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Chapter 1

General introduction

Introduction générale — Résumé en francais

Ce chapitre est une introduction générale au présent travail. Les principaux phénomenes
physiques a la base de la formation des macroségrégations lors de la solidification des alliages
métalliques sont présentés. A 1I’échelle microscopique, il s’agit de la microségrégation résultant du
rejet de solutés dans la phase liquide et de la diffusion dans la phase solide. A 1’échelle
macroscopique, les especes chimiques ainsi rejetées sont transportées dans la piece sous I’effet des
mouvements de convection dans la phase liquide. Ces mouvements de convection sont causés par
les gradients de masse volumique, eux-mémes générés par les gradients de température et de
concentration en solutés. C’est cette convection thermo-solutale qui donne naissance aux
macroségrégations, hétérogénéités de concentration a 1’échelle de la piece ou du lingot de fonderie,
qui vont affecter diverses propriétés (mécaniques, chimiques...) en service ou lors de
transformations ultérieures.

D’autre part, le retrait a la solidification, présenté par la grande majorité des alliages
métalliques, est un autre phénomene essentiel. Le retrait induit a la fois des écoulements dans la
phase liquide et des déformations de la phase solide. Le défaut de retassure primaire ainsi que la
formation de lames d’air a I'interface piece-moule sont une conséquence directe du retrait. Outre ce
retrait, les phénomenes de dilatation thermique participent aussi a la génération de contraintes et de
distorsions, pouvant dégénérer en ruptures, et qu’il est donc nécessaire de modéliser pour optimiser
les procédés de coulée.

En conséquence, les objectifs de ce travail sont définis : proposer une modélisation des
phénomenes de macroségrégation et des phénomenes thermomécaniques (contraintes—
déformations) dans le cadre d’une approche bidimensionnelle par éléments finis. Ce travail se situe
dans une certaine continuité au sein des laboratoires LSG2M (logiciel de volumes finis SOLID) et
Cemef (logiciels d’éléments finis R2SOL et THERCAST).






Chapter 1

General introduction

1.1 Background

Solidification occurs in many metal forming processes, ranging from conventional processes
like foundry, welding, ingot casting etc. to the latest technologies like crystal growth or laser
processing.

The essentia feature in the solidification of a metallic alloy is the liquid-solid phase change
associated with the release of latent heat and the solute redistribution. The solutes are often
redistributed non-uniformly in the fully solidified casting, giving birth to what is usually called
segregation. Segregation occurring on a microscopic scale (i.e., between and within dendritic arms)
is known as microsegregation. While segregation occurring on a macroscopic scale (i.e., in arange
from several millimeters to centimeters or even meters) is called macrosegregation.
Microsegregation can be controlled or reduced by a high temperature treatment (homogenization).
However, macrosegregation occurring on the macroscopic dimensions of the casting cannot be
eliminated by homogenization.

Taking into account shape, location or concentration, several types of macrosegregation can
be observed in an ingot or a casting as described in more detail further, such as “centerline
segregation”, “A-segregation”, ‘“V-segregation”, and “freckles” (Beckermann [2001]). Macro-
segregation is important, because it affects (like microsegregation) the mechanical properties of
casting products. In some cases, macrosegregation can be very important. An impressing example
consists of the freckles appearing in the directional solidified Ni-base superalloys of aeroengine
turbine blades (Frueh et al. [2002]). In metal processing, metallurgists always attempt to overcome
the centreline macrosegregation in continuous casting steel slabs and direct chill aluminum castings
(aluminum DC castings), centreline macrosegregation in slabs decreases the quality of the final
products. The macrosegregation in the ingots can be a source of problems in further processing such
as rolling, forging and heat treatment. For these reasons, researchers have struggled with
macrosegregation for decades.

In the literature, experimental and theoretical studies on solidification phenomena have been
carried out by a lot of researchers. The mechanisms of different types of macrosegregation are well
identified. It results from the relative movement of the liquid and solid phases. Movement of liquid
can be induced by the solidification shrinkage, the thermal-solutal buoyancy force and possibly by
external forces, such as magnetic forces.

In addition, solidification shrinkage as a result of liquid-solid phase change and thermal
contraction is another important feature in the solidification of castings. The solidification
shrinkage induces the liquid movement and the solid deformation. Many solidification phenomena
are related to shrinkage. For instance, the descent of liquid level associated with feeding flow leads
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to the so called “shrinkage pipe”. Shrinkage pipes appear in the upper portion of risers, taking the
shape of an inverted cone. The prediction of pipe formation is important in large castings and
ingots. The numerical analysis is characterized by the computation of the liquid free surface.
Thermal contraction in the solid can induce the distortions, cracks and residual stresses in castings
and molds. Thermal mechanical analysis of solidification process is then essential to predict defects
and control the quality of castings.

In France, the project OSC (Optimisation des Systemes de Coulée), which aims at the
numerical modeling of casting processes, has been supported by the French Ministry of Industry,
the French Technical Center of Casting Industries (CTIF) and the following companies: Arcelor-
Irsid, Ascometal, Fonderie Atlantique Industrie, Aubert et Duval Alliages, Erasteel, Industeel and
PSA. Under the frame of OSC project, my Ph.D. work is dedicated to modeling macrosegregations
and deformations during the solidification of castings.

From the point of view of scientific research, the solidification processing of castings
involves the following phenomena: heat transfer with phase change, redistribution of solutes in
liquid and solid phases; thermal-solutal convection in liquid and mushy zones, fluid flow driven by
solidification shrinkage; transport of solute; and thermal stresses and deformations in solidifying
castings and molds. The complicated transport phenomena result in defects such as shrinkage,
macrosegregation, distortions and cracks. Hence, the numerical simulation on the formation of
defects is a very challenging field.

We will review and discuss the basic solidification phenomena in the following text.
1.2 Solidification phenomena

1.2.1 Solidification and structure

A pure metal solidifies at a constant temperature 7%, the melting temperature. The material is
in the liquid state above 7}, and it becomes solid below 7;. However, an alloy solidifies in a range
of temperature. The solid and the liquid coexist in a range of temperature between liquidus and
solidus. Redistribution of solutes in the solid and liquid phases occurs in the solidification of alloys,
which distinguishes alloys from pure metals.

During the solidification of a pure metal with a positive temperature gradient, the general
solid-liquid interface is parallel to the temperature isotherm; the interface morphology is planar.
The interface becomes unstable under a negative temperature gradient: the dendrite, like a tree, is
formed in the supercooled liquid pool.

An alloy can be solidified with a planar interface only if the ratio of the heat flux at solid-
liquid interface to the velocity of moving front is sufficiently large. With the ratio decreasing, the
interface becomes unstable, and cellular and dendritic interfaces can be observed. The constitutional
supercooling associated with the redistribution of solutes and thermal condition is responsible for
the instability of interface and the structure morphology.

Generally, a cast alloy freezes with a dendritic interface. The region, which is composed of
dendritic solid and interdendritic liquid, is known as the mushy zone. The typical structure, which is



composed of the chill zone, the columnar zone and the equiaxed zone, obtained in a stedl ingot is
shown in Figure 1-1.

e Chill zone. The zone consists of fine equiaxed grains. The mould wall provides with
plenty of sites for nucleation, and the crystals grow in the supercooled liquid due to the
mould chilling. This leads to the formation of afine equiaxed zone in the skin.

* Columnar zone. Just ahead of the chill zone, the gradient of temperature in the liquid is
rather steeper. Thus, the fine equiaxed grains in the chill zone can not develop toward the
center of the ingot. The dendrites grow perpendicular to the mold wall, resulting in the
columnar structure. This structure can be extended to the center of an ingot if the cooling
condition iswell controlled.

* Equiaxed zone. Generally many small grains suspend in the liquid at the center of ingot.
These small grains can originate from the fragment of dendrites growing in the columnar
zone. The movement of liquid is important during the pouring and during solidification.
The dendrites can be broken by the flow, and fragments can be brought into the liquid
center. These fragments can remelt or survive and grow to form the equiaxed grains.

___— Shrinkage pipe

— Chill zone

— Columnar zone

Equiaxed zone

:-_ j«— Mold

Figure 1-1 Schematic of the structure in a steel ingot, Verhoeven [1975]

1.2.2 Shrinkage

Shrinkage results from the density difference between liquid and solid. On the macro scale,
shrinkage defects can be classified into the porosity and the pipe. The porosity consists of dispersal
vacuities or holes in metal. The causes of porosity are the insufficient feeding in the mushy zone
and the evolution of the absorbed gas in liquid. The interdendritic feeding flow is responsible for
the porosity. Three important factors that affect the feeding flow are: 1) the freezing range of the
metallic alloy, which affects the grain structure; 2) the cooling rate, which also affects the grain
structure; 3) the thermal gradient, generaly the feeding liquid moves along the direction of the
thermal gradient. Porosities often appear in the hot spots where the liquid pools are isolated and the
thermal gradient is low. While the pipe results from the cumulated effects of local shrinkage. It
results from the descent of liquid level, associated with the progress of the solidification. The
prediction of pipe formation is of importance especialy in the case of ingots or large parts.

1.2.3 Macrosegregation

Segregation refers to non-uniformity of chemical composition. It can be classified into macro-
and micro- segregation. Microsegregation results from the solute enrichment in the interdendritic
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liquid during solidification. While macrosegregation results from the local microsegregation and the
relative movement of liquid and, possibly, solid phases. Macrosegregation that occurs in alloy
castings or ingots ranges in scale from several millimeters to centimeters or even meters. Positive
(negative) segregation refers to the composition above (below) the nominal composition. The non-
uniform distribution of chemical composition can significantly affect the mechanical properties of
castings, and therefore its numerical modeling isimportant from the industrial point of view.

The classical map of segregation in asteel ingot is shown in Figure 1-2. Negative segregation
known as the sedimentary equiaxed cone appears in the bottom of ingot. Fragments of dendrites
with poor solute content, which have been solidified in the early stage, settle down to the bottom,
resulting in the negative segregation cone. Positive segregation (hot-top segregation) appears near
the centerline, and particularly at the top of the ingot. The positive segregation arises from the
thermal and solutal convection and shrinkage-driven interdendritic fluid flow during the final stages
of solidification. The so-called A-segregation appearing in the columnar zone is also called freckles
or segregated channels. These regions are highly enriched in solutes. When the velocity of the
solidification front islower than that of solutal convection in the same direction, the channels occur
(Mehrabian et a/.[1970]). The V-segregation in the center arises from the equiaxed grains settling,
the deformation of connected solid skeleton and the solidification shrinkage.

Hot-top
segregation
A-segregation
V-segregation
«4— Bands

Cone of negative
segregation

Figure 1-2 Schematic of the macrosegregation pattern in asteel ingot, Flemings [1974]

1.2.4 Liquid movement /and solid deformation

In ingot casting, strong turbulent fluid flow occurs during mould filling, and it vanishes after a
short period. During the cooling and solidification of the ingot, fluid flow is principally driven by
the density gradient in the liquid. This density gradient arises, first of al, from temperature gradient
in the liquid, leading to thermal convection. As a consequence of solidification, solutes are rejected
into the interdendritic liquid, and a non-uniform concentration is set up in the liquid. These
gradients of solutes also contribute to the density gradient, leading to the solutal convection. The
thermo-solutal convection isimportant in the solidification of ingots. The convection is responsible
for the formation of macrosegregation. Furthermore, it influences the temperature distribution, the
advancement of solidification front, the local solidification rate and therefore the structure.
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There are other (additional) causes of liquid movement. The solidification shrinkage and the
contraction of the liquid and solid can induce the feeding flow, which influences the formation of
porosity, shrinkage and macrosegregation. Forced fluid flow can also arise from the electromagnetic
or centrifugal forces.

The fluid flow can separate dendrites from solidifying dendrites; and bring these small
crystals (the nuclei) to the center of bulk liquid. The nuclei grow in the region where the melt is
undercooled. Later, when the grains have grown to a sufficient size, they settle down to the bottom,
resulting in the sedimentary equiaxed zone with negative macrosegregation (Flemings [1974]).

Once the liquid has been solidified, the deformation occurs as a result of thermal contraction,
boundary constraint (contact with the mold) and pressure exerted by the non-solidified liquid metal.
The contraction of solidifying shell and the expansion of mold cause a gap between mold and
casting, which affects the heat transfer and consequently the solidification processing. On the other
hand, the mechanical behavior of the solidifying metal depends upon the local temperature, the
grain structure and the deformation path.

As we can see from what precedes, solidification processing involves several complex
physical phenomena. The interactions between many aspects that occur during solidification can be
shown in Figure 1-3: main solidification phenomena occurring on microscopic scale are illustrated
as a core; surrounding around the core, macroscopic scale transport phenomena are presented. It
should be noted that these macro and microscopic phenomena are intimately coupled. For example,
the macroscopic convection flow affects the temperature and the solute distributions; consequently
it influences the grain growth (on microscopic scale). On the other hand, the grain growth changes
the temperature and the concentration in the interdendritic liquid, which affect the macroscopic
fluid flow. On the macroscopic scale, the fluid flow associated with transport of energy and solute
affects the deformation in the solid, and vice versa.

Relative movement of liquid and solid +
Microsegregation =» Macrosegregation

ransport of solute
Macrosegregation

Solidification phenomena
(on the microscopic scale)
Release of latent heat
Grain growth
Microsegregation
Grain structure

Hot tears, Cracks
Shrinkage defects

Thermal stress, Air gap

Figure 1-3 Interactions between macro and microscopic phenomena in the solidification of castings

Researchers have developed numerical models for several decades to reveal such phenomena.
Great progresses have been achieved: models coupling heat, mass, momentum and solute transfer
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have been developed to predict shrinkage defects and macrosegregation. Thermomechanical models
have been used to predict stresses and deformations in castings. In the following paragraph, the
related previous work at CEMEF |aboratory will be presented, as it is the basis for my Ph.D. work.

1.3 Related previous work

Developing history of R2SOL

CEMEF laboratory, in collaboration with LSG2M laboratory of Ecole des Mines de Nancy,
has developed the 2-dimensional finite element code R2SOL for the two-dimensional numerical
simulation of solidification processes. R2SOL has the following characteristics:

* Resolution of Navier-Stokes equations.

» Arbitrary Lagrangian-Eulerian (ALE) formulation.

» Thermal resolution in enthalpy formulation for the liquid-solid phase change.
* Resolution of the transport equations for the alloying elements.

» Coupling resolution of momentum, energy and mass conservation equations by a spatial
averaging approach, in order to model the thermo-solutal convection and predict the
macro-segregation. The mechanical behavior of metal is Newtonian in the liquid zone,
and the Darcy term is added in the mushy zone. The solid phase is assumed to be rigid and
stationary.

The first two points were developed by Laurence Gaston [1997] in her Ph.D. work on the
simulation of mold filling, leading to the software R2. A velocity-pressure P2+/P1 formulation was
used in R2 to solve the Navier-Stokes equations, and mesh updating was carried out by an ALE
method to describe the free surface. Combining some procedures in the finite volume code SOLID
developed at Ecole des Mines de Nancy, Laurence Gaston [1999], in her postdoctoral period,
implemented the last 3 points in R2 to simulate the solidification processes, leading to the new
software called R2SOL.

Following those developments, the P1+/P1 formulation, using linear triangles for 2-
dimensional plane problems, instead of the quadratic P2+/P1 formulation, was implemented in
R2SOL by Alban Heinrich [2003] in his Ph.D. work on the two-dimensiona thermomechanical
simulation of the steel continuous casting.

At the beginning of my thesis, in September 2001, the P1+/P1 mechanical solver was limited
to Navier-Stokes equations.

The main objectives of my work to develop the new version of R2SOL were then defined as
follows: 1) calculation of macrosegregation; 2) calculation of stresses and deformationsin the solid
phase, coupling with the natural convection in liquid phase. The related previous work of CEMEF
laboratory and remained problems are presented in the following paragraphs.

Calculation of segregation

Like in the previous work of Laurence Gaston, we also assume that the solid phase is fixed
and rigid (both in the mushy zone and in the solid zone). The movement of liquid is driven by the
thermal-solutal convection. As shown in Figure 1-4, the behavior of the liquid metal is Newtonian.
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Fluid flow in the mushy zone obeys the Darcy’s law. A set of averaged conservation equations is
used to describe the transport phenomena. The previous work provides a good basis for the new
development. However, additional developments are needed to solve the remained problems and
extend the computational capacity:

» the convergence rate of the resolution of the energy equation is relatively low; the energy
solver needs to be improved.

* in the numerical solution, thermal shock (temperature oscillation) often appears near the
boundary. The problem remains to be solved.

» assuming that solutes diffuse infinitely both in the solid and liquid phases, lever rule as a
microsegregation model is used to predict macrosegregation. Scheil model (solutes diffuse
infinitely in the liquid phase, but do not diffuse in the solid phase) is to be implemented in
the new version of R2SOL.

e prediction of macrosegregation by the old version of R2SOL is limited to small pieces;
additional developments are needed to compute macrosegregation in large industrial
ingots.

* treatment of Darcy’s and inertia terms in the momentum equation is not as good. In some
cases, the resolution of velocity field is incorrect. Computations of these terms need to be
improved.

* implementation of mesh adaptation to improve the numerical results.

» extending the Navier-Stokes solver from the plane case to the axisymmetric case.

Newtonian Newtonian Fixed and rigid
+ Darcy

< >« > < >

o Semi- .
-Seml—hquld soli d. Solid

Temperature  Tliquidus Tsolicus

0 Solid fraction > |

Figure 1-4 Schematic of the material behavior in R2SOLfor macrosegregation modeling

Calculation of fluid flow and solid deformation

For coupling resolution of deformation in the solid and convection in liquid, CEMEF
laboratory has developed a 3-dimensional FEM software called THERCAST® (Jaouen [1998]).
Considering continuum medium as illustrated in Figure 1-5, the different behaviors of the metal are
clearly distinguished by the critical temperature Tc, being thermo-viscoplastic (THVP) above T¢
and thermo-elastoviscoplastic (THEVP) under Tc. The Lagrangian scheme is used to compute the
deformation in solid regions, the computational grid is allowed to move with the material: this is
essential to treat the air gap between mold and casting. An arbitrary Lagrangian-Eulerian scheme is
used to compute the thermal convection in liquid pool and mushy zone, taking into account the
liquid contraction and the solidification shrinkage. This prevents the mesh from degenerating and
allows tracking the free surface. The unilateral contact condition is applied to the boundary between
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mold and casting. The heat transfer coefficient is determined by the size of air gap between mould
and casting.

The same strategy as mentioned above is adopted in my work for 2-dimensional problems.
Some subroutines in THERCAST® to treat THEVP and THVP models can be used in R2SOL.

However, we need to do the following work:
» extension of the material behavior from Newtonian to elastic-viscoplastic.
» adaptations to the different coordinate systems (from 3D to 2D), particularly for the

axisymmetric case.

Viscoplastic Elastic-viscoplastic

< > <

-Semi-liquid :glrl"(; Solid
o—o

Temperature  Tiiquidus Teolicus  Tec

0 Solid fraction > |

Figure 1-5 Schematic of the material behavior for stress-strain analysis

It should be noted that the mushy metal is considered as a single continuum in the
computation of deformation. That is to say, the liquid and solid in the mushy zone move together
with the same velocity. While in the macrosegregation model the mushy metal is considered as a
two-phase medium, in which we assume that the solid is fixed and rigid, while the movement of the
liquid is taken into account.

1.4 Objectives and outline

1.4.1 Objectives

In the framework of the project OSC (Optimisation des Systemes de Coulée), the main
objectives of my Ph.D. work are as follows:

e Computation of macrosegregation;
* Mesh adaptation;
e Computation of stress and deformation in the solidified zones.

It has been presented that many phenomena can affect macrosegregation. We have limited our
study to macrosegregation associated with thermo-solutal convection, as it has been stated that
macrosegregation results essentially from microsegregation and the relative movement between
solid and liquid phases. Firstly, natural convection occurs on the macro scale, transporting heat and
solutes through the whole casting. Secondly, latent heat release and solute rejection occur at the
micro scale, in the interdendritic space. It is impossible to solve the conservation equations at the
microscopic scale due to the complex morphology of grains and the computational cost. An
averaging approach is adopted following the previous works of Beckermann and Viskanta [1988].
The basic idea of the approach is to average the microscopic equations over a representative
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elementary volume. This element is defined such that its size is small enough to capture the global
transport of energy, mass, concentration and momentum, but large enough to smooth out the details
of microscopic phenomena as the interdendritic fluid flow, latent heat release and solute
redistribution. A set of averaged governing equations is established and applied to predict
macrosegregation.

Fluid flow in the mushy zone close to the liquidus and in the liquid just ahead of the liquidus
is important in the formation of macrosegregation. Deeper in the mushy zone, close to the solidus,
dendrites are very compact, so that the permeability is very low and the velocity is nearly equal to
zero. Dramatic change of permeability occurs in the mushy zone close to the liquidus, resulting in
great variation of velocity field. This may lead to a boundary layer of velocity near the solidification
front. Therefore, in order to accurately capture the macrosegregation, finer meshes should be
applied in the region near the liquidus. Similarly, it is necessary to use fine mesh to capture pencil-
like freckles. As suggested in the pioneer work of Kidmpfer [2002] for instance, mesh adaptation
seems to be an efficient numerical tool in this field. The automatic determination of the objective
mesh size is not an easy task and no reliable error estimators have been evidenced so far for the
complicated coupled solidification problems. For simplicity, we have decided to pilot the remeshing
procedure in order to get fine layers of elements within the mushy zone and ahead of the liquidus.
The adaptive mesh is created by using a mesh generator “MTC” developed at CEMEF (Coupez
[1991]).

The similar strategy as THERCAST® is adopted to model the fluid flow and the deformation
in solid. As has been stated in the previous section, only thermal convection in the liquid pool is
considered and solutal convection is not taken into account. The present work has consisted in
implementing the THEVP and THVP models in the 2 dimensional code R2SOL, especially for the
axisymmetric problem. This part of work has been done in collaboration with another Ph.D.
student, Alban Heinrich.

To summarize, there are two models in the scope of present study. The first model is used to
predict macrosegregation during dendritic columnar solidification of casting alloys. We assume that
the solid phase is fixed and non-deformable (both in mushy zone and solid zone). The behavior of
liquid metal is Newtonian. The liquid movement in the mushy zone follows the Darcy’s law. Not
taking into account the solid deformation and solidification shrinkage, the computational domain is
fixed. Hence, a Eulerian formulation can be used, associated with a mesh refinement strategy.

The second model is used to simulate shrinkage pipe, air gap and solid deformation. Here, the
mushy metal is considered as a continuum, without any relative movement between the solid and
liquid phases. Unlike the first model, the configuration of casting changes as a result of
solidification shrinkage and deformation in solid. Therefore, ALE formulation is used. The art of
numerical simulation is different from that of first model. The different models and their
computational capacity are summarized in the Table 1- 1.
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Table 1- 1 models considered in the present study

Mushy zone Liquid movement induced by Solid deformation Prediction
Model | Two phases Thermal solutal convection No Macrosegregation
Model 11 Single Thermal convection Yes Pipe shrinkage
continuum R : . :
Solidification shrinkage Stresses and strainsin solid

(including air gaps)

1.4.2 OQutline

The bibliographic review is presented in chapter 2. In this chapter, firstly, we review the
pioneering work on macrosegregation of Flemings in the 1960s. Then, the modern numerical
models on macrosegregation are presented. Finally, we present models coupling fluid flow and
deformation in solid, which focus on the prediction of shrinkage pipe.

Regarding the objectives of my work, the thesis is decomposed into two parts. Thefirst part is
the computation of macrosegregation with mesh adaptation. The second part is the computation of
deformation in solid.

The first part consists of chapters 3-5. Chapter 3 is devoted to the numerical approach to
prediction of macrosegregation. The agorithm for the mesh adaptation is presented in chapter 4.

Numerical results of macrosegregation are presented and discussed in chapter 5. The
computation of a benchmark test has been carried out. The influence of mesh size and time step on
the numerical results has been investigated. Finally, macrosegregation in an industry ingot has been
predicted by R2SOL. The results obtained by R2SOL are compared with other numerical models.

Coupling resolution of fluid flow and deformation in solid is presented in chapter 6. The
behavior of metal is extended from Newtonian to elastoviscoplastic. Specia attention is given to
the computation of tangent rheological modules in the axisymmetric case. The validation of thermal
elastoviscoplastic model has been done by some simple tests. The computationa results of a
benchmark test are shown, as well as an application to an industrial ingot.
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Chapter 2

Bibliographic review

Revue bibliographique — Résumé en francais

Concernant la macroségrégation, les premicres analyses dues a Flemings sont passées en
revue. Dans ces travaux, le phénomene est analysé analytiquement et expérimentalement. Un
premier modele numérique est proposé, en prenant en compte I’écoulement liquide interdendritique
et le transport de soluté dans la zone pateuse. Ceci permet une premiere compréhension de la
macroségrégation.

La revue est ensuite focalisée sur les modeles de prise de moyenne spatiale, qui sont comparés
aux modeles issus de la théorie des mélanges. Ces deux méthodes simples d’homogénéisation sont
en effet une maniere de traiter le changement d’échelle existant entre micro et macroségrégation.
Les concepts de base de la prise de moyenne sont alors présentés. Le principe consiste 2 moyenner
les équations de conservation établies a I’échelle microscopique (masse, quantité de mouvement,
énergie, especes chimiques) sur un volume élémentaire représentatif (v.e.r.) de la zone pateuse
(liquide-solide).

Dans I’étude des phénomenes de macroségrégation, la representation de 1’écoulement de
liquide dans la région proche de la surface isotherme a la température de liquidus s’avere capitale,
car on y trouve des gradients de vitesse importants, dis aux variations importantes de la
perméabilité. Par conséquent, dans le but d’améliorer la précision des calculs, certains auteurs, tels
Kéampfer et Rappaz ont mis en ceuvre des méthodes de raffinement dynamique des grilles de calcul
qui sont présentées.

Concernant I’aspect thermomécanique (distorsions et contraintes), différents modeles de
prédiction des retassures primaires sont analysés dans la section 2.2. On note en particulier que dans
la plupart des cas, le total des pertes de volume correspondant au retrait a la solidification et a la
dilatation thermique est affecté a la formation de la retassure primaire. A 1’évidence, cette analyse
est pour le moins contestable, puisqu’elle néglige completement le volume correspondant a la
formation des lames d’air entre piece et moule. Dans la continuité des certains travaux menés
préalablement au laboratoire, 1’objectif est donc de tenir compte de cette complexité au moyen
d’une analyse thermomécanique plus fine.
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Chapter 2

Bibliographic review

2.1 Macrosegregation models

Around 1967, M.C. Flemings and coworkers published a series of papers (Flemings et al.
[1967, 1968A, and 1968B]). They examined anayticaly and experimentally macrosegregation,
which results from interdendritic fluid flow. Considering the fluid flow in the mushy zone, they
established the first model of macrosegregation called Local Solute Redistribution Equation,
leading to a comprehensive understanding of the formation of macrosegregation. Since then,
numerical models coupling fluid flow in the mushy and in the bulk liquid have been developed to
predict macrosegregation.

Following history of macrosegregation models, firstly, we present the basic theory and the
model of Flemings in section 2.1.1. Secondly, we focus on the models coupling fluid flow in the
mushy zone and in the bulk liquid in sections 2.1.2. The present work on macrosegregation is based
on these models. In section 2.1.3, we review numerical models with mesh adaptation.

2.1.1 Flemings’ macrosegregation model

Before reviewing Flemings’ macrosegregation model, we briefly present the basic theory for
microsegregation that has been stated in the textbook "Solidification processing" of Flemings
[1974].

Microsegregation

Solute enrichment in the interdendritic liquid during solidification results in
microsegregation. As shown in Figure 2-1, redistribution of solute in the dendrite and in the
interdendritic liquid can be described by the two simple models: 1) instantaneous diffusion of solute
in the solid and liquid phases (lever rule); 2) non-diffusion in the solid and instantaneous diffusion
in the liquid (Scheil model).

. W) Ld]
Sohd Solid

Liquid _y Liquid

a) lever b) Scheil model

Figure 2-1 Basic microsegregation models
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For a binary alloy with a partition coefficient , solidified in a closed one-dimensional space,
the lever rule and Scheil models can be expressed by the following equations (2-1) and (2-2)
respectively:

wo=w; [1- £ (1-)] (2-1)

1
w,=(12.0-1)w, +J'kwldfs
° (2-2)
o Yi__ 1 /i
dw, 1-k w,
where w, istheinitial mass concentration; w, isthe mass concentration in the liquid phase; f., f,
are the mass fractions of solid and liquid respectively.

In addition, if we assume that the solid density o, and the liquid density p, are constant and
equal, that is:

o, = p, = p = constant (2-3)

this implies that the mass fraction is equal to the volume fraction. Thus, we will use the terms solid
fraction and liquid fraction, and, unless specified, we will not distinguish anymore between mass
and volume fractions.

Local solute redistribution equation

By performing mass and solute balances over a representative elementary volume
characteristic of the macroscopic scale shown in Figure 2-2, Flemings et al. derived equation (2-4),
called “local solute redistribution equation” (LSRE). The solute enters and leaves the elementary
volume only because of the transport by the liquid flow, and diffusion is neglected at the
macroscopic scale.

Figure 2-2 Schematic of interdendritic liquid flow through a fixed dendritic solid network

of, . M-y, vIT O/,
dw, Ol-k 7 Bw, (2-4)
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where [ PP is the solidification shrinkage; v is the intrinsic averaged liquid velocity;

A

07 isthe temperature gradient; 7 is the rate of temperature change, 7 :%—f :

The LSRE model demonstrates how interdendritic liquid flow is responsible for
macrosegregation. The physical significance of equation (2-4) can be understood by the following
remarks:

1. When thereisno solidification shrinkage and no relative movement of the liquid, B and v
both vanish in equation (2-4), the equation reduces to the Scheil equation (2-2), implying no
macrosegregation.

2. Equation (2-4) reduces to the Scheil equation when the liquid velocity isjust that required to
feed solidification shrinkage. For simplicity, considering steady unidirectional solidification,

the velocity of moving isotherm can be expressed as % Applying the mass conservation

VD.T = % Hence, equation (2-4) becomes the Scheil equation.

3. If the flow velocity in the direction of increasing temperature is so large that the term in the
square brackets in equation (2-4) becomes negative, local melting occurs, leading to the
formation of segregation channel. The details of discussion on flow instability can be found
in the literature (Mehrabian et al. [1970]).

Mehrabian et al. [1970] proposed that the interdendritic fluid flow driven by solidification
contraction could be calculated by Darcy’s law. Taking into account the gravity force on fluid, the

equation, we have

equation for calculating V is given by:

-K
=——(Op-p, ]
vufl(ppg) (2-5)

where, U is the viscosity; K is the permeability; [p is the pressure gradient; g is the gravity
vector.

Mehrabian et al. [1970] applied the LSRE equation (2-4) and Darcy’s equation (2-5) to
horizontal, unidirectional, steady-state solidification ingots with aluminum-copper alloys.

Numerical results showed that the parameter

has a marked effect on segregation.

Furthermore, "A" and "V" segregations in commercial ingots were interpreted by the LSRE model.

Kou et al. [1978] applied the LSRE model to predict the macrosegregation in rotated ingots
with Sn-Pb alloys. The centrifugal force was considered as an additional term in equation (2-5).
The macrosegregation predicted by the calculation agreed well to the experimental results.

In the previous works of Mehrabian and Kou, the temperature field in the mushy zone was
either assumed or measured to serve as an input to the analysis of fluid flow. Fujii et al. [1979]
extended the LSRE model to macrosegregation in multicomponent low-alloy steel. For the first
time, the momentum (Darcy’s) equation and energy equation were coupled and solved
simultaneously.
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2.1.2 Coupling fluid flow in the mushy and bulk liquid zones

2.1.2.1 The first multi-domain model

The first macrosegregation model coupling the flow in the mushy zone and in the bulk liquid
was reported by Ridder er al. [1981]. The steady axi-symmetric solidification problem was
considered, such a case being encountered in different casting processes, e.g. vacuum arc refining,
electroslag remelting and continuous casting. The computational domain was decomposed in two
regions. the mushy zone and the pure liquid zone. The interdendritic fluid flow driven by
solidification shrinkage was calculated by solving Darcy’s and LSRE equations. Temperature-
induced natural convection in the bulk liquid was calculated by solving the stream function. An
iterative procedure involving the resolution of the two sets of equations was performed as follows:

1) calculating the pressure, velocity and fraction of liquid in the mushy zone;
2) calculating the natural convection in the bulk liquid;

3) repeating procedures 1) and 2) to get consistent solutions in the mushy zone and in the
bulk liquid zone. Coupling computation in the two domains was performed by applying
the boundary condition to the liquidus isotherm. The pressure at the liquidus isotherm
obtained in the step 2) was used as a boundary condition to compute the fluid flow in the
mushy zone. While the velocity at the liquidus isotherm obtained in the step 1) was used
as a boundary condition to compute the natural convection in the bulk liquid. When the
pressure at the liquidus isotherm had stabilized, the concentration distribution in the
mushy zone was obtained finally.

The model of Ridder was validated by solidification tests with Sn-Pb alloys. The temperature
profiles, the sizes and shapes of mushy zone were controlled and measured in the experiments.
Experimental data were used for initial values and boundary conditions in the numerical resolution.
Good agreement between experiment and simulation was obtained.

Remarks

Two distinct equations, discretized by a differential method, were used to compute the
velocities in the mushy and bulk liquid zones. The interface between the mushy zone and the bulk
liquid zone was determined by the liquidus isotherm. In the case of steady solidification, the
liquidus isotherm is fixed, and it does not evolve with time. So that it is not necessary to track the
interface in the numerical resolution; and a fixed and conforming mesh can be used. The
conforming mesh means that the nodes at the boundary of two regions coincide.

In Ridder’s work, the concentration in the bulk liquid was assumed to be homogeneous, and
solutal convection was neglected.

The multi-domain model of Ridder is not suitable for the non-steady case, for which the
liquidus isotherm moves during the solidification. It is indeed difficult to track the phase interface
and generate a conforming mesh dynamically.

2.1.2.2 Continuum models based on mixed theory

In order to overcome the difficulty of the multi-domain approach, single-domain continuum
or volume-averaged models have been proposed by several researchers. These models consist of a
single set of equations, which can be applied to the solid, mushy and liquid regions. Therefore, the
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equations can be solved on a single and fixed grid. The phase interfaces are implicitly defined by
the enthal py and the solute concentration fields.

The first single-domain continuum models were developed in the eighties (Bennon and
Incropera [1987A], Voller and Prakash [1987], Voller et al. [1989]). Such models were developed
from volume averaging techniques based on classical mixture theory. In these models, the mushy
zone was viewed as a solid-liquid mixture with macroscopic properties, and individual phase
conservation eguations were summed to form a set of mixture conservation equations.

Bennon and Incropera [1987B] applied their continuum models to the solidification of a
binary NHz-H,0 alloy. “A” segregations, for the first time, were predicted by a numerical approach.
Single domain models were demonstrated to be efficient tools for simulating solidification
processes.

However, there were some misunderstandings in the development and application of the early
continuum models. For instant, in the case of dendritic solidification, the net interaction between
liquid and solid phases was postulated to exist, and the net force was computed by the Darcy’s law.
The net interaction as internal force in the system was not clearly understood. Voller et al. [1989]
identified the mushy fluid models, and indicated that the net force existed in the case of columnar
dendritic solidification, while the force vanished for the flow of amorphous materials (e.g. waxes,
the equiaxed zone).

Later, Prescott et al. [1991] clarified the mixture continuum models. They introduced
Newton’s third law, and reconsidered the interaction between liquid and solid phases. Assuming
that the solid phase was non-deformable and fixed, Prescott ef al. demonstrated that the momentum
equation based on the mixture theory was equivalent to the equation that was deduced from the
averaging approach. Although the equivalent equation has been obtained by the mixture continuum
and volume-averaged models, the continuum model has a shortcoming of weak linkage between
micro and macro phenomena.

2.1.2.3 Volume averaged models

Beckermann and Viskanta [1988] proposed a volume-averaged model, to predict the double-
diffusive convection during dendritic solidification of a binary alloy. The macroscopic conservation
equations were rigorously derived from microscopic (exact) equations. The derivation procedure
was presented more systematically by Ganesan and Poirier [1990]. More recently, Bousquet-Melou
et al. [2002] proposed a non-homogeneous dendritic solidification model, in which all the terms
arising from the averaging process (micro- and macro-contributions to momentum transport due to
phase change and geometry) were estimated and compared on the basis of the characteristic length
scale associated with the dendritic structure.

As volume averaged models deal clearly with the relationship between microscopic and
macroscopic parameters, a volume averaged approach to predict macrosegregation has been
adopted in the present work. For completeness we briefly remind the basic conceptions of the
averaging technique, and then give an example, the mass conservation, to show the derivation
procedure to average the conservation equation. The general volume averaging technique can be
found in the literature (Gray [1975], Hassanizadeh and Gray [1979], Gray [1983]).

