampling the spectra above with a proper wavelength interval, we can rewrite Equa-
(2.9

tion 2.3 in a matrix form as follows:
c=S'Lr,
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_ /" Illuminant radiance I(\)
Object reflectance r(A) 7

77777777777777777 -

Eye cones sensivities s,(A)

Figure 2.4:Human vision of a reflective object. The cone response depends on its spectral sensivity,
the spectral reflectance of the viewed object, and the spectral radiance of the illuminant.

whereS = [s1sss3] is the matrix of eye sensor sensitivities = [s;(\1)s;(A2) ... s;(AN)]E, A\ =

Amin» AN = Amax and the sampling intervalh = \; — A\;_1 = ﬁ(Amax— Amin),4=2,...,N.L

is the diagonal illuminant matrix with entries from the sample& &j along the diagonal, andis the

sampled spectral reflectance of the object. One of the first to apply such a matrix notation to colour
issues was Wandell (1987), and this notation has been widely accepted and used since, for example by
Jaaskelaineet al. (1990), Trussell (1991), Trussell and Kulkarni (1996), Vréedél. (1994), Sharma

and Trussell (1997a).

The spectral sensitivities of the three types of cones define a functional (Hilbert) space, and thus
the cone response mechanism corresponds to a projection of the incident spectrum onto the space
spanned by the sensitivity functiong\), i = 1,2,3. This space is called thduman Visual Sub-
SpacegHVSS) (Horn, 1984, Vora and Trussell, 1993). In the sampled case, the HVSS corresponds to
thevector spacespanned by the columns 8f

The cone response functions are quite difficult to measure directly. However, non-singular linear
transformations of the cone responses are readily determined through colour matching experiments,
cf. Section 2.4.3. A standardised set of colour matching functieds, 7(\), andz(\) is defined

by the CIE (see Section 2.4), and is widely used in colorimetric definitions. The CIE XYZ colour
matching functions are traced in Figure 2.9 on page 18. DefiAirg [xyz] as the matrix of sampled

colour matching functions, we can represent a colour stimulus usi@jEXYZ tristimulus values

as follows,

t = A'f. (2.5)

Note that the linear model of colour vision of Equation 2.2 describes only a small part of the complex
colour-perception process. For example, the model does not explain the intriguing eftedbwf
constancythat is that the perceived colours of usual objects of vision remain nearly constant indepen-
dent of the illuminant throughout a wide range, despite the validity of Equation 2.2 (@d¢ering,
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1905, Kroh, 1921, Judd, 1933). In particular, the cone responses cannot be directly related to the
common colour attributes dfug saturationandlightness For a thorough description of the human
visual system, refer, for example, to the books of Wandell (1995) or Kaiser and Boynton (1996).

2.4 Colorimetry

In the two previous sections, we have described two aspects of colour, the physical aspects of the spec-
tral composition of coloured light, and the physiological characteristics of the human visual system.
We will now continue to describe the interaction between these two factongsylehophysicahspect

of colour, as defined by colorimetry. Colorimetry is the branch of colour science concerned with the
quantitative specificationf the colour of a physically defined visual stimulus in such a manner that
(Wyszecki and Stiles, 1982):

1. when viewed by an observer with normal colour vision, under the same observing conditions,
stimuli with the same specification look alike,

2. stimuli that look alike have the same specification, and

3. the numbers comprising the specification are continuous functions of the physical parameters
defining the spectral radiant power distribution of the stimulus.

In colorimetry, we adopt a definition of colour which is justified by the experimental fact of visual
trivariance, based on the laws of Grassmann which will be described in the following sections.

2.4.1 Grassmann'’s laws

The laws of Grassmann (1853) represent one of the bases of colorimetry. They are often given in
different forms and orders (seeg.Judd and Wyszecki, 1975, Wyszecki and Stiles, 1982, Kowaliski,
1990, fVve, 1996).

Grassmann’s first law: Three independent variables are necessary and sufficient to psy-
chophysically characterise a colour.

This law states that the colour space is tridimensional. Every colour stimulus can be completely
matched in terms of three fixed primary stimuli whose radiant powers can be adjusted by the observer
to suitable levels. The only restraint on the choice of primaries is that thegodmemetrically in-
dependentthat is, none of the primaries can be colour-matched by a mixture of the two others. The
most common set of primaries is red, green and blue. This law is the background for colour matching
experiments (see Section 2.4.3).

We denote a colour stimulus a5, the three primary stimuli ad, B andC, the factors of adjustment
proportional to the energy for each primary stimulilgs? and+y, and a visual equivalence as We
may then express Grassmann’s first law as follows:

VX, 3da,B,7v, suchthat X =«aA+ B +~C (2.6)
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The tridimensionality of colour is also justified by biological studies of the human eye, as described
in Section 2.3.

Grassmann’s second law states the principle of colour additivity.

Grassmann’s second law:The result of an additive mixture of coloured light depends
only on the psychophysical characterisation, and not on the spectral composition of the
colours.

The term additive mixture means a colour stimulus for which the radiant power in any wavelength
interval is equal to the sum of the powers in the same interval of the constituents of the mixture.
Using the same notation as before, we may state the law as follows:

VXi =1 A+ 1B+ 7C, X = A + (2B + 7C,
X1+ Xo= (a1 +a2)A+ (81 + B2)B+ (71 +792)C (2.7)

Grassmann’s third law may be stated as follows.

Grassmann’s third law: If the components of a mixture of colour stimuli are moderated
with a given factor, the resulting psychophysical colour is moderated with the same factor.

That is, if £ is a constant,
VX, k, X=aA+B+~vC = kX =kaA + kBB + kyC (2.8)

This law implies that all the scales used in colorimetry are continuous.

2.4.2 Tristimulus space

Because of the linear algebraic properties stated by Grassmann'’s laws, it is possible and convenient to
represent colour stimuli by vectors in a three-dimensional space, callédstiraulus space

To define this tristimulus space, we need the reference W¥iitevhich is defined by the three pri-
mariesR, G andB, asW = aw R + fw G + yw B. We then consider a given colour

Q= agR + ,BQG +vB. (2.9)

Defining the three basis vectorsas- aw R, g = fw G andb = vy B, and denoting the quantities
of each of the basis vectors of the primaries asttistimulus valuesRy = aq/aw, Gq = Bo/Pw
andBq = v¢g/vw, the colourQ can be defined by the vectqras follows:

q = Rqr + G4g + Bgb. (2.10)

Once the primary stimuli are defined and fixed, we often represent this equation simgly=as
[Rq Gq Bq]'. Note that we have now evolved from the term of visual equivalence denotedtby
simple mathematical equality={.



2.4 Colorimetry 13

This vector equation, Eq. 2.10, can be interpreted geometrically, as shown in Figure 2.5. The primary
stimuli are represented by unit length vecterg, andb, with a common origirO. A colour stimulus

is represented by the tristimulus vectpwhose components have lengths (tristimulus valligs)G 4,

andB, along the directions defined Iyg, andb, respectively. Thér, ¢, b) trichromatic coordinates

are defined by the intersection between the tristimulus vector and the unit(ifares + B = 1),

givingr = Rq/S,9 = Gq/S,andb = Bq/S =1 — (r + g), whereS = Rq + G4 + Bq. The union

of a set of colours presented in the two-dimensional representation defined by the equilateral triangle
defined byR + G + B = 1 is often referred to as tHdaxwell Colour Triangle see Maxwell (1857)

or Wyszecki and Stiles (1982), p. 121. A more convenient representation {8, flechromaticity
diagram in which the andg coordinate axes are perpendicular to each other.

R+G+B=1

Figure 2.5: (R, G,B)-tristimulus space. A colour stimulus is represented by the tristimulus wgctor
whose components have lengths (tristimulus valligs)G 4, andB, along the directions defined by
the basis vectors, g, andb, respectively.

2.4.3 Colour matching

An important notion in colorimetry isolour matchingreferring to visual stimuli typically presented
in the two halves of a bipartite visual field, and to judgements of similarities or degrees of difference
between the two stimuli. The colorimetric terms are distinguished fronpslyehologicalterms of
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colour, such as hue, saturation and brightness, which apply to visual concepts that enable the individ-
ual observer to describe colour perceptions.

Two spectra, represented by the vectbendg produce the same cone reponsd#siEquation 2.4, if
S'f = S'g. (2.11)

These colours are then said to match. In a colour matching experiment (see Figure 2.6), the observer
is asked to adjust the amounts of three primary soupge$-, andps, so that the resulting colour
matches that of a given ligit that is,

S'f = S'Pa, (2.12)

whereP = [p;p2p3] denotes the primaries ard = [a;1a2a3]" corresponds to the three weights.

It can be shown that if the primaries are colorimetrically independent, the vector of weights exists
and is equal ta = (S'P) !S'f. However, for a given spectrutfy the vector of weights may take
negative values. Since negative intensities of the primaries cannot be produced, the spectsum

not realisable using the primaries. In practice a colour matching experiment is arranged by mixing the
primaries having negative strengths with the considered colour, instead of with the other primaries.
This might be represented, for example, as matching + aop- with (—as3)ps +f in the case where

as is negative.

2.4.4 Colour matching functions

If colour matching experiments are conducted with the set of stimufi = 1,... , N being mono-
chromatic light of varying wavelengths and constant unit energy, we may obtain the wejdbts
each wavelength. Doing this for all thé wavelengths of the sampling interval that is used, we may
combine the colour matching results into one equation,

S'T = S'PA?, (2.13)

wherel = [eje;...ey]is the(N x N) unit matrix andA = [a;as...ay]! is thecolour matching
matrix corresponding to the primarid®. The columns ofA are referred to as theolour matching
functionsassociated with the primarid3. Since any spectrum can be represented as a linear com-
bination of the unit spectra, its colour tristimulus values can be readily calculated=af'f, cf.
Equation 2.5.

2.4.5 Metamerism

From Equation 2.11S'f = S'g, and the fact tha® is aN x 3 matrix, N > 3, it is clear that there are

several different spectra that can appear as the same colour to the observer. A set of two such spectra
having different spectral compositions but giving rise to the same psychophysical characterisation are
calledmetamergCIE 15.2, 1986, CIE 80, 1989). An example of metamerism is given in Figure 2.7.

Metamerism implies that two objects which appear to have exactly the same colour, may have very
different colours under different lighting conditions. The colour mismatch due to loss of metamerism
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Considered colour

Figure 2.6:Principle of trichromatic colour matching by additive mixing of lights. The observer views
a small circular field which is split into two halves, one on which the cofowhich is to be matched

is displayed, the other displaying an additive mixture of the three primary sopicqs,, andps,
typically red, green and blue.

when changing observer or lighting can be predicted numericallygge®hta and Wyszecki, 1975,
Schmitt, 1976, Wyszecki and Stiles, 1982, ch. 3.8.5). This may be an important practical problem,
e.g.in the clothing industry, where the colours of fabrics of different types should match, both inside
and outside the store.

