G. Bennett and N. Moran, Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect, Genome Biology and Evolution, vol.5, issue.9, pp.1675-1688, 2013.
DOI : 10.1093/gbe/evt118

S. Schneiker, O. Perlova, O. Kaiser, K. Gerth, A. Alici et al., Complete genome sequence of the myxobacterium Sorangium cellulosum, Nature Biotechnology, vol.34, issue.11, pp.1281-1289, 2007.
DOI : 10.1038/nbt1354

D. Wood, J. Setubal, R. Kaul, D. Monks, J. Kitajima et al., The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58, Science, vol.294, issue.5550, pp.2317-2323, 2001.
DOI : 10.1126/science.1066804

M. Trucksis, J. Michalski, Y. Deng, and J. Kaper, The Vibrio cholerae genome contains two unique circular chromosomes, Proceedings of the National Academy of Sciences, vol.95, issue.24, pp.14464-14469, 1998.
DOI : 10.1073/pnas.95.24.14464

K. Makino, K. Oshima, K. Kurokawa, K. Yokoyama, T. Uda et al., Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae, The Lancet, vol.361, issue.9359, pp.743-749, 2003.
DOI : 10.1016/S0140-6736(03)12659-1

K. Okada, T. Iida, K. Kita-tsukamoto, and T. Honda, Vibrios Commonly Possess Two Chromosomes, Journal of Bacteriology, vol.187, issue.2, pp.752-757, 2005.
DOI : 10.1128/JB.187.2.752-757.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC543535

B. Kirkup, J. Chang, L. Chang, S. Gevers, D. Polz et al., Vibrio chromosomes share common history, BMC Microbiology, vol.10, issue.1, p.137, 2010.
DOI : 10.1186/1471-2180-10-137

URL : http://doi.org/10.1186/1471-2180-10-137

S. Duigou, K. Knudsen, O. Skovgaard, E. Egan, A. Lobner-olesen et al., Independent Control of Replication Initiation of the Two Vibrio cholerae Chromosomes by DnaA and RctB, Journal of Bacteriology, vol.188, issue.17, pp.6419-6424, 2006.
DOI : 10.1128/JB.00565-06

E. Egan and M. Waldor, Distinct Replication Requirements for the Two Vibrio cholerae Chromosomes, Cell, vol.114, issue.4, pp.521-530, 2003.
DOI : 10.1016/S0092-8674(03)00611-1

T. Katayama, S. Ozaki, K. Keyamura, and K. Fujimitsu, Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC, Nature Reviews Microbiology, vol.106, issue.3, pp.163-170, 2010.
DOI : 10.1038/nrmicro2314

E. Boye and A. Lobner-olesen, The role of dam methyltransferase in the control of DNA replication in E. coli, Cell, vol.62, issue.5, pp.981-989, 1990.
DOI : 10.1016/0092-8674(90)90272-G

G. Demarre and D. Chattoraj, DNA Adenine Methylation Is Required to Replicate Both Vibrio cholerae Chromosomes Once per Cell Cycle, PLoS Genetics, vol.187, issue.5, p.1000939, 2010.
DOI : 10.1371/journal.pgen.1000939.s005

B. Koch, X. Ma, and A. Lobner-olesen, Replication of Vibrio cholerae Chromosome I in Escherichia coli: Dependence on Dam Methylation, Journal of Bacteriology, vol.192, issue.15, pp.3903-3914, 2010.
DOI : 10.1128/JB.00311-10

S. Duigou, Y. Yamaichi, and M. Waldor, ATP negatively regulates the initiator protein of Vibrio cholerae chromosome II replication, Proceedings of the National Academy of Sciences, vol.105, issue.30, pp.10577-10582, 2008.
DOI : 10.1073/pnas.0803904105

J. Jha, G. Demarre, T. Venkova-canova, and D. Chattoraj, Replication regulation of Vibrio cholerae chromosome II involves initiator binding to the origin both as monomer and as dimer, Nucleic Acids Research, vol.40, issue.13, pp.6026-6038, 2012.
DOI : 10.1093/nar/gks260

J. Jha, R. Ghirlando, and D. Chattoraj, Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2, Nucleic Acids Research, vol.42, issue.16, p.11, 2014.
DOI : 10.1093/nar/gku771

J. Dibbens, K. Muraiso, and D. Chattoraj, Chaperone-mediated reduction of RepA dimerization is associated with RepA conformational change, Molecular Microbiology, vol.26, issue.01, pp.185-195, 1997.
DOI : 10.1046/j.1365-2958.1997.5691920.x

D. Pal, T. Venkova-canova, P. Srivastava, and D. Chattoraj, Multipartite Regulation of rctB, the Replication Initiator Gene of Vibrio cholerae Chromosome II, Journal of Bacteriology, vol.187, issue.21, pp.7167-7175, 2005.
DOI : 10.1128/JB.187.21.7167-7175.2005

G. Del-solar, R. Giraldo, M. Ruiz-echevarria, M. Espinosa, and R. Diaz-orejas, Replication and control of circular bacterial plasmids. Microbiology and molecular biology reviews : MMBR, pp.434-464, 1998.

