W. Catterall, S. Cestèle, V. Yarov-yarovoy, F. Yu, K. Konoki et al., Voltage-gated ion channels and gating modifier toxins, Toxicon, vol.49, issue.2, pp.124-141, 2007.
DOI : 10.1016/j.toxicon.2006.09.022

URL : https://hal.archives-ouvertes.fr/inserm-00378020

R. Lewis, Ion Channel Toxins and Therapeutics: From Cone Snail Venoms to Ciguatera, Therapeutic Drug Monitoring, vol.22, issue.1, pp.61-64, 2000.
DOI : 10.1097/00007691-200002000-00013

K. Gazarian, T. Gazarian, R. Hernandez, and L. Possani, Immunology of scorpion toxins and perspectives for generation of anti-venom vaccines, Vaccine, vol.23, issue.26, pp.3357-3368, 2005.
DOI : 10.1016/j.vaccine.2004.12.027

B. Priest and G. Kaczorowski, Blocking sodium channels to treat neuropathic pain, Expert Opinion on Therapeutic Targets, vol.144, issue.3, pp.291-306, 2007.
DOI : 10.1124/jpet.106.104737

S. Zhu and B. Gao, Molecular characterization of a possible progenitor sodium channel toxin from the Old World scorpion Mesobuthus martensii, FEBS Lett, issue.25, pp.5805979-5987, 2006.

S. Zhu and B. Gao, Molecular characterization of a new scorpion venom lipolysis activating peptide: Evidence for disulfide bridge-mediated functional switch of peptides, FEBS Letters, vol.101, issue.30, pp.5806825-5806861, 2006.
DOI : 10.1016/j.febslet.2006.11.040

L. Possani, B. Becerril, M. Delepierre, and J. Tytgat, Scorpion toxins specific for Na+-channels, European Journal of Biochemistry, vol.22, issue.2, pp.287-300, 1999.
DOI : 10.1016/0076-6879(90)83018-5

URL : https://hal.archives-ouvertes.fr/pasteur-00370477

B. Priest, K. Blumenthal, J. Smith, V. Warren, and M. Smith, ProTx-I and ProTx-II: Gating modifiers of voltage-gated sodium channels, Toxicon, vol.49, issue.2, pp.194-201, 2007.
DOI : 10.1016/j.toxicon.2006.09.014

C. Kopeyan, G. Martinez, S. Lissitzky, F. Miranda, and H. Rochat, Disulfide Bonds of Toxin II of the Scorpion Androctonus australis Hector, European Journal of Biochemistry, vol.14, issue.3, pp.483-489, 1974.
DOI : 10.1016/0014-5793(70)80470-7

H. Darbon, E. Zlotkin, C. Kopeyan, J. Van-rietschoten, and H. Rochat, Covalent structure of the insect toxin of the North African scorpion Androctonus australis Hector, International Journal of Peptide and Protein Research, vol.3, issue.4, pp.320-330, 1982.
DOI : 10.1111/j.1399-3011.1982.tb00897.x

B. Inceoglu, J. Lango, J. Wu, P. Hawkins, J. Southern et al., (Buthidae), European Journal of Biochemistry, vol.48, issue.20, pp.5407-5413, 2001.
DOI : 10.1046/j.0014-2956.2001.02479.x

L. Rodríguez-de, R. Vega, and L. Possani, Current views on scorpion toxins specific for K+-channels, Toxicon, vol.43, issue.8, pp.865-75, 2004.
DOI : 10.1016/j.toxicon.2004.03.022

C. Legros and M. Martin-eauclaire, Scorpion toxins] C R Seances, Soc Biol Fil, vol.191, issue.3, pp.345-80, 1997.

C. Legros, V. Pollmann, H. Knaus, A. Farrell, H. Darbon et al., Generating a High Affinity Scorpion Toxin Receptor in KcsA-Kv1.3 Chimeric Potassium Channels, Journal of Biological Chemistry, vol.275, issue.22, pp.16918-16924, 2000.
DOI : 10.1074/jbc.275.22.16918

F. Bontems, C. Roumestand, B. Gilquin, A. Ménez, and F. Toma, Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins, Science, vol.254, issue.5037, pp.1521-1523, 1991.
DOI : 10.1126/science.1720574

F. Bontems, C. Roumestand, P. Boyot, B. Gilquin, Y. Doljansky et al., Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR Charybdotoxin possesses a structural motif found in other scorpion toxins, European Journal of Biochemistry, vol.77, issue.1
DOI : 10.1016/0014-5793(84)80014-9

P. Tan, A. Veeramani, K. Srinivasan, S. Ranganathan, and V. Brusic, SCORPION2: A database for structure???function analysis of scorpion toxins, Toxicon, vol.47, issue.3, pp.356-63, 2006.
DOI : 10.1016/j.toxicon.2005.12.001

