C. Charlier, Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study, Lancet Infect. Dis, vol.17, pp.510-519, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01475849

P. Winter, Clinical and histopathological aspects of naturally occurring mastitis caused by Listeria monocytogenes in cattle and ewes, J. Vet. Med B Infect. Dis. Vet. Public Health, vol.51, pp.176-179, 2004.

N. Skovgaard and C. A. Morgen, Detection of Listeria spp. in faeces from animals, in feeds, and in raw foods of animal origin, Int J. Food Microbiol, vol.6, pp.229-242, 1988.

A. J. Ho, R. Ivanek, Y. T. Grohn, K. K. Nightingale, and M. Wiedmann, Listeria monocytogenes fecal shedding in dairy cattle shows high levels of dayto-day variation and includes outbreaks and sporadic cases of shedding of specific L. monocytogenes subtypes, Prev. Vet. Med, vol.80, pp.287-305, 2007.

J. I. Esteban, B. Oporto, G. Aduriz, R. A. Juste, and A. Hurtado, Faecal shedding and strain diversity of Listeria monocytogenes in healthy ruminants and swine in Northern Spain, BMC Vet. Res, vol.5, 2009.

J. C. Piffaretti, Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease, Proc. Natl. Acad. Sci. USA, vol.86, pp.3818-3822, 1989.

M. Wiedmann, Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential, Infect. Immun, vol.65, pp.2707-2716, 1997.

M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, and P. Martin, Differentiation of the major Listeria monocytogenes serovars by multiplex PCR, J. Clin. Microbiol, vol.42, pp.3819-3822, 2004.

M. Ragon, A new perspective on Listeria monocytogenes evolution, PLoS Pathog, vol.4, p.1000146, 2008.

A. Moura, Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat. Microbiol, vol.2, p.16185, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01415883

J. Mclauchlin, Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis, Eur. J. Clin. Microbiol. Infect. Dis, vol.9, pp.210-213, 1990.

M. J. Gray, Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations, Appl. Environ. Microbiol, vol.70, pp.5833-5841, 2004.

S. S. Chatterjee, Invasiveness is a variable and heterogeneous phenotype in Listeria monocytogenes serotype strains, Int J. Med. Microbiol, vol.296, pp.277-286, 2006.

R. H. Orsi, H. C. Bakker, and M. Wiedmann, Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics, Int. J. Med. Microbiol, vol.301, pp.79-96, 2011.

M. M. Maury, Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity, Nat. Genet, vol.48, pp.308-313, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02170775

M. Dreyer, Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis, Sci. Rep, vol.6, p.36419, 2016.

C. Jacquet, A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes, J. Infect. Dis, vol.189, pp.2094-2100, 2004.

M. Lecuit, A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier, Science, vol.292, pp.1722-1725, 2001.

O. Disson, Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis, Nature, vol.455, pp.1114-1118, 2008.

S. Ortiz, V. Lopez-alonso, P. Rodriguez, and J. V. Martinez-suarez, The connection between persistent, disinfectant-resistant listeria monocytogenes strains from two geographically separate iberian pork processing plants: evidence from comparative genome analysis, Appl. Environ. Microbiol, vol.82, pp.308-317, 2016.

F. Pasquali, Listeria monocytogenes sequence types 121 and 14 repeatedly isolated within one year of sampling in a rabbit meat processing plant: persistence and ecophysiology, Front. Microbiol, vol.9, p.596, 2018.

A. Moura, Real-time whole-genome sequencing for surveillance of Listeria monocytogenes, France. Emerg. Infect. Dis, vol.23, pp.1462-1470, 2017.

S. Schjorring, Cross-border outbreak of listeriosis caused by cold-smoked salmon, revealed by integrated surveillance and whole genome sequencing (WGS), Euro Surveill, p.22, 2015.

C. Nadon, PulseNet International: vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance, Euro Surveill, vol.22, p.30544, 2017.

J. Thimothe, Detection of Listeria in crawfish processing plants and in raw, whole crawfish and processed crawfish (Procambarus spp.), J. Food Prot, vol.65, pp.1735-1739, 2002.

L. M. Wijnands, Prevalence and concentration of bacterial pathogens in raw produce and minimally processed packaged salads produced in and for the Netherlands, J. Food Prot, vol.77, pp.388-394, 2014.

D. Gomez, Occurrence of Listeria monocytogenes in ready-to-eat meat products and meat processing plants in Spain, vol.4, pp.271-282, 2015.

M. Wagner, B. Auer, C. Trittremmel, I. Hein, and D. Schoder, Survey on the Listeria contamination of ready-to-eat food products and household environments in, Zoonoses Public Health, vol.54, pp.16-22, 2007.

M. J. Linnan, Epidemic listeriosis associated with Mexican-style cheese, N. Engl. J. Med, vol.319, pp.823-828, 1988.

S. J. Olsen, Multistate outbreak of Listeria monocytogenes infection linked to delicatessen turkey meat, Clin. Infect. Dis, vol.40, pp.962-967, 2005.