Consider a representative elementary volume AJ as shown in Figure 2-3, we have the
following definitions and theorems.
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Figure 2-3 Volume used to average the conservation equation

Definition 2.1.1 Phase indicator function X,. The phase indicator function yx,is a function of
space x and time ¢, being equal to 1 in phase a and zero elsewhere:

PPN
@7 E0 if x0Q @ (2-6)

Definition 2.1.2 Volume fraction of phase a . It isdefined as:

AV,
AV

1
ga=py far X (i) dv = (2-7)

where AV, is the portion of AV that is occupied by the a phase. In addition, for the two phases
a and [ system, we have:

gatgs=1l (2-8)
Definition 2.1.3 Volume-averaged quantity <¢IU,>. The volume-averaged quantity of a variable
 (scalar, vector or tensor) in phase a isdefined as:

<wa>:ﬁj'AVl[/ (x,t))(a(x,t)dv (2_9)

If ¢ isthe velocity of the interdendritic liquid, its volume average is also called superficial
velocity.

Definition 2.1.4 Intrinsic volume-averaged quantity <¢/a>a. With respect to the phase a it is
defined as:

a _ 1 _ ATV B <¢/a>
Wo) = 3y Lo X nydr = (o )= =50 (2-10)

The relation between the average value and the intrinsic average value of Yisasfollows

W.)y=W.) ga (2-11)

Theorem 2.1.1 Temporal derivative of (. The relationship between the average of the time
derivative and the time derivative of the averageis given by:
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awa _a wa 1 al al
< ot >_ <ar > B AV.[m‘”ﬁw“W Tdd (2-12)

where 4, istheinterfacia areabetween the phase@ with other phases, nis the outward unit normal
of the infinitesimal element of area d4 , and w is the velocity of the microscopic interface.

Theorem 2.1.2 Spatial derivative of . The relationship between the average of the spatial
derivative and the spatial derivative of the average is given by:

1 a
<|:| wa>:D<¢/a> + ULQa/gwan *dA (2-13)

Now let us deduce the macroscopic mass conservation equation for the solidification system
by using the definitions and the theorems. Consider the following microscopic mass conservation
equation (2-14) for the liquid phase:

0p _
a—tl + 0dp,v,)=0 (2-14)

where v,is the microscopic velocity of the liquid. Multiplying by x,/AV and integrate over
AV yidds:

1 9P, 1 _
UAV Y, dev+AVIAL’DmpIV1)X1dv_O (2-15)

Applying Theorem 2.1.1 to the first term in equation (2-15) and Theorem 2.1.2 to the second
term, leads to:

a<ap/> + Opv,)=T, (2-16)

. 1 5 s
with T, = ‘FLIPI(V/‘W”’)Ei”‘dA (2-17)

Similarly, we can deduce the macroscopic mass conservation equation for the solid phase, and
obtain:

a<a’0ts> + OQp,v,)=T, (2-18)

I e 1 _ sl sl
with T = FJ’A‘\'O-“(V“‘ w )Mt dA (2-19)

In the equations (2-16)-(2-19), theterms I, (k =/, s, solid and liquid respectively) represent
theinterfacial transfer associated with phase change (solidification or melting). Note that in the case
of a two-phase solidification system, we have 0Q"'=9Q"*, w"' =w"*, n""=—n"* and mass gained
by the solid equals to the mass lost by the liquid, consequently, I' =—T,. Adding equations (2-16)

and (2-18), we get:
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0[<p,2;; ()] + 0o, v )+ (pv,)] =0 (2-20)

We define the average density (0) and the average momentum ( v ) for the liquid and solid
mixture as follows:

(P)=(p,)+(p,) (2-21)
(pv) =(pv,)+{pP.V.) (2-22)

Then, equation (2-20) can be written as:
%+ m{pv) =0 (2-23)

In the case of stationary solid phase, and if the densities of the solid and liquid are equal and
constant. Equation (2-20) can be written as:

Olv,)=0 (2-24)

In the same way one can deduce the macroscopic conservation equations of momentum,
energy and solute, these equations will be presented in the next chapters.

Continuum or volume averaged models provide useful tools to simulate the macroscopic
transport phenomena during solidification. These models have been applied to prediction of
macrosegregation in steel ingots (Vannier [1995], Gu and Beckermann [1999]); however, the
numerical predictions show only quantitative agreement with experimental results. In particular, the
fact that equiaxed solidification and grain transport has been neglected explains that such models
fail in the prediction of negative macrosegregation in the bottom of large ingot.

Recently, considerable progresses have been made to account for nucleation, grain growth,
the movement of both liquid and solid phases and coupling microsegregation. Combeau et al.[1998]
and Beckermann [2000] have summarized these models.

2.1.3 Modeling of solidification with mesh adaptation

As it has been discussed, macrosegregation arises from micro and macroscopic solidification
and transport phenomena. Using the volume averaged model, one can predict fluid flow and
associated transport phenomena at the scale of a casting system. However, computation on a coarse
mesh yields low accurate prediction. For example, generally the mesh size used for ingots is of the
order of centimeter. It is then impossible to capture the fluid flow in the segregated channels. The
width of A-segregated channels can be at a scale of about one millimeter (Combeau et al. [1998]).
In order to increase the computational accuracy, the mesh adaptation is needed.
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Based on the averaged model, Kampfer [2002] has proposed an adaptive domain
decomposition method to predict macrosegregation. The overall computational domain is
discretized using a coarse mesh, on which the energy conservation equation is solved. According to
the temperature and solid fraction obtained, the mushy, solid and liquid zones are determined. The
critical zone for macrosegregation is the narrow region near the liquidus, where the velocity of
liquid and the concentration gradient are quite different from zero, as shown in Figure 2-4 (a) and
(b). The critical zone is discretized using a much finer mesh as shown in Figure 2-4 (c). Then, the
fluid flow and solute transport equations are solved on the different meshes. An iterative procedure
is performed to couple the resolutions on the two meshes and match the boundary condition, as
shown in Figure 2-4 (c) and (d).
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Figure 2-4 The critical regions during columnar solidification processes with respect to buoyancy driven flow
and the associated solute profile in the liquid, from Kampfer [2002]. (a) distinguished zones of solid, mushy
and liquid; (b) profiles of liquid concentration and velocity of liquid; (c) a coarse mesh in the domain of bulk
liquid Q,, and a much finer mesh in the critical region Q ; (d) iterative procedures
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In Kdmpfer [2002] work, the energy equation is solved only on the coarse mesh. The reason is
that the thermal diffusion is sufficiently large and the temperature field is quite smooth, so that the
resolution on the coarse mesh can be considered to be a good approximation. The energy and solute
equations are solved by the streamline upwinding Petrov-Galerkin (SUPG) approach, while the
momentum equation is solved by the Galerkin least squares (GLS) approach.

The refinement of the mesh is achieved by subdividing the coarse parent element (the level of
mesh refining is controlled by the user) as shown in Figure 2-4 (c). This results in non-conforming
meshes in the two regions. A special mortar method is used to match the boundary conditions at the
interface between the two regions. This method assures the continuity of the field and its normal
derivative through the iterative procedure.
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The efficiency of this domain decomposition method has been validated. Figure 2-5 shows
the velocity field and the map of macrosegregation, predicting the formation of freckles. We can see
that afreckleis captured on the finer mesh.

Figure 2-5 Prediction of freckles in unidirectional solidification with mesh adaptation, Kampfer [2002]

Mencinger [2004] has proposed another mesh adaptation method for the melting process of
pure metal with the natural convection. The single-domain model is used which does not require the
tracking of the solidification front. In order to enhance the precision, an adaptive structured grid is
adopted. The grid density is controlled by a user-defined function. For instance, the function can
depend on the normal of the gradient of enthalpy or the step-function with the ‘step’ at the mold
walls. Fine grids near the solidification front and the boundary of cavity are obtained by solving the
user-defined function with partial differential equations (Laplace operator). However, the method
appears to be limited to structured mesh. The melting process is modeled by solving enthalpy and
momentum equations on the structured adaptive mesh. Figure 2- 6 shows an example of the
adaptive mesh.

Remarks

Although the averaged single-domain model can simulate the macroscopic solidification
using a fixed mesh, the adaptive mesh is also needed to improve the numerical results. Following
Kéampfer’s work, we have proposed a method for computing macrosegregation with mesh
adaptation. Unlike Kidmpfer’s work, an adapted single conforming mesh is generated, without
boundary between the fine and coarse regions. Resolutions for averaged conservation equations of
energy, solute and momentum are carried out on the whole domain and the iterative procedure to
couple fields in the mushy zone and bulk liquid zone is not needed. Concurrently, the use of
unstructured adapted meshes makes the method more general than the one developed by Mencinger.
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Figure 2- 6 An example of mesh adaptation, Mencinger [2004]: streamlines, temperature field and grid

2.2 Solid deformation and pipe formation

Pipe shrinkage results from the volume change of solidification, as well as contraction in the
liquid and solid phases. Risers are designed to compensate the volume contractions. Modeling of
pipe is important for ingots and large castings, because in these cases one should pay attention to
the size and shape of risers. In order to predict the pipe, we need to consider the fluid flow with free
surface. In addition, thermal contraction and dilation induce the deformations in the solidifying
casting and the mold, and consequently affect the heat exchange at the interface. Heat transfer with
fluid flow and therma mechanics are actually coupled. Numerical simulation of such a complicated
problem is characterized by the arts to treat the free surface of liquid and deformation in solid.

Hereunder, we review models of pipe formation. Firstly, the general methods to treat free
surface in the fluid mechanica models are presented. Secondly, an approach to the coupled
resolution of fluid flow and deformation in solid is introduced.

2.2.1 Fluid mechanical models

Roch et al. [1991] proposed a simple method to compute the free surface in the solidification
of an ingot. As shown in Figure 2-7, the feeding is considered as perfect: at each time increment,
the incremental shrinkage volume is assigned to the pipe formation and the liquid feeding cannot be
interrupted by an excessive pressure drop arising from a too low permeability of the mushy zone.
The volume change AV at each time step can be calculated as follows:

t2

AV = J’(As” g.dt+3a(T(0)T)dt (2-25)

where Ae” isthe ratio of volume variation due to solidification, ¢, the change rate of solid volume
fraction, a(7(¢)) the coefficient of the linear thermal expansion depended on the temperature, 7 the
temperature rate.

Then, the descent level of liquid is determined by equation (2-26).
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Ah=""— (2-26)

contour of solidus temperature

T liquid

Figure 2-7 Schematic of the pipe

This approach is easy to carry out and effective. But if there are two or more risers in the
casting system, how to assign the incremental shrinkage volume AV to the different risers? This
would need specific additional rules to be calculated. Another problem is that the sum of local
volume contraction is entirely assigned to pipe growth, which is not true. Solid contraction
occurring in the solidified zone contributes to the air gap between the casting and mold, but not to
the pipe.

Chiang and Tsai [1992A,1992B] firstly used the continuum mixture model to simulate
shrinkage-induced fluid flow and natural convection in aloy solidification. A rectangular cavity
with ariser located on the top is considered. The cavity is cooled at the bottom surface, while all of
the other surfaces are adiabatic. The solidification process is modeled on a fix and regular grid. The
free surface at the top of riser is assumed to be flat due to thermal condition, and the movement is
one-dimensional. In fact, this model is not able to predict the shape of pipe shrinkage because of
specia treatment of free surface.

Kim and Ro [1993] reported an approach to model the solidification of pure metal ingots.
The general conservation equations of heat, mass and momentum are solved. The coordinate
transformation (x=x(n,&,t) and y=y(n,&t)) is used to handle the moving domains of liquid and
solid. The downward velocity of the free surface is determined from the mass conservation over the
liquid phase. However, the method can not be used for aloy ingots.

Based on the classical mixture theory, Barkhudarov er al.[1993] used a single set of
conservation equations to model the fluid flow during solidification. The VOF algorithm is used to
treat the free surface problem. In VOF agorithm, a function ' is equal to zero in the void regions

and to unity in the regions occupied by the fluid. The governing equation for the VOF is:
dFF _OF

Z =2+ =0 -
Ty (OF) (2-27)
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in order to take into account solidification shrinkage, a source termsS, is added into the equation
(2-27), and the equation is expressed as.

oF »
5 HONT=-5, (2-28)
TV, & Cp p, (&29)

where Iy isthe total cell volume open to the fluid, AM, is the liquid mass solidified in the cell over
time At, p, and p; are the densities of the liquid and solid phases respectively.

The solidification process of an aluminum sand casting has been modeled. Figure 2-8 shows
the shrinkage cavity forming at the top of casting. We can see the fluid flow induced by the
shrinkage and the pipe formation.

t=350.0s. t=400.0s.

Figure 2-8 Results of the shrinkage formation.The dashed line constitutes the solidification front and short
straight-lines represent the feeding velocities, Barkhudarov et al. [1993]

Ehlen e al. [2000] adopted a similar approach to treat the free surface as Barkhudarov et al.
[1993]. A set of averaged conservation equations is used to predict the pipe formation and
macrosegregation. A cylinder Al7wt%Si ingot (H=107mm, R=40mm) has been cast in the cast iron
chill mold to vaidate the model. Figure 2-9(a) and (b) show the distribution of computed
temperature and solid fraction after 30 s and 80s respectively. The free surface has been fully
developed at 80s, the calculated shape is in good agreement with the experimental result as shown
in Figure 2-9(c).

Considering the shrinkage induced fluid flow, Ehlen er al. [2000] has predicted the inverse
segregation. In the condition of dendritic growth, a high solute concentration exists in the
interdendritic liquid. This liquid is drawn toward the dendrite stalks on the cooling face by
solidification shrinkage, leading to high solute concentration at the outer region of the casting. This
is known as inverse segregation, which is opposite to normal solute concentration distribution: low
concentration at the outer region and high concentration at the center.
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Figure 2-9 Results of the shrinkage cavity formation, Ehlen et al. [2000]

Naterer [1997] proposed a control-volume based finite-element method to simulate the
solidification shrinkage. The continuum mixture model is used. The governing eguations are
discretized linear quadrilateral elements. The free surface is handled by the adapted mesh through
coordinate transformation, avoiding the classical problem of numerical diffusion in VOF agorithm.

2.2.2 A thermal mechanical model

For predicting the pipe formation, the models based on fluid flow as mentioned above do not
consider the air gap associated with the solid deformation. Bellet ef al. [2004] have developed a
thermal mechanical model to predict pipe formation, coupling fluid flow and deformation in solid.
The main idea has been presented in section 1.4, and the model has been implemented in the code
THERCAST®. By comparing with other methods, this approach has the advantage of taking into
account the deformation of the whole casting.

The unilateral contact condition is applied to the boundary between mold and casting. The
contact is treated by the penalty method. This allows calculating the gap between mold and casting.
The ALE scheme is used to compute the fluid flow in liquid pool and mushy zone, this allows
tracking the free surface.

The thermal mechanical model has been applied to simulate solidification process of a large
part. The part is characteristic by its size (2.5%x7.0x1.0 m), weight (125 tons) and chemical
composition (close to pure iron). Using symmetry conditions, only half of the casting has been
calculated. The average mesh size of the part is approximately 0.10 m. The pipe shapes computed at
2 h, 28 h and 55 h are shown in Figure 2- 10 as well as the distribution of liquid fraction. The final
shapes between calculation and measurement show a reasonable agreement.
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time=2h time =28 h time=55h

Figure 2- 10 Evolution of pipe shrinkage, with liquid fraction distribution

To summarise, the thermal mechanical approach to the prediction of pipe formation is very
encouraging:

* modelling of the fluid flow driven by difference of density and solidification shrinkage in
liquid and mushy zones, and the deformation of solidifying part simultaneously;

» theinfluence of the part deformation on the pipe formation has been taken into account.
* Proper tracking of the free surface.

It isone of our tasks to implement such model in R2SOL.
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Chapter 3

Modeling of macrosegregation

Modélisation de la macroségrégation — Résumé en francais

Ce chapitre constitue une des contributions principales et est consacré a la présentation du
modele développé. Les hypotheses adoptées ainsi que les principales équations sont tout d’abord
exposées. Les différentes stratégies de résolution sont ensuite discutées : couplage faible ou fort lors
de la résolution incrémentale des différentes équations, résolution en systeéme fermé ou ouvert de la
conservation des solutés, ce dernier point étant en continuité par rapport aux travaux de Vannier et
Combeau dans le logiciel de volumes finis SOLID.

Dans le cadre de I’approche fortement couplée en systeme ouvert, le modele de
microségrégation considéré est la regle des leviers, en systtme ouvert, et la formation d’un
eutectique est prise en compte. Des itérations sont alors effectuées a chaque incrément de temps, de
maniere a résoudre de maniere consistante les différentes équations de conservation et a satisfaire le
modele de microségrégation.

En approche non couplée, la solidification est considérée localement en systeme fermé, c’est-
a-dire que la relation entre fraction de liquide et température est fixée en fonction de la
concentration locale en début de solidification. Dans ce cadre, le modele de Scheil peut également
étre utilisé, en plus des leviers. Les détails des modeles numériques et les stratégies de résolution
sont présentées en section 3.1 et 3.2. La résolution des équations des modeles de microségrégation
est exposée en section 3.4.

Pour la résolution du probleme thermique, les méthodes SUPG et d’« upwind » nodal ont été
implantées dans le logiciel R2SOL. Par ailleurs, cette résolution a été rendue plus robuste d’une part
par la programmation d’une méthode de recherche linéaire, facilitant la convergence de la méthode
de Newton-Raphson, et d’autre part par I’utilisation de la méthode dite « cond-split » préalablement
développée au Cemef. Le solveur thermique est présenté a la section 3.3. La resolution du transport
de soluté utilise la méme formulation SUPG et est détaillée en section 3.5.

En ce qui concerne la résolution du probleme de mécanique des fluides (section 3.6), le
solveur pré-existant utilisant des éléments P1+/P1 a été étendu aux écoulements axisymétriques, ce
qui a nécessité des développements particuliers pour les termes d’inertie et de perméabilité. Une
formulation P1/P1 stabilisée par moindres carrés a également été utilisée et est présentée.

La section 3.7 est consacrée aux différents tests ayant servi a la validation de ces différentes
formulations.
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Chapter 3

Modeling of macrosegregation

The present chapter is dedicated to the modeling of macrosegregation in columnar dendritic
solidification. Firstly, in section 3.1 we present the hypotheses and averaged conservation equations
for energy, solute, mass and momentum. The resolution strategy and computational organization in
the two-dimensional finite element code R2SOL are introduced in section 3.2.

Then, we focus on the resolution of energy, solute and momentum equations in sections 3.3 to
3.6. Followed, the validation tests will be presented in section 3.7.

For clarity, we omit the averaging notation (Eﬂ that has been used in section 2.1.2.3. For
example, we note simply V for the average velocity in liquid instead of (vi.)-

3.1 Governing equations

3.1.1 Hypotheses

The analysis of fluid flow, temperature and solute distribution for the solidification system is
based on the following hypotheses:

* Theliquid flow is laminar, Newtonian, with a constant viscosity 1, and the solid phase is fixed
and non deformable. The mixture is saturated, i.e., g +g,=1, with g_ denoting the volumic
solid fraction and g, theliquid one.

* Theanaysisisrestricted to abinary alloy.

» The mushy region is modeled as an isotropic porous medium whose permeability K is defined
by the Carman-Kozeny formula as follows:

K =2A,°g(1-g;)2/180 (3-1)
where A, isthe secondary dendrite arm spacing.

» Thesolid and liquid densities are equal and constant, p,=p,=p,, except in the buoyancy term
of the momentum equation where density depends on the temperature 7 and the solute mass
concentration in liquid w, according to the following linear approximation:

pP=p,(1-5; (T_Tre_f) -B,(w, _wre_f)) (3-2

where: [, =- 1 EDL H isthe thermal expansion coefficient;
1
POT [,

B, = —%%:7'0% isthe solutal expansion coefficient;
W,
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T, and w,, are the reference temperature and reference mass concentration respectively, at
which the liquid density takesits value p,, .

Thermodynamic equilibrium exists at the liquid-solid interface, i.e., at the interface we have:

T°=T =T, (3-3)
and w, =kw, (3-4)
where 7. and 7, are the temperatures for the solid and liquid, respectively. w_and w, are the
mass concentrations for the solid and liquid respectively. The superscript * indicates the
interface value.

Moreover, within an elementary representative volume, we assume that the temperature is
homogeneous, i.e., ' = T, =7, , becausethe thermal diffusion is sufficiently large.

Furthermore, in order to simplify the treatment of the phase diagram of the binary aloy system,
the liquidus and solidus are approximated by straight lines. For example, Figure 3-1 shows the
equilibrium phase diagram for the Pb-Sn system. In the mushy state for the hypo-eutectic part of
the diagram (that is a weight percentage of Sn less than 61.9%), we have the following
relations:

r=T,+ mw; (3-5)
K =k = constant (3-6)
W

where 7', isthe melt temperature of pure Pb; k partition coefficient (<1); m liquidus slope (<0);

Above 61.9% Sn, similar relations can be written with 7/, melt temperature of pure tin and w
the weight percentage of lead.
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Figure 3-1 The equilibrium phase diagram for the Pb-Sn alloy
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3.1.2 Conservation equations
e Mass conservation

Assuming that the solid and liquid densities are equal and constant, the mass conservation
equation gives:

Ov=0 3.7)

where V is the average liquid velocity (the solid is fixed). For the details of derivation procedure
one can refer to section 2.1.2.3.

e Momentum conservation

Following the work of Ganesan and Poirier [1990], with the hypotheses stated in section
3.1.1, one can deduce the averaged momentum conservation equation for the liquid phase as
follows:

Y
Pog * %D [(VxV)=0uiV) - g,Up+g,pg -%ng (3-8)
i

wherep istheintrinsic pressure in liquid and g the gravity vector.

The permeability K tends towards infinity in the pure liquid region, and then equation (3-8) is
reduced to the Navier-Stokes equation. In the region where the liquid fraction is lower, the
permeability tends to zero and the last term in equation becomes dominant, while inertia and
rheological terms vanish, yielding the Darcy’s relation (2-5).

* Solute conservation
Redistribution of solute at the macroscopic scale is governed by the equation:

%—V:+VDJJWZ—D[(]€DW,):O (3-9)

where £ is a diffusion coefficient: £=D,g,, where D, denotes the diffusion coefficient in the liquid
phase. Usually the diffusion term is negligible, and one can take an arbitrarily small value & for the
numerical stability.

* Energy conservation

The energy equation can be written in an enthalpy form as follows:

H
pOE%+DH,W§—D[(MDT)

0 (3-10)
where A is the average thermal conductivity; H is the volume averaged specific enthalpy; H,is

the volume averaged specific enthalpy in the liquid phase.

Assuming that the specific heat for the solid is equal to the one for the liquid, being ¢, , and

denoting L the latent heat of fusion per unit of mass, we have the following relations:

The volume averaged specific enthalpy of the solid /| :
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H, :'[IZCPdT (3-11)
The volume averaged entha py of theliquid H, :

H=[ ¢, dT+1 (3-12)
The volume averaged enthalpy H for the mushy metal:

H=gH +(1-g,)H, :L:cp dr+g,L (3-13)

In the case of a given constant specific heat ¢, and taking the reference temperature 7,=0,

the definitions of the volume averaged enthalpies of the solid, liquid and mushy metal can be
rewritten as follows:

H =c,T for thesolid (3-14)
H =c,T+L for theliquid (3-15)
H=c,T+gL for the mushy metal (3-16)

With these assumption, the energy equation can be rewritten as:

H
poé%+chTW§—D[(MDT)

0 (3-17)

3.2 Resolution strategy

3.2.1 Coupling the equations

Before detailing the resolution for the conservation equations of energy, solute, and
momentum, we briefly present the resolution strategy. This strategy is the same as that used in the
finite volume code SOLID (Vannier [1995]).

There are two unknown variables in the energy equation (3-17). The average enthapy H is
chosen as the primary unknown. In order to eliminate the temperature 7', 7 is considered as a
function of H, and is computed by the approximation of the first order of Taylor’s expansion:

T=T + (3—2)*(1{—1{*) (3-18)

o . oT _ 1 oT . .
In the liquid and solid states, we have —— =—. In the mushy state, 3H is determined by the local
c
P
thermal equilibrium for the mushy metal accounting for the latent heat release. Since the latent heat
release depends on the microsegregation models, heat release during solidification makes the energy
equation highly non-linear. Therefore, a Newton-Raphson method is used to solve for the primary
unknown . When a converged solution for His obtained, the temperature 7 and the liquid

fraction g, can be deduced from the relations (3-5), (3-13) and the local microsegregation model, for
instance the lever rule model. This will be explained in section 3.4.

-36-



In the solute transport equation (3-9), there are also two unknown variables, the average mass
concentrationw, and average mass concentration in liquid w,. To solve the solute transport
equation one can choose either w or w, as the primary unknown. The relationship betweenw and
w, is also depending on the microsegregation model.

The mixed velocity-pressure P1+/P1 formulation is used to solve the weak form of the
momentum equation (3-8) together with a weak form of the mass conservation equation (3-7). In
the momentum equation, the temperature 7' and average solute mass concentration in liquid w,
appear in the buoyancy term. The permeability K appearing in the Darcy term is a function of the
liquid fractiong,. T',w, and g, rely on the resolution of heat and solute equations. On the other
hand, the liquid movement affects the heat and solute transport. Thus, the resolution of momentum,
energy and solute equations are coupl ed.

The general organization of the computational resolution is illustrated in Figure 3-2. In each
time step, energy, solute and momentum equations are solved in this order. Two approaches, named
no-coupling and full-coupling, have been implemented in R2SOL.

I
I
i -

full-couplin
Resolution of energy equation ping \

Calculate H, using 7(H) and 6T/0H

Local micro-segregation model

Resolution of solute equation (lever rule or Scheil model)
In the full-coupling approach we solve for w, ‘w;and g, -

are computed in the microsegregation model. / we deduce 7(H), 0T/0H, &, ",

|

and w

In the no-coupling approach we solve for w,, W
is computed in the microsegregation model.

Resolution of momentum equation

CdculateV, p 7

N
N o e e e e e e e mm e e e = fl

no-coupling full-coupling approach reduced to one iteration

Figure 3-2 Resolution strategies to predict macrosegregation

In the no-coupling approach, we localy fix the solidification path in the resolution of energy
equation. i.e., the liquidus temperature and solidus temperature are locally fixed according to: 1) the
initial nominal concentration; 2) the local solute concentration just before solidification, which
allows to take into account the solute enrichment in the liquid pool. The details will be presented in
section 3.3. In the no-coupling approach, within each time step we solve the equations of energy,
solute and momentum, without any iteration to get consistent fields of temperature, solute
concentration and velocity. Actually, as the solidification path is locally fixed in the mushy zone,
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the resolution of solute transport equation is not coupled with the resolution of energy equation. The
solidification in the mushy zone is treated as a closed system. After solving the energy equation we
get the new fields of liquid fractiong, and temperature 7. Those new values are used in the
resolution of the solute equation.

In the full-coupling approach, the solidification of a binary aloy in the whole casting is
considered using an open approach. After resolution of energy and solute equations, we have a
consistent set of variables: the enthalpy H, the temperature?, the liquid fractiong,, and the
average concentrationw , which satisfy the local thermal equilibrium with the lever rule. Iterations
can be performed within each time increment to give converged consistent resolutions that satisfy
the three governing equations. This type of resolution is called fully coupled resolution. Since the
computational cost of the fully coupled resolution may be expensive, one can solve the three
governing equations with only one iteration in each time step (full-coupling, reduced to one
iteration).

3.2.2 The finite element solver

In convection dominated problems, it is well known that spurious oscillations may appear in
the finite element resolution of the advection-diffusion equations, when they are discretized by the
standard Galerkin method (Rappaz et al. [2002]). In order to overcome this numerical difficulty, an
explicit nodal upwind method has been used so far to treat advection terms in R2SOL (Gaston
[1999]). This method consists of computing the upstream trajectory of the material particles.
Following the previous work, the nodal upwind method has been used in the present work, and
some improvements in the solvers for the energy and momentum equations will be detailed in the
sections 3.3 and 3.6 respectively.

Alternately, the Streamline-Upwind/Petrov-Galerkin (SUPG) method introduced by Hughes
and Brooks [1979] can be considered as a successful stabilization technique to prevent oscillations
in the convection dominated problems. The first step to develop the streamline upwind methods has
been achieved by introducing some artificial diffusion in the streamline direction, using a modified
test function for the advection term only. The modified test function gives more weight to the
upwind nodes. This leads to the so-caled SU (streamline upwind) method. Then, the stabilized test
functions have been applied to al terms of the weak form, not only the advection term. This leads
to the consistent formulation of the finite element method, named SUPG. Thereby, the SUPG
method is often used for the advection-diffusion problems. A good review of the SUPG
stabilization approaches can be found in Frieser al. [2004].

In the resolution of momentum equations, besides the advection problem, instability arises
from the selection of interpolation functions for velocity and pressure (Rappaz et al. [2002]).
Historically, these problems have been solved using the P1+/P1 formulation in R2SOL., which will
be presented in section 3.6.

For the incompressible Navier-Stokes equations, the SUPG and PSPG (Pressure-
Stabilizing/Petrov-Galerkin) stabilized methods have been proposed by Tezduyar er al. ([1992],
Tezduyar and Osawa [2000]. Comparing the treatment of incompressibility constraint in the mixed
P1+/P1 formulation, PSPG scheme is an dternative stabilized method. The stabilization is
guaranteed by the additional term which consists of a perturbation 7 VIIN multiplied with the
residual of the momentum equation,7 being the stabilization parameter, and N being the
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interpolation function for the pressure. It should be mentioned that in the PSPG formulation one can
use an equal-order interpolation function for the velocity and pressure fields.

More recently as a first attempt, we have implemented the SUPG formulation for the energy
equation and, in collaboration with Victor Fachinotti and Michel Bellet, the SUPG-PSPG
formulation for the momentum equations. The new development has been used to simulate the
formation of macrosegregation. The new method will be presented after the old one.

3.3 Resolution of the energy equation

The thermal analysis of the solidification process of a casting is performed using the energy
conservation equation (3-10) with the following boundary and initial conditions:

T=1, on 0Q; (3-19)
-A0Tmh=g,, on 0Q, (3-20)
-AOTm=h(T-T.,,) on 0Q, (3-21)
T =T, a (=0 (3-22)

Where: 0Q is the boundary of the domain Q occupied by the casting on which the temperature 7,,,
iSimposed,;

0Q ,is the boundary on which the outward heat flux ¢

)y 1S 1MpOSed;
0Q . is the boundary on which the heat exchange is defined by the heat exchange coefficient

h with the external temperature 7,_,;

ext !

T, . istheinitial temperature.

A nodal upwind and a SUPG method are used. Firstly, we present the nodal upwind method
following Gaston’s work [1999]. Then, the new solver based on the SUPG method is detailed.
Further, we present improvements resulting from our personal contribution regarding convergence
and treatment of thermal shocks.

3.3.1 Resolution with the nodal upwind method

3.3.1.1 Time discretization

The enthalpy of the liquid phase, is a function of time and space. Its derivative, following the
liquid particles at the average velocity V, can be expressed as:
d<1>H _ aHl

=% omw (3-23)
dt ot

Then, the energy equation (3-10) can be rewritten as:
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PpH d<]>H 6H D DT
Po Hor dt iy (3-24)

Let H/™ be the liquid enthalpy at point x, but at the previous time step; H,™ the liquid

enthalpy at time r—Ar of the particle which, at timez, is at the same position x. The total and partial
derivatives of the liquid enthalpy are approximated by the following implicit finite difference
expressions:

d<1>H 7 t-At

5 —( —H;) (3-25)
0H, 1 t_ pri-i
TRV (3-26)

For simplicity, the superscript O is used instead of r—Ar for any quantity, and the superscript
¢t is omitted for the quantity at time ¢. Substituting equations (3-25) and (3-26) into equation (3-
24), one can write the energy equation in semi-discretized form:

—H° HO 7
po@HAt A E~D[GADT) (3-27)

The particle value of a scalar quantity at time ¢—Aris computed by an upwind transport
approach that will be discussed in the section 6.2.4.

Remark

3.3.1.2 Spatial discretization

The computational domain is decomposed into triangle elements. The P1 linear interpolation
functions N are used. The standard Galerkin method is applied to equation (3-27), leading to:

R(H,T)=[M]{H}+[K]{T}-[M]{H°}-[M] {FI/O -H/O}-{F}=0 (3-29)
with:

M], = p°J’ N,N ,dQ (3-29)

K], = [ADNOON dQ + [ hN,N dT (3.30)

{F} = fro, BN+ [ AT, N,dT (3:31)

The enthalpy H is chosen as the primary unknown; the temperature 7' is treated as the first
order Taylor’s expansion (3-18). The discretized equation (3-28) then becomes:

D ey Erd = o =[] oy frd B o (-7} + 13 (3-32)
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Where 7" and H™ are intermediate temperature and averaged enthal py respectively in the Newton-

Raphson iterations. g%g isadiagonal matrix computed by the intermediate value of H".

In the old version of R2SOL, the diagonal terms in S‘%E are averaged using the values of

three nodes in the triangle element. The enthalpy H is obtained directly by solving equation (3-32)
through an iterative procedure.

Now, we have re-written the equation (3-32) in the standard form of Newton-Raphson,
denoting » the iteration number:

[3—11:](”){5}1} =-R(H",T") (3-33)
vl [ 150 v = pal{rre ) =[r o) + ] {7z -2} {3 23
- _ R(H(") , T("))

This time, the variation in enthalpy oH is calculated in each iteration, and then the enthalpy and the
temperature are updated as follows:

H"Y =" 418 with 0<n<l (3-35)

T(n+l) :T(H(n+l)) (3_36)

where 77 is a coefficient determined by a linear search method (Saleeb er al. [1998]), which will be
presented in section 3.3.3.

Remarks:

The energy equation is highly non-linear due to the solidification. Although the
convergence rate of Newton-Raphson method is quadratic, the resolution becomes
difficult when the trial solution is far from the solution. The linear search method is then
used to control the increment of enthalpy and to improve convergence.

The matrix [g—gl] isdiagonal. The values of the diagona terms are not identical due to

the solidification. Thus, the stiffness matrix in equation (3-33) is hon-symmetric. In the

previous version of R2SOL, the average value of S_ZI in each triangle element was used

to generate a symmetric stiffness matrix, %%@%HI . But this strategy may lead to
0

non-convergence. In this work, we preferred to form the non-symmetric stiffness matrix.
The PETSC (Portable Extensible Toolkit for Scientific Computation) solver, instead of
the old linear equation solver in R2SOL, has also been implemented to solve the non-

symmetric equation (3-33). The details of PETSC solver can be found in the web site
(PETSC [2003]).
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« Aswe know, the vaue of Z—IZ is zero when eutectic transformation occurs. In the old

version of R2SOL and in SOLID, or takes a small value, e.g. a—T:L during the
o0H 0H 10c,

eutectic transformation. Now we prefer to take the true value, Z—IZ:O, in the case of

eutectic transformation, the convergence resolution is achieved easily.

3.3.2 Resolution with the SUPG method

In the context of the finite element method, the general weak form of the energy equation (3-
17) can be expressed as follows:

0 [pH 0 _
al IQ¢HOO%1%+CPDTW§—D[GADT)ng—O (3-37)

where ¢ isthetest function.

In the classical Galerkin method (Szab6 and Babuska [1991], Rappaz et al. [2002]), the test
function is selected identical to the interpolation function of the solution approximation, i.e., @ =N .
For the convection-dominated problem, the Galerkin method suffers from spurious oscillations and
may not be used in practice. Therefore, the SUPG test function is used, i.e.,@ =N=N+1VIIN ,
where T is the stabilization parameter and will be detailed soon in the following text. The weak form
of energy equation can be then expressed by:

[ 0
W [N HOOE% " cPDTWQ—D[(MDT)HjQ =0 (3-38)

Equation (3-38) can be expanded as follows:

~  9H ~ _
UN J'QN ,00? dQ +J'QN pochTWdQ—J'QN dm@AOT) dQ —J'Qf\DDN OmQAOT) dQ=0 (3-39)

Applying the Green’s theorem to the third term in equation (3-39) and using the boundary
conditions (3-20) and (3-21), one obtains:

~  OH ~
ON J’QN pong +J'QN pochTWdQ+J'éDT[D]N dQ

+[o N Qo dT+[, N W(T=T,,) T - [ VI [omor)] da=0 (-40)
Re-arranging the terms in equation (3-40), yields:
ON J’QN poaa—[t{ dQ +J’QN pOcPDTWdQ+J'éDTD]]N dQ

+J'aQqN @,,dr +J’aQEN WTr-T,,)dr )

0 0H 0, _
+ [ IVIIN %OogﬁoochTW—DWDT)giQ—O
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Following Tezduyar and Osawa [2000], the last integration in equation (3-41) presents the
stabilization term which consists of a perturbation 7 VIIN multiplied by the residua of energy
equation. Later, this stabilized strategy will be used again in the SUPG-PSPG formulation for the
momentum egquations. In the case of linear elements, the stabilized diffusion term vanishes, leading
to:

ON J’N,ooaa—HdQ +I N pgc, DTWdQ+J’ADTD]]NdQ

+I N@,,dr +I NhWT-T,,)dr

ext

(3-42)
+I NENEO +,00 pDngZQ =0

In order to discretize equation (3-42), now we apply the implicit scheme to the time derivative
term. Integrating each term over the computational domain, we then have:

RCH, ) =M {1} +|A 0 T} 4K} - M, J{E9} {7} =0 (3-43)

ane {1}
with:
_ P
[Mstg]i] - J‘QF;(NI +MDN})N}CI’Q

[A = [ Poc, (N, +1VION,)ON | [VdQ

SJPA ij

K], = [ ADNDON dQ + [ hN N dT

ext

{F} = [0 @ Nl + [ KT, Ndr

{H 0}is the vector of nodal enthapies at previous time step. The stabilized SUPG test
function is defined by (Hughes and Brooks [1979], Zienkiewicz and Taylor [1989]):

oy s O AR H OV
¢z‘ - Nz‘ _Ni + 2 |V|| E axk (3'44)

where Kﬁ”E denotes the unit velocity vector, estimated at the center of the element. 8 is an
upwind parameter, which can be optimized as a function of the mesh Peclet number Pe,
(Zienkiewicz and Taylor [1989] ):

H:coth& _ 2
2 Pe,

(3-45)

V| [k
The mesh Peclet number isdefined as: Pe, :% . histhe characteristic length of atriangle
element e in the direction of velocity vector, being approximated by (Tezduyar et al. [1992]):

h=2|VI(y VN, ) (3-46)
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where N, is the interpolation function associated with node a and ||V is the norm of the average
velocity vector. a =A/(p, c,) , being the thermal diffusivity.

