D. L. Larock, A. Chaudhary, and S. I. Miller, Salmonellae interactions with host processes, Nat Rev Microbiol, vol.13, pp.191-205, 2015.

P. J. Mattei, E. Faudry, V. Job, T. Izore, I. Attree et al., Membrane targeting and pore formation by the type III secretion system translocon, FEBS J, vol.278, pp.414-426, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00646222

A. Diepold and J. P. Armitage, Type III secretion systems: the bacterial flagellum and the injectisome, Philos Trans R Soc Lond B Biol Sci, vol.370, 2015.

R. Q. Notti and C. E. Stebbins, The Structure and Function of Type III Secretion Systems, 2016.

, Microbiol Spectr, vol.4

S. K. Myeni, L. Wang, and D. Zhou, SipB-SipC complex is essential for translocon formation, PLoS One, vol.8, p.60499, 2013.

M. L. Barta, N. E. Dickenson, M. Patil, A. Keightley, G. J. Wyckoff et al., The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins, J Mol Biol, vol.417, pp.395-405, 2012.

S. C. Tucker and J. E. Galán, Complex function for SicA, a Salmonella enterica serovar typhimurium type III secretion-associated chaperone, J Bacteriol, vol.182, pp.2262-2268, 2000.

B. H. Kim, H. G. Kim, J. S. Kim, J. I. Jang, and Y. K. Park, Analysis of functional domains present in the N-terminus of the SipB protein, Microbiology, vol.153, pp.2998-3008, 2007.

M. Lunelli, R. K. Lokareddy, A. Zychlinsky, and M. Kolbe, IpaB-IpgC interaction defines binding motif for type III secretion translocator, Proc Natl Acad Sci U S A, vol.106, pp.9661-9666, 2009.

K. F. Discola, A. Forster, F. Boulay, J. P. Simorre, I. Attree et al., , 2014.

, Membrane and chaperone recognition by the major translocator protein PopB of the type III secretion system of Pseudomonas aeruginosa, J Biol Chem, vol.289, pp.3591-3601

J. P. Viala, V. Prima, R. Puppo, R. Agrebi, M. J. Canestrari et al., Acylation of the Type 3 Secretion System Translocon Using a Dedicated Acyl Carrier Protein, PLoS Genet, vol.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01640010

D. M. Byers and H. Gong, Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family, Biochem Cell Biol, vol.85, pp.649-662, 2007.

D. I. Chan and H. J. Vogel, Current understanding of fatty acid biosynthesis and the acyl carrier protein, Biochem J, vol.430, pp.1-19, 2010.

S. El-gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani et al.,

L. J. Richardson, G. A. Salazar, A. Smart, E. L. Sonnhammer, L. Hirsh et al.,

S. C. Tosatto and R. D. Finn, The Pfam protein families database in 2019, Nucleic Acids Res, 2018.

J. E. Cronan, Advances in synthesis of biotin and assembly of lipoic acid, Curr Opin Chem Biol, vol.47, pp.60-66, 2018.

I. Linhartová, L. Bumba, J. Ma?ín, M. Basler, R. Osi?ka et al.,

I. Adkins, J. Hejnová-holubová, L. Sadílková, J. Morová, and P. Sebo, RTX proteins: a highly diverse family secreted by a common mechanism, FEMS Microbiol Rev, vol.34, pp.1076-1112, 2010.

G. Butland, J. M. Peregrin-alvarez, J. Li, W. Yang, X. Yang et al.,

D. Richards, B. Beattie, N. Krogan, M. Davey, J. Parkinson et al., Interaction network containing conserved and essential protein complexes in Escherichia coli, Nature, vol.433, pp.531-537, 2005.

D. Gully, D. Moinier, L. Loiseau, and E. Bouveret, New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification, FEBS Lett, vol.548, pp.90-96, 2003.

Y. M. Zhang, B. Wu, J. Zheng, and C. O. Rock, Key residues responsible for acyl carrier protein and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction, J Biol Chem, vol.278, pp.52935-52943, 2003.

C. Nguyen, R. W. Haushalter, D. J. Lee, P. R. Markwick, J. Bruegger et al.,

M. D. , Trapping the dynamic acyl carrier protein in fatty acid biosynthesis, Nature, vol.505, pp.427-431, 2014.

A. Masoudi, C. R. Raetz, P. Zhou, and C. W. Pemble, Chasing acyl carrier protein through a catalytic cycle of lipid A production, Nature, vol.505, pp.422-426, 2014.

