R. E. Allen and L. K. Boxhorn, Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor, Journal of Cellular Physiology, vol.105, issue.2, pp.311-315, 1989.
DOI : 10.1002/jcp.1041380213

C. Angelini, M. Fanin, E. Menegazzo, M. P. Freda, D. J. Duggan et al., Homozygous ?-sarcoglycan mutation in two siblings: One asymptomatic and one steroid-responsive mild limb-girdle muscular dystrophy patient, Muscle & Nerve, vol.5, issue.6, pp.769-775, 1998.
DOI : 10.1002/(SICI)1097-4598(199806)21:6<769::AID-MUS9>3.0.CO;2-5

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, The Journal of Experimental Medicine, vol.148, issue.5, pp.1057-1069, 2007.
DOI : 10.1016/0022-1759(94)90012-4

URL : https://hal.archives-ouvertes.fr/inserm-00136917

A. Asakura, P. Seale, A. Girgis-gabardo, and M. A. Rudnicki, Myogenic specification of side population cells in skeletal muscle, The Journal of Cell Biology, vol.24, issue.1, pp.123-134, 2002.
DOI : 10.1046/j.1432-0436.2001.680407.x

E. R. Barton-davis, D. I. Shoturma, A. Musarò, N. Rosenthal, and H. L. Sweeney, Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function, Proceedings of the National Academy of Sciences, vol.95, issue.26, pp.15603-15607, 1998.
DOI : 10.1073/pnas.95.26.15603

J. R. Beauchamp, J. E. Morgan, C. N. Pagel, and T. A. Partridge, Dynamics of Myoblast Transplantation Reveal a Discrete Minority of Precursors with Stem Cell???like Properties as the Myogenic Source, The Journal of Cell Biology, vol.111, issue.6, pp.1113-1122, 1999.
DOI : 10.1083/jcb.133.1.185

J. R. Beauchamp, L. Heslop, D. S. Yu, S. Tajbakhsh, R. G. Kelly et al., Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells, The Journal of Cell Biology, vol.85, issue.6, pp.1221-1234, 2000.
DOI : 10.1093/nar/19.23.6433

A. N. Belcastro, G. D. Arthur, T. A. Albisser, and D. A. Raj, Heart, liver, and skeletal muscle myeloperoxidase activity during exercise, J. Appl. Physiol, vol.80, pp.1331-1335, 1996.

R. Bischoff, The satellite cell and muscle regeneration, Myology. McGraw-Hill, pp.97-118, 1994.

J. B. Bodensteiner and A. G. Engel, Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: A study of 567,000 muscle fibers in 114 biopsies, Neurology, vol.28, issue.5, pp.439-446, 1978.
DOI : 10.1212/WNL.28.5.439

A. S. Brack, H. Bildsoe, and S. M. Hughes, Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy, Journal of Cell Science, vol.118, issue.20, pp.4813-4821, 2005.
DOI : 10.1242/jcs.02602

A. S. Brack, M. J. Conboy, S. Roy, M. Lee, C. J. Kuo et al., Increased Wnt Signaling During Aging Alters Muscle Stem Cell Fate and Increases Fibrosis, Science, vol.317, issue.5839, pp.807-810, 2007.
DOI : 10.1126/science.1144090

A. S. Brack and T. A. Rando, Age-dependent changes in skeletal muscle regeneration The Netherlands, Skeletal Muscle Repair and Regeneration (Advances in Muscle Research, pp.359-374, 2008.

A. S. Brack, I. M. Conboy, M. J. Conboy, J. Shen, and T. A. Rando, A Temporal Switch from Notch to Wnt Signaling in Muscle Stem Cells Is Necessary for Normal Adult Myogenesis, Cell Stem Cell, vol.2, issue.1, pp.50-59, 2008.
DOI : 10.1016/j.stem.2007.10.006

R. Bucala, L. A. Spiegel, J. Chesney, M. Hogan, and A. Cerami, Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair, Mol. Med, vol.1, pp.71-81, 1994.