Notice, however, that even though it may cause some problems, metamerism is the basis of the entire
science of colour. Without metamerism, there would be no colorimetry and no colour image repro-
duction on paper or screen as we know it. The only possible way of reproducing images would be
to recreate the spectral reflectance of the orginal objects, creatpgcral matchas opposed to a
metameric match
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Figure 2.7:Spectral radiant power distributions of daylight (D65) reflected from a violet flower and
emitted by a computer monitor tuned to match the colour of the flower. The two spectra are metamers.

2.4.6 CIE standard illuminants

The most important of all colour specification systems is that developed by the Commission Interna-
tionale de I'Eclairage (CIE). It provides a standard method for describing the stimulus of a colour,
under controlled lighting and viewing conditions, based on the average known response of the human
visual system. Itis derived from careful psychophysical experiments and is thoroughly documented.
The CIE system has the force of an international standard, and has become the basis of all industrial
colorimetry.

Because the appearance of a colour strongly depends on the colour of the illuminant, it is clear that
an essential step in specifying colour is an accurate definition of the illuminants involved. In 1931,
the CIE recommended the use of three standard illuminants, denoted A, B and C, whose spectral
power distribution curves are shown in the left part of Figure 2.8. Standard illuminant A consists of a
tungsten filament lamp at a given colour temperature, while B and C consist of A together with certain
liquid colour filters (Wyszecki and Stiles, 1982, p. 148). Aisintended to be representative of tungsten
filament lighting, B of direct sunlight, and C of light from an overcast sky.

However, even if the illuminants B and C fairly well represent the spectral power distribution of
daylight over most of the spectrum, they are seriously deficient at wavelengths below 400 nm. Due
to the increasing use of dyes and pigments which have fluorescent properties, the CIE later defined
several power distributions representing daylight at all wavelenghts between 300 and 830 nm. In the
right part of Figure 2.8 on the facing page the distributions &d Dy; are shown. [g5 represents a
standard daylight for general use, angh 3 somewhat more yellow. The subscripts 50 and 65 refer

to the colour temperature of the illuminanésg.Ds, has a correlated colour temperatucd 5000K.

In addition to these sources, the hypothetical equienergetic illuminant E, having equal radiance power
per unit wavelength throughout the visible spectrum, is also defined.

2The correlated colour temperature is defined as the temperature of the Planckian radiator whose perceived colour most
closely matches that of a given stimulus seen at the same brightness and under specified viewing conditions (Hunt, 1991,
CIE 17.4, 1989).
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These standard illuminants are widely used in colour systems and standards. In teleysisrthB
reference white for PAL and C for the NTSC television systeny, iB extensively used in the graphic
arts industry.

CIE standard illuminants CIE standard illuminants
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Figure 2.8: Relative spectral power distributions of the standard illuminants A, B, and C (left) and
Dgs and Dy (right).

2.4.7 CIE standard observers

There are slight differences in the amounts of colour stimuli required to obtain a given colour percep-
tion between different observers. Some of these differences are random, and disappear if the results
of several tests by each observer are averaged. But there remain some discrepencies which must be
attributed to differences in the colour vision of the individual observers.

In 1931 the CIE defined standard observeibased on experimental results obtained by W. D. Wright
and J. Guild, and by K. S. Gibson and E. P. T. Tyndall,esgeChapter 8 of Hunt (1995) or Chapter 3
of Wyszecki and Stiles (1982).

These standard-observer data consist of the colour matching functions obtained with the monochro-
matic primaries of wavelength®, = 700 nm, Gy = 546.1 nm, andB; = 435.8 nm, and for

the reference equienergetic whife The colour matching functions for the standard observer are
sketched in the left part of Figure 2.9 on the next page. From these functions, given the spectral power
distribution curve of any colour, it is possible to calculate the amount of the three stimuli required by
the standard observer to match a given colofirSection 2.4.3. This defines the CIE 1931 Standard
RGB Colorimetric System, which is a basis in colorimetry. A given colour stimulus with spectral
radiant power distributiorf (A) can be represented as three RGB tristimulus values by the following
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formulae:
/\max
R- / FOVFN)AA (2.14)
Amll’l
Amax
G = / FOVF(N)dA (2.15)
Amll’l
Amax _
B= / FOVBOV)AA. (2.16)
min
CIE RGB colour matching functions CIE XYZ colour matching functions
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Figure 2.9:CIET()), g(\), b()\) (left) andz (), 7()\), Z(\) (right) colour matching functions.

The CIE 1931 Standard XYZ Colorimetric System is defined in a similar manner, using the colour
matching functiong: (), y(\) andz(\), shown in Figure 2.9. The tristimulus valu&s Y andZ are
defined as follows:

x= [ oz (2.17)
/\min

y = ™ r g0 (2.18)
/\min
Ama)(

7= / FOVE)AA (2.19)
)\min

The set of colour matching functiomg\), 7()) andz()) is a linear transformation of the sef\),
g(A) andb(A), as follows:

Z()\) 049  0.31 0.2 ()
g(A) | = | 0.17697 0.81240 0.01063 g (2.20)
Z(\) 0.0 001  0.99 b(X)

Note that the XYZ colour matching functions do not correspond to a set of physical primaries, as
was the case with the RGB colour matching functions defined above. They correspond to three non-
physical primaries with the reference equienergetic whitehosen so that the colour matching func-
tions have only positive values. The numbers in the matrix of Equation 2.20 were carefully chosen by
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the CIE to ensure that the tristimulus valu€sY andZ are all positive and so that the valuelofis
proportional to the luminance of the given colour.

To graphically visualise a colour, the Clk, y) chromaticity diagram (see Figure 2.10) is often used.
Thez andy values are tristimulus values normalised such thaty + z = 1, cf. Section 2.4.2.

(x,y) — chromaticity diagram
0.9 ‘ .

sl Spectral locus |

0.7
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Purple boundary |
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X

Figure 2.10: Chromaticity diagramz,y) of CIE 1931 XYZ standard colorimetric observer. The
curved line shows where the colours of the spectrum lie and is callespitwral locusthe wave-
lengths are indicated in nanometres along the curve. If two colours are additively mixed together,
then the point representing the mixture is located in the diagram by a point that always lies on the line
joining the two points representing the original colours. This means that, if the two ends are joined
by a straight line, that line represents mixtures of light from the two ends of the spectrum; as those
colours are mixtures of red and blue, this line is known astivele boundaryThe area enclosed by

the spectral locus and the purple boundary encloses the domain of all possible colours.

2.4.8 Uniform colour spaces and colour differences

Psychophysical experiments have shown that the human eye’s sensitivity to light is not linear. The
RGB and XYZ colour spaces defined by the CIE are related linearly to the spectral power distribution
of the coloured light.

When changing the tristimulus values XYZ (or RGB) of a colour stimulus, the observer will perceive
a difference in colour only after a certain amount, equal to the Just Noticeable Difference (JND). In
both RGB and XYZ spaces the JND depends on the location in the colour space.

These are two major drawbacks of the colour spaces presented in the previous section. To remedy
this, the CIE proposed in 1976 twaseudo-uniforrh colour spaces, denoted CIELUV and CIELAB

3A colour space is callediniform or psychometric when equal visually perceptible differences are produced with
equi-spaced points throughout the space, that is, the JND is constant throughout the entire colour space. In practice, this
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(see CIE 15.2, 1986). The CIELUV space was often used for describing colours in displays, while
CIELAB was initially designed for reflective media. Now CIELAB is used for most applications
and has been chosen as standard colour space for several diglds, graphic arts (ISO 12639,
1997), multimedia (IEC 61966-8, 1999), colour facsimile (ITU-T T.42, 1994). In our work, we make
extensive use of the CIELAB space, and we will therefore describe it in detail in the following section.

2.4.8.1 CIELAB colour space

The CIELAB pseudo-uniform colour space is defined by the quantitiese™ and b*, defined as
follows:*

L7 = 116f(Y£) — 16 (2.21)
a* = 500 [f(Xﬁ) - f(%)] (2.22)
where
fla) = { ot a>0.008856
7.787a + i% , otherwise

The tristimulus values(,,, Y,, andZ,, are those of the nominally white stimulus. For the example of
illuminant Dy the values are calculated as follows:

Arﬂa)(

Y, = / 1 Ipo (V) - GO)AA = 96.42 (2.24)
>\min
Arﬂa)(

X, = / 1 Tp () - Z)dA = 100.00 (2.25)
/\min
Arﬂa)(

7, = / 1 Ipo (V) - Z0)dA = 82.49 (2.26)
/\min

L* represents thightnessof a colour, known as the CIE 1976 psychometric lightness. The scale of
L*is 0to 100, 0 being the ideal black, and 100 being the reference white. The chromacity of a colour
can be represented in a two-dimensiofél, b*) diagram (see Figure 2.11(by); representing the
degree of green versus red, dridhe degree of blue versus yellow. Note that, in contrast t@:thg)
chromaticity diagram (Fig. 2.10), a mixture of two colours is not necessarily situated on the straight
line joining the two colours. Th&:*, b*) chroma diagram isot a chromaticity diagram.

An alternative representation of colours in the CIELAB space emanates when using cylindrical coor-
dinates, defining th€lE 1976 chromadesignating the distance from thé-axis, as

= Va2 + b2, (2.27)

condition is only fulfilled approximatively, thus we normally use the t@gaudo-uniformNotice that the notion of JND is
observer-dependent and somewhat subjective. CIE’s colour spaces are based on a standard observer.
4The asterisks are used mostly for historical reasons, and we will sometimes omit them to simplify notation.
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and theCIE 1976 hue-angle

b*
hep = arctan <—*> (2.28)
a

The use of these quantities, lightndss chromaC’,, and hue anglé,, may facilitate the intuitive

ab’
comprehension of the CIELAB colour space, by relating it to perceptual attributes of colours.

An illustration of the uniformness of the CIELAB colour space is shown in Figure 2.11, where we
compare the loci of constant hue and chroma according to Munsell irythed thes*b* planes. We

see that the loci are far more distorted in the CIE 1881%) chromacity diagram than in the*, b*)
chroma diagram. We note, however, that the CIELAB space is not perfectly uniform.
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Figure 2.11:Munsell loci of constant hue and chroma (from Billmeyer and Saltzman, 1981). We see
that the loci are far more distorted in the CIE 1931y) chromacity diagram (a) than in tffe*, b*)
chroma diagram (b). This illustrates the fact that the CIELAB colour space is more perceptually
uniform than the XYZ colour space.

