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&KDSWHU���

*HQHUDO�LQWURGXFWLRQ

,QWURGXFWLRQ�JpQpUDOH�±�5pVXPp�HQ�IUDQoDLV

Ce chapitre est une introduction générale au présent travail. Les principaux phénomènes

physiques à la base de la formation des macroségrégations lors de la solidification des alliages

métalliques sont présentés. A l’échelle microscopique, il s’agit de la microségrégation résultant du

rejet de solutés dans la phase liquide et de la diffusion dans la phase solide. A l’échelle

macroscopique, les espèces chimiques ainsi rejetées sont transportées dans la pièce sous l’effet des

mouvements de convection dans la phase liquide. Ces mouvements de convection sont causés par

les gradients de masse volumique, eux-mêmes générés par les gradients de température et de

concentration en solutés. C’est cette convection thermo-solutale qui donne naissance aux

macroségrégations, hétérogénéités de concentration à l’échelle de la pièce ou du lingot de fonderie,

qui vont affecter diverses propriétés (mécaniques, chimiques…) en service ou lors de

transformations ultérieures.

D’autre part, le retrait à la solidification, présenté par la grande majorité des alliages

métalliques, est un autre phénomène essentiel. Le retrait induit à la fois des écoulements dans la

phase liquide et des déformations de la phase solide. Le défaut de retassure primaire ainsi que la

formation de lames d’air à l’interface pièce-moule sont une conséquence directe du retrait. Outre ce

retrait, les phénomènes de dilatation thermique participent aussi à la génération de contraintes et de

distorsions, pouvant dégénérer en ruptures, et qu’il est donc nécessaire de modéliser pour optimiser

les procédés de coulée.

En conséquence, les objectifs de ce travail sont définis : proposer une modélisation des

phénomènes de macroségrégation et des phénomènes thermomécaniques (contraintes–

déformations) dans le cadre d’une approche bidimensionnelle par éléments finis. Ce travail se situe

dans une certaine continuité au sein des laboratoires LSG2M (logiciel de volumes finis SOLID) et

Cemef (logiciels d’éléments finis R2SOL et THERCAST).
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&KDSWHU��

*HQHUDO�LQWURGXFWLRQ

1.1 Background

Solidification occurs in many metal forming processes, ranging from conventional processes
like foundry, welding, ingot casting etc. to the latest technologies like crystal growth or laser
processing.

The essential feature in the solidification of a metallic alloy is the liquid-solid phase change
associated with the release of latent heat and the solute redistribution. The solutes are often
redistributed non-uniformly in the fully solidified casting, giving birth to what is usually called
segregation. Segregation occurring on a microscopic scale (i.e., between and within dendritic arms)
is known as microsegregation. While segregation occurring on a macroscopic scale (i.e., in a range
from several millimeters to centimeters or even meters) is called macrosegregation.
Microsegregation can be controlled or reduced by a high temperature treatment (homogenization).
However, macrosegregation occurring on the macroscopic dimensions of the casting cannot be
eliminated by homogenization.

Taking into account shape, location or concentration, several types of macrosegregation can
be observed in an ingot or a casting as described in more detail further, such as “centerline

segregation”, “A-segregation”, “V-segregation”, and “freckles” (Beckermann [2001]). Macro-

segregation is important, because it affects (like microsegregation) the mechanical properties of

casting products. In some cases, macrosegregation can be very important. An impressing example

consists of the freckles appearing in the directional solidified Ni-base superalloys of aeroengine

turbine blades (Frueh et al. [2002]). In metal processing, metallurgists always attempt to overcome

the centreline macrosegregation in continuous casting steel slabs and direct chill aluminum castings

(aluminum DC castings), centreline macrosegregation in slabs decreases the quality of the final

products. The macrosegregation in the ingots can be a source of problems in further processing such

as rolling, forging and heat treatment. For these reasons, researchers have struggled with

macrosegregation for decades.

In the literature, experimental and theoretical studies on solidification phenomena have been

carried out by a lot of researchers. The mechanisms of different types of macrosegregation are well

identified. It results from the relative movement of the liquid and solid phases. Movement of liquid

can be induced by the solidification shrinkage, the thermal-solutal buoyancy force and possibly by

external forces, such as magnetic forces.

In addition, solidification shrinkage as a result of liquid-solid phase change and thermal

contraction is another important feature in the solidification of castings. The solidification

shrinkage induces the liquid movement and the solid deformation. Many solidification phenomena

are related to shrinkage. For instance, the descent of liquid level associated with feeding flow leads
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to the so called “shrinkage pipe”. Shrinkage pipes appear in the upper portion of risers, taking the

shape of an inverted cone. The prediction of pipe formation is important in large castings and

ingots. The numerical analysis is characterized by the computation of the liquid free surface.

