P. Talbot, H. Jacomy, M. Desforges, S. Perlman, T. Gallagher et al., Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus, The Nidoviruses, pp.313-337, 2008.
DOI : 10.1128/9781555815790.ch20

S. Forgie and T. Marrie, Healthcare-associated atypical pneumonia. Seminars in respiratory and critical care medicine, pp.67-85, 2009.

F. Freymuth, A. Vabret, J. Dina, D. Cuvillon-nimal, C. Lubin et al., Bronchiolitis viruses] Archives de pediatrie: organe officiel de la Societe francaise de pediatrie, Epub, vol.17, issue.8, pp.1192-201, 2010.

A. Vabret, J. Dina, E. Brison, J. Brouard, and F. Freymuth, Coronavirus humains (HCoV), Pathologie Biologie, vol.57, issue.2, pp.149-60, 2008.
DOI : 10.1016/j.patbio.2008.02.018

M. Desforges, L. Coupanec, A. Brison, E. Meessen-pinard, M. Talbot et al., Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans Advances in experimental medicine and biology, pp.75-96, 2014.

N. Arbour, G. Cote, C. Lachance, M. Tardieu, N. Cashman et al., Acute and persistent infection of human neural cell lines by human coronavirus OC43, Journal of virology. Epub PMID, vol.7312, issue.4, pp.3338-50, 1999.

N. Arbour, S. Ekande, G. Cote, C. Lachance, F. Chagnon et al., Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E, Journal of virology. Epub PMID, vol.7312, issue.4, pp.3326-3363, 1999.

A. Bonavia, N. Arbour, V. Yong, and P. Talbot, Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43, PMID: ISI: A1997VX29200105, pp.800-806, 1997.

N. Arbour, R. Day, J. Newcombe, and P. Talbot, Neuroinvasion by Human Respiratory Coronaviruses, Journal of Virology, vol.74, issue.19, pp.8913-8934, 2000.
DOI : 10.1128/JVI.74.19.8913-8921.2000

H. Jacomy, G. Fragoso, G. Almazan, W. Mushynski, and P. Talbot, Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice, Virology, vol.349, issue.2, pp.335-381, 2006.
DOI : 10.1016/j.virol.2006.01.049

H. Jacomy and P. Talbot, Vacuolating encephalitis in mice infected by human coronavirus OC43, Virology, vol.315, issue.1, pp.20-33, 2003.
DOI : 10.1016/S0042-6822(03)00323-4

R. Vlasak, W. Luytjes, W. Spaan, and P. Palese, Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses., Proceedings of the National Academy of Sciences, vol.85, issue.12, pp.4526-4535, 1988.
DOI : 10.1073/pnas.85.12.4526

J. St-jean, M. Desforges, and P. Talbot, Genetic evolution of human coronavirus OC43 in neural cell culture Advances in experimental medicine and biology, pp.499-502, 2006.

H. Jacomy, J. St-jean, E. Brison, G. Marceau, M. Desforges et al., Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination, Journal of Neurovirology, vol.16, issue.4, pp.279-93, 2010.
DOI : 10.3109/13550284.2010.497806

URL : https://hal.archives-ouvertes.fr/pasteur-00819567

A. Vabret, J. Dina, T. Mourez, S. Gouarin, J. Petitjean et al., Inter- and intra-variant genetic heterogeneity of human coronavirus OC43 strains in France, Journal of General Virology, vol.87, issue.11, pp.3349-53, 2006.
DOI : 10.1099/vir.0.82065-0

C. De-haan, B. Haijema, P. Schellen, W. Schreur, P. Te-lintelo et al., Cleavage of Group 1 Coronavirus Spike Proteins: How Furin Cleavage Is Traded Off against Heparan Sulfate Binding upon Cell Culture Adaptation, Journal of Virology, vol.82, issue.12, pp.6078-83, 2008.
DOI : 10.1128/JVI.00074-08