2.4.8.2 Colour difference formulae

When comparing two colours, specified [y, a7, bi] and[L3, a5, b3], one widely used measure of
the colour difference is th€IE 1976 CIELAB colour-differencevhich is simply calculated as the
Euclidean distance in CIELAB space, as follows:

AR, = \J(Lf — L3) + (af — a3)? + (b} — B3)? (2.29)

The interpretation oA E”, colour differences is not straightforward, though. It is commonly stated
(Kang, 1997) that the JND is equal to 1. However Mail. (1994a) found a JND oA E?, = 2.3.
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A rule of thumb for the practical interpretation &£, when two colours are shown side by side

is presented in Table 2.1. Another interpretationfoE”, errors for the evaluation of scanners is
proposed by Abrardet al. (1996). They classify mean errors of 0-1 lamit of perception 1-3 as

very good quality 3-6 asgood quality 6-10 assufficienf and more than 10 dasufficient We note

the disagreement between these classifications, underlining the fact that the evaluation of quality and
acceptability is highly subjective and depends on the application.

AE?, | Effect
< 3 | Hardly perceptible
3 < 6 | Perceptible, but acceptable
> 6 | Notacceptable

Table 2.1: Rule of thumb for the practical interpretation AfF*, measuring the colour difference
between two colour patches viewed side by side.

It may also be interesting to evaluate the differences of each of the components of the CIELAB space
separately. This is straightforward far, o*, b*, andC?,, however, for the hue angle,, this merits

some special consideration. Of course, the direct angle difference in degrees may be instructive.
However, to allow colour differences to be broken up into components of lightness, chroma and hue,
whose squares sum to the squareddf”,, a quantityAH*, called theCIE 1976 hue-differenceds

defined as

AH* =\ [(AFL)? — (AL*)? — (AC;,)2 (2.30)

The colour difference formula of Equation 2.29 is supposed to give a measure of colour differences
that is perceptually consistent. However, since it has been found that the CIELAB sjpateadsn-

pletely uniform, the colour differencA E?, is not perfect. Several attempts have been made to define
better colour difference formulae,g.the CMC formula (Clarket al,, 1984, McLaren, 1986) and the
BFD formula (Luo and Rigg, 1987a;b). A comparison of these and other uniform colour spaces using
perceptibility and acceptability criteria is done by Madtyal. (1994a).

Recently, the CIE defined tHelE 1994 colour-difference mod@icDonald and Smith, 1995), abbre-
viated CIE94, denoted\ 5, based on the CIELAB space and the previously cited works on colour
difference evaluation. They defined reference conditions under which the new metric, with default
parameters, is expected to perform well:

1. The specimens are homogeneous in colour.

The colour differenc@& E7, is less than 5 units.

They are placed in direct edge contact.

A LD

Each specimen subtends an angle of more than 4 degrees to the assessor, whose colour vision
is normal.

5. They are illuminated at 1000 lux, and viewed against a background of uniform grey, twith
50, under illumination simulating D65.
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The colour difference is calculated as a weighted mean-square sum of the differences in lightness,
AL*, chromaAC*, and hue AH*.

AL*\? [ AC*\® [ AH*\?
AFEg, = — — 231
o \/<kL5L> " <k050> " <kH5H> (2:31)
The weighting functionsSy,, Sc, and Sy vary with the chroma of the reference specimén as
follows,

S =1, Sc=140.045C*, Sy =1+0.015C". (2.32)

The variables:y, k- andky are calledparametric factorsand are included in the formula to allow

for adjustments to be made independently to each colour difference term to account for any devia-
tions from the reference viewing conditions, that cause component specific variations in the visual
tolerances. Under the reference conditions explained above, they are set to

ki = ke =ky = 1. (2.33)

We note that under reference conditionsFg, equalsAE?, for neutral colours, while for more
saturated colours) £, becomes smaller thah 7, .

This colour difference formula is now extensively used both in literature and industry, and is expected
to replaceA E, as the most popular way of expressing colour differences.

2.5 Colourimaging

The main subject of this dissertation is colour imaging. Especially important is colour consistency
throughout a colour imaging system. To achieve this, it is necessary to understand and control the
way in which the different devices involved in the entire colour imaging chain treat colours. We will
mainly be concerned wittligital imaging, in which the different devices are connected to a computer,

as illustrated in Figure 2.12. Our goal is to make sure that all these devices work properly together.

We will first present the concept alour managementproviding a framework in which colour
information can be processed consistently throughout a digital imaging system. Then we proceed to
a brief presentation of digital image acquisition and reproduction devices. It is not in the scope of
this thesis to describe in detail the different technologies used in such devices. We will, however,
concentrate on how they can be characterised colorimetrically.

2.5.1 Colour management

Whenever a computer is used for the acquisition, visualisation, or reproduction of coloured objects, it
is important to assure colour consistency throughout the system (Hardeberg and Schmitt, 1998). By

5If neither of the two samples can be considered to be a reference specimen, the geometric mean of the chroma of the
two samples is used.
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Figure 2.12: Different digital imaging devices connected to a central computer. A typical imaging
workflow goes from an original document, scanned, visualised on the monitor, and finally printed.
Ideally, the printed result should be an exact facsimile of the original document.

calibrating colour peripherals to a common standard, Colour Management System (CMS) software
makes it easier to match the colours that are scanned to those that appear on the monitor and printer,
and also to match colours designed on the monitor, using for example CAD software, to the printed
document. Colour management is highly relevant to persons using computers for working with art,
architecture, desktop publishing or photography, but also to non-professionals, as for example, when
displaying and printing images downloaded from the Internet or from a Photo CD (Photo CD, 1991).

But where is the problem in all this? For example, one might say: “I know that my scanner provides

me with a description of each colour as a unique combination of red, green, and blue (RGB) and so
does my monitor, and even my ink-jet printer accepts RGB images!” The problem is that even if these
devices all 'speak’ RGB, the way they describe colours (scanner-RGB, monitor-RGB and printer-

RGB) are substantially different, even for peripherals of the same type. An obvious example of this
is that an image printed on glossy paper by a sublimation printer is considerably more colourful than
the same image printed on plain paper by an old ink-jet printer.

To obtain faithful colour reproduction, a Colour Management System (CMS) has two main tasks.
First, colorimetric characterisation of the peripherals is needed, so thdetee-dependerdolour
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representations of the scanner, the printer, and the monitor can be linkedewica-independent
colour space, the Profile Connection Space (PCS), see Figure 2.13. This is the prqure§§ng).
Furthermore, efficient means for processing and converting images between different representations
are needed. This task is undertaken by the Colour Management Module (CMM), see Figure 2.14. For
further information about the architecture of CMS, refay.to MacDonald (1993a), Murch (1993),
Schipferet al. (1998), ICC.1:1998.9 (1998). In Figure 2.15 we present an example of a colour
management system for a colour facsimile system.

Colour
Management
System

Profile Connection Space

.................

Figure 2.13:Different digital imaging devices connected in a colour management system. Each device
is characterised by a profile. Note the workflow simplification compared to Figure 2.12 on the facing

page.

The industry adoption of CMS depends strongly on standardisations (Stokes, 1997). The International
Color Consortiurf (ICC) plays a very important role in this concern. The ICC was established in 1993
by eight industry vendors for the purpose of creating, promoting and encouraging the standardisation
and evolution of an open, vendor-neutral, cross-platform colour management system architecture and
components. Today there is wide acceptance of the ICC standards.

Several vendors offer CMS software solutions, for example the following:

5Seehttp://www.color.org for more information about the ICC.
"See http://www.tsi.enst.fr/"hardeber/work/cms.html| or http://www.deviceguys.com/
jonh/cms.html  for a more comprehensive list of available Colour Management System software.
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Application

Graphicg| Imaging
Library || Library
v v

Colour Management
Framework Interface

\ Z 4
[g:el\i;laMult 3rd party| 3rd party
CMM CMM

Figure 2.14: A typical Colour Management System architecture, as described in the ICC Profile
Format Specification (ICC.1:1998.9, 1998).
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Figure 2.15: An example of a colour management system for colour facsimile (Hardehealy
1996). The transformations between the device-dependent colour coordinates (RGB and CMY) and
the CIELAB colour space are performed using 3D look-up tables and a tetrahedral interpolation tech-
nique (cf. Appendix B). The look-up tables are determined by the characterisation algorithms.
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m Agfa Gevaert N.V. with ColorTundyttp://www.agfahome.com/products/dtp/ soft-
ware/colortune.html

m Apple Inc. with ColorSynchttp://www.apple.com/colorsync/

m CCE S.A.R.L. with AffixColorhttp://www.affixcce.com/

m Eastman Kodak Company with ColorFlolttp://www.kodak.com/go/colorflow
m E-Color, Inc. with Colorific http://www.ecolor.com

m FotoWare AS with Color Factorittp://www.fotoware.com

m Heidelberg CPS GmbH with LinoColodnttp://www.linocolor.com

m Imaging Technologies Corporation with ColorBlirtattp://www.color.com

m LOGO GmbH with ProfileMaker/LogoSynbittp://www.logosoft.de

It has been concluded in a recent study (Spféfet al., 1998) undertaken by the Association for the
Promotion of Reseach in the Graphic Arts Industry (UGRA) that the colour management solutions
offered by different vendors are approximately equal, and that colour management now has passed
the breakthrough phase and can be considered a valid and useful tool in image reproduction.

However, there is still a long way to go, both when it comes to software development (integration
of CMS in operating systems, user-friendliness, simplicity, ), research in colour and imaging
science and technology (better colour consistency, gamut mapping, colour appearance.maoyels,

and standardisation. Colour imaging is a very active research domain, and in the next sections, we
will briefly review different approaches to the colorimetric characterisation of image acquisition and
reproduction devices.

2.5.2 Digital image acquisition

In order to process images digitally, the continuous-space, analog, real-world images need to be sam-
pled and quantised. This is typically done by a digital camera or scanner. There have been significant
improvement in the quality of digital image acquisition devices over the last several years, and at the
same time, prices are reduced dramatically. Traditional analog imaging is constantly loosing market
shares. However, there are several technical issues that still need to be solved in digital image acqui-
sition. In Chapter 4 we present our approach to the acquisition of high quality digital colour images.
A very important problem is how to attain a high colorimetric fidelity, and this issue is addressed in
Chapter 3.

2.5.2.1 Colorimetric characterisation of scanners and cameras

To colorimetrically characterise image acquisition devices such as CCD cameras and scanners, two
different approaches are typically used, applying spectral and analytical models. The gepkof a
tral characterisation technique will be to estimate the funciiér) in Equation 2.34, this function
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representing the transformation performed by the scanner, from object refleefana® scanner

RGB values, that is, the spectral model of the scanner. Eventually, this information can be used to
obtain device-independent colour information by defining an “optimal” funagioh If f(-) meets

the Luther-lves conditiorflves, 1915, Luther, 1927) this is trivial. Otherwise we have to define what

is meant by “optimal”.

A scanner characterisation based amalytical models, however, seeks to minimise the difference
between the known device-independent CIELAB values (Labjhe colour patches of a target and
the values (Lah)as obtained by the desired transformatidr) from the scanner RGB values. Notice
that a device-independent colour representation other than CIELAB may be used.

f@)
r(\) — RGB
h(-) | () (2.34)
(Laby = (Lab),
AE

Analytical models. For the colorimetric characterisation of electronic image input devices, it is
current practice to use standard colour targets such as the ANSI IT8.7/2 (1993) chart and to apply
analytical models for the mapping of the input device data into a standardised device-independent
colour space. The mapping function is typically obtained by polynomial regressioe, s&erns
(1993a), Lenzt al. (1996b), Hardebergt al. (1996), as well as the surveys by Johnson (1996) and
Kang (1997). Quite often, the transformation from scanner RGB to CIEXYZ is performed using a
3 X 3 matrix.