T. Venkova-canova and D. Chattoraj, Transition from a plasmid to a chromosomal mode of replication entails additional regulators, Proceedings of the National Academy of Sciences, vol.108, issue.15, pp.6199-6204, 2011.
DOI : 10.1073/pnas.1013244108

T. Venkova-canova, P. Srivastava, and D. Chattoraj, Transcriptional inactivation of a regulatory site for replication of Vibrio cholerae chromosome II, Proceedings of the National Academy of Sciences, vol.103, issue.32, pp.12051-12056, 2006.
DOI : 10.1073/pnas.0605120103

B. Koch and X. Ma, rctB mutations that increase copy number of Vibrio cholerae oriCII in Escherichia coli, Plasmid, vol.68, issue.3, pp.159-169, 2012.
DOI : 10.1016/j.plasmid.2012.03.003

Y. Yamaichi, M. Gerding, B. Davis, and M. Waldor, Regulatory Cross-Talk Links Vibrio cholerae Chromosome II Replication and Segregation, PLoS Genetics, vol.90, issue.7, p.1002189, 2011.
DOI : 10.1371/journal.pgen.1002189.s007

E. Egan, S. Duigou, and M. Waldor, Autorepression of RctB, an Initiator of Vibrio cholerae Chromosome II Replication, Journal of Bacteriology, vol.188, issue.2, pp.789-793, 2006.
DOI : 10.1128/JB.188.2.789-793.2006

T. Venkova-canova, A. Saha, and D. Chattoraj, A 29-mer site regulates transcription of the initiator gene as well as function of the replication origin of Vibrio cholerae chromosome II, Plasmid, vol.67, issue.2, pp.102-110, 2012.
DOI : 10.1016/j.plasmid.2011.12.009

J. Baek and D. Chattoraj, Chromosome I Controls Chromosome II Replication in Vibrio cholerae, PLoS Genetics, vol.103, issue.2, p.1004184, 2014.
DOI : 10.1371/journal.pgen.1004184.s015

R. Kitagawa, T. Ozaki, S. Moriya, and T. Ogawa, Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein, Genes & Development, vol.12, issue.19, pp.3032-3043, 1998.
DOI : 10.1101/gad.12.19.3032

K. Kasho and T. Katayama, DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation, Proceedings of the National Academy of Sciences, vol.110, issue.3, pp.936-941
DOI : 10.1073/pnas.1212070110

K. Nordstrom and S. Dasgupta, Copy-number control of the Escherichia coli chromosome: a plasmidologist's view, EMBO reports, vol.14, issue.5, pp.484-489, 2006.
DOI : 10.1038/241133a0

E. Egan, A. Lobner-olesen, and M. Waldor, Synchronous replication initiation of the two Vibrio cholerae chromosomes, Current Biology, vol.14, issue.13, pp.501-502, 2004.
DOI : 10.1016/j.cub.2004.06.036

U. Pinto, K. Pappas, and S. Winans, The ABCs of plasmid replication and segregation, Nature Reviews Microbiology, vol.40, issue.11, pp.755-765, 2012.
DOI : 10.1038/nrmicro2882

T. Rasmussen, R. Jensen, and O. Skovgaard, The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle, The EMBO Journal, vol.100, issue.13, pp.3124-3131, 2007.
DOI : 10.1038/sj.emboj.7601747

M. Val, O. Skovgaard, M. Ducos-galand, M. Bland, and D. Mazel, Genome Engineering in Vibrio cholerae: A Feasible Approach to Address Biological Issues, PLoS Genetics, vol.163, issue.1, p.1002472, 2012.
DOI : 10.1371/journal.pgen.1002472.s005

URL : https://hal.archives-ouvertes.fr/inserm-01285625

A. David, G. Demarre, L. Muresan, E. Paly, F. Barre et al., The Two Cis-Acting Sites, parS1 and oriC1, Contribute to the Longitudinal Organisation of Vibrio cholerae Chromosome I, PLoS Genetics, vol.80, issue.7, p.1004448, 2014.
DOI : 10.1371/journal.pgen.1004448.s047

J. Livny, Y. Yamaichi, and M. Waldor, Distribution of Centromere-Like parS Sites in Bacteria: Insights from Comparative Genomics, Journal of Bacteriology, vol.189, issue.23, pp.8693-8703, 2007.
DOI : 10.1128/JB.01239-07

Y. Yamaichi, M. Fogel, S. Mcleod, M. Hui, and M. Waldor, Distinct Centromere-Like parS Sites on the Two Chromosomes of Vibrio spp., Journal of Bacteriology, vol.189, issue.14, pp.5314-5324, 2007.
DOI : 10.1128/JB.00416-07

A. Harms, A. Treuner-lange, D. Schumacher, and L. Sogaard-andersen, Tracking of Chromosome and Replisome Dynamics in Myxococcus xanthus Reveals a Novel Chromosome Arrangement, PLoS Genetics, vol.53, issue.1, p.1003802, 2013.
DOI : 10.1371/journal.pgen.1003802.s008

