S. Falkow, R. R. Isberg, and D. A. Portnoy, The interaction of bacteria with mammalian cells, Annu Rev Cell Biol, vol.8, pp.333-363, 1992.

P. Cossart, P. Boquet, S. Normark, and R. Rappuoli, Cellular microbiology emerging, Science, vol.271, pp.315-316, 1996.

R. A. Welch, Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli, Proc Natl Acad Sci U S A, vol.99, pp.17020-17024, 2002.

M. T. Holden, Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance, Proc Natl Acad Sci U S A, vol.101, pp.9786-9791, 2004.

M. Hensel, Simultaneous identification of bacterial virulence genes by negative selection, Science, vol.269, pp.400-403, 1995.

J. Parkhill, Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica, Nat Genet, vol.35, pp.32-40, 2003.

L. G. Tilney and D. A. Portnoy, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J Cell Biol, vol.109, pp.1597-1608, 1989.

M. Lecuit, Human listeriosis and animal models, Microbes Infect, vol.9, pp.1216-1225, 2007.

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc Natl Acad Sci U S A, vol.108, pp.19484-19491, 2011.

J. C. Piffaretti, Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease, Proc Natl Acad Sci U S A, vol.86, pp.3818-3822, 1989.

M. Wiedmann, Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential, Infect Immun, vol.65, pp.2707-2716, 1997.

R. H. Orsi, H. C. Bakker, and M. Wiedmann, Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics, Int J Med Microbiol, vol.301, pp.79-96, 2011.

H. Seeliger and D. Jones, Bergey's Manual of Systematic Bacteriology, vol.2, pp.1235-1245, 1986.

M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, and P. Martin, Differentiation of the major Listeria monocytogenes serovars by multiplex PCR, J Clin Microbiol, vol.42, pp.3819-3822, 2004.

M. Ragon, A new perspective on Listeria monocytogenes evolution, PLoS Pathog, vol.4, 2008.

V. Chenal-francisque, Worldwide distribution of major clones of Listeria monocytogenes, Emerg Infect Dis, vol.17, pp.1110-1112, 2011.

J. K. Haase, The ubiquitous nature of Listeria monocytogenes clones: a large-scale Multilocus Sequence Typing study, Environ Microbiol, vol.16, pp.405-416, 2014.

J. Mclauchlin, Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis, Eur J Clin Microbiol Infect Dis, vol.9, pp.210-213, 1990.

M. J. Gray, Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations, Appl Environ Microbiol, vol.70, pp.5833-5841, 2004.

T. J. Ward, T. F. Ducey, T. Usgaard, K. A. Dunn, and J. P. Bielawski, Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates, Appl Environ Microbiol, vol.74, pp.7629-7642, 2008.

C. Jacquet, A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes, J Infect Dis, vol.189, pp.2094-2100, 2004.

K. K. Nightingale, K. Windham, K. E. Martin, M. Yeung, and M. Wiedmann, Select Listeria monocytogenes subtypes commonly found in foods carry distinct nonsense mutations in inlA, leading to expression of truncated and secreted internalin A, and are associated with a reduced invasion phenotype for human intestinal epithelial cells, Appl Environ Microbiol, vol.71, pp.8764-8772, 2005.

O. Disson, Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis, Nature, vol.455, pp.1114-1118, 2008.

V. Chenal-francisque, Optimized Multilocus variable-number tandem-repeat analysis assay and its complementarity with pulsed-field gel electrophoresis and multilocus sequence typing for Listeria monocytogenes clone identification and surveillance, J Clin Microbiol, vol.51, pp.1868-1880, 2013.

P. Glaser, Comparative genomics of Listeria species, Science, vol.294, pp.849-852, 2001.

T. Hain, Pathogenomics of Listeria spp, Int J Med Microbiol, vol.297, pp.541-557, 2007.

H. C. Bakker, Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss, BMC Genomics, vol.11, p.688, 2011.

C. Kuenne, Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome, BMC Genomics, vol.14, p.47, 2013.

E. Paradis and C. J. , Analysis of comparative data using generalized estimating equations, J Theor Biol, vol.218, pp.175-185, 2002.
URL : https://hal.archives-ouvertes.fr/ird-02063041

M. Lecuit, A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier, Science, vol.292, pp.1722-1725, 2001.

P. D. Cotter, Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes, PLoS Pathog, vol.4, p.1000144, 2008.

N. Faith, The role of L. monocytogenes serotype 4b gtcA in gastrointestinal listeriosis in A/J mice, Foodborne Pathog Dis, vol.6, pp.39-48, 2009.