B. Bosch, R. Van-der-zee, C. De-haan, and P. Rottier, The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex, Journal of Virology, vol.77, issue.16, pp.8801-8812, 2003.
DOI : 10.1128/JVI.77.16.8801-8811.2003

T. Gallagher and M. Buchmeier, Coronavirus Spike Proteins in Viral Entry and Pathogenesis, Virology, vol.279, issue.2, pp.371-375, 2001.
DOI : 10.1006/viro.2000.0757

H. Klenk and W. Garten, Host cell proteases controlling virus pathogenicity. Trends in microbiology, pp.39-43, 1994.

J. Millet and G. Whittaker, Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis . Virus research, 2014.

C. De-haan, K. Stadler, G. Godeke, B. Bosch, and P. Rottier, Cleavage Inhibition of the Murine Coronavirus Spike Protein by a Furin-Like Enzyme Affects Cell-Cell but Not Virus-Cell Fusion, Journal of Virology, vol.78, issue.11, pp.6048-546048, 2004.
DOI : 10.1128/JVI.78.11.6048-6054.2004

K. Follis, J. York, and J. Nunberg, Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell???cell fusion but does not affect virion entry, Virology, vol.350, issue.2, pp.358-69, 2006.
DOI : 10.1016/j.virol.2006.02.003

G. Simmons, S. Bertram, I. Glowacka, I. Steffen, C. Chaipan et al., Different host cell proteases activate the SARS-coronavirus spike-protein for cell???cell and virus???cell fusion, Virology, vol.413, issue.2, pp.265-74, 2011.
DOI : 10.1016/j.virol.2011.02.020

Y. Yamada and D. Liu, Proteolytic Activation of the Spike Protein at a Novel RRRR/S Motif Is Implicated in Furin-Dependent Entry, Syncytium Formation, and Infectivity of Coronavirus Infectious Bronchitis Virus in Cultured Cells, Journal of Virology, vol.83, issue.17, pp.8744-58, 2009.
DOI : 10.1128/JVI.00613-09

J. St-jean, M. Desforges, F. Almazan, H. Jacomy, L. Enjuanes et al., Recovery of a Neurovirulent Human Coronavirus OC43 from an Infectious cDNA Clone, Journal of Virology, vol.80, issue.7, pp.3670-3674, 2006.
DOI : 10.1128/JVI.80.7.3670-3674.2006

R. Burrer, M. Buchmeier, T. Wolfe, J. Ting, R. Feuer et al., Exacerbated pathology of viral encephalitis in mice with central nervous system-specific autoantibodies. The American journal of pathology, Epub, vol.170, issue.2, pp.557-66, 2007.

D. Favreau, M. Desforges, J. St-jean, and P. Talbot, A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus, Virology, vol.395, issue.2, pp.255-67, 2009.
DOI : 10.1016/j.virol.2009.09.026

URL : https://hal.archives-ouvertes.fr/pasteur-00819935

J. Phillips, M. Chua, E. Lavi, and S. Weiss, Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence, Journal of virology . Epub PMID, vol.7310, issue.9, pp.7752-60, 1999.

E. Quick, J. Leser, P. Clarke, and K. Tyler, Activation of Intrinsic Immune Responses and Microglial Phagocytosis in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection, Journal of Virology, vol.88, issue.22, pp.13005-13019, 2014.
DOI : 10.1128/JVI.01994-14

D. Sarma, J. Iacono, K. Gard, L. Marek, R. Kenyon et al., Demyelinating and Nondemyelinating Strains of Mouse Hepatitis Virus Differ in Their Neural Cell Tropism, Journal of Virology, vol.82, issue.11, pp.5519-5545, 2008.
DOI : 10.1128/JVI.01488-07

B. Licitra, J. Millet, A. Regan, B. Hamilton, V. Rinaldi et al., Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus, Emerging Infectious Diseases, vol.19, issue.7, pp.1066-73, 2013.
DOI : 10.3201/eid1907.121094

L. Sturman, C. Ricard, and K. Holmes, Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments, Journal of virology. PMID, vol.56, issue.3, pp.904-915, 1985.

