. Hu, . Human, and . Ir, Interacting residues; L. major: Leishmania major; Li: Leishmania infantum; MTA: 5?-methylthioadenosine; MTAP: 5?-methylthioadenosine phosphorylase; MTM: Methylthio-immucillin-A; NP-I: Nucleoside phosphorylase I; NP-II: Nucleoside phosphorylase II

P. Hotez, M. Bottazzi, U. Strych, L. Chang, Y. Lim et al., Neglected Tropical Diseases among the Association of Southeast Asian Nations (ASEAN): Overview and Update, PLOS Neglected Tropical Diseases, vol.3, issue.Suppl 1, p.3575, 2015.
DOI : 10.1371/journal.pntd.0003575.t003

J. Alvar, I. Velez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis Worldwide and Global Estimates of Its Incidence, PLoS ONE, vol.83, issue.30, p.35671, 2012.
DOI : 10.1371/journal.pone.0035671.s101

URL : https://doi.org/10.1371/journal.pone.0035671

S. Croft and G. Coombs, Leishmaniasis??? current chemotherapy and recent advances in the search for novel drugs, Trends in Parasitology, vol.19, issue.11, pp.502-510, 2003.
DOI : 10.1016/j.pt.2003.09.008

J. Chakravarty and S. Sundar, Drug resistance in leishmaniasis, Journal of Global Infectious Diseases, vol.2, issue.2, pp.167-76, 2010.
DOI : 10.4103/0974-777X.62887

L. Caldeira, F. Fernandes, D. Costa, F. Frezard, L. Afonso et al., Nanoemulsions loaded with amphotericin B: A new approach for the treatment of leishmaniasis, European Journal of Pharmaceutical Sciences, vol.70, pp.125-156, 2015.
DOI : 10.1016/j.ejps.2015.01.015

A. Datta, R. Datta, and B. Sen, Antiparasitic Chemotherapy:, Adv Exp Med Biol, vol.625, pp.116-148, 2008.
DOI : 10.1007/978-0-387-77570-8_10

N. Singh, M. Kumar, and R. Singh, Leishmaniasis: Current status of available drugs and new potential drug targets, Asian Pacific Journal of Tropical Medicine, vol.5, issue.6, pp.485-97, 2012.
DOI : 10.1016/S1995-7645(12)60084-4

M. El-kouni, Potential chemotherapeutic targets in the purine metabolism of parasites, Pharmacology & Therapeutics, vol.99, issue.3, pp.283-309, 2003.
DOI : 10.1016/S0163-7258(03)00071-8

C. Bacchi, J. Sufrin, H. Nathan, A. Spiess, T. Hannan et al., 5'-Alkyl-substituted analogs of 5'-methylthioadenosine as trypanocides., Antimicrobial Agents and Chemotherapy, vol.35, issue.7, pp.1315-1335, 1991.
DOI : 10.1128/AAC.35.7.1315

J. Bertino, W. Waud, W. Parker, and M. Lubin, Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity, Cancer Biology & Therapy, vol.4, issue.7, pp.627-659, 2011.
DOI : 10.1002/1097-0142(195611/12)9:6<1092::AID-CNCR2820090605>3.0.CO;2-1

URL : http://www.tandfonline.com/doi/pdf/10.4161/cbt.11.7.14948?needAccess=true

P. Backlund, . Jr, and R. Smith, Methionine synthesis from 5???-methylthioadenosine in rat liver, J Biol Chem, vol.256, issue.4, pp.1533-1538, 1981.
DOI : 10.1007/978-1-349-06343-7_102

B. Goldberg, D. Rattendi, D. Lloyd, N. Yarlett, and C. Bacchi, Kinetics of Methionine Transport and Metabolism by Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense, Archives of Biochemistry and Biophysics, vol.377, issue.1, pp.49-57, 2000.
DOI : 10.1006/abbi.2000.1740

J. Sufrin, A. Spiess, D. Kramer, P. Libby, J. Miller et al., Targeting 5'-deoxy-5'-(methylthio)adenosine phosphorylase by 5'-haloalkyl analogs of 5'-deoxy-5'-(methylthio)adenosine, Journal of Medicinal Chemistry, vol.34, issue.8, pp.2600-2606, 1991.
DOI : 10.1021/jm00112a039

M. Pugmire and S. Ealick, Structural analyses reveal two distinct families of nucleoside phosphorylases, Biochemical Journal, vol.361, issue.1, pp.1-25, 2002.
DOI : 10.1042/bj3610001

D. Ragione, F. Carteni-farina, M. Gragnaniello, V. Schettino, M. Zappia et al., Purification and characterization of 5?-deoxy-5?-methylthioadenosine phosphorylase from human placenta, J Biol Chem, vol.261, issue.26, pp.12324-12333, 1986.