F. Jungo and A. Bairoch, Tox-Prot, the toxin protein annotation program of the Swiss-Prot protein knowledgebase, Toxicon, vol.45, issue.3, pp.293-301, 2005.
DOI : 10.1016/j.toxicon.2004.10.018

A. Inceoglu, Y. Hayashida, J. Lango, A. Ishida, and B. Hammock, A single charged surface residue modifies the activity of ikitoxin, a beta-type Na+ channel toxin from Parabuthus transvaalicus, European Journal of Biochemistry, vol.494, issue.7, pp.5369-5376, 2002.
DOI : 10.1046/j.1432-1033.2002.03171.x

B. Inceoglu, J. Lango, I. Pessah, and B. Hammock, Three structurally related, highly potent, peptides from the venom of Parabuthus transvaalicus possess divergent biological activity, Toxicon, vol.45, issue.6, pp.727-733, 2005.
DOI : 10.1016/j.toxicon.2005.01.020

N. Srairi-abid, J. Guijarro, R. Benkhalifa, M. Mantegazza, A. Cheikh et al., channels, Biochemical Journal, vol.388, issue.2, pp.455-64, 2005.
DOI : 10.1042/BJ20041407

URL : https://hal.archives-ouvertes.fr/pasteur-00612552

M. Martin-eauclaire, B. Ceard, F. Bosmans, J. Rosso, J. Tytgat et al., New ???Birtoxin analogs??? from Androctonus australis venom, Biochemical and Biophysical Research Communications, vol.333, issue.2, pp.524-530, 2005.
DOI : 10.1016/j.bbrc.2005.05.148

F. Caliskan, B. García, F. Coronas, C. Batista, F. Zamudio et al., Characterization of venom components from the scorpion Androctonus crassicauda of Turkey: Peptides and genes, Toxicon, vol.48, issue.1, pp.12-22, 2006.
DOI : 10.1016/j.toxicon.2006.04.003

S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.253389-402, 1997.
DOI : 10.1093/nar/25.17.3389

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

M. Brudno, R. Steinkamp, and B. Morgenstern, The CHAOS/DIALIGN WWW server for multiple alignment of genomic sequences, Nucleic Acids Research, vol.32, issue.Web Server, pp.41-45, 2004.
DOI : 10.1093/nar/gkh361

W. Thompson, E. Rouchka, and C. Lawrence, Gibbs Recursive Sampler: finding transcription factor binding sites, Nucleic Acids Research, vol.31, issue.13, pp.3580-3585, 2003.
DOI : 10.1093/nar/gkg608

URL : http://doi.org/10.1093/nar/gkg608

W. Thompson, L. Newberg, S. Conlan, L. Mccue, and C. Lawrence, The Gibbs Centroid Sampler, Nucleic Acids Research, vol.35, issue.Web Server, pp.232-239, 2007.
DOI : 10.1093/nar/gkm265

T. Bailey and C. Elkan, Unsupervised learning of multiple motifs in biopolymers using expectation maximization, Machine Learning, vol.12, issue.2, pp.51-80, 1995.
DOI : 10.1007/BF00993379

T. Bailey and C. Elkan, The value of prior knowledge in discovering motifs with MEME, Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology AAAI Press, pp.21-29

W. Grundy, T. Bailey, C. Elkan, and M. Baker, Meta-MEME: Motifbased Hidden Markov Models of Biological Sequences, Comput Appl Biosci, vol.13, issue.4, pp.397-406, 1997.

B. Rost and C. Sander, Combining evolutionary information and neural networks to predict protein secondary structure, Proteins: Structure, Function, and Genetics, vol.6, issue.1, pp.55-72, 1994.
DOI : 10.1002/prot.340190108

B. Rost, [31] PHD: Predicting one-dimensional protein structure by profile-based neural networks, Methods Enzymol, vol.266, pp.525-564, 1996.
DOI : 10.1016/S0076-6879(96)66033-9

B. Rost, G. Yachdav, and J. Liu, The PredictProtein Server, Nucleic Acids Research, pp.321-326, 2004.

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, pp.406-425, 1987.

A. Zharkikh and W. Li, Estimation of Confidence in Phylogeny: The Complete-and-Partial Bootstrap Technique, Molecular Phylogenetics and Evolution, vol.4, issue.1, pp.44-63, 1995.
DOI : 10.1006/mpev.1995.1005

K. Gabriel and C. Odoroff, Biplots in biomedical research, Statistics in Medicine, vol.72, issue.5, pp.469-485, 1990.
DOI : 10.1002/sim.4780090502

A. Hope, A simplified Monte Carlo significance test procedure, J Roy Statist Soc, vol.30, pp.582-598, 1968.

L. Breiman, J. Fridman, R. Olshen, and C. Stone, Classification and Regression Trees, Statistical Models in S Edited by: Chambers JM, p.414, 1984.

