C. Mackenzie, S. Kaplan, and M. Choudhary, Microbial Evolution: Gene Establishment, Survival, and Exchange, 2004.

P. W. Harrison, R. P. Lower, N. K. Kim, and J. P. Young, Introducing the bacterial ???chromid???: not a chromosome, not a plasmid, Trends in Microbiology, vol.18, issue.4, pp.141-148, 2010.
DOI : 10.1016/j.tim.2009.12.010

T. Katayama, S. Ozaki, K. Keyamura, and K. Fujimitsu, Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC, Nature Reviews Microbiology, vol.106, issue.3, pp.163-170, 2010.
DOI : 10.1038/nrmicro2314

G. Del-solar and M. Espinosa, Plasmid copy number control: an ever-growing story, Molecular Microbiology, vol.176, issue.3, pp.492-500, 2000.
DOI : 10.1046/j.1365-2958.2000.02005.x

K. Okada, T. Iida, K. Kita-tsukamoto, and T. Honda, Vibrios Commonly Possess Two Chromosomes, Journal of Bacteriology, vol.187, issue.2, pp.752-727, 2005.
DOI : 10.1128/JB.187.2.752-757.2005

S. Duigou, K. G. Knudsen, O. Skovgaard, E. S. Egan, A. Løbner-olesen et al., Independent Control of Replication Initiation of the Two Vibrio cholerae Chromosomes by DnaA and RctB, Journal of Bacteriology, vol.188, issue.17, pp.6419-6424, 2006.
DOI : 10.1128/JB.00565-06

J. K. Jha, R. Ghirlando, and D. K. Chattoraj, Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2, Nucleic Acids Research, vol.42, issue.16, pp.10538-10549
DOI : 10.1093/nar/gku771

S. Duigou, Y. Yamaichi, and M. K. Waldor, ATP negatively regulates the initiator protein of Vibrio cholerae chromosome II replication, Proceedings of the National Academy of Sciences, vol.105, issue.30, pp.10577-10582, 2008.
DOI : 10.1073/pnas.0803904105

M. Val, A. Soler-bistué, M. J. Bland, and D. , Management of multipartite genomes: the Vibrio cholerae model, Current Opinion in Microbiology, vol.22, pp.120-126, 2014.
DOI : 10.1016/j.mib.2014.10.003

URL : https://hal.archives-ouvertes.fr/pasteur-01163283

T. Venkova-canova and D. K. Chattoraj, Transition from a plasmid to a chromosomal mode of replication entails additional regulators, Proceedings of the National Academy of Sciences, vol.108, issue.15, pp.6199-6204, 2011.
DOI : 10.1073/pnas.1013244108

J. H. Baek and D. K. , Chromosome I Controls Chromosome II Replication in Vibrio cholerae, PLoS Genetics, vol.103, issue.2, p.1004184, 2014.
DOI : 10.1371/journal.pgen.1004184.s015

K. Nordström and S. Dasgupta, Copy-number control of the Escherichia coli chromosome: a plasmidologist's view, EMBO reports, vol.14, issue.5, pp.484-489, 2006.
DOI : 10.1038/241133a0

E. S. Egan, A. Løbner-olesen, and M. K. Waldor, Synchronous replication initiation of the two Vibrio cholerae chromosomes, Current Biology, vol.14, issue.13, pp.501-502, 2004.
DOI : 10.1016/j.cub.2004.06.036

T. Rasmussen, R. B. Jensen, and O. Skovgaard, The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle, The EMBO Journal, vol.100, issue.13, pp.3124-3131, 2007.
DOI : 10.1038/sj.emboj.7601747

E. P. Rocha, The Organization of the Bacterial Genome, Annual Review of Genetics, vol.42, issue.1, pp.211-233, 2008.
DOI : 10.1146/annurev.genet.42.110807.091653

O. Skovgaard, M. Bak, A. Løbner-olesen, and N. Tommerup, Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing, Genome Research, vol.21, issue.8
DOI : 10.1101/gr.117416.110

M. Val, O. Skovgaard, M. Ducos-galand, M. J. Bland, and D. , Genome Engineering in Vibrio cholerae: A Feasible Approach to Address Biological Issues, PLoS Genetics, vol.163, issue.1, p.1002472, 2012.
DOI : 10.1371/journal.pgen.1002472.s005

URL : https://hal.archives-ouvertes.fr/inserm-01285625

A. David, G. Demarre, L. Muresan, E. Paly, F. Barre et al., The Two Cis-Acting Sites, parS1 and oriC1, Contribute to the Longitudinal Organisation of Vibrio cholerae Chromosome I, PLoS Genetics, vol.80, issue.7, p.1004448, 2014.
DOI : 10.1371/journal.pgen.1004448.s047

K. Skarstad, E. Boye, and H. B. Steen, Timing of initiation of chromosome replication in individual Escherichia coli cells, EMBO J, vol.5, pp.1711-1717, 1986.

J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Capturing Chromosome Conformation, Science, vol.295, issue.5558, pp.1306-1311, 2002.
DOI : 10.1126/science.1067799

M. Marbouty, A. L. Gall, D. I. Cattoni, A. Cournac, A. Koh et al., Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging, Molecular Cell, vol.59, issue.4, pp.588-602, 2015.
DOI : 10.1016/j.molcel.2015.07.020

URL : https://hal.archives-ouvertes.fr/pasteur-01419993

T. B. Le, M. V. Imakaev, L. A. Mirny, and M. T. Laub, High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome, Science, vol.342, issue.6159, pp.731-734, 2013.
DOI : 10.1126/science.1242059

A. Lesne, J. Riposo, P. Roger, A. Cournac, and J. Mozziconacci, 3D genome reconstruction from chromosomal contacts, Nature Methods, vol.4, issue.11, pp.1141-1143, 2014.
DOI : 10.1103/PhysRevE.84.041112

M. A. Umbarger, E. Toro, M. A. Wright, G. J. Porreca, D. Baù et al., The Three-Dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation, Molecular Cell, vol.44, issue.2, pp.252-264, 2011.
DOI : 10.1016/j.molcel.2011.09.010

D. Mazel, B. Dychinco, V. A. Webb, and J. Davies, A Distinctive Class of Integron in the Vibrio cholerae Genome, Science, vol.280, issue.5363, pp.605-608, 1998.
DOI : 10.1126/science.280.5363.605

A. Slack, P. C. Thornton, D. B. Magner, S. M. Rosenberg, and P. J. Hastings, On the Mechanism of Gene Amplification Induced under Stress in Escherichia coli, PLoS Genetics, vol.124, issue.4, p.48, 2006.
DOI : 10.1371/journal.pgen.0020048.st001

T. Venkova-canova, A. Saha, and D. K. Chattoraj, A 29-mer site regulates transcription of the initiator gene as well as function of the replication origin of Vibrio cholerae chromosome II, Plasmid, vol.67, issue.2, pp.102-110, 2012.
DOI : 10.1016/j.plasmid.2011.12.009

J. K. Jha, G. Demarre, T. Venkova-canova, and D. K. Chattoraj, Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer, Nucleic Acids Research, vol.40, issue.13, pp.6026-6038, 2012.
DOI : 10.1093/nar/gks260

B. Koch, X. Ma, and A. , rctB mutations that increase copy number of Vibrio cholerae oriCII in Escherichia coli, Plasmid, vol.68, issue.3, pp.159-169, 2012.
DOI : 10.1016/j.plasmid.2012.03.003

Y. Yamaichi, M. A. Gerding, B. M. Davis, and M. K. Waldor, Regulatory Cross-Talk Links Vibrio cholerae Chromosome II Replication and Segregation, PLoS Genetics, vol.90, issue.7, p.1002189, 2011.
DOI : 10.1371/journal.pgen.1002189.s007

M. Stouf, J. Meile, and F. Cornet, FtsK actively segregates sister chromosomes in Escherichia coli, Proceedings of the National Academy of Sciences, vol.110, issue.27, pp.11157-11162, 2013.
DOI : 10.1073/pnas.1304080110

URL : https://hal.archives-ouvertes.fr/hal-00947672

S. P. Kennedy, F. Chevalier, and F. Barre, Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli, Molecular Microbiology, vol.180, issue.4, pp.1018-1028, 2008.
DOI : 10.1111/j.1365-2958.2005.05033.x

O. Espeli, C. Lee, and K. J. Marians, A Physical and Functional Interaction between Escherichia coli FtsK and Topoisomerase IV, Journal of Biological Chemistry, vol.278, issue.45, pp.44639-44644, 2003.
DOI : 10.1074/jbc.M308926200

R. Mercier, M. Petit, S. Schbath, S. Robin, M. Karoui et al., The MatP/matS Site-Specific System Organizes the Terminus Region of the E. coli Chromosome into a Macrodomain, Cell, vol.135, issue.3, pp.475-485, 2008.
DOI : 10.1016/j.cell.2008.08.031

URL : https://hal.archives-ouvertes.fr/hal-01197588

P. Dupaigne, N. K. Tonthat, O. Espéli, T. Whitfill, F. Boccard et al., Molecular Basis for a Protein-Mediated DNA-Bridging Mechanism that Functions in Condensation of the E.??coli Chromosome, Molecular Cell, vol.48, issue.4, pp.560-571, 2012.
DOI : 10.1016/j.molcel.2012.09.009

G. Demarre, E. Galli, L. Muresan, E. Paly, A. David et al., Differential Management of the Replication Terminus Regions of the Two Vibrio cholerae Chromosomes during Cell Division, PLoS Genetics, vol.500, issue.9, p.1004557, 2014.
DOI : 10.1371/journal.pgen.1004557.s014

M. Val, S. P. Kennedy, M. Karoui, L. Bonné, F. Chevalier et al., FtsK-Dependent Dimer Resolution on Multiple Chromosomes in the Pathogen Vibrio cholerae, PLoS Genetics, vol.3, issue.9, p.1000201, 2008.
DOI : 10.1371/journal.pgen.1000201.s005

URL : https://hal.archives-ouvertes.fr/inserm-01285588

T. Díaz-lópez, M. Lages-gonzalo, A. Serrano-lópez, C. Alfonso, G. Rivas et al., Structural Changes in RepA, a Plasmid Replication Initiator, upon Binding to Origin DNA, Journal of Biological Chemistry, vol.278, issue.20, pp.18606-18616, 2003.
DOI : 10.1074/jbc.M212024200

K. Fujimitsu, T. Senriuchi, and T. Katayama, Specific genomic sequences of E. coli promote replicational initiation by directly reactivating ADP-DnaA, Genes & Development, vol.23, issue.10, pp.1221-1233, 2009.
DOI : 10.1101/gad.1775809

G. Demarre and D. K. Chattoraj, DNA Adenine Methylation Is Required to Replicate Both Vibrio cholerae Chromosomes Once per Cell Cycle, PLoS Genetics, vol.187, issue.5, p.1000939, 2010.
DOI : 10.1371/journal.pgen.1000939.s005

A. C. Leonard and J. E. Grimwade, Regulation of DnaA Assembly and Activity: Taking Directions from the Genome, Annual Review of Microbiology, vol.65, issue.1, pp.19-35, 2011.
DOI : 10.1146/annurev-micro-090110-102934

N. Rhind and D. M. Gilbert, DNA Replication Timing, Cold Spring Harbor Perspectives in Biology, vol.5, issue.8, p.10132, 2013.
DOI : 10.1101/cshperspect.a010132

N. Agier, O. M. Romano, F. Touzain, M. Cosentino-lagomarsino, and G. Fischer, The Spatiotemporal Program of Replication in the Genome of Lachancea kluyveri, Genome Biology and Evolution, vol.5, issue.2, pp.370-388, 2013.
DOI : 10.1093/gbe/evt014

M. Hawkins, R. Retkute, C. A. Müller, N. Saner, T. U. Tanaka et al., High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep, pp.1132-1141, 2013.