W. Eisenreich, T. Dandekar, J. Heesemann, and W. Goebel, Carbon metabolism of intracellular bacterial pathogens and possible links to virulence, Nat Rev Microbiol, vol.8, pp.401-412, 2010.

E. Bille, A chromosomally integrated bacteriophage in invasive meningococci, J Exp Med, vol.201, pp.1905-1913, 2005.

T. Cantinelli, Epidemic clones" of Listeria monocytogenes are widespread and ancient clonal groups, J Clin Microbiol, vol.51, pp.3770-3779, 2013.

S. Holm, A Simple Sequentially Rejective Multiple Test Procedure, Scand J Statist, vol.6, pp.65-70, 1979.

C. E. Bonferroni, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, vol.8, pp.3-62, 1936.

O. Disson, Modeling human listeriosis in natural and genetically engineered animals, Nat Protoc, vol.4, pp.799-810, 2009.

A. Criscuolo and S. Brisse, AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads, Genomics, vol.102, pp.500-506, 2013.

A. I. Rissman, Reordering contigs of draft genomes using the Mauve aligner, Bioinformatics, vol.25, pp.2071-2073, 2009.

D. Vallenet, MicroScope: a platform for microbial genome annotation and comparative genomics, Database (Oxford), 2009.

M. Touchon, Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths, PLoS Genet, vol.5, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00390293

M. Touchon, The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences, Genome Biol Evol, vol.6, pp.2866-2882, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01132634

L. J. Revell, phytools: an R package for phylogenetic comparative biology (and other things), Methods Ecol Evol, vol.3, pp.217-223, 2012.

M. Arnaud, A. Chastanet, and M. Debarbouille, New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria, Appl Environ Microbiol, vol.70, pp.6887-6891, 2004.

I. R. Monk, C. G. Gahan, and C. Hill, Tools for functional postgenomic analysis of Listeria monocytogenes, Appl Environ Microbiol, vol.74, pp.3921-3934, 2008.

I. R. Monk, P. G. Casey, M. Cronin, C. G. Gahan, and C. Hill, Development of multiple strain competitive index assays for Listeria monocytogenes using pIMC; a new site-specific integrative vector, BMC Microbiol, vol.8, p.96, 2008.

*. , , pp.0-001

. ***, The histograms show the distribution of foodassociated (food, CC9 and CC121, blue), infection-associated (clinical, CC1, CC2, CC4, and CC6, red) and intermediate clones (intermediate, CC8-16, CC5, CC3, CC37, CC155 and CC18, grey) in patient groups with 0, 1, 2, 3, and 4 or more immunosuppressive comorbidities. (d) Linear regression (R 2 = 0.96to infection-associated clones (#Clinical) and those belonging to food-associated clones (#Food

, Number of mice: n = 14 for EGDe and 10403S; n = 48 for CC9, CC121 and CC4; n = 60 for CC1 and CC6. Clinical-associated clones are represented in red, foodassociated clones in blue and reference strains (EGDe and 10403S) in black. Dunn's multiple comparison test relative to EGDe

. ***, , pp.0-001

*. , The difference compared to EGDe infected mice was nonsignificant unless indicated. MLNs, mesenteric lymph nodes

M. , , p.21

, Author manuscript; available in PMC, Nat Genet, 2016.

, Competition index of WT CC4 was tested against chloramphenicol-resistant CC4?PTS (pIMC) (n = 3) or CC4?PTS (pIMC-PTS) (n = 4) in pregnant humanized mice. Pregnant mice at day 14/21 of gestation were intravenously infected with a 1:1 mixture of the two strains as indicated (total dose 2.10 5 ). Mice were sacrificed on day 5 post infection for orally inoculated bacteria (a), or day 2 post infection when intravenously inoculated (b-e). Results are shown as median ± interquartile range. Each dot represents an organ (a-c) or blood (a-e) from one infected mouse, or one placenta or fetus (d and e). Statistical analyses were done by a Dunn's multiple comparison test (a), Mann-Whitney U test, Europe PMC Funders Author Manuscripts Europe PMC Funders Author Manuscripts chloramphenicol-resistant EGDe (containing pIMC) in pregnant humanized mice. (e)

*. , , pp.0-01

. ***, , pp.0-001