M. Buckingham, Skeletal muscle progenitor cells and the role of Pax genes, Comptes Rendus Biologies, vol.330, issue.6-7, pp.530-533, 2007.
DOI : 10.1016/j.crvi.2007.03.015

T. Calandra and T. Roger, Macrophage migration inhibitory factor: a regulator of innate immunity, Nature Reviews Immunology, vol.3, issue.10, pp.791-800, 2003.
DOI : 10.1038/nri1200

M. Cantini and U. Carraro, Macrophage-released Factor Stimulates Selectively Myogenic Cells in Primary Muscle Culture, Journal of Neuropathology and Experimental Neurology, vol.54, issue.1, pp.121-128, 1995.
DOI : 10.1097/00005072-199501000-00014

M. Cantini, M. L. Massimino, A. Bruson, C. Catani, L. Dalla-libera et al., Macrophages Regulate Proliferation and Differentiation of Satellite Cells, Biochemical and Biophysical Research Communications, vol.202, issue.3, pp.1688-1696, 1994.
DOI : 10.1006/bbrc.1994.2129

B. M. Carlson and J. A. Faulkner, Muscle transplantation between young and old rats: age of host determines recovery, Am. J. Physiol, vol.256, pp.1262-1266, 1989.

G. Carnac, S. Ricaud, B. Vernus, and A. Bonnieu, Myostatin: Biology and Clinical Relevance, Mini-Reviews in Medicinal Chemistry, vol.6, issue.7, pp.765-770, 2006.
DOI : 10.2174/138955706777698642

M. Chilosi, V. Poletti, A. Zamò, M. Lestani, L. Montagna et al., Aberrant Wnt/??-Catenin Pathway Activation in Idiopathic Pulmonary Fibrosis, The American Journal of Pathology, vol.162, issue.5, pp.1495-1502, 2003.
DOI : 10.1016/S0002-9440(10)64282-4

I. M. Conboy and T. A. Rando, The Regulation of Notch Signaling Controls Satellite Cell Activation and Cell Fate Determination in Postnatal Myogenesis, Developmental Cell, vol.3, issue.3, pp.397-409, 2002.
DOI : 10.1016/S1534-5807(02)00254-X

I. M. Conboy, M. J. Conboy, G. M. Smythe, and T. A. Rando, Notch-Mediated Restoration of Regenerative Potential to Aged Muscle, Science, vol.302, issue.5650, pp.1575-1577, 2003.
DOI : 10.1126/science.1087573

I. M. Conboy, M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman et al., Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, vol.31, issue.7027, pp.760-764, 2005.
DOI : 10.1083/jcb.151.6.1221

A. M. Connolly, A. Pestronk, S. Mehta, and M. Al-lozi, Primary ?-sarcoglycan deficiency responsive to immunosuppression over three years, Muscle & Nerve, vol.6, issue.11, pp.1549-1553, 1998.
DOI : 10.1002/(SICI)1097-4598(199811)21:11<1549::AID-MUS30>3.0.CO;2-T

D. D. Cornelison, M. S. Filla, H. M. Stanley, A. C. Rapraeger, and B. B. Olwin, Syndecan-3 and Syndecan-4 Specifically Mark Skeletal Muscle Satellite Cells and Are Implicated in Satellite Cell Maintenance and Muscle Regeneration, Developmental Biology, vol.239, issue.1, pp.79-94, 2001.
DOI : 10.1006/dbio.2001.0416

S. Creuzet, L. Lescaudron, Z. Li, and J. Fontaine-pé-rus, MyoD, Myogenin, and Desmin-nls-lacZ Transgene Emphasize the Distinct Patterns of Satellite Cell Activation in Growth and Regeneration, Experimental Cell Research, vol.243, issue.2, pp.241-253, 1998.
DOI : 10.1006/excr.1998.4100

J. J. Crisco, P. Jokl, G. T. Heinen, M. D. Connell, and M. M. Panjabi, A Muscle Contusion Injury Model: Biomechanics, Physiology, and Histology, The American Journal of Sports Medicine, vol.22, issue.5, pp.702-710, 1994.
DOI : 10.1177/036354659402200521

D. Angelis, L. Berghella, L. Coletta, M. Lattanzi, L. Zanchi et al., Skeletal Myogenic Progenitors Originating from Embryonic Dorsal Aorta Coexpress Endothelial and Myogenic Markers and Contribute to Postnatal Muscle Growth and Regeneration, The Journal of Cell Biology, vol.108, issue.4, pp.869-878, 1999.
DOI : 10.1016/S0092-8674(00)80189-0

J. E. Dominique and C. Gerard, Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects, Experimental Cell Research, vol.312, issue.13, pp.2401-2414, 2006.
DOI : 10.1016/j.yexcr.2006.04.012

M. R. Douglas, K. E. Morrison, M. Salmon, and C. D. Buckley, Why does inflammation persist: a dominant role for the stromal microenvironment?, Expert Reviews in Molecular Medicine, vol.4, issue.25, pp.1-18, 2002.
DOI : 10.1017/S1462399402005264

J. C. Engert, E. B. Berglund, and N. Rosenthal, Proliferation precedes differentiation in IGF-I-stimulated myogenesis, The Journal of Cell Biology, vol.135, issue.2, pp.431-440, 1996.
DOI : 10.1083/jcb.135.2.431

Y. Fan, M. Maley, M. Beilharz, and M. Grounds, Rapid death of injected myoblasts in myoblast transfer therapy, Muscle & Nerve, vol.89, issue.7, pp.853-860, 1996.
DOI : 10.1002/(SICI)1097-4598(199607)19:7<853::AID-MUS7>3.0.CO;2-8

R. A. Fielding, T. J. Manfredi, W. Ding, M. A. Fiatarone, W. J. Evans et al., Acute phase response in exercise. III. Neutrophil and IL-1b accumulation in skeletal muscle, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.265, pp.166-172, 1993.

D. J. Garry, Q. Yang, R. Bassel-duby, and R. S. Williams, Persistent Expression of MNF Identifies Myogenic Stem Cells in Postnatal Muscles, Developmental Biology, vol.188, issue.2, pp.280-294, 1997.
DOI : 10.1006/dbio.1997.8657

B. Gayraud-morel, F. Chré-tien, and S. Tajbakhsh, Skeletal muscle as a paradigm for regenerative biology and medicine, Regenerative Medicine, vol.4, issue.2, pp.293-319, 2009.
DOI : 10.2217/17460751.4.2.293

M. C. Gibson and E. Schultz, Age-related differences in absolute numbers of skeletal muscle satellite cells, Muscle & Nerve, vol.35, issue.8, pp.574-580, 1983.
DOI : 10.1002/mus.880060807

S. C. Goetsch, T. J. Hawke, T. D. Gallardo, J. A. Richardson, and D. J. Garry, Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration, Physiological Genomics, vol.14, issue.3, pp.261-271, 2003.
DOI : 10.1152/physiolgenomics.00056.2003

M. D. Grounds, Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice, The Journal of Pathology, vol.248, issue.1, pp.71-82, 1987.
DOI : 10.1002/path.1711530110

M. D. Grounds and J. K. Mcgeachie, A model of myogenesis in vivo, derived from detailed autoradiographic studies of regenerating skeletal muscle, challenges the concept of quantal mitosis, Cell and Tissue Research, vol.250, issue.3, pp.563-569, 1987.
DOI : 10.1007/BF00218947

E. Gussoni, Y. Soneoka, C. D. Strickland, E. A. Buzney, M. K. Khan et al., Dystrophin expression in the mdx mouse restored by stem cell transplantation, Nature, vol.14, issue.6751, pp.390-394, 1999.
DOI : 10.1038/43919

T. J. Hawke and D. J. Garry, Myogenic satellite cells: physiology to molecular biology, J. Appl. Physiol, vol.91, pp.534-551, 2001.