M. Thanbichler and L. Shapiro, MipZ, a Spatial Regulator Coordinating Chromosome Segregation with Cell Division in Caulobacter, Cell, vol.126, issue.1, pp.147-162, 2006.
DOI : 10.1016/j.cell.2006.05.038

K. Lasocki, A. Bartosik, J. Mierzejewska, C. Thomas, and G. Jagura-burdzy, Deletion of the parA (soj) Homologue in Pseudomonas aeruginosa Causes ParB Instability and Affects Growth Rate, Chromosome Segregation, and Motility, Journal of Bacteriology, vol.189, issue.15, pp.5762-5772, 2007.
DOI : 10.1128/JB.00371-07

K. Ireton and G. Nwt, spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis., Journal of Bacteriology, vol.176, issue.17, pp.5320-5329, 1994.
DOI : 10.1128/jb.176.17.5320-5329.1994

Y. Yamaichi, M. Fogel, and M. Waldor, par genes and the pathology of chromosome loss in Vibrio cholerae, Proceedings of the National Academy of Sciences, vol.104, issue.2, pp.630-635, 2007.
DOI : 10.1073/pnas.0608341104

Y. Yamaichi, R. Bruckner, S. Ringgaard, A. Moll, D. Cameron et al., A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole, Genes & Development, vol.26, issue.20, pp.2348-2360, 2012.
DOI : 10.1101/gad.199869.112

M. Fogel and M. Waldor, A dynamic, mitotic-like mechanism for bacterial chromosome segregation, Genes & Development, vol.20, issue.23, pp.3269-3282, 2006.
DOI : 10.1101/gad.1496506

R. Kadoya, J. Baek, A. Sarker, and D. Chattoraj, Participation of Chromosome Segregation Protein ParAI of Vibrio cholerae in Chromosome Replication, Journal of Bacteriology, vol.193, issue.7, pp.1504-1514, 2011.
DOI : 10.1128/JB.01067-10

H. Murray and J. Errington, Dynamic Control of the DNA Replication Initiation Protein DnaA by Soj/ParA, Cell, vol.135, issue.1, pp.74-84, 2008.
DOI : 10.1016/j.cell.2008.07.044

T. Venkova-canova, J. Baek, P. Fitzgerald, M. Blokesch, and D. Chattoraj, Evidence for Two Different Regulatory Mechanisms Linking Replication and Segregation of Vibrio cholerae Chromosome II, PLoS Genetics, vol.68, issue.6, p.1003579, 2013.
DOI : 10.1371/journal.pgen.1003579.s012

C. Lesterlin and F. Barre, Genetic recombination and the cell cycle: what we have learned from chromosome dimers, Molecular Microbiology, vol.180, issue.5, pp.1151-1160, 2004.
DOI : 10.1111/j.1365-2958.2004.04356.x

M. Val, S. Kennedy, E. Karoui, M. Bonne, L. et al., FtsK-Dependent Dimer Resolution on Multiple Chromosomes in the Pathogen Vibrio cholerae, PLoS Genetics, vol.3, issue.9, p.1000201, 2008.
DOI : 10.1371/journal.pgen.1000201.s005

URL : https://hal.archives-ouvertes.fr/inserm-01285588

G. Demarre, E. Paly, M. Val, A. David, S. Hamadat et al., The FtsK cell division protein participates in the last stages of sister chromatid segregation in the pathogen Vibrio cholerae, PLoS Genet, vol.10, 2014.

X. Guo, M. Flores, P. Mavingui, S. Fuentes, G. Hernandez et al., Natural genomic design in Sinorhizobium meliloti: novel genomic architectures

P. Brezellec, M. Hoebeke, M. Hiet, S. Pasek, and J. Ferat, DomainSieve: a protein domain-based screen that led to the identification of dam-associated genes with potential link to DNA maintenance, Bioinformatics, vol.22, issue.16, pp.1935-1941, 2006.
DOI : 10.1093/bioinformatics/btl336

URL : https://hal.archives-ouvertes.fr/hal-00131567

M. Valens, S. Penaud, M. Rossignol, F. Cornet, and F. , Macrodomain organization of the Escherichia coli chromosome, The EMBO Journal, vol.241, issue.21, pp.4330-4341, 2004.
DOI : 10.1038/sj.emboj.7600028

R. Mercier, M. Petit, S. Schbath, S. Robin, E. Karoui et al., The MatP/matS Site-Specific System Organizes the Terminus Region of the E. coli Chromosome into a Macrodomain, Cell, vol.135, issue.3, pp.475-485, 2008.
DOI : 10.1016/j.cell.2008.08.031

URL : https://hal.archives-ouvertes.fr/hal-01197588

A. Thiel, M. Valens, I. Vallet-gely, O. Espeli, and F. Boccard, Long-Range Chromosome Organization in E. coli: A Site-Specific System Isolates the Ter Macrodomain, PLoS Genetics, vol.62, issue.4, p.1002672, 2012.
DOI : 10.1371/journal.pgen.1002672.s007