D. Ragione, F. Oliva, A. Gragnaniello, V. Russo, G. Palumbo et al., Physicochemical and immunological studies on mammalian 5?- deoxy-5?-methylthioadenosine phosphorylase, J Biol Chem, vol.265, issue.11, pp.6241-6247, 1990.

T. Appleby, M. Erion, and S. Ealick, The structure of human 5???-deoxy-5???-methylthioadenosine phosphorylase at 1.7 ?? resolution provides insights into substrate binding and catalysis, Structure, vol.7, issue.6, pp.629-670, 1999.
DOI : 10.1016/S0969-2126(99)80084-7

G. Cacciapuoti, C. Bertoldo, A. Brio, V. Zappia, and M. Porcelli, Purification and characterization of 5?-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus: substrate specificity and primary structure analysis, Extremophiles, vol.7, issue.2, pp.159-68, 2003.

R. Guan, M. Ho, S. Almo, and V. Schramm, . Structure and Annotation of a Novel Enzyme in Quorum Sensing, Biochemistry, vol.50, issue.7, pp.1247-54, 2011.
DOI : 10.1021/bi101642d

K. Buckoreelall, L. Wilson, and W. Parker, Identification and Characterization of Two Adenosine Phosphorylase Activities in Mycobacterium smegmatis, Journal of Bacteriology, vol.193, issue.20, pp.5668-74, 2011.
DOI : 10.1128/JB.05394-11

K. Buckoreelall, Y. Sun, J. Hobrath, L. Wilson, and W. Parker, Identification of Rv0535 as methylthioadenosine phosphorylase from Mycobacterium tuberculosis, Tuberculosis, vol.92, issue.2, pp.139-186, 2012.
DOI : 10.1016/j.tube.2011.11.010

Y. Zhang, P. Zwart, and S. Ealick, 5???-deoxy-5???-methylthioadenosine phosphorylase II, Acta Crystallographica Section D Biological Crystallography, vol.43, issue.3, pp.249-52, 2012.
DOI : 10.1016/j.jmb.2005.12.040

J. Torini, J. Brandao-neto, R. Demarco, and H. Pereira, Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5???-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway, PLOS Neglected Tropical Diseases, vol.185, issue.Suppl 11, p.5178, 2016.
DOI : 10.1371/journal.pntd.0005178.s002

P. Bartasun, H. Cieslinski, A. Bujacz, A. Wierzbicka-wos, and J. Kur, A Study on the Interaction of Rhodamine B with Methylthioadenosine Phosphorylase Protein Sourced from an Antarctic Soil Metagenomic Library, PLoS ONE, vol.138, issue.1, p.55697, 2013.
DOI : 10.1371/journal.pone.0055697.t001

Y. Zhang, M. Porcelli, G. Cacciapuoti, and S. Ealick, The Crystal Structure of 5???-Deoxy-5???-methylthioadenosine Phosphorylase II from Sulfolobus solfataricus, a Thermophilic Enzyme Stabilized by Intramolecular Disulfide Bonds, Journal of Molecular Biology, vol.357, issue.1, pp.252-62, 2006.
DOI : 10.1016/j.jmb.2005.12.040

G. Cacciapuoti, S. Forte, M. Moretti, A. Brio, V. Zappia et al., A novel hyperthermostable 5???-deoxy-5???-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus, FEBS Journal, vol.73, issue.8, pp.1886-99, 2005.
DOI : 10.1007/978-1-4684-5637-0_15

J. Montgomery, S. Niwas, J. Rose, J. Secrist, Y. Babu et al., Structure-based design of inhibitors of purine nucleoside phosphorylase, pp.9-9

J. Secrist, R. Comber, R. Gray, R. Gilroy, and J. Montgomery, Syntheses of 5'-substituted analogs of carbocyclic 3-deazaadenosine as potential antivirals, Journal of Medicinal Chemistry, vol.36, issue.15, pp.2102-2108, 1993.
DOI : 10.1021/jm00067a008

