H. Weintraub, The MyoD family and myogenesis: Redundancy, networks, and thresholds, Cell, vol.75, issue.7, pp.1241-1244, 1993.
DOI : 10.1016/0092-8674(93)90610-3

M. Kitzmann and A. Fernandez, Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts, Cellular and Molecular Life Sciences, vol.58, issue.4, pp.571-579, 2001.
DOI : 10.1007/PL00000882

R. Maione and P. Amati, Interdependence between muscle differentiation and cell-cycle control, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1332, issue.1, pp.1332-1351, 1997.
DOI : 10.1016/S0304-419X(96)00036-4

P. L. Puri and V. Sartorelli, Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications, Journal of Cellular Physiology, vol.14, issue.2, pp.155-173, 2000.
DOI : 10.1002/1097-4652(200011)185:2<155::AID-JCP1>3.0.CO;2-Z

D. A. Bergstrom, B. H. Penn, A. Strand, R. L. Perry, M. A. Rudnicki et al., Promoter-Specific Regulation of MyoD Binding and Signal Transduction Cooperate to Pattern Gene Expression, Molecular Cell, vol.9, issue.3, pp.587-600, 2002.
DOI : 10.1016/S1097-2765(02)00481-1

S. J. Tapscott, The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription, Development, vol.132, issue.12, pp.2685-2695, 2005.
DOI : 10.1242/dev.01874

S. Albini and P. L. Puri, SWI/SNF complexes, chromatin remodeling and skeletal myogenesis: It's time to exchange!, Experimental Cell Research, vol.316, issue.18, pp.3073-3080, 2010.
DOI : 10.1016/j.yexcr.2010.05.023

C. A. Berkes and S. J. Tapscott, MyoD and the transcriptional control of myogenesis, Seminars in Cell & Developmental Biology, vol.16, issue.4-5, pp.585-595, 2005.
DOI : 10.1016/j.semcdb.2005.07.006

V. Sartorelli and G. Caretti, Mechanisms underlying the transcriptional regulation of skeletal myogenesis, Current Opinion in Genetics & Development, vol.15, issue.5, pp.528-535, 2005.
DOI : 10.1016/j.gde.2005.04.015

H. Yahi, O. Philipot, V. Guasconi, L. Fritsch, and S. Ait-si-ali, Chromatin modification and muscle differentiation, Expert Opinion on Therapeutic Targets, vol.303, issue.6, pp.923-934, 2006.
DOI : 10.1517/14712598.5.2.221

R. Figliola and R. Maione, MyoD induces the expression of p57Kip2 in cells lacking p21Cip1/Waf1: Overlapping and distinct functions of the two cdk inhibitors, Journal of Cellular Physiology, vol.11, issue.3, pp.468-475, 2004.
DOI : 10.1002/jcp.20044

P. Zhang, C. Wong, D. Liu, M. Finegold, J. W. Harper et al., (CIP1) and p57(KIP2) control muscle differentiation at the myogenin step, Genes Dev, vol.13, pp.21-213, 1999.

D. P. Osborn, K. Li, Y. Hinits, and S. M. Hughes, Cdkn1c drives muscle differentiation through a positive feedback loop with Myod, Developmental Biology, vol.350, issue.2, pp.464-475, 2011.
DOI : 10.1016/j.ydbio.2010.12.010

E. G. Reynaud, M. P. Leibovitch, L. A. Tintignac, K. Pelpel, M. Guillier et al., Stabilization of MyoD by Direct Binding to p57Kip2, Journal of Biological Chemistry, vol.275, issue.25, pp.18767-18776, 2000.
DOI : 10.1074/jbc.M907412199

W. J. Swanger and J. M. Roberts, P57KIP2 targeted disruption and beckwith-wiedemann syndrome: Is the inhibitor just a contributor?, BioEssays, vol.7, issue.10, pp.839-842, 1997.
DOI : 10.1002/bies.950191002

I. Hatada, A. Nabetani, H. Morisaki, Z. Xin, S. Ohishi et al., New p57 KIP2 mutations in Beckwith-Wiedemann syndrome, Human Genetics, vol.100, issue.5-6, pp.681-683, 1997.
DOI : 10.1007/s004390050573

Y. Yan, J. Frisen, M. H. Lee, J. Massague, and M. Barbacid, Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development., Genes & Development, vol.11, issue.8, pp.973-983, 1997.
DOI : 10.1101/gad.11.8.973

P. Zhang, N. J. Liegeois, C. Wong, M. Finegold, H. Hou et al., Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith???Wiedemann syndrome, Nature, vol.387, issue.6629, pp.151-158, 1997.
DOI : 10.1038/387151a0

I. S. Pateras, K. Apostolopoulou, K. Niforou, A. Kotsinas, and V. G. Gorgoulis, p57KIP2: "Kip"ing the Cell under Control, Molecular Cancer Research, vol.7, issue.12, pp.1902-1919, 2009.
DOI : 10.1158/1541-7786.MCR-09-0317

I. Hatada and T. Mukai, Genomic imprinting of p57KIP2, a cyclin???dependent kinase inhibitor, in mouse, Nature Genetics, vol.12, issue.2, pp.204-206, 1995.
DOI : 10.1038/ng0694supp-220

S. Matsuoka, J. S. Thompson, M. C. Edwards, J. M. Bartletta, P. Grundy et al., Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15., Proc. Natl Acad. Sci. USA, pp.3026-3030, 1996.
DOI : 10.1073/pnas.93.7.3026

E. R. Maher and W. Reik, Beckwith-Wiedemann syndrome: imprinting in clusters revisited, Journal of Clinical Investigation, vol.105, issue.3, pp.247-252, 2000.
DOI : 10.1172/JCI9340

G. V. Fitzpatrick, P. D. Soloway, and M. J. Higgins, Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1, Nature Genetics, vol.9, issue.3, pp.426-431, 2002.
DOI : 10.1038/ng988

S. Horike, K. Mitsuya, M. Meguro, N. Kotobuki, A. Kashiwagi et al., Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome, Human Molecular Genetics, vol.9, issue.14, pp.2075-2083, 2000.
DOI : 10.1093/hmg/9.14.2075

J. Y. Shin, G. V. Fitzpatrick, and M. J. Higgins, Two distinct mechanisms of silencing by the KvDMR1 imprinting control region, The EMBO Journal, vol.387, issue.1, pp.168-178, 2008.
DOI : 10.1038/sj.emboj.7601960

H. Yatsuki, K. Joh, K. Higashimoto, H. Soejima, Y. Arai et al., Domain Regulation of Imprinting Cluster in Kip2/Lit1 Subdomain on Mouse Chromosome 7F4/F5: Large-Scale DNA Methylation Analysis Reveals That DMR-Lit1 Is a Putative Imprinting Control Region, Genome Research, vol.12, issue.12, pp.1860-1870, 2002.
DOI : 10.1101/gr.110702

G. Vaccarello, R. Figliola, S. Cramerotti, F. Novelli, and R. Maione, p57Kip2 is Induced by MyoD Through a p73-dependent Pathway, Journal of Molecular Biology, vol.356, issue.3, pp.578-588, 2006.
DOI : 10.1016/j.jmb.2005.12.024

R. Figliola, A. Busanello, G. Vaccarello, and R. Maione, Regulation of p57KIP2 during Muscle Differentiation: Role of Egr1, Sp1 and DNA Hypomethylation, Journal of Molecular Biology, vol.380, issue.2, pp.265-277, 2008.
DOI : 10.1016/j.jmb.2008.05.004

H. Hagege, P. Klous, C. Braem, E. Splinter, J. Dekker et al., Quantitative analysis of chromosome conformation capture assays (3C-qPCR), Nature Protocols, vol.9, issue.7, pp.1722-1733, 2007.
DOI : 10.1038/nprot.2007.243

Y. Cao, Z. Yao, D. Sarkar, M. Lawrence, G. J. Sanchez et al., Genome-wide MyoD Binding in Skeletal Muscle Cells: A Potential for Broad Cellular Reprogramming, Developmental Cell, vol.18, issue.4, pp.662-674, 2010.
DOI : 10.1016/j.devcel.2010.02.014

G. V. Fitzpatrick, E. M. Pugacheva, J. Y. Shin, Z. Abdullaev, Y. Yang et al., Allele-Specific Binding of CTCF to the Multipartite Imprinting Control Region KvDMR1, Molecular and Cellular Biology, vol.27, issue.7, pp.2636-2647, 2007.
DOI : 10.1128/MCB.02036-06

N. Thakur, M. Kanduri, C. Holmgren, R. Mukhopadhyay, and C. Kanduri, Bidirectional Silencing and DNA Methylation-sensitive Methylation-spreading Properties of the Kcnq1 Imprinting Control Region Map to the Same Regions, Journal of Biological Chemistry, vol.278, issue.11, pp.9514-9519, 2003.
DOI : 10.1074/jbc.M212203200

X. P. Zhong and M. S. Krangel, An enhancer-blocking element between alpha and delta gene segments within the human T cell receptor alpha/delta locus, Proc. Natl. Acad. Sci. USA, pp.5219-5224, 1997.