W. Cook, A. Zell, D. Watt, and S. Ealick, Structure of variant 2 scorpion toxin from Centruroides sculpturatus Ewing, Protein Science, vol.227, issue.3, pp.479-486, 2002.
DOI : 10.1110/ps.39202

L. Rodríguez-de, R. Vega, and L. Possani, Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure???function relationships and evolution, Toxicon, vol.46, issue.8, pp.831-844, 2005.
DOI : 10.1016/j.toxicon.2005.09.006

S. Desai, Targeting Ion Channels of Plasmodium falciparum-infected Human Erythrocytes for Antimalarial Development, Current Drug Target -Infectious Disorders, vol.4, issue.1, pp.79-86, 2004.
DOI : 10.2174/1568005043480934

M. Rogers, L. Tang, D. Madge, and E. Stevens, The role of sodium channels in neuropathic pain, Seminars in Cell & Developmental Biology, vol.17, issue.5, pp.571-581, 2006.
DOI : 10.1016/j.semcdb.2006.10.009

D. Gordon and M. Gurevitz, The selectivity of scorpion ??-toxins for sodium channel subtypes is determined by subtle variations at the interacting surface, Toxicon, vol.41, issue.2, pp.125-128, 2003.
DOI : 10.1016/S0041-0101(02)00294-5

F. Cardoso, J. Pinho, V. Azevedo, and S. Oliveira, Identification of a new Schistosoma mansoni membrane-bound protein through bioinformatic analysis, Genet Mol Res, vol.5, issue.4, pp.609-618, 2006.

J. Hedlund, R. Cantoni, M. Baltscheffsky, and H. Baltscheffsky, -PPase family, FEBS Journal, vol.3, issue.22, pp.2735183-5193, 2006.
DOI : 10.1101/gr.849004

URL : https://hal.archives-ouvertes.fr/hprints-00460512

F. Liu, G. Baggerman, L. Schoofs, and G. Wets, Uncovering conserved patterns in bioactive peptides in Metazoa, Peptides, vol.27, issue.12, pp.3137-3153, 2006.
DOI : 10.1016/j.peptides.2006.08.021

F. Sampieri and C. Habersetzer-rochat, Structure-function relationships in scorpion neurotoxins, Biochimica et Biophysica Acta (BBA) - Protein Structure, vol.535, issue.1, pp.100-109, 1978.
DOI : 10.1016/0005-2795(78)90037-5

N. Srairi-abid, P. Mansuelle, T. Mejri, H. Karoui, H. Rochat et al., El Ayeb M: Purification, characterization and molecular modelling of two toxin-like proteins from the Androctonus australis Hector venom, Eur J Biochem, issue.17, pp.2675614-5620, 2000.

Y. Sun, F. Bosmans, R. Zhu, C. Goudet, Y. Xiong et al., Importance of the conserved aromatic residues in the scorpion alpha -like toxin BmK M1: the hydrophobic surface region revisited, J Biol Chem, issue.26, pp.27824125-24131, 2003.

L. Cohen, I. Karbat, N. Gilles, O. Froy, G. Corzo et al., Dissection of the Functional Surface of an Anti-insect Excitatory Toxin Illuminates a Putative "Hot Spot" Common to All Scorpion ??-Toxins Affecting Na+ Channels, Journal of Biological Chemistry, vol.279, issue.9, pp.8206-8211, 2004.
DOI : 10.1074/jbc.M307531200

L. Cohen, I. Karbat, N. Gilles, N. Ilan, M. Benveniste et al., Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels, J Biol Chem, issue.6, pp.2805045-53, 2005.

M. Dauplais, A. Lecoq, J. Song, J. Cotton, N. Jamin et al., On the Convergent Evolution of Animal Toxins: CONSERVATION OF A DIAD OF FUNCTIONAL RESIDUES IN POTASSIUM CHANNEL-BLOCKING TOXINS WITH UNRELATED STRUCTURES, Journal of Biological Chemistry, vol.272, issue.7, pp.2724302-4309, 1997.
DOI : 10.1074/jbc.272.7.4302

I. Regaya, C. Beeton, G. Ferrat, N. Andreotti, H. Darbon et al., Evidence for Domain-specific Recognition of SK and Kv Channels by MTX and HsTx1 Scorpion Toxins, Journal of Biological Chemistry, vol.279, issue.53, pp.27955690-55696, 2004.
DOI : 10.1074/jbc.M410055200

S. Mouhat, V. Visan, S. Ananthakrishnan, H. Wulff, N. Andreotti et al., scorpion venom, Biochemical Journal, vol.385, issue.1, pp.95-104, 2005.
DOI : 10.1042/BJ20041379

URL : https://hal.archives-ouvertes.fr/hal-00023900