Like in the nodal upwind resolution in section 3.3.1, the enthalpy H is chosen as the primary
unknown, the temperature 7' is treated using its first order Taylor’s expansion. Newton-Raphson
method is used to solve the non-linear equation. Then the iterative resolution scheme can be written
as follows:

v |+ ([(Aun ]+ I Har = - rar ), 70)
=, {0 -} ([ K)o B 3an

and H"Y =H" +ndH with 0<n<l

As can be seen by comparing equation (3-34) with (3-47), to implement the SUPG
formulation in R2SOL, we have just created a new module to compute the stiffness matrix and the
residual at the element level. The organization of the code for solving the non-linear energy
equation remains the same. For this reason, in the following text we focus on the nodal upwind
method to discuss our improvement for the energy solver.

3.3.3 Improvement of convergence
» Presentation of problems

Because of the high non-linearity of the energy equation, the Newton-Raphson method may
not converge if the starting point is far from the desired resolution even when using a non-
symmetric consistent matrix, as mentioned above. In order to secure the convergence, we have
rewritten the Newton-Raphson resolution with a line search scheme. The concept of the line search
is to minimize the total potential energy, that is the work done by the unbalanced residual force due
to the solution increment (Crisfield [1982]).

e A line search scheme

Newton-Raphson scheme for solving the energy equation has been given by equations from
(3-33) to (3-36). With the line search scheme, the enthalpy H is updated by H"*Y = H" + 1 oH .
The value of 77 being different from the standard value 1 used in the standard method.

For the line search method, a suitable value of the scalar /7 must be found, such that the
“work” done s(/7) by the unbalanced residual vector R"* in the direction of JH vanishes, that is to
say:

s(m)=R(H" +ndH) [BH =0 (3-48)
In the above equation, OH results from equation (3-33). Of course, it is not realistic to find the

value of 7} that satisfies the condition of equation (3-48), i.e., R"Y =0 is achieved. For practical
purpose, we try to find the value of 77, such that the potential energy decreases:

s(17)
s(n=0)

where [, is the line search tolerance, typically 3,, = 0.8 (Crisfield [1982]).

<B. (3-49)
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We define two inner products, s, and s, , representing the bounds for the searching iterations.

so=5(7=0) =R [BH (3-50)
sy =s(n=1) =R"™ [BH (3-51)

Following the work of Saleeb et al. [1998], the line search scheme is carried out to find the
value of 1 between 0 and 1. Figure 3-3 and Figure 3-4 show four possibilities. But the case most

frequently encountered is that shown in Figure 3-3, that is the case of s,L§, <0, indicating there
exists a suitable value of 77, such that the condition of equation (3-48) can be met. In the figures ‘0’
denotes the point s, =s(7=0) and ‘1’ denotes the point s, =s(#7 =1), the two points ‘0’ and ‘1’
are corresponding to the bounds for line search. As shown in Figure 3-3, the point ‘2’ (denotes the

point 22 ) is found by using 77,, 17, is computed by the interpolation using the values of the point
So

‘0’ and the point ‘1’. The successive values 77, are then estimated according to the “secant” method
that we have also used to solve some equations in our microsegregation models (see section 3.4.2).
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Figure 3-3 Schematic for the interpolation
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Figure 3-4 Schematic for the extrapolation
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Figure 3-4 shows the cases of extrapolation. Extrapolation could result in avery large value of
n, leading to an excessive number of iterations or divergence. In the present work, a relaxation
formulation is used to update the new value as follows:

H"Y =H®" +0.850H (3-52)

» Convergence criterion for Newton-Raphson iterations
The criterion to terminate Newton-Raphson iterationsis as follows:

H(n+1) _H(n)
H(n)

< gtol erance

thermal (3' 53)

In equation (3-53), the condition denotes that the relative variation of enthalpy for each node
is smaller than the prescribed tolerance value of &£ For the solidification problem, the

thermal

tolerance value of £ jsin therange of 10°- 107°.

thermal

3.3.4 Treatment of thermal shock

3.3.4.1 Presentation

Thermal shock, i.e., the occurrence of steep thermal gradients near the boundaries, often
appears in the modeling of solidification of casting. It causes temperature time and Space-
oscillations in the numerica resolution using the standard Galerkin finite element method with
linear interpolation function (Menai [1995]). The temperature oscillations lead to wrong solutions
that do not satisfy the maximum principle (local extrema occur inside the domain). For the thermal
mechanical analysis, the problem can be serious in some cases, as the material behavior is
temperature and history dependent.

In practice, the following methods have been used to avoid spurious oscillations in heat
conduction analysis.

 Adopt a sufficiently large time step, say Ar
condition (Menai [1995]):

to satisfy the penetration depth

ts 2

_1 pe, (3-54)

At, Ax?
4

Where p ,c,and A are the density, specific heat and thermal conductivity respectively.

Ax is the mesh size in the first layer of elements near the boundary.

* Lump the capacity matrix, the off-diagonal terms being summed on the diagonal. The
modified capacity matrix is then:

M =5, 5 [M]., (3-55)

Where 511 is the Kronecker delta, JU. =1if i =, Jy. =0otherwise. It has been proved that
“lumped capacity” in FEM is equivalent to FVM in the 2-dimensional problems (Rappaz
et al. [2002)).
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* Apply the so-called “Taylor Galerkin Discontinuous” (TGD) method (Pichelin [1998]).
PO elements are adopted, i.e., the temperature within an element is constant. In the early
work, we have used the explicit TGD approach to calculate the temperature at element
level, then the temperature at each node is computed by a smoothing technique. However,
the temperature field is not satisfying for the computation of macrosegregation (Liu

[2003]).

* Based on the matrix theory (Ortega [1970]): an M-matrix (a real, non-singular nxn
matrix A is an M-matrix if A™>0 and all its off-diagonal components are non-positive)
satisfies the positive transmissibility condition, which guarantees to obtain the
maximum/minimum of the solution only at the initial time or at the boundary. Putti and
Cordes [1998], using 2-dimensional Delaunay meshes, has demonstrated that the linear
Galerkin approach to the Laplace operator (the diffusion term) results in an M-matrix (the
diffusion matrix). Further, by lumping the capacity matrix, the stiffness matrix (being the
sum of the diffusion and capacity matrix) for a transient heat conduction problem
becomes an M-matrix.

e At Cemef Fachinotti and Bellet[2004] proposed a so called “diffusion-split” method to
overcome the difficulty in modeling of solidification with THERCAST®. This method
has been implemented in R2SOL, and it is presented in the following text.

3.3.4.2 Diffusion-split method
For simplicity, let us consider the heat equation without phase change, with boundary
conditions (3-20) and (3-21):
dT
Poc, -0Muar)=0 (3-56)

Applying the standard Galerkin method and the fully implicit scheme, the heat equation can
be discretized as follows:

2 E g =0 57

where [M] [K] and {F } are the heat capacity matrix, conductive matrix and thermal load vector
respectively, and they have been already defined in equations (3-29), (3-30) and (3-31).
{T} and {To} are the temperature vectors at time ¢ and time #—Af respectively.

Recognizing that the thermal shock problems are associated with the stiffness matrix (Putti
and Cordes [1998]), Fachinotti and Bellet [2004] proposed a method based on the splitting of the
diffusion term, in order to improve the conductive matrix as follows:

i) 4 £ 5) 3:59)
Where

{sh=(lx’ |- K] )} (3-59)

K], = ovoow & + [ AN e (3-60)
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{S} as an explicit source term appears in equation (3-58). An augmented conductivity A™ is defined
to satisfy the penetration depth condition for Az :

0 :
oA if At <At

. _ 0O

A =0 (3-61)
AL if A1, >N

JAYS

Thevaueof A" decreases linearly with time from the value given by equation (3-61) at =0 to the
real conductivity value A when r=A¢, . The time step/r, can be determined by equation (3-54) at
the beginning of simulation.

Regarding the explicit source term {S} that consists of a known temperature, 7°at time
t—At can be used as an approximation, leading to:

{s}=([x" |- [x] J{r} (3-62)

It is interesting to note that during the early stages of the simulation, there is no sensible
variation of the temperature outside the regions submitted to thermal shocks, and hence the
approximation implied by equation (3-58) isloca and temporary.

Also, it should be noted that a priori determination of the time stepAr, for a solidification
problem might be more complicated. In this case, an effective heat capacity pc ¢’ accounting for
the latent heat release, instead of pc , , should be used in equation (3-54). In fact, for an element
undergoing phase change, pc , isconsiderably greater than pc , , and it aso varies greatly with
time. Hence, Ar, should be determined at each time step until the thermal shock effects completely
disappear. Thismakesit very difficult to estimateAr, during the computation.

Fortunately, the thermal shock has a relative short-term effect, it disappears since the thermal
diffusion has been developed in a few time steps. For a solidification problem, provided that the
initial temperature is not too close to the liquidus temperature (i.e., solidification does not occur
during the first time steps of computation), the thermal shock can be controlled before the
beginning of solidification. Hence, the determination of A* remains valid in this case.

In R2SOL, following the work of Victor Fachinotti, we rewrite equation (3-28) as.

i} +[xc {7} = (Ml{are} + ] {729 - e} +{F} + [0} (3-69)
with

K], = [ A OOV, + [, NN, d (3-64)

(K], = [ (X ~HONIV @2 (3-65)

In equation (3-63), K~ isthe modified diffusion matrix, in which the conductivity A" has been
augmented according to equations (3-54) and (3-61). The last right hand side term in equation (3-
63) accounts for the additional splitting source term. The resolution is performed in the usua
manner, by the Newton-Raphson method.
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The solidification processes of a 3.3 ton steel ingot with insulated top surface have been
simulated by R2SOL, using 1) the linear P1 elements (the standard Galerkin method with the
diffusion split method); 2) the PO elements (the explicit TGD method). Pure heat conduction with
phase change, without fluid flow, is considered in the thermal analysis. The geometric and physical
data of the ingot and the mold can be found in Appendix A. The computational results are shown in
Figure 3-5. Figure 3-5 a) shows the temperature distribution in the ingot after 2 hours. The
temperature field obtained by the TGD method is shown on the left hand, the result of the standard
Galerkin method is shown on the right hand. The temperature profiles obtained at 15 s, 10 min, 1
hour, 2 hours and 6 hours, along a horizontal section at the height of 900 mm from the bottom of
mold, are shown in Figure 3-5 b). The temperature fields obtained by the two methods are quite
close, being free from temperature fluctuations.
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TGD Diffusion split R ()
a) temperature in the ingot after 2 hours b) temperature profiles at different times
solidification

Figure 3-5 Comparison of the diffusion split method with the TGD method

To summarize the section 3.3, we would conclude that the energy equation is solved by an
enthal py scheme. In the nodal upwind approach, the equation is discretized spatially by the standard
Gaerkin method, and a fully implicit scheme is used for the tempora discretization. The
convection term in the energy equation is treated by a nodal upwind scheme.

The new solver based on the SUPG formulation have been implemented in R2SOL..
The problem of thermal shock has been solved by the “diffusion-split” method.

Regarding the highly non-linear solidification problem, we have improved the Newton-
Raphson method with a line search scheme. The PETSC solver has been implemented to solve the
non-symmetric matrix equation. These improvements lead to a robust and efficient energy solver.

-49-



3.4 Resolution of microsegregation equations

In this section, we focus on the computation of thermal variables, such as the temperature
T and the liquid fraction g, efc., knowing the average enthapy H and the average concentrationw .
Following the work of Isabelle Vannier [1995] and its implementation in the finite volume software
SOLID, two cases are considered hereunder. The first case is the solidification of a binary aloy
with eutectic transformation. The second case is the solidification of steel and more generdly,
multicomponent alloys.

3.4.1 Binary alloys with eutectic transformation

The linearized phase diagram of a binary alloy is presented in Figure 3-6. For simplicity, it is
assumed that the solute diffuses perfectly both in the solid and liquid phases, and then the lever rule
applies. It is also assumed that the specific heat ¢, is a constant. The evolution of the average

enthalpy as afunction of temperature is shown in Figure 3-7.

1ig=1r+ mw
[}
[}
A O - :L ______
[}
! 1
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| I
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1 1 ' 1 !
1 1 ' 1 !
1 1 ' 1 !
1 1 ' 1 !
1 1 ' 1 !
| | ! | |
1 1 ' 1 !
1 1 ' 1 !
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1 1 ' 1 !
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1 1 ' 1 !
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1 1 H 1 '
1 1 H 1 '
1 1 1 >
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Figure 3-6 Phase diagram for a binary eutectic alloy. Tf is the melting temperature of the pure material. For
an alloy with an average concentration w, solidification begins at temperature Thq and ends at the eutectic

temperature7,,,. At a given temperature 7', we have the liquid phase with the concentration w, and the

eut *
solid phase & with the concentrationw,. While at the eutectic temperature 7 , the liquid phase with the
concentration w  transforms into two solid phases @ and [, their concentrations being denoted by w

and w,, respectively.
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Hliq
Heut,s
Hsol
>
T

Figure 3-7 Relationship between average enthalpy and temperature. T,,-q is the liquidus temperature,
T,

eul

associated with the enthalpy H is the eutectic temperature. The eutectic transformation occurs in a

lig *

range of enthalpies, it begins at /1 andends at H_,. L isthe latent heat of fusion.

eut,s sol *

Now, we deduce the temperature, the liquid fraction and the concentration in the liquid phase,
using the average enthalpy and the average concentration. This is achieved by two steps. Firstly, we
determinate the important phase change points on the enthal py-temperature curve as illustrated in
Figure 3-7, SO that the state of a point can be determined, either in the solid, liquid or mushy state.
Then, we calculate the temperature?”, the concentration in liquid phasew,, the liquid fractiong,

oT
and —.
0H
» Determination of the phase change points on the enthalpy-temperature curve

The liquidus temperature 7 and associated enthapy H can be computed by equations
(3-66) and (3-67), using the thermal equilibrium hypothesis (3-5) and the definition of the average
enthalpy (3-13).

Tvliq = Tf +mw (3-66)

Hlu] :Cp ]}lt] + L (3'67)

According to the average concentration, the solidus temperature 7., is computed using either
equation (3-68) or equation (3-69). The corresponding enthalpy H _, isgiven by equation (3-70).

T =T, +mo, i w<wy (3-68)
T\‘ul = Teut ! If WZWSI (3'69)
H‘s‘nl = cme/ (3'70)

Following the phase diagram, the liquid fraction g.,, ., a the eutectic point can be calculated
using equation (3-71). Equation (3-72) gives the enthalpy H below which the eutectic

transformation takes place.

eut,s

-51-



! _ W Wy
gem,s - (3-71)

w - w,\‘l

eut

Heut,s = cpTeut + L gim,,\‘ (3-72)

» Calculation of thermal parameters

Knowing the values of enthalpy H,,,H = andH ,,wecanidentify 4 cases: 1) H=H
dloy isintheliquid state; 2) H<H ,, inthe solid state; 3) H,,, . <H<H,, , in the mushy state; and
4) H,<H<H,, ., in the eutectic transformation. According to these different states, the thermal
parameters can be determined respectively.

1) H=z=H, ,thedloyisintheliquid state, we have:

g * the

g =1 (3-73)
w,=w (3-74)
H-H,
T = AT, (3-75)
CP
or 1
o (579

p

2) H<H, ,theadloy isin the solid state. An additiona test is done to identify if the aloy has

dready been in the solid before, i.e. g, =0. If the alloy was in the mushy state at the previous
time step, we have two different cases according to the average concentration, w<w_, or w>w, .

For the case of w <w_, we have:

g =0 (3-77)
w
w, = ; (3'78)
p=H"Hy T (3-79)
cl’
or 1
o (3-80)

g = (3-81)
wl = weut (3'82)
r=T"Ha o (3-83)
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ar 1
oH ¢ (3-84)

P

In the case where the alloy was already in the solid state at the previous time step, g, =0,

and w, does not change any more, it takes its value at the previous time step. T andg—g aregiven

by equations (3-83) and (3-84) respectively.

3) Heul,s S[{<[—[1iq
In this case, we need to solve the following three equations with three unknowns g, ,w,and 7.
H=cT+gL (3-85)
w=gw + (1-g)kw, (3-86)
=71, +mw, (3-87)
Successive substitutions lead to a second order equation for g, , which permits then to compute
w, using equation (3-86) and finally 7" using equation (3-87).
The derivation of equation (3-85) with respect to 7', leads to:
oT _ 1
o0H ¢ +L 0g, (3-88)
oT
Combining equations (3-86) and (3-87), we find the temperature? as a function of the liquid
fraction g, and the average concentrationw . Then Z—T can be deduced as follows:
&
or _ m ow  (A-k)wm 2.80
0g, k+(-K)g 0g (k+(hg) (359)
with
a _ [EAY) ] A
o= g (3-90)
0g, g ~ &
ow . -
— =0, if g=g,™ -
dg, g1=8 (3-91)
4) H,<H<H,, , eutectic transformation occurs at this node. We have:
H_c TBHT
g = Tp (3-92)
wl = weur (3_93)
r=T1 (3-94)
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—~ =0 (3-95)

Remark

Regarding the method presented in this section, we note that an open system has been
considered. The variation of average mass concentration affects the local solidification path, i.e., the
liquidus temperature?),, and the solidus temperature 7,, are considered as functions of the local
average mass concentration. The lever rule is applied in the microsegregation model, the resolution
of solute and the energy equations are consistent with the local thermal equilibrium. In the full-
coupling approaches (with or without iterations), we have used this microsegregation model.

3.4.2 Multicomponent alloys

In the following text, we present the method devel oped by Isabelle Vannier [1995] that deals
with the liquid-solid phase change in steels. The treatment of phase change is extended to the multi-
component system.

» Thermal equilibrium in the mushy zone

Following the hypothesis of thermal equilibrium in the mushy zone, it is assumed that the
temperature is equal to the liquidus temperature, which is approximated as a linear function of the
liquid mass concentrations as follows:

T =T, + Zm’w,l (3-96)

Where 7 is the number of solute elements in the alloy; ' is the ope of liquidus for the element i;
w' isthe liquid mass concentration of the element i.

Let us denotew, (¢,) the liquid mass concentration of element i when the liquid just begins to
solidify. The value of w(s,) can be different from the initial nominal concentrationw,, if the
enrichment of the solute element i in liquid pool is taken into account. In the absence of
enrichment, w, (tp):w{,. Figure 3-8 shows the variation of concentration in the liquid pool.

Not taking the convection into account in the mushy state, after the beginning of
solidification, that is for alocal closed system, the lever rule and the Scheil equation give w' as a
function of w, (z,,) .

o Lever rule for an element that diffuses perfectly both in the solid and liquid phases. Thisis
the particular case of carbon in steel. Let the superscript ¢ denote carbon, we have:

wy (t
we = (0, (3-97)
k+ (1-k%) g,
* Scheil’s law for an element i that does not diffuse in the solid phase is expressed as:
w=w()g (3-98)

Substituting equations (3-97) and (3-98) into equation (3-96), then the temperature in the
mushy zone can be expressed as:



m- w, (t n i_
r=T7T, +— l(f) + m' Wzl(tp)(gz)k '
' k°+(1-k%) g, i=Ti#c

(3-99)

The equation defines the solidification path, i.e., 7= f(g ). Consequently, g—T can be

g
deduced as follows:
or _ m w/(t,) (k" -1

0 (k+(1-k%)g,)

- S D (e) (3-100

Using this expression in equation (3-88), one can deduce the value of g—gfor the thermal

analysis.

T A Initial state

.--No enrichment
--~ Evolution of concentration accounting for enrichment

in the Liquid pool

. >
wh w'(tp) w(%)
Figure 3-8 Schematic of the variation of concentration in the liquid pool (Isabelle Vannier [1995])

» Determination of the liquidus temperature T, and the solidus temperatureT,

lig

In the liquid state, knowing w'=w,, liquidus temperature T,,is given by equation (3-96).

Note that because of the closed-system hypothesis (at the level of the REV), this liquidus
temperature does not change during solidification.

Regarding the end of solidification, Scheil’s law gives a very large value of w, when the
fraction of liquid g, tends to zero. It is then assumed that an artificial eutectic transformation
occurs when g,<g, . g,, i1s a small value, typically g, ,=0.01. g, , is applied in the equation
(3-98) to truncate the liquid concentration.

The solidus temperature (the artificial eutectic temperature)7,,, is defined as a function of

AG ,) > which is a correlation obtained from experimental results:

=T, (w(,)) (3-101)

sol
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For stedls, the correlation can be found in the origina literature (Howe [1988]) and in the
thesis of Isabelle Vannier [1995].

Corresponding to the temperature?’ ,, one can find the fraction of liquidg, , a which the
artificial eutectic transformation begins to take place. g, , is deduced from equation (3-99) by the

secant method, knowing 7, and w, (¢,) (Vannier [1999]).
» Determination of the temperature T and the fraction of liquid g,

In order to compute the temperature 7 and the fraction of liquid g, , firstly we compute the
phase change points on the enthal py-temperature curve using equations (3-11) to (3-13).

Hllq = H (qu ! gl :1) (3'102)
H.m/ = H (Ts‘nl ’ gl = gl.ml) (3'103)
Hﬁn = H (Tm] ! gl = O) (3'104)

H
that the specific heat ¢, is a constant, we can identify 4 cases to compute the temperature 7' and the

Knowing the average enthalpy A and the phase change points H andH ,,, providing

lig ? sol

fraction of liquid g, asfollows:
1) H=H ,thedloyisintheliquid state;

_H-L

g =1 ad T (3-105)
cl’
2) H<H ,inthesolid state;
H
g =0 and T=— (3-106)
cl’
3) H,<H<H,, intheartificia eutectic transformation;
H-c T,
gl = Lp a and T:T\‘al (3-107)
4) H,<H<H,, inthemushy state, 7 and g, are computed from the equation (3-108) and

the equation (3-99) by the secant method.
H(T,g)-H=0 (3-108)

The computation of the parameter Z—IZ is achieved according to the 4 cases. If the aloy isin

the liquid state or in the solid state, Z—Iz:i If it is in the artificial eutectic transformation,

Cp

g—g =0. In the mushy state, g—g can be deduced from equations (3-88) and (3-100).
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Remark

In this section, the treatment of solidification is extended to multicomponent systems. For
simplicity, the solidification is considered localy as a closed system.7, and 7, are estimated
locally, as functions of the local liquid average mass concentration before solidification, w, (7)) .
That is to say the solidification path is fixed when the metal begins to solidify. Not accounting for
the variation of concentration in the mushy zone, the energy equation is consistent with the local
thermal equilibrium. We use this microsegregation model in the no-coupling approach.

3.5 Resolution of the solute transport equation

As mentioned above, the solute transport equation writes, for each aloying element
considered:

%—Vt‘%vmwl - Oifebw,)=0
It is supposed that there is no solute exchange at  the boundary of the computational domain

0Q, that is:
Owin=0 on 0Q (3-109)

where n isthe outward normal on 0Q) .

It is aso assumed that the initial concentration field is homogeneous:
w=w, a =0 (3-110)
where w, is the nominal concentration of the alloy.

The fully implicit Euler-backward scheme is used for the time discretization. The linear
triangle elements are used for the spatial discretization. Regarding the stabilization of the
convection-diffusion equation of solute transport, the Streamline Upwind Petrov-Galerkin (SUPG)
scheme s applied.

There are two unknowns in the solute transport equation (3-9): the average mass
concentration in liquid w, and the average mass concentrationw . The relationships between w, and
w depend on the microsegregation model. The two unknowns can be chosen as the primary
variable alternately, leading to two possibilities to solve the equation.

The first possibility is to choose w,. In R2SOL we have implemented the resolution for w,,
following the work of Isabelle Vannier [1995] in the finite volume code SOLID.

The second possibility is to choose w. This is the case of the “split method” following the
work of Prakash and Voller [1989], which we have also implemented in R2SOL.

In the no-coupling approach we solve for w, as the primary unknown. In the full-coupling
approach we solve for w as the primary unknown. We present the two approaches in the following
text.
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3.5.1 Approach 1 - resolution for the average mass concentration in liquid w,

3.5.1.1 Lever rule

Lever rule states that the solutes in the solid and the liquid phases diffuse perfectly, according
the equation (2-1). Substituting the lever rule into the solute transport equation (3-9), we have then:

(g, +k(l=g,))w,]
ot
As mentioned above, we solve for w,, not coupling with the equations of energy and

momentum. The velocity field obtained at previous time step t—Ar, V'™, is used hereby. For
clarity, this velocity is simply noted as Vin this section. Since the solidification process is
considered locally as a closed system in the no-coupling approach, the fraction of liquid g, has been

+Ow, IV -O{e0w,)=0 (3-111)

computed in the resolution of the energy equation. The liquid fraction at timez, g, is then known
in equation (3-111). Only one unknownw, appearsin the equation (3-111).
For stability, the SUPG test function ¢, instead of the standard interpolation function N, is

used for the spatial discretization. Using the finite element method, one can discretize the equation
(3-111), leading to:

: 1 t =Nt oN, t
i =L, N E{J'Q¢1N][(g1 +k(1-g, ))Wl]_de_IQ¢iW N dQ}+IQ¢z Vo ?(Wz)jdg
! (3-112)
aNi aN./‘ t ; - _
+ an E(WI)/Q’Q with J =1, N

In the above equations, N is the number of nodes; V', is the m-th component of velocity
vector V, and it is computed by the linear interpolation V, =N V! ; The superscript rand ¢—At

g m?
denote the time increment limits. The subscripts i and ;j denote the nodes. The SUPG test function
@ has been given by equation (3-44). Regarding the stabilization parameter 7 , we note that it is
computed in the same way as that presented in section 3.3.2. However, this time, solute diffusion
coefficiente in stead of the thermal diffusivity a isused to compute the mesh Peclet number.

The linear equation (3-113) permits the computation of the average concentration in liquid w
at each node:

4,(w,) =B, (3-113)

oN J ON oN J

o dQ +J’Q$—

! dQ
. Ox, Ox,

1
whete: 4, =[ 8N [g +k(-g )] d2 + [ 47,
B :ij-¢wt—AtdQ
" Arde™

After the resolution of w,, the average concentration w can be found by using the lever rule.

Remark

As it has been mentioned in section 3.1.2, £ is a diffusion coefficient. Usualy the
contribution of diffusion to the macrosegregation can be negligible. For numerical reasons, an
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arbitrarily small value &, in the order of 107, that is the order of magnitude of the physical
diffusivity, can be used. In the present work, the diffusion terms are neglected.
3.5.1.2 Scheil’s model

In the case of no diffusion in the solid phase and infinite diffusion in the liquid phase, the
relation between w, and w can be expressed by the Scheil’s equation (2-2). Taking the time
derivative of each side of the equation (2-2), we have:

ow - o(g,w) — Jow %

- 3-114

o ot "o (SHE%)
Substituting this equation into equation (3-9), one obtains:

0 0

0ew) _ o, 981 4 v - Oigeriw, ) =0 (3-115)

ot ot

For simplicity, we neglect the diffusion term in what follows (since it can be handled in the
same way as we have presented for the lever rule). Using the same method as presented in last
section 3.5.1.1, the following discretized equation for the Scheil’s model can be obtained:

. _ 1 t _ =Dt _ Ag t
Dl _11 N E{.IQ¢[N’/ (g1W[ )»/ dQ IQ¢1N_/' (glwl )»/ . dQ} _IQk¢iN»/ (Ttl)/ (Wl )»/ dQ

ON (3-116)
J t —_ H f—
+IQ¢sz o (w,);dQ =0 with  j=L N

n

After resolution for w,, the local average mass concentration w can be calculated by equation
(3-117). The equation is deduced from equation (3-114), using an explicit Euler time integration
scheme (Vannier [1995]).

t t—At )

w'=w'=(g,w,) =(gw)" ™ —k(w,)' (g -2, (3-117)
It can be seen that the lever rule and the Scheil’s models are deeply involved in the solute
transport equation, when solving forw,.

3.5.2 Approach 2 - resolution for the average mass concentration w

In order to eliminate w, in the solute equation, following the work of Voller ef al. [1989] a
“split operator” technique is used. Using the Euler backward scheme, the solute transport equation
can be written as follows:

! 1=

W_TV:IWW’ v -0feaw' )=0(w —w; Jv -0 w; | (3-118)

where: the superscript * refers: 1) the latest iterative value in the case of the full-coupling
approach; 2) the value at the previous time instant #—Afin case of the full-coupling approach
reduced to one iteration. The right hand side terms, that arise from the splitting of the advection and
diffusion terms, appear as source terms.

The above equation has the great advantage of being able to treat any microsegregation model
(Iever rule, Scheil’s model, or models accounting for the back diffusion in the solid phase) by the
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same transport equation at the macro scale. Indeed the microsegregation model can be treated
individually in adifferent module, separately from the resolution for w .

The SUPG scheme is used to discretize equation (3-118). In the present work, the diffusion
terms are neglected, leading to:

. 1{ . — } oN, |,
i = — . dQ— _ Q+ dQ =
i=1L, N A .[Q ¢,N w.d IQ ¢,N w d .[Q¢’V’" o w'd (3.119)
p Vg y i do ith j=LN
J'Q¢i m axm W./ - J;¢i m awl J wit .]_11

In the above equations, ¢, isthe SUPG test function, as defined by equation (3-44). The superscript
tand t—Ar denote the time increment limits. The subscript i and ; denote the nodes. V', is the m-th

component of velocity vector V. In the full-coupling approach, V is the current iterative
estimation of the average liquid velocity. In the case of the full-coupling resolution reduced to one
iteration, V isthe velocity at previous time step.

Asthe approach 2 ismore flexible, in the later stage of our work, we have focused on it. Now,
only lever rule has been validated with the fully coupled resolution. We present the computational
results in chapter 5.

3.6 Resolution of momentum equation

This section is dedicated to the resolution of fluid mechanicsin the solidification process. We
assume that the solid is fixed and non-deformable, the fluid flow is governed by the averaged
momentum equation as follows:

ov
POE +%D [(VxV)=0[udV)-g,Up+g,pg —%glV
!

We also assume that the solid and liquid densities are equal and constant, except in the buoyancy
term in the above equation. The mass conservation equation then gives:
v =0

In R2SOL, a nodal upwind approach has been developed by Gaston [1999], the governing
equations are written aternatively as:

8

g 100V . p, dV U

—_E7+———D OV)+g,0p—g,pe+g,V=0
%‘%% o, Dor % [Quiv) +¢g,Up-g,08 ral (3-120)
[l

AOV=0

The total derivative of velocity is treated by a Lagrangian-type upwind scheme, which will be
presented later. A velocity/pressure P1+/P1 formulation is used to solve the fluid mechanical
problem. The present work has consisted of the implementation of the axisymmetric formulation in
R2SOL and the improvement of the computation of the Darcy and inertiaterms.

The previous work and the new development to solve mechanical problems are presented in
section 3.6.1. Then, the implementation of axisymmetric formulation is introduced in section 3.6.2.
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More recently, in collaboration with Victor Fachinotti and Michel Bellet, the SUPG-PSPG
formulation has been implemented, which will be presented in section 3.6.3.

Finally, some validation test cases are presented in 3.7.

3.6.1 Resolution of fluid mechanics with the nodal upwind method

3.6.1.1 Weak form

In order to solve the mechanical problem, the classical principle of virtual work is applied.

Multiplying the momentum equation by a virtual velocity V',V D{v, vO(H*(Q))?, vim=0 onaQ},
and integrating over the domainQ , after some calculations we obtain:

ov’ —s(V) £(V)dQ-pOV dQ- L rwvear peV'dQ

I I 5[ I (3-122)

1 Hov

H * 0
—VLIV dQ
+‘§[K +‘s[é%/% g,Hat '

where é(V) is the strain rate tensor associated with the averaged velocity fied V,

Po IV 4y 4 =0
& dt@

[

¢, (V)= oV, , 9V, H . T is the local contact surface force on the boundary. The notation
2 Ha ox, H
denotes the contracted product of tensors, g‘(V);g'(V*)zzg'U_ V)¢, (V*):Zé‘” (V)‘ZL. The general
X
/

procedure to get the weak form of the momentum equation can be found elsewhere (Rappaz ef al.
[2002]).

The equation (3-121) should be solved under the constraint of incompressibility for the
liquid phase. In a mixed formulation, the pressure p appears as a Lagrange multiplier of the
incompressibility constraint, and then we write:

Op" - z[p*DWarV:o (3-122)

3.6.1.2 Time discretization

As it has been discussed before, here we assume that the computational domain is fixed, and
the problem is solved by means of a Eulerian formulation on the fixed finite element mesh. The
equations to be solved for (V, p)', averaged liquid velocity and intrinsic liquid pressure fields at
time t, can be expressed in the following way:

Fv’ J;Z—”s(vf):s(v*)dQ—J;pfDw*dQ— L war—(peviao
8 a8

+J’“VWdQ+J’ t%v -V (V”f V’N)%S’dﬂ =0
gz

(3-123)

BDDDDDDD

p" .lp OwvdQ=0

|
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where V'™ denotes the velocity at the point x of the space, but at previous time step, whereas

V'™ denotes the vel ocity at time ¢ — At of the particle which, at timez, is at the same position x. In
other words, the total and partial derivative of the velocity are expressed as.

dV 1 ¢ ~I—At

= (V'-V ]
A t( ) (3-124)
ov_1 t t=Dt

—~==(V'-V -

Y m( ) (3-125)

In sections 3.6.1 and 3.6.2, we will denote ¥ the following accel eration vector:

?: Po %,r_vz—m +i(V"A’ _{}z—Ar)E

8

The particle velocity yiis computed by a upwind transport approach that will be presented in the
section 6.2.4.

3.6.1.3 PI+/PI formulation

The finite element discretization spaces for the velocity and the pressure need to satisfy a
compatibility condition, known as “Ladyzhenskaya-Babuska-Brezzi (LBB) condition” (Rappaz ef
al. [2002]). This is equivalent to the requirement of non-singularity of the matrix resulting from the
discretized Navier-Stokes equations. In particular, this condition implies that the number of degrees
of freedom of the velocity field should be higher than that of pressure field.

The so called P1+/P1 or “mini-element” formulation was adopted in the 3-dimensional code
of THERCAST® (Jaouen [1998]) and the 2-dimensional code FORGE2® (Perchat [2000]),
following the pioneering work of Arnold et al. [1984] and Fortin and Fortin [1985]. The pressure is
discretized by polynomials of degree 1 (P1), while the velocity is also discretized by polynomials
of degree 1 (P1), including additional degrees of freedom at the centre of the element (the bubble
formulation).

In FORGE2®, the resolution of the mechanical problem is based on the one-phase continuum
model, without the Darcy term. Clearly, some additional developments are needed in R2SOL due to
the Darcy term.

In R2SOL, the P1+/P1 formulation was initially developed by Alban Heinrich (Heinrich
[2003]), at the beginning of my work in September 2001. From then on , we have worked together
on the implementation of P1+/P1 formulation.

As shown in Figure 3-9, for the sake of clarity we denote w the average liquid velocity V. The
velocity and the pressure are discretized by equations (3-126) and (3-127) respectively.

3
w,=v,+b, = ZN,,V” +N'B (3-126)

3
Py = ZN,,P” (3-127)

where N is the standard linear interpolation function. N is the linear bubble function defined in
the three subtriangles, being equal to 1 at the center of the triangle and equal to O at the edges of the
triangle.
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. for the pressure
@ for the velocity

Figure 3-9 Representation of the mini-element. The value of the "bubble" interpolation function N’ is 1 at
the triangle centre and 0 at its boundary. The central additional velocity degrees of freedom B permit a better
control of the incompressibility constraint. This element satisfies the LBB condition (Rappaz et al. [2002]).

Since any virtual velocity field w™ can be decomposed asasum w™ =v~ +b’, the equilibrium
and incompressibility equations can be written as follows:

v’ Jf—”g(w):s(v*)dg— {pDE*dQ— J’imﬁdr— PElV dQ + {ﬂw[}*dQ
0 g 081 K
0 .
- + J:&y(w)ﬁf dQ=0
|:| gl
0
T (2Hs(w):é(b")dQ- [pOIB dQ - [pgb dQ + [Lwib dQ + (L7 (w)B'dQ =0
l &(w):é(b ) 2[p 'Q[,Og z[ w J; 7(W)
| g K g (3-128)
0
0
0
0
Epp* - 'Q[p*DEideZO
0
H
Remark

The boundary integral disappears from the second equation. This is due to the properties of
the bubble interpol ation function whose value is zero on the edge of any triangle.

Actually, the spatial integration over an element of the product of the gradient of a bubble
type function by a constant tensor is equal to zero. Then, it is interesting to decompose the term
¢(w) inasum of two terms, one which will depend only on the linear part of the velocity field v,
and the other one which will depend linearly on b. It is possible to take advantage of bubble
properties to simplify the equations (Jaouen [1998], Perchat [2000] ), leading to:
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v J:—s(v) £(v')dQ ipDE} dQ- J’—TB’ dr —(pg¥" dQ +£—wﬂ'*dQ

&

+ !ﬁ?(w)ﬂ*dﬁl =0
&

b’ J’Z—’ué(b):é(b*)dQ - -!:pD B dQ- -!:,ogﬂ}*dQ + -!:ﬁw[B*dQ + Py (w)B dQ =0
5 & K g (3-129)

EX‘

- _lp*DEide:O

D:DD%DDDDDD@DDDDD%FI

3.6.1.4 Resolution by Newton-Raphson method
» Thematrix formulation

The Newton-Raphson method is used to solve equations (3-129). The residual vector R of
equations (3-129) can be expressed as the sum of each integration term:

RZ :Rl,rheo +Rl,pre +Rl,t +Rl,gmv +Rl,perm +Rl,mcr :O
Rb :Rh,rheo +Rb,pre +Rh,gmv +Rb,perm +Rh,mer :O (3_130)
R’ =R" +R" =0
Equations (3-130) are solved by the Newton-Raphson method, and the linear system to be
solved at each time step can be written in the matrix form (3-131):
0 H" H" H"O®vVO O-R'(V,B,P)O
%H”’) o thSD O_ E_R (VBP)S (3-131)
HHlp) (pr)y' HW%@PB E_RP(V’B’P)E

It is possible to eliminate the internal bubble degrees of freedom B, allowing a solution for the
variables v anddp only, at each Newton-Raphson iteration as follows.

|:| H// _H//) (H/J/))—l(H//?)T H/[) H/b (be)—leplj@VD |:| R/ +H//) (H/)/))—l /7
ip\T hp\T hby -1 1h\1 h bb “1ryh D D h hby -1 bD (3-132)
Y Y HYAEYY -y @y e BB BR sy (1) R B

Remark

The problem defined by equation (3-129) is linear. We have developed the code with the
Newton-Raphson mothod, as if the problem would be non-linear. In fact, only one iteration will be
sufficient for solving equation (3-129).

At the beginning of my work, R”*™ and R”" in equation (3-130) b) were omitted; in
equation (3-130) a), the contribution of “bubble” component to R, i.e. H' " [B, was also
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omitted. Recognizing that the contribution of “bubble” component is important to the flow in the
mushy zone, now these terms are taken into account and they are expressed as follows:

The term R '“
RMP™ = z[ﬁ (v+b)b'dQ = gﬂ vib dQ + J‘ﬂ bb dQ
K K LK (3-133)
- Hbl, perm V + be,permB

The term R"*

Rb,incr: pO ~(V+b)D) dQ

le
Lo z—Ar 1 Vr—Az ey ] Lo b
[b dQ + — b dQ + —[Ib dQ -
J’ J’ (- YR ) j Y (3-134)
= Hbl, iner V + Rb,incrO + be,lmrB
The term R’
RZ Jiner _J-po ~(V+b) B’ dQ
0 v—v' =0 1 Vz—Ar_;z Ot o
J’ o ( +g_ Y Y dQ +J’ 0 _tBI dQ (3-135)
/
= Hll,ler + Rl,her + Hlb,lmrB

« Computation of R’

As mentioned above, we need to eliminate the bubble degrees of freedom 6B, and solve only
for the variables 3P and 8V at each node. Regarding equation (3-132), R’ should be eliminated.
According to equation (3-130), we write the residual of R’ as follows:

Rb :be,rhE()B+prP+Rb,gmv +(Hlb,perm)7'V_I_be,permB (3—136)
Substituting equation (3-136) into the left hand side of equation (3-132), then equation (3-
132) reduces to:
R+ (Y PR

O H'-H'(HYYHY H'- H’b(H”b)'lH””DEJVD D
D (3-137)

Gy ey ey ey ey e g SR H(H"Y (H) frrpert ”"”+(Hb)\%

Remark

The stiffness matrix for solving the mechanical problem is symmetric, the system can be
solved using the direct symmetric solver with the skyline storage technique (Rappaz et al. [2002]),
or using the external PETSC solver (PETSC [2003]).

In absence of the Darcy term, and neglecting the contribution of “bubble” component to the
inertia term, then H” equals to zero, leading to the simplification equation (3-137):

-65-



OH' H” Ovo D -R 0
%H”) ~(H") (H") ‘1H””D@PH TR+ H”P)”'(H”h)‘lkw% (3-138)

Equation (3-138) is used for the one-phase continuum model. But we have found that the
term H" is of importance when Darcy terms are present.

3.6.2 Axisymmetric formulation

In many practical cases, the solidification of casting parts can be axialy symmetric. If the
loads and constraints are also axialy symmetric, then the problem can be formulated using the two
velocity components v, and v_. The subscripts » and z denote the radial and axia directions
respectively. Although only two velocity components v, and v, need to be considered in the
axisymmetric case, there are till some differences from the 2-dimensional plane case, which are
presented as follows.

3.6.2.1 Additional term &,,

Unlike the 2-dimensiona plane case, the strain rate tensor for an axisymmetric problem
takes the form:

O Oy, 1.0v, O0v_ .0
0 0 S +—50
0 or 2 0z oOr 0
. v 0 0
e=0 0 _r _
0 r 0 (3-139)
1 ,0v. Ov. ov. O
0
0z ar 0z E

Comparing with the plane problem, it is then no longer possible to consider only the

components of the r and z axes, the additiona term,é&,, =2 | must be considered. The new
r
contributionsto R'" and R""* appear in equation (3-129):
€0 (V)Eg (V') and &4, (b),, (b)

(3-140)
and the additional term appears also in mass conservation equation:
ov av
D E = r 4 + )‘ _
or 62 r (3-141)

3.6.2.2 Computation of integration terms

The surface differentiation is dQ=27mrdrdz instead of dQ=dxdy in Cartesian coordinates.
This modifies the integration rules. For instance the integration of a linear function 7 will need
three integration points in axisymmetric case instead of only one in the plane case. In order to
integrate each terms in equations (3-129), we have adopted a similar strategy as Etienne Perchat
[2000] used in the axisymmetric and the P1+/P1 version of FORGE2. In R2SOL, those three points
have been chosen either as the usual Gaussian points or the three mid-points of each edge of the
triangle.

As it has been mentioned above, the value of the “bubble” interpolation function N " is 1 at
the triangle centre and O at its boundary, and it is defined separately on each of the three sub-

-66-



triangles. So that the integration for the terms that comprises N’ has to be decomposed into the
sum of three integrations on the sub-triangles shown in Figure 3-10. In this case, the three mid-edge
integration points have been used. Three Gaussian integration points have been used when the term
does not comprise N”.

O integration point

A (r,z,) B (2,22)
Figure 3-10 Schematic of the integration points

In the following paragraph, for example the computation of the Darcy term is presented to
show the integration rule used in the axisymmetric case.

3.6.2.3 Computation of the Darcy term

Let us compute the Darcy term resulting from the “bubble” contribution, the matrix H” and
H" , which is important in the computation of macrosegregation.

e TermH’

From equations (3-129) a) and (3-130) a), we find the residual, R © , arising from the Darcy
term as follows:

RMrem = I%(v+b) N 27rdrdz= I%v[v* 27 drdz + J’%b 3 2r7drd: (3-142)
Rll,perm — /'1 |37* 2 d d th,perm — /'1 b E* 2 d d
_J'EV Trdrdz , —J.E jraraz (3-143)
where the residual R~ has been decomposed into two parts, R"”™ and R’ ™. R"™™ depends

on the linear velocity field v, and R’ " depends on the bubble contribution b.

Then, the Hessian matrix with respect to the bubble contribution b gives:

. aR b, perm
HyY :#: %Nn N'0,, 2mwdrdz (3-144)
li

where n, k and / are the degrees of freedom. 9 is the Kronecker function.

H 7™ is integrated numerically in the three subtriangles of an element using the three mid-

edge integration points.
bhb, perm
e Term H™”

Regarding the residual R”7“™ in equation (3-129) b) and (3-130) b), we have:
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Rh,perm :J‘%(V_*_b) [B* Zmdrdzzj’%v [B* 2]Td}"dZ+J’%b [B* ZITdrdZ (3'145)

Rbh,perm :J’%b [B* 277dl’dZ, Rbl,perm :J.%V [B* ZWdFdZ (3-146)

The Hessian matrix with respect to the bubble contribution b gives:

. a R bb, perm /,l
H" :5T: ENb N'o,, 2mwdrdz (3-147)

Again, H" ™™ isintegrated in the three subtriangles of an element using the three mid-edge
integration points.
3.6.3 Resolution of momentum equation with the SUPG-PSPG formulation

Considering the momentum equation (3-8), let us assume that we have constructed the
suitably defined function spaces S, and S, for the velocity and pressure respectively. The classical

weak formulation for the fluid flow can be stated as: find (V, p)US, xS, such that for al the
(V',p")0S,xS, thefollowing holds:
I&[O_V + L ovywviviaa + J’Z—”s(V):s(V*)dQ— [PV a0

g o g 0 & Q

Q

-
<>(-

[ 1 . R U R
-(—TV dI —[pglV dQ + [=VIV dQ=0
% J;zgz 7 g[K (3-148)
O
0 . "
p -z[p O0WVdQ=0
O
H

Regarding the standard weak form of equation (3-148), the velocity and pressure fields need
to be stabilized. The stabilization can be achieved using the SUPG-PSPG formulation.

3.6.3.1 The SUPG-PSPG formulation

Following the work of Tezduyar et al. [1992], Tezduyar and Osawa [2000], the SUPG-PSPG
formulation writes:
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\'a J;po [— + g—(DV)V]w dQ + J:—s(V) #(V')dQ ipDW dQ

—J’iTw*dr— 08V dQ + i—vw*dg
08 K

. [] U
+£TS(/PG (OvV)v Po a_V + p_g(DV)V _iD [uOV)+Op-pg +%VEJQ

g, ot & 8

+ ‘g[rm 0V p,0VdQ =0 (3149

EDDDDEDDDDDDDDD%F’

p" -!—p*DWdQ
[
[
1 . Lo oV
0 —jrp‘qpﬁ—mp@p—f)a + Poavyv - Loguovy+op- ,0g+—V[dQ =0
0 o) Lo ng, ot gl g
[

where 7, .. isthe SUPG (Streamline-Upwind/Petrov-Galerkin) stabilization parameter;
T .50 1Sthe PSPG (Pressure-Stabilizing/Petrov-Galerkin) stabilization parameter;
T,y isthe LSIC (least-sguares on incompressibility constant) stabilization parameter;
the brackets { } denote the residual of the momentum equation.

Comparing with the standard weak form (3-148), three terms have been added, corresponding
to the stabilizations of SUPG, PSPG and the incompressibility constraint respectively. The
stabilization parameters will be introduced later in this section.

For the SUPG-PSPG stabilized formulation, one can use the equal-order interpolation
function for the velocity and pressure. In the present work, linear triangle elements are used. The
second-order terms 2y £(V) in the the branket{ } associated with the SUPG and PSPG stabilizations
vanish, just like the term O[(AOT) =0 in the SUPG stabilized energy equation (3-41). Regarding
the temporal discretization, the Euler backward implicit schemeis used.

3.6.3.2 Stabilization parameters

Hereunder, we present the definitions of stabilization parameters, which are motivated by the
work of Shakib er al. [1991], Tezduyar and Park [1986], Tezduyar and Osawa [2000]. The
characteristic length of a triangle element along the flow direction, /, has been given by equation
(3-46). To compute the stabilization parameters, we note that the known velocity V'™ at the
element center is used.

e 1, andry
As we have presented in section 3.3.2, the SUPG stabilization parameter for the energy
transport equation is expressed by:

_Oh . B 1
Tor _—2||V|| with 8 =coth(Pe,) Pe,

1

-69-



In practice, several versions of stabilization parameter are used instead of the “optimal” coth
. . . . 1.
function. The version of Shakib ez al. [1991] with 6 =(1+ F) Y2 may be the most frequently
€
used, that is:

Lipl V 0 -
Tsurg = o = ” 2 g (3‘150)
2|v| gy n " n 0H

where @ is the thermal diffusivity. For the momentum transport, the viscosity 4 can be used

instead of the diffusion coefficienta .

The two terms in the right-hand expression can be interpreted as the advection-dominated and
diffusion-dominated limits (Tezduyar and Osawa [2000]). Accounting for the transient-dominated
case, Tezduyar and Osawa [2000] supposed that:

Tsip = %‘%g B!ﬂgﬂ%gg (3-151)

In the present work, equation (3-151) is used to compute the SUPG stabilization
parameter7 ;. Following Tezduyar and Park [1986], the PSPG stabilization parameter7,,; 1s

defined in the same way as T, i.e., Tpop; =Tgp -

TLS[C

The LSIC stabilization parameter given by Tezduyar and Osawa [2000] is as follows:

_h
Tise =5[V]z (3-152)
. . _IVlroy _
where, z is a function of the element Reynolds number R, —2— , defined by:
U
— BIE if Re<3
—U3 (3-153)

U
=1 if Re>3

3.6.3.3 Implementation of the SUPG-PSPG formulation

Regarding the SUPG-PSPG formulation in equation (3-149), the system is non-linear. The
Newton-Raphson method is used. In the following text, firstly, we present the matrix formulation to
solve equation (3-149). It is possible to linearize the equation, so that one can simplify the
computation. Then, the linearized formulations are introduced. Finally, we present the differences
between the axisymmetric and plane versions.

e The matrix formulation

According to equation (3-149) a), the residual vector for the velocity component can be
expressed by the condensed form:

RZ - Rl,trun,wcnt +Rl,adv +Rl,rhco +Rl,pre +Rl,t +Rl,gmv +Rl,perm
1 transient 1, adv l,pre l,grav l, perm
+R9UP(‘ +R9UPC +R9UP(‘ +R9UP(‘ +R9UP(‘ (3_154)

/
-'-IQI,S'ICv
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In the above equation, the terms in the first line on the right hand side denote the contributions
associated with the transient, advection (inertia), rheology (diffusion), pressure, contact force on the
boundary, gravity and Darcy terms respectively. These contributions are computed using the
standard Galerkin test function. The terms in the second line denote the contributions of the SUPG
stabilization. Comparing with the first line, we note that the rheology (diffusion) term vanishes,
because this term related to the second order differential operator is identically zero for linear P1
elements. The term appearing in the third line presents the LSIC contribution.

According to equation (3-149) b), the residual vector for the pressure component can be
expressed by:

P — p p,incomp p.transient pLadv p,pre p.grav p,perm
R"=R + Ry TR T Rpgpq TRps TR g (3- 155)

In equation (3-155), R”"™“" denotes the traditional term arising from the contribution of the
incompressibility constraint, the other terms express the contributions resulting from the PSPG
stabilization.

To solve the equation (3-149) with the Newton-Raphson method, it is possible to write the
following matrix formulation of the iterative corrections on noda velocity and pressure to be
calcul ated:

Ofg' HY00VO_G-RO 2156
by 1 Hoel B (150

Since the non-zero diagonal term H™ in equation (3-156) is important to avoid a singular
matrix, the term H” and the corresponding residua resulting from the contribution of PSPG
stabilization R/l are expressed as;

e 1 . 1 ON, ON
Risrg, :_Zl:p_o Ty Up Mp dQ :__£ p_o TpspG ?:E%Tkp A< (3-157)
and
OR":
e A N N gy (3-158)

op,, -zl:p_o Frsva a ox,
where [ and m denote the index of nodes. N isthe linear interpolation function.

For the equation (3-156), we note that the stiffness matrix is non-symmetric.
* The linearized formulation

As equation (3-149) is non-linear, in order to simplify the computation, we have linearized
the SUPG-PSPG formulation. The advection term (V')V' has been linearized by computing
(OV)V'™™. While the SUPG term 7, (0V )V'has been changed tor,,.(OV )V™. For
example, we present the linearized advection terms as follows.

The residual component, R"“" | arising from the advection term (OV)V can be linearized by:

Ry — %(DVt)Vt_m V' dO (3-159)
I

The residual component, R, arising from the SUPG stabilization can be written as:
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Ry = [T BV IV B2 @V)V a0 (3-160)
!
For the component of the residual vector, R'“*, which is associated with the node » and
expresses the degree of freedom for the velocity in the direction &, we can express equation (3-159)
in detail:

oN
Ri}(adv - p_g m (Vkm )t []vq (qu )t—At Nn dQ
58 0x, | (3-161)
ov), ovi™

wherej and & vary from 1 to 2 for 2-dimensional problems. x, denotes the spatial coordinate in the j
direction. m, n and ¢ denote the index of nodes, based on these noda velocities, the velocity fields
attime r—At and, t, V"™ and V', areinterpolated. N isthe linear interpolation function.

The component of residual vector, R . , Writes:

aayv lo a‘]\/n m\ 11—t aN 1 S\ 1-A1
Ri"Ulli(},nk = J’Tsupe_ga_(NmVi ) 4 E"a_q(qu) Ns (V,) . dQ
Q g 00X, X (3-162)
(DV* )m Vlt_At (DV) ;q V_/I_At

e The axisymmetric formulation

As it has been presented for the axisymmetric version of P1+/P1 formulation, following
points need to be considered:

1) theadditional term &,,, &,, =Y , which appears in the rheology (diffusion ) term;
r

2) the surface differentiation is dQ=27mrdrdz instead of dQ=dxdy in Cartesian coordinates.

These two points have been taken into account, regarding the implementation of the SUPG-
PSPG formulation.

In addition, we have checked the SUPG-PSPG stabilized terms, arising from the

perturbations of 7, OV )IVand 7, piDP*: these terms are identical for the plane and
0
axisymmetric cases, except the surface differentiation (the point 2 as presented above).

It should be noted that there are few differences in the computation of the LSIC contribution
R, .., between the plane and axisymmetric cases. The difference arises from the computation of
l

OvV™ OV . For the plane case, the residual component, R, ., can be expressed by:
Ry =[Tr5ic 2o (O0V") (OV)dQ
Q

ON  oN 3 (3-163)
:ITLSI(? po?n ?m (V./' )dQ
k

Q J

where j and k vary from 1 to 2 for plane problems. m and n denote the index of nodes, N being the
linear interpolation function.
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. . ON . .
For the axisymmetric case, O V=—=V +ﬁ, leading to the difference to compute the term

X, r

of R}, , then we have:

R;,S/(,',nk :lTI,SI(,‘ IOO (D w* ) (D w)dQ

N N N N Vm
:J-T[,S[(j ,00 EP; n4l'n 5k1 % m I/jm 4m 1 %ﬂdrdz
o) X, r ax ) 7

J

(3-164)

where, J isthe Kronecker function.
3.7 Vdidations

Firstly, we test the nodal upwind P1+/P1 formulation. Two cases have been considered. In the
first case, a pure Navier-Stokes problem, without Darcy term, has been chosen to validate the code
for additional term £,, and inertiaterm. In the second case, flow through a porous medium with a
constant permeability has been considered to validate the Darcy term.

Secondly, we test the new devel opement of SUPG-PSPG formulation.

Finally, the solidification of a carbon steel aloy in a square cavity has been considered to
validate the macrosegregation model, here the nodal upwind P1+/P1 formulation is used.

3.7.1 Axisymmetric formulation in the case of Navier-Stokes flow

Thetest of the Navier-Stokes problem is inspired from the De Vahl-Davis [1983] benchmark,
which consists of a steady natural convection in a square cavity in plane strain conditions. Similarly
we have chosen a hollow axisymmetric cavity, shown in Figure 3-11. The thermal boundary
condition is as follows: the top and bottom are adiabatic; the temperature on the side walls is fixed:
temperature on the inner wall is imposed to be 1.0°C, temperature on the outer wall is 0°C. As one
can imagine when the inner radius R;,.., tends to infinite, the computational result of such an
axisymmetric problem should tend to that of the plane. So we choose testing cases as shown in
Table 3-1. The computational result of case 1 is expected to be different from that of case 2, and
case 2 should be very close to case 3. We use PHOENICS, a finite volume difference code, to
recalculate case 1, the computational results obtained by PHOENICS and R2SOL (test 1) are
expected to coincide. The physical data are shown in Table 3-2. They have been chosen to obtain a
Rayleigh number equal to 10* (relatively high advection flow). Contact at walls is supposed to be
sticky (no sliding velocity).

Tinne=1.0 °C adiabatic

>t >

Figure 3-11 Schematic of the axisymmetric natural convection test
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Table 3-1 Testing cases for Navier-Stokes flow

Case 1 2 3 4
Rinner (M) 1.0 1000.0 plane 1.0
Solver R2SOL R2SOL R2SOL PHOENICS

Table 3- 2 Data used for the computation

Physical properties Initial and boundary temperatures
p(T)=p,(1-B,(T-T,,)) T =05°C
0, =10kg. m?
U =0.71 x10? Pa.s Timmer = 1.0°C
A=1.0W.m" K* Tputer = 0.0°C

¢, =100.0J. kg*. K*
B, =7.1x10° K*

e Comparison between axisymmetric and plane flow (R2SOL computation)

The computational results of test cases 1 to 3 are shown in Figure 3-12. On the first line, the
temperature field is shown. On the second one, velocity vectors and the third one, the vertical
component of velocity.

First, and as expected, the results of case 2 (axisymmetrical computation with a huge radius)
and case 3 (plane case) are identical. The only differences can be attributed to the convergence
criterion for the obtention of a steady-state regime.

Let us come to the comparison between plane and axisymmetric cases. Near the inner wall,
the temperature gradient is steeper in case 1 than in case 3 (or 2). This is due to axisymmetry: as the
flow is convergent from the outer wall to the inner one, it is accelerated. The velocity is then higher
near the inner wall than in the plane case (see line 3, test 1), seeing Figure 3-12,
V™ =0.215(mls™") in case 1, V™ =0.187(mls ") in case 2(or 3) . The consequence is that the heat
transfer is less diffusive — more advective — in this region, and therefore the normal gradient is
higher. Conversely, the flow coming back to the outer wall at the top of the cavity is divergent and
then decelerated, resulting in a lower velocity than in plane case in this region. The temperature
distribution is then smoother in case 1 than in case 2, because the heat transfer is more diffusive.
These expected effects can be clearly seen on the different figures.

Also it can be seen that the centre of the vortex in case 1 is slightly displaced upwards (in the
plane case, it is located at the centre of the cavity). This is due to inertia effects associated with the
non symmetrical velocity distribution.
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(a) Testcase 1 (b) Test case 2 (c) Testcase 3

Rime=1m Rinne = 1000 m plane case
Test case 1 Test case 2 Test case 3
Velocities Vy Vyz Vy Vyz Vx Vy
(m.s?
Max 0.169 0.215 0.155 0.187 0.154 0.187
Min -0.134  -0.153 -0.156 -0.187 -0.155  -0.186

Figure 3-12 Comparisons of temperature fields and velocity vectors, test cases 1, 2 and 3 (R2SOL
computation)

e Comparison between R2SOL and PHOENICS (axisymmetric case)

This comparison is achieved by means of test case 1 and test case 4. The comparison of the
results is given in Figure 3-13 in which the picture of the temperature field obtained with
PHOENICS is put over that of R2SOL properly. The contours of temperature obtained by R2SOL
coincide with those of PHOENICS, as shown in Figure 3-13 (a). The velocity fields are compared
by the distribution of component v, shown in Figure 3-13 (b): the two pictures ook alike each other.
The quantitative comparison of velocity component is given in Table 3-3. The values of maximum
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and minimum velocity component obtained by R2SOL and PHOENICS are close to each other as
well as their position.

16
-
0.09
0.06
03
-0.03
-0.06
[—D.DS
~-01z2

max=016592
min =-0.133842

(a) Temperature ' (b) velocity component v,

Figure 3-13 Comparison between R2SOL (test case 1) and PHOENICS (test case 4)

Table 3- 3 Velocities obtained by R2SOL and PHOENICS

Max.v; Position Min.v, Position Max.v, Position Min.v, Position
(mls) ((m M/ (rzp(m) (mfs) (g (m) (mfs) (rz) (m)
R2SOL 0.215 (1.12,0.50) -0.153 (1.88,0.57) 0.169 (1.43,0.84) -0.134 (1.46,0.19)
PHOENICS 0.236 (1.11,052) -0.164 (1.89,0.57) 0.183 (1.42,0.86) -0.137 (1.45,0.20)

3.7.2 Validation of Darcy term (axisymmetric case, computed by R2SOL and PHOENICS)

Thetest issimilar to the test case 1 and test case 4 presented in section 3.7.1, but this time,
we assume that the cavity is full of a porous medium, whose permeability K is uniform and
constant, 1/K=100.0 m®. The comparison of the results is given in Figure 3-14, the upper figures
are the results of PHOENICS, the lower are the ones of R2SOL. The contours of temperature
obtained by R2SOL and PHOENICS coincide with each other as shown in Figure 3-14 (a). The
velocity components v, and v, are shown in Figure 3-14 (b) and Figure 3-14 (c). The quantitative
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comparison of velocity component is given in Table 3-4. The computational results of R2SOL and
PHOENICS are close to each other.

(a) Temperature (b) v, © vr
Figure 3-14 Comparison between R2SOL and PHOENICS, 1/K=100.0 m™

Table 3- 4 Velocities obtained by R2SOL and PHOENICS, 1/K=100.0 m?

Max. v, Position Min.v, Position Max.v, Position Min.v, Position
(mfs)  (r(m) (m/s) (rz)(m) (mls) (rz)(m) (m/s) (r2)(m)
R2SOL 0.136 (1.10,0.43) -0.093 (1.88,0.57) 0.099 (1.52,0.85) -0.089 (1.34,0.15)
PHOENICS 0.144 (1.10,0.45) -0.096 (1.90,0.60) 0.099 (1.47,0.87) -0.089 (1.34,0.15)

The contribution of “bubble” component to the Darcy term has been tested by means of the
new version of R2SOL. The computations taking into account or not the H" term have been
carried out, the other conditions being the same as mentioned above. The computational results
show that the contribution is less than 0.5% and can be neglected in the particular case of using a
constant permeability. It should be noted that the permeability field in a solidifying casting is not
homogeneous, the H® term can not be neglected. In this case, it has been found that the
computation without accounting for the H" term, leads to a wrong solution.

3.7.3 Validations of the SUPG-PSPG formulation
3.7.3.1 Lid-driven cavity test
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The evaluation of nodal-upwind P1+/P1 and SUPG-PSPG (P1) Navier-Stokes solvers has
been done with a classica benchmark test, the lid-driven cavity test (Ghia et al. [1982]). Figure 3-
15 presents the numerical setup, which consists of non-dlip boundaries (zero velocity) everywhere
except the top, on which a velocity is prescribed, shear forces driving the fluid flow within the
cavity. In our computation, a square 0.1 x 0.1 m? is considered. The mesh is shown in Figure 3-16:

fine elements are adopted near boundary (their size being 1.5 mm), coarse elements (size 3.0 mm)
are used in the middle region.
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Figure 3-15 The numerical set up Figure 3-16 The mesh used in R2SOL
The computations with Re = 400 and Re = 1000 have been done by R2SOL, using the SUPG-
PSPG and the nodal upwind P1+/P1 formulations. The results have been compared with those of
Ghia et al. [1982], which are obtained by a second-order accurate finite difference multigrid method
with a 129 x129 grid. Typically, we compare the horizontal velocity component along the vertical
center line of the cavity and the vertical velocity component along the horizontal center line of the
cavity. Figure 3-17and Figure 3-18 present the results computed with Re = 400 and Re = 1000
respectively. Very good agreements with the reference resolutions have been achieved, using the
SUPG-PSPG solver. There are some differences between the results computed with the nodal
upwind P1+/P1 solver and the SUPG-PSPG solver. These differences grow with Re. According to
Figure 3-17 b) and Figure 3-18 b), a quantitative comparison of maximum and minimum values of

vertical velocity component vy is given in Table 3-5. It seems that the P1+/P1 solver smoothes the
velocity fields, with increasing Re number.

Table 3-5 Comparison of maximum and minimum values of vy,

Re =400, Figure 3-17 b) Re = 1000, Figure 3-18 b)

Max.vy position x

min.vy position x| | max. vy position x|min. vy position x
P1+/P1 0.244 0.250 |-0.383  0.850 0.285 0.222  |-0.427 0.854
SUPG-PSPG 0.302 0.222 [-0.450 0.871 0.376 0.159 [-0.528 0.909
Errorin vy (%) [19.2 14.9 242 19.1
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a) Horizontal velocity component profiles along the vertical center line of the cavity
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b) Vertical velocity component profiles along the horizontal center line of the cavity
Figure 3-17 Comparisons with the reference resolutions of Ghia et al. [1982], Re = 400
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a) Horizontal velocity component profiles along the vertical center line of the cavity
b) Vertical velocity component profiles along the horizontal center line of the cavity

Figure 3-18 Comparisons with the reference resolutions of Ghia et al. [1982], Re = 1000

For the two formulations, it would be interesting to complement these results with a study of
the influence of mesh size and time step. Also, in the case of the nodal upwind P1+/P1 formulation,
it would be very interesting to quantify separately the effects of the nodal upwind treatment for the
advection terms on one hand, and the effects of the mini-element bubble formulation on another
hand.
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3.7.3.2 Fluid flow in the porous medium (axisymmetric case, buoyance force driven)

The test is to validate the axisymmetric version of the SUPG-PSPG formulation. Again, the
case that has been presented in section 3.7.2 is considered. Here, we use the SUPG-PSPG solver to
simulate the fluid flow in the porous medium, and the SUPG thermal solver is chosen to analysis
the heat transfer. We also compare with the resolution of PHOENICS. In Figure 3-19, the upper
figures are computed by PHOENICS, while the lower ones are computed by R2SOL. Once again,
the results obtained by the new solver of R2SOL are quite close to those of PHOENICS.

Vitesse (X)
.09
0.06

0.03

[_DDB
-0.06

max=0 0982221
max=093282 i
min =0 00263225 max=0138774 min'=- 00867523
min =-00347215

(a) Temperature (b) v, (©
Figure 3-19 Comparison between R2SOL and PHOENICS, using the SUPG-PSPG formulation,

1/K=100.0 m™

3.7.4 A solidification test case

The validation test case is the solidification of a binary Fe-0.2%C alloy in a square cavity as
shown in Figure 3-20 a). The objective of this test is to vaidate the computation of
macrosegregation with lever rule and Scheill models. The computation is performed by R2SOL and
SOLID using the non-coupling approach (localy closed system, no solute enrichment in liquid
pool, resolution for w,). The results are compared.

In the R2SOL computation, the cavity is discretized by a structured and symmetric mesh
covering the whole domain, as illustrated in Figure 3-20 b). The mesh used in SOLID is structured
with 50%50 nodes in the direction of x and y respectively. The data used in the computation are
givenin Table 3-6.

The diffusion terms in the solute transport equation have been neglected in R2SOL and
SOLID. The results obtained by the lever rule are shown in Figure 3-21, and the Scheil’s model in
Figure 3-22 respectively.
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Figure 3-20 Schematic of the cavity test and the mesh used in R2SOL computation

Table 3- 6 Data used in the computation

Thermal conductivity A 30W.m™ K* Initial temperature T, 1523 °C
Specific heat ¢, 500 J.kg'l.K'l Initial carbon mass concentration y,, | 0.2 %C
Latent heat L 3.09x10° J.kg™ Reference volumetric mass g0, 7060 kg. m*
Melting temperature T; 1538 °C Dynamic viscosity U 4.2x10° Pa.s
Liquidus slope m -80 K.(%C)™* Secondary dendrite arm spacing A, 1x10* m
Partition coefficient k 0.18 Heat transfer coefficient h 100 W.m?.K*
Thermal expansion 8.853x10° K™ External temperature Toy 20 °C
coefficient 3,

Solutal expansion coefficient |4.164x10 (%C)™ | Diffusion coefficient in liquid & 1x10° m°.s™
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Figure 3-21 The mass concentration distribution w—w, (%) obtained with the lever rule at 10 min.
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Figure 3-22 The mass concentration distribution w—w (%) obtained with the Scheil's model at 10 min.

Comparing the segregation maps in Figure 3-21 and Figure 3-22 and results after complete
solidification, one can find that a good agreement is obtained: the distributions of segregation (the
shape and position of the contours) are very close, as well as the maximum and minimum values of
variation of concentration. Since the local solidification time, and the global solidification time
(about >15 min) are not as long, consequently the macrosegregation is not too serious. As expected,
positive segregation appears at the top, while negative segregation at the bottom. This is due to the
fact that the liquid enriched in carbon solute e ement in the mushy zone moves upward, leading to
the top region enriched in carbon and the bottom region impoverished in carbon. The computational
result is symmetric with respect to the center line, which is what we have expected for this
symmetric solidification problem. It is interesting to note that the results of the lever rule are close
to those of the Scheil’s model.

To summarize this section, we would conclude that:

e The axisymmetric version of the P1+/P1 and SUPG-PSPG formulations for the Navier-
Stokes problem has been implemented in R2SOL.

* The steady-state natural convection test in a cylindrical cavity at high Rayleigh has been
chosen to validate the code. The new developments have been successfully validated:
convergence towards the plane flow has been shown for very large radii and a successful
quantitative comparison has been done with PHOENICS.

e The computation of Darcy term and inertia term in the mechanical solver have been
improved.

* Macrosegregation in square cavity with a carbon binary steel alloy has been computed by
R2SOL and SOLID using the no-coupling approach. The two codes give very close
results.

-82-



Chapter 4

Mesh adaptation

Adaptation de maillage — Résumé en francais

Le raffinement du maillage au front de solidification, précédemment évoqué, exige donc un
remaillage dynamique du maillage d’éléments finis, de facon a accompagner 1’avancée de la
solidification dans la piece. En 1’absence d’estimateurs d’erreur avérés dans le cas de tels calculs
fortement couplés, une approche pragmatique a été développée dans ce travail.

Pour raffiner le maillage au voisinage du liquidus dans la zone pateuse, on utilise la norme du
vecteur gradient de fraction solide. La taille de maille visée est alors directement fonction de cette
norme. En aval du front dans le domaine purement liquide, c’est la distance a ce front qui est la
variable pilotant la taille de maille visée. A 1’aide de fonctions et de parametres correctement
choisis, on construit ainsi une méthode de remaillage dynamique isotrope, s’appuyant sur le module
de remaillage existant du Cemef (module MTC).

Il peut étre intéressant toutefois de générer des maillages anisotropes, de manicre a capter une
zone pateuse étroite, ce qui est le cas notamment dans les premiers instants de la solidification, pres
de I’interface picce-moule. Dans ce but, ou utilise alors 1’orientation du vecteur gradient de fraction
solide. La taille de maille visée est alors calculée selon cette direction, toujours en fonction de la
norme du vecteur, tandis qu’un facteur d’anisotropie est déterminé en fonction de I’orientation du
champ de vitesse. L’utilisation du remaillage anisotrope permet de diminuer considérablement le
nombre d’éléments, a taille de maille données dans la direction du gradient de fraction solide.

L’organisation du chapitre est la suivante : le calcul de la distance au liquidus est exposé a la
section 4.1. Les algorithmes de remaillage isotrope et anisotrope sont présentés aux sections 4.2 et
4.3 respectivement.
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Chapter 4

Mesh adaptation

As discussed in the general introduction, fluid flow in the mushy zone close to the liquidus
and in the liquid just ahead of the liquidus is most important to the formation of macrosegregation,
and fine meshes are needed in these regions. In the deegper mushy zone close to solidus, fluid flow is
very weak and the velocity is nearly equal to zero. Actually the solute concentration field in the
deeper mushy zone and in the solid zone nearly does not change, we can properly use a rather
coarse mesh. Because the solidification front moves during cooling, moving adaptive meshes are
needed. So far no reliable error estimators have been evidenced for such highly coupled
solidification problems. For this reason, we have decided to use a simple algorithm for the mesh
adaptation.

A simple idea for the mesh adaptation is to generate fine elements in the critical regions. In
the present study, the norm of the gradient of solid fraction is used as a parameter for piloting the
remeshing in the mushy zone. The objective mesh size in the mushy zone is considered as a
function of the solid fraction. For the mesh refinement in the liquid just ahead of the liquidus, we
track the solidification front and compute the distance from each node to the front. Then, the
objective mesh size ahead of liquidus can be determined as a function of the distance. An agorithm
for isotropic remeshing has been proposed.

In the early solidification stage of ingots, extreme anisotropic cooling appears. Variations of
temperature and fraction of liquid etc. are very large in the direction perpendicular to the mold wall,
while variations are small in the other two directions. Therefore, anisotropic mesh adaptation seems
quite appropriate in computation of ingots. The method for isotropic remeshing has been extended
to the anisotropic case. Special attention is given regarding the solidification direction.

In this work, we have used the mesher “MTC”, which has been initially developed by Thierry
Coupez [1991] at CEMEF, and has been improved recently by Cyril Gruau [2004]. The algorithms
of automatic mesh generation will not be presented in this document.

The organization of this chapter is as follows: we present a method to track the liquidus
isotherm and compute the distance to it in section 4.1. The algorithms for isotropic and anisotropic
mesh adaptation are presented in section 4.2 and section 4.3 respectively.

4.1 Tracking liquidusisotherm

Since the fraction of liquid, g , at each node has been computed by solving the energy
equation with the microsegregation model, the liquidus isotherm can be determined by using g .
For numerical reason, the liquidus isotherm is considered as the isoline with the value g,=0.99.
The method to track the isoline is based on the following assumptions:

e the fraction of liquid is linear in each triangle element;
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« anisoline can be either opened or closed as shown in Figure 4-1. An opened isoline has a
starting point and an ending point on the boundary. A closed isoline is enclosed within the
domain.

Ca/sting Mold
/

_

Figure 4-1 lllustration of solidification fronts with several closed or opened isolines

4.1.1 Tracking procedure
The procedure to track the liquidus isotherm is carried out as follows:

1) For simplicity, assuming that a given isoline never passes though the vertices of the
triangle elements, it comes into a triangle from one edge, and leaves it from another edge.
This simplification makes it easy to track the isoline from one element to its neighbor
element. In practice, if the isoline just passes through the vertex, for instance through the
node i, we change the value of the liquid fraction at the node i by adding an infinitesimal
value (10°®).

2) For each element (e), identify if the isoline passes through it, and initialize the indicator
istate(e):
istate (¢) = 0, theisoline does not pass through the element ¢;
istate (¢) = 1, theisoline passesthrough the element e, as shown in Figure 4-2.

3) Search for the isoline that starts from the boundary. If there is an opened isoline, one can
find an element e , such that:

istate(e) = 1, and at least one edge of the element belongs to the boundary.

Then, the coordinate of the starting point on the boundary can be determined by linear
interpolation.

4) Extend theisoline from one element to its neighbor element. In step 3), we have found the
element ¢ as shown in Figure 4-2, and a starting point A on the boundary edge i-j. One can
also find another point B on the edge i-k where the isoline leaves the element e . After
connecting two points (that is to store the coordinates), change the value of the indicator,
let istate(e) = 0. The next element e’ that the isoline goes into can be determined by the
mesh topology and the indicator, istate(e’). All the points of the isoline can be found
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consequently by a repeating procedure: connect a segment within an element; change the
value of indicator; extend to the neighbor element. The repesating operation will be
terminated when the isoline comes to the boundary again.

5) Repesat 3) and 4), until all the opened isolines have been found.

6) Search for the closed isolines inside the computational domain. After the step 5), there are
only closed isolines |eft. One can find a closed isoline in the inner elements where istate(e)
= 1. The tracking procedure is similar to that presented in step 4), one can track an isoline
until it comes back to its starting point.

j j

Figure 4-2 Schematic of an isoline. An opened isoline that starts from a point A on the boundary, and passes
through the elements in red

4.1.2 Distance to liquidus isotherm

Regarding the tracking procedure, we note that the solidification front is approximated by a
series of succesive segments as shown in Figure 4-3. These segments have not been oriented.
Therefore, the liquid can be found either on the left or the right side of the contour. In order to
compute the distance to the liquidus isotherm, for any node P in the liquid zone where g,>0.99 we
search for apoint Q on the isotherm that is the nearest point to the node P. Then, this distance (from
point P to point Q) is considered as the distance to the liquidus isotherm. The computation of
distance from a point to a series of segments is a simple geometry problem. The distance can be
calculated as follows:

» Computation of the perpendicular distance from the point P to the line passing the two points X;
and X,

In order to compute this distance, we then define following vectors:

U = _ Wy —x, 0 LeO
seg Xi+ _xl - D D_ D -
¢ ' Wi~ )i %D (4-1)
+b0
V.=
seg Ea % (4-2)
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[k, —x, 0
r=rj [ -
3,0 *+3)
where Ugy is the vector from the point X; to the point X, ;; the vector Vy is perpendicular to the
vector Ugy; r is the vector from the point P to the point X;.

The perpendicular distance can be computed by projecting the vector r on the unit vector
Vseo/| Vg |, then we have:
_‘V‘\‘eg m‘ _ ‘(xz+l_xz)(yz _yp)_(xz _xp)(yz+1 _yz)‘
V \/(x1+l_x1)2+(yz+l_yz)2

seg

d

(4-4)

As shown in Figure 4-4, the location of the projecting point O, with respect to the point X; can be
found by projecting the vector -r on the unit vector Usy/| Usy |, l€ading to:

Us‘eg [r _ (xz+1 _xz)(xz _xp) + (yz+1 _yz)(yz _yp)

T (%1 =5) + (=, 5

seg

g >0.99 L g <0.99

2

)
X
Figure 4-3 Distance from a point P to the solidification front. The solidification front is approximated by a
series of segments (X; X2), (X2 X3), ... (Xi Xjs1), «vy (X1 Xp)

P P P
d di d di+] d
) e— (<
& | ¢ | | ~ ¢
0 XI X|+1 XI O X|+1 XI X|+1 @)
a) &<0.0 b) 0.0<¢<1 Q) &E>1

Figure 4-4 Schematic of the shortest distance from a point P to a segment X;X;.;
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« Choosing of the shortest distance from the point P to the i segment XiXis1, d’*

As shown in Figure 4-4, the shortest distance from the point P to the i segment XX, is
determined by:

Od, if §¢<0
dv =mind,d,, d,)=0d if 0sfsl (4-6)
M if &1

where d,and d ., are the distances from the point P to the points X; and X;., respectively; dis the
perpendicular distance from the point P to the line passing the points X;and X, ;.

Meanwhile, the point ¢;* on the i segment X,X,., which is the closest point to P, is chosen
asfollows:

0X, i &<
q;*=00 if 0sé<1 (4-7)
o if £

» Determining the shortest distance from the point P to the liquidus isotherm

It is easy to find the distance to the liquidus isotherm, knowing the shortest distance from the
point P to the i segment XX+, d° . We write:

x,, (P) = min(d;*) (4-9)
And, the point Q on the isotherm that is the nearest point to P is chosen from the set of ¢, .

For the purpose of guiding anisotropic remeshing in the liquid zone, we also define a unit
vector for each node P, n, (P) . The vector follows the direction of the gradient of liquid fraction at
the point O which is the nearest to the point P. The vector n, (P)is considered to be a good
approximation of the unit normal to liquidus isotherm. Its value is computed by the linear
interpolation, knowing the coordinates of the point O and the field of the gradient of liquid fraction.

Similarly, for guiding the derefinement in the solid-like zone where the solid fraction is great
than acritical valueg“, we track theisoline of ¢, and compute the following parameters:

x,, (P), the shortest distance from each node P in the solid-like zone to the isotherm of g“;

n_, (P), the unit vector for each node P in the solid-like zone, following the direction of the
gradient of solid fraction at the point Q on the isotherm of ¢ .

4.2 |sotropic remeshing

4.2.1 Definitions of isotropic mesh size

Definition 4.2.1 The mesh size for each element, /' : let T be atriangle element with three vertices
S1, S and S;, as shown in Figure 4-5. Following the definition of mesh size in the mesher MTC,
h' isthe average length of its edges $:S,, S, S; and S3 S;:
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=y s M2

i,j=1,3 (4-9)

S2
S1

Figure 4-5 A triangle element with its vertices Si, S, and S;

Definition 4.2.2 The mesh size for each node, #°: let T, (with £ = 1, ) be a triangle element
sharing the common node S, as shown in Figure 4-6. 4% is the distance-weighted average of the
sizes of elements T, surrounding the node S, the weights being proportional to the inverse of square
distance.

pr=—t > 1ithi
( 1—2) =1 (4_10)

where, /, isthe distance from the node S to the center of triangle T,

Figure 4-6 The triangle elements around a node S

As the objective mesh size that is used in the mesh generator “MTC” is defined at each node,
we firstly evaluate the mesh size at each element using the definition 4.2.1, and then compute the
mesh size at each node using the definition 4.2.2.
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4.2.2 Domain decomposition

For the purpose of automatic remeshing, the computational domain is decomposed into three
zones. 1) the liquid zone; 2) the mushy zone close to the liquidus, called the mushy zone for short;
3) the mushy zone close to the solidus and the solid zone, caled the solid-like zone. A critical
value, g ,isused to distinguish the mushy zone and the solid-like zone.

The criterion to decompose the computational domain can be based on:
1) thesolid fraction;
2) temperature;

3) the permeability, which is determined by the Carman-K ozeny relation as a function of the
solid fraction;

4) therate of variation of solute concentration in the case of a binary aloy, especially for the
solid-like zone.

Since the liquidus and solidus temperature change with the local average solute concentration,
a criterion based on the temperature would not be satisfying. For simplicity, in the present work we
choose the solid fraction as the criterion. A critical value g prescribed by the user,
typicallyg =0.4t00.6, isused to distinguish the mushy zone and the solid-like zone. The liquidus
isotherm, g, =0.99, isused to distinguish the mushy zone and the liquid zone.

4.2.3 Computation of the nodal objective mesh size

In order to control the mesh size at nodes, we define the following parameters:

Aot + current local mesh size at nodes,

By obj ective mesh size at nodes;

ey sy @D A two fixed values to bound the size in the mushy zone;
Psie g AN Py s for the nodesin the liquid zone ;

Py o @ A s for the nodesin the solid-like zone;

Ag :”"e"”"’e , the objective variation of solid fraction in the mushy zone;
AgT the objective relative variation of average concentration.

Ag "™ s used to guide remeshing in the mushy zone. Generally speaking, if Ag 7™ =0.1,

we ask for about 10 elements in the mushy zone. As’”“* is used to guide remeshing in the solid-

like zone. As the field of solute concentration in the solid-like zone no longer changes, normally
one can derefine the mesh. But if necessary we may like to use a fine mesh to keep the information
of a segregated channel, where a great variation of solute concentration has formed. A priori
estimation should be given to decide the value of Ag?”“™

Before computing the objective mesh size at nodes, we compute the gradient of solid
fraction,Ug? ; and the gradient of average concentration, [w*, in each element. Then, smoothed
values of g  and[w can be obtained at each node (like smoothing the mesh size at each node by
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equation (4-10) ). We identify the state of each node: it is either in the liquid, in the mushy or in the
solid-like state. This can be achieved easily by testing the value of g, at each node:

if g,20.99, thenodeisintheliquid zone;
elseif g <1-g , thenodeisin the solid-like zone;
else, thenodeisconsidered inthe mushy zone.

Now let us compute the objective mesh size according to the state of each node as follows:
¢ Nodal objective mesh size in the mushy zone

Two cases are considered:

1) the quantity |Og,||/4,,... iSlower than or equal to the prescribed value Ag”™“™. In this
case, we do not change the mesh size, hence:

hS) =max(h h

and h,, =min(4%), A

0hj 1 max_mushy)

current 1" min_mushy )

(4-11)

2) the quantity |Og, |4, iS greater than Ag””* . In this case, refinement is needed, the
objective mesh sizeisfound as follows:

objective

=mi n(”[|xT! hmax_mushy)

and h,, =max(h(), h

obj 1 "'min_mushy )

h @

ohj

(4-12)

¢ Nodal objective mesh size in the liquid zone

The objective mesh size is computed as a function of the distancex to the liquidus
isotherm. We have selected the following Avrami-type function,

U U
h h + (hltz]_fmm - hliq_max) eXpB—SOHXllg D

obi = Miig._max Hxl(t)q H H (4-13)

which is illustrated in Figure 4-7. xf,’q is the prescribed distance, at which the objective mesh size
reachesthevalue 4, ... h is the current mesh size on the liquidus isotherm (with g, =0.99).

For each node in the liquid zone, as we have found the nearest point on the liquidus isotherm, i.e.,
we know the coordinates of point Q (cf. section 4.1.2), h can be interpolated by a linear

function using the current mesh size.

lig _ front

lig _ front

Remarks

1) Fine objective mesh size near the liquidus isotherm can be achieved by the Avrami-type
function, which is essential for modeling the macrosegregation. 2) The objective mesh size near the
liquidus isotherm changes dlightly, this character can prevent from too frequent triggering of the
remeshing. 3) We desire to have fine elements ahead of the liquidus isotherm, so that the velocity
field can be predicted with high accuracy. In the present work, x, takesthe value of 4xh

lig_max *

At the beginning of computation, our domain usually is occupied by the liquid. In order to
generate a good mesh, the distance to the boundary is computed instead of the distance to the
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liquidus isotherm. The objective mesh size on the boundary is considered as 4, ,,, ad the
Avrami-type function is used to define the objective mesh size near the boundary.

= hliq max
S
=
Q
N
)
E
(8]
2
B
8

hliq front

0
0 X lig

Normal distance to the liquidus isotherm x

Figure 4-7 The objective mesh size as computed by the selected Avrami-type function

* Nodal objective mesh size in the solid-like zone

For the solid-like zone, normally the mesh can be derefined according to the distance to the
isotherm of g

0 0
h()}!j = sol _max (hwl \()l max) expE_S O%E D (4-14)
sol

Where A, is the current mesh size at the isotherm of g ; x_, is the distance to the isotherm of
g ; x,,isthe prescribed distance, for which the objective mesh size reaches the value £, ., -

In order to keep the information regarding the segregated channels if necessary, we need to re-
compute the objective mesh size. Similarly to the computation of objective mesh size in the mushy
zone, two cases are considered:

H ||DW|| h“b 7 H objective
1) the quantity T’ is lower than or equal to the prescribed value Ag;”*"™, and h,,, has

been computed by equation (4-14). In this case, we accept the objective mesh size computed by
equation (4-14).

Cw| A .
2) the quantity L is greater than Ae””*“™ | then the objective mesh size is determined
w

by:
A ()b/Lme []V

and h = max(hrglj;g ' "*min_sol )

@ —
h()b] ml n(

! hmax_wl )
(4-15)
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After the computation described above, finally we need to optimize the objective mesh sizein
order to create a new mesh with good quality. The variation of objective mesh size should be then
controlled. Let hfh, be the objective mesh size at the £-th point in atriangle element, and let h,-,",?, be
the value at another point of the element. The ratio hfh, Ih;,; should be in the range of (0.5, 2.0), so
that the quality of mesh is guaranteed. An iterative procedure is performed to optimize the objective
mesh size, in which we always decrease the larger objective mesh size, until this limit ratio is

fulfilled for every node.

To summarize, the following procedures are performed for the adaptive remeshing:

* track the isotherms of liquidus and ¢° , and compute the normal distance to the isotherms
for each node;

» compute the objective mesh size at each node;

* optimize the objective mesh size by an iterative smoothing procedure, so that the
maximum variation between two neighbor nodes is confined within the range of (0.5, 2.0);

* make a decision about remeshing. In order to avoid too frequent remeshing steps, we
trigger the remeshing only when there is a certain number of nodes, typicaly 1%, for
which the ratio of the objective mesh size to the current mesh size is out of the range [0.5,
2.0];

* create a new mesh by using the mesher “MTC”. Passing the objective mesh size to MTC, a
new mesh can be created.

* Transport the variables that are needed in the further computation from the old mesh to the
new mesh by the direct interpolation method. It is obvious that the solidification variables
computed by direct interpolation will not satisfy the thermodynamic equilibrium due to the
strong non-linearity of the problem. So, in a first step, values of enthalpy and average
concentration are transported. Then, in a second step, the values of temperature, fraction of
liquid, liquid concentration, liquidus and solidus temperature are deduced with the aid of
the selected microsegregation model (in the present study, only lever rule is available to
use the mesh adaptation).

In R2SOL, the organization for the dynamic mesh adaptation is summarized in Figure 4-8.
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Track the solidification front

Compute gradients of g; and w

Compute the current mesh size at nodes

Compute the objective mesh size at nodes

Remeshing ? No >

Yes

Prepare the metric for remeshing
|
Create a new mesh by “MTC”
|
Transport the variables from the old mesh to the
new mesh for solving momentum, energy and
solute equations
* Transport H and w first
» With the aid of selected microsegregation
model, deduce temperature, liquid fraction,
liquid concentration, liquidus and solidus|

temperature
& y

Resolution for the equations of energy, solute and
momentum

Figure 4-8 Organization for the dynamic mesh adaptation in R2SOL

4.3 Anisotropic remeshing

As it has been presented at the beginning of this chapter, in the solidification of ingots
anisotropic cooling appears. Consequently, the gradient of quantities (such as temperature, liquid
fraction, and velocity) is very large in one direction, and becomes small in the other directions. In
order to match this strongly directional situation, it is desirable to use anisotropic meshes. A good
anisotropic mesh that is adapted both in size and shape can improve the computational accuracy and
reduce the computational cost. In general, ametric tensor is used to describe the objective mesh size
and direction locally at each point in the computational domain. The present work is dedicated to
introduce a metric tensor for guiding dynamic remeshing. While the anisotropic mesh is generated
using the mesher “MTC”.
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As prior knowledge, the concept of metric tensor is briefly presented in section 4.3.1.
Regarding the anisotropic remeshing, a similar strategy to the isotropic remeshing has been used to
compute the objective mesh size. However, there are still some differences, and one should pay
attention to the mesh orientation. Thiswill be presented in section 4.3.2.

4.3.1 Metric tensor and anisotropic mesh
* Metric tensor

Hereunder, we present the classical definition of the metric tensor for 2-dimensiona
anisotropic remeshing (Frey and George [1999]). A metric tensor is a positive symmetric definite
tensor and its matrix M can be factorized as follows:

[€osf -sinfdh(x)” 0 Ocosd snbO

M(x)=RAR' =
&) ing co g 0 he(x)?Hisne cowH (4-16)
Cha(x) ™ 0 . : .
where A=[] _,[denotes the diagonal matrix formed by the eigenvalues of M(x).
00  hA(x)"[O
[cosf -sinf0

R=r. resents the corresponding eigenvectors. The metric tensor M(x) defines a
%nﬁ cosﬁEp =P g @9 ()

curved space (like an ellipse) as shown in Figure 4-9, the maor radius and the minor radius are
ha(X) and h,(X) respectively.
There are several possibilities to interpret the metric tensor. For instance, if the tensor M is a
diagonal matrix as follows:
Lh & o 0O
M:Dnb/(x) _ZD
g 0 hy,(&7F
Then, it defines a homogeneous space as a circle in Figure 4-10. That is the case for the isotropic
mesh adaptation: the local objective mesh size, 4, (x), is only a function of the position, this
function specifies the edge length in all directions.

(4-17)

hy

Figure 4-9 an ellipse Figure 4-10 a circle

For the anisotropic meshes, the local metric tensor specifies an ellipse as shown in Figure 4-9.
The objective mesh sizes in the two principa directions are the major radius 41(x) and the minor
radius /,(Xx) respectively. The mesh orientation is specified by the angle 6.
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Mathematically speaking, let I'(r) = (1-7) x, + x, be a parametric description for the segment
XX, , in the space defined by the metric tensor M(x), the distance between two pointsx,andx, is
then defined as:

H(x0:%2)= [/(x1= %) M (T (1) (x,= x,) di (4-18)

By linearly interpolating the metricM(I" (r)) = (1-1) M(x, )+ M(x,), the length of segment xx,is
approximated by (Frey and George [1999]):

_2 lg+lh +if
I(x,x;) R (4-19)

where li:I:\/(Xl_ xo) M (x,)(x,—-x,)dt , i=0,1.

The distance in the equation (4-18) is the Euclidean distance when M is the identity matrix.
* Mesh size

For an anisotropic mesh, using equation (4-19), the length of an edge (S;S) in atriangle can
be defined as follows with respect to the metric tensor M:
2

HS.—S, + 8-S DHS.—S. + |8, =S,

2 S v (s ) S v (s ) St s ) S s )

HS -5, =35 : : : 4-20
Joi 3 -
P b -5, s,-s, 20

S Him(s ) S M (s )
i J
2
where HS/ —s | denotes the square of the distance from the point S; to the point S; according to
: "lim
the metric M.

In the mesher “MTC”, the metric M is simply averaged to evaluate the edge length and the
mesh size for an element. The definitions of mesh size are described as follows (Cyril Gruau
[2004]):

The length of an edge:
HS-/ =S, HM = HS-/ ol HE(M(S.)+M(S.)) (4-21)
2 I3 I3
The metric for an element 7+
1
M(r)=3 3 M) 422)

The mesh size for an element 7+

o 2
hMm-Eg /ZSHSJ -5 | (4-23)

The mesher “MTC” creates automatically the new mesh by an iterative procedure, using a
field of metric tensor defined at each node on the old mesh. Our task is then to introduce the metric
tensor. In the following text we present an example of anisotropic mesh, and show what parameters
are needed for guiding the remeshing.

* An example
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An anisotropic mesh used in the computation of solidification is shown in Figure 4-11. It can
be seen that triangle elements in the mushy zone are elongated in the direction perpendicular to the
gradient of liquid fraction, such that alayer of fine elementsis located in the mushy zone. Ahead of
mushy zone and toward to the bulk liquid zone, the anisotropic mesh becomes an isotropic mesh,
being the isotropic mesh in the bulk liquid. The same feature can be seen in the solid zone.

Frac_lig

1

'0.888889

Q77777 a

0. GEEEBET

0555556

0.444444

0.333333

Nezeeee

111111

Liquid zone Mushy Solid zone
zone

Figure 4-11 An example of anisotropic mesh

In order to create such meshes for the computation of macrosegregation, for each node we
define the following parameters:

 theobjective mesh sizein thefirst principal direction #,,,;

* theobjective mesh size in the second principa direction 4, , ;

e theunit vector nl= %n %hat specifiesthe first principal direction.

The computation of these parameters is presented in the following sections.

4.3.2 Determination of parameters for anisotropic remeshing

4.3.2.1 Mesh orientation

* In the mushy zone, the mesh (according to the first principal direction) is oriented in the
same direction as the gradient of solid fraction:

g
(|Dg“')x and sinH:( g.), cthatisml=———

1
[Be.| - s #249)

cosf=
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* Intheliquid zone and near the liquidus (within the prescribed distancex,?q ), the mesh is
oriented in the same direction as the liquidus isotherm (cf. section 4.1.2):

nl=n, (4-25)
where n,, isthe unit norm of the liquidus isotherm at the point which is the nearest to the
considered node, see Figure 4-3.

For anode far from the liquidus isotherm, the mesh isisotropic, that is:
cosf=1 and sind=0 (4-26)

« Inthe solid-like zone and near the isotherm of g (within the prescribed distancex? ), the
mesh is oriented in the same direction of the isotherm of g¢"

nl =n sol (4-27)
where n , is the unit norm of the isotherm of g;" at the point which is the nearest to the
considered node.

Otherwise the mesh isisotropic:

cosf=1 and sngd=0 (4-28)

4.3.2.2 Objective mesh size

We adopt the same strategy as that for the isotropic mesh adaptation (described in section
4.2.3) to compute the objective mesh size in the first principal direction, #,,. The remained
problem is to determine the objective mesh size in the second principal direction, 4, , .

In the solid-like zone, 4,,,, is obtained by multiplying 4,,, with a given factor (typicaly,
factor = 5), we have:

R,y =M n( h,,, % factor, h, ) (4-29)

In the mushy and liquid zones, three cases are considered as following:

In the first case as shown in Figure 4-12 a), the velocity vector is orthogonal with the first
principal direction which has been determined in section 4.3.2.1. That is the ideal case, one can
elongate an isotropic triangle element just following the fluid flow. 4, ,, is given by multiplying
h,,, With agiven factor:

intheliquid zone (4-30)

hob,z:min( h,)bllx factor, hmax_l,q),

Py :min( By X factor, B v, ) in the mushy zone
In the second case as shown in Figure 4-12 b), |cosa|s0.1, a being the angle between vectors
of velocity and thefirst principal. 4, , is determined as a function of the angle o :

1- ractor
1= Jactor

o= minghobll(factor + sa| )s P iig @, in theliquid zone (4-31)
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1- ractor
1= Jactor

B pp = M ngho,,jl (factor + sa| ) B — E in the mushy zone (4-32)

In the last case as shown in Figure 4-12 c), |cosa|>0.1, We prefer to use the isotropic mesh,
i€, hy,=h,,.

It is important to bound with 4, . in equation (4-31), in order to get good transient meshes
between fine meshes (in the mushy zone) and coarse meshes (in the bulk liquid zone).

The first principal of Thefirst principal of Thefirst principal of
the objective mesh the objective mesh the objective mesh
A A A

V' velocity vector

a
a o V' velocity vector o

>

V' velocity vector
a) |cosa| =0 b) |cosa| <0.1 c) |cosa| >0.1

Figure 4-12 Schematic for the computation of objective mesh size

Remarks

It is very time consuming to track the isotherms and compute the distance to the isotherms, as
well as to generate a new mesh and transport the variables from the old mesh to the new mesh. To
prevent from doing too frequently the expensive operations, we compute the time interval Ar that is
needed for the liquidus isotherm to travel through a mesh, as shown in Figure 4-13. During the time
interval Ar, we do not perform the operations. In order to estimate the time interval Az, let us
consider the isotherm of g,=1.0:

dg, agz
—=-=0 0O =L+ g, =0
dt ot 9 (4-33)

where U denotes the moving velocity of the liquidus isotherm. Knowing the gradient of liquid

fraction in the element g, , and the average solidification rate in the element, BB%H , the moving
or [

velocity of the liquidus isotherm can be deduced from 4-33. Then, the time interval Az is estimated
by the following equation:

hTHDgf )

e

Oor O

At = min(
(4-34)
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where, 1’ isthe mesh size of an element in the direction normal to the liquidus isotherm.

Liquidus isotherm at

time ¢ +A¢ - :
Liquidus isotherm at

timer

Moving front

Figure 4-13 Schematic of the moving liquidus isotherm
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Chapter S

Numerical results of macrosegregation

Résultats numériques en macroségrégation — Résumé en francais

Les modeles développés, intégrés dans le logiciel R2SOL, ont été appliqués a trois cas de
macroségrégation. Le premier est le test de Hebditch et Hunt, consistant en la solidification de petits
lingots parallélépipédiques d’alliages Sn-5%Pb et Pb-48%Sn. Ce test est intéressant car il a déja fait
I’objet d’études comparatives dans la littérature (Ahmad et al.) et il implique des tendances
opposées en terme de convection thermo-solutale. Dans le cas du premier alliage, les convections
thermique et solutale se conjuguent, donnant lieu a une forte tendance a la formation de canaux
ségrégés. Dans le second cas, ces convections s’opposent, mais la macroségrégation est également
marquée. L accord entre simulation et mesures expérimentales est de bonne qualité. Les influences
de la discrétisation spatiale et temporelle et des schémas de couplage sont alors discutées,
notamment par rapport a la capacité de prédiction des canaux ségrégés. En outre, I’efficacité de
I’adaptation de maillage est démontrée. Les résultats sont présentés dans les sections 5.1 2 5.3. On
montre que les canaux ségrégés peuvent étre détectés a condition d’utiliser des maillages et des
discrétisations temporelles suffisamment fines et éventuellement un couplage fort entre les
différentes résolutions incrémentales.

Le second cas étudié est un cas de solidification dirigée d’un alliage Pb-%10Sn. Au cours de
la solidification dans un gradient de température positif, le liquide dans la zone pateuse s’enrichit en
soluté, ce qui donne lieu a des instabilités. Lorsque la vitesse de propagation du front est plus faible
que la convection solutale dans la méme direction, des canaux ségrégés se forment. La diffusion
solutale étant beaucoup plus faible que la diffusion thermique, le liquide ségrégé garde une
composition élevée en s’écoulant a travers la zone pateuse vers des régions a température plus
élevée. Le liquide enrichi peut alors retarder la croissance dendritique ou provoquer une refusion
locale, créant ainsi des veines liquides verticales au travers de la zone pateuse. Ces phénomenes
complexes tres fortement couplés ont pu étre mis en évidence par le logiciel R2SOL en utilisant la
formulation fortement couplée avec remaillage dynamique. Les résultats sont présentés a la section
54.

Finalement, du point de vue de I’application industrielle a I’échelle de lingots d’aciérie, la
macroségrégation dans un lingot d’alliage binaire fer-carbone a été modélisée avec le logiciel, en
utilisant le remaillage dynamique, ce qui a permis de mettre en évidence la formation de veines
ségrégées de type « A » (section 5.5).
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Chapter S

Numerical results of macrosegregation

Macrosegregation resulting from the solidification of paraleepipedic ingot of Pb-48%Sn
alloy and Sn-5%Pb alloys has been examined by Hebditch and Hunt [1974]. This test has aready
served as a benchmark to evaluate the computational codes (Ahmad er al. [1998], Deshiolles et al.
[2003]). We have aso adopted this test to validate R2SOL. A confrontation with the experimental
results and numerical results obtained by the finite volume code SOLID has been done. We will
present these resultsin sections 5.1 t0 5.3.

In section 5.4, the ability of R2SOL to model the freckling phenomena, thanks to adaptive
remeshing strategies, will be demonstrated

Finally, from the point of view of industria applications, the macrosegregation in an
industrial steel ingot has been studied. The computationa results will be shown in section 5.5.

5.1 Benchmark test of Hebditch and Hunt

Hebditch and Hunt [1974] solidified a Pb-48%Sn aloy and a Sn-5%Pb aloy in a
parallelepipedic cavity 0.06 m high, 0.1 m long and 0.013 m thick. The cavity was insulated on all
surfaces except the thinnest lateral surface. Heat was extracted from only one (the left) surface as
shown in Figure 5-1. After solidification, macrosegregations were measured by spectro-photometry.
The concentration values were considered to be accurate to +2 % of the concentration values.

Adiabatic

<\r'-. .
— e
S %O
L g E
= & % ©
I &« 0.1m %-_5 S
5 &
)

?’f’f’f’f’ffffffff{fffffx‘?’ffffffffff -
Adiabatic

Figure 5-1 Schematics of the HH test

This setup of experiment was nearly 2-dimensional. Assuming that the fluid flow in the
largest midplane section was not influenced by the two parallel walls of the cavity, the situation was
considered to be a 2-dimensional problem. The macrosegregation in the largest midplane was
simulated by Ahmad er al. [1998] using the finite element code CALCOSOFT developed at Ecole
Polytechnique Fédérale de Lausanne and the finite volume code SOLID developed at Ecole des
Mines de Nancy. The physical data and parameters used in the calculation are given in Table 5-1.
The boundary conditions for the thermal analysis are illustrated in Figure 5-1: A Fourier condition
is applied to the left wall, adiabatic conditions are imposed on the other three walls. The initial
temperature field is assumed to be uniform, being at 7, , . For solute transport analysis, there is no
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solute exchange through the boundaries, and the initial concentration field is supposed
homogeneous, w =w,. Zero initial velocity and a no slip boundary condition are applied for
mechanical analysis. The numerical results obtained by the two codes, CALCOSOFT and SOLID,
globally coincide with the experimental results. Ahmad et al. [1998] proposed then that Hebditch
and Hunt test could be a classical benchmark test for macrosegregation computations.

It should be noted that the solidification times and thermal fields are not accurately reported
in the article of Hebditch and Hunt [1974], except the initial temperature (being very close to the
liquidus temperature). Some figures showing the advancement of the solidification front are
presented, which are obtained by quenching the ingots at different times. Based on the advancement
of the solidification front, cooling conditions (the heat exchange coefficientand the externa
temperature 7, , in Table 5-1) have been estimated by Ahmad et al. [1998].

In the work of Ahmad er al. [1998], Carman-Kozeny relation (3-1) is used to compute the
permeability of the mushy zone. A constant value of A, (in Table 5-1) is used to fit the
experimental segregation results.

Table 5- 1 Physical properties and computational parameters for the HH-test, Ahmad ef al. [1998]

Pb-48%Sn Sn-5%Pb
Phase diagram data
Nominal mass fraction, w, wt.pct 48.0 5.0
Melting temperature, T, of the pure substance °C 327.5 232.0
Eutectic temperature, 7, , °C 183.0 183.0
Liquidus slope, m °C.(wt.pct) ™ -2.334 -1.286
Partition coefficient, k 0.307 0.0656
Eutectic mass fraction, w,,, wt.pct 61.9 38.1
Thermal data
Thermal conductivity, A W.m K™ 50.0 55.0
Specific heat, ¢, Jkg K™ 200.0 260.0
Latent heat, L Jkg! 53550 61000
Other characteristics
Reference density, o, kg 9000 7000
Reference temperature, 7, °C 232 226
Thermal expansion coefficient, S, K* 1x10™* 6x107
Solutal expansion coefficient, 3, (wt.pct)™ 4.5x10° -5.3x10°
Dynamic viscosity, /U Pa.s 1x10°3 1x10°3
Secondary dendrite arm spacing, A, m 40x10°® 65x10°
Initial temperature, 7, °C 216 226
Heat transfer coefficient, A W.m?K™ 400 300
External temperature, 7, °C 25 25
Calculation parameters
Time step S 0.1 0.05
Gravity, [g] m.s™ 9.81 9.81
Diffusion coefficient in liquid, € m%s™t 1x10° 1x10°
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In this test, horizontal gradients of temperature and solute concentration in the liquid are built
up at the early stage of solidification. These two gradients lead to a horizontal gradient of the liquid
density. Hence, therma and solutal driven natural convection occurs in the cavity. It should be
noted that natural convection occurring in the Pb-48%Sn aloy and the Sn-5%Pb alloy are different
as shown in Figure 5-2. For the Sn-5%Pb alloy, the interdendritic liquid enriched in Pb becomes
heavier. Combining with the temperature effect, the fluid flow is counterclockwise. However, for
the Pb-48%Sn alloy, the interdendritic liquid being enriched in Sn, the effects of solute and
temperature on the liquid density are opposite, but solute-induced convection dominates in this
case, leading a clockwise fluid flow. At the beginning of solidification of the two alloys, it has been
found that a solute difference Aw along the characteristic length (0.1 m) is about 10%, the solute

0|B,AwL° _9.8x4.5x107°x0.13
v? (107/9000)?
of the order of 10°, this can cause a strong convection.

Grashof number Gre (G,, = =3.6x10°, for the Pb-48%Sn aloy) is

Solutal

Thermal Thermal

a) Sn-5%Pb alloy b) Pb-48%Sn alloy

Figure 5-2 Schematics of thermo-solutal convection, Ahmad et al. [1998]

5.2 Resultsfor the Sn-5%Pb alloy

5.2.1 Numerical setup

Ahmad er al. [1998] computed the solidification of the Sn-5%Pb aloy using CALCOSOFT
and SOLID. The governing equations used by Ahmad were exactly the same as those presented in
chapter 3. Lever rule was considered as the microsegregation model. A structured mesh with 60x60
elements and a constant time step Af=0.05s were used in the computation. Full coupling
computations with iterations were performed. Macrosegregation maps at 400 s are shown in Figure
5-3. The computational result of SOLID, as shown in Figure 5-3 a), predicted the oscillation of
average concentration in the middle region of the ingot, indicating the tendency to form segregated
channels in this region. While CALCOSOFT predicted the oscillation only at the bottom of the
ingot as shown in Figure 5-3 b).

N N s /] |
\‘\\m;lﬂh%ﬂ(—/ / .J | \ ~_ _10% _ / /
. L N
: .

- N 'j 3 . |
5@\ ‘?‘}%\50% 5% | % / /,_ *l\

Sy |

\g >/ |

e R 7 f\ 10%
K \\‘\“":%\;\ el 10%: // A ‘___,____,\

AN 5&\?}%&%%&{— e | N s

PR N I et —— | A Emg_ 0%

a) SOLID b) CALCOSOFT

Figure 5-3 The relative variation of the average concentration, (w-wp)/wqy at 400 s, from Ahmad et al. [1998]
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Kiampfer [2002], using an improved version of CALCOSOFT with mesh refinement (see
section 2.1.3) repeated the computation. The segregation map was similar to the map shown in

Figure 5-3 b), the segregated channels being predicted along the bottom wall. Although a global
agreement to the prediction of macrosegregation was achieved by the two codes, CALCOSOFT and
SOLID, there are differences in the results.

Following the works of Ahmad et al. [1998] and Kiampfer [2002], we have performed
numerical simulations of macrosegregation for this alloy with the codes R2SOL and SOLID, using
the same physical parameters as presented in Table 5-1. The goals of the numerical tests are the

followings:

To study the mesh size influence. In this test, non-structured triangle meshes are used, the
mesh sizes being given in Table 5-2. The time step is 0.05 s, taking the same value as the
one used by Ahmad et al. [1998]. Full coupling computations have been carried out, i.e.
in each time step iterations are performed to couple the velocity, temperature and
concentration fields. The maximum number of iterations is limited to 30. The criteria to
terminate the iterations are as follows:

Tn+1 _Tn ~ ) )
T < 1.0x10™* , for the resolution of energy equation
V n+l _Vl’l
and 7 < 1.0x10™, for the resolution of momentum equation
wn+1 _Wn 4 ) )
and - < 1.0x10™ , for the resolution of solute equation
w

n denoting the iteration number.

To study the time step influence. Besides the standard time step 0.05 s, a larger and a
smaller time steps, being 0.1 s and 0.025 s, are used. In this test, the full coupling
approach is applied, but only one iteration is performed at each time step. The fixed mesh
I is adopted (referring to Table 5-2).

To study the influence of coupling iterations within each time step. In this test, a fixed
mesh (Mesh II) is used, the time step being 0.05 s. Computations have been already done
in the first and the second tests. Here, we compare the results obtained with iterations (the
maximum number of iterations is 30, the criteria to terminate iterations are 10* for
solving energy, solute and momentum equations respectively) and without iteration.

To compare the results obtained by the full coupling approach and the no-coupling
approach. The solidification of the Sn-5%Pb alloy has been re-computed with the no-
coupling approach, using the fixed Mesh II and the time step Ar =0.05s .

To compare the results obtained by different solvers. Besides the traditional P1+/P1
formulation for solving the momentum equation, the so-called “P1/P1 SUPG-PSPG”
formulation has been recently implemented in R2SOL. In addition, for the energy
equation we have also implemented the “SUPG” method, which can be used instead of the
nodal upwind method. We will compare the results obtained by the new solver, using the
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fixed Mesh Il and the time step Ar = 0.05 s with the full coupling approach reduced to one

iteration.
Table 5-2 Mesh size used in the computations
Mesh | Mesh Il Adaptive mesh
minimum 0.5 mm in the critical region,
Mesh size 25 mm 13mm | 1.3mminthesolid-like and bulk liquid
Z0Nnes

Mesh | and Mesh Il are the fixed meshes, whereas in the third case, the mesh is dynamically adapted. The
mesh size of Mesh Il is close to the mesh size used by Ahmad ef al. [1998] (1.6 mm in the x-direction and 1
mm in the y-direction). For the adaptive mesh, the objective variation of solid fraction in each element is 0.02:
we expect about 50 elements in the mushy zone. In fact, it is not necessary to apply fine elements covering
all the mushy zone. We use fine elements in the critical region, i.e. in the mushy zone where 0.5<g,<1. The
minimum mesh size is limited to 0.5 mm, to avoid extreme fine elements in the case of very large gradients of
liquid fraction. In the zone with lower liquid fraction (g, < 0.5) and in the liquid zone, the mesh size is 1.3 mm,
being the original mesh size. In the solid-like zone, in order to keep the information on segregated channels,
the objective relative variation of average concentration in each element is 1%.

In afirst step, we present the results obtained in the different numerical tests (sections 5.2.2 to
5.2.7) hereunder. In a second step, we will discuss them in section 5.2.8.

5.2.2 Study of the mesh size influence

The test of the mesh size influence has been performed on the Sn-5%Pb alloy, using the full
coupling approach. For the full coupling resolutions, the convergence has been achieved generally
within 10 iterations, using the iterative criteria of 10 for coupling the energy, solute and
momentum equations.

Figure 5-4 shows the results computed using the different meshes. The first column in Figure
5-4 presents the meshes. The second column shows the distribution of liquid fraction obtained at
time r = 100 s. The third column shows the relative variation of average mass concentration,
(w=wy)lw,, a timet =400 s.

The first row shows the results calculated using a coarse mesh (Mesh 1), the mesh size being
2.5 mm. The second row shows the results calculated using the standard mesh (Mesh I1), the mesh
size being equivalent to that used by Ahmad et al. [1998]. The computational results using an
adaptive mesh, are shown on the third row. The fourth row shows the results computed by SOLID
using a structured mesh with 60x60 elements, being progressively refined near the bottom wall. The
last row shows the results computed by CALCOSOFT using a structured 60x60 quadrangle element
mesh, with bilinear functions for all the fields except the pressure field, the pressure being assumed
constant within each element (i.e., Q1-P0O element for the velocity-pressure fields).

Comparing the figures a), b) and c) in Figure 5-4 (showing the results obtained with R2SOL
using different meshes), one find that the position and shape of the isoline g,=0.5 are very close.
But some differences appear for the isolines g,=0.9 and g,=0.99: these isolines in the middle
region become zigzagged with the mesh refinement. Seeing the segregation maps in the third
column, a segregated channel near the bottom appears in the results of R2SOL. This has been
already predicted by CALCOSOFT and SOLID. Besides, it is interesting to note that the tendency
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to form segregated channels in the middle region of the ingot has been captured by R2SOL, in
particular using the adaptive mesh. This has been predicted by SOLID, but not by CALCOSOFT.
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d) 60x60 structured mesh (fine at the
bottom) used in SOLID computation

.

e) 60x60 structured mesh used in CALCOSOFT
computation, from Ahmad ez al [1998]

Figure 5-4 The fully coupled resolutions for the Sn-5%Pb alloy, showing the mesh influence

5.2.3 Study of the time step influence

In Figure 5-5 @), b) and c) we show the results computed with R2SOL using different time
steps, Arbeing 0.025 s, 0.05 s and 0.1 s respectively. The first column in Figure 5-5 shows the
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distribution of liquid fraction calculated at time r = 100 s. The second column shows the relative
variation of the average mass concentration, (w—w,)/w,, a timer =400 s.

grat=100s (w - wo)lwo att =400 s

C)At=0.1s

Figure 5-5 Fully coupled resolutions Ilimited to one iteration for the Sn-5%Pb alloy,
showing the time step influence

Comparing the liquid fraction distribution at time ¢ = 100 s, the isolines of liquid fraction
become more instable in Figure 5-5 a) than in Figure 5-5 ¢); For segregation maps in the middle
region at time ¢ = 400, we note aso that the variations of concentration in Figure 5-5 @) are greater
than in Figure 5-5 ¢). It seems that the instabilities in the middle region can be captured properly
using smaller time steps, comparing Figure 5-5 a), b) and ¢). The use of alarger time step, as shown
in Figure 5-5 ¢), may smooth the liquid fraction and the average concentration fields.

5.2.4 Study of the influence of coupling iterations within each time step

In order to test the sensitivity to iterative coupling, let us compare the fully coupled and the
Sfully coupled reduced to one iteration resolutions in Figure 5-6. The contours of g, =0.99 and
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g, =0.9 shown in Figure 5-6 b) are smoother than those in Figure 5-6 &). This can be aso seen in
the segregation maps in Figure 5-6. It appears that the resolution is somewhat sensitive to the
coupling iterations within each time step.

grar=100s (w-wo)lwg @ t=400s

a) fully coupled resolutions (with iterations)

b) fully coupled resolutions limited to one iteration

Figure 5-6 Comparison between fully coupled and fully coupled, limited to one iteration resolutions,
results calculated on Mesh Il

5.2.5 No-coupling resolutions

The macrosegregation in the Sn-5%Pb alloy has been predicted by the no-coupling approach.
In this computation, the enrichment of solute in the liquid pool is neglected. The map of liquid
fraction at 100 s and the segregation pattern at 400 s are presented in Figure 5-7 @) and b)
respectively. Comparing with the results obtained by the full coupling approach, it can be noticed
that no segregated channels have been predicted by the no-coupling computation (cf. Figure 5-4 b)).
However, the concentration pattern concerning the macrosegregation is very similar to that
predicted by the fully coupled approach.
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a) g ar=100s b) (w- wo)lwo at t =400 s
Figure 5-7 Numerical results obtained by the no-coupling approach using Mesh Il, At =0.05 s

5.2.6 Comparison between P1+/P1 and SUPG-PSPG formulations

In order to test the influence of different finite element schemes, we have used the P1/P1
SUPG-PSPG method to solve the momentum equation, and the SUPG method to solve the energy
and solute equations. These methods are different from those used in the previous computations.
Now the advection terms in momentum and energy equations are computed by the SUPG
formulation, instead of the nodal upwind transport. For the momentum equation, the stabilization is
achieved by the SUPG-PSPG method, instead of the P1+/P1 bubble formulation (cf. sections 3.6
and 3.7 for details). For the solute transport equation we use the same solver as the previous
computations, being based on the SUPG method. The computation has been done on the fixed
Mesh Il with the full coupling approach reduced to one iteration. Figure 5-8 shows the map of
liquid fraction at 100 s and the segregation pattern at 400 s. Comparing with Figure 5-6 b) obtained
with the P1+/P1 nodal upwind solver, we note that the results obtained by those two finite element
methods are very close.

YA Fat
IR i

a) g ar=100s b) (w- wo)lwg att =400 s

Figure 5-8 Results obtained by the P1/P1 SUPG-PSPG solver, using the full coupling approach reduced to
one iteration with the fixed Mesh Il and Af=0.05s
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5.2.7 Confrontation with experiments

The concentration profiles in different sections after complete solidification are shown in
Figure 5-9. In the R2SOL and SOLID computations, the full coupling approaches have been used,
and the same criteria to terminate iterations within each time step have been applied. Measurements
and numerical predictions are in rather good agreement.
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Figure 5-9 Profiles of the deviation to the nominal concentration (w—w,(%) ) after solidification.
Measurements and computational results obtained by R2SOL and SOLID using the full coupling approach
with time step 0.05 s. These profiles correspond to various heights of the cavity: a) 5 mm, b) 25 mm, c¢) 35
mm and d) 55 mm. Sharp tips on the curves denote the occurrence of segregated channels.

5.2.8 Discussion on results for the Sn-5%Pb alloy

e On the numerical models

As it has been presented, two approaches, full coupling and no-coupling, have been used to
predict the macrosegregation. In the no-coupling approach, locally the solidification path is fixed
and the solidification is treated locally as a closed system. While in the full coupling approach, the
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solidification is treated as an open system. Observing the fact that segregated channels in the middle
region have been predicted by the full coupling approach, but they have not been predicted by the
no-coupling approach as shown in Figure 5-7, we note that an open system should be considered in
order to predict these segregated channels.

However, regarding the globa macrosegregation map obtained by the no-coupling
computation, it is quite in agreement with that obtained by the full coupling computation. It appears
then that the no-coupling approach can be used when the simulation of segregated channelsis not of
prime interest.

Regarding the different discretizations for the momentum equation in R2SOL, we have noted
very few differences between P1+/P1 and PL/P1 SUPG-PSPG formulations. However, there are
some differences between the results of R2SOL and CALCOSOFT, athough these two codes are
using finite elements and the same microsegregation model. The tendency to form segregated
channels in the middle region has been captured by R2SOL, as with the finite volume code SOLID.
This does not appear in the prediction of CALCOSOFT.

Here, we would like to recollect the discussion on the FVM and FEM formulations in the
paper of Ahmad et al. [1998]. The authors proposed severa possibilities to explain the differences
observed in Figure 5-3:

» The treatment of the non-dip boundary condition. In the FEM formulation, the velocities
are directly imposed and set to zero on the edges of the cavity. While in the FVM
formulation, this boundary condition is expressed by using the tangential stress
component. This leads to different velocities near the boundaries.

» The computation of the Darcy’s term. In the FEM, the Darcy’s term is integrated
numerically at the Gauss points; In the FVM, the scalar quantities are computed at the
center of each cell, while the velocities are computed on the faces of the cell. In order to
compute the Darcy’s term, the permeability at the face center is interpolated by an average
scheme. The computation of the Darcy’s term is different between the FEM and FVM
schemes, which may lead to fairly large discrepancies between the two calculated velocity
fields.

» The algorithms in the FEM and FVM. The meshes and the associated discretization
schemes are different. The SIMPLEC algorithm is used in SOLID, therefore, staggered
grids are employed for the discretization of the momentum equation. That is not the case
in the FEM code. In addition, the upwind procedure in the FVM is not made along the
streamlines as that in the FEM, which could add some numerical diffusion.

Since the inclined segregated channels in the middle region have been detected by R2SOL
using FEM, it seems that these 3 points are definitely not the right explanation of the
SOLID/CALCOSOFT differences.

Regarding the fact that segregated channels in the middle region have not been captured by
CALCOSOFT with a structured mesh, we have also used a structured mesh (shown in Figure 5-10)
to repeat the computation; and found that the tendency to form channels actually becomes very
weak. These segregated channels are invisible in Figure 5-11 a), but can be shown in Figure 5-11
b) after changing the scale of the legend. It seems then that non-structured meshes are more
sensitive to detect the freckles.
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Figure 5-10 The structured mesh with 60x60 grids, used in R2SOL. In the vertical direction, the size
increases geometrically by a factor of 1.0128, the minimum value being 0.67 mm; in the horizontal direction,

the grids are uniform, the mesh size being 1.67 mm.
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Figure 5-11 The segregation maps predicted by R2SOL. Using the full coupling approach with iterations,
structured fixed mesh, At=0.05s

* On time step, mesh size, and mesh refinement

Comparing the results obtained by the different meshes and time steps in Figure 5-4 and
Figure 5-5, we note that adequate fine mesh and small time step are necessary to capture segregated
channels.

In order to discuss the mesh size influence on the segregated channels, we present the liquid
fraction and velocity fields in Figure 5-12 and Figure 5-13 on next page. The results are obtained
by the full coupling formulation using different meshes. Figure 5-12 shows the liquid fraction and
the superimposed velocity field at # = 100 s. The computation is performed using the coarse Mesh I.
A segregated channel has been formed at the bottom. Consequently, strong flow at the bottom can
be observed. Counterclockwise fluid flow occurs in the bulk liquid. Figure 5-13 presents the results
calculated using the adaptive mesh: fine elements are used in the mushy zone. Besides the freckle at
the bottom, several inclined freckles can be also observed. In the zoomed mushy region, one can
observe that fluid within the freckles moves toward the bulk liquid with relative high velocity.
Comparing Figure 5-12 and Figure 5-13, athough the fluid flow in the bulk liquid is similar, the
flow in the zoomed region is quite different.

It has been pointed out by Mehrabian er al. [1970] (referring to section 2.1.1), in the case of
interdendritic fluid flow moving along the direction of temperature gradient (from lower
temperature to higher temperature) and vII7/7< -1, that remelting does occur and channels grow,
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leading to freckles opened to the bulk liquid. That is the case for the solidification of Sn-5%Pb
aloy, in which counterclockwise fluid flow promotes the formation of freckles. Computational tests
show that a fine mesh (and time step) is necessary to calculate the development of instabilities in
interdendritic fluid flow, and then to capture the formation of freckles; while a coarse mesh (or time
step) smoothes the velocity field, so that small perturbations cannot devel op.

W

A
s >

0.875

® vmax. 1.95x10° m/s
The region in red represents the liquid zone, the blue one the
solid like zone, where the fluid flow becomes very weak. A
horizontal liquid channel can be seen at the bottom.

Figure 5-12 The liquid fraction and velocity fields at 100 s, computed by the fully coupled approach on the
coarse Mesh |, using At=0.05s

Frac_lig

0.875

.075

0.625

® vmax.2.82x10° m/s

The region in red represents the liquid zone, the blue one the
lower g, zone (g, <0.5), where the fluid flow becomes very
weak. Besides the horizontal liquid channel at the bottom,
- several inclined freckles can be also observed.

Figure 5-13 The liquid fraction and velocity fields at 100 s, computed by the fully coupled approach on the
adaptive mesh using Af=0.05 s

Figure 5-14 shows the results computed using the new version of CALCOSOFT developed by
Kéampfer [2002], in which the momentum equations are solved by a Garlerkin least squares
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approach, including a mesh refinement technique (refer to section 2.1.3) . Kdmpfer’s results for the
Sn-5%Pb alloy are similar to those of Ahmad et al. [1998] as shown in Figure 5-4 e).

%
. ‘ 5% 5% +5%
+5% i5'!u % +10%

710% +10%
i +15% +15%
+ ] - o

ol o +20% B +20%
— < o ~ -

a) 60 x60 b) 80 x 48 ¢) 40 x24, adapted with refine-
ment factor 2 in critical zone

Figure 5-14 CALCOSOFT results from Kampfer [2002], showing segregation maps of (w—w,)/w,at t =
400 s, using different structured meshes, At =1 s. Small differences appear in the results using the 60x60
mesh and the 80x48 mesh. Results obtained in figure c) is comparable with those of the fixed mesh in figure
b). Inclined segregated channels have not been captured.

* On the coupling iterations within each time step

We have found that the prediction of freckles is somewhat sensitive to computations with or
without coupling iterations within each time step: see Figure 5-6. Since the full coupling resolution
is costly, we would like to capture the freckles by using one iteration. Using the adaptive mesh and
the time step Ar =0.05s , the computation has been performed by the full coupling approach with
only one iteration. The results are presented in Figure 5-15. Figure 5-15 a) shows the map of liquid
fraction at + = 100 s, the zigzagged contour of g, =0.9 indicates the instabilities of interdendritic
fluid flow. Figure 5-15 b) shows the map of (w - wo)/wp at ¢ = 400 s, revealing freckles. Comparing
Figure 5-15 (one iteration resolution) and Figure 5-4 ¢) (iterative full coupling resolution), we note
that the freckles can be predicted by the one iteration formulation when using the same adaptive
remeshing strategy. However, further investigation would be needed to quantify the differences
between the results

a) gar=100s b) (w - wp)lwg at t =400 s
Figure 5-15 Results obtained with the full coupling approach with only one iteration, using the adaptive mesh

In order to compare the computational cost, computations using full coupling with iterations
and with only one iteration have been performed on a PC Pentium 4, 1.7 GHz processor and
1024MB RAM. Three meshes which have been presented before have been used, the time step
being 0.05 s . Table 5-3 shows the computational time for 1000 time steps. The computational times
of the one iteration resolution are about one half of the full coupling resolution.
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Table 5-3 Computational times

CPU time () /1000 time steps CPU time () /1000 time steps
Mesh : . . . .

full coupling resolution one iteration resolution
Mesh | 2968 1476
Mesh Il 12218 6423
Adaptive mesh 26408 15673

5.3 Resultsfor the Pb-48%Sn alloy

5.3.1 Numerical setup
A similar testing strategy has been applied to the Pb-48%Sn alloy:

e To study the mesh size influence, for simplicity the meshes described in Table 5-2 are
used. In the computation with adaptive remeshing, the same parameters as those for Sn-
5%Pb aloy are used. The time step is equal to 0.1 s, being the same value as that in the
computation of Ahmad et al. [1998]. The full coupling computations have been carried
out. As converged resolutions have been achieved within 10 iterations for the Sn-5%Pb
dloy, this time the maximum number of iterations is limited to 10. The criteria to
terminate the iterations are the same as defined for the Sn-5%Pb aloy, being 10* for
coupling the energy, solute and momentum equations.

* To study the time step influence, three time steps, being 0.1 s, 0.05 s and 0.025 s, are
used. The fixed mesh Il is adopted (referring to Table 5-2). We compare the results
obtained by the full coupling approach with one iteration.

» To study the influence of coupling iterations within each time step, we compare the results
obtained with and without iterations, using the fixed Mesh Il and the time step 0.1 s.

* To compare the results obtained by the full coupling approach, the computation has been
done with the no-coupling approach, using the fixed Mesh Il and thetime step Ar =0.15 .

5.3.2 Mesh size influence

As it has been presented in section 5.1, the effects of solute and temperature on the liquid
density are now opposite, leading to possibly more complex flow, resulting in some difficulties in
the computation. In particular, at the beginning of solidification the convergence needs more than
10 iterations, but we skip out after 10 iterations. Figure 5-16 shows the results obtained with
different meshes.

We have also computed this case with SOLID, using the same parameters as described in
Table 5-1. A structured 50x40 element mesh is used. This time the mesh is progressively refined
near the top wall, because there exists the tendency to the formation of a liquid channel. The results
of CALCOSOFT from Ahmad et al. [1998] are also presented in Figure 5-16. Comparing the
different results, it can be observed that the predictions of R2SOL and SOLID are very close: the
shape of the contours of liquid fraction and concentration are similar, and their positions coincide.
At the top of cavity the tendency to form a segregated channel appears in the results of R2SOL and
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SOLID. Comparing the segregation patterns obtained using a coarse mesh and a fine adaptive mesh
in Figure 5-16 a) and Figure 5-16 b), we notice that steep gradients occurring at the top can be
better captured by mesh refinement.

gat=50s

d) 50x40 structured mesh used
in SOLID computation

e

—
ok B Noso
| n
a /
07}1‘ l ’f
N f

e) 50x40 structured uniform mesh used in CALCOSOFT
computation, from Ahmad ef al [1998]

Figure 5-16 The fully coupled resolutions for the Pb-48%Sn alloy, showing the mesh influence.
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5.3.3 Time step influence

The test for time step influence has been performed using different time steps (being 0.025 s,
0.05 s and 0.1 5) on the same Mesh Il. The results obtained with the full coupling resolutions (with
only oneiteration in each time step) are shown in Figure 5-17.

grat=50s Awlwg et t =400 s

a) Ar=0.025s

c)Ar=0.1s

Figure 5-17 Fully coupled one iteration resolutions for the Pb-48%Sn alloy, showing the time step influence

Looking at Figure 5-17 @) and b), only small differences can be found in the results calculated
with time steps 0.025 s and 0.05 s. In addition, these results computed with only one iteration are
very close to the full coupling results shown in Figure 5-16 b), indicating that the time step, Ar =
0.05 s, seems sufficiently small. Comparing Figure 5-17 @ and b) with c), there are some
differences, a stronger tendency to the formation of freckles appearing in Figure 5-17 a) and b) than
in Figure 5-17 c). Once again, we observe that smaller time steps favor the prediction of freckles.

5.3.4 Influence of coupling iterations within each time step

Let us compare the results obtained with and without iterations. The computational results
obtained with Mesh Il and the time step A7 = 0.1 s, are shown in Figure 5-18. As already noticed in
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the results of the Sn-5%Pb aloy, the prediction of freckles is somewhat sensitive to coupling
iterations within each time step. The tendency to form freckles at the top of the cavity appearing in
Figure 5-18 @) is stronger than that in Figure 5-18 b).

(w - wo)lwo at t =400 s

b) one iteration resolutions (without iteration)

Figure 5-18 Comparison between fully coupled and one iteration resolutions

5.3.5 No-coupling resolutions

We have aso ssimulated the formation of macrosegregation in the Pb-48%Sn aloy, using the
no-coupling approach and without accounting for the enrichment of solute in the liquid pool. The
map of liquid fraction at 50 s and the segregation pattern at 400 s are presented in Figure 5-19.
Comparing with the results obtained by the full coupling approach in Figure 5-16 b), one observe
that the segregation patterns predicted by the no-coupling approach are not that far from those in
Figure 5-16 b); but great differences appear in the distribution of liquid fraction.

a)gar=50s | b) (w - wo)lwg at t =400 s
Figure 5-19 Results obtained by the no-coupling approach using the Mesh Il, At=0.1 s
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5.3.6 Confrontation with experiments

A guantitative comparison between numerical and experimental results is shown in Figure 5-
20, for which the concentration profiles in different sections after complete solidification are
plotted. In the R2SOL and SOLID computations, the full coupling approaches are used, and the
same computational parameters are applied. Measurements and numerical predictions are in rather
good agreement, except in the top section, where the variations are important (as well as the
measurement inaccuracy, particularly because of specimen deformation (Ahmad et al. [1998]).
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Figure 5-20 Profiles of w—w, (%) after solidification. Measurements and computational results obtained by
R2SOL and SOLID using the full coupling approach with time step 0.1 s. These profiles correspond to
various heights of the cavity: a) 5 mm, b) 25 mm, c) 35 mm and d) 55 mm.

5.3.7 Concluding remarks

The numerical models presented in chapter 3 have been applied to the computation of
macrosegregation in the Sn-5%Pb and Pb-48%Sn alloys. In the first aloy, the therma and solutal
convections are in the same direction, leading to a strong tendency to the formation of freckles.
While in the second aloy, the effects of thermal and solutal gradients on the liquid density are
opposite, but the last one dominates the fluid flow, and this aloy also exhibits a strong tendency to
the formation of macrosegregation.

From the tests performed, we can conclude some points for the computation of
macrosegregation as follows:
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» The full coupling and no-coupling approaches have been validated by the benchmark test of
Hebditch and Hunt. Since the thermal and solutal effects on solidification have been taken
into account in the first approach (full coupling), it is able to predict the formation of
segregated channels and freckles. While the global solute transport in the solidification has
been treated by the second approach, leading to the prediction of the main spatial trends of
macrosegregation.

» The computational tests for the two alloys show that the mesh size and time step influence
the results. The computation with a coarse mesh and a large time step can not capture the
localisations leading to segregated channels. Thus, in order to predict them, sufficient fine
meshes and small time steps should be applied.

» Regarding the coupling itself, it appears that performing an iterative fully coupled resolution
is desirable for the prediction of segregated channels. However, we have noted that they can
be predicted by the one iteration resolution provided that an adaptive fine mesh and a
smaller time step are used.

5.4 Modelling of freckles

“Freckle” in upward directional solidification of Ni-base superalloy turbine blades is a general
cause of rejection. It has been reported that 40% of directional solidified blades are lost during
casting (Frueh et al. [2002]), a blade that is rejected because of a casting defect, represents a loss of
49% when compared to overall production costs.

Motivated by industrial applications, researchers have investigated freckles for 30 years.
Experiments with nonmetallic transparent systems have clearly shown that freckles are a direct
consequence of upward liquid jets that emanate from the mushy zone (Copley et al. [1970]). During
upward directional solidification with a positive temperature gradient, the liquid in the mushy zone
may become instable due to chemical segregation. The buoyancy-driven convection is responsible
for the formation of freckles. Since the solute diffusion is much lower than the thermal diffusion,
the segregated liquid retains its composition as it flows upward through the mush into regions of
higher temperature. There, the liquid enriched in solute elements can locally delay the growth of
dendrites or remelt the solid, so that channels form in the mushy zone. Experiments with Pb-Sn
alloys also show freckles formed by the same mechanism (Sarazin and Hellawell [1988]).

Considerable progress in numerical modeling of freckles has been achieved. Bennon and
Incropera [1987B] have predicted the segregated channels in NH4CIl-HO system. Felicelli et al.
[1991] have simulated the formation of freckles in Pb-10%Sn alloys, following the experiments of
Sarazin and Hellawell [1988]. Recently, several papers on the modeling of freckles (Felicelli ef al.
[1998], Frueh et al. [2002], Guo and Beckermann [2003]) have been published. These studies show
that in order to predict freckles the mesh size should be sufficiently fine, being of the order of 0.1
mm.

Using a local refinement technique with non-confirming meshes, Kidmpfer [2002] has
simulated the formation of freckles in Pb-10%Sn alloys. The computation is based on the
experimental study of Sarazin and Hellawell [1988] and the numerical modeling of Felicelli ef al.
[1991]. We have repeated the same computation. In this section, we present the numerical setup and
our results.
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5.4.1 Numerical setup
» Description of the problem

Felicdli er al. [1991] have simulated freckles in upward directiona solidification of Pb-
10%Sn alloy. In Felicelli’s computation, a 2-dimensional domain of 5 mm in width and 10 mm in
height is considered. The thermal conditions for the directional solidification are as follows: the
side walls are insulated, and a vertical gradient of temperature,07/0z=G , is imposed at the top
boundary. At the bottom a time-dependant boundary condition, 7" =7, + Tt, is used, where T, is a
reference temperature and 7 is the cooling rate. The thermal parameters 7, 0> T and G are selected
from the experiments of Sarazin and Hellawell [1988].

Following Felicelli ef al. [1991], Kampfer has slightly changed the computation conditions to
simulate the formation of freckles:

1) At the bottom, heat is extracted with a heat exchange coefficient of 20 W.m2K™ and an
external temperature of 25°C. The reason to change the boundary condition is that: in the finite
element code CALCOSOFT used by Kampfer, the enthalpy is chosen as the primary unknown, and
it is impossible to associate a unique enthalpy with each temperature during solidification. As
shown in Figure 5-21, an approximate cooling rate of 7'=—0.015°C/s at the bottom boundary can
be obtained using the heat exchange data proposed by Kédmpfer. This cooling rate is comparable
with that used by Felicelli, being 7=-0.0167°C /s.

2) The mushy zone is modeled as an isotropic porous medium, its permeability is given by the
Carman-Kozeny relation (3-1). In Felicelli et al. [1991], the mushy zone is considered as an
anisotropic medium.
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Figure 5-21 Temperature evolution at the center of the bottom wall.

Since the macrosegregation model in the present work is very close to that of Kampfer
[2002], we have adopted the same conditions. A computational domain of 30x50 mm? is
considered, compared to 5 x10 mm? used by Felicelli. The initial temperature field is linear in the
vertical direction, 304°C at the bottom and 309°C at the top. During the upward solidification, a
heat flux of 100 W/m? is imposed at the top surface, whereas heat is extracted at the bottom. We
note that the thermal gradient in Kidmpfer’s work, being 0.1°C /mm, is smaller than that in Felicelli
et al. [1991], being 1°C /mm, which could increase the tendency to freckles.
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For the fluid flow, no-slip boundary conditions are imposed at the bottom and the lateral
walls, while at the top an open cavity is simulated: the horizontal velocity component isimposed to
be zero, v =0, no condition on the vertical velocity component is prescribed.

The physical properties of the Pb-10%Sn aloy and the computational parameters are given in
Table 5-4, which have been used by Kampfer [2002].

Table 5-4 The physical properties and the computational parameters used for the freckles simulation

Phase diagram data
Nominal mass fraction, w, wt.pct 10.0
Melting temperature, 7', of the pure substance °C 327.5
Eutectic temperature, 7, °C 183.0
Liquidus slope, m °C.(wt.pct)™ -2.334
Partition coefficient, k 0.307
Eutectic mass fraction, w,,, wt.pct 61.9
Thermal data
Thermal conductivity, A W.mtK™' 18.2
Specific heat, ¢, Jkg' K™ 167.0
Initial temperature 7, , linear °C 304 at the bottom
309 at the top
Latent heat, L Tkgt 26000
Thermal condition at bottom
Heat transfer coefficient, A W.m?K™* 20
External temperature, 7, °C 25
Thermal condition at top
Heat flux, g W.m? 100
Other characteristics
Reference density, 0, kg.m” 10100
Reference temperature, 7, °C 304
Thermal expansion coefficient, [, K* 1.2x10"
Solutal expansion coefficient, 3, (we.pet)* 5.15%10°
Dynamic viscosity, Pa.s 2.4947x10°
Secondary dendrite arm spacing, A, m 40x10°®
Calculation parameters
Time step S 1.0
Gravity, g” m.s” 9.81
Diffusion coefficient in liquid, & m?.s? 3x107°
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» Computational test cases

In Kidmpfer’s [2002] work, firstly, as a reference computation, a structured mesh with 30x40
elements was used. As expected, this simulation was not able to predict correctly the formation of
freckles, as shown in Figure 5-22 (since we have not gotten the original paper from Kéimpfer, the
photocopy of the picture is not clear).
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; {4 Fraction of solid

03

7
024
021
oe
B ——" 018
= e i SREEE 052
! i : e 008
SRE 2 VA ST T T L
= i __W_ = I e
—» DOB2003763 —a 0.003732161 — Q007280371 —» DODS135547 u
R R -3
max. velocity 2. x 10 (m/s) 3.7x10° 73x10° 5.1x10

Figure 5-22 Results obtained by CALCOSOFT using a 30x40 structured mesh, from Kampfer [2002].
Fraction of solid from 0 to 0.3, and the velocity fields together with the maximum velocity for t = 60, 90, 120
and 140 s respectively. The last figure, for t = 140 s, shows the tendency to the formation of freckles at the

center and near the side walls.

Secondly, starting from time ¢ = 60 s, the coarse structured mesh was refined by a factor of 2
in the critical mushy zone near the solidification front, the fine mesh sizes in the two directions
being 0.25 mm x 0.31 mm respectively. Figure 2-5 in section 2.1.3 shows the mesh at 7 = 125 s,
being structured but refined. With such a mesh refinement, freckles have been predicted as shown

in Figure 5-23.
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Figure 5-23 Freckles simulated by CALCOSOFT using a local refinement technique with non conforming
meshes, from Kampfer [2002]. Fraction of solid from 0 to 0.3, the velocity fields together with the maximum
velocity for £ = 90, 120, 125 and 140 s respectively.
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Compared to the work of Kédmpfer, three meshes are considered in the present study, as
shown in Figure 5-24. The first mesh is a structured and symmetric mesh with 32x40 elements, this
mesh has a characteristic size comparable to the coarse mesh used by Kdmpfer. The second mesh is
non-structured, its size being 1 mm and comparable to the first one. The last mesh is an adaptive
mesh: for the mushy zone close to the liquidus isotherm (where 0.95<g,<1.0), fine and uniform
elements are used, their size being 0.25 mm. Near the boundaries fine elements are also used.
Wheras coarse elements are used in the bulk liquid, the size being 1 mm. Unlike Kdmpfer’s
computation, in our computation the mesh adaptation (introduced in chapter 4) has been applied
since the beginning of computation.
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a) structured mesh b) non-structured mesh c¢) adaptive mesh

Figure 5-24 Meshes used in the simulation of freckles

The full coupling computations have been carried out with three meshes. The maximum
number of iterations is limited to 30. The criteria to terminate the iterations are the same as in the
tests of Hebditch and Hunt (10™). Firstly, we simply reproduce the Kdmpfer’s computation using
the structured coarse mesh. Then, the second computation is performed with the non-structured
coarse mesh, the influence of non-structured mesh is examined. Finally, the last computation with
the mesh adaptation is run, aiming at showing the ability to capture freckles.

5.4.2 Results

Figure 5-25 shows the results obtained with the coarse structured mesh (see Figure 5-24 a)).
Comparing with the results obtained by Kdmpfer in Figure 5-22, the liquid fraction and the velocity
field are presented for t = 30, 60, 90, 120 and 140 s respectively. It is interesting to note that the
maximum velocities have different orders of magnitude, being from 10 to 10 (m/s) at different
times. The development of a liquid jet at the center can be shown in the simulation with R2SOL.
That is not the case in the prediction of CALCOSOFT, as shown in Figure 5-22, where the
maximum velocity being of the same order at different times.
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Figure 5-25 Freckles simulated by R2SOL using the coarse structured mesh: fraction of liquid and the
velocity field at t = 30, 60, 90, 120 and 140 s respectively

vmax = 2.0 x 10”3 (m/s) 3.8x10°

Figure 5-26 Freckles simulated by R2SOL using the coarse non-structured mesh

Figure 5-26 shows the results obtained with the coarse non-structured mesh (seeing Figure 5-
24 b)). Comparing with Figure 5-25, it can be seen that the solidification front predicted using the
non-structured mesh is more irregular. It seems that numerical perturbations resulting from the
coarse non-structured mesh induce the instabilities of liquid, leading to a strong tendency to the
formation of afreckle.

The freckles predicted by R2SOL using the adaptive mesh are shown in Figure 5-27. We
present the isolines of liquid fraction and the velocity field at + = 90, 120, 130 and 140 s
respectively. The instabilities near the solidification front appear at 120 s, leading to two freckles
formed at 140 s. The segregated concentration fields together with the isolines of liquid fraction at ¢
= 130, 140 and 165 s are shown in Figure 5-28. Clearly, one can see the development of frecklesin
these figures. For details, a zoom into the region where a freckle has been formed is presented in
Figure 5-29. The ability to capture the freckling phenomenais here clearly demonstrated.
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Figure 5-27 Freckles simulated by R2SOL using an adaptive mesh: liquid jets near the solidification front
a)t=130s

b)t=140s c)t=165s
Cnoy-cO 1 Chog=c0: Cmoy-c0 1
128 121482

00811367

121432
101314
00603583

0080953

oa07e12 os07e1s
00208035 0208035

000425801 o004zseze
-00197519 -ome7sts
-0038529% 003992396
~0.0601073

s
yesrssns .
o neotgd

00811366
0.0809583

onaorenz
00206035
nnnnnnnnn 1
__amsrsis
-00395286
-00601073

max=0211987
min =-0.118018

g =098
g,=096

Wi = 10.069 %

Wi = 10.12 % Wi = 10.21 %
<W>nin= 9.977 %

<W>pin = 9.94% <W>nin = 9.88 %

Figure 5-28 Freckles simulated by R2SOL using an adaptive mesh: segregated channels, the positive

segregation regions presented in red, the negative segregation regions in blue. A zoom for the region in the
red box, at t = 140 s, is presented in Figure 5-29

Figure 5-29 A zoom into a region where a freckle has been predicted by the adaptive mesh: on the left panel,
the velocity vectors indicate the upward liquid jet. The mesh for the prediction of a freckle is presented in the

right. As a background, the concentration field (deviation to the nominal concentration <w>-w0) is shown in
colours, the solidification front is presented with the isolines of liquid fraction.

Comparing Figure 5-27 and Figure 5-23, we note that the maximum velocity calculated by
R2SOL, at ¢ = 140 s being 3.8x107 (m/s), is lower than that obtained by Kéampfer, being 2.0x107
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(m/s); consequently, the intensity of segregation calculated by R2SOL is lower. At r = 140 s, the
maximum and minimum values of the average concentration obtained by R2SOL are 10.12% and
9.94% respectively, compared to 11.05% and 9.83% calculated by CALCOSOFT.

5.4.3 Discussion

Observing the results calculated with the coarse structured and non-structured meshes, one
can find that the fluid flow in the mushy zone is not correctly predicted, although the tendency to
freckles has been revealed. Comparing Figure 5-25 with Figure 5-26, we note that the non-
structured coarse mesh introduces strong perturbations due to numerical reasons, leading to a strong
tendency to freckles.

The prediction of freckles can be improved with adaptive remeshing, seeing Figure 5-29. In
the present work, the mesh size near the solidification front is 0.25 mm, which may be not
sufficiently fine. According to recent studies (Frueh et al. [2002], Guo and Beckermann [2003]), in
order to accurately simulate the formation of freckles, the mesh size in the horizontal direction
should be of the order of the primary dendrite spacing Aj, being about 100 pum; in the vertical
direction, the size should be comparable to D/R, being about 40 um, where D is the diffusivity of
solute element and R is the moving velocity of solidification front. Beyond the present work, it
would be necessary to investigate more precisely the sensitivity of such results to time step, mesh
size and remeshing parameters

5.5 Application to asteel ingot

For simplicity, we considered the solidification of a binary carbon steel aloy in a cylindrical
ingot, which is similar to the octogonal 3.3 ton ingots produced by AUBERT & DUVAL. The
geometry of the solidification system is shown in Figure 5-30, the weight of the studied ingot is
3.31 tons.

The mesh sizes for the mold and refractory are 15 and 5 (mm) respectively, and anisotropic
adaptive meshes are used in the domain of ingot. The objective mesh size in the first principal
direction is defined as follows:

* in the mushy zone, at the beginning of computation the minimum mesh size is 1 mm and it
can be increased to 3 mm at the end of computation for saving CPU time, the maximum mesh
sizeis3 mm;

 intheliquid zone, the mesh sizeisin the range 1 to10 mm;

* in the solid zone, the mesh size is in the range 10 to 30 mm. A ratio factor of 5 is used to
determine the objective mesh size in the second principal direction.

The detail of mesh adaptation can be referred to chapter 4.
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Refr/actory

Section C

Figure 5-30 Schemetic of the geometry of ingot and mold (axisymmetric model)

We assume that the top surface of ingot is isolated. The heat transfer coefficients between
ingot and mold, ingot and refractory are constant, being 500 W.m2.K ™. The heat transfer coefficient
of 100 W.m2K™ and the external temperature of 50 °C are used for heat exchange between mold
and air, refractory and air. The physical properties of ingot, mold and refractory and calculation
parameters are given in Table 5-5 and Table 5-6.
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Table 5-5 Physical properties and calculation parameters of the steel ingot

Phase diagram data

Nominal mass fraction, w, wt.pct 0.38
Melting temperature, 7', °C 1538
Eutectic temperature, 7, , °C 1338
Liquidus slope, m °C.wt.pct™ -80
Partition coefficient, k 0.18
Eutectic mass fraction, w,,, wt.pct 2.5
Thermal data

Thermal conductivity, A W.m™ K? 35
Specific heat, ¢, Tkg™. K* 715
Latent heat, L Tkg™ 0.309x10°
Other characteristics

Reference volumetric mass, 0, Kg.m® 7060
Reference temperature, 7' °C 1522
Thermal expansion coefficient, 3, K™ 8.85x107°
Solutal expansion coefficient, 3, wt.pct™ 4.1643x10
Dynamic viscosity, U Pa.s 0.42x107
Secondary dendrite arm spacing, A, m 1.0x10™
Calculation parameters

Initial temperature °C 1525
Time step s 0.1
Heat transfer coefficient, A W.m? K 500
between ingot/mold, ingot/refractory

Gravity, g m.s” 9.81
Diffusion coefficient in liquid, D m’s™ 1x10°°

Table 5-6 Physical properties and calculation parameters of the mold and refractory

Thermal data Mold Refractory
Thermal conductivity, A W.m™ K? 30 0.7
Specific heat, ¢, Tkgt K* 540 1050
Volumetric mass, PO, Kgm™® 7000 1300
Calculation parameters

Initial temperature °C 250 250
Heat transfer coefficient, A W.m?. K* 100 100
between mold/air, refractory/air

External temperature, T °C 50 50

Initially, it is assumed that temperature fields in the ingot, mold and refractor are uniform, and
that there is a homogeneous concentration field in the ingot, the values being given in Table 5-5 and
Table 5-6. For fluid flow, zero initial velocity is applied, no-slip boundary conditions are imposed
where the liquid is in contact with the mold and refractory. At the top, the vertical velocity
component is imposed to be zero, no condition on the horizontal velocity component is prescribed.
The time step varies from 0.05 s at the beginning of computation to 0.2 s at the end. The full
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coupling resolution reduced to one iteration has been done. The segregated concentration maps are
shown in Figures from Figure 5-31 to Figure 5-33.
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Figure 5-31 The liquid fraction, velocity and segregated concentration (w - wy )% fields at f = 3 min. A zoom in
the bottom region is presented in b) and c). The velocity vectors are plotted in b), and the liquid fraction field
and the mesh are shown in c).
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Figure 5-32 The liquid fraction, velocity and segregated concentration (w - wy )% fields at t = 1 hr. Segregated
concentration field (w - w0 )% and the isolines of liquid fraction are shown in a), a zoom to the top region is
presented in b) and c). The velocity vectors are plotted in b), showing the tendency to the “A-type”
segregated channels, and the liquid fraction field is shown in c¢) with the mesh. It is interesting to observe a
positive segregation zone at the bottom of the ingot and near the axis, this is caused by a freckle at the initial
stage.
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Figure 5-33 The segregated concentration (w - w, )% field after complete solidification. a) result of R2SOL at
t = 2 hr 50 min, the maximum and minimum deviations to the nominal concentration are 0.934 and —-0.075
(%) respectively. b) result of SOLID, the maximum and minimum values are 0.146 and —0.026 (%)
respectively. The mesh used in SOLID consists of 3900 nodes, 39 nodes in the radial direction, and 100
nodes in the vertical direction.

We have re-computed the solidification of the test ingot with SOLID, using full coupling
approach with only one iteration; however, the mesh is fixed and not adapted. The final segregated
map after complete solidification is shown in Figure 5-33 b), compared with the result of R2SOL in
Figure 5-33 @). At the top of ingot, oscillation of concentration appears in Figure 5-33 b), indicating
the tendency to the formation of segregated channels.

A quantitative comparision of segregation intensity along the central axis is given by Figure
5- 34. It can be seen that the shapes of the two curves are similar, but the variation of concentration
predicted by R2SOL is greater than that of SOLID. Profiles of w—w, (%) in three horizontal
sections, at %, ¥2 and % heights of the ingot as shown in Figure 5-30, are presented in Figure 5- 35.
It can be seen that the segregation intensity along horizontal sections is not as severe as along the
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axis. There are some differences between the predictions of R2SOL and SOLID. For the result of
SOLID, near the center line slightly positive segregation is observed, near the surface of ingot
negative segregation is observed, which isjust opposite to the result of R2SOL.
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Remark

In the computation of R2SOL, the maximum number of nodes in the domain of ingot is
25816, and the maximum number of elements is 50890. The computation has taken about 3 weeks
on aPC.

At the beginning of solidification, the temperature-induced convection dominates the fluid
flow. The maximum downward velocity is observed at 33 s, being 83 mm/s, the reference Reynolds
number for such afluid flow is given by:

_|ML _  0.083x06
ulp  0.42x10%/7060

x10*

and taking the superheat temperature as the temperature difference (17.4°C), the reference Rayleigh
number is given by:

_P?|d BrATL’c,  70602x9.8x8.85x10°° x17.4%0.6° x 715
U 0.42x10%x35

Ra [17.9x10°
indicating that turbulent flow might appear. However the computation has been done with the
laminar assumption.

Since the present macrosegregation model does not account for the solid movement and the
growth of equiaxed grains, the negative segregation zone at the bottom of ingot cannot be predicted
(cf. section 1.2.3). There are also some differences in the boundary and initial conditions between
the test case and the industrial production. Despite these approximations, this case could consist in a
valuable benchmark test to compare different simulation codes.

Regarding the difference between computations of R2SOL and SOLID, a further investigation
is needed to check the influence of mesh size.
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Chapter 6

Thermomechanical stress-strain modeling

Modélisation thermomécanique — Résumé en francais

A la suite des travaux de Jaouen et Bellet dans le code THERCAST au Cemef, un modele
thermo-mécanique similaire a été implanté dans le logiciel R2SOL. Le matériau est alors considéré
comme newtonien au-dessus du liquidus, comme viscoplastique entre le liquidus et une température
critique Tc, et comme élasto-viscoplastique en-dessous de Tc. Le modele est présenté a la section
6.1. Dans ce travail, nous avons notamment étendu la formulation, initialement en déformation
plane, au cas axisymétrique (section 6.2.3). Le modele est complété par une formulation eulérienne-
lagrangienne (section 6.2.4). Les régions solides sont alors traitées en formulation lagrangienne, le
maillage suivant les déformations de la matiere, de fagon a bien représenter la formation des lames
d’air. Les régions liquides et pateuses sont quant a elles traitées en approche eulérienne-
lagrangienne, ce qui permet de modéliser la convection thermique et 1’abaissement de la surface

libre liquide, conséquence du retrait et ainsi de modéliser la formation des retassures primaires.

Quelques test de validation et tests comparatifs sont alors présentés (sections 6.3 et 6.4.1). La
section 6.4.2 illustre le défaut majeur des analyses de formation de retassure qui affectent en totalité
le changement de volume dii au retrait a la formation des retassures primaires (comme évoqué dans
la revue bibliographique du chapitre 2). Pour ce faire on compare deux calculs pour une méme
simulation de refroidissement d’un lingot d’acier : un calcul réalisé en condition de contact
unilatéral, c’est-a-dire en autorisant le formation de lames d’air entre piece et moule et I’autre en
condition de contact bilatéral, c’est-a-dire sans autoriser le décollement et donc la formation de
lame d’air. La simulation met clairement en évidence la profondeur largement surestimée de la
retassure primaire dans le second cas.
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Chapter 6

Thermomechanical stress-strain modeling

In this chapter, we focus on the ssimulation of thermo-mechanics during the solidification of
castings. A thermomechanical model has been implemented in the three dimensional finite element
code THERCAST® (Jaouen [1998]), for stress strain calculations during the solidification of
castings. The goal of the present work is to implement this model in the two-dimensional code
R2SOL, and to predict the shrinkage pipe, air gap, strains and stresses during the solidification of
ingots. For the purpose, we have implemented an elastic-viscoplastic constitutive behaviour, using
axisymmetrical coordinates system. We assume that the mold is rigid (non-deformable), the thermal
stresses and strains in the solid phase can be then modeled.

At the beginning of this chapter, we present the thermomechanical model in section 6.1. The
resolution of mechanics is introduced in section 6.2, in which we focus on the implementation of
thermo-elastic-viscoplastic (THEVP) model in R2SOL. Validation tests are shown in section 6.3,
followed by an application to industrial ingots in section 6.4.

6.1 Therma mechanical model

6.1.1 The mechanical equilibrium

Consider a part solidified in a rigid mold, i.e., we consider only the mechanical problem of
the solidifying part. We assume that the mold is initially full of the liquid alloy at rest and in contact
with the mold. During the solidification of the part, the mechanical equilibrium is governed by the
momentum equation:

py=Ulo+ g (6-1)

where g is the gravity; vy is the acceleration vector. ¢ is the Cauchy stress tensor, the stress tensor is
generally decomposed into the spherical, pl, and deviatoric, s, components as follows:

(9 :—pI+S (6_2)

LetQbe the domain occupied by the part, its boundary can be specified by the two
regions 0Q,, and 0Q . The regiondQ , is the part of boundary facing the mold, and 0Q ,is the free
surface, which is not facing the mold. The mechanical boundary conditions are expressed as
follows:

* Unilateral contact condition on the boundary0Q  , that is:
0 enm<0

U

Ho nm)3=0
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wheren isthe local outward unit normal to the part; o isthelocal airgap width, being positive when
the airgap exists effectively. The contact can be treated by a penalty method (Rappaz et al. [2002]),
we then have:

T=on=-yx, <(V_Vmo[d)m>n (6-4)

In the condition (6-4), x, is the pendty coefficient; the bracket, ( > denotes the following
notation:

<x>=xif x=0 and <x>=0if x<0 (6-5)

* Bilateral contact condition

In contrast to the unilateral contact, the so-called “bilateral contact condition” can be

alternatively applied to the boundarydQ  , which is the case when 0=0, being always in contact

with the mold. The penalty formulation can be written as:

T=6n=-x,((v-v,,,)Hd)n (6-6)

The tangential friction effects between part and mold are neglected.
* Free surface boundary 0Q ,
The atmospheric pressure P, (or a prescribed pressure) is applied, that is:

arm

6.1.2 Constitutive equations

In a foundry process, a part is usually cooled over a large range of temperature, and the
metallic material undergoes liquid-solid phase change. Thereby, the material behavior is quite
changing and temperature-dependant. Following Jaouen [1998]), a thermo-viscoplastic (THVP)
model is used to describe the behavior of the liquid and mushy states, and a small strains thermo-
elastic-viscoplastic (THEVP) model is used for the solid (seeing Figure 1-5).

The rate of deformation of the metal¢ is decomposed into a viscoplastic part¢”, an elastic
part £ and a thermal part £” as follows:

g=g" +g9 +¢" (6-8)
One can decompose the deformation rate tensor into spherical and deviatoric parts. Since &”
and ¢" are purely spherical and purely deviatoric tensors respectively, one writes:

Oe=é” +é*

%r(é)ZTr(éel)+Tr(é'h) (6-9)

where e denotes the deviatoric deformation rate tensor.
* Viscoplastic deformation

We assume that the viscoplastic behavior of metal obeys the law of Norton-Hoff, which
writes:
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&7 = s with A=

(6-10)

1
\/§ Ueq _0-5‘ m
20, \ K(T)/3

where, K(7) is the viscoplastic consistency of the material, depending on the temperature 7. m(7)
the strain rate sensitivity coefficient. The brackets present the positive convention defined by

equation (6-5). o, is the stress threshold, under which the behavior of the metal is elastic. The
equivaent stress of Von Miseso,,, is defined by:

3.
Jeq - ES .S (6'11)

The equivalent one-dimensional relation to (6-10) can then be obtained:

m(7')+1;m o
0,,=0 +K(T)3" & (6-12)
where £ isthe equivalent viscoplastic strain rate, and is given by:
EY (6-13)

In R2SOL, the following model for strain hardening is available Costes [2004]:

1

E-:v]? —_ '\/§ / 0-6(1 _O-S >m(T)s

= 6-14
20, \K(T) "3 (6-14)
* FElastic deformation
The elastic behavior can be described by Hooke’s law:
G:Deléel — E te] + EV Tl”(t'le] )I 6 15
A+v) (1-2v)(1+v) (6-15)

where D is the elasticity tensor of 4" order, depending on the Young modulus, E, and the Poisson
coefficient, v. The Hooke’s law can also be written in the following form:

£'=(D") e (6-16)
If the Young modulus and the Poisson coefficient vary as temperature changes, taking account
for the variation in physical properties, equation (6-16) then becomes:
a Del -1
()"

E-;el :(Del)—16+T (6—17)

Equation (6-17) accounts for the influence of coupling effect in the thermal mechanical problems.
Consequently, the deviatoric strain rate é” and its associated spherical part 7r(¢“) are expressed as
follows:
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=" with  p=
= * Tou 2/,1 T M)
) 6-18
Orr(e)= - £+T 12 a)(p with x= £ ( )
= )( x-oT 3(1-2v)

where pis Lamé coefficient, also called shear modulus. y is the bulk modulus.

From equation (6-18), one obtains the spherical and deviatoric components of the stress rate:

16,u
_2 - el +T
He ,uaT

19 X, (6-19)
)(aT

E
L]
O p=—xTr(E")+T
H

e Thermal deformation

The thermal deformation is decomposed into two parts, the linear thermal expansion and
solidification shrinkage.

ity g
=all+og ATl (6-20)

where, T is the temperature rate, @ the thermal linear expansion coefficient. ¢ is the rate of massic
fraction of solid, and A&” the relative volume change from liquid to solid.

Remark

As it has been presented in general introduction, segregation is neglected in the computation
of deformation. Therefore, the liquidus and solidus temperatures are fixed. In order to compute the
solidification shrinkage, we define two densities, p,and p,, corresponding to the values at
liquidus and solidus temperature. During the solidification, the density of the liquid and solid
mixture is given by:

p=gp +tgp=g(p-p)+p (6-21)

where g and g, are the mass fraction of solid and mass fraction of liquid respectively. Then the
deformation due to solidification shrinkage can be defined by:

éth: i dp i d_pg-\l_ 1 ps pl g\,I: 1 p? pl I_ AgtrI 622
0 d 3pdg T3 p 2T, 3% (6-22)

The resolution of constitutive equations in THERCAST® has been presented by Jaouen
[1998] and Aliaga [2000]. In order to introduce our adaptations to the two dimensional problems, as
an example, in the following text we present the resolution of THEVP system.

6.1.3 Local resolution of constitutive equations

The method that deals with the small strains THEVP constitutive equations in THERCAST®
is summarized as follows.

Substituting equations (6-9) and (6-10) into equation (6-18), we obtain:
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D = op(e-A(s)s)+7 2%
% ,uaT
. L .10y
U p=-x(Tr(€)-3aT-g D" )+T—=-
Ep X(Tr(2) g,Ae") Xan

(6-23)

A general (6-type) time integration scheme is applied to discretize equation (6-23), leading

to:
['s,.—s, +1 ,U
———r= 92 +\€, 218+ + 1_9 2 a\€ _/]nsn n S,
D At /'lnl(nl 1 1) ( ) y( ) /,lAf
D pn+1 pn — 9 r _ r
D /Yn+1(Tr(8n+1) n+l gsn+1Ag ) (1 H)/Yn (]11/’(8 ) 3aT gsnAg ) _
o O (6-24)
D Xn+1_)(n
+
H XnAf pn

where the subscription » denotes the time increment, and Aris the time step. u,.,=u(7,,,),
X=X .,,). The parameter 8 takes its value in the range of 0 to 1, and 6=1is the implicit
scheme. Following the previous work in THERCAST®, the implicit scheme is used in R2SOL.

Within each time step [#, +A¢ ], knowing the initial state of stress and deformation at time
t,, S,,p,.¢,, and A , we assume that the deformation rate is constant in each element, and

n?

proposed that e, ,, (v, ,,) is known, then, the resolution of equation (6-24) can be done.

The second equation in (6-24) is linear, once the value of v, is known, p,,,can be computed
directly. Whereas, the first equation in (6-24) is nonlinear, where A ,, ands, ,, are the two unknowns.
In order to determine A ,,, the Von Mises criterion (6-11) is considered, we write:

n+l>

2 _ -
S48 41~ 50- (n+l’A£n+l) 0 with A“Sn+l g, +At€n+l (6_25)

Applying 8=1 to the first equation in (6-24), and after some computations, then we have:

— 2#11 +1Al‘é n+l + Gn +1s n

S . ]
" 1+ 2/’111+1At/]n+1 (6_26)

_/'1n+l

n+l

where G

Inserting equation (6-26) into equation (6-25), one can obtain the following nonlinear scalar
equation, which has a single unknown A .,

F(/]‘n+1):2/'ln+lAt0- (£n+1)/]n+1 g (€n+1)

eq

_\/5(2/'1”+1Atén+1 +Gn+lsn ):(2/'117+1Atén+1 +Gn+lsn ) (6_27)

We introduce a scalar Bj:
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3 : .
BO :\/E(ZylﬁlAterHl + Gn+1sn ):(Zﬂn+1Aten+l +Gn+1s n ) (6-28)

and considering the following relation:
L 2
g _§A 0-817 (6_29)

then, equation (6-27) can be written as:

3#n+1At§n+l +aeq (§n+l) _BO = 0 (6-30)

Remark

The scalar B, defined in equation (6-28) is the Von Mises equivalent stress associated with the
pure elastic estimation. If A ,,=0, i.e., ¢”=0and ¢ =¢. Then, equation (6-26) reduces to the pure
elastic estimation of s, .

In practice, if o, (€,)>B,, the deformation is purely elastic, the estimated vaue is the
resolution. If o, (£,)<B,, the deformation is elastic viscoplastic. It has been demonstrated (Simo
and Taylor [1985], Bellet et al. [1996]) that the nonlinear equation (6-30) has a unique resolution

for al the cases, A>0. The detail for the resolution of £,,, can be found in the thesis of Aliaga
[2000]. When £ ,,is obtained, A ,,is then deduced from equation (6-29). Finaly, s, ,, can be found
using equation (6-26).

The expression of the tangent modulus ds/d¢ which is necessary to express the tangent
matrix in the Newton-Raphson resolution (see next section) can be found in Appendix C.

6.2 Resolution of mechanics

6.2.1 Weak form and time discretization
A velocity/pressure P1+/P1 formulation is used to solve the mechanical problem.
We start from the equilibrium equation (6-1):

Ois-Op +pg—py =0 (6-31)
where the devi atqri c stress s can be determined by either the eastic-viscoplastic congtitutive
equation, s=s“”(A(e(v)),e(v)), or the viscoplastic equations=s" (dev(&( v))).

The constraint of incompressibility of the viscoplastic deformation can be expressed by:

Tr(") =Tr(&)-Tr(E")-Tr(E")

3(1-2v) .
i p

=0 + -3aT - ¢ Ae" =0 (6-32)

The weak form is applied to solve equations (6-31) and (6-32), then we have:
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Euv* Jﬁv” Eé*dQ—ipDE}*dQ—JTB’*dF —J:ngl’*dQ+£poyE'*dQ:O

N
0
1-2v)/E (6-33)
Ej z!:p (OR+0 EBP( oV) 307 —¢ As")dQ=0
0

The first equation is the weak form of the momentum equation. The second expresses the
incompressibility of the plastic deformation. The brackets in equation (6-33) alow the choice
between THEV P and THVP according to the temperature T¢ as shown in Figure 1-5.

In equation (6-33), 7 and ¢, are provided by the thermal resolution. The time derivatives of
pressure and vel ocity are approximated by implicit Euler backward scheme:

- 1 t_ =
p —E(p ) (6-34)

t _i 1 1=
Y=, t(v vi) (6-35)

where p'™and v~ denote the values associated with the particle at time ¢—A¢, which can be

computed by an upwind transport approach that will be presented in section 6.2.4.

Given the configuration Q occupied by the part at time ¢—At, the equations to be solved for
(v, p)', velocity and pressure fields at time ¢, can be expressed in the following way (for the sake of
clarity, we take the case of THEV P behaviour, in the sequel).

E] *_J:””(V )& dQ J:ptDE} dQ- J’T &'dr z[,o(T ey’ dQ+_!:,00—E!' dQ=0

= .. 301-2v) p'=p' o (6-36)
Lip” —Ip (O + -3aT - g A" )dQ=0

ERE £ At

6.2.2 P1+/P1 formulation

We have presented the mini-element P1+/P1 formulation for computing the Navier-Stokes
flow in section 3.6.1. Similarly, the weak form of equation (6-36) can be solved using the following
mini-element P1+/P1 formulation:

D * * * * * *
P (w):g dQ —[pUN dQ - [T dl —[pg¥ dQ v dQ=0
v [57 (0):(v)d0—f [T~ gty + [o,1(w)

Q

Hjb* -!:s” (w):&(b")dQ - -!:pD B dQ - J:,Og[B*dQ + J:poy(w)[B*dQ =0 (6-37)
Ej —J’ " (O + 3(1E2V) 307 - g A&")dQ=0

where the velocity field wis linear continuous, including additional degrees of freedom at the
3

center of element, w=v+b= ZN,,V” + N’B; the pressure is linear continuous, given by alinear
3

interpolation function, p=$ N, P".

n=
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Following the previous works of CEMEF (Menai [1995], Jaouen [1998], Aliaga [2000]), the
deviatoric stress tensor, s(A(é(w)),é(w)), can be decomposed into a non-linear part and a
complementary linear part, that is:

s(A(&(w)), &(w))=s' (A(&(v)), e(v)) +s" (A(&(v).&(b))

non—linear part linear part

(6-38)

The deviatoric stresstensor, s* (v) and s’ (b) can be computed using equation (6-26), leading to:

v s, . . 2 n+ Ate Vn+ +Gn+ Sv
S AV, ) (v, ) = 2Hs DVt ¥y

121, NA(V,,.,) (6-39)

L : 2u, . Ate(b L)

sh+ /'\ e ) & b ) - n+l : n+l
n 1( ( (Vn 1)) ( n 1)) 1+2/jn+lAt/] (Vn+1) (6_40)

b . . . . .
where s’ in equation (6-40) can be considered as a correction of the deviatoric stress tensor.

Taking the advantage of bubble properties (seeing section 3.6.1), we can simplify equation (6-
37), leading to:

[DV k[s (v):&(v')dQ {pDE} dQ J[TB' dr J:,Ogﬁf dQ +J:,Ooy(v+/£)l]' dQ=0

S]b 1[ (b):£(b")dQ lpD[B dQ -l',og[B dQ+£MdQ =0 (6-41)

Ej -[r (D[Gv+b)+3(1E2V) - 307 - §,Ae")dQ=0

Comparing with equation (3-129), the terms 2u&(v):¢(v') and 2ué(b):é(b” ) have been
replaced respectively by s"(v):&(v') and s’ (b):&(b"), which present the non-linear rheology
behaviour. Since equation (6-41) is non-linear, the Newton-Raphson method is used. As presented
in section 3.6.1, the system to be solved can be written in a matrix form:

O H" H” H"O0O®vVO O-R(V,B,P)O
O0Q D O O
%H”’) H"” H" g = TR"(V.B,P)[ (6-42)

0y Y HPEERE FR(V.BPE

In equation (6-41) a), neglecting the contribution of “bubble” component in the inertia term,
and neglecting the inertia contribution in the “bubble” equation (6-41) b), as it has been presented in
section 3.6.1, equation (6-42) can be written as:

OH" H” 0ovo_ D -R D

Gy ~ry ey Eeed Brvery aryRed @43

In each Newton-Raphson iteration, it is possible to compute the correction of solution, dV and
OP, and the velocity and pressure at each node v ,, (v, ,,=v, +ov) and p ., (p,,=p,+P).
Consequently, the stress and deformation can be obtained by the local resolution of constitutive
equations.
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6.2.3 Implementation of axisymmetric formulation

Compared with the incompressible Newtonian model for the liquid phase, the THEVP model
is more complicated. In this section we introduce the tangent modulus to treat the non-linear
rheology behaviour, and we show how the adaptation from 3D to 2D axisymmetry should be done.
We present the computation of A", which shows some differences between the axisymmetric
and plane cases.

Let us consider the rheology term in equation (6-41), which is expressed by:
R :’Q[sv(v):é:(v*)dQ =(s"(v):0Ov dQ (6-44)
In the axisymmetric case, for the degrees of freedom nk (node n, the K™ velocity component),

the residual vector R’ can be expressed by:

ON
Rl = ls u a—"ZWdrdz + lseg%N 0,1 2TFdrdz (6-45)

Y

where the indexes £ and j vary from 1 to 2. N is the interpolation function. Jis the Kronecker
function.

The Hessian matrix with respect to the degrees of freedom mi (node m, the I velocity
component, and / variesfrom 1to 2), H,,""" , isthen given by:
U oN U
H oy :aigs ,qg—” 27 drdz +Is99EN Oy 2TFdrdz[] (6-46)
ml x] Q r E

In order to compare with the plane strain case, the two terms in equation (6-46) are integrated
individually. Thefirst integration gives:

Os, O0& 0s,, 0&
e A?]‘?] ggh aNn 277 drdz +J’ A%1]‘.7 6869 aN
’ 0é, 0v, Ox, 20&, OV

I, rheol _

" 217 drd i
o z (6-47)

ml

Os
where the indexes g and 4 vary from 1 to 2. a—k’ denotes the components of the tangent modulus.
&
gh

The definition of the tangent modulus can be referred to the Appendix C. The first integration in
equation (6-47) provides the usua terms that need to be considered in the plane strain case, the
Osy; 0Osp,  Osy and Os,
08, 0¢,, 0%, 0%,
integration presents the additional terms for the axisymmetric case, the associated components
0s .,

corresponding components are as follows: . While the second

being Osyy and

€33 0%,

In addition, the second integration in equation (6-46) can be written as;

0& '
=[S T g omiraz+ [ 2 0 5, o (6-4)
aggh avml 566 avml
: : . . ., 0S50Sy, 0S4
equation (6-48) gives the additional terms associated with —=, —~and —=.
£, 0%, 0€ 5,
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Considering the deformation rates is a constant within each element, in the context of P1+/P1
formulation, only one Gaussian integration point is used to compute the term A+ .

Regarding the rheology term H""", the related code has been rewritten using the tangent
modulus. Since the rule for computing H "™ according to the constitutive equation is similar to
that of " ", we do not repest it.

Since the “bubble” interpolation function is defined on the three subtriangles (seeing sections
3.6.1 and 3.6.2), again, H”"”* is integrated over the three subtriangles of an element using the
three mid-edge integration points. We have written the code, carefully considering the additional
terms in the axisymmetric case. As it is avery technical task, we will not enter here into details.

6.2.4 ALE formulation

The pipe formation in ingots is characterized by the fluid flow and free surface. To simulate
this complicated problem, a purely Eulerian scheme (fixed mesh) is not satisfying, since it cannot
provide enough precision for the evolution of the free surfaces. The classical Lagrangian scheme
(convected mesh) would lead to mesh degeneracy in the liquid pools. Therefore, a specific arbitrary
Lagrangian-Eulerian scheme (ALE) is used in the liquid and the mushy zones (called “liquid-like”
zones), where the material behavior is Newtonian or viscoplastic. The Lagrangian scheme is used in
the solid zone, a Lagrangian-type mesh updating permitting to describe the movement of the
solidified shell. This is essential to treat the airgap opening between the mold and the ingot.

The ALE method is between the Lagrangian method (Vimsh = Vmar) and the Eulerian one (vinen =
0). The basic principle of the ALE method is to separate clearly the mesh velocity field viyng, from
the material velocity field vma. In this way it is possible to retain a good mesh quality even at large
material distortion. To simulate the mold filling process, the ALE formulation was initiated by
Gaston [1997] in R2SOL, and complemented by Bellet et al. [2004]. So, we will not discuss here
the details of the ALE formulation, but only the main lines of the formulation.

1) computation of the mesh velocity field ving;
2) accounting for the velocity difference v, - Vs, in energy and momentum equations;

3) determination of the areas of the computational domain that should be treated by the
Lagrangian and Lagrangian-Eulerian schemes.

e Computation of mesh velocity

The computation of vmgy consists in regularizing the position of nodes in order to minimize
the deformation of the mesh. Knowing the time step Az, the mesh velocity is defined by the relation:

t+0N . _t
X =X +Atvm>\‘h (6—49)

t+At

where x are the new locations of nodes. These new positions are determined by an iterative

procedure, which aims at positioning each node at the center of gravity of the set of its neighbors.
This is done under the constraint of conservation of material flux through the domain surface:

Vms n :Vmat n (6_50)

where n is the outward unit normal. This constraint is enforced by a local penalty technique.

e Treatment of advection terms
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Knowing the mesh velocity, it is now necessary to transport the nodal fields, for instance the
temperature 7. For each node, thisis done by:

0.7
T =T" o (6-51)

where the time derivative of 7" with respect to the grid, that is the rate of variation of the
temperature at a given node of the moving mesh, can be expressed as follows:
0.1 _dr_
or dt

(v, —-v )Or (6-52)

Once the heat transfer problem has been solved on the time increment, the total (material)
time derivative of the temperature is known at each node. After computation of v,,,; and v, the
updating of the temperature field can be obtained using equations (6-51) and (6-52), for which one
only requires the nodal temperature gradient. Using an upwind technique, this nodal gradient is
computed in the upstream el ement, according to the advection velocity v, - v..s; (See Figure 6-1).

In order to express the acceleration terms in the momentum equation, a transport of the
materia velocity field is necessary. In equation (6-36), the velocity v'™ is the materia velocity of
the particle at the previoustime level v'™% . Hence, after configuration updating, this requires a pure
transport of the velocity field. Thisis achieved by a similar scheme as that presented by equations
(6-51) and (6-52), but in which the material derivativeis taken equal to zero:

anal (XI+A’ ):V:nal (XI )_[ DV:H(J’ (XI )] (V:nal (X’ )_vah )A[ (6—53)

Referring to Figure 6-1, it can be seen that equation (6-53) is nothing but a first order spatial
development of the material velocity field in the upstream element associated with the nodal
positionx'.
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= THLE _ it
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® finite element nodes

O particle A

{» particle B

Figure 6-1 Updating of the location of a finite element node and subsequent identification of the upwind
element. The materialization of the trajectory of two material particles A and B helps in the interpretation of
(6-53), from Bellet ef al. [2004]

* Lagrangian and Eulerian-Lagrangian zones

Regarding now the global treatment of viscoplastic and elastic viscoplastic models, the idea
consists in defining the solidified regions as Lagrangian (convected mesh) and the liquid or mushy
ones as Eulerian-Lagrangian. Therefore each node is affected to one of the two classes, according to
thefollowing rule, asillustrated in Figure 6-2.

1) Each node belonging at least to one solid-like element (i.e., whose constitutive equation
has been chosen e astic-viscoplastic) is treated as Lagrangian (mesh velocity equals material
velocity).

2) All other nodes, which then belong to liquid-like elements only, are treated as Eulerian-
Lagrangian (mesh velocity calculated independently of the material velocity).
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liguid-like element °

(urely viscoplastic Eulerian-Lagrangian node

of Mewtonian)

.
D Lagrangian node

solid-like element
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1zotherm

Figure 6-2 Lagrangian and Eulerian-Lagrangian nodes, as determined by their belonging to solid-like and
liquid-like finite elements, from Bellet ef al. [2004]

6.3 Validations

6.3.1 Thermoelastic test

This test aims at the validation of the dilation term in equation (6-33). Let us consider a
cylinder which is constrained between two rigid tools as shown in Figure 6-3. A dliding contact is
applied at the top and the bottom surfaces. We assume that the cylinder is cooled down uniformly at
a constant cooling rate 7=-5°C/s , and the behavior of the material is elastic, with Y oung modulus
E=1000(MPa), and Poisson coefficient v=0.3. The thermal expansion coefficient
a=1.068x10"°(1/°C) .

? dliding, bilateral contact. i.e. v,=0
Mrrsrrrrsrrsrsrrsrss

r
PLITI LIS LTI SIS 77 Y

diding, bilateral contact. i.e. v,=0

Figure 6-3 The mesh of the sample
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Figure 6-4 The radial velocity field

The strain is assumed to be homogeneous in the sample, such that:
v.=v.(r) v,=0 v =0
The analytical resolution of such aproblem is as follows:
04=0,=0,and o_=-EaT
v =(l+v)aTr

Asuming the height of the sample is 0.1 (m) and the radius is 0.1 (m), taking the time
step Ar=1(s) , the numerical simulation has been carried out. The velocity field is shown in Figure 6-
4. The Minimum velocity v, =—6.942x107°(m/s) is expected by analytical resolution at » =0.1(m) .
The numerical result v, =—6.941x107° (m/s) coincide with the analytical one. The comparison of
stresso . verustimer between the analytical result and the numerical oneis shown in Figure 6-5.

0,45
—— Analytical solution
0,4 . )
+ Numerical solution

0,35 |

0,3 |

(MPa)

0,25 |

0-ZZ

0,2

0,1

0,05 |

0 2 4 6 8 10
£ (s)

Figure 6-5 Comparison between numerical and analytical solutions
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6.3.2 Uniaxial tension test

The uniaxial tension test is used to validate the implementation of the elastic viscoplastic
behavior. Consider a cylindrical sample shown in Figure 6- 6. Its initial length is /,(/,=50mm),
and its initia radiusr,(r,=5mm). The work hardening obeys equation (6-14). The rheology
parameters are selected from Kozlowski er al. [1992] and given in Table 6-1, the equivalent stressis
then defined by:

n

_ = om—=
O-eq _O-A‘ +K€eq Eeq

Table 6-1 Rhoelogy parameters

K(MPa.s") m n os(MPa) v E(GPa)

252 0.2 0.25 20 0.3 25

lo

A 4

11}

Figure 6- 6 Schematic of the uniaxial tension test

A constant velocity v, is imposed at the top surface. The equivalent strain rate is then:
&,,=volly. Numerical tests have been done under different equivalent strain rate. The numerical
results are shown in Figure 6-7. It can be seen that the relationship between strain and stress is
linear when the stress is under the initial threshold o . It is nonlinear when the stress exceeds the
initial threshold because the work hardening occurs. It can be seen also that the threshold is less
sensitive with increasing strain rate, that is the behavior can be modeled either elastic or eastic-
viscoplastic when the strain rate is very high. The numerical solution coincide with the analytical
solution.
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Figure 6-7 Relationship between strain and stress for different nominal strain rates v,/
6.4 Applications

6.4.1 Svensson solidification test
* Description of the problem

This test has been designed by Svensson to validate computational codes (Bellet et al.
[1996]). The experimental set-up is shown in Figure 6-8. The mold was made from a low alloy
steel. The height of the mold was 100 mm. The outer and inner diameters of the mold were 250 mm
and 150 mm respectively. The core was a quartz tube filled with oil bound sand, its diameter was 24
mm. Insulating material was placed in the bottom and in the top of the set up. Al-7%Si-Mg alloy
was cast in the cavity. A series of thermocouples and displacement sensors (linear variable
differential transducers, LVDTS) were used to measure the temperature and the air gap width during
solidification. The heat transfer coefficient (HTC) at the interface between the part and mold was
deduced from the measured temperatures, as shown in Figure 6-9. The details of the test can be
referred to Bellet ef al. [1996] and Kron et al. [2004].

The thermo-mechanical modeling of solidification of the part have been done with R2SOL,
compared to three codes. CASTS, MAGMA and PROCAST. For the details of computational
conditions and parameters, one can refer to Kron er al. [2004]. Hereunder, we briefly introduce the
numerical computations.
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As a first step, pure heat transfer analyses of the solidification problem were done with a
constant HTC between the part and mold. The maximum value of measured HTC was used in the
computations. This academic study served as a comparison between the heat transfer solvers of the
different numerical codes.
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Figure 6-9 The measured heat transfer coefficient HTC from Kron et al. [2004], and the constant value used
for pure heat transfer calculation (h = 898 W.m>.K™)

In the second step, thermo-mechanical calculations were performed. The time-dependent
HTC as obtained from experiments was used for the heat transfer analysis (this time-dependent heat
transfer coefficient was assumed uniform on the whole interface). So, there was no effective
coupling from the mechanical calculation towards the heat transfer calculation. Only the coupling
from the thermal calculation towards the mechanical calculation was taken into account through the
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temperature dependence of constitutive parameters. For these computations, we compare
predictions of the air gap.

It should be noted that in R2SOL the mold, the core and the insulating materials are assumed
rigid, the same assumptions are adopted in the computation of CASTS. While MAGMA,
PROCAST and THERCAST permit computing the deformations in the mold. In MAGMA, since
the thermal and mechanical modules are separated, firstly the program makes thermal calculations
and then uses the calculated temperature field as in-data for the mechanical calculations. The
calculation of the air gap is done in two steps: firstly, the displacement of the casting is calculated,
and then the displacement of the mold is calculated. In the computation of PROCAST, the core and
the insulating material are considered rigid, the mold linear elastic, the part elastic-plastic.
PROCAST permits coupling the thermal and mechanical analyses simultaneously, as well as
THERCAST.

* Results of the pure heat transfer computations

As presented before, the first step computations have been carried out using the maximum
heat transfer coefficient. The cooling curve measured in the part a mid-height (z = 50 mm) and
near the outer surface (r = 69 mm) is shown in Figure 6-10. It is compared with the computational
results obtained by R2SOL and the other codes. It can be seen that the computational result of
R2SOL is close to the others. The computational cooling curves coincide with the experimental
result at the beginning of solidification. But they deviate from the experimental result in the later
stage. In fact, the heat transfer coefficient between the part and mold decreases when the gap grows.
This is not taken into accout in the computations, and leads logically to an underestimation of
temperature.
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Figure 6-10 Comparison of cooling curves between measured and calculated, pure heat analyses

* Results of the thermo-mechanical computations

Besides the heat transfer computations, an elastic-plastic model (Ramberg-Osgood stress-
strain model) is applied (Kron et al. [2004]) to compute the stresses and strains in the solidifying
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part. The core and the insulation are assumed rigid. In the computation of R2SOL, the mold is also
assumed rigid. But the deformations in the mold are computed with MAGMA and PROCAST.

Compared to Figure 6-10, the cooling curves are again shown in Figure 6-11. It can be seen
that the computationa results are in good agreement with the experimental one. This is quite
normal since the computations have used the measured HTC directly.
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Figure 6-11 Measured and calculated cooling curves, thermo-mechanical analyses, from Kron et al. [2004]
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Figure 6-12 Evolution of the displacement of the part and mold surfaces, from Kron et al. [2004]

Regarding the mechanical computations, Figure 6-12 shows the evolution of the displacement
of the part and mold surfaces at the mid-height of the casting. The experimental curves show the
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mold expansion, which stabilises at 400 s. The part surface follows this expansion at the beginning
of cooling, up to 100 s, which is the air gap formation time. The mold expansion has been correctly
predicted by MAGMA and PROCAST, using the thermo-elastic model. Comparing the curves of
displacement of the part, a huge disparity can be observed in the numerical results. This disparity
has been explained by Kron ez al. [2004], the main causes may be found in the constitutive equation
and the corresponding parameters. It should be noted that the given constitutive law cannot be used
directly in different codes, except for MAGMA. For instance, in R2SOL the elastic viscoplastic
behavior is described by equations presented in section 6.1.2. In order to use the Ramberg-Osgood
model, afitting has been done to approach as best as possible the stress-strain curves. This might be
asource of differences between the different computations.

6.4.2 Solidification of industrial ingots

In this section, we present the results obtained by coupled thermo-mechanical simulations.
The first case is an octogonal 3.3 ton stedl ingot produced by AUBERT & DUVAL. Theingot is
considered axisymmetric, the geometry is shown in Figure 6-13. The computational system consists
of the ingot and four subdomains of mold. The ingot has a height of 1.83 m, and the maximum
radius is 0.331 m. It is discretized with 7236 triangle elements, the mesh size varies from 2.5 to 25
mm. Coupled thermomechanical simulations have been performed with R2SOL. In the
computation, the mold is considered rigid. A unilateral contact condition is applied to the boundary
of the ingot and mold, the deformation in the solidified ingot is computed with the method as
presented before. For heat transfer analysis, a constant heat transfer coefficient at the interface
between the ingot and mold is used before the formation of an airgap. When an airgap with a
thickness o locally appears, heat exchange between the ingot and mold mainly arises from heat
conduction and radiation through the airgap. Therefore, an equivaent local heat transfer coefficent
h can be computed by:

4T )T +
11 ith on =l g =, BEIGAG) e s
h hcand +hmd 5 (i+i_1)
e &, (6-54)
h =h, if 0<9d.,, (6-55)
where A, denotes the thermal conductivity of air, 7; and 7, the surface temperatures of the ingot

and mold respectively, & and &, their emissivitiesand o the constant of Stefan-Boltzmann.

In addition, in order to consider the natural convection (due to the density gradient caused by
the temperature gradient) in the bulk liquid, we have used an augmented viscosity of the liquid (u =
1Pas).

Regarding the natural convection flow in the liquid pool, we have not been able to use the
nominal viscosity of liquid steel (say 10° Pa.s) which has resulted in loss of convergence for the
resolution of our non-linear problem. In our opinion, the following cause can be invoked. The use
of low viscosity results in great variations of the rheological contributions that are assembled
around nodes belonging to the mushy zone. This leads to very badly conditioned sets of linear
equations at each Newton-Raphson iteration, causing non-convergence. This would need further
investigation. This limitation might also be overcome by using finer meshes in the mushy zone.
From this point of view the tools we have developed to control automatic remeshing (cf. chapter 4)
could be very profitable, but this has not been tested in the frame of our Ph.D. work.
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Figure 6-13 lllustration of the solidification of a 3,3 ton steel ingot. a) the liquid zone in blue, the solid zone in
red, and the velocity vector at 1 min (the maximum velocity, 37.8 mm/s); b) the mesh superimposed on the
liquid and solid zone at 1 h 15 min, maximum velocity 1 mm/s; c) distribution of the cumulated plastic
deformation and the Von Mises equivalent stress (Pa) at 5 h, end of the solidification at 3 h 25 min.
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Figure 6-14 Comparison of results calculated with unilateral and bilateral contact for a 3.3 ton steel ingot. a)
the heat transfer coefficient at the interface between the ingot and mold depends on the airgap width, which
is computed with a unilateral contact condition; b) the heat transfer coefficient is a constant, without airgap, a
bilateral contact condition is applied.
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Using an augmented viscosity can also avoid treating turbulent flow that can appear during
the solidification. In the current computation, the maximum velocity of fluid flow is 5.5x10-2 m/s (
_|V|[L _0.055%0.6
“ulp  1.0/7060

Taking the superheat temperature as the temperature difference (72°C), the reference Rayleigh
number is given by:

observed at 30 ), the associated Reynolds ( Re [1230) number is about 230.

_P’|g BrATLe, _ 70527 x9.8x7.55x10° x72x0.6° X672
iy 1.x35

Ra [1.1x10’

The solidification process of the ingot is illustrated in Figure 6-13. Solidification phenomena,
such as the natural convection in the liquid due to temperature gradient, the deformation in the solid
due to thermal contraction and the solidification shrinkage, can be observed simultaneously in the
figures. One can clearly see the fall of liquid level at the top of ingot, which results from the
solidification shrinkage and the thermal contraction in the solid and liquid phases. One also
observes the air gap at the interface between ingot and mold. It is about 4.0 mm around the body of
the ingot, and a maximum value of 25 mm is observed on the shoulder of ingot.

It should be noted that the air gap takes a considerable volume, this volume is about 1.33x1072
m? (271%0.33x1.6x0.004 ), which may influence the prediction of the shrinkage pipe. Assumed that
this volume is compensated by the liquid in the hot riser, then the descent level of liquid can be 73
mm (1.33x107°/(710.24%)).

Following this consideration, we found interesting to compare simulations accounting for or
not the airgap. We have performed a second calculation in which it is supposed that no airgap is
formed during the solidification: this more restrictive calculation has been done with a condition of
bilateral contact and a constant heat transfer coefficient at the interface between ingot and mold
(h = h, in equation (6-55) ). The comparison is shown in Figure 6-14. As expected, in this second
calculation, the pipe is deeper, as can be seen in Figure 6-14 b). The depth of the defect is
augmented by 121 mm in the center and 66 mm in the periphery, which is consistent with our
previous calculation. Let us notice, additionally, that the final mass of the ingot in these two
calculations is the same, the mass loss in the calculations being very low (about 0.3 %): it is then
clear that the difference can be attributed to numerical errors.

We can also note that the solidification time is shorter in this second computation (2 h 25 min
instead of 3 h 25 min). This is consistent with the choice of a constant heat transfer coefficient /g
(corresponding to a no-gap situation in the first calculation). It can be seen that the contact
condition affects not only the cooling of the ingot, but also the shape of the shrinkage pipe.

A similar comparison as mentioned above is done with a larger steel ingot (height 5 m,
maximum radius 1.40 m, 164 tons) produced by Industeel Creusot. In a first step, a unilateral
contact condition is applied to the mechanical simulation, and the heat transfer coefficient between
the ingot and mold (considering the formation of air gap) is defined by equations (6-54) and (6-55).
In a second step, a bilateral contact condition is applied, and a time-dependent heat transfer
coefficient (HTC) is used. This time-dependent HTC is obtained from the first computation as
follows. At mid-height of the ingot and at different times, knowing the gap size and the surface
temperatures, it is possible to deduce a HTC by applying equations (6-54) and (6-55). In the second
calculation this time-dependent HTC is applied to the whole interface between mould and ingot.
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This is to ensure that the temperature history in the ingot is approximately the same whatever the
contact option chosen (either unilateral or bilateral).

The solidification process of the ingot simulated with a unilateral contact condition is
illustrated in Figure 6- 15. The evolutions of surface temperatures of the ingot and the mold at the
mid-height of the ingot are shown in Figure 6- 16, as well as the growth of the local air gap. Figure
6-17 shows the formation of air gap at the bottom of the ingot. It can be seenthat a17 mm air gap is
formed during solidification.
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Figure 6- 15 The solidification process of a 165 ton steel ingot. a) the liquid fraction field and velocity vectors
at 10 min, the maximum velocity, 47.47 mm/s; b) at 1 h, maximum velocity 10.92 mm/s; c) at 10 h,
maximum velocity 0.22 mm/s; d) at 20 h; e) at 20 h 50 min, end of solidification.
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Figure 6- 16 Evolutions of surface temperatures and the air gap: a) at the beginning; b) during the
solidification.
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Figure 6-17 Formation of the air gap at the bottom of the ingot

As expected the solidification time of the second case is 20 h 10 min, compared to the first
case, 20 h 50 min. However, regarding the shrinkage pipe and stresses, the results calculated with a
bilateral contact condition are very impressive as shown in Figure 6-18 and Figure 6-19. Blocking
the movement of the periphery of ingot with a bilateral contact condition, dramatically causes a
deep shrinkage pipe that reaches the mid-height of the ingot, and very large stresses at the bottom
and the corners. For the smulation with a bilateral contact, one can imagine that the volume of the
shrinkage pipe increases in order to compensate the volume of the air gap. A downward and
outward feeding flow can be observed in the mushy zone in Figure 6-18 b), which leads to the
formation of shrinkage pipe. Considering the air gap at the bottom of the ingot in Figure 6-17, the
maximum width being 13.7 mm, this contraction is constrained in the computation with a bilateral
contact condition, leading to larger stresses and strains as shown in Figure 6-19.
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Figure 6-18 The solidification process of a 165 ton steel ingot simulated with a bilateral contact condition. a)
the liquid fraction field and velocity vectors at 10 min, the maximum velocity, 0.27 mm/s; b) at 15 h,
maximum velocity 0.14 mm/s, a zoom to the flow in the mushy zone is presented; c) at 20 h 10 min, the end
of solidification.
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Figure 6-19 Comparison of results calculated with the unilateral and bilateral contact for a 165 ton steel ingot.
The distribution of equivalent plastic deformation is shown on the left part, and the equivalent stress on the
right part.
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We have checked the mass conservation for the thermal mechanical simulations, comparing
with the initial mass, the maximum differenceis less than 0.68%.

Regarding the prediction of the formation of shrinkage pipe in large ingots, we note that the
volume of air gap must be taken into account. However, in many references of the literature (refer
to the bibliographic review in section 2.2 ), only fluid mechanical models are used without
considering the deformation in solid zones. These models can not predict the formation of air gap,
therefore the contribution of air gap to the shrinkage pipeis neglected.

6.5 Conclusion

A thermo-elastic-viscoplastic (THEVP) model and a thermo-viscoplastic (THVP) model have
been implemented in R2SOL. The alloy in the liquid or mushy states is modeled using the THVP
law, depending on the temperature, the model can be either Newtonian for the pure liquid, or
viscoplastic for the mushy state. Fluid flow induced by the temperature gradient and solidification
shrinkage can be simulated. Below a critical temperature, the alloy is considered by the THEVP
constitutive law, which allows to compute stresses and strainsin the solid.

Our personal contribution to the new version of R2SOL has consisted in extending the
material behavior from Newtonian to eastic viscoplastic. In collaboration with Alban Heinrich, the
P1+/P1 formulations for thermo-mechanica problems have been implemented. In this work,
adaptation from 3D to 2D axisymmetric formulation was a delicate issue, which needed a careful
consideration of the additional terms. A thermo-dilation and an uniaxial tension test have been done
to validate the new code.

Numerical simulations of solidification of Svensson test and industrial steel ingots
demonstrate the new computational capacity of R2SOL, being able to predict the shrinkage pipe, air
gap, strains and stresses. These academic computations show important effects of air gap during the
solidification of ingots. Beyond our numerical contribution, complementary work is needed to
evaluate in a more quantitative manner the capacity of the models devel oped.
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Chapter 7

Conclusion and perspectives

The present work aimed at developing numerical models in the two dimensiona finite
element code R2SOL, in order to compute: 1) macrosegregation associated with the thermo-solutal
convection in the liquid and mushy zones; and 2) stresses and strains in the solid phases during
solidification of castings. The thermal mechanical models are summarized as follows.

» Modeling of macrosegregation

Macrosegregation in columnar dendritic solidification has been simulated following the
works of Isabelle Vannier [1995] in SOLID and Laurence Gaston [1999] in R2SOL. We assume
that the solid phase is fixed and rigid, therefore, only fluid mechanicsis considered. Theliquid flow
is laminar, Newtonian, with a constant viscosity. The mushy zone is considered as an isotropic
porous medium whose permeability is defined by Carman-Kozeny relation. In order to calculate the
drag force exerted on the interdendritic liquid, Darcy’s law is applied. The Boussinesq
approximation is adopted in the momentum equation for the liquid phase. The averaged
conservation equations of energy, solute and momentum are used for modeling of the macroscopic
transport phenomena. Regarding microsegregation, the lever rule and Scheil models are considered
in the present work.

Following the work of Isabelle Vannier [1995] in finite volumes, on the coupling resolutions
for the macroscopic conservation equations and microscopic solidification models, we have
implemented the following two approaches in the context of finite elements:

»  Full coupling approach to a binary alloy with eutectic transformation. In this approach,
the solidification in the whole casting is considered as an open system, the lever rule is
used for modeling microsegregation. Iterations are performed within each time step until
convergence resolutions that satisfy the macroscopic conservation equations for energy,
solute and momentum, as well as the local thermodynamic equilibrium with the lever rule.
One can also solve the governing equations with only one iteration within each time step
(full coupling reduced to one iteration).

*  Non-coupling approach for multi-component alloys. This time, the solidification is
considered locally as a closed system in the mushy zone, i.e., the solidification path is
fixed when the metal begins to solidify. The liquidus and solidus temperatures are
estimated locally as a function of the local liquid average concentration just before
solidification. The lever rule and Scheil models are used for modeling microsegregation.

From the point of view of numerical analysis, a nodal upwind P1+/P1 and a SUPG-PSPG
methods are used for the discretization of Navier-Stokes equations. A nodal upwind P1 and the
SUPG method are used for the energy equation. The SUPG method is also applied to the solute
transport equation. Since solidification shrinkage is not taken into account, the computational
domain is fixed. Therefore, the Eulerian scheme can be used. Our personal contribution to the new
version of R2SOL can be summarized as follows:
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* Regarding the highly non-linear solidification problem, we have improved the energy
solver with a line search scheme. The PETSC solver has been used to solve the non-
symmetric matrix equation, leading to arobust and efficient energy solver.

* Regarding fluid mechanics, the computation of Darcy and inertia terms in the P1+/P1
formulation has been improved, and the axisymmetric formulation has been implemented
in R2SOL. Following Tezduyar [2000], the SUPG-PSPG approach has also been
implemented in the axiymmetric version of R2SOL.

* In order to improve the computational accuracy, algorithms for isotropic and anisotropic
mesh adaptations have been proposed. In the present study, the norm of the gradient of
solid fraction is used as a parameter for piloting the mesh refinement in the mushy zone.
The objective mesh size ahead of the liquidus isotherm is defined as a function of the
distance to the liquidus isotherm. The adaptive mesh is then created using the mesher
“MTC”.

The full coupling and no-coupling approaches have been validated by the benchmark test of
Hebditch and Hunt. It has been demonstrated that the prediction of segregated channels needs a full
coupling computation, for which the thermal and solutal coupling effects on the solidification have
been taken into account. While the main spatial trends of macrosegregation can be predicted by the
no-coupling approach.

The mesh size and time step influence studies on the test of Hebditch and Hunt show that
sufficient fine meshes, small time steps and possibly coupling iterations within each time step
should be used in order to predict the segregated channels. This has also been demonstrated in the
prediction of freckles during upward directional solidification. Macrosegregation in an industrial
dimensional steel ingot has been simulated with mesh adaptation, fine meshes being applied in the
critical region near the liquidus isotherm, and coarse meshes being used in the bulk liquid and in the
solid. ‘A-type’ segregation is captured with the mesh refinement, the efficiency of mesh adaptation
is illustrated.

Perspectives

From the point of view of physical models, the following points that affect macrosegregation
would be considered in the future work, in order to improve the prediction of macrosegregation in
industrial ingots:

» Equiaxed solidification. In the present work the solid is assumed stationary, the columnar
dendritic solidification is modeled. This leads to failure in the prediction of the negative
macrosegregation zone at the bottom of an ingot (also called the sedimentary equiaxed
cone). Equiaxed crystals solidified in the early stage with poor solute content settle down
to the bottom, resulting in this negative segregation cone. In order to simulate the
equiaxed dendritic solidification, one needs to model the nucleation, the movement and
the growth (or remelting) of grains. This could be a challenging issue (Boubeker Rabia
[2004] ).

* Solidification shrinkage. It is well known that shrinkage is a driving force for the
interdendritic liquid movement. However, in the current model, densities of the liquid and
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the solid are equal and constant, except in the buoyancy term. We will come back to this
point at the end of the conclusion when dealing with coupling with solid deformation.

* Microstructure. Microstructure affects microsegregation and permeability of the mushy
zone. Consequently it affects macrosegregation. In the current computations, a constant
secondary arm spacing, Ap, iS used in the Carman-Kozeny relation. This could be
improved by a variable Ay, which can be as a function of, a first approximation, the local
solidification time. Besides the lever rule and Scheil models, a back-diffusion model
would be developed, considering the diffusion of solute elements in the solid and
peritectic transformation for multicomponent steels (Thuinet et al. [2003]).

From the point of view of numerica computation, the following points remain to be
investigated:

* Optimisation of remeshing agorithms. For the current version of R2SOL, it takes more
CPU time to compute the distance to the liquidus isotherm, because the comparison test to
find the shortest distance (cf. section 4.1.2) is very time consuming. This needs to be
improved. Moreover, a direct linear interpolation is used to transport the concentration
field from the old mesh to the new one. Then, information of segregated channels can be
lost when derefining the mesh, which can be observed in results of an industrial ingot as
presented in section 5.5. This may result in loss of accuracy. Besides the method that is
defined by equation (4-15), we need an additional development to keep the memory of the
local concentration near a segregated channel, avoiding use of fine meshes.

* Deeper confrontation of the nodal upwind P1+/P1 and SUPG-PSPG stabilization.
Regarding the lid-driven cavity test in section 3.7.3, it appears that the nodal upwind
P1+/P1 solver gives a smooth velocity field. It would be necessary to quantify separately
the effects of the nodal upwind treatment for the advection terms and the bubble-type
P1+/P1 formulation.

> Modeling of solid deformation

The goal of this part of work is to predict the shrinkage pipe, air gap, strains and stresses
during the solidification of ingots. A single continuum medium is considered in the thermo-
mechanical analysis. Unlike modeling of macrosegregation, we assume that in the mushy zone the
solid and the liquid move together with the same velocity. For simplicity, the liquidus and solidus
temperatures of an aloy are fixed according to its nominal concentration. During solidification the
different behaviors of the aloy are clearly distinguished by a critical temperature. Following the
work of Jaouen [1998] in THERCAST, a thermo-viscoplastic (THVP) model is used for the liquid
and the mushy metal, in particular, the liquid can be Newtonian. A thermo-elastic-viscoplastic
(THEVP) modd is used for the solid.

Fluid flow induced by the temperature gradient and solidification shrinkage is simulated using
an ALE scheme. A pure Eulerian scheme is not satisfying to model the evolution of free surface due
to solidification shrinkage and the air gap formation. While a Lagrangian scheme can not be used to
simulate the strong natural convection in the liquid pool, since the Lagrangian-type mesh updating
could lead to mesh degeneracy. The Lagrangian scheme is used in the solid zone, where the
Lagrangian-type mesh updating can track the movement of the solidified shell. This is essentia to
the prediction of air gap opening between ingot and mold.
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In collaboration with Alban Heinrich, our contribution to the new version of R2SOL has
consisted in extending the material behavior from Newtonian to elastic viscoplastic, using the
P1+/P1 formulation. In this work, adaptation from 3D to 2D axisymmetric formulation is a delicate
issue. The new code has been validated by a thermo-dilation and an uniaxial tension tests.

Now it is possible to calculate simultaneously fluid flow in the liquid pool and deformation in
the solid, coupling with thermal analysis. The coupling from the thermal calculation towards the
mechanical calculation is taken account through the temperature dependence of congtitutive
parameters; on the other hand, the mechanical calculation provides the size of local air gap, which
changes the heat transfer coefficient at the interface between ingot and mold and consequently
affects thermal analysis. Academic computations of Svensson test clearly show the importance of
thermal mechanical coupling. An application to industrial steel ingots demonstrates predictions of
the shrinkage pipe, air gap, strains and stresses.

Perspectives

In order to increase the accuracy, adaptive remeshing could be used for computing the
deformation in the mushy zone in the future. Great variations of rheological properties appear
during the liquid-solid phase change, this may need sufficient fine meshes in the mushy zone. We
have proposed agorithms for piloting automatic remeshing in the computation of macro-
segregation, which could be aso used in the stresses and strains computation.

Finally, regarding the two models as mentioned above, it would be very interesting to merge
the two computations. We expect that fluid flow induced by thermo-solutal convection and
solidification shrinkage could be computed in the ALE frame instead of the Eulerian frame, so that
macrosegregation and deformation in solid could be simultaneously predicted. The main difficulty
remains in the treatment of mushy zone.
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Appendix A Data for the validation of diffusion split method

Geometry of the ingot and the mold
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Physical data and calculation parameters

Table A-1 Physical properties and calculation parameters of the steel ingot (a carbon binary alloy)

Phase diagram data

Nomina mass fraction, w, wt.pct 0.38
Melting temperature, T, °C 1538
Liquidus slope, m °C.wt.pct™’ -80
Partition coefficient, k 0.18
Thermal data

Thermal conductivity, A W.m™ K? 35
Specific heat, ¢, Jkgt K? 672
Latent heat, L Jkg?! 0.309%10°
Density, 0, Kg.m® 7060
Calculation parameters

Initial temperature °C 1550
Time step S 0.1
Heat transfer coefficient, A W.m? K* 1000
between ingot/mold, ingot/refractory

Table A-2 Physical properties and calculation parameters of the mold and refractory

Thermal data Mold 1 and Mold 2 | Mold 3 | Refractory
Thermal conductivity, A W.m™ K* 30 2 0.45
Specific heat, ¢, Jke' K 540 1100 868
Density, 0, Kg.m® 7000 2135 1600
Calculation parameters

Initial temperature °C 250 250 250
Heat transfer coefficient, A W.m?, K* 50 40 40
between mold/air, refractory/air

External temperature, 7,,, °C 50 50 50
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Appendix B Organization for Macrosegregation computation

I
Transport A ﬂ

[Transport for partial derivatives, by direct interpolation: | Remeshing by MTC |
vit_dp, hent_dp, hent_lig_dp, gl_dp, gs1_dp, gs2_dp I

tem_dp, wmoy_dp, wliq_dp

[Transport for total derivatives, by nodal upwind:

vit, hent, hent_lig, tem

Transport after remeshing
[Transport for partial derivatives:

| Transport for total derivatives:
I
Computation of objective mesh size | | hent, wmoy + some values at time t
I
Micro segregation model

) YES dtsurdh, tem, gl, gsl,gs2, tligp, tsolp, wliq
=,
No +
A i‘

| Coupling resolution for energy, solute and momentum |

| NR iterations for energy <
I

Knowing temperature and enthalpy at time t
hent_liq for the total derivatives
hent_dp, hent_liq_dp for the partial derivatives

temO for the evaluation of thermo-properties
I
| Resolution of energy equation: hent* at time t+At |
I
| hent*, wmoy* + some values at time t |

Micro segregation model
dtsurdh*, tem*, gl*, gs1*,gs2*, tligp*, tsolp*, wlig*

Energy Converged ?

Yes

| Resolution of solute equation <
A

I
Knowing vit*, vmay
wmoy_dp for the partial derivative
+ intermediate values: gl*, wmoy*, wlig*

| Resolution of solute equation: wmoy* at time t+At |

I
| wmoy*, hent* + some values at time t |

I
Micro segregation model
dtsurdh*, tem*, gl*, gs1*gs2*, tligp*, tsolp*, wlig*

Solute Converged ?

Module 6: Resolutions of fliud mechanics: Vit* at time t + At |
v

Momentum, enery and soluté
Converged ?

No

Yes

Advance to next time step
t=t+At

v
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Appendix C Tangent modulus

* Tangent modulus for the THEVP model

Because the THEVP model is nonlinear, the global resolution of the mechanical problem
should be done by an iterative procedure. The Newton-Raphson method is applied. In order to
compute the Hessian matrix H for the Newton-Raphson iteration, the so-called “tangent modulus”
is introduced in R2SOL. Therefore, the code is more general regarding the constitutive equations
selected.

The tangent modulus is defined by:

(C-1

For the THEVP model, the tangent modulus of fourth order may be expressed by (Jaouen
[1998]):

Cj+1: 2/'ln+la [ I_%IDI] - ysn+l DS

n+l (C—z)
where
a= aeq (§n+l)
BO

0 U
0 U
y= 2/'ln+1 ] 1 +q - 1D
2 2 (& 0 1 dae (§n+l) H
70’3:] ($n+1) [1'*' ! |:|
3 D 3#n+1 d§n+l |:|

1
L. :E[ 5,1(5_,'1 +5i/5/k]
(IDI)W = 51] Oy

The operator [J denotes the tensor product. For a second order of tensorq, (q]q) is a fourth
order tensor with its component (qlq),, =q,q, -

For the elastic deformation, a=1and y=0.

The detail of computation of tangent modulus can be found in the paper of Simo and Taylor
[1985].

* Adaptations for the two-dimensional analysis

For clarity, let us consider the incompressible liquid phase and a purely elastic solid phase
with constant physical properties. Their behaviors present the two limit cases of our model, for
which the tangent modulus then becomes simpler. Hereunder taking these two cases as examples,
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we show the adaptation to the different coordinates (from 3D to 2D), particularly for axisymmetric
problems.

For simplicity, we use the Voigt notation, mapping the indices for the components of stress,
strain and tangent modulus into convenient matrix form, as shown in Table C-1.

Tensor Matrix index
index
1 2 3 4 5 6
ab 11 22 33 12 23 31
21 32 13

Table C-1 Transformation of indices from tensor to matrix

With the Voigt notation one writes the deviatoric stress and the total deformation rate as
follows:

— r
s_{Sv s2153154155756}

:{5117522’5337 S121523’513}

(C-3)

and

e f. . . . . .r
8_{81782’83784’85’86}

:{811’ €201 833,819, 83 813}

(C-4)

Firstly, let us consider the incompressible (77(¢)=0) Newtonian fluid model, the constitutive
equation writes s=2u¢, where pis the dynamic viscosity. In three dimensions, using the Voigt
notation we then have:

@ 000 0 0O
g)zoooog
02000
=1 %) 0010 o@: (C-5
[ 0 001 00
0 0
0000 1f

Therefore, the tangent modulus for the incompressible Newtonian fluid can be expressed by:

, C, C; C, C5 CgO 2 0 00 0 0O

W W W

0 Cp Cp Cy Cy C26|:] 0 2 000 OD

a_0s_C Cy Cy Co C%EZ,UB 200 og
% [ Cu Cs Cun O 10 0g (C-6)

B sym Ceg CSGB U sym 1 ot

= Ced H 10
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In equation (C-6) , al the off-diagonal terms are zero. In plane strain, £,,=0, i.e.,
£, =€,3=E4,=0, hence, for the plane strain problem with incompressible Newtonian behavior, only

three components (Cn:%:Zu, C,, :?i:Zu and C4423§12 =u) need to be considered.

1 €» €1

However, for the axisymmetric case, Sinceé&,, =£,,70, an additional term Cj, %5 =2 should be

€33

taken into account.

Secondly, we consider the purely elastic model, the deviatoric stress can be expressed by:
$=D, £=2U dev(£) (C-7)

where uisthe Lame coefficient, and D, is defined by:

04 -2 -2 0 0 0O
[]

il _ 0
52 4 -2 00 07

, -#E2 -2 4 0000

“~350 0 0 30 0 (C-8)
o o0 0 0300
0 0
50 0 0 00 33

This time, the tangent modulus may be expressed by:

gjn Cp Cyu Cy Cy Cp S %4 -2 =200 OB

0 Cp Cyu Cyu Cp Cyx 0 0 4 -200 OD

Cd_ﬁzg Cyu Cy Cy Cssgzﬂg 4 00 OB
% [ Cu Cis Cu 30 30 0 (C-9)

L c. c., U U 3 od

0 sym Sl 0 sym a

B Ced O 30

In contrast to the Newtonian liquid model, some non-zero components appear in the off-

diagonal terms, seeing equation (6-36). In the plane strain case, the terms, C,, :ﬂ, C,, :g?J,
€n €2
. _0s; _0Os,, .
C,=C,,=—= and C,,=—= should be considered.
0%, €10

For the axisymmetric problems, besides the terms appearing in the plane case, the additional

0 0 0 .
terms, C, :;—33 , Ca=Cyy =% and Cr=C, =% should be taken into account.
€

33 € €2

During the local resolution of constitutive equations, the tangent modulus C?,, of the THEVP

n+l

“ that need to be

n+l

model are computed using equation (6-30). The components in the tensor C
considered are similar as what we have discussed for the elastic model.
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Résumé

Ce travail est consacré a la modélisation des macroségrégations et des distorsions se produisant lors
de la solidification de pieces métalliques. Un modele bidimensionnel d’éléments finis est développé pour
I’analyse des écoulements de convection thermo-solutale a l'origine des macroségrégations. Dans ce
modele, I’ensemble des équations, moyennées spatialement, de conservation de 1’énergie, de la quantité de
mouvement, de la masse et des especes chimiques est résolu en prenant pour modele de microségrégation la
regle des leviers. Plusieurs formulations permettent une résolution avec couplage faible ou fort des
différentes résolutions ainsi qu’une approche en systeme ouvert ou fermé. Dans le but d’augmenter la
précision des résultats, un algorithme de remaillage dynamique est également proposé, de facon a enrichir le
maillage au voisinage du front de solidification. L’orientation et la norme du gradient de fraction liquide
guident le remaillage dans la zone pateuse, tandis que la distance a 1’isotherme liquidus est utilisée dans le
liquide.

L’approche numérique est validée griace a un benchmark de macroségrégation tiré de la littérature et
portant sur des alliages Pb-Sn. Les influences de la discrétisation spatiale et temporelle et des schémas de
couplage sont discutées, notamment par rapport a la capacité de prédiction des canaux ségrégés. En outre,
I’efficacité de 1’adaptation de maillage est illustrée dans un cas de solidification dirigée, donnant lieu a
I’apparition de « freckles », ainsi que pour la prédiction de bandes ségrégées de type A dans un gros lingot
d’acier.

La derniere partie du document présente une modélisation thermo-mécanique visant a calculer le
développement, pendant le procédé, des contraintes et distorsions dans les zones solidifiées, ainsi que le
retrait et les mouvements de thermo-convection affectant les régions liquides. Le comportement de 1’alliage
est alors considéré comme newtonien a I’état liquide, comme celui d’un milieu continu viscoplastique a
I’état pateux, et comme élasto-visco-plastique a I’état solide. Cette simulation thermo-mécanique est utilisée
pour calculer la formation des lames d’air, la génération des déformations, des contraintes et la formation
des retassures primaires.

Mots-clefs: solidification, modélisation, macroségrégation, éléments finis, 2D, adaptation de maillage,
thermomécanique, mécanique des fluides.
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Abstract

Thiswork is dedicated to the modeling of macrosegregation and deformation during solidification of
castings. A two-dimensional finite element model to simulate macrosegregation due to thermal-solutal
convection in the case of columnar dendritic solidification is presented. A set of volume-averaged
conservation equations of energy, solute, momentum and mass is solved in conjunction with the use of the
lever rule as a microsegregation model. Several formulations have been implemented, permitting a
resolution with either weak or strong coupling, closed or open system. In order to improve the prediction
accuracy, an agorithm for dynamic remeshing is proposed. The basic idea is to generate fine elements near
the liquidus isotherm. The norm of the gradient of solid fraction is used for piloting the remeshing in the
mushy zone; while the objective mesh size in the liquid is considered as a function of the distance to the
liquidus isotherm.

The numerical approach has been validated with a benchmark test of macrosegregation in Pb-Sn
aloys taken from the literature. The influences of mesh size, time step and coupling scheme have been
investigated. Sufficient fine meshes, small time step and possibly coupling iterations should be applied in
order to predict segregated channels. Moreover, the efficiency of mesh adaptation is demonstrated by
predictions of freckles in a case of unidirectional solidification, and of ‘A-type’ segregation bands in a large
industrial carbon steel ingot.

In the last part of this work, regarding fluid flow in the liquid induced by solidification
shrinkage and thermo-convection and deformation in the solid, a therma mechanica model has
been implemented with a Eulerian-Lagrangian formulation. The aloy in the liquid state is
Newtonian, and in the mushy state it is modeled by a viscoplastic continuum. Below a critical
temperature the aloy is considered by a thermal elastic viscoplastic model. The thermo-mechanical
simulation is used to predict the shrinkage pipe, air gap, strains and stresses.

Keywords: solidification, modeling, macrosegregation, 2D finite elements, mesh adaptation,
thermomechanics, fluid mechanics
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