F. F. Horber and M. W. Haymond, Human growth hormone prevents the protein catabolic side effects of prednisone in humans., Journal of Clinical Investigation, vol.86, issue.1, pp.265-272, 1990.
DOI : 10.1172/JCI114694

A. Irintchev, M. Zeschnigk, A. Starzinski-powitz, and A. Wernig, Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles, Developmental Dynamics, vol.20, issue.4, pp.326-337, 1994.
DOI : 10.1002/aja.1001990407

K. M. Jansen and G. K. Pavlath, Molecular Control of Mammalian Myoblast Fusion, Methods Mol. Biol, vol.475, pp.115-133, 2008.
DOI : 10.1007/978-1-59745-250-2_7

J. Jespersen, M. Kjaer, and P. Schjerling, The possible role of myostatin in skeletal muscle atrophy and cachexia, Scandinavian Journal of Medicine and Science in Sports, vol.6, issue.2, pp.74-82, 2006.
DOI : 10.1126/science.1069525

T. L. Jesse, R. Lachance, M. F. Iademarco, and D. C. Dean, Interferon Regulatory Factor-2 Is a Transcriptional Activator in Muscle Where It Regulates Expression of Vascular Cell Adhesion Molecule-1, The Journal of Cell Biology, vol.121, issue.5, pp.1265-1276, 1998.
DOI : 10.1038/377362a0

F. Jiang, C. J. Parsons, and B. Stefanovic, Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation, Journal of Hepatology, vol.45, issue.3, pp.401-409, 2006.
DOI : 10.1016/j.jhep.2006.03.016

R. Kambadur, M. Sharma, T. P. Smith, and J. J. Bass, Mutations in myostatin (GDF8) in double-muscled Belgian blue and piedmontese cattle, Genome Res, vol.7, pp.910-915, 1997.

G. Karpati, S. Carpenter, and S. Prescott, Small-caliber skeletal muscle fibers do not suffer necrosis in mdx mouse dystrophy, Muscle & Nerve, vol.110, issue.8, pp.795-803, 1988.
DOI : 10.1002/mus.880110802

G. Karpati and M. J. Molnar, Muscle fibre regeneration in human skeletal muscle diseases The Netherlands, Skeletal Muscle Repair and Regeneration (Advances in Muscle Research, pp.45-64, 2008.

M. Kjaer and J. G. Jespersen, The battle to keep or lose skeletal muscle with ageing, The Journal of Physiology, vol.264, issue.1, pp.1-2, 2009.
DOI : 10.1113/jphysiol.2008.167049

B. B. Krippendorf and D. A. Riley, Distinguishing unloading. Versus reloading-induced changes in rat soleus muscle, Muscle & Nerve, vol.14, issue.1, pp.99-108, 1993.
DOI : 10.1002/mus.880160116

S. Kuang, S. B. Chargé, P. Seale, M. Huh, and M. A. Rudnicki, Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis, The Journal of Cell Biology, vol.126, issue.1, pp.103-113, 2006.
DOI : 10.1083/jcb.200312007

S. Kuang, K. Kuroda, F. Le-grand, and M. A. Rudnicki, Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle, Cell, vol.129, issue.5, pp.999-1010, 2007.
DOI : 10.1016/j.cell.2007.03.044

F. Kuhnert, C. R. Davis, H. T. Wang, P. Chu, M. Lee et al., Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1, Proceedings of the National Academy of Sciences, vol.101, issue.1, pp.266-271, 2004.
DOI : 10.1073/pnas.2536800100

B. Langley, M. Thomas, A. Bishop, M. Sharma, S. Gilmour et al., Myostatin Inhibits Myoblast Differentiation by Down-regulating MyoD Expression, Journal of Biological Chemistry, vol.277, issue.51, pp.49831-49840, 2002.
DOI : 10.1074/jbc.M204291200

H. J. Lee, W. Goring, M. Ochs, C. Muhlfeld, G. Steding et al., Sox15 Is Required for Skeletal Muscle Regeneration, Molecular and Cellular Biology, vol.24, issue.19, pp.8428-8436, 2004.
DOI : 10.1128/MCB.24.19.8428-8436.2004

