A. Joerger and A. Fersht, Structure???function???rescue: the diverse nature of common p53 cancer mutants, Oncogene, vol.13, issue.15, pp.2226-2242, 2007.
DOI : 10.1074/jbc.M603387200

L. Romer, C. Klein, A. Dehner, H. Kessler, and J. Buchner, p53???A Natural Cancer Killer: Structural Insights and Therapeutic Concepts, Angewandte Chemie International Edition, vol.25, issue.1, pp.6440-6460, 2006.
DOI : 10.1002/anie.200600611

L. Iakoucheva, C. Brown, J. Lawson, Z. Obradovic, and A. Dunker, Intrinsic Disorder in Cell-signaling and Cancer-associated Proteins, Journal of Molecular Biology, vol.323, issue.3, pp.573-584, 2002.
DOI : 10.1016/S0022-2836(02)00969-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.682

A. Fink, Natively unfolded proteins, Current Opinion in Structural Biology, vol.15, issue.1, pp.35-41, 2005.
DOI : 10.1016/j.sbi.2005.01.002

URL : http://dx.doi.org/10.1016/s0006-3495(08)79172-0

H. Tidow, Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex, Proceedings of the National Academy of Sciences, vol.281, issue.43, pp.12324-12329, 2007.
DOI : 10.1074/jbc.M604725200

A. Joerger, M. Allen, and A. Fersht, Crystal Structure of a Superstable Mutant of Human p53 Core Domain: INSIGHTS INTO THE MECHANISM OF RESCUING ONCOGENIC MUTATIONS, Journal of Biological Chemistry, vol.279, issue.2, pp.1291-1296, 2004.
DOI : 10.1074/jbc.M309732200

Y. Cho, S. Gorina, P. Jeffrey, and N. Pavletich, Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations, Science, vol.265, issue.5170, pp.346-355, 1994.
DOI : 10.1126/science.8023157

J. Canadillas, Solution structure of p53 core domain: Structural basis for its instability, Proceedings of the National Academy of Sciences, vol.54, issue.Pt 5, pp.2109-2114, 2006.
DOI : 10.1107/S0907444998003254

G. Clore, Refined solution structure of the oligomerization domain of the tumour suppressor p53, Nature Structural Biology, vol.263, issue.4, pp.321-333, 1995.
DOI : 10.1016/0263-7855(87)80010-3

W. Lee, Solution structure of the tetrameric minimum transforming domain of p53, Nature Structural Biology, vol.31, issue.12, pp.877-890, 1994.
DOI : 10.1107/S0021889891004399

D. Teufel, S. Freund, M. Bycroft, and A. Fersht, Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53, Proceedings of the National Academy of Sciences, vol.13, issue.2, pp.7009-7014, 2007.
DOI : 10.1016/S1097-2765(03)00528-8

N. Tjandra and A. Bax, Direct Measurement of Distances and Angles in Biomolecules by NMR in a Dilute Liquid Crystalline Medium, Science, vol.278, issue.5340, pp.1111-1114, 1997.
DOI : 10.1126/science.278.5340.1111

D. Shortle and M. Ackerman, Persistence of Native-Like Topology in a Denatured Protein in 8 M Urea, Science, vol.293, issue.5529, pp.487-489, 2001.
DOI : 10.1126/science.1060438

M. Louhivuori, On the Origin of Residual Dipolar Couplings from Denatured Proteins, Journal of the American Chemical Society, vol.125, issue.50, pp.15647-15650, 2003.
DOI : 10.1021/ja035427v

R. Mohana-borges, N. Goto, G. Kroon, H. Dyson, and P. Wright, Structural Characterization of Unfolded States of Apomyoglobin using Residual Dipolar Couplings, Journal of Molecular Biology, vol.340, issue.5, pp.1131-1142, 2004.
DOI : 10.1016/j.jmb.2004.05.022

S. Meier, S. Grzesiek, and M. Blackledge, Mapping the Conformational Landscape of Urea-Denatured Ubiquitin Using Residual Dipolar Couplings, Journal of the American Chemical Society, vol.129, issue.31, pp.9799-9807, 2007.
DOI : 10.1021/ja0724339

H. Lee, Local Structural Elements in the Mostly Unstructured Transcriptional Activation Domain of Human p53, Journal of Biological Chemistry, vol.275, issue.38, pp.29426-29432, 2000.
DOI : 10.1074/jbc.M003107200

P. Kussie, Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain, Science, vol.274, issue.5289, pp.948-953, 1996.
DOI : 10.1126/science.274.5289.948