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proc Natl Acad Sci U S A, vol.95, pp.5752-5756, 1998.

D. Gully and E. Bouveret, A protein network for phospholipid synthesis uncovered by a variant of the tandem affinity purification method in Escherichia coli, Proteomics, vol.6, pp.282-293, 2006.

J. H. Miller, A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria, 1992.

A. Wahl, L. My, R. Dumoulin, J. N. Sturgis, and E. Bouveret, Antagonistic regulation of dgkA and plsB genes of phospholipid synthesis by multiple stress responses in Escherichia coli, Mol Microbiol, vol.80, pp.1260-1275, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01458274

D. J. Vourtsis, C. T. Chasapis, G. Pairas, D. Bentrop, and G. A. Spyroulias, NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling, Biochem Biophys Res Commun, vol.450, pp.335-340, 2014.

J. P. Viala, R. Puppo, L. My, and E. Bouveret, Posttranslational maturation of the invasion acyl carrier protein of Salmonella enterica serovar Typhimurium requires an essential phosphopantetheinyl transferase of the fatty acid biosynthesis pathway, J Bacteriol, vol.195, pp.4399-4405, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01458222

R. Keller, Computer aided resonance assignment tutorial, 2004.

A. Battesti and E. Bouveret, The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli, Methods, vol.58, pp.325-334, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458246

S. E. Evans, C. Williams, C. J. Arthur, E. P?osko?, P. Wattana-amorn et al., Probing the Interactions of early polyketide intermediates with the Actinorhodin ACP from S. coelicolor A3(2), J Mol Biol, vol.389, pp.511-528, 2009.

E. P?osko?, C. J. Arthur, A. L. Kanari, P. Wattana-amorn, C. Williams et al.,

C. L. Willis and M. P. Crump, Recognition of intermediate functionality by acyl carrier protein over a complete cycle of fatty acid biosynthesis, Chem Biol, vol.17, pp.776-785, 2010.

J. Crosby and M. P. Crump, The structural role of the carrier protein-active controller or passive carrier, Nat Prod Rep, vol.29, pp.1111-1137, 2012.

A. Roujeinikova, W. J. Simon, J. Gilroy, D. W. Rice, J. B. Rafferty et al., Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates, J Mol Biol, vol.365, pp.135-145, 2007.

S. Angelini, L. My, and E. Bouveret, Disrupting the Acyl Carrier Protein/SpoT interaction in vivo: identification of ACP residues involved in the interaction and consequence on growth, PLoS One, vol.7, p.36111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458249

K. D. Parris, L. Lin, A. Tam, R. Mathew, J. Hixon et al., Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites, Structure, vol.8, pp.883-895, 2000.

N. R. De-lay and J. E. Cronan, In vivo functional analyses of the type II acyl carrier proteins of fatty acid biosynthesis, J Biol Chem, vol.282, pp.20319-20328, 2007.

P. Dall'aglio, C. J. Arthur, C. Williams, K. Vasilakis, H. J. Maple et al., Analysis of Streptomyces coelicolor phosphopantetheinyl transferase, AcpS, reveals the basis for relaxed substrate specificity, Biochemistry, vol.50, pp.5704-5717, 2011.

S. S. Abby and E. P. Rocha, The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems, PLoS Genet, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01374947

A. Battesti and E. Bouveret, Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction, J Bacteriol, vol.191, pp.616-624, 2009.

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2-a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, pp.1189-1191, 2009.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, vol.10, pp.845-858, 2015.

X. Qiu and C. A. Janson, Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions, Acta Crystallogr D Biol Crystallogr, vol.60, pp.1545-1554, 2004.

D. H. Keating, M. R. Carey, and J. E. Cronan, The unmodified (apo) form of Escherichia coli acyl carrier protein is a potent inhibitor of cell growth, J Biol Chem, vol.270, pp.22229-22235, 1995.

D. H. Keating and J. E. Cronan, An isoleucine to valine substitution in Escherichia coli acyl carrier protein results in a functional protein of decreased molecular radius at elevated pH, J Biol Chem, vol.271, pp.15905-15910, 1996.