C. Kanduri, G. Fitzpatrick, R. Mukhopadhyay, M. Kanduri, V. Lobanenkov et al., A Differentially Methylated Imprinting Control Region within the Kcnq1 Locus Harbors a Methylation-sensitive Chromatin Insulator, Journal of Biological Chemistry, vol.277, issue.20, pp.18106-18110, 2002.
DOI : 10.1074/jbc.M200031200

W. M. Gombert, S. D. Farris, E. D. Rubio, K. M. Morey-rosler, W. H. Schubach et al., The c-myc Insulator Element and Matrix Attachment Regions Define the c-myc Chromosomal Domain, Molecular and Cellular Biology, vol.23, issue.24, pp.9338-9348, 2003.
DOI : 10.1128/MCB.23.24.9338-9348.2003

J. R. Raab and R. T. Kamakaka, Insulators and promoters: closer than we think, Nature Reviews Genetics, vol.18, issue.6, pp.439-446, 2010.
DOI : 10.1038/nrg2765

A. Lewis and W. Reik, How imprinting centres work, Cytogenetic and Genome Research, vol.113, issue.1-4, pp.81-89, 2006.
DOI : 10.1159/000090818

L. B. Wan and M. S. Bartolomei, Chapter 7 Regulation of Imprinting in Clusters: Noncoding RNAs Versus Insulators, Adv. Genet, vol.61, pp.207-223, 2008.
DOI : 10.1016/S0065-2660(07)00007-7

S. C. Andrews, M. D. Wood, S. J. Tunster, S. C. Barton, M. A. Surani et al., Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7, BMC Developmental Biology, vol.7, issue.1, p.53, 2007.
DOI : 10.1186/1471-213X-7-53

A. Lewis, K. Green, C. Dawson, L. Redrup, K. D. Huynh et al., Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo, Development, vol.133, issue.21, pp.4203-4210, 2006.
DOI : 10.1242/dev.02612

D. Umlauf, Y. Goto, R. Cao, F. Cerqueira, A. Wagschal et al., Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes, Nature Genetics, vol.125, issue.12, pp.1296-1300, 2004.
DOI : 10.1038/nature02222

E. Kavanagh and B. Joseph, The hallmarks of CDKN1C (p57, KIP2) in cancer, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1816, issue.1, pp.1816-50, 2011.
DOI : 10.1016/j.bbcan.2011.03.002

M. Gaszner and G. Felsenfeld, Insulators: exploiting transcriptional and epigenetic mechanisms, Nature Reviews Genetics, vol.9, issue.9, pp.703-713, 2006.
DOI : 10.1038/nrg1925

J. Zlatanova and P. Caiafa, CCCTC-binding factor: to loop or to bridge, Cellular and Molecular Life Sciences, vol.66, issue.10, pp.1647-1660, 2009.
DOI : 10.1007/s00018-009-8647-z

M. V. Soldovieri, F. Miceli, and M. Taglialatela, Driving With No Brakes: Molecular Pathophysiology of Kv7 Potassium Channels, Physiology, vol.26, issue.5, pp.365-376, 2011.
DOI : 10.1152/physiol.00009.2011

Z. Yan, S. Choi, X. Liu, M. Zhang, J. J. Schageman et al., Highly Coordinated Gene Regulation in Mouse Skeletal Muscle Regeneration, Journal of Biological Chemistry, vol.278, issue.10, pp.8826-8836, 2003.
DOI : 10.1074/jbc.M209879200

A. Varrault, C. Gueydan, A. Delalbre, A. Bellmann, S. Houssami et al., Zac1 Regulates an Imprinted Gene Network Critically Involved in the Control of Embryonic Growth, Developmental Cell, vol.11, issue.5, pp.711-722, 2006.
DOI : 10.1016/j.devcel.2006.09.003

URL : https://hal.archives-ouvertes.fr/inserm-00158399

A. Gabory, M. A. Ripoche, L. Digarcher, A. Watrin, F. Ziyyat et al., H19 acts as a trans regulator of the imprinted gene network controlling growth in mice, Development, vol.136, issue.20, pp.3413-3421, 2009.
DOI : 10.1242/dev.036061

P. Kury, R. Greiner-petter, C. Cornely, T. Jurgens, and H. W. Muller, Mammalian achaete scute homolog 2 is expressed in the adult sciatic nerve and regulates the expression of Krox24, Mob-1, CXCR4, and p57kip2 in Schwann cells, 2002.

G. Rothschild, X. Zhao, A. Iavarone, and A. Lasorella, E Proteins and Id2 Converge on p57Kip2 To Regulate Cell Cycle in Neural Cells, Molecular and Cellular Biology, vol.26, issue.11, pp.4351-4361, 2006.
DOI : 10.1128/MCB.01743-05

Y. Cao, R. M. Kumar, B. H. Penn, C. A. Berkes, C. Kooperberg et al., Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters, The EMBO Journal, vol.94, issue.3, pp.502-511, 2006.
DOI : 10.1038/sj.emboj.7600958

T. Caspary, M. A. Cleary, C. C. Baker, X. J. Guan, and S. M. Tilghman, Multiple Mechanisms Regulate Imprinting of the Mouse Distal Chromosome 7 Gene Cluster, Molecular and Cellular Biology, vol.18, issue.6, pp.3466-3474, 1998.
DOI : 10.1128/MCB.18.6.3466

H. Weintraub, R. Davis, D. Lockshon, and A. Lassar, MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation., Proc. Natl. Acad. Sci. USA, pp.5623-5627, 1990.
DOI : 10.1073/pnas.87.15.5623