M. Lehto, M. Jä-rvinen, and O. Nelimarkka, Scar formation after skeletal muscle injury, Archives of Orthopaedic and Traumatic Surgery, vol.15, issue.6, pp.366-370, 1986.
DOI : 10.1007/BF00454432

C. Lepper, S. J. Conway, and C. M. Fan, Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements, Nature, vol.22, issue.7255, pp.627-631, 2009.
DOI : 10.1038/nature08209

Y. Li, W. Foster, B. M. Deasy, Y. Chan, V. Prisk et al., Transforming Growth Factor-??1 Induces the Differentiation of Myogenic Cells into Fibrotic Cells in Injured Skeletal Muscle, The American Journal of Pathology, vol.164, issue.3, pp.1007-1019, 2004.
DOI : 10.1016/S0002-9440(10)63188-4

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends in Immunology, vol.25, issue.12, pp.677-686, 2004.
DOI : 10.1016/j.it.2004.09.015

A. Y. Manzur, T. Kuntzer, M. Pike, and A. Swan, Glucocorticoid corticosteroids for Duchenne muscular dystrophy, Cochrane Database Syst. Rev, vol.2, p.3725, 2004.

M. L. Massimino, E. Rapizzi, M. Cantini, L. D. Libera, F. Mazzoleni et al., ED2+ Macrophages Increase Selectively Myoblast Proliferation in Muscle Cultures, Biochemical and Biophysical Research Communications, vol.235, issue.3, pp.754-759, 1997.
DOI : 10.1006/bbrc.1997.6823

A. Mauro, SATELLITE CELL OF SKELETAL MUSCLE FIBERS, The Journal of Cell Biology, vol.9, issue.2, pp.493-495, 1961.
DOI : 10.1083/jcb.9.2.493

A. C. Mcpherron, A. M. Lawler, and S. J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member, nature, vol.387, issue.6628, pp.83-90, 1997.
DOI : 10.1038/387083a0

G. Mechtersheimer, M. Staudter, and P. Moller, Expression of the Natural Killer (NK) Cell-Associated Antigen CD56(Leu-19), Which Is Identical to the 140-kDa Isoform of N-CAM, in Neural and Skeletal Muscle Cells and Tumors Derived Therefrom, Annals of the New York Academy of Sciences, vol.4, issue.1 Ontogenetic a, pp.311-316, 1992.
DOI : 10.1016/0304-3940(85)90217-4

C. L. Mendias, K. I. Bakhurin, and J. A. Faulkner, Tendons of myostatin-deficient mice are small, brittle, and hypocellular, Proceedings of the National Academy of Sciences, vol.105, issue.1, pp.388-393, 2008.
DOI : 10.1073/pnas.0707069105

F. Merly, L. Lescaudron, T. Rouaud, F. Crossin, and M. F. Gardahaut, Macrophages enhance muscle satellite cell proliferation and delay their differentiation, Muscle & Nerve, vol.21, issue.6, pp.724-732, 1999.
DOI : 10.1002/(SICI)1097-4598(199906)22:6<724::AID-MUS9>3.0.CO;2-O

G. Messina, S. Biressi, and G. Cossu, Non muscle stem cells and muscle regeneration The Netherlands, Skeletal Muscle Repair and Regeneration (Advances in Muscle Research, pp.65-84, 2008.

F. P. Moss and C. P. Leblond, Satellite cells as the source of nuclei in muscles of growing rats, The Anatomical Record, vol.119, issue.4, pp.421-435, 1971.
DOI : 10.1002/ar.1091700405

S. Muller, L. Ronfani, and M. E. Bianchi, Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function, Journal of Internal Medicine, vol.63, issue.3, pp.332-343, 2004.
DOI : 10.1002/art.11161

A. Musarò and N. Rosenthal, Maturation of the Myogenic Program Is Induced by Postmitotic Expression of Insulin-Like Growth Factor I, Molecular and Cellular Biology, vol.19, issue.4, pp.3115-3124, 1999.
DOI : 10.1128/MCB.19.4.3115

A. Musarò, K. J. Mccullagh, F. J. Naya, E. N. Olson, and N. Rosenthal, IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1, Nature, vol.400, pp.581-585, 1999.