M. Erion, S. Niwas, J. Rose, S. Ananthan, M. Allen et al., ChemInform Abstract: Structure-Based Design of Inhibitors of Purine Nucleoside Phosphorylase. Part 3. 9-Arylmethyl Derivatives of 9-Deazaguanine Substituted on the Methylene Group., ChemInform, vol.36, issue.25, pp.3771-83, 1993.
DOI : 10.1002/chin.199425154

W. Guida, R. Elliott, H. Thomas, J. Secrist, Y. Babu et al., Structure-Based Design of Inhibitors of Purine Nucleoside Phosphorylase. 4. A Study of Phosphate Mimics, Journal of Medicinal Chemistry, vol.37, issue.8, pp.1109-1123, 1994.
DOI : 10.1021/jm00034a008

J. Kelly and A. Kuzin, The Refined Crystallographic Structure of aDD-Peptidase Penicillin-target Enzyme at 1.6 ?? Resolution, Journal of Molecular Biology, vol.254, issue.2, pp.223-259, 1995.
DOI : 10.1006/jmbi.1995.0613

J. Sufrin, A. Spiess, C. Marasco, . Jr, D. Rattendi et al., Novel Trypanocidal Analogs of 5'-(Methylthio)-Adenosine, Antimicrobial Agents and Chemotherapy, vol.52, issue.1, pp.211-220, 2008.
DOI : 10.1128/AAC.00480-07

C. Notredame, D. Higgins, and J. Heringa, T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. Thornton, Journal of Molecular Biology, vol.302, issue.1, pp.205-222, 2000.
DOI : 10.1006/jmbi.2000.4042

T. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc Int Conf Intell Syst Mol Biol, vol.2, pp.28-36, 1994.

J. Martin, G. Letellier, A. Marin, J. Taly, A. De-brevern et al., Protein secondary structure assignment revisited: a detailed analysis of different assignment methods, BMC Structural Biology, vol.5, issue.1, p.17, 2005.
DOI : 10.1186/1472-6807-5-17

URL : https://hal.archives-ouvertes.fr/inserm-00090199

A. Stivala, M. Wybrow, A. Wirth, J. Whisstock, and P. Stuckey, Automatic generation of protein structure cartoons with Pro-origami, Bioinformatics, vol.27, issue.23, pp.3315-3321, 2011.
DOI : 10.1093/bioinformatics/btr575

Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics, vol.9, issue.1, p.40, 2008.
DOI : 10.1186/1471-2105-9-40

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-9-40?site=bmcbioinformatics.biomedcentral.com

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nature Protocols, vol.59, issue.4, pp.725-763, 2010.
DOI : 10.1002/prot.22551

Y. Zhang and J. Skolnick, Automated structure prediction of weakly homologous proteins on a genomic scale, Proceedings of the National Academy of Sciences, vol.26, issue.1, pp.7594-7603, 2004.
DOI : 10.1093/nar/26.1.38

D. Xu and Y. Zhang, Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-Step Atomic-Level Energy Minimization, Biophysical Journal, vol.101, issue.10, pp.2525-2559, 2011.
DOI : 10.1016/j.bpj.2011.10.024

A. Roy, D. Xu, J. Poisson, and Y. Zhang, A Protocol for Computer-Based Protein Structure and Function Prediction, Journal of Visualized Experiments, vol.57, issue.57, p.3259, 2011.
DOI : 10.3791/3259

E. Harigua-souiai, I. Cortes-ciriano, N. Desdouits, T. Malliavin, I. Guizani et al., Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis, BMC Bioinformatics, vol.5, issue.12, p.93, 2015.
DOI : 10.1016/0022-2836(82)90153-X

URL : https://hal.archives-ouvertes.fr/pasteur-01144936

G. Bouvier, N. Evrard-todeschi, J. Girault, and G. Bertho, Automatic clustering of docking poses in virtual screening process using self-organizing map, Bioinformatics, vol.26, issue.1, pp.53-60, 2010.
DOI : 10.1093/bioinformatics/btp623

M. Congreve, R. Carr, C. Murray, and H. Jhoti, A ???Rule of Three??? for fragment-based lead discovery?, Drug Discovery Today, vol.8, issue.19, pp.876-883, 2003.
DOI : 10.1016/S1359-6446(03)02831-9

O. Boyle, N. Banck, M. James, C. Morley, C. Vandermeersch et al., Open Babel: An open chemical toolbox, Journal of Cheminformatics, vol.3, issue.1, p.33, 2011.
DOI : 10.1093/nar/gkp324

