A. Engel and P. Walter, Membrane lysis during biological membrane fusion: collateral damage by misregulated fusion machines, The Journal of Cell Biology, vol.75, issue.2, pp.181-186, 2008.
DOI : 10.1038/nsmb.1451

C. A. Ydenberg and M. D. Rose, Yeast Mating, Methods Mol. Biol, vol.475, pp.3-20, 2008.
DOI : 10.1007/978-1-59745-250-2_1

H. Jin, Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast, The Journal of Cell Biology, vol.173, issue.4, pp.813-826, 2008.
DOI : 10.1091/mbc.E06-03-0177

M. G. Heiman, The Golgi-resident protease Kex2 acts in conjunction with Prm1 to facilitate cell fusion during yeast mating, The Journal of Cell Biology, vol.7, issue.2, pp.209-222, 2007.
DOI : 10.1111/j.1365-2958.1992.tb01496.x

P. S. Aguilar, Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating, Proceedings of the National Academy of Sciences, vol.107, issue.9, pp.4170-4175, 2010.
DOI : 10.1073/pnas.0914094107

A. Fleissner, The Saccharomyces cerevisiae PRM1 Homolog in Neurospora crassa Is Involved in Vegetative and Sexual Cell Fusion Events but Also Has Postfertilization Functions, Genetics, vol.181, issue.2, pp.497-510, 2009.
DOI : 10.1534/genetics.108.096149

A. Pandey, Role of a Mitogen-Activated Protein Kinase Pathway during Conidial Germination and Hyphal Fusion in Neurospora crassa, Eukaryotic Cell, vol.3, issue.2, pp.348-358, 2004.
DOI : 10.1128/EC.3.2.348-358.2004

S. Maerz, The Nuclear Dbf2-Related Kinase COT1 and the Mitogen-Activated Protein Kinases MAK1 and MAK2 Genetically Interact to Regulate Filamentous Growth, Hyphal Fusion and Sexual Development in Neurospora crassa, Genetics, vol.179, issue.3, pp.1313-1325, 2008.
DOI : 10.1534/genetics.108.089425

A. Fleissner, Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion, Proceedings of the National Academy of Sciences, vol.106, issue.46, pp.19387-19392, 2009.
DOI : 10.1073/pnas.0907039106

N. D. Read, Self-signalling and self-fusion in filamentous fungi, Current Opinion in Microbiology, vol.12, issue.6, pp.608-615, 2009.
DOI : 10.1016/j.mib.2009.09.008

A. B. Goryachev, Excitable behavior can explain the ???ping-pong??? mode of communication between cells using the same chemoattractant, BioEssays, vol.108, issue.4, pp.259-266, 2012.
DOI : 10.1002/bies.201100135

S. Haralalka, Recent advances in imaging embryonic myoblast fusion in Drosophila, Methods, vol.56, issue.1, pp.55-62, 2012.
DOI : 10.1016/j.ymeth.2011.08.008

S. M. Abmayr and G. K. Pavlath, Myoblast fusion: lessons from flies and mice, Development, vol.139, issue.4, pp.641-656, 2012.
DOI : 10.1242/dev.068353

S. Onel, Role of the actin cytoskeleton with FuRMAS during Drosophila myoblast fusion and first functionally conserved factors in vertebrates The actin regulator N-WASp is required for muscle-cell fusion in mice, Cell Fusions Proc. Natl. Acad. Sci. U.S.A. 109, pp.139-170, 2011.

B. E. Richardson, SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion, Development, vol.134, issue.24, pp.4357-4367, 2007.
DOI : 10.1242/dev.010678

G. Schafer, The Wiskott???Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila, Developmental Biology, vol.304, issue.2, pp.664-674, 2007.
DOI : 10.1016/j.ydbio.2007.01.015

R. Massarwa, WIP/WASp-Based Actin-Polymerization Machinery Is Essential for Myoblast Fusion in Drosophila, Developmental Cell, vol.12, issue.4, pp.557-569, 2007.
DOI : 10.1016/j.devcel.2007.01.016

