D. A. Leffler and J. T. Lamont, Clostridium difficile infection, N Engl J Med, vol.372, pp.1539-1548, 2015.

A. Gupta and S. Khanna, Community-acquired Clostridium difficile infection: an increasing public health threat, Infect Drug Resist, vol.7, pp.63-72, 2014.

A. Deshpande, V. Pasupuleti, P. Thota, C. Pant, D. D. Rolston et al., Community-associated Clostridium difficile infection and antibiotics: a meta-analysis, J Antimicrob Chemother, vol.68, pp.1951-1961, 2013.

E. Valiente, M. D. Cairns, and B. W. Wren, The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move, Clin Microbiol Infect, vol.20, pp.396-404, 2014.

F. Barbut, B. Gariazzo, L. Bonné, V. Lalande, B. Burghoffer et al., Clinical features of Clostridium difficile-associated infections and molecular characterization of strains: results of a retrospective study, Infect Control Hosp Epidemiol, vol.28, pp.131-139, 2000.

A. G. Peniche, T. C. Savidge, and S. M. Dann, Recent insights into Clostridium difficile pathogenesis, Curr Opin Infect Dis, vol.26, pp.447-453, 2013.

M. R. Popoff and P. Bouvet, Clostridial toxins. Future Microbiol, vol.4, pp.1021-1064, 2009.

N. Mani and B. Dupuy, Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor, Proc Natl Acad Sci U S A, vol.98, pp.5844-5849, 2001.

S. Matamouros, P. England, and B. Dupuy, Clostridium difficile toxin expression is inhibited by the novel regulator TcdC, Mol Microbiol, vol.64, pp.1274-1288, 2007.

S. T. Cartman, M. L. Kelly, D. Heeg, J. T. Heap, and N. P. Minton, Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production, Appl Environ Microbiol, vol.78, pp.4683-4690, 2012.

K. S. Tan, B. Y. Wee, and K. P. Song, Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile, J Med Microbiol, vol.50, pp.613-619, 2001.

R. Govind and B. Dupuy, Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE, PLoS Pathog, vol.8, 2012.

R. Govind, L. Fitzwater, and R. Nichols, Observations on the role of TcdE isoforms in Clostridium difficile toxin secretion, J Bacteriol, vol.197, pp.2600-2609, 2015.

A. Olling, S. Seehase, N. P. Minton, H. Tatge, S. Schröter et al., Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene, Microb Pathog, vol.52, pp.92-100, 2012.

D. J. Scheffers and M. G. Pinho, Bacterial cell wall synthesis: new insights from localization studies, Microbiol Mol Biol Rev, vol.69, pp.585-607, 2005.

J. V. Höltje, Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli, Microbiol Mol Biol Rev, vol.62, pp.181-203, 1998.

W. Vollmer, D. Blanot, and M. A. De-pedro, Peptidoglycan structure and architecture, FEMS Microbiol Rev, vol.32, pp.149-167, 2008.

S. Layec, B. Decaris, and N. Leblond-bourget, Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation, Res Microbiol, vol.159, pp.507-515, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01204247

E. Scheurwater, C. W. Reid, and A. J. Clarke, Lytic transglycosylases: bacterial space-making autolysins, Int J Biochem Cell Biol, vol.40, pp.586-591, 2008.

T. J. Smith, S. A. Blackman, and S. J. Foster, Autolysins of Bacillus subtilis: multiple enzymes with multiple functions, Microbiology, vol.146, pp.249-262, 2000.

H. J. Rogers, H. R. Perkins, and J. B. Ward, Microbial cell walls and membranes, 1980.

W. Vollmer, B. Joris, P. Charlier, and S. Foster, Bacterial peptidoglycan (murein) hydrolases, FEMS Microbiol Rev, vol.32, pp.259-286, 2008.

N. Mani, L. M. Baddour, D. Q. Offutt, U. Vijaranakul, M. J. Nadakavukaren et al., Autolysis-defective mutant of Staphylococcus aureus: pathological considerations, genetic mapping, and electron microscopic studies, Infect Immun, vol.62, pp.1406-1409, 1994.

J. Kajimura, T. Fujiwara, S. Yamada, Y. Suzawa, T. Nishida et al., Identification and molecular characterization of an N-acetylmuramyl-L-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus, Mol Microbiol, vol.58, pp.1087-1101, 2005.