O. Trott and A. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, vol.17, issue.2, pp.455-61, 2010.
DOI : 10.1002/jcc.21334

A. Kolaskar and P. Tongaonkar, A semi-empirical method for prediction of antigenic determinants on protein antigens, FEBS Letters, vol.188, issue.1-2, pp.172-176, 1990.
DOI : 10.1016/0014-5793(85)80374-4

J. Xu and Y. Zhang, How significant is a protein structure similarity with TM-score = 0.5?, Bioinformatics, vol.26, issue.7, pp.889-95, 2010.
DOI : 10.1093/bioinformatics/btq066

A. Barrett, Nomenclature Committee of the International Union of biochemistry and molecular biology (NC-IUBMB) Enzyme nomenclature. Recommendations, 1992.

M. Baumgartner and C. Camacho, Choosing the Optimal Rigid Receptor for Docking and Scoring in the CSAR 2013/2014 Experiment, Journal of Chemical Information and Modeling, vol.56, issue.6, pp.1004-1016, 2016.
DOI : 10.1021/acs.jcim.5b00338

E. Morgunova, A. Mikhailov, A. Popov, E. Blagova, E. Smirnova et al., as refined in the monoclinic crystal lattice, FEBS Letters, vol.24, issue.2, pp.183-190, 1995.
DOI : 10.1107/S0021889891004399

T. Caradoc-davies, S. Cutfield, I. Lamont, and J. Cutfield, Crystal Structures of Escherichia coli Uridine Phosphorylase in Two Native and Three Complexed Forms Reveal Basis of Substrate Specificity, Induced Conformational Changes and Influence of Potassium, Journal of Molecular Biology, vol.337, issue.2, pp.337-54, 2004.
DOI : 10.1016/j.jmb.2004.01.039

S. Hendrickx, M. Van-den-kerkhof, D. Mabille, P. Cos, P. Delputte et al., Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum, PLOS Neglected Tropical Diseases, vol.50, issue.1, p.5620, 2017.
DOI : 10.1371/journal.pntd.0005620.t003

B. Chawla and R. Madhubala, Drug targets in Leishmania, Journal of Parasitic Diseases, vol.5, issue.Pt 1, pp.1-13, 2010.
DOI : 10.2174/0929867003374615

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081701/pdf

O. Heby, L. Persson, and M. Rentala, Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas??? disease, and leishmaniasis, Amino Acids, vol.11, issue.2, pp.359-66, 2007.
DOI : 10.1042/bj3330527

J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, T. Hubbard et al., Critical assessment of methods of protein structure prediction???Round VII, Proteins: Structure, Function, and Bioinformatics, vol.302, issue.S8, pp.3-9, 2007.
DOI : 10.1002/prot.21651

A. Kryshtafovych, K. Fidelis, and A. Tramontano, Evaluation of model quality predictions in CASP9, Proteins: Structure, Function, and Bioinformatics, vol.71, issue.Suppl 9, pp.91-106, 2011.
DOI : 10.1002/prot.21715

S. Kaur, A. Shivange, and N. Roy, Structural analysis of trypanosomal sirtuin: an insight for selective drug design, Molecular Diversity, vol.71, issue.1, pp.169-78, 2010.
DOI : 10.1016/S0022-2836(05)80360-2

D. Nandan, M. Lopez, F. Ban, M. Huang, Y. Li et al., Indel-based targeting of essential proteins in human pathogens that have close host orthologue(s): Discovery of selective inhibitors for Leishmania donovani elongation factor-1??, Proteins: Structure, Function, and Bioinformatics, vol.93, issue.Part 11, pp.53-64, 2007.
DOI : 10.1002/prot.21278

B. Sarkar, M. Kulharia, and A. Mantha, Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology, International Journal of Experimental Pathology, vol.6, issue.3, pp.52-66, 2017.
DOI : 10.1038/srep19296

B. Fernando, C. Yersin, C. Jose, and Z. Paola, Predicted 3D Model of the Rabies Virus Glycoprotein Trimer, BioMed Research International, vol.34, issue.4, p.1674580, 2016.
DOI : 10.1002/prot.10286

S. Brogi, S. Giovani, M. Brindisi, S. Gemma, E. Novellino et al., In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors, Journal of Molecular Graphics and Modelling, vol.64, pp.121-151, 2016.
DOI : 10.1016/j.jmgm.2016.01.005