P. Bernado, A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering, Proceedings of the National Academy of Sciences, vol.102, issue.37, pp.17002-17007, 2005.
DOI : 10.1073/pnas.0506078102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1287987

A. Jha, A. Colubri, K. Freed, and T. Sosnick, Statistical coil model of the unfolded state: Resolving the reconciliation problem, Proceedings of the National Academy of Sciences, vol.268, issue.1, pp.13099-13104, 2005.
DOI : 10.1006/jmbi.1997.0954

P. Bernado, C. Bertoncini, C. Griesinger, M. Zweckstetter, and M. Blackledge, Defining Long-Range Order and Local Disorder in Native ??-Synuclein Using Residual Dipolar Couplings, Journal of the American Chemical Society, vol.127, issue.51, pp.17968-17969, 2005.
DOI : 10.1021/ja055538p

M. Mukrasch, Highly Populated Turn Conformations in Natively Unfolded Tau Protein Identified from Residual Dipolar Couplings and Molecular Simulation, Journal of the American Chemical Society, vol.129, issue.16, pp.5235-5243, 2007.
DOI : 10.1021/ja0690159

S. Meier, S. Guthe, T. Kiefhaber, and S. Grzesiek, Foldon, The Natural Trimerization Domain of T4 Fibritin, Dissociates into a Monomeric A-state Form containing a Stable ??-Hairpin: Atomic Details of Trimer Dissociation and Local ??-Hairpin Stability from Residual Dipolar Couplings, Journal of Molecular Biology, vol.344, issue.4, pp.1051-1069, 2004.
DOI : 10.1016/j.jmb.2004.09.079

W. Fieber, S. Kristjansdottir, and F. Poulsen, Short-range, Long-range and Transition State Interactions in the Denatured State of ACBP from Residual Dipolar Couplings, Journal of Molecular Biology, vol.339, issue.5, pp.1191-1199, 2004.
DOI : 10.1016/j.jmb.2004.04.037

A. Mohan, Analysis of Molecular Recognition Features (MoRFs), Journal of Molecular Biology, vol.362, issue.5, pp.1043-1059, 2006.
DOI : 10.1016/j.jmb.2006.07.087

M. Swindells, M. Macarthur, and J. Thornton, Intrinsic ??,?? propensities of amino acids, derived from the coil regions of known structures, Nature Structural Biology, vol.3, issue.7, pp.596-603, 1995.
DOI : 10.1107/S0021889891004399

Z. Shi, K. Chen, Z. Liu, and N. Kallenbach, Conformation of the Backbone in Unfolded Proteins, Chemical Reviews, vol.106, issue.5, pp.1877-1897, 2006.
DOI : 10.1021/cr040433a

P. Vise, B. Baral, A. Stancik, D. Lowry, and G. Daughdrill, Identifying long-range structure in the intrinsically unstructured transactivation domain of p53, Proteins: Structure, Function, and Bioinformatics, vol.280, issue.3, pp.526-530, 2007.
DOI : 10.1002/prot.21364

D. Guzman, R. Liu, H. Martinez-yamout, M. Dyson, H. Wright et al., Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP, Journal of Molecular Biology, vol.303, issue.2, pp.243-253, 2000.
DOI : 10.1006/jmbi.2000.4141

H. Ang, A. Joerger, S. Mayer, and A. Fersht, Effects of Common Cancer Mutations on Stability and DNA Binding of Full-length p53 Compared with Isolated Core Domains, Journal of Biological Chemistry, vol.281, issue.31, pp.21934-21941, 2006.
DOI : 10.1074/jbc.M604209200

R. Weinberg, D. Veprintsev, and A. Fersht, Cooperative Binding of Tetrameric p53 to DNA, Journal of Molecular Biology, vol.341, issue.5, pp.1145-1159, 2004.
DOI : 10.1016/j.jmb.2004.06.071

M. Kitayner, Structural Basis of DNA Recognition by p53 Tetramers, Molecular Cell, vol.22, issue.6, pp.741-753, 2006.
DOI : 10.1016/j.molcel.2006.05.015

URL : http://doi.org/10.1016/j.molcel.2006.05.015

F. Toledo, Mouse Mutants Reveal that Putative Protein Interaction Sites in the p53 Proline-Rich Domain Are Dispensable for Tumor Suppression, Molecular and Cellular Biology, vol.27, issue.4, pp.1425-1432, 2007.
DOI : 10.1128/MCB.00999-06

