P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat Rev Mol Cell Biol, vol.10, pp.445-457, 2009.

S. Etienne-manneville, Microtubules in cell migration, Annu Rev Cell Dev Biol, vol.29, pp.471-499, 2013.

E. F. Woodham and L. M. Machesky, Polarised cell migration: intrinsic and extrinsic drivers, Curr Opin Cell Biol, vol.30, pp.25-32, 2014.

J. T. Parsons, A. R. Horwitz, and M. A. Schwartz, Cell adhesion: integrating cytoskeletal dynamics and cellular tension, Nat Rev Mol Cell Biol, vol.11, pp.633-643, 2010.

P. Friedl and K. Wolf, Plasticity of cell migration: a multiscale tuning model, J Cell Biol, vol.188, pp.11-19, 2010.

B. M. Chung, J. D. Rotty, and P. A. Coulombe, Networking galore: intermediate filaments and cell migration, Curr Opin Cell Biol, vol.25, pp.600-612, 2013.

J. E. Eriksson, T. Dechat, B. Grin, B. Helfand, M. Mendez et al., Introducing intermediate filaments: from discovery to disease, J Clin Invest, vol.119, pp.1763-1771, 2009.

E. A. Lepekhin, C. Eliasson, C. H. Berthold, V. Berezin, E. Bock et al., Intermediate filaments regulate astrocyte motility, J Neurochem, vol.79, pp.617-625, 2001.

I. Dupin and S. Etienne-manneville, Nuclear positioning: mechanisms and functions, Int J Biochem Cell Biol, vol.43, pp.1698-1707, 2011.

B. T. Helfand, M. G. Mendez, S. N. Murthy, D. K. Shumaker, B. Grin et al., Vimentin organization modulates the formation of lamellipodia, Mol Biol Cell, vol.22, pp.1274-1289, 2011.

M. R. Rogel, P. N. Soni, J. R. Troken, A. Sitikov, H. E. Trejo et al., Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells, FASEB J, vol.25, pp.3873-3883, 2011.

M. G. Mendez, S. Kojima, and R. D. Goldman, Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition, FASEB J, vol.24, pp.1838-1851, 2010.

A. Satelli and S. Li, Vimentin in cancer and its potential as a molecular target for cancer therapy, Cell Mol Life Sci, vol.68, pp.3033-3046, 2011.

U. Lendahl, L. B. Zimmerman, and R. D. Mckay, CNS stem cells express a new class of intermediate filament protein, Cell, vol.60, pp.585-595, 1990.

J. Zou, E. Yaoita, Y. Watanabe, Y. Yoshida, M. Nameta et al., Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury, Virchows Arch, vol.448, pp.485-492, 2006.

, Intermediate filaments in cell migration Leduc and Etienne-Manneville 109 www.sciencedirect.com Current Opinion in Cell Biology, vol.32, pp.102-112, 2015.

A. Kolsch, R. Windoffer, T. Wurflinger, T. Aach, and R. E. Leube, The keratin-filament cycle of assembly and disassembly, J Cell Sci, vol.123, pp.2266-2272, 2010.

L. Chang and R. D. Goldman, Intermediate filaments mediate cytoskeletal crosstalk, Nat Rev Mol Cell Biol, vol.5, pp.601-613, 2004.

S. Etienne-manneville, APC in cell migration, Adv Exp Med Biol, vol.656, pp.30-40, 2009.

L. S. Rathje, N. Nordgren, T. Pettersson, D. Ronnlund, J. Widengren et al., Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness, Proc Natl Acad Sci U S A, vol.111, pp.1515-1520, 2014.

A. Boudreau, K. Tanner, D. Wang, F. C. Geyer, J. S. Reis-filho et al., -3sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion, Proc Natl Acad Sci U S A, vol.110, pp.3937-3944, 2013.

P. Hollenbeck, A. Bershadsky, O. Pletjushkina, I. Tint, and J. Vasiliev, Intermediate filament collapse is an ATP-dependent and actin-dependent process, J Cell Sci, vol.92, pp.621-631, 1989.