An important limitation of such methods is that, for a given experimental setup of the lighting con-
ditions and for a given choice of the illuminant, individual characterisation data have to be obtained
for each type of input media, the failure to do this resulting in considerable errors due to metamerism.
However, for a given input medium, such methods give very satisfactory results. We report on our
approach to the analytical colorimetric characterisation of desktop scanners in Chapter 3.

Spectral models For a more complete characterisation, the knowledge of the physical characteris-
tics of the different optical and electrooptical components which are involved in the image conversion
process would be desirable. This is particularily the case for applications where the camera will be
used for the acquisition of multispectral images. A simple spectral model of the image acquisition
process may be formulated in terms of algebraic matrix operations. The spectral characterisation con-
sists in estimating the different spectral characteristics of the sensor, the optics and the illumination,
or eventually, the joint characteristics of these elementsdgg&arrell and Wandell, 1993, Sharma

and Trussell, 1996c, Hardebezgal., 1998b).

In Section 6.2, we investigate an approach to this problem based on the acquisition of a number of
samples with known reflectance spectra. By observing the camera output to known input, we perform
an estimation of the spectral sensitivity of a CCD camera.
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2.5.3 Digital image reproduction

Colour may be produced in many different ways. According to Nassau (1983), as many as fifteen
distinct physical mechanisms are responsible for colour in nature. Only few of these mechanisms are
suitable for digital image reproduction, but there exists nevertheless considerable diversity in avail-
able technologies for displaying and printing colour images. Image reproduction devices can can be
broadly classified into two categoriesglditive and subtractivedevices. Some devices also combine
these two technologies, they are calfedbrid devices.

2.5.3.1 Additive colour devices

In additive colour devices, the colours are produced by adding light of different colours, following
the theories of additive colour mixture described earlier in this chapter. The most common choice of
additive primary colours is red, green and blue (RGB).

Visual display unit® (VDU) emit light and are therefore additive devices. They can be characterised
almost completely in terms of a few parameters, such as the white point, the gamma curve etc. When
these parameters are known, the required RGB drive signals needed to produce a given XYZ colour
stimulus can be calculated, segq.NPL QM 117 (1995), Bernst al.(1993), and Chapter 14 of Kang
(1997).

Recently, a new standard colour space was proposed, the SRGB colod @patersoret al., 1996,

IEC 61966-2.1, 1999). Its definition is based on the average performance of PC displays under normal
viewing conditions. We present here the steps involved in the conversions between CIEXYZ and
sRGB as an example. If exact colorimetric reproduction is needed on a particular VDU, formulas
resembling the following should be used, but with different parameters, obtained from a colorimetric
characterisation of the device.

The sRGB tristimulus values are defined simply as a linear transformation of the CIEXYZ values,
based on phosphor chromaticities aigl white point, as follows,

RsrcB 3.2406 —1.5372 —0.4986 X
GsreB | = | —0.9689 1.8758  0.0415 Y |. (2.35)
BsrcB 1.0570  —0.2040 0.0557 VA

Then the non-linear sR’G’'B’ values are defined as

12.92 RsrGB, Rsrar < 0.00304
Repae = 1.0/2.2 > (2.36)
1.055R,z6s — 0.055, elsewhere

and likewise forG' ;g and Bizsg The 8-bit digital values that should be transmitted to the display
are finally calculated aRgpit = 255.0 Riggp:

8visual display units, display, monitor, and computer screen, are different names used for this device. Two important
types are Cathode-Ray Tubes (CRT) and Liquid Crystal Displays (LCD).

9Seehttp://www.srgh.com for more information on how the use of the SRGB colour space can facilitate colour
consistency, as a simpler alternative to ICC-based colour management.
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2.5.3.2 Subtractive colour devices

In additive colour devices, the colours are typically produced by adding different proportions of the
three primary colours red, green and blue. In subtractive colour devices, the colours are produced by
multiplying a white spectrum by the spectral transmission curya$ of the three subtractive primary
colours cyan, magenta and yellow (CMY). Thus, for each of the subtractive primaries, frequency
components are removed from the white spectrum. An ideal subtractive colour device can be presented
as in Figure 2.16, where we observe that the result of a multiplication of an ideal white spectrum with
the three ideal rectangular bandstop filters gives a resulting colour spectrum exactly equal to the one
obtained in an ideal additive system.

Cyan R

+F

11 White Resulting colour Green

Blue

A

Figure 2.16:An ideal subtractive colour reproduction system. We see that the resulting colour of a
subtractive colour system results from a multiplication of a white spectrum with the spectra of yellow,
magenta and cyan inks. We note that the resulting spectrum equals the sum of three ideal additive
RGB primaries which are the spectral complimentaries of the ideal inks.

We remark that no concepts in the field of colour have traditionally been more confused than that of
additive and subtractive colour mixture. This confusion can be traced to two prevalent misnomers: the
subtractive primary cyan, which is properly a blue-green, is commonly called blue; and the subtractive
primary magenta is commonly called red. In these terms, the subtractive primaries become red, yellow,
and blue; and those whose experience is confined for the most part to subtractive mixtures have
good cause to wonder why the physicist insists on regardingge@n and blue as the primary
colours. The confusion is at once resolved when it is realised that red, green, and blue are selected as
additive primaries because they provide the greatest colour gamut in mixtures. For the same reason,
the subtractive primaries are, respectively, red-absorbing (cyan), green-absorbing (magenta), and blue-
absorbing (yellow).
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The principle of subtractive colour mixture is used in colour printers, where a white sheet is covered
with layers of yellow, magenta and cyan inks or other materials. The pigments in the inks absorb
certain wavelengths from the incident light, and thus constitutes a subtractive colour system.

The input to a typical printer is a quadrugle, M,Y, K]. TheC, M andY represents the amount of

cyan, magenta and yellow ink, whil€ represents the black ink, often denoted as the black separation.
The black separation is introduced to accomplish two things: to increase the contrast by increasing
the density in the dark areas of the picture, and to replace some percentage of the three primaries for
economic or mechanical reasons, as explamgdy Stoneet al. (1988). There are several strategies

for how the amount of black ink is determined. One is grey-component replacement (GCR), in which
the neutral or grey component of a three-colour image is replaced with a certain level of black ink. The
least predominant of the three primary inks is used to calculate a partial or total substitution by black,
and the colour components of the image are reduced to produce a print image of a nearly equivalent
colour to the original three-colour print (Sayanagi, 1986, Johnson, 1992, Kang, 1997). In the further,
we will often omit theK when describing the output to a printer, as we treat this black separation as

a device characteristic.

The relation between the ideal compone@tsM, Y and the RGB-space based on ideal bandpass
shaped colour matching functiordd, Figure 2.16, is as follows:

C=1-R, M=1-G, Y=1-8B (2.37)

In reality, the reflectance curveg)) for the cyan, magenta and yellow inks are far from rectangular
(see Figure 2.17) and the relation between CMYK and RGB is not trivial. The problem of obtaining
this relation is discussed briefly in Section 2.5.3.3, and we propose an original solution to this problem
in Chapter 5.

Ideal printer block dyes

Mitsubishi sublimation printer inks
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Figure 2.17:Comparison of ideal and real printer inks.
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2.5.3.3 Colorimetric characterisation of printers.

The characterisation of a colour output device such as a digital colour printer defines the relationship
between the device colour space and a device-independent colour space, typically based on CIE col-
orimetry. This relationship defines a (forward) printer model. Several approaches to printer modeling
exist in the literature. They may be divided into two main groups, physical and empirical modeling
(seee.g.Stoneet al,, 1988, Hardeberg and Schmitt, 1997, Kang, 1997).

m Physical models.Such models are based on knowledge of the physical or chemical behavior
of the printing system, and are thus inherently dependent on the technology used (ink jet, dye
sublimation, etc.). An important example of physical models for halftone devices is the Neuge-
bauer model, (Neugebauer, 1937, Kang, 1997) which treats the printed colour as an additive
mixture of the tristimulus values of the paper, the primary colours, and any overlap of primary
colours. More recent applications of analytical modeling are illustrated with a study of Berns
(1993b) which applies a modified version of the Kubelka-Munk spectral model (Kubelka and
Munk, 1931) to a dye diffusion thermal transfer printer.

m Empirical models. Such models do not explicitly require knowledge of the physical properties
of the printer as they rely only on the measurement of a large number of colour samples, used
either to optimise a set of linear equations based on regression algorithms, or to build lookup-
tables for 3D interpolation. Regression models have not been found to be very successful in
printer modeling (Hung, 1993), while the lookup-table method is used by several authors, for
example Hung (1993) and Balasubramanian (1994).

However, to be of practical use for image reproduction, these printer models have to be inverted, and
the solution to this problem is rather difficult to find (lino and Berns, 1998a;b). Iterated optimisation
algorithms are often needed to determine the device colour coordinates which reproduce a given colour
defined in a device-independent colour space, as proposed for example by Mahy and Delabastita
(1996).

Another issue which cannot be avoided when discussing printer characterisation is gamut mapping
(Morovic, 1998). The colour gamut of a device such as a printer is defined as the range of colours that
can be reproduced with this device. Gamut mapping is needed whenever two imaging devices do not
have coincident colour gamuts, in particular when a given colour in the original document cannot be
reproduced with the printer that is used. We treat this subject briefly in Appendix E.

We propose in Chapter 5 a novel characterisation technique which provides a practical tool to trans-
form any point of the CIELAB space into its corresponding CMY values (Hardeberg and Schmitt,
1997, Schmitt and Hardeberg, 1997). This process also includes a colour gamut mapping technique
which can be of any type.

2.5.4 Multi-channel imaging

As early as in 1853 Hermannu@ter Grassmann stated that three variables are necessary and sufficient
to characterise a colour (Section 2.4.1). This principle, the three-dimensionality of colour, has since
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been confirmed by thorough biological studies of the human eye. This is the reason why digital colour
images are composed of three channels or layers, typically red, green and blue.

However, for digital image acquisition and reproduction, three-channel images have several limita-
tions. First, in a colour image acquisition process, the scene of interest is imaged using a given illumi-
nant. Due to metamerism, the colour image of this scene under another illuminant cannot be accurately
estimated. Furthermore, since the spectral sensitivities of the acquisition device generally differ from
the standardised colour matching functions, it is also impossible to obtain device-independent colour.
By increasing the number of channels in the image acquisition device we can remedy these problems,
and thus increase the colour quality significantly. Several research groups worldwide are working on
these matters, for example at the university of Chiba, Japan (Hamiahi 1997, Yokoyamaet al.,,

1997, Miyake and Yokoyama, 1998), at Rochester Institute of Technology, USA (Burns and Berns,
1996, Burns, 1997, Berns, 1998, Begisl, 1998), and at RWTH Aachen, Germany (Keusen, 1996,
Konig and Praefcke, 1998a;b, Hill, 1998). In Chapter 6 we describe our approach to the acquisition of
multispectral images with the use of a high definition digital camera and a given number of chromatic
filters.