M. E. Rupp, P. D. Fey, C. Heilmann, and F. Götz, Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheterassociated infection in a rat model, J Infect Dis, vol.183, pp.1038-1042, 2001.

T. J. Mitchell, J. E. Alexander, P. J. Morgan, and P. W. Andrew, Molecular analysis of virulence factors of Streptococcus pneumoniae, Soc Appl Bacteriol Symp Ser, vol.26, pp.62-71, 1997.

A. Martner, C. Dahlgren, J. C. Paton, and A. E. Wold, Pneumolysin released during Streptococcus pneumoniae autolysis is a potent activator of intracellular oxygen radical production in neutrophils, Infect Immun, vol.76, pp.4079-4087, 2008.

E. Ramos-sevillano, M. Moscoso, P. García, E. García, and J. Yuste, Nasopharyngeal colonization and invasive disease are enhanced by the cell wall hydrolases LytB and LytC of Streptococcus pneumoniae, PLoS One, vol.6, 2011.

X. H. Bai, H. J. Chen, Y. L. Jiang, Z. Wen, Y. Huang et al., Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall remodeling and pathogenesis, J Biol Chem, vol.289, pp.23403-23416, 2014.

D. Cabanes, O. Dussurget, P. Dehoux, and P. Cossart, Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence, Mol Microbiol, vol.51, pp.1601-1614, 2004.

L. Wang and M. Lin, A novel cell wall-anchored peptidoglycan hydrolase (autolysin), IspC, essential for Listeria monocytogenes virulence: genetic and proteomic analysis, Microbiology, vol.154, pp.1900-1913, 2008.

S. Pilgrim, A. Kolb-mäurer, I. Gentschev, W. Goebel, and M. Kuhn, Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility, Infect Immun, vol.71, pp.3473-3484, 2003.

A. Dhalluin, I. Bourgeois, M. Pestel-caron, E. Camiade, G. Raux et al., Acd, a peptidoglycan hydrolase of Clostridium difficile with N-acetylglucosaminidase activity, Microbiology, vol.151, pp.2343-2351, 2005.

K. K. Mehta, E. E. Paskaleva, X. Wu, N. Grover, R. V. Mundra et al., Newly identified bacteriolytic enzymes that target a wide range of clinical isolates of Clostridium difficile, Biotechnol Bioeng, vol.113, pp.2568-2576, 2016.

D. A. Burns, J. T. Heap, and N. P. Minton, SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate, J Bacteriol, vol.192, pp.657-664, 2010.

D. Gutelius, K. Hokeness, S. M. Logan, and C. W. Reid, Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination, Microbiology, vol.160, pp.209-216, 2014.

K. A. Fimlaid, O. Jensen, M. L. Donnelly, M. S. Siegrist, and A. Shen, Regulation of Clostridium difficile spore formation by the SpoIIQ and SpoIIIA proteins, PLoS Genet, vol.11, 2015.

M. Serrano, A. D. Crawshaw, M. Dembek, J. M. Monteiro, F. C. Pereira et al., The SpoIIQ-SpoIIIAH complex of Clostridium difficile controls forespore engulfment and late stages of gene expression and spore morphogenesis, Mol Microbiol, 2016.

C. Janoir, S. Péchiné, C. Grosdidier, and A. Collignon, Cwp84, a surfaceassociated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins, J Bacteriol, vol.189, pp.7174-7180, 2007.

J. M. Kirby, H. Ahern, A. K. Roberts, V. Kumar, Z. Freeman et al., Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile, J Biol Chem, vol.284, pp.34666-34673, 2009.

R. P. Fagan, C. Janoir, A. Collignon, P. Mastrantonio, I. R. Poxton et al., A proposed nomenclature for cell wall proteins of Clostridium difficile, J Med Microbiol, vol.60, pp.1225-1228, 2011.

M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate et al., The Pfam protein families database, Nucleic Acids Res, vol.40, pp.290-301, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01294685

W. J. Bradshaw, J. M. Kirby, A. K. Roberts, C. C. Shone, and K. R. Acharya, The molecular structure of the glycoside hydrolase domain of Cwp19 from Clostridium difficile, FEBS J, vol.284, pp.4343-4357, 2017.

J. M. Kirby, N. Thiyagarajan, A. K. Roberts, C. C. Shone, and K. R. Acharya, Expression, purification, crystallization and preliminary crystallographic analysis of a putative Clostridium difficile surface protein Cwp19, Acta Crystallogr Sect F Struct Biol Cryst Commun, vol.67, pp.762-767, 2011.