A. Musarò, K. Mccullagh, A. Paul, L. Houghton, G. Dobrowolny et al., Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle, Nature Genetics, vol.27, issue.2, pp.195-200, 2001.
DOI : 10.1038/84839

A. Musarò and N. Rosenthal, The Critical Role of Insulin-Like Growth Factor-1 Isoforms in the Physiopathology of Skeletal Muscle, Current Genomics, vol.7, issue.1, pp.19-32, 2006.
DOI : 10.2174/138920206776389784

S. E. Mutsaers, J. E. Bishop, G. Mcgrouther, and G. J. Laurent, Mechanisms of tissue repair: from wound healing to fibrosis, The International Journal of Biochemistry & Cell Biology, vol.29, issue.1, pp.5-17, 1997.
DOI : 10.1016/S1357-2725(96)00115-X

H. X. Nguyen and J. G. Tidball, Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro, The Journal of Physiology, vol.547, issue.1, pp.125-132, 2003.
DOI : 10.1113/jphysiol.2002.031450

M. A. Oberc and W. K. Engel, Ultrastructural localization of calcium in normal and abnormal skeletal muscle, Lab. Invest, vol.36, pp.566-577, 1977.

S. Oustanina, G. Hause, and T. Braun, Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification, The EMBO Journal, vol.89, issue.16, pp.3430-3439, 2004.
DOI : 10.1126/science.1074807

L. Pelosi, C. Giacinti, C. Nardis, G. Borsellino, E. Rizzuto et al., Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines, The FASEB Journal, vol.21, issue.7, pp.1393-1402, 2007.
DOI : 10.1096/fj.06-7690com

A. Polesskaya, P. Seale, and M. A. Rudnicki, Wnt Signaling Induces the Myogenic Specification of Resident CD45+ Adult Stem Cells during Muscle Regeneration, Cell, vol.113, issue.7, pp.841-852, 2003.
DOI : 10.1016/S0092-8674(03)00437-9

S. S. Rabinowitz and S. Gordon, Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli [published erratum appears in J Exp Med 1992 Jan 1;175(1):309], Journal of Experimental Medicine, vol.174, issue.4, pp.827-836, 1991.
DOI : 10.1084/jem.174.4.827

M. P. Ramprasad, W. Fischer, J. L. Witztum, G. R. Sambrano, O. Quehenberger et al., The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68., Proc. Natl. Acad. Sci. U.S.A. 92, pp.9580-9584, 1995.
DOI : 10.1073/pnas.92.21.9580

S. Reisz-porszasz, S. Bhasin, J. N. Artaza, R. Shen, I. Sinha-hikim et al., Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin, American Journal of Physiology - Endocrinology And Metabolism, vol.285, issue.4, pp.876-888, 2003.
DOI : 10.1152/ajpendo.00107.2003

F. Relaix, D. Montarras, S. Zaffran, B. Gayraud-morel, D. Rocancourt et al., Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells, The Journal of Cell Biology, vol.48, issue.1, pp.91-102, 2006.
DOI : 10.1083/jcb.200312007

URL : https://hal.archives-ouvertes.fr/hal-00311188

R. Rios, I. Carneiro, V. M. Arce, and J. Devesa, Myostatin Regulates Cell Survival during C2C12 Myogenesis, Biochemical and Biophysical Research Communications, vol.280, issue.2, pp.561-566, 2001.
DOI : 10.1006/bbrc.2000.4159

S. M. Rosenthal and Z. Cheng, Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts., Proceedings of the National Academy of Sciences, vol.92, issue.22, pp.10307-10311, 1995.
DOI : 10.1073/pnas.92.22.10307