For printing applications more than three image channels have been used for a long time, in particular,
a black ink (K) is used in addition to the three subtractive primaries (CMY), as described previously.
This has two main advantages, reducing the cost (black can be made with one ink instead of three),
and increasing the gamut (more nuances in the dark colours).

Quite recently, desktop printers with six and seven inks have become available. The use of more than
four printing inks is often denoted Hi-Fi colour, and was up till now only used in very expensive
high-end printing systems. Two main methods are used, adding intermediary colours between the
subtractive primaries to increase the gamut (and economise), and adding lighter versions of the pri-
mary inks, to produce smoother images with less visible dithering. The colorimetric characterisation
of such printers is an important research field today ésgeMacDonaldet al, 1994, Herron, 1996,

Van De Capelle and Meireson, 1997, Mahy and DeBaer, 1997, Be¢m@s 1998, Tzeng and Berns,
1998). Another possibility of multi-ink printing is to reproduce not only the wanted colour, but the
desired spectral reflectance, for example to create a spectral match to an orginal, and thus avoiding the
problems caused by a metameric match, when changing observer or illumination. This is a very new
research area (Beres al., 1998, Tzeng and Berns, 1998).

2.6 Conclusion

In this chapter we have first given our view of the relations and interactions between light, objects, and
human colour vision. Hopefully this has shed some light on the difficult question concerning what
colourreally is. Having defined these basic principles, we have proceeded to a review of different
aspects of the science and technology of digital colour imaging. Important points are colour manage-
ment, colorimetric characterisation of image acquisition and reproduction devices, and imaging using
more than three channels.
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Chapter

Colorimetric scanner characterisation

In this chapter, methods for the colorimetric characterisation of colour scanners are
proposed. These methods apply equally to other colour image input devices such
as digital cameras. The goal of our characterisation is to establish the relation-
ship between the device-dependent colour space of the scanner and the device-
independent CIELAB colour space. The scanner characterisation is based on poly-
nomial regression techniques. Several regression schemes have been tested. The
retained method consists in applying a non-linear correction to the scanner RGB
values followed by a 3rd order 3D polynomial regression function directly to CIELAB
space. This method gives very good results in terms of residual colour differences.
This is partly due to the fact that the RMS error that is minimised in the regression
corresponds to AFE,, which is well correlated to visual colour differences.
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3.1 Introduction

To achieve high image quality throughout a digital image system, the first requirement is to ensure
the quality of the device that captures real-world physical images to digital images. Several different
types of such devices exist, we treat here the case of a flatbed scanner, but the results can also be
applied to other devices such as digital cameras. Several factors have influence on this quality, optical
resolution, bit depth, spectral sensitivities, noise, to mention a few. In this chapter we will concen-
trate on the colorimetric faculties of the scanner, that is, the scanner’s ability to deliver quantitative
device-independent digital information about the colours of the original document. Very few scanners
deliver directly colorimetric data, thus we perforntalorimetric characterisatiorof the scanner to

obtain the relation between the scanner’s device dependent RGB colour coordinates and a device-
independent colour space, in our case we use the CIELAB pseudo-uniform colour space, as defined
in Section 2.4.8.1. Several approaches to this characterisation exist, as described in Section 2.5.2.1.

For the colorimetrical characterisation of a scanner we propose to use an analytical model. The term
analytical signifies that it is only based on measurements, no assumption is made about the physical
properties of the scanner, as opposed to when using spectral models, see Sections 2.5.2.1 and 6.2. The
method is based on polynomial regression and the minimisatidw/of,, the Euclidean distance in
CIELAB space.

In order to characterise the scanner we seek to define the transformation
[L*7a’*7b*] = g(R7 G? B)? (31)

which converts the RGB scanner components into CIELAB values. Unless the scaooleriimet-

ric, that is, the spectral sensitivities of the three scanner channels equals the CIEXYZ colour matching
functions or any nonsingular linear transformation of them, an exact analytical representation of Equa-
tion 3.1 does not existWe must thus try to approximate this function. In the literature ésgédung,

1991, Kang, 1992, Wandell and Farrell, 1993, Berns, 1993a, Haradisthj 1995, Johnson, 1996),

the most common solution to this problem is to apply linear or higher order regression algorithms
to convert from scanner RGB values to CIEXYZ values, and then apply the formulae given in Sec-
tion 2.4.8.1 to obtain the CIELAB values if those are needed. The main drawback with such methods
is that the error that is minimised by the regression algorithm, the RMS error in CIEXYZ space, is
very poorly correlated to visual colour differences.

The requirement focolorimetric scanners is often referred to as theher-lves conditiorflves, 1915, Luther, 1927).
More recent work on colorimetric scanner requirements has been done by Hung (1991) and Engeldrum (1993). For image
acquisition devices with more than three channels, this requirement can be generalised to requiring that the Human Visual
Sub-Space (HVSS, see Section 2.3) be contained isehsor visual spacgefined as the subspace spanned by the spectral
sensitivity functions of the image acquisition device, see Sharma and Trussell (1997a).
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One way to remedy this is to make sure that the output values of the regression algorithm are CIELAB
values, instead of CIEXYZ values, since the Euclidean distance in CIELAB space corresponds quite
well to perceptual colour differences. There is clearly not a linear relationship between scanner RGB
and CIELAB space, and we propose thus to model the transformatipgiven above by:th order
polynomials whose coefficients may be optimised by standard regression techniques (Albert, 1972).
In addition to the main step defined by the polynomial regression, we can add other non-linear trans-
formations steps before and after.

In the following sections we propose several methods for the colorimetric scanner characterisation,
and we perform a rigorous analysis of their performance.

3.2 Characterisation methodology

The characterisation is done as follows, see Figure 3.1. A colour chart containing al\setotdur
samples with known CIELAB values is scanned. By a picture processing routine we segment each
colour sample and calculate the mean values of its RGB scanner components. By comparing the
scanned values with the known theoretical CIELAB values for each test patch, we can find the char-
acterisation of the scanner. From this characterisation, we will be able to correct the values given by
the scanner, to obtain colour consistency, in particular by creating a 3D look-up table for the RGB-
CIELAB transformation that can serve as@nner profildor a Colour Management System (CMS).

Figure 3.2 illustrates the method of approximating the function by the functiong’(-). For each
colour P; = [R;,G;,B;], i = 1,...,N on the test chart, the corresponding theoretical values

0! = (1% 4" b in CIELAB space are known. The valu@.” have been calculated from
the reflectance spectra of the patches measured by spectrophotometry. Nominal values provided by
the colour chart manufacturer can also be used, if we are confident in the quality of the colour chart

we use, and in the data provided by the manufacturer.

Using these valuee‘)z(t) and the value®; as input to the characterisation algorithm, we seek to find
the best coefficients of the functigsi(-), minimising the mean squa® E,,;, error between all the

theoretical vaIuei)Z(t) = ¢(P;) and the approximated oné);z(c) = ¢'(P;), as described in the next
section and in Appendix A.1.

3.2.1 Regression

The core of our characterisation method is in the linear regression step. A linear regression on a
vectorial transformation fronR?* to R? (such as Equation 3.1) is equivalent to three independent
linear regressions on a scalar transformation fi@trto R corresponding to each of its components
(see Appendix A.1). To simplify the notation, let us consider simply a general transformation

Yy = g(X), (32)
wherex € R? (RGB space) ang € R (one of the components of CIELAB space). We approximate
the functiong(-) by the following expression,

y= gl(x) = vtav (33)
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Figure 3.1: The scanner characterisation process, providing a 3D look-up table that can be used as
device profile in a Colour Management System (CMS) for the conversion of images from scanner
RGB to CIELAB.

where the entries of the vecterare M functionsh;(x) of the input values,
v = [ho(x), he(x),. .. char1(x)]F, (3.4)

anda = [ag, a1, ... ,ay]' is a vector of coefficients to be optimised. For the simple example of linear
regression with a first order polynomidlf = 4, v = [1, R, G, B]', and Equation 3.3 becomes simply

7y = ag + a1 R + asG + a3 B. For the example of a 3rd order polynomial with all the cross-product
terms,M = 20, and

v = [l RG B R? RG RB G* GB B? R® R"G R’B RG” RGB RB* G* G*B GB* B3]t. (3.5)
Giveni) a set of input datx;, j = 1,... N, ii) their corresponding vectons;, andiii) the observed

output datay;, then the coefficient vecter which minimises the RMS difference between observed
and predicted data, is given by (see Appendix A.1)

a=(ViV) 'Vly =Vy, (3.6)

whereV = [vi vy ...vy]L y = [y1 2 ... yn]t, andV~ is the Moore-Penrose pseudo-inversévof
(Albert, 1972).

A very important factor concerning the success of a regression algorithm is the choice of the function
hi(-) defining the vectors,, so that the regression functigf(x) provides a good approximation of
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AR

Figure 3.2:The transformation from scanner RGB-space to CIELAB-space using the fugtfidhn
The difference between the theoretical CIELAB colour pdit = ¢(P) and the approximated
colour O©) = ¢'(P) corresponds to the psychophysically relevant colour differenég,. The
functiong'(P) is defined by polynomial regression to minimise the RIXE,;, over theN patches
of a colour chart.

g(x). Typically, for mth order polynomial regression, if we choosetoo low, ¢’(x) will not have
enoughdegrees of freedomo “follow” g(x), while if m is chosen too largey (x) can tend to oscillate,
see Figure 3.3. Animportant step for the choicégf) is the linearisation of the scanner RGB values,
as described in the next section.

80

60

40}

20

0

% 3 2 a1 o 1 2 3 4 s
Figure 3.3: 1D example of first and third order polynomial regression functipns ¢'(x) applied
to a data sey; = g(z;), i = 1,... ,5 marked with stars«). The third order polynomial function
(—) gives zero residual error, but nevertheless it is obviously less adapted than the first order function
(— - —) outside of the domain.
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3.2.2 Linearisation of the scanner RGB values

The CCD scanner is inherently a linear electro-optic conversion device, that is, it converts the optical
energy of the incoming light into proportional amounts of electric signals, see Section 6.2.1. These
signals are in turn discretised and presented as digitél RGB values at the output (typically= 8

for a low-cost scannei,0 or 12 for more professional ones). However, we have observed in practice
that the scanner RGB values are often not proportional to the spectral energy. This non-linearity may
have several causes, and we mention some.

1. Black offset. Even in total absence of incident light, the CCD sensor produces a small electric
signal due to leak currents.