K. H. Schleifer and O. Kandler, Micrococcus lysodeikticus: a new type of cross-linkage of the murein, Biochem Biophys Res Commun, vol.28, pp.965-972, 1967.

I. P. Sudiarta, T. Fukushima, and J. Sekiguchi, Bacillus subtilis CwlQ (previous YjbJ) is a bifunctional enzyme exhibiting muramidase and solublelytic transglycosylase activities, Biochem Biophys Res Commun, vol.398, pp.606-612, 2010.

C. Artola-recolons, M. Lee, N. Bernardo-garcía, B. Blázquez, D. Hesek et al., Structure and cell wall cleavage by modular lytic transglycosylase MltC of Escherichia coli, ACS Chem Biol, vol.9, pp.2058-2066, 2014.

M. Lee, D. Hesek, L. I. Llarrull, E. Lastochkin, H. Pi et al., Reactions of all Escherichia coli lytic transglycosylases with bacterial cell wall, J Am Chem Soc, vol.135, pp.3311-3314, 2013.

L. M. Márquez, J. D. Helmann, E. Ferrari, H. M. Parker, G. W. Ordal et al., Studies of sigma D-dependent functions in Bacillus subtilis, J Bacteriol, vol.172, pp.3435-3443, 1990.

R. Chen, S. B. Guttenplan, K. M. Blair, and D. B. Kearns, Role of the sigmaDdependent autolysins in Bacillus subtilis population heterogeneity, J Bacteriol, vol.191, pp.5775-5784, 2009.

I. El-meouche, J. Peltier, M. Monot, O. Soutourina, M. Pestel-caron et al., Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR, PLoS One, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370779

J. V. Höltje, D. Mirelman, N. Sharon, and U. Schwarz, Novel type of murein transglycosylase in Escherichia coli, J Bacteriol, vol.124, pp.1067-1076, 1975.

D. A. Dik, D. R. Marous, J. F. Fisher, and S. Mobashery, Lytic transglycosylases: concinnity in concision of the bacterial cell wall, Crit Rev Biochem Mol Biol, vol.52, pp.503-542, 2017.

R. P. Fagan and N. F. Fairweather, Biogenesis and functions of bacterial S-layers, Nat Rev Microbiol, vol.12, pp.211-222, 2014.

S. E. Willing, T. Candela, H. A. Shaw, Z. Seager, S. Mesnage et al., Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII, Mol Microbiol, vol.96, pp.596-608, 2015.

A. Usenik, M. Renko, M. Miheli?, N. Lindi?, J. Bori?ek et al., The CWB2 cell wall-anchoring module is revealed by the crystal structures of the Clostridium difficile cell wall proteins Cwp8 and Cwp6, Structure, vol.25, pp.514-521, 2017.

J. E. Emerson, C. B. Reynolds, R. P. Fagan, H. A. Shaw, D. Goulding et al., A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein, Mol Microbiol, vol.74, pp.541-556, 2009.

W. J. Bradshaw, J. M. Kirby, A. K. Roberts, C. C. Shone, and K. R. Acharya, Cwp2 from Clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro, FEBS J, vol.284, pp.2886-2898, 2017.

J. A. Kirk, D. Gebhart, A. M. Buckley, S. Lok, D. Scholl et al., New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability, Sci Transl Med, 2017.

S. Péchiné, A. Gleizes, C. Janoir, R. Gorges-kergot, M. C. Barc et al., Immunological properties of surface proteins of Clostridium difficile, J Med Microbiol, vol.54, pp.193-196, 2005.

A. Wright, D. Drudy, L. Kyne, K. Brown, and N. F. Fairweather, Immunoreactive cell wall proteins of Clostridium difficile identified by human serums, J Med Microbiol, vol.57, pp.750-756, 2008.

C. Janoir, C. Denève, S. Bouttier, F. Barbut, S. Hoys et al., Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics, Infect Immun, vol.81, pp.3757-3769, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370786

M. P. Chapot-chartier and S. Kulakauskas, Cell wall structure and function in lactic acid bacteria, Microb Cell Fact, vol.13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204431

J. Peltier, P. Courtin, I. El-meouche, L. Lemée, M. P. Chapot-chartier et al., Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 crosslinks, J Biol Chem, vol.286, pp.29053-29062, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004568

T. D. Ho, K. B. Williams, Y. Chen, R. F. Helm, D. L. Popham et al., Clostridium difficile extracytoplasmic function factor V regulates lysozyme resistance and is necessary for pathogenesis in the hamster model of infection, Infect Immun, vol.82, pp.2345-2355, 2014.