V. A. Acciari, Listeria monocytogenes in smoked salmon and other smoked fish at retail in Italy: frequency of contamination and strain characterization in products from different manufacturers, J. Food Prot, vol.80, pp.271-278, 2017.

K. Soderqvist, S. Thisted-lambertz, I. Vagsholm, and S. Boqvist, Foodborne bacterial pathogens in retail prepacked ready-to-eat mixed ingredient salads, J. Food Prot, vol.79, pp.978-985, 2016.

B. C. Swaminathan, B. Zhang, W. Cossart, P. Listeria, and . Monocytogenes, (ed). in Food microbiology: fundamentals and frontiers, pp.457-491, 2007.

A. Vermeulen, Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model, Int J. Food Microbiol, vol.114, pp.332-341, 2007.

V. B. Ribeiro, Contributions of sigma(B) and PrfA to Listeria monocytogenes salt stress under food relevant conditions, Int. J. Food Microbiol, vol.177, pp.98-108, 2014.

R. Ebner, S. R. Althaus, D. Brisse, S. Maury, and M. T. Tasara, Phenotypic and genotypic characteristics of Listeria monocytogenes strains isolated during 2011-2014 from different food matrices in Switzerland, Food Control, vol.57, pp.321-326, 2015.

S. Ryan, M. Begley, C. Hill, and C. G. Gahan, A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions, J. Appl. Microbiol, vol.109, pp.984-995, 2010.

M. Begley, P. D. Cotter, C. Hill, and R. P. Ross, Glutamate decarboxylasemediated nisin resistance in Listeria monocytogenes, Appl. Environ. Microbiol, vol.76, pp.6541-6546, 2010.

S. Lee, T. J. Ward, D. D. Jima, C. Parsons, and S. Kathariou, The arsenic resistance-associated Listeria genomic island LGI2 exhibits sequence and integration site diversity and a propensity for three Listeria monocytogenes clones with enhanced virulence, Appl. Environ. Microbiol, vol.83, pp.1189-1206, 2017.

E. Harter, Stress survival islet 2, predominantly present in Listeria monocytogenes strains of sequence type 121, is involved in the alkaline and oxidative stress responses, Appl. Environ. Microbiol, vol.83, pp.827-844, 2017.

A. Muller, Tn6188 -a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride, PLoS ONE, vol.8, p.76835, 2013.

A. Muller, The Listeria monocytogenes transposon Tn6188 provides increased tolerance to various quaternary ammonium compounds and ethidium bromide, FEMS Microbiol. Lett, vol.361, pp.166-173, 2014.

V. Dutta, D. Elhanafi, and S. Kathariou, Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes, Appl. Environ. Microbiol, vol.79, pp.6067-6074, 2013.

J. Kovacevic, Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE, Appl Environ. Microbiol, vol.82, pp.939-953, 2016.

P. H. Kremer, Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis, Clin. Microbiol. Infect, vol.23, p.7, 2017.

D. Xu, Benzalkonium chloride and heavy-metal tolerance in Listeria monocytogenes from retail foods, Int J. Food Microbiol, vol.190, pp.24-30, 2014.

L. M. Weigel, Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus, Science, vol.302, pp.1569-1571, 2003.

E. Møller-nielsen, Closing gaps for performing a risk assessment on Listeria monocytogenes in ready-to-eat (RTE) foods: activity 3, the comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis, EFSA Supporting Publications, vol.14, 2017.

X. Jiang, MdrL, a major facilitator superfamily efflux pump of Listeria monocytogenes involved in tolerance to benzalkonium chloride, Appl. Microbiol. Biotechnol, vol.103, pp.1339-1350, 2019.

H. T. De-valk, Changes in epidemiology and surveillance of listeriosis in France. International Symposium on Problems of Listeriosis, 2016.

L. Quigley, The complex microbiota of raw milk, FEMS Microbiol. Rev, vol.37, pp.664-698, 2013.

H. Nakamura, K. Takakura, Y. Sone, Y. Itano, and Y. Nishikawa, Biofilm formation and resistance to benzalkonium chloride in Listeria monocytogenes isolated from a fish processing plant, J. Food Prot, vol.76, pp.1179-1186, 2013.

L. Luque-sastre, E. M. Fox, K. Jordan, and S. Fanning, A comparative study of the susceptibility of Listeria species to sanitizer treatments when grown under planktonic and biofilm conditions, J. Food Prot, vol.81, pp.1481-1490, 2018.

B. Carpentier and O. Cerf, Review--persistence of Listeria monocytogenes in food industry equipment and premises, Int J. Food Microbiol, vol.145, pp.1-8, 2011.

B. Meyer, Does microbial resistance to biocides create a hazard to food hygiene?, Int J. Food Microbiol, vol.112, pp.275-279, 2006.