2. Deliberate corrections to enhance the quality of the display on a computer monitor by coun-
teracting the non-linear transfer function of the monftoBuch corrections are often called
gamma-corrections (Poynton, 1996), and may also be applied to minimise the noise due to
guantisation. For a given scanner with its scanner driver software, the parameters of this cor-
rection may or may not be known to the user.

Stray light in the acquisition system may cause image-dependent deviation from linearity.
Fluorescence of the scanned reflective media causes the linear model of the scanner to fail.

Limited dynamic range of the detector.

© o M w

Inclusion of ultraviolet and infrared radiation in the measurements.

In general, the user has limited knowledge of these factors, and we proceed thus to an automatic
characterisation of the linearity and eventually to a linearisation of the scanner RGB values.

What we wish to achieve through the linearisati@f the scanner RGB values is to obtain RGB
values that are proportional to the optical energy of the input light, as illustrated in Figure 3.4. This
correction is calledjray balanceby some authors (Kang, 1992; 1997)

Two different approaches for the linearisation are presented in the following sections, a global and
a piecewise linear approach. They both rely on the comparison of measflexiance factors;,
i=1,...,N, of each of theV, patches of a grayscale colour chart with the corresponding mRgan

G'; and B; device coordinates from the scanner.

3.2.2.1 Aglobal approach

Using this approach, we assume that the non-linearity of the scanner stems mainly from a CRT
gamma-correction (Bernst al., 1993, Poynton, 1996), thus there is a power-law relation between

The intensity of light generated by a display device is not usually a linear function of the applied signal. A conventional
CRT has a power-law response to voltage: light intensity produced at the face of the display is approximately the applied
voltage, raised to the 2.5 power. Gamma correction is the process of compensating for this non-linearity by transforming
linear scanner values to a nonlinear video signal by a power-law function (Poynton, 1996).

SWhat wee seek to do is to "remove” the gamma correction that was imposed by the scéiiteen, 2 above.
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Figure 3.4:Linearisation of the scanner output values. The scanner device coordiRatésB) are
corrected to obtain valugR;,, G 1, By,) that are proportional to the optical energy of the incident
light.

NN

the optical and electrical values, as given by
O =k(e—-ey)” (3.7)

Here, we useé) to indicate the optical signak the electrical signale; the electrical signal corre-
sponding to dark currenk a scaling factor and the exponent. If we denote the linearised RGB
values as;,, G, and B;, we have the following three equations.

Rr, = kr(R—eq,)"" (3.8)
GL = kg(G — €dG)7G
BL = kB(B—edB)VB

To perform the linearisation we then need to estimate the unknown parameters in these equations. The
dark current values which are the device coordinates resulting from a black object may be measured
experimentally. For the Sharp JX-300 flatbed scanner we obtained the following mean values simply
by performing a scan, with an open cover, without any document, and in a completely dark room:

ed, = 7.05 ed, = 3.80 ed, = 6.10
To estimate the gamma values, we would like the linearised values to be equal to the measured re-

flectance factors;, : = 1,... , N, for the N, grayscale chart patches. We then have the following
set of equations.

ri = kr(R;—eq,)"R,
ri = ka(Gi—eq,)'°,
ry = kB(Bi—edB)’YB, 1= 1,... ,Ng (39)

To solve this foryg, va, v, We take the logarithm on both sides of the equations.

log(r;) = logkpr + vyrlog(R; — eqy) (3.10)
log(r;) = logkea +valog(Gi — eqq) (3.11)
log(r;) = logkp + vplog(B; — eqy,) i=1,...,Ng (3.12)
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This set oflV, equations can easily be solved by a least mean squares approach. We note that with this
method, we do not get an exact match between the reflectances and the linearised grayscale values, as
can be seen in Figure 3.5.

10°

10

10"

Figure 3.5:Linearisation curve with a global approach (—) compared with the measured reflectance
values (+). We see that the linearisation curve differs from the reflectance values, especially at low
levels. For clarity we have only included the result for the blue (B) channel.

3.2.2.2 A piecewise linear approach

Using this approach, we consider the linearisation curve to be piecewise linearsentilegspace.
By ordering the reflectance values such that ;1,7 = 1,... , N, (see Figure 3.6) we obtain the
following set of N, — 1 equations for the? channel (similarly for thez and B channels):

logRp =a;R+b;, R, <R<Rjy1, 1 <1< Nyg—1 (3.13)
The coefficients:; andb;, < = 1,... , N, of Equation 3.13 are calculated as follows:
0 — logri;1 — log ri’ by = Rii1logr; — R;logriyy (3.14)
Riy1— R; Riy1— R;

For input valuesk > Ry, we simply perform an extrapolation of tfi&/, —1)'th segment. For values
R < R, we perform a linear interpolation in linear space between the p&intr;) and(eq,,0). We
can not do this interpolation in semilog space, as we need to reach zero.

This method guarantees that on the grayscale, the linearised values will be exactly equal to the re-
flectance values. Furthermore, it assures proper handling of the input values near zero. The resulting
linearisation curves foR, GG, and B are shown in Figure 3.7.
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Figure 3.6:lllustration of a piecewise linear linearisation curve in semilog space. This approach guar-
antees that the linearised values equal the measured reflectance values on the points of the grayscale
chart.

60

(a) The entire range. (b) A zoom of the region around the origin.

Figure 3.7:The linearisation curves for R (—), G-() and B (- - —) obtained with a piecewise linear
approach. The ordinate axes represent the input vdlRe&, B), the abscissa axes represent the
linearised value$R;,, G, Br,). We see that we get an exact match between the reflectances marked
with crosses and the linearised grayscale values. We also note the behaviour near the origin, where
special considerations have been taken.

3.2.2.3 Testing of the linearisation algorithms

Linearisation of the RGB scanner output have been done for several different scanners and digital
cameras and several different gray-scale colour charts. The preferred method depends ont the appli-
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cation and on the device. The quality of the proposed linearisation methods is not easy to evaluate,
since the linearisation is normally only the first step of a series of correction algorithms, of which the
final outcome depend.

We have tested several combinations of linearisation methods (piecewice linear, global, none) together
with following polynomial corrections for the Sharp JX-300 24 bit/pixel flatbed colour scanner and

an AGFA photographic grayscale colour chart wNh = 18 colour patches. The graphs and numbers
presented in this section is from this experiment which is explained in detail in (Hardeberg, 1995). No
clear conclusions are drawn, however the tendancy is that the piecewise linear method gives the best
results.

For the experiments with the AGFA Arcus Il 36 bits/channel flatbed colour scanner (see Section
3.3.2) no linearisation was needed, while to obtain the very high accuracy needed for the multispectral
experiments of Chapter 7 with the PCO SensiCam digital camera, a correction for the black offset was
needed.

Note that other linearisation schemes could have been used, such as first, second or third order poly-
nomial regression, piecewise linear interpolation in linear or log-log space, or spline interpolation.

In the remaining of this chapter we will assume that the scanner output has been linearised if this has
been found necessary.

3.2.3 Choice of the approximation function

Crucial for the performance of the characterisation is the choice of the function to approyifyate

We have tested a great number of different implementations, using different colour charts, different
polynom orders, including or not linearisation and a preliminary power-law correction, etc. Prelim-
inary results can be found in (Schmét al., 1990; 1995; 1996, Hardeberg, 1995, Hardeletrgl.,

1996). Here we present some of the proposed methods. To obtain a better understanding of the
successive steps of the methods, we illustrate them with symbolic equations.

3.2.3.1 Linear regression to XYZ space

With this classical method (Hung, 1991, Kang, 1992, Wandell and Farrell, 1993, Berns, 1993a, Haneishi
et al,, 1995, Johnson, 1996), a linear regression algorithm 'T1’ (without the constant term, that is,
ao = 0) is applied to convert from scanner RGB values to CIEXYZ values, and then the standardised
formula (labeled 'CIE’) given in Section 2.4.8.1 is applied to obtain the CIELAB values if those are
needed. Practically, the XYZ values are obtained by multiplying the RGB values by a 3x3 matrix of
parameters.

R T1 X CIE L
(TL,XYZ): |G |=|Yv |=| o (3.15)
B Z b*
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3.2.3.2 Second order polynomial regression to XYZ space

Here, we hope to obtain a better fit by applying a second order polynomial regression algorithm 'T2’
to convert from scanner RGB values to CIEXYZ values. This corresponds to a 3x10 correction matrix
when we include a constant term.

R T2 X CIE L
(T2, XY2): G|=|Y | =|d (3.16)
B 7 b*

3.2.3.3 Third order polynomial regression to XYZ space

With this method, a third order polynomial regression algorithm 'T3’ is applied to convert from scan-
ner RGB values to CIEXYZ values, corresponding to a 3x20 correction matrix.

Bl | X lce|
T3, XY2): |G ||y | = | o (3.17)
B z b*

3.2.3.4 Polynomial regression to CIELAB space

The main drawback with all the methods presented up to now is that the error that is minimised
by the regression algorithm, the RMS error in CIEXYZ space, is very poorly correlated to visual
colour differences. We propose thus a regression scheme in which the output values of the regression
algorithm are CIELAB values, instead of CIEXYZ values, since the Euclidean distance in CIELAB
space corresponds quite well to perceptual colour differences. There is clearly not a linear relationship
between scanner RGB and CIELAB space, and we propose thus to model the transfogfiatidn
Equation 3.1 directly byith order polynomial regression,= 1,2, 3.

(Tn, XYZ): G|=]|a (3.18)

3.2.3.5 Non-linear correction followed by polynomial regression

With this method, we have applied a non-linear correction of the RGB values before the regres-
sion by applying the cubic root functiong. the functionsh;(R, G, B) (cf. Eq.3.4) are replaced by
hi(RY3,G'/3, BY/3). The use of this cubic root function is motivated from considering the CIELAB
transformations, which involves such cubic root functions on the XYZ tristimulus values which again
are proportional to the optical energy.
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R, _.[Rs .
(p=1/3, Tn, LAB): G| =g | 2| a (3.19)
B B3 b*

where p = % indicates that the components are raised to the power of one third.

3.3 Experimental results

We have successfully applied the described colorimetric characterisation algorithms to several differ-
ent scanners and also digital cameras. Some of these results are reported in other chapters of this
dissertation. We will here report the results with the AGFA Arcus Il scanner on which most of the
experimentation has been effectuated.

3.3.1 Evaluation measures
To be able to evaluate and compare the different approaches, the following measures are provided:

m AFE which is the meam\E,;, colour difference (Section 2.4.8.1) between the calculated and
theoretical CIELAB-values for the complete test chart.

m A FEmax Which represents the maximufaE,;, colour difference between the calculated and the
theoretical CIELAB-values.

m AL, Aa, Ab, ALmax, Aamax Abmax, Which are the mean and maximal absolute errors measured
on each channel seperately.

® o which is the standard deviation of thef,, error over the patches, thatisy, = + SN AE -
AE)?