S. Kim, A Critical Function for the Actin Cytoskeleton in Targeted Exocytosis of Prefusion Vesicles during Myoblast Fusion, Developmental Cell, vol.12, issue.4, pp.571-586, 2007.
DOI : 10.1016/j.devcel.2007.02.019

K. L. Sens, An invasive podosome-like structure promotes fusion pore formation during myoblast fusion, The Journal of Cell Biology, vol.128, issue.5, pp.1013-1027, 2010.
DOI : 10.1083/jcb.200109057

S. Haralalka, Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila, Development, vol.138, issue.8, pp.1551-1562, 2011.
DOI : 10.1242/dev.057653

P. Mukherjee, The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis, Development, vol.138, issue.11, pp.2347-2357, 2011.
DOI : 10.1242/dev.055012

B. Gildor, The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion, EMBO reports, vol.125, issue.9, pp.1043-1050, 2009.
DOI : 10.1083/jcb.200109057

P. Jin, Competition between Blown Fuse and WASP for WIP Binding Regulates the Dynamics of WASP-Dependent Actin Polymerization In??Vivo, Developmental Cell, vol.20, issue.5, pp.623-638, 2011.
DOI : 10.1016/j.devcel.2011.04.007

D. A. Kesper, is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS), Developmental Dynamics, vol.113, issue.2, pp.404-415, 2007.
DOI : 10.1002/dvdy.21035

R. Duan, Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo, The Journal of Cell Biology, vol.18, issue.1, pp.169-185, 2012.
DOI : 10.1083/jcb.200109057

D. A. Murphy and S. A. Courtneidge, The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function, Nature Reviews Molecular Cell Biology, vol.110, issue.7, pp.413-426, 2011.
DOI : 10.1038/nrm3141

L. Helming and S. Gordon, Molecular mediators of macrophage fusion, Trends in Cell Biology, vol.19, issue.10, pp.514-522, 2009.
DOI : 10.1016/j.tcb.2009.07.005

L. Helming, Essential role of DAP12 signaling in macrophage programming into a fusion-competent state NFATc1 induces osteoclast fusion via upregulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP), Sci. Signal. Mol. Endocrinol, vol.1, issue.22, pp.176-185, 2008.

M. Yu, NF-??B Signaling Participates in Both RANKL- and IL-4-Induced Macrophage Fusion: Receptor Cross-Talk Leads to Alterations in NF-??B Pathways, The Journal of Immunology, vol.187, issue.4, pp.1797-1806, 2011.
DOI : 10.4049/jimmunol.1002628

M. Yang, Osteoclast stimulatory transmembrane protein (OC-STAMP), a novel protein induced by RANKL that promotes osteoclast differentiation, Journal of Cellular Physiology, vol.107, issue.2, pp.497-505, 2008.
DOI : 10.1002/jcp.21331

E. A. Skokos, Lack of TNF-?????Induced MMP-9 Production and Abnormal E-Cadherin Redistribution Associated with Compromised Fusion in MCP-1???Null Macrophages, The American Journal of Pathology, vol.178, issue.5, pp.2311-2321, 2011.
DOI : 10.1016/j.ajpath.2011.01.045

B. K. Mcmichael, Regulated Proteolysis of Nonmuscle Myosin IIA Stimulates Osteoclast Fusion, Journal of Biological Chemistry, vol.284, issue.18, pp.12266-12275, 2009.
DOI : 10.1074/jbc.M808621200

W. Cui, The intracellular domain of CD44 promotes the fusion of macrophages, Blood, vol.107, issue.2, pp.796-805, 2006.
DOI : 10.1182/blood-2005-05-1902

P. Gonzalo, MT1-MMP Is Required for Myeloid Cell Fusion via Regulation of Rac1 Signaling, Developmental Cell, vol.18, issue.1, pp.77-89, 2010.
DOI : 10.1016/j.devcel.2009.11.012

I. Lemaire, The P2X7 Receptor and Pannexin-1 Are Both Required for the Promotion of Multinucleated Macrophages by the Inflammatory Cytokine GM-CSF, The Journal of Immunology, vol.187, issue.7, pp.3878-3887, 2011.
DOI : 10.4049/jimmunol.1002780

F. M. Kara, Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function, The FASEB Journal, vol.24, issue.7, pp.2325-2333, 2010.
DOI : 10.1096/fj.09-147447