W. Vollmer, Structural variation in the glycan strands of bacterial peptidoglycan, FEMS Microbiol Rev, vol.32, pp.287-306, 2008.

M. Meyrand, A. Boughammoura, P. Courtin, C. Mézange, A. Guillot et al., Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis, Microbiology, vol.153, pp.3275-3285, 2007.

W. Vollmer and A. Tomasz, The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae, J Biol Chem, vol.275, pp.20496-20501, 2000.

J. V. Höltje and A. Tomasz, Purification of the pneumococcal N-acetylmuramyl-L-alanine amidase to biochemical homogeneity, J Biol Chem, vol.251, pp.4199-4207, 1976.

P. Mellroth, R. Daniels, A. Eberhardt, D. Rönnlund, H. Blom et al., LytA, major autolysin of Streptococcus pneumoniae, requires access to nascent peptidoglycan, J Biol Chem, vol.287, pp.11018-11029, 2012.

B. R. Hanson and M. N. Neely, Coordinate regulation of Gram-positive cell surface components, Curr Opin Microbiol, vol.15, pp.204-210, 2012.

J. Ganeshapillai, E. Vinogradov, J. Rousseau, J. S. Weese, and M. A. Monteiro, Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units, Carbohydr Res, vol.343, pp.703-710, 2008.

C. W. Reid, E. Vinogradov, J. Li, H. C. Jarrell, S. M. Logan et al., Structural characterization of surface glycans from Clostridium difficile, Carbohydr Res, vol.354, pp.65-73, 2012.

T. Fukushima, A. Afkham, S. Kurosawa, T. Tanabe, H. Yamamoto et al., A new D,L-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis, J Bacteriol, vol.188, pp.5541-5550, 2006.

J. R. O'connor, D. Lyras, K. A. Farrow, V. Adams, D. R. Powell et al., Construction and analysis of chromosomal Clostridium difficile mutants, Mol Microbiol, vol.61, pp.1335-1351, 2006.

M. M. Collery, S. A. Kuehne, S. M. Mcbride, M. L. Kelly, M. Monot et al., What's a SNP between friends: the influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives, Virulence, vol.8, pp.767-781, 2016.

B. Dupuy and A. L. Sonenshein, Regulated transcription of Clostridium difficile toxin genes, Mol Microbiol, vol.27, pp.107-120, 1998.

A. Antunes, I. Martin-verstraete, and B. Dupuy, CcpA-mediated repression of Clostridium difficile toxin gene expression, Mol Microbiol, vol.79, pp.882-899, 2011.

T. J. Smith and S. J. Foster, Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168, J Bacteriol, vol.177, pp.3855-3862, 1995.

F. A. Nugroho, H. Yamamoto, Y. Kobayashi, and J. Sekiguchi, Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis, J Bacteriol, vol.181, pp.6230-6237, 1999.

L. Saujet, F. C. Pereira, M. Serrano, O. Soutourina, M. Monot et al., Genomewide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370780

H. A. Hussain, A. P. Roberts, and P. Mullany, Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites, J Med Microbiol, vol.54, pp.137-141, 2005.

L. Saujet, M. Monot, B. Dupuy, O. Soutourina, and I. Martin-verstraete, The key sigma factor of transition phase, SigH, controls sporulation, metabolism and virulence factor expression in Clostridium difficile, J Bacteriol, vol.193, pp.3186-3196, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01370840

O. A. Soutourina, M. Monot, P. Boudry, L. Saujet, C. Pichon et al., Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370770

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

R. P. Fagan and N. F. Fairweather, Clostridium difficile has two parallel and essential Sec secretion systems, J Biol Chem, vol.286, pp.27483-27493, 2011.
DOI : 10.1074/jbc.m111.263889

URL : http://www.jbc.org/content/286/31/27483.full.pdf

J. T. Heap, O. J. Pennington, S. T. Cartman, G. P. Carter, and N. P. Minton, The ClosTron: a universal gene knock out system for the genus Clostridium, J Microbiol Methods, vol.70, pp.452-464, 2007.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

K. Regulski, P. Courtin, S. Kulakauskas, and M. P. Chapot-chartier, A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins, J Biol Chem, vol.288, pp.20416-20426, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003290