3.3.2 Results

We have applied the described characterisation methods to the AGFA Arcus Il flatbed scanner, using
two different IT8.7/2 colour charts (Ohta, 1993, ANSI IT8.7/2, 1993) contairfihg= 288 colour
patches, one from AGFA, with nominal CIELAB values provided by the manufactor, and another
from FUJI, being calibrated, that is, provided with CIELAB values measured on this copy of the chart.
We have tested first, second and third order polynomial regression from scanner RGB to XYZ and
CIELAB, as well as 1-3rd order regression between the square root of the RGB values and CIELAB
space, as described in Section 3.2.3. For the AGFA chart we obtain the results given in Table 3.2, and
for the FUJI chart we obtain the results given in Table 3.1.

From these results, several comments may be made. First, we note that mean errors always gets
smaller as higher order regression is used, as expected. However, maximum errors sometimes gets
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Method | AE | AEmax | AL | ALmax | Aa | Aamax | Ab | Abmax | o0&
T1,XYZ | 5.079| 17.658 | 1.676 | 5.162 | 2.925 | 14.157 | 3.379 | 11.970 | 3.868
T2,XYZ | 2.145 | 18.457 | 0.554 | 6.136 | 1.303 | 16.672| 1.243 | 8.273 | 2.557
T3,XYZ | 1.574 | 15.046 | 0.468 | 5.008 | 0.955| 13.270| 0.898 | 7.128 | 2.013
T1,LAB | 19.38 | 45.269 | 13.63 | 35.089| 7.719 | 32.522| 7.450 | 35.796 | 9.486
T2,LAB | 7.288 | 36.194 | 2.504 | 15.418 | 4.282 | 24.528 | 3.979 | 25.483 | 5.305
T3,LAB | 4.563 | 25.965| 1.294 | 10.909 | 2.673 | 20.541 | 2.633 | 16.124 | 3.763
p=1/3, T1,LAB | 5.462 | 18.393 | 2.352 | 11.748| 2.509 | 17.901 | 3.640 | 12.083 | 3.602
p=1/3, T2, LAB | 1.350 | 8.503 | 0.486 | 3.321 | 0.953| 8.448 | 0.548 | 4.413 | 1.108
p=1/3, T3,LAB | 1.006 | 5.515 | 0.432| 2.430 | 0.606 | 3.649 | 0.488 | 3.644 | 0.681

Table 3.1:Results of the different characterisation methods for the AGFA Arcus Il scanner, with the
FUJI IT8.7/2 colour chatrt.

Method AE | AEmax | AL | ALmax | Aa | Aamax | Ab | Abmax | o0&
T1, XYZ 4.841] 22.939| 1.276 | 3.715 | 2.782 | 20.932| 3.135 | 15.354| 3.800
T2, XYZ 2.989 | 28.246 | 0.458 | 3.585 | 1.653 | 21.718| 1.956 | 28.089 | 3.811
T3, XYZ 2.170 | 20.903 | 0.427 | 2.490 | 1.306 | 18.576 | 1.348 | 13.276 | 2.772
T1, LAB 22.27 | 49.111| 15.31| 34.052| 8.422 | 37.251| 9.056 | 40.062 | 9.298
T2, LAB 8.858 | 40.349 | 2.854 | 14.054 | 5.077 | 25.858 | 5.024 | 29.930 | 5.682
T3, LAB 5.386 | 30.792| 1.385| 9.775 | 3.207 | 23.060 | 3.114 | 19.784 | 4.065
p=1/3,T1,LAB | 5.652 | 23.961 | 3.241 | 11.345| 2.234 | 23.304 | 2.987 | 12.645 | 3.339
p=1/3, T2, LAB | 1.496 | 12.448 | 0.348 | 2.352 | 1.166 | 12.348 | 0.579 | 3.311 | 1.341
p=1/3, T3,LAB | 0.918 | 4.666 | 0.289 | 2.069 | 0.621 | 4.588 | 0.427 | 2.792 | 0.658

Table 3.2: Results of the characterisation methods for the AGFA Arcus Il scanner, with the AGFA
IT8.7/2 colour chart.

worse. For the regressions to XYZ space, we see that errors dri tmmponent are quite small com-

pared to ore* andb*. Polynomial regression directly from linear RGB values to CIELAB is clearly

not a good solution, while applying a pre-correction that “mimics” the non-linear function involved

in the XYZ-CIELAB conversion gives very good results, especially when third order polynoms are
used, giving a mean residual error of about dx® unit. When relating these results to the rule of
thumb described in Table 2.1 on page 22, we see that our results are very good. The mean error is
hardly perceptible, while the maximal error is perceptible, but acceptable.

Also when comparing to results found in the literature, our results are excellent. For example Haneishi
et al. (1995) obtained mean/maXFE,;, errors of 4.9/16.6 and 2.0/14.0 using respectively first and
second order polynomials to transform from scanner RGB to XYZ for a Canon CLC500 scanner
using a chart of 125 patches. Rao (1998) obtained mean/daerrors of 2.33/11.95 using linear

least squares from RGB to XYZ, and 1.62/4.55 using a non-linear least squares method minimising
AFE by a Levenberg-Marquardt iterative optimisation scheme. This was done for a IBM TDI/Pro
3000 scanner using the Kodak Q60 IT8 chart. Kang (1992) obtained hé&gpnerrors of 2.52 and

1.85, using3 x 6 and3 x 14 matrices, respectively, for the RGB-XYZ conversion for a Sharp JX-450
scanner using a Kodak Q60-C IT8 colour chart.

To gain more insight into the performance of the proposed methods, we present in Figure 3.8 his-
tograms of the residuah E,;, errors, in Figure 3.9 the distribution of errors versus lightness, and in

*Rao (1998) define a somewhat peculleE = \/AL*2/4 + Aa*? + Ab*2. This is clearly lowering theid E values
compared to the standardis&d®,, = /AL*2 + Aa*2 + Ab*2 used in our work.
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Figures 3.10 and 3.11, graphical visualisations of the errors in CIELAB space. For a more detailed
presentation of the numerical data involved in the characterisation process, refer to Appendix C.
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Figure 3.8:Error histograms for the FUJI IT8.7/2 chart using first, second and third order regression
to XYZ space (upper), and to CIELAB space, including a cubic-root pre-correction function (lower).
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Figure 3.9:Error distribution for the FUJI IT8.7/2 chart using traditional linear regression (T1, XYZ)
(left) and our preferred method (p=1/3, T3, LAB) (right). (Notice the scale difference.)
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Figure 3.10:Visualisation of the difference between the measured and the estimated CIELAB values

of some of the patches of the FUJI chart using the linear regression method (T1, XYZ). The residual
colour differences appear as black spikes.

3.3.3 Generalisation

An important question concerning our approach is the generalisation. Would the polynomial fit those
colours that are not used in the regression? With which colorimetric errors? How many colour patches
are needed in the regression to warrant an acceptable error? To answer these questions we have
conducted the following experiment. Using the AGFA I1T8.7/2 colour chart whichMas 288

patches, we systematically reduce the number of patches used for the reghgssiap and use the
Niesting= N — Nryaining removed patches for testing. The results, using the best method (p=1/3, T3,
LAB) are reported in Table 3.3. We see that even when reducing the training set to 54, the mean and
max total error only increases by 0.48 and 1B units, respectively. When the training set contains

less patches than the number of parameters (20) the system gets underdetermined and the estimation
is unusable. With a sufficient number of patches, approximatively the half, the error on the testing set

is only slightly higher than on the training set. These results are in good agreement with what was
found for lower order polynoms by Kang (1992).
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Figure 3.11:Visualisation of the difference between the measured and the estimated CIELAB values

of some of the patches of the FUJI chart using the proposed characterisation method (p=1/3, T3,
LAB).

3.3.4 Comparison of results with and without characterisation

To evaluate the results of our characterisation process, it would be interesting to compare the error in
terms of A E,;, with and without characterisation, that is, for each patch of the colour chart, to com-
pare the CIELAB-values obtained by our characterisation with the CIELAB-values obtaitteslit
characterisation. This is, however, not a straightforward task, the problem being how to obtain "good”
uncharacterisedCIELAB-values.

In the absence of a characterisation procedure, a natural approach would be to follow what a typi-
cal user probably would do, by first adjusting the gamma corrections at the scanning step in order
to choose the preferred image displayed on a CRT monitor and then by considering the displayed
image as it appears on the screen as a reference. With this in mind, it makes sense to define the
characterisedransformation from gamma corrected RGB scanner to CIELAB as the transformation
between the RGB space of the CRT monitor and CIELAB.
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# Patches Training Testing Total
Ntraining Ntesting E AEmax E AEmax E AEmax
288 0 0.918| 4.666 — — 0.918| 4.666

270 18 0.901| 4.483 | 1.164| 3.958 | 0.918| 4.483
252 36 0.897| 4.437 | 1.062| 3.881 | 0.918| 4.437
216 72 0.896| 4.037 | 1.105| 3.757 | 0.948| 4.037
180 108 | 0.940| 3.945 | 0.982| 3.629 | 0.956| 3.945
144 144 | 0.978| 3.931 | 0.961| 3.358 | 0.969| 3.931
108 180 | 0.956| 3.818 | 1.019| 4.764 | 0.995| 4.764
72 216 | 0.929| 3.341 | 1.060| 7.171 | 1.027| 7.171
63 225 | 0.937| 3.208 | 1.145| 6.032 | 1.100| 6.032
54 234 | 0.901| 2.820 | 1.249| 6.118 | 1.184| 6.118
45 243 | 0.744| 2.245 | 1.515| 15.009| 1.394| 15.009
36 252 | 0.720| 2.179 | 1.916| 19.808| 1.766| 19.808
27 261 | 0.329| 0.881 | 4.048| 33.273| 3.699| 33.273
18 270 | 0.000| 0.000 | 212.5| 2104.9| 199.2| 2104.9

Table 3.3:Results for the (p=1/3, T3, LAB) method and the AGFA IT8.7/2 colour chart using different
numbers of patches for training and testing. We see that the overall error increases only slightly even
when the number of patches used for training is reduced to 25% of the total number of patches.
However, the errors increase rather quickly if the number of patches is reduced even further.

For the uncharacterised transformation we chose a gamma correction of 2.2 at the scanner step, and
then applied a classical CRT model (Bestsal, 1993), this giving a mean error & E = 9.18, and

a maximum error oA Enay = 26.1, which have to be compared 8E = 1.01 and A Epayx = 5.52

obtained with our characterisation algorithm.

3.4 Conclusion

With the methods described in this chapter, a link between the device-dependent colour space of a
scanner and the device-independent CIELAB colour space standardised by the CIE is provided.

The proposed characterisation method consists of three Sjepdinearisation of the RGB scanner
values|i) a preprocessing with a cubic root function, difjda third order 3D regression polynom. The
preprocessing step serves as a first approximation of the cubic root function involved in the conversion
from CIEXYZ to CIELAB.

Applying this method to an AGFA Arcus Il flatbed scanner, we obtained a mean ertdFgf =

0.918, and a maximum error oA E,;, = 4.666 between the computed and the measured CIELAB
values on the complete set of patches of the AGFA IT8.7/2 colour chart. These results are very
satisfactory, compared to results obtained in the literature. The algorithms have also been applied
to other image acquisition devices, and we conclude that the characterisation process introduces a
significant improvement of the colorimetric quality of the image acquisition device.
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Chapter

High quality image capture

In the context of archiving of fine art paintings, we have developed various tech-
niques for the digital acquisition and the processing of high quality and high defini-
tion colour images. After a short review of existing systems, we describe here briefly
the successive steps of our approach to this process. After a general set up, we
first record a set of experimental data corresponding to the calibration of the CCD
array of the digital camera and to the light distribution. The digital image of the paint-
ing is then successively corrected for light distribution inhomogeneities, chromatic
aberrations by a precise registration of the three channels, and poor colorimetric
quality of the spectral responses of the digital camera by a non-linear colorimetric
3D transformation optimised using an 1T8.7/2 colour target. The corrected image is
then described by device-independent colour components and can be archived or
further converted for visualisation on a calibrated display or printer. For very high
definition an image mosaicing is further performed.

4.1 Introduction . . . ... 54
4.2 High resolution digital cameras, areview . . . . ... ... ... ... ... .. 55
421 TheVASARIproject . . . . . . . . . . 55
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4.5.2 \Visualisation and reproduction . . . . .. ... 63
4.5.3 Colorimetric analysis of fine art paintings . . . . . . ... ... ...... 64
4.6 Conclusion . . . . . . 64

4.1 Introduction

Traditionally, the image acquisition process using classical photographic techniques is quite complex
and it is difficult to control how colour is being processed in the different steps, see Figure 4.1. With

nE= 0

Classical Slide Raw digital
camera colour image

Digital
image

Original
painting

Figure 4.1:Traditional image acquisition process using classical photography.

the arrival of high-quality high-resolution electronic cameras new possibilities have emerged. The
proposed digital image acquisition process is performed directly from the painting, without a pho-

tographic intermediary, using a high resolution CCD camera, see Figure 4.2. The original methods
which are described in this chapter allow a perfect spatial resolution and an excellent colour fidelity.
The acquisition is therefore independent of the light source and the acquisition equipment. The pro-
cess of colorimetric characterisation of the camera provides the transformation from the RGB values
of the camera to the device-independent CIELAB colour space, using spectrally calibrated colour
targets.

Original Calibrated Raw digital  Automatic High Quality
painting CCD camera  colourimage corrections digital image

Figure 4.2:Entirely digital image acquisition process using a CCD camera.

In the framework of the European VASARI projétihe Ecole Nationale Sepieure des &écommuni-
cations (ENST) developed in 1990/1991 a set of techniques for the direct digital acquisition of a

'European ESPRIT Il projectr2649, Visual Arts System for Archiving and Retrieval of Images
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painting with a digital camera. Twenty paintings belonging to the Louvre collection was digitised in
high resolution and high quality. The experiments were conducted at the French Museum Research
Laboratory (LRMF) for obvious security reasons and with the valuable collaboration of their experts.
The aim of the VASARI digitisation program at the Louvre Museum was to obtain digital acquisitions

of the best possible quality under the constraint of physical and technological limitations, so that a
painting could be analysed, displayed and reproduced, in part or totally, and so that it may be studied
at several stages of its life.

More recently the ENST and the LRMF again collaborated on the occation of the exhibition on Jean-
Baptiste Camille Corot (1796-1876) in Grand Palais, Paris (Jan.-May 1996). Eight paintings were
digitised with an improved colour calibration technique and stored on a CD-ROM which was pub-
lished and presented during the exhibition (Cretteal., 1996, Schmitt, 1996, M#k et al,, 1997).

On later occasions we also participated in the digitisation of paintings by Francisco de Goya (1746-
1828) and Georges de La Tour (1593-1652) (Crettez, 1998, Hardeberg and Crettez, 1998, Crettez and
Hardeberg, 1999)

In the following sections we describe the various operations developed to obtain high resolution and
high quality colour images in the museum context. Several people have participated in this work,
and significant research and development efforts have been done as student prajdets 1989,
Camus-Abonneau and Camus, 1989, Allain, 1989, Goulam-Ally, 1990a;b, Deconinck, 1990, Bournay,
1991, Wuet al,, 1991, Nagel, 1993). These works have provided indispensable tools and background
material for the work of this dissertation.

After giving a review of some existing high resolution digital cameras in Section 4.2, we present
in Section 4.3 the general experimental setup and initial calibration of the digital camera includ-
ing the lighting conditions. Then, in Section 4.4, we describe the three transformations which are
successively applied on the digital images recorded directly from a painting: the light distribution
homogenisation, the inter-channel registration and the colorimetric correction. Finally, different post-
processing algorithms are presented briefly in Section 4.5: mosaicing, visualisation and reproduction,
and colorimetric analysis of paintings.

4.2 High resolution digital cameras, a review

High-end digital cameras is a field of research and development in very rapid development. What was
considered as high-end five years ago is generally obsolete today. In this section we make no attempt
to give a complete survey of the past, present, and future of high resolution digital cameras. However,
we will describe shortly a few examples of such, in particular those developed in the framework of
the European ESPRIT projects, VASARI and MARC

4.2.1 The VASARI project

Martinezet al. (1993) present the seven-channel VASARI image acquisition system implemented at
the National Gallery in London. The system consists 80@0 x 2300 pixel camera, the Kontron

2European ESPRIT III project, Methodology for Art Reproduction in Colour.
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ProgRes 3000 (Lenz and Lenz, 1989), mounted on a repositioning system. By mosaicing they attain
a resolution of abol20% x 20k. A high-quality lens is chosen having low geometric and radiometric
distortion, thus avoiding expensive and inaccurate correction of geometric distortion.

A lighting system with optic light guides which move with the camera is used. In this way the same
light-distribution correction can be applied for each sub-image. Furthermore the seven interference fil-
ters are introduced between the light source and the painting, not between the painting and the camera.
This is intended to reduce misalignment errors as well as reducing the exposure of the painting.

The presented system uses only 8 bit per channel, but an extension to twelve bit is reported to be under
investigation.

The seven filters are chosen as broad-band, nearly Gaussian filters with transmittances covering the
visible spectrum with considerable overlap. The authors refer to Deconinck (1990) where 12 narrow-
band filters are used, but claim that the use of seven instead of twelve filters represent a marginal loss
in quality, but a significant gain in processing time.

The conversion from the seven camera responses to CIE XYZ-space is performed using linear regres-
sion optimised on the Macbeth ColorChecker chart comprising only 24 colour patches. The result of
the calibration is evaluated on the same chart giving an average et~ = 2.3.

Refer to Cupitt (1996) for a practical summary for non-experts of the colour camera calibration expe-
rience gained at the National Gallery.

Other implementations of VASARI image capture systems can be feugdt the Neue Pinakothek
in Munich (Mdller and Burmeister, 1993) and at the University of Firenze (Abratdd. 1996).

4.2.2 Further developments under the MARC project

MacDonald and Lenz (1994) present an ultra-high resolution digital camera, developed under the
MARC project. Two techniques for attaining high resolution in digital cameras are explained in this
paper, micro- and macro-scanning.

In a micro-scanned array camera the image is formed by micro-scanning the intermediate grid posi-
tions of a low resolution 2D CCD array (Lenz and Lenz, 1989). The technique is known as piezo-
controlled aperture displacement (PAD). The final image is constructed by interlacing the sub-images.
The macro-scanning technique consists of shifting the CCD array repeatedly by its width and heigth,
and constructing the final image by mosaicing. MacDonald and Lenz point out that it is convenient to
combine these two techniques, and describe two different implementations of this:

B A micro-scanning camera is moved as a whole in front of the object. This is the implemen-
tation used by Martineet al. (1993) presented above. Because the viewpoint is moved from
one mosaic patch to another, this approach is only useful for flat objects being no larger than
the travel capacity of the translation equipment. Furthermore, compensations for lens charac-
teristics such as vignetting which affects image quality near the borders of each patch should be
applied. However, there is no theoretical limit on image resolution using this technique.
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m Both the micro- and the macro-scanning take place behind the lens. This is the method proposed
by the authors. This approach allows for imaging 3D objects of arbitrary size. The resolution of
the system is, however, now limited by the diffraction and the image field size of the lens. Such
a camera is being developed by the authors, attaining a resolutkof 20k pixels, and a
full-size scanning time of about 5 minutes.

They mention that a conversion from RGB to CIELAB will be performed on-line, but give no details
on the colorimetric calibration necessary for this conversion.

Lenzet al.(1996b) describe the calibration and characterisation of this camera , applied on the produc-
tion of an art paintings catalogue. Two colour charts were used for the characterisation, the Macbeth
ColorChecker with 24 patches, and a MARC chart with 112 colours specifically designed to contain

colours used in paintings. Two different illuminations were used, HMI figitd 3200K tungsten

light.

To determine an analytical mapping from raw camera data (RGB) to XYZ, various variants of first,
second and third order transforms were investigated.

The proposed method seems to consist of two sig@@scharacterisation performed once using the
MARC chart and a full third order transform, aiida simpler calibration, callechatrix white balance

using the Macbeth chart imaged beside each painting. This approach is preferred over an approach
imaging the MARC colour chart beside each painting, and performing a full third order correction for
each image because of specular reflection on the MARC chart under otherwise optimal lamp positions.

Their best results are RM8E?, = 3.1, measured on all colours of the MARC chart taken under
HMI illuminations. The result using tungsten light is considerably worse.

4.3 Experimental setup and initial calibration

The digital camera we used is a Kodak Eikonix 1412 camera with a Nikon lens (50mm 1/2.8). Itis
equiped with three built-in RGB filters mounted on a wheel and with a linear CCD array of 4096 light
sensible square elements. A stepper motor moves the array perpendicularly, scanning the image plane
in 4096 lines. The analogical signal of each element is AD converted into 12 bit and corrected by
the camera hardware with a linear transformation according to a dark current offset and a gain factor
which can be numerically adjusted for each individual element. The camera is connected to a PC and
driven by software.

4.3.1 General setup

The painting to be digitised is installed vertically on an easel, preferably without its external frame. An
ANSI IT8.7/2 (1993) colour target is fixed just above it, in the same plane as the painting surface. The

3The HMI metallogen lamp developed by Osram Corporatiatp://www.osram.com , has a color temperature of
approximatively 5600K. In the name HMI, the H is an abbreviation for mercury (Hg), M indicates the presence of metals,
and | refers to the addition of halogen components such as iodide.
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distance of the camera to the painting is chosen according to the desired resolution: values between 5
to 10 pixels per mm are typically used. In order to avoid geometrical distorsions, the painting has to be
placed perpendicularly to the optical axis of the camera. This can be set precisely when the painting
is taken in one view by controlling the distance of its four corners to the centre of the camera lens.
When the painting needs to be taken in seve