L. Helming and S. Gordon, Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules, European Journal of Immunology, vol.18, issue.1, pp.33-42, 2007.
DOI : 10.1002/eji.200636788

M. Yagi, DC-STAMP is essential for cell???cell fusion in osteoclasts and foreign body giant cells, The Journal of Experimental Medicine, vol.77, issue.3, pp.345-351, 2005.
DOI : 10.1038/nature01911

J. M. Pawelek and A. K. Chakraborty, Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis, Nature Reviews Cancer, vol.94, issue.5, pp.377-386, 2008.
DOI : 10.1038/nrc2371

A. E. Powell, Fusion between Intestinal Epithelial Cells and Macrophages in a Cancer Context Results in Nuclear Reprogramming, Cancer Research, vol.71, issue.4, pp.1497-1505, 2011.
DOI : 10.1158/0008-5472.CAN-10-3223

A. Z. Rizvi, Bone marrow-derived cells fuse with normal and transformed intestinal stem cells, Proceedings of the National Academy of Sciences, vol.103, issue.16, pp.6321-6325, 2006.
DOI : 10.1073/pnas.0508593103

A. Chakraborty, Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient, Bone Marrow Transplantation, vol.34, issue.2, pp.183-186, 2004.
DOI : 10.1038/sj.bmt.1704547

T. L. Andersen, Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer???host partnership?, The Journal of Pathology, vol.120, issue.1, pp.10-17, 2007.
DOI : 10.1002/path.2078

B. Huppertz and M. Gauster, Trophoblast Fusion, Adv. Exp. Med. Biol, vol.713, pp.81-95, 2011.
DOI : 10.1007/978-94-007-0763-4_6

S. Handwerger, New insights into the regulation of human cytotrophoblast cell differentiation, Molecular and Cellular Endocrinology, vol.323, issue.1, pp.94-104, 2010.
DOI : 10.1016/j.mce.2009.12.015

D. G. Simmons, Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth, Development, vol.135, issue.12, pp.2083-2091, 2008.
DOI : 10.1242/dev.020099

C. P. Chen, Functional Characterization of the Human Placental Fusogenic Membrane Protein Syncytin 21, Biology of Reproduction, vol.79, issue.5, pp.815-823, 2008.
DOI : 10.1095/biolreprod.108.069765

A. Dupressoir, Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae, Proceedings of the National Academy of Sciences, vol.102, issue.3, pp.725-730, 2005.
DOI : 10.1073/pnas.0406509102

A. Dupressoir, A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast, Proceedings of the National Academy of Sciences, vol.108, issue.46, pp.1164-1173, 2011.
DOI : 10.1073/pnas.1112304108

A. Dupressoir, Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene, Proceedings of the National Academy of Sciences, vol.106, issue.29, pp.12127-12132, 2009.
DOI : 10.1073/pnas.0902925106

O. Heidmann, Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new "syncytin" in a third order of mammals, Retrovirology, vol.6, issue.1, p.107, 2009.
DOI : 10.1186/1742-4690-6-107

G. 78-cornelis, Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora, Proceedings of the National Academy of Sciences, vol.109, issue.7, pp.432-441, 2012.
DOI : 10.1073/pnas.1115346109

B. Bjerregaard, Syncytin is involved in breast cancer-endothelial cell fusions, Cellular and Molecular Life Sciences, vol.63, issue.16, pp.1906-1911, 2006.
DOI : 10.1007/s00018-006-6201-9

K. Soe, Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion, Bone, vol.48, issue.4, pp.837-846, 2011.
DOI : 10.1016/j.bone.2010.11.011

G. Shemer, EFF-1 Is Sufficient to Initiate and Execute Tissue-Specific Cell Fusion in C. elegans, Current Biology, vol.14, issue.17, pp.1587-1591, 2004.
DOI : 10.1016/j.cub.2004.07.059

J. J. Campo, Fusogenic Activity of EFF-1 Is Regulated via Dynamic Localization in Fusing Somatic Cells of C. elegans, Current Biology, vol.15, issue.5, pp.413-423, 2005.
DOI : 10.1016/j.cub.2005.01.054