W. Luytjes, L. Sturman, P. Bredenbeek, J. Charite, B. Van-der-zeijst et al., Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site, Virology, vol.161, issue.2, pp.479-87, 1987.
DOI : 10.1016/0042-6822(87)90142-5

J. Millet and G. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein, Proceedings of the National Academy of Sciences, vol.111, issue.42, pp.15214-15223, 2014.
DOI : 10.1073/pnas.1407087111

G. Thomas, Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nature reviews Molecular cell biology, pp.753-66, 2002.

I. Leparc-goffart, S. Hingley, M. Chua, X. Jiang, E. Lavi et al., Altered Pathogenesis of a Mutant of the Murine Coronavirus MHV-A59 Is Associated with a Q159L Amino Acid Substitution in the Spike Protein, Virology, vol.239, issue.1, pp.1-10, 1997.
DOI : 10.1006/viro.1997.8877

A. Regan, R. Shraybman, R. Cohen, and G. Whittaker, Differential role for low pH and cathepsin-mediated cleavage of the viral spike protein during entry of serotype II feline coronaviruses. Veterinary microbiology, Epub, vol.132, pp.3-4235, 2008.

M. Frana, J. Behnke, L. Sturman, and K. Holmes, Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion, Journal of virology. PMID, vol.56, issue.3, pp.912-932, 1985.

S. Hingley, I. Leparc-goffart, S. Seo, J. Tsai, and S. Weiss, The virulence of mouse hepatitis virus strain A59 is not dependent on efficient spike protein cleavage and cell-to-cell fusion, Journal of Neurovirology, vol.8, issue.5, pp.400-410, 2002.
DOI : 10.1080/13550280260422703

X. Zhang, K. Kousoulas, and J. Storz, Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses, Virology, vol.183, issue.1, pp.397-404, 1991.
DOI : 10.1016/0042-6822(91)90154-4

E. Bergeron, M. Vincent, L. Wickham, J. Hamelin, A. Basak et al., Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochemical and biophysical research communications, Epub, vol.326, issue.3, pp.554-63, 2004.

A. Finzi, S. Xiang, B. Pacheco, L. Wang, J. Haight et al., Topological Layers in the HIV-1 gp120 Inner Domain Regulate gp41 Interaction and CD4-Triggered Conformational Transitions, Molecular Cell, vol.37, issue.5, pp.656-67, 2010.
DOI : 10.1016/j.molcel.2010.02.012

J. Mckeating, A. Mcknight, and J. Moore, Differential loss of envelope glycoprotein gp120 from virions of human immunodeficiency virus type 1 isolates: effects on infectivity and neutralization, Journal of virology . PMID, vol.65, issue.2, pp.852-60, 1991.

M. Peeples and M. Bratt, Mutation in the matrix protein of Newcastle disease virus can result in decreased fusion glycoprotein incorporation into particles and decreased infectivity, Journal of virology. PMID, vol.51, issue.1, pp.81-90, 1984.

A. Shulla and T. Gallagher, Role of Spike Protein Endodomains in Regulating Coronavirus Entry, Journal of Biological Chemistry, vol.284, issue.47, pp.32725-32759, 2009.
DOI : 10.1074/jbc.M109.043547

S. Gierer, M. Muller, A. Heurich, D. Ritz, B. Springstein et al., Inhibition of proprotein convertases abrogates processing of the middle eastern respiratory syndrome coronavirus spike protein in infected cells but does not reduce viral infectivity. The Journal of infectious diseases, pp.889-97, 2015.

Q. Sattentau, Avoiding the void: cell-to-cell spread of human viruses, Nature Reviews Microbiology, vol.73, issue.11, pp.815-841, 2008.
DOI : 10.1038/nrmicro1972

T. Igakura, J. Stinchcombe, P. Goon, G. Taylor, J. Weber et al., Spread of HTLV-I Between Lymphocytes by Virus-Induced Polarization of the Cytoskeleton, Science, vol.299, issue.5613, pp.1713-1719, 2003.
DOI : 10.1126/science.1080115

C. Pique and K. Jones, Pathways of cell-cell transmission of HTLV-1. Front Microbiol, p.3479854, 2012.

E. Bos, L. Heijnen, W. Luytjes, and W. Spaan, Mutational Analysis of the Murine Coronavirus Spike Protein: Effect on Cell-to-Cell Fusion, Virology, vol.214, issue.2, pp.453-63, 1995.
DOI : 10.1006/viro.1995.0056

R. Stauber, M. Pfleiderera, and S. Siddell, Proteolytic cleavage of the murine coronavirus surface glycoprotein is not required for fusion activity, Journal of General Virology, vol.74, issue.2, pp.183-91, 1993.
DOI : 10.1099/0022-1317-74-2-183

F. Taguchi, Fusion formation by the uncleaved spike protein of murine coronavirus JHMV variant cl-2, Journal of virology. PMID, vol.67, issue.3, pp.1195-202, 1993.

C. Tsai, S. Chang, and M. Chang, A 12-Amino Acid Stretch in the Hypervariable Region of the Spike Protein S1 Subunit Is Critical for Cell Fusion Activity of Mouse Hepatitis Virus, Journal of Biological Chemistry, vol.274, issue.37, pp.26085-90, 1999.
DOI : 10.1074/jbc.274.37.26085

S. Belouzard, J. Millet, B. Licitra, and G. Whittaker, Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein, Viruses, vol.4, issue.12, pp.1011-1044, 2012.
DOI : 10.3390/v4061011

T. Heald-sargent and T. Gallagher, Ready, Set, Fuse! The Coronavirus Spike Protein and Acquisition of Fusion Competence, Viruses, vol.4, issue.12, pp.557-80, 2012.
DOI : 10.3390/v4040557

N. Seidah and A. Prat, The biology and therapeutic targeting of the proprotein convertases, Nature Reviews Drug Discovery, vol.57, issue.5, pp.367-83, 2012.
DOI : 10.1038/nrd3699

C. Adami, J. Pooley, J. Glomb, E. Stecker, F. Fazal et al., Evolution of Mouse Hepatitis Virus (MHV) during Chronic Infection: Quasispecies Nature of the Persisting MHV RNA, Virology, vol.209, issue.2, pp.337-383, 1995.
DOI : 10.1006/viro.1995.1265

J. St-jean, H. Jacomy, M. Desforges, A. Vabret, F. Freymuth et al., Human Respiratory Coronavirus OC43: Genetic Stability and Neuroinvasion, Journal of Virology, vol.78, issue.16, pp.8824-8858, 2004.
DOI : 10.1128/JVI.78.16.8824-8834.2004

E. Yeh, A. Collins, M. Cohen, P. Duffner, and H. Faden, Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis, Pediatrics. Epub, vol.113, issue.101, pp.73-602, 2004.

D. Hill and K. Robertson, Differentiation of LA-N-5 neuroblastoma cells into cholinergic neurons: methods for differentiation, immunohistochemistry and reporter gene introduction. Brain research Brain research protocols, pp.183-90, 1998.

F. Lambert, H. Jacomy, G. Marceau, and P. Talbot, Titration of Human Coronaviruses Using an Immunoperoxidase Assay, Journal of Visualized Experiments, vol.1211, issue.14, p.2582848, 2008.
DOI : 10.3791/751

URL : https://hal.archives-ouvertes.fr/pasteur-00819975

L. Vijgen, E. Keyaerts, E. Moes, P. Maes, G. Duson et al., Development of One-Step, Real-Time, Quantitative Reverse Transcriptase PCR Assays for Absolute Quantitation of Human Coronaviruses OC43 and 229E, Journal of Clinical Microbiology, vol.43, issue.11, pp.5452-65452, 2005.
DOI : 10.1128/JCM.43.11.5452-5456.2005

S. Fronhoffs, G. Totzke, S. Stier, N. Wernert, M. Rothe et al., A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Molecular and cellular probes, pp.99-110, 2002.