Thermal contraction in the solid can induce the distortions, cracks and residual stresses in castings

and molds. Thermal mechanical analysis of solidification process is then essential to predict defects

and control the quality of castings.

In France, the project OSC (Optimisation des Systèmes de Coulée), which aims at the

numerical modeling of casting processes, has been supported by the French Ministry of Industry,

the French Technical Center of Casting Industries (CTIF) and the following companies: Arcelor-

Irsid, Ascometal, Fonderie Atlantique Industrie, Aubert et Duval Alliages, Erasteel, Industeel and

PSA. Under the frame of OSC project, my Ph.D. work is dedicated to modeling macrosegregations

and deformations during the solidification of castings.

From the point of view of scientific research, the solidification processing of castings

involves the following phenomena: heat transfer with phase change, redistribution of solutes in

liquid and solid phases; thermal-solutal convection in liquid and mushy zones, fluid flow driven by

solidification shrinkage; transport of solute; and thermal stresses and deformations in solidifying

castings and molds. The complicated transport phenomena result in defects such as shrinkage,

macrosegregation, distortions and cracks. Hence, the numerical simulation on the formation of

defects is a very challenging field.

We will review and discuss the basic solidification phenomena in the following text.

1.2 Solidification phenomena

������ 6ROLGLILFDWLRQ�DQG�VWUXFWXUH
A pure metal solidifies at a constant temperature�7f, the melting temperature.  The material is

in the liquid state above 7f, and it becomes solid below 7f.  However, an alloy solidifies in a range

of temperature. The solid and the liquid coexist in a range of temperature between liquidus and

solidus. Redistribution of solutes in the solid and liquid phases occurs in the solidification of alloys,

which distinguishes alloys from pure metals.

During the solidification of a pure metal with a positive temperature gradient, the general

solid-liquid interface is parallel to the temperature isotherm; the interface morphology is planar.

The interface becomes unstable under a negative temperature gradient: the dendrite, like a tree, is

formed in the supercooled liquid pool.

An alloy can be solidified with a planar interface only if the ratio of the heat flux at solid-

liquid interface to the velocity of moving front is sufficiently large. With the ratio decreasing, the

interface becomes unstable, and cellular and dendritic interfaces can be observed. The constitutional

supercooling associated with the redistribution of solutes and thermal condition is responsible for

the instability of interface and the structure morphology.

Generally, a cast alloy freezes with a dendritic interface. The region, which is composed of

dendritic solid and interdendritic liquid, is known as the mushy zone. The typical structure, which is
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composed of the chill zone, the columnar zone and the equiaxed zone, obtained in a steel ingot is
shown in Figure 1-1.

•  Chill zone. The zone consists of fine equiaxed grains. The mould wall provides with
plenty of sites for nucleation, and the crystals grow in the supercooled liquid due to the
mould chilling. This leads to the formation of a fine equiaxed zone in the skin.

•  Columnar zone.  Just ahead of the chill zone, the gradient of temperature in the liquid is
rather steeper. Thus, the fine equiaxed grains in the chill zone can not develop toward the
center of the ingot. The dendrites grow perpendicular to the mold wall, resulting in the
columnar structure. This structure can be extended to the center of an ingot if the cooling
condition is well controlled.

•  Equiaxed zone. Generally many small grains suspend in the liquid at the center of ingot.
These small grains can originate from the fragment of dendrites growing in the columnar
zone. The movement of liquid is important during the pouring and during solidification.
The dendrites can be broken by the flow, and fragments can be brought into the liquid
center.  These fragments can remelt or survive and grow to form the equiaxed grains.

Figure 1-1 Schematic of the structure in a steel ingot, Verhoeven [1975]

������ 6KULQNDJH
Shrinkage results from the density difference between liquid and solid. On the macro scale,

shrinkage defects can be classified into the porosity and the pipe. The porosity consists of dispersal
vacuities or holes in metal. The causes of porosity are the insufficient feeding in the mushy zone
and the evolution of the absorbed gas in liquid. The interdendritic feeding flow is responsible for
the porosity.  Three important factors that affect the feeding flow are: 1) the freezing range of the
metallic alloy, which affects the grain structure; 2) the cooling rate, which also affects the grain
structure; 3) the thermal gradient, generally the feeding liquid moves along the direction of the
thermal gradient. Porosities often appear in the hot spots where the liquid pools are isolated and the
thermal gradient is low. While the pipe results from the cumulated effects of local shrinkage. It
results from the descent of liquid level, associated with the progress of the solidification. The
prediction of pipe formation is of importance especially in the case of ingots or large parts.

������ 0DFURVHJUHJDWLRQ
Segregation refers to non-uniformity of chemical composition. It can be classified into macro-

and micro- segregation.  Microsegregation results from the solute enrichