H. Spits and J. P. Di-santo, The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling, Nature Immunology, vol.169, issue.1, pp.21-27, 2011.
DOI : 10.1016/j.molimm.2004.06.010

H. Spits, Innate lymphoid cells ??? a proposal for uniform nomenclature, Nature Reviews Immunology, vol.37, issue.2, pp.1-5
DOI : 10.1038/nri3365

D. Santo and J. P. , NATURAL KILLER CELL DEVELOPMENTAL PATHWAYS: A Question of Balance, Annual Review of Immunology, vol.24, issue.1, pp.257-286, 2006.
DOI : 10.1146/annurev.immunol.24.021605.090700

F. D. Shi, H. G. Ljunggren, L. Cava, A. Van-kaer, and L. , Organ-specific features of natural killer cells, Nature Reviews Immunology, vol.6, issue.10, pp.658-671, 2011.
DOI : 10.1038/nri3065

C. H. Tay and R. M. Welsh, Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells, J. Virol, vol.71, pp.267-275, 1997.

M. A. Cooper, T. A. Fehniger, and M. A. Caligiuri, The biology of human natural killer-cell subsets, Trends in Immunology, vol.22, issue.11, pp.633-640, 2001.
DOI : 10.1016/S1471-4906(01)02060-9

A. Fuchs, Intraepithelial Type 1 Innate Lymphoid Cells Are a Unique Subset of IL-12- and IL-15-Responsive IFN-??-Producing Cells, Immunity, vol.38, issue.4, pp.769-781, 2013.
DOI : 10.1016/j.immuni.2013.02.010

C. S. Klose, Differentiation of Type 1 ILCs from a Common Progenitor to All Helper-like Innate Lymphoid Cell Lineages, Cell, vol.157, issue.2, pp.340-356, 2014.
DOI : 10.1016/j.cell.2014.03.030

A. Diefenbach, M. Colonna, S. Koyasu, and . Development, Development, Differentiation, and Diversity of Innate Lymphoid Cells, Immunity, vol.41, issue.3, pp.354-365, 2014.
DOI : 10.1016/j.immuni.2014.09.005

C. Daussy, T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow, The Journal of Experimental Medicine, vol.211, issue.3, pp.563-577, 2014.
DOI : 10.1016/j.immuni.2012.09.007

URL : https://hal.archives-ouvertes.fr/hal-00972070

N. Marquardt, NK Cells, The Journal of Immunology, vol.194, issue.6, 1950.
DOI : 10.4049/jimmunol.1402756

J. H. Bernink, Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues, Nature Immunology, vol.157, issue.3, pp.221-229, 2013.
DOI : 10.1016/j.cell.2007.08.017

K. Moro, Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells, Nature, vol.117, issue.7280, pp.540-544, 2010.
DOI : 10.1038/nature08636

D. R. Neill, Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity, Nature, vol.33, issue.7293, pp.1367-1370, 2010.
DOI : 10.1038/nature08900

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862165

A. E. Price, Systemically dispersed innate IL-13-expressing cells in type 2 immunity, Proceedings of the National Academy of Sciences, vol.195, issue.11, pp.11489-11494, 2010.
DOI : 10.1084/jem.20020656

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895098

T. Y. Halim, R. H. Krauss, A. C. Sun, and F. Takei, Lung Natural Helper Cells Are a Critical Source of Th2 Cell-Type Cytokines in Protease Allergen-Induced Airway Inflammation, Immunity, vol.36, issue.3, pp.451-463, 2012.
DOI : 10.1016/j.immuni.2011.12.020

M. Ikutani, Identification of Innate IL-5-Producing Cells and Their Role in Lung Eosinophil Regulation and Antitumor Immunity, The Journal of Immunology, vol.188, issue.2, pp.703-713, 1950.
DOI : 10.4049/jimmunol.1101270

P. G. Fallon, Identification of an interleukin (IL)-25???dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion, The Journal of Experimental Medicine, vol.148, issue.4, pp.1105-1116, 2006.
DOI : 10.1006/expr.1996.0090

K. R. Bartemes, IL-33-Responsive Lineage-CD25+CD44hi Lymphoid Cells Mediate Innate Type 2 Immunity and Allergic Inflammation in the Lungs, The Journal of Immunology, vol.188, issue.3, pp.1503-1513, 2012.
DOI : 10.4049/jimmunol.1102832

Y. J. Chang, Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity, Nature Immunology, vol.68, issue.7, pp.631-638, 2011.
DOI : 10.1038/cmi.2010.3

L. A. Monticelli, Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus, Nature Immunology, vol.175, issue.11, pp.1045-1054, 2011.
DOI : 10.1073/pnas.0506580102

A. B. Molofsky, Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages, The Journal of Experimental Medicine, vol.210, issue.3, pp.535-549, 2013.
DOI : 10.1084/jem.20020656

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600903

K. Wolterink and R. G. , Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells, Proceedings of the National Academy of Sciences, vol.207, issue.2, pp.10240-10245, 2013.
DOI : 10.1084/jem.20092029

URL : https://hal.archives-ouvertes.fr/pasteur-00842573

B. Roediger, Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells, Nature Immunology, vol.165, issue.6, pp.564-573, 2013.
DOI : 10.1189/jlb.0310184

C. Wilhelm, An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation, Nature Immunology, vol.148, issue.11, pp.1071-1077, 2011.
DOI : 10.4049/jimmunol.0801941

J. L. Barlow, Innate IL-13???producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity, Journal of Allergy and Clinical Immunology, vol.129, issue.1, pp.191-194, 2012.
DOI : 10.1016/j.jaci.2011.09.041

M. Salimi, A role for IL-25 and IL-33???driven type-2 innate lymphoid cells in atopic dermatitis, The Journal of Experimental Medicine, vol.139, issue.13, pp.2939-2950, 2013.
DOI : 10.1038/ni.2208

E. Hams, IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis, Proceedings of the National Academy of Sciences, vol.125, issue.5, pp.367-372, 2014.
DOI : 10.1016/j.jaci.2010.01.018

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890791

T. Mchedlidze, Interleukin-33-Dependent Innate Lymphoid Cells Mediate Hepatic Fibrosis, Immunity, vol.39, issue.2, pp.357-371, 2013.
DOI : 10.1016/j.immuni.2013.07.018

URL : http://doi.org/10.1016/j.immuni.2013.07.018

J. Furusawa, Critical Role of p38 and GATA3 in Natural Helper Cell Function, The Journal of Immunology, vol.191, issue.4, pp.1818-1826, 2013.
DOI : 10.4049/jimmunol.1300379

T. Hoyler, The Transcription Factor GATA-3 Controls Cell Fate and Maintenance of Type 2 Innate Lymphoid Cells, Immunity, vol.37, issue.4, pp.634-648, 2012.
DOI : 10.1016/j.immuni.2012.06.020

R. Yagi, The Transcription Factor GATA3 Is Critical for the Development of All IL-7R??-Expressing Innate Lymphoid Cells, Immunity, vol.40, issue.3, pp.378-388, 2014.
DOI : 10.1016/j.immuni.2014.01.012

J. M. Mjosberg, Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161, Nature Immunology, vol.169, issue.11, pp.1055-1062, 2011.
DOI : 10.1093/nar/gkp045

H. E. Liang, Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity, Nature Immunology, vol.170, issue.1, pp.58-66, 2012.
DOI : 10.1074/jbc.M412649200

J. H. Bernink, K. Germar, and H. Spits, The role of ILC2 in pathology of type 2 inflammatory diseases, Current Opinion in Immunology, vol.31, pp.115-120, 2014.
DOI : 10.1016/j.coi.2014.10.007

J. R. Brestoff, Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity, Nature, vol.121, issue.7542, 2014.
DOI : 10.1038/nature14115

M. Lee, Activated Type 2 Innate Lymphoid Cells Regulate Beige Fat Biogenesis, Cell, vol.160, issue.1-2, 2014.
DOI : 10.1016/j.cell.2014.12.011

URL : http://doi.org/10.1016/j.cell.2014.12.011

J. A. Walker, J. L. Barlow, and A. N. Mckenzie, Innate lymphoid cells ??? how did we miss them?, Nature Reviews Immunology, vol.186, issue.2, pp.75-87, 2013.
DOI : 10.1038/nri3349

S. A. Van-de-pavert and R. Mebius, New insights into the development of lymphoid tissues, Nature Reviews Immunology, vol.182, issue.9, pp.664-674, 2010.
DOI : 10.1038/nri2832

Y. Kanamori, Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop, Journal of Experimental Medicine, vol.184, issue.4, pp.1449-1459, 1996.
DOI : 10.1084/jem.184.4.1449

D. Bouskra, Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis, Nature, vol.194, issue.7221, pp.507-510, 2008.
DOI : 10.1038/nature07450

URL : https://hal.archives-ouvertes.fr/pasteur-01402759

O. Leavy, Mucosal immunology: Multifunctional gut IgA+ plasma cells, Nature Reviews Immunology, vol.12, p.75, 2012.
DOI : 10.1038/nri3157

S. Sawa, Lineage Relationship Analysis of ROR??t+ Innate Lymphoid Cells, Science, vol.21, issue.2, pp.665-669, 2010.
DOI : 10.1016/j.immuni.2004.07.007

URL : https://hal.archives-ouvertes.fr/pasteur-01402753

H. Takatori, Lymphoid tissue inducer???like cells are an innate source of IL-17 and IL-22, The Journal of Experimental Medicine, vol.206, issue.1, pp.35-41, 2009.
DOI : 10.1023/A:1013063514007

G. Eberl, An essential function for the nuclear receptor ROR??t in the generation of fetal lymphoid tissue inducer cells, Nature Immunology, vol.5, issue.1, pp.64-73, 2004.
DOI : 10.1038/ni1022

M. Cherrier, S. Sawa, and G. Eberl, Notch, Id2, and ROR??t sequentially orchestrate the fetal development of lymphoid tissue inducer cells, The Journal of Experimental Medicine, vol.209, issue.4, pp.729-740, 2012.
DOI : 10.4049/jimmunol.170.12.5834

N. Satoh-takayama, Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense, Immunity, vol.29, issue.6, pp.958-970, 2008.
DOI : 10.1016/j.immuni.2008.11.001

URL : https://hal.archives-ouvertes.fr/pasteur-01402754

S. L. Sanos, ROR??t and commensal microflora are required for the differentiation of mucosal interleukin 22???producing NKp46+ cells, Nature Immunology, vol.203, issue.1, pp.83-91, 2009.
DOI : 10.1038/ni.1684

C. Luci, Influence of the transcription factor ROR??t on the development of NKp46+ cell populations in gut and skin, Nature Immunology, vol.181, issue.1, pp.75-82, 2009.
DOI : 10.1038/ni.1681

S. Buonocore, Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology, Nature, vol.148, issue.7293, pp.1371-1375, 2010.
DOI : 10.1038/nature08949

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796764

C. S. Klose, A T-bet gradient controls the fate and function of CCR6???ROR??t+ innate lymphoid cells, Nature, vol.11, issue.7436, pp.261-265, 2013.
DOI : 10.1038/nature11813

C. Vonarbourg, Regulated Expression of Nuclear Receptor ROR??t Confers Distinct Functional Fates to NK Cell Receptor-Expressing ROR??t+ Innate Lymphocytes, Immunity, vol.33, issue.5, pp.736-751, 2010.
DOI : 10.1016/j.immuni.2010.10.017

M. R. Hepworth, Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria, Nature, vol.7, issue.7452, pp.113-117, 2013.
DOI : 10.1038/nature12240

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699860

M. F. Neurath, Cytokines in inflammatory bowel disease, Nature Reviews Immunology, vol.3, issue.5, pp.329-342, 2014.
DOI : 10.1038/nri3661

T. Cupedo, Human fetal lymphoid tissue???inducer cells are interleukin 17???producing precursors to RORC+ CD127+ natural killer???like cells, Nature Immunology, vol.12, issue.1, pp.66-74, 2009.
DOI : 10.1038/ni.1668

G. F. Sonnenberg, Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria, Science, vol.7, issue.5, pp.1321-1325, 2012.
DOI : 10.1038/nmeth.f.303

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659421

K. Hoorweg, Functional Differences between Human NKp44??? and NKp44+ RORC+ Innate Lymphoid Cells, Frontiers in Immunology, vol.3, p.72, 2012.
DOI : 10.3389/fimmu.2012.00072

URL : http://doi.org/10.3389/fimmu.2012.00072

M. Cella, A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity, Nature, vol.3, issue.7230, pp.722-725, 2009.
DOI : 10.1038/nature07537

A. Geremia, IL-23???responsive innate lymphoid cells are increased in inflammatory bowel disease, The Journal of Experimental Medicine, vol.208, issue.6, pp.1127-1133, 2011.
DOI : 10.1172/JCI21404

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173242

S. Y. Ng, T. Yoshida, J. Zhang, and K. Georgopoulos, Genome-wide Lineage-Specific Transcriptional Networks Underscore Ikaros-Dependent Lymphoid Priming in Hematopoietic Stem Cells, Immunity, vol.30, issue.4, pp.493-507, 2009.
DOI : 10.1016/j.immuni.2009.01.014

URL : http://doi.org/10.1016/j.immuni.2009.01.014

E. Rothenberg, Transcriptional Control of Early T and B Cell Developmental Choices, Annual Review of Immunology, vol.32, issue.1, pp.283-321, 2014.
DOI : 10.1146/annurev-immunol-032712-100024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3994230

H. Yoshida, Expression of ??4??7 Integrin Defines a Distinct Pathway of Lymphoid Progenitors Committed to T Cells, Fetal Intestinal Lymphotoxin Producer, NK, and Dendritic Cells, The Journal of Immunology, vol.167, issue.5, pp.2511-2521, 2001.
DOI : 10.4049/jimmunol.167.5.2511

C. Possot, Notch signaling is necessary for adult, but not fetal, development of ROR??t+ innate lymphoid cells, Nature Immunology, vol.11, issue.10, pp.949-958, 2011.
DOI : 10.1038/ni.2105

M. G. Constantinides, B. D. Mcdonald, P. A. Verhoef, and A. Bendelac, A committed precursor to innate lymphoid cells, Nature, vol.73, issue.7496, pp.397-401, 2014.
DOI : 10.1038/nature13047

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003507

E. E. Rosmaraki, Identification of committed NK cell progenitors in adult murine bone marrow, European Journal of Immunology, vol.30, issue.6, pp.1900-1909, 2001.
DOI : 10.1002/1521-4141(200106)31:6<1900::AID-IMMU1900>3.0.CO;2-M

S. Carotta, S. H. Pang, S. L. Nutt, and G. Belz, Identification of the earliest NK-cell precursor in the mouse BM, Blood, vol.117, issue.20, pp.5449-5452, 2011.
DOI : 10.1182/blood-2010-11-318956

J. W. Fathman, Identification of the Earliest Committed Natural Killer Cell Progenitor in Murine Bone Marrow, Clinical Immunology, vol.135, pp.5439-5447, 2011.
DOI : 10.1016/j.clim.2010.03.401

M. Verykokakis, E. C. Zook, and B. L. Kee, ID'ing innate and innate-like lymphoid cells, Immunological Reviews, vol.12, issue.1, pp.177-197, 2014.
DOI : 10.1111/imr.12203

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159719

M. D. Boos, Y. Yokota, G. Eberl, and B. L. Kee, Mature natural killer cell and lymphoid tissue???inducing cell development requires Id2-mediated suppression of E protein activity, The Journal of Experimental Medicine, vol.16, issue.5, pp.1119-1130, 2007.
DOI : 10.1016/1074-7613(95)90047-0

URL : https://hal.archives-ouvertes.fr/pasteur-00161296

Y. Yokota, Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2, Nature, vol.397, issue.6721, pp.702-706, 1999.
DOI : 10.1038/17812

T. Ikawa, S. Fujimoto, H. Kawamoto, Y. Katsura, and Y. Yokota, Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2, Proceedings of the National Academy of Sciences, vol.185, issue.3, pp.5164-5169, 2001.
DOI : 10.1084/jem.185.3.499

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC33181

W. Xu, E2A transcription factors limit expression of Gata3 to facilitate T lymphocyte lineage commitment, Blood, vol.121, issue.9, pp.1534-1542, 2013.
DOI : 10.1182/blood-2012-08-449447

K. Kwon, Instructive Role of the Transcription Factor E2A in Early B Lymphopoiesis and Germinal Center B Cell Development, Immunity, vol.28, issue.6, pp.751-762, 2008.
DOI : 10.1016/j.immuni.2008.04.014

B. L. Kee and C. Murre, Induction of Early B Cell Factor (EBF) and Multiple B Lineage Genes by the Basic Helix-Loop-Helix Transcription Factor E12, The Journal of Experimental Medicine, vol.155, issue.4, pp.699-713, 1998.
DOI : 10.1084/jem.181.4.1519

M. H. Heemskerk, Inhibition of T Cell and Promotion of Natural Killer Cell Development by the Dominant Negative Helix Loop Helix Factor Id3, Journal of Experimental Medicine, vol.17, issue.8, pp.1597-1602, 1997.
DOI : 10.1016/S0952-7915(96)80056-2

T. Nakahiro, H. Kurooka, K. Mori, K. Sano, and Y. Yokota, Identification of BMP-responsive elements in the mouse Id2 gene, Biochemical and Biophysical Research Communications, vol.399, issue.3, pp.416-421, 2010.
DOI : 10.1016/j.bbrc.2010.07.090

X. Tong, Transcriptional Repressor E4-binding Protein 4 (E4BP4) Regulates Metabolic Hormone Fibroblast Growth Factor 21 (FGF21) during Circadian Cycles and Feeding, Journal of Biological Chemistry, vol.285, issue.47, pp.36401-36409, 2010.
DOI : 10.1074/jbc.M110.172866

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978569

D. Yamajuku, Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator, FEBS Letters, vol.2, issue.14, pp.2217-2222, 2011.
DOI : 10.1016/j.febslet.2011.05.038

V. Male, I. Nisoli, D. M. Gascoyne, and H. J. Brady, E4BP4: an unexpected player in the immune response, Trends in Immunology, vol.33, issue.2, pp.98-102, 2012.
DOI : 10.1016/j.it.2011.10.002

D. M. Gascoyne, The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development, Nature Immunology, vol.174, issue.10, pp.1118-1124, 2009.
DOI : 10.1073/pnas.0506306102

S. Kamizono, Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo, The Journal of Experimental Medicine, vol.15, issue.13, pp.2977-2986, 2009.
DOI : 10.1006/bbrc.1997.6206

T. L. Geiger, Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens, The Journal of Experimental Medicine, vol.15, issue.9, pp.1723-1731, 2014.
DOI : 10.1126/science.1243884

C. Seillet, Nfil3 is required for the development of all innate lymphoid cell subsets, The Journal of Experimental Medicine, vol.211, issue.9, pp.1733-1740, 2014.
DOI : 10.1038/nri3365

W. Xu, NFIL3 Orchestrates the Emergence of Common Helper Innate Lymphoid Cell Precursors, Cell Reports, vol.10, issue.12, 2015.
DOI : 10.1016/j.celrep.2015.02.057

URL : https://hal.archives-ouvertes.fr/pasteur-01138721

S. Ikushima, Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes, Proceedings of the National Academy of Sciences, vol.112, issue.2, pp.2609-2614, 1997.
DOI : 10.1073/pnas.90.17.8063

C. Seillet, Differential Requirement for Nfil3 during NK Cell Development, The Journal of Immunology, vol.192, issue.6, pp.2667-2676, 2014.
DOI : 10.4049/jimmunol.1302605

V. Male, The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression, The Journal of Experimental Medicine, vol.211, issue.4, pp.635-642
DOI : 10.1038/17812

I. Tindemans, N. Serafini, D. Santo, J. P. Hendriks, and R. W. , GATA-3 Function in Innate and Adaptive Immunity, Immunity, vol.41, issue.2, pp.191-206, 2014.
DOI : 10.1016/j.immuni.2014.06.006

URL : https://hal.archives-ouvertes.fr/pasteur-01063222

C. A. Vosshenrich, Erratum: A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127, Nature Immunology, vol.7, issue.12, pp.1217-1224, 2006.
DOI : 10.1038/ni1206-1343b

N. Serafini, group 3 innate lymphoid cells, The Journal of Experimental Medicine, vol.211, issue.2, pp.199-208, 2014.
DOI : 10.1038/nm1720

URL : https://hal.archives-ouvertes.fr/pasteur-01063219

S. I. Samson, GATA-3 Promotes Maturation, IFN-?? Production, and Liver-Specific Homing of NK Cells, Immunity, vol.19, issue.5, pp.701-711, 2003.
DOI : 10.1016/S1074-7613(03)00294-2

M. G. Constantinides and A. Bendelac, Transcriptional regulation of the NKT cell lineage, Current Opinion in Immunology, vol.25, issue.2, pp.161-167, 2013.
DOI : 10.1016/j.coi.2013.01.003

K. M. Murphy and S. L. Reiner, Decision making in the immune system: The lineage decisions of helper T cells, Nature Reviews Immunology, vol.17, issue.12, pp.933-944, 2002.
DOI : 10.1038/nri954

F. Colucci, Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases, Nature Immunology, vol.3, issue.3, pp.288-294, 2002.
DOI : 10.1038/ni764

J. Magram, IL-12-Deficient Mice Are Defective in IFN?? Production and Type 1 Cytokine Responses, Immunity, vol.4, issue.5, pp.471-481, 1996.
DOI : 10.1016/S1074-7613(00)80413-6

URL : http://doi.org/10.1016/s1074-7613(00)80413-6

P. Aliahmad, B. De-la-torre, and J. Kaye, Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue???inducer cell and NK cell lineages, Nature Immunology, vol.308, issue.10, pp.945-952, 2010.
DOI : 10.1038/sj.gt.3301206

S. M. Gordon, The Transcription Factors T-bet and Eomes Control Key Checkpoints of Natural Killer Cell Maturation, Immunity, vol.36, issue.1, pp.55-67, 2012.
DOI : 10.1016/j.immuni.2011.11.016

K. Barton, The Ets-1 Transcription Factor Is Required for the Development of Natural Killer Cells in Mice, Immunity, vol.9, issue.4, pp.555-563, 1998.
DOI : 10.1016/S1074-7613(00)80638-X

I. M. Djuretic, Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells, Nature Immunology, vol.161, issue.2, pp.145-153, 2007.
DOI : 10.1074/jbc.274.31.21651

G. Vahedi, Helper T-cell identity and evolution of differential transcriptomes and epigenomes, Immunological Reviews, vol.43, issue.1, pp.24-40, 2013.
DOI : 10.1111/imr.12037

P. Aliahmad and J. Kaye, Development of all CD4 T lineages requires nuclear factor TOX, The Journal of Experimental Medicine, vol.4, issue.1, pp.245-256, 2008.
DOI : 10.1016/S0092-8674(05)80068-6

B. Wilkinson, TOX: an HMG box protein implicated in the regulation of thymocyte selection, Nature Immunology, vol.3, issue.3, pp.272-280, 2002.
DOI : 10.1038/ni767

A. D. Sharrocks, The ETS-domain transcription factor family, The International Journal of Biochemistry & Cell Biology, vol.29, issue.12, pp.827-837, 2001.
DOI : 10.1016/S1357-2725(97)00086-1

N. Muthusamy, K. Barton, and J. M. Leiden, Defective activation and survival of T cells lacking the Ets-1 transcription factor, Nature, vol.377, issue.6550, pp.639-642, 1995.
DOI : 10.1038/377639a0

J. C. Bories, Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene, Nature, vol.377, issue.6550, pp.635-638, 1995.
DOI : 10.1038/377635a0

K. Ramirez, Gene Deregulation and Chronic Activation in Natural Killer Cells Deficient in the Transcription Factor ETS1, Immunity, vol.36, issue.6, pp.921-932, 2012.
DOI : 10.1016/j.immuni.2012.04.006

S. H. Wong, Transcription factor ROR?? is critical for nuocyte development, Nature Immunology, vol.173, issue.3, pp.229-236, 2012.
DOI : 10.1016/0092-8674(92)90029-C

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343633

C. J. Spooner, Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1, Nature Immunology, vol.338, issue.12, pp.1229-1236, 2013.
DOI : 10.1038/ni.2743

Q. Yang, T Cell Factor 1 Is Required for Group 2 Innate Lymphoid Cell Generation, Immunity, vol.38, issue.4, pp.694-704, 2013.
DOI : 10.1016/j.immuni.2012.12.003

URL : http://doi.org/10.1016/j.immuni.2012.12.003

Y. Huang, IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential 'inflammatory' type 2 innate lymphoid cells, Nat. Immunol, 2014.
DOI : 10.1038/ni.3078

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297567

S. Koyasu, Inflammatory ILC2 cells: disguising themselves as progenitors?, Nature Immunology, vol.16, issue.2, pp.133-134, 2015.
DOI : 10.1182/blood-2009-06-228353

L. A. Mielke, TCF-1 Controls ILC2 and NKp46+ROR??t+ Innate Lymphocyte Differentiation and Protection in Intestinal Inflammation, The Journal of Immunology, vol.191, issue.8, pp.4383-4391, 2013.
DOI : 10.4049/jimmunol.1301228

B. A. Hamilton, Disruption of the nuclear hormone receptor ROR?? in staggerer mice, Nature, vol.379, issue.6567, pp.736-739, 1996.
DOI : 10.1038/379736a0

T. Y. Halim, Retinoic-Acid-Receptor-Related Orphan Nuclear Receptor Alpha Is Required for Natural Helper Cell Development and Allergic Inflammation, Immunity, vol.37, issue.3, pp.463-474, 2012.
DOI : 10.1016/j.immuni.2012.06.012

URL : http://doi.org/10.1016/j.immuni.2012.06.012

E. Montaldo, Human ROR??t+CD34+ Cells Are Lineage-Specified Progenitors of Group 3 ROR??t+ Innate Lymphoid Cells, Immunity, vol.41, issue.6, pp.988-1000, 2014.
DOI : 10.1016/j.immuni.2014.11.010

J. S. Lee, AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch, Nature Immunology, vol.181, issue.2, pp.144-151, 2012.
DOI : 10.1007/s00281-009-0163-6

E. A. Kiss, Natural Aryl Hydrocarbon Receptor Ligands Control Organogenesis of Intestinal Lymphoid Follicles, Science, vol.187, issue.6, pp.1561-1565, 2011.
DOI : 10.4049/jimmunol.1100912

J. Qiu, The Aryl Hydrocarbon Receptor Regulates Gut Immunity through Modulation of Innate Lymphoid Cells, Immunity, vol.36, issue.1, pp.92-104, 2012.
DOI : 10.1016/j.immuni.2011.11.011

S. A. Van-de-pavert, Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity, Nature, vol.70, issue.7494, pp.123-127, 2014.
DOI : 10.1038/nature13158

S. P. Spencer, Adaptation of Innate Lymphoid Cells to a Micronutrient Deficiency Promotes Type 2 Barrier Immunity, Science, vol.313, issue.1, pp.432-437, 2014.
DOI : 10.1124/jpet.104.076133

L. C. Rankin, The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway, Nature Immunology, vol.162, issue.4, pp.389-395, 2013.
DOI : 10.1016/j.immuni.2011.11.012

G. Sciume, Distinct requirements for T-bet in gut innate lymphoid cells, The Journal of Experimental Medicine, vol.209, issue.13, pp.2331-2338, 2012.
DOI : 10.1038/17812

H. Yoshida, IL-7 receptor alpha+ CD3 cells in the embryonic intestine induces the organizing center of Peyer's patches, International Immunology, vol.11, issue.5, pp.643-655, 1999.
DOI : 10.1093/intimm/11.5.643

J. K. Bando, H. Liang, and R. M. Locksley, Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine, Nature Immunology, vol.160, issue.2, 2014.
DOI : 10.1002/eji.200636745

C. A. Vosshenrich, Roles for common cytokine receptor gamma-chaindependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo, J. Immunol. Baltim. Md, vol.174, pp.1213-1221, 1950.

A. G. Freud, A Human CD34(+) Subset Resides in Lymph Nodes and Differentiates into CD56brightNatural Killer Cells, Immunity, vol.22, issue.3, pp.295-304, 2005.
DOI : 10.1016/j.immuni.2005.01.013

URL : http://doi.org/10.1016/j.immuni.2005.01.013

I. J. Puzanov, M. Bennett, and V. Kumar, IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells, J. Immunol. Baltim. Md, vol.157, pp.4282-4285, 1950.

M. K. Kennedy, Reversible Defects in Natural Killer and Memory Cd8 T Cell Lineages in Interleukin 15???Deficient Mice, The Journal of Experimental Medicine, vol.10, issue.5, pp.771-780, 2000.
DOI : 10.1093/intimm/9.9.1367

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195858/pdf

N. Satoh-takayama, cell subsets from Id2-dependent precursors, The Journal of Experimental Medicine, vol.207, issue.2, pp.273-280, 2010.
DOI : 10.4049/jimmunol.167.5.2511

URL : https://hal.archives-ouvertes.fr/pasteur-00459092

N. D. Huntington, IL-15 trans-presentation promotes human NK cell development and differentiation in vivo, The Journal of Experimental Medicine, vol.94, issue.1, pp.25-34, 2009.
DOI : 10.1089/hum.1996.7.12-1405

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626663

S. Schmutz, Cutting Edge: IL-7 Regulates the Peripheral Pool of Adult ROR??+ Lymphoid Tissue Inducer Cells, The Journal of Immunology, vol.183, issue.4, pp.2217-2221, 1950.
DOI : 10.4049/jimmunol.0802911

L. B. Merzoug, mouse strain: NK cells are essential for protection against pulmonary B16 metastases, European Journal of Immunology, vol.7, issue.11, pp.3380-3391, 2014.
DOI : 10.1002/eji.201444643

URL : https://hal.archives-ouvertes.fr/hal-01370708

T. Ranson, IL-15 is an essential mediator of peripheral NK-cell homeostasis, Blood, vol.101, issue.>12, pp.4887-4893, 2003.
DOI : 10.1182/blood-2002-11-3392

J. P. Lodolce, IL-15 Receptor Maintains Lymphoid Homeostasis by Supporting Lymphocyte Homing and Proliferation, Immunity, vol.9, issue.5, pp.669-676, 1998.
DOI : 10.1016/S1074-7613(00)80664-0

URL : http://doi.org/10.1016/s1074-7613(00)80664-0

Y. Liou, Adipocyte IL-15 Regulates Local and Systemic NK Cell Development, The Journal of Immunology, vol.193, issue.4, pp.1747-1758, 2014.
DOI : 10.4049/jimmunol.1400868

O. Leavy, Natural killer cells: Adaptive control of NK cells, Nature Reviews Immunology, vol.13, issue.6, p.394, 2013.
DOI : 10.1038/nri3471

J. C. Sun, J. N. Beilke, and L. L. Lanier, Adaptive immune features of natural killer cells, Nature, vol.78, issue.7229, pp.557-561, 2009.
DOI : 10.1038/nature07665

Y. Kanno, G. Vahedi, K. Hirahara, K. Singleton, and J. J. Shea, Transcriptional and Epigenetic Control of T Helper Cell Specification: Molecular Mechanisms Underlying Commitment and Plasticity, Annual Review of Immunology, vol.30, issue.1, pp.707-731, 2012.
DOI : 10.1146/annurev-immunol-020711-075058

T. Hughes, Interleukin-1?? Selectively Expands and Sustains Interleukin-22+ Immature Human Natural Killer Cells in Secondary Lymphoid Tissue, Immunity, vol.32, issue.6, pp.803-814, 2010.
DOI : 10.1016/j.immuni.2010.06.007

URL : http://doi.org/10.1016/j.immuni.2010.06.007

P. J. Van-de-berg, E. M. Van-leeuwen, I. J. Ten-berge, and R. Van-lier, Cytotoxic human CD4+ T cells, Current Opinion in Immunology, vol.20, issue.3, pp.339-343, 2008.
DOI : 10.1016/j.coi.2008.03.007

L. Van-kaer, CD8????+ Innate-Type Lymphocytes in the Intestinal Epithelium Mediate Mucosal Immunity, Immunity, vol.41, issue.3, pp.451-464, 2014.
DOI : 10.1016/j.immuni.2014.08.010

J. M. Karo, D. G. Schatz, and J. C. Sun, The RAG Recombinase Dictates Functional Heterogeneity and Cellular Fitness in Natural Killer Cells, Cell, vol.159, issue.1, pp.94-107, 2014.
DOI : 10.1016/j.cell.2014.08.026