S. Sajko, L. Kubinova, E. Cvetko, M. Kreft, A. Wernig et al., Frequency of M-Cadherin-stained Satellite Cells Declines in Human Muscles During Aging, Journal of Histochemistry & Cytochemistry, vol.281, issue.2, pp.179-185, 2004.
DOI : 10.1002/(SICI)1097-0185(199707)248:3<346::AID-AR7>3.0.CO;2-N

B. M. Scicchitano, E. Rizzuto, and A. Musarò, Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1, Aging, vol.1, issue.5, pp.1-7, 2009.
DOI : 10.18632/aging.100050

K. Schmidt, G. Glaser, A. Wernig, M. Wegner, and O. Rosorius, Sox8 Is a Specific Marker for Muscle Satellite Cells and Inhibits Myogenesis, Journal of Biological Chemistry, vol.278, issue.32, pp.29769-29775, 2003.
DOI : 10.1074/jbc.M301539200

M. Schuelke, K. R. Wagner, L. E. Stolz, C. Hubner, T. Riebel et al., Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child, New England Journal of Medicine, vol.350, issue.26, pp.2682-2688, 2004.
DOI : 10.1056/NEJMoa040933

E. Schultz and B. H. Lipton, Skeletal muscle satellite cells: Changes in proliferation potential as a function of age, Mechanisms of Ageing and Development, vol.20, issue.4, pp.377-383, 1982.
DOI : 10.1016/0047-6374(82)90105-1

E. Schultz, Satellite Cell Proliferative Compartments in Growing Skeletal Muscles, Developmental Biology, vol.175, issue.1, pp.84-94, 1996.
DOI : 10.1006/dbio.1996.0097

P. Seale, L. A. Sabourin, A. Girgis-gabardo, A. Mansouri, P. Gruss et al., Pax7 Is Required for the Specification of Myogenic Satellite Cells, Cell, vol.102, issue.6, pp.777-786, 2000.
DOI : 10.1016/S0092-8674(00)00066-0

G. Shefer, D. P. Van-de-mark, J. B. Richardson, and Z. Yablonka-reuveni, Satellite-cell pool size does matter: Defining the myogenic potency of aging skeletal muscle, Developmental Biology, vol.294, issue.1, pp.50-66, 2006.
DOI : 10.1016/j.ydbio.2006.02.022

G. Shefer and Z. Yablonka-reuveni, The Ins and Outs of Satellite Cell Myogenesis: The Role of the Ruling Growth Factors, Skeletal Muscle Repair and Regeneration (Advances in Muscle Research), 2008.
DOI : 10.1007/978-1-4020-6768-6_6

. Springer-verlag, The Netherlands, pp.107-144

V. Siriett, M. S. Salerno, C. Berry, G. Nicholas, R. Bower et al., Antagonism of Myostatin Enhances Muscle Regeneration During Sarcopenia, Molecular Therapy, vol.15, issue.8, pp.1463-1470, 2007.
DOI : 10.1038/sj.mt.6300182

M. H. Snow, The effects of aging on satellite cells in skeletal muscles of mice and rats, Cell and Tissue Research, vol.185, issue.3, pp.399-408, 1977.
DOI : 10.1007/BF00220299

. St, B. A. Pierre, and J. G. Tidball, Differential response of macrophage subpopulations to soleus muscle reloading following rat hindlimb suspension, J. Appl. Physiol, vol.77, pp.290-297, 1994.

M. Summan, G. L. Warren, R. R. Mercer, R. Chapman, T. Hulderman et al., Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study, AJP: Regulatory, Integrative and Comparative Physiology, vol.290, issue.6, pp.1488-1495, 2006.
DOI : 10.1152/ajpregu.00465.2005

T. Tamaki, A. Akatsuka, K. Ando, Y. Nakamura, H. Matsuzawa et al., Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle, The Journal of Cell Biology, vol.10, issue.4, pp.571-577, 2002.
DOI : 10.1038/nm0901-1028