G. Walko, N. Vukasinovic, K. Gross, I. Fischer, S. Sibitz et al., Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna, PLoS Genet, vol.7, p.1002396, 2011.

G. A. Rezniczek, J. M. De-pereda, S. Reipert, and G. Wiche, Linking integrin alpha6beta4-based cell adhesion to the intermediate filament cytoskeleton: direct interaction between the beta4 subunit and plectin at multiple molecular sites, J Cell Biol, vol.141, pp.209-225, 1998.

F. Bordeleau, L. Galarneau, S. Gilbert, A. Loranger, and N. Marceau, Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells, Mol Biol Cell, vol.21, pp.1698-1713, 2010.

S. Sankar, J. M. Tanner, R. Bell, A. Chaturvedi, R. L. Randall et al., A novel role for keratin 17 in coordinating oncogenic transformation and cellular adhesion in Ewing sarcoma, Mol Cell Biol, vol.33, pp.4448-4460, 2013.

J. Ivaska, K. Vuoriluoto, T. Huovinen, I. Izawa, M. Inagaki et al., PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility, EMBO J, vol.24, pp.3834-3845, 2005.

I. A. Chang, M. J. Oh, M. H. Kim, S. K. Park, B. G. Kim et al., Vimentin phosphorylation by Cdc2 in Schwann cell controls axon growth via beta1-integrin activation, FASEB J, vol.26, pp.2401-2413, 2012.

S. H. Shabbir, M. M. Cleland, R. D. Goldman, and M. Mrksich, Geometric control of vimentin intermediate filaments, Biomaterials, vol.35, pp.1359-1366, 2014.

R. G. Valencia, G. Walko, L. Janda, J. Novacek, E. Mihailovska et al., Intermediate filamentassociated cytolinker plectin 1c destabilizes microtubules in keratinocytes, Mol Biol Cell, vol.24, pp.768-784, 2013.

, This manuscript illustrates the crosstalk between IFs and microtubules. It shows that IF-associated plectin 1c promotes microtubule dynamics and global stabilization. This impacts on focal adhesion assembly and cell directed migration

M. Gregor, S. Osmanagic-myers, G. Burgstaller, M. Wolfram, I. Fischer et al., Mechanosensing through focal adhesion-anchored intermediate filaments, FASEB J, vol.28, pp.715-729, 2014.

, This article shows that vimentin IFs plays a key regulatory role in mechanotransduction by modulating the activation of FAK and focal adhesion turnover. Plectin depletion which uncouples IF from focal adhesions leads to a decrease in cytoskeletal tension associated with stretched focal adhesions due to the induction of a compensatory feedback loop involving RhoA and myosin

N. Sun, T. W. Huiatt, D. Paulin, Z. Li, and R. M. Robson, Synemin interacts with the LIM domain protein zyxin and is essential for cell adhesion and migration, Exp Cell Res, vol.316, pp.491-505, 2010.

Y. Pan, R. Jing, A. Pitre, B. J. Williams, and O. Skalli, Intermediate filament protein synemin contributes to the migratory properties of astrocytoma cells by influencing the dynamics of the actin cytoskeleton, FASEB J, vol.22, pp.3196-3206, 2008.

C. L. Hyder, G. Lazaro, J. W. Pylvanainen, M. W. Roberts, S. M. Qvarnstrom et al., Nestin regulates prostate cancer cell invasion by influencing the localisation and functions of FAK and integrins, J Cell Sci, vol.127, pp.2161-2173, 2014.

K. Seltmann, A. W. Fritsch, J. A. Kas, and T. M. Magin, Keratins significantly contribute to cell stiffness and impact invasive behavior, Proc Natl Acad Sci U S A, vol.110, pp.18507-18512, 2013.