A. Sapir, AFF-1, a FOS-1-Regulated Fusogen, Mediates Fusion of the Anchor Cell in C. elegans, Developmental Cell, vol.12, issue.5, pp.683-698, 2007.
DOI : 10.1016/j.devcel.2007.03.003

W. A. Mohler, The Type I Membrane Protein EFF-1 Is Essential for Developmental Cell Fusion, Developmental Cell, vol.2, issue.3, pp.355-362, 2002.
DOI : 10.1016/S1534-5807(02)00129-6

T. Gattegno, Genetic Control of Fusion Pore Expansion in the Epidermis of Caenorhabditis elegans, Molecular Biology of the Cell, vol.18, issue.4, pp.1153-1166, 2007.
DOI : 10.1091/mbc.E06-09-0855

B. Podbilewicz, The C. elegans Developmental Fusogen EFF-1 Mediates Homotypic Fusion in Heterologous Cells and In Vivo, Developmental Cell, vol.11, issue.4, pp.471-481, 2006.
DOI : 10.1016/j.devcel.2006.09.004

O. Avinoam, Conserved Eukaryotic Fusogens Can Fuse Viral Envelopes to Cells, Science, vol.332, issue.6029, pp.589-592, 2011.
DOI : 10.1126/science.1202333

M. Oren-suissa, The Fusogen EFF-1 Controls Sculpting of Mechanosensory Dendrites, Science, vol.328, issue.5983, pp.1285-1288, 2010.
DOI : 10.1126/science.1189095

J. P. Rasmussen, Notch Signaling and Morphogenesis of Single-Cell Tubes in the C. elegans Digestive Tract, Developmental Cell, vol.14, issue.4, pp.559-569, 2008.
DOI : 10.1016/j.devcel.2008.01.019

A. Ghosh-roy, Calcium and Cyclic AMP Promote Axonal Regeneration in Caenorhabditis elegans and Require DLK-1 Kinase, Journal of Neuroscience, vol.30, issue.9, pp.3175-3183, 2010.
DOI : 10.1523/JNEUROSCI.5464-09.2010

C. E. Stone, Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system, Developmental Biology, vol.329, issue.2, pp.201-211, 2009.
DOI : 10.1016/j.ydbio.2009.02.030

B. Neumann, Axonal regeneration proceeds through specific axonal fusion in transected C. elegans neurons, Developmental Dynamics, vol.7, issue.6, pp.1365-1372, 2011.
DOI : 10.1002/dvdy.22606

K. Kontani, Repression of Cell-Cell Fusion by Components of the C. elegans Vacuolar ATPase Complex, Developmental Cell, vol.8, issue.5, pp.787-794, 2005.
DOI : 10.1016/j.devcel.2005.02.018

C. Brabin, The Caenorhabditis elegans GATA factor ELT- 1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate LIN-39 and the EGFR/RAS/MAPK pathway regulate C. elegans vulval morphogenesis via the VAB-23 zinc finger protein, PLoS Genet. Development, vol.7, issue.138, pp.4649-4660, 2011.

J. Choi, N-ethylmaleimide sensitive factor is required for fusion of the C. elegans uterine anchor cell, Developmental Biology, vol.297, issue.1, 2006.
DOI : 10.1016/j.ydbio.2006.04.471

L. Friedlander-shani and B. Podbilewicz, Heterochronic Control of AFF-1-Mediated Cell-to-Cell Fusion in C. elegans, Adv. Exp. Med. Biol, vol.713, pp.5-11, 2011.
DOI : 10.1007/978-94-007-0763-4_2

X. Huang, The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells, Developmental Biology, vol.333, issue.2, pp.337-347, 2009.
DOI : 10.1016/j.ydbio.2009.07.005

URL : https://hal.archives-ouvertes.fr/in2p3-00013718

D. A. Mason, dmd-3, a doublesex-related gene regulated by tra-1, governs sex-specific morphogenesis in C. elegans, Development, vol.135, issue.14, pp.2373-2382, 2008.
DOI : 10.1242/dev.017046

Y. Satouh, Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1, Journal of Cell Science, vol.125, issue.21, pp.4985-4990, 2012.
DOI : 10.1242/jcs.100867