R. Tatsumi, J. E. Anderson, C. J. Nevoret, O. Halevy, and R. E. Allen, HGF/SF Is Present in Normal Adult Skeletal Muscle and Is Capable of Activating Satellite Cells, Developmental Biology, vol.194, issue.1, pp.114-128, 1998.
DOI : 10.1006/dbio.1997.8803

C. F. Teixeira, S. R. Zamuner, J. P. Zuliani, C. M. Fernandes, M. A. Cruz-hofling et al., snake venom, Muscle & Nerve, vol.39, issue.4, pp.449-459, 2003.
DOI : 10.1002/mus.10453

M. Thomas, B. Langley, C. Berry, M. Sharma, S. Kirk et al., Myostatin, a Negative Regulator of Muscle Growth, Functions by Inhibiting Myoblast Proliferation, Journal of Biological Chemistry, vol.275, issue.51, pp.40235-40243, 2000.
DOI : 10.1074/jbc.M004356200

J. G. Tidball, Inflammatory processes in muscle injury and repair, AJP: Regulatory, Integrative and Comparative Physiology, vol.288, issue.2, pp.345-353, 2005.
DOI : 10.1152/ajpregu.00454.2004

E. Vasyutina, D. C. Lenhard, and C. Birchmeie, Notch Function in Myogenesis, Cell Cycle, vol.6, issue.12, pp.1451-1454, 2007.
DOI : 10.4161/cc.6.12.4372

B. Velasco, L. Cacicedo, J. Escalada, J. Lopez-fernandez, and F. Sanchez-franco, Growth Hormone Gene Expression and Secretion in Aging Rats Is Age Dependent and Not Age-Associated Weight Increase Related, Endocrinology, vol.139, issue.3, pp.1314-1320, 1998.
DOI : 10.1210/en.139.3.1314

S. A. Villalta, H. X. Nguyen, B. Deng, T. Gotoh, and J. G. Tidball, Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy, Human Molecular Genetics, vol.18, issue.3, pp.482-496, 2009.
DOI : 10.1093/hmg/ddn376

D. Volonte, Y. Liu, and F. Galbiati, The modulation of caveolin-1 expression controls satellite cell activation during muscle repair, The FASEB Journal, vol.19, pp.237-239, 2005.
DOI : 10.1096/fj.04-2215fje

K. R. Wagner, Muscle regeneration through myostatin inhibition, Current Opinion in Rheumatology, vol.17, issue.6, pp.720-724, 2005.
DOI : 10.1097/01.bor.0000184163.61558.ca

F. M. Watt and B. L. Hogan, Out of Eden: Stem Cells and Their Niches, Science, vol.287, issue.5457, pp.1427-1430, 2000.
DOI : 10.1126/science.287.5457.1427

N. Winn, A. Paul, A. Musaró, and N. Rosenthal, Insulin-like Growth Factor Isoforms in Skeletal Muscle Aging, Regeneration, and Disease, Cold Spring Harbor Symposia on Quantitative Biology, vol.122, issue.0, pp.507-518, 2002.
DOI : 10.1002/(SICI)1098-2795(199909)54:1<32::AID-MRD5>3.0.CO;2-U

Z. Yablonka-reuveni and A. J. Rivera, Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers, Developmental Biology, vol.164, issue.2, pp.588-603, 1994.
DOI : 10.1006/dbio.1994.1226

Z. Yan, S. Choi, X. Liu, M. Zhang, J. J. Schageman et al., Highly Coordinated Gene Regulation in Mouse Skeletal Muscle Regeneration, Journal of Biological Chemistry, vol.278, issue.10, pp.8826-8836, 2003.
DOI : 10.1074/jbc.M209879200

S. I. Zacks and M. F. Sheff, Age-related impeded regeneration of mouse minced anterior tibial muscle, Muscle & Nerve, vol.40, issue.2, pp.152-161, 1982.
DOI : 10.1002/mus.880050213

P. S. Zammit, The Muscle Satellite Cell: The Story of a Cell on the Edge!, Skeletal Muscle Repair and Regeneration (Advances in Muscle Research, pp.45-64, 2008.
DOI : 10.1007/978-1-4020-6768-6_3