K. Ishikawa, H. Sumiyoshi, N. Matsuo, N. Takeo, M. Goto et al., Epiplakin accelerates the lateral organization of keratin filaments during wound healing, J Dermatol Sci, vol.60, pp.95-104, 2010.

H. Zhang, F. Landmann, H. Zahreddine, D. Rodriguez, M. Koch et al., A tension-induced mechanotransduction pathway promotes epithelial morphogenesis, Nature, vol.471, pp.99-103, 2011.

K. Seltmann, W. Roth, C. Kroger, F. Loschke, M. Lederer et al., Keratins mediate localization of hemidesmosomes and repress cell motility, J Invest Dermatol, vol.133, pp.181-190, 2013.

, This report reveals that the loss of keratin leads to the destabilization hemidesmosomes and promote the fast adhesion of cells to their substrate, increasing cell velocity. With Ref. [82], these results identify different mechanisms by which keratin expression may inhibit cell invasion, and how downregulation of keratin in carcinoma cells may contribute to the tumor spreading

M. E. Murray, M. G. Mendez, and P. A. Janmey, Substrate stiffness regulates solubility of cellular vimentin, Mol Biol Cell, vol.25, pp.87-94, 2014.

, Cell-cell interactions, serum starvation, substrate rigidity, acto-myosin contractility and microtubule depolymerization increases vimentin solubility, suggesting that the extension of the IF network can be controlled by intracellular signalling and cytoskeletal crosstalk

M. Sutoh-yoneyama, S. Hatakeyama, T. Habuchi, T. Inoue, T. Nakamura et al., Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis, Eur J Cell Biol, vol.93, pp.157-169, 2014.

, This paper demonstrate the role of vimentin in the formation of invadopodia and its interaction with actin filaments in these structures. This Intermediate filaments in cell migration Leduc and Etienne-Manneville 111 www.sciencedirect.com Current Opinion in, Cell Biology, vol.32, pp.102-112, 2015.

, cytoskeletal interplay is important for invadopodia formation, degradation of the extracellular matrix and transendothelial migration of highly metastatic bladder cancer cells

G. F. Weber, M. A. Bjerke, and D. W. Desimone, A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration, Dev Cell, vol.22, pp.104-115, 2012.

C. Kroger, F. Loschke, N. Schwarz, R. Windoffer, R. E. Leube et al., Keratins control intercellular adhesion involving PKC-alpha-mediated desmoplakin phosphorylation, J Cell Biol, vol.201, pp.681-692, 2013.

, Desmosomes are essential for epithelium integrity. The authors show here that the keratin-RACK1 complex prevents PKC-a-mediated phosphorylation of desmoplakin and thereby stabilizes desmosomes and epithelial cell adhesion

T. Harada, J. Swift, J. Irianto, J. W. Shin, K. R. Spinler et al., Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival, J Cell Biol, vol.204, pp.669-682, 2014.

A. Buxboim, J. Swift, J. Irianto, K. R. Spinler, P. C. Dingal et al., The authors show that lamin-A level is an essential parameter controlling 3D invasion of cancer and mesenchymal cells. Interestingly, they also show that while limiting invasion, lamins are also essential for cell survival against migration-induced cell stress, Curr Biol, vol.80, pp.1909-1917, 2014.

Z. Wu, L. Wu, D. Weng, D. Xu, J. Geng et al., Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma, J Exp Clin Cancer Res, vol.28, p.8, 2009.

N. D. Willis, T. R. Cox, S. F. Rahman-casans, K. Smits, S. A. Przyborski et al., Lamin A/C is a risk biomarker in colorectal cancer, PLoS ONE, vol.3, p.2988, 2008.

L. Kong, G. Schafer, H. Bu, Y. Zhang, Y. Zhang et al., Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway, Carcinogenesis, vol.33, pp.751-759, 2012.

C. Gilles, M. Polette, J. M. Zahm, J. M. Tournier, L. Volders et al., Vimentin contributes to human mammary epithelial cell migration, J Cell Sci, vol.112, pp.4615-4625, 1999.