L. Roux, J. Binesse, D. Saulnier, and D. , Construction of a Vibrio splendidus Mutant Lacking the Metalloprotease Gene vsm by Use of a Novel Counterselectable Suicide Vector, Applied and Environmental Microbiology, vol.73, issue.3, pp.777-784, 2007.
DOI : 10.1128/AEM.02147-06

R. L. Marvig and M. Blokesch, Natural transformation of Vibrio cholerae as a tool - Optimizing the procedure, BMC Microbiology, vol.10, issue.1, p.155, 2010.
DOI : 10.1186/1471-2180-10-155

A. Soler-bistué, J. A. Mondotte, M. J. Bland, M. Val, M. Saleh et al., Genomic Location of the Major Ribosomal Protein Gene Locus Determines Vibrio cholerae Global Growth and Infectivity, PLOS Genetics, vol.26, issue.24, p.1005156, 2015.
DOI : 10.1371/journal.pgen.1005156.s023

H. Bremer and G. Churchward, An examination of the Cooper-Helmstetter theory of DNA replication in bacteria and its underlying assumptions, Journal of Theoretical Biology, vol.69, issue.4, pp.645-654, 1977.
DOI : 10.1016/0022-5193(77)90373-3

S. Cooper and C. E. Helmstetter, Chromosome replication and the division cycle of Escherichia coli, Journal of Molecular Biology, vol.31, issue.3, pp.519-540, 1968.
DOI : 10.1016/0022-2836(68)90425-7

O. Sliusarenko, J. Heinritz, T. Emonet, and C. Jacobs-wagner, High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics, Molecular Microbiology, vol.77, issue.3, pp.612-627, 2011.
DOI : 10.1111/j.1365-2958.2011.07579.x

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-359, 2012.
DOI : 10.1093/bioinformatics/btp352

M. Imakaev, G. Fudenberg, R. P. Mccord, N. Naumova, A. Goloborodko et al., Iterative correction of Hi-C data reveals hallmarks of chromosome organization, Nature Methods, vol.10, issue.10, pp.999-1003, 2012.
DOI : 10.1038/nmeth.2148

A. Cournac, H. Marie-nelly, M. Marbouty, R. Koszul, and J. Mozziconacci, Normalization of a chromosomal contact map, BMC Genomics, vol.13, issue.1, p.436, 2012.
DOI : 10.1186/gb-2009-10-3-r25

URL : https://hal.archives-ouvertes.fr/pasteur-00769663

K. Papenfort, K. U. Förstner, J. Cong, C. M. Sharma, and B. L. Bassler, identifies the VqmR small RNA as a regulator of biofilm formation, Proceedings of the National Academy of Sciences, vol.112, issue.7, pp.766-775, 2015.
DOI : 10.1073/pnas.1500203112

M. Krzywinski, J. Schein, ?. Birol, J. Connors, R. Gascoyne et al., Circos: An information aesthetic for comparative genomics, Genome Research, vol.19, issue.9, pp.1639-1645, 2009.
DOI : 10.1101/gr.092759.109

L. Feng, P. R. Reeves, R. Lan, Y. Ren, C. Gao et al., A Recalibrated Molecular Clock and Independent Origins for the Cholera Pandemic Clones, PLoS ONE, vol.13, issue.12, p.4053, 2008.
DOI : 10.1371/journal.pone.0004053.s016

R. Lan and P. R. Reeves, Recombination between rRNA operons created most of the ribotype variation observed in the seventh pandemic clone of Vibrio cholerae, Microbiology, vol.144, issue.5, pp.1213-1221, 1998.
DOI : 10.1099/00221287-144-5-1213

J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li et al., Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, vol.148, issue.7398, pp.376-380, 2012.
DOI : 10.1038/nature11082

K. L. Meibom, M. Blokesch, N. A. Dolganov, C. Wu, and G. K. Schoolnik, Chitin Induces Natural Competence in Vibrio cholerae, Science, vol.310, issue.5755, pp.1824-1827, 2005.
DOI : 10.1126/science.1120096