T. Moretro, Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry, Int J. Food Microbiol, vol.241, pp.215-224, 2017.

D. Xu, Q. Nie, W. Wang, L. Shi, and H. Yan, Characterization of a transferable bcrABC and cadAC genes-harboring plasmid in Listeria monocytogenes strain isolated from food products of animal origin, Int J. Food Microbiol, vol.217, pp.117-122, 2016.

D. Elhanafi, V. Dutta, and S. Kathariou, Genetic characterization of plasmidassociated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998-1999 outbreak, Appl. Environ. Microbiol, vol.76, pp.8231-8238, 2010.

C. Kuenne, Comparative analysis of plasmids in the genus Listeria, PLoS ONE, vol.5, p.12511, 2010.

R. D. Sleator, T. Clifford, and C. Hill, Gut osmolarity: a key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection?, Med. Hypotheses, vol.69, pp.1090-1092, 2007.

I. O. Intake, Preservation and Physical Property Roles of Sodium in Foods, Strategies to Reduce Sodium Intake in the United States, 2010.

O. Disson, Modeling human listeriosis in natural and genetically engineered animals, Nat. Protoc, vol.4, pp.799-810, 2009.

J. A. Melton-witt, S. M. Rafelski, D. A. Portnoy, and A. I. Bakardjiev, Oral infection with signature-tagged Listeria monocytogenes reveals organ-specific growth and dissemination routes in guinea pigs, Infect. Immun, vol.80, pp.720-732, 2012.

B. J. Haley, J. Sonnier, Y. H. Schukken, J. S. Karns, and J. A. Van-kessel, Diversity of Listeria monocytogenes within a U.S. dairy herd, Foodborne Pathog. Dis, vol.12, pp.844-850, 2004.

H. Castro, A. Jaakkonen, M. Hakkinen, H. Korkeala, and M. Lindstrom, Occurrence, persistence, and contamination routes of Listeria monocytogenes genotypes on three Finnish dairy cattle farms: a longitudinal study, Appl. Environ. Microbiol, vol.84, pp.2000-2017, 2018.

A. A. Latorre, Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes, J. Dairy Sci, vol.93, pp.2792-2802, 2010.

J. A. Horlbog, D. Kent, R. Stephan, and C. Guldimann, Surviving host -and food relevant stresses: phenotype of L. monocytogenes strains isolated from food and clinical sources, Sci. Rep, vol.8, p.12931, 2018.

A. Holch, Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart, Appl. Environ. Microbiol, vol.79, pp.2944-2951, 2013.

J. Barbosa, Biofilm formation among clinical and food isolates of Listeria monocytogenes, Int. J. Microbiol, p.524975, 2013.

U. T. Nguyen and L. L. Burrows, DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms, Int J. Food Microbiol, vol.187, pp.26-32, 2014.

J. A. Gray, Novel biocontrol methods for Listeria monocytogenes biofilms in food production facilities, Front. Microbiol, vol.9, p.605, 2018.

P. Rodriguez-lopez, A. Carballo-justo, L. A. Draper, and M. L. Cabo, Removal of Listeria monocytogenes dual-species biofilms using combined enzymebenzalkonium chloride treatments, Biofouling, vol.33, pp.45-58, 2017.

M. M. Maury, Spontaneous loss of virulence in natural populations of Listeria monocytogenes, Infect. Immun, vol.85, pp.541-558, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02168452

L. M. Graves and B. Swaminathan, PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis, Int J. Food Microbiol, vol.65, pp.55-62, 2001.

A. Bankevich, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol, vol.19, pp.455-477, 2012.

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics, vol.30, pp.2068-2069, 2014.

A. J. Page, Roary: rapid large-scale prokaryote pan genome analysis, Bioinformatics, vol.31, pp.3691-3693, 2015.

O. Brynildsrud, J. Bohlin, L. Scheffer, and V. Eldholm, Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary, Genome Biol, vol.17, p.238, 2016.

J. Huerta-cepas, Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper, Mol. Biol. Evol, vol.34, pp.2115-2122, 2017.

P. Chavant, B. Martinie, T. Meylheuc, M. N. Bellon-fontaine, and M. Hebraud, Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases, Appl. Environ. Microbiol, vol.68, pp.728-737, 2002.

Y. Pan, F. Breidt, and L. Gorski, Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes serotype 1/2a and 4b strains, Appl. Environ. Microbiol, vol.76, pp.1433-1441, 2010.

T. Combrouse, Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions, J. Appl. Microbiol, vol.114, pp.1120-1131, 2013.

T. Argov, L. Rabinovich, N. Sigal, and A. A. Herskovits, An effective counterselection system for Listeria monocytogenes and its use to characterize the monocin genomic region of strain 10403S, Appl. Environ. Microbiol, vol.83, pp.2927-2943, 2017.

P. Lauer, M. Y. Chow, M. J. Loessner, D. A. Portnoy, and R. Calendar, Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors, J. Bacteriol, vol.184, pp.4177-4186, 2002.

S. Holm, A simple sequentially rejective multiple test procedure. Scand, J. Stat, vol.6, pp.65-70, 1979.