G. Yu, The central region of HDM2 provides a second binding site for p53, Proceedings of the National Academy of Sciences, vol.102, issue.13, pp.1227-1232, 2006.
DOI : 10.1073/pnas.0501459102

P. Nikolova, J. Henckel, D. Lane, and A. Fersht, Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability, Proceedings of the National Academy of Sciences, vol.87, issue.14, pp.14675-14680, 1998.
DOI : 10.1073/pnas.87.14.5435

D. Veprintsev, Core domain interactions in full-length p53 in solution, Proceedings of the National Academy of Sciences, vol.12, issue.9, pp.2115-2119, 2006.
DOI : 10.1110/ps.03154503

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413758

J. Chou, S. Gaemers, B. Howder, J. Louis, and A. Bax, A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles, Journal of Biomolecular NMR, vol.21, issue.4, pp.377-382, 2001.
DOI : 10.1023/A:1013336502594

P. Permi, P. Rosevear, and A. Annila, A set of HNCO-based experiments for measurement of residual dipolar couplings in N-15, C-13 (H-2)-labeled proteins, Journal of Biomolecular NMR, vol.17, issue.1, pp.43-54, 2000.
DOI : 10.1023/A:1008372624615

D. Yang, J. Tolman, N. Goto, and L. Kay, An HNCO-based pulse scheme for the measurement of C-13(alpha)-H-1(alpha) one-bond dipolar couplings in N-15, C-13 labeled proteins, Journal of Biomolecular NMR, vol.12, issue.2, pp.325-332, 1998.
DOI : 10.1023/A:1008223017233

P. Permi, S. Heikkinen, I. Kilpelainen, and A. Annila, Measurement of 1JNC??? and 2JHNC??? Couplings from Spin-State-Selective Two-Dimensional Correlation Spectrum, Journal of Magnetic Resonance, vol.140, issue.1, pp.32-40, 1999.
DOI : 10.1006/jmre.1999.1817

G. Vuister and A. Bax, Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins, Journal of the American Chemical Society, vol.115, issue.17, pp.7772-7777, 1993.
DOI : 10.1021/ja00070a024

F. Delaglio, NMRPipe: A multidimensional spectral processing system based on UNIX pipes, Journal of Biomolecular NMR, vol.6, issue.3, pp.277-293, 1995.
DOI : 10.1007/BF00197809

M. Roessle, Upgrade of the small-angle X-ray scattering beamline X33 at the European Molecular Biology Laboratory, Hamburg, Journal of Applied Crystallography, vol.40, issue.s1, pp.190-194, 2007.
DOI : 10.1107/S0021889806055506

P. Konarev, V. Volkov, A. Sokolova, M. Koch, and D. Svergun, : a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.5, pp.1277-1282, 2003.
DOI : 10.1107/S0021889803012779

P. Konarev, M. Petoukhov, V. Volkov, and D. Svergun, 2.1, a program package for small-angle scattering data analysis, Journal of Applied Crystallography, vol.39, issue.2, pp.277-286, 2006.
DOI : 10.1107/S0021889806004699

D. Svergun, C. Barberato, and M. Koch, ??? a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, Journal of Applied Crystallography, vol.28, issue.6, pp.768-773, 1995.
DOI : 10.1107/S0021889895007047

M. Petoukhov and D. Svergun, Global Rigid Body Modeling of Macromolecular Complexes against Small-Angle Scattering Data, Biophysical Journal, vol.89, issue.2, pp.1237-1250, 2005.
DOI : 10.1529/biophysj.105.064154

URL : http://doi.org/10.1529/biophysj.105.064154

E. Eyal, R. Najmanovich, B. Mcconkey, M. Edelman, and V. Sobolev, Importance of solvent accessibility and contact surfaces in modeling side-chain conformations in proteins, Journal of Computational Chemistry, vol.50, issue.5, pp.712-724, 2004.
DOI : 10.1002/jcc.10420

D. Hamelberg and J. Mccammon, Fast Peptidyl cis???trans Isomerization within the Flexible Gly-Rich Flaps of HIV-1 Protease, Journal of the American Chemical Society, vol.127, issue.40, pp.13778-13779, 2005.
DOI : 10.1021/ja054338a

P. Markwick, G. Bouvignies, and M. Blackledge, Exploring Multiple Timescale Motions in Protein GB3 Using Accelerated Molecular Dynamics and NMR Spectroscopy, Journal of the American Chemical Society, vol.129, issue.15, pp.4724-4730, 2007.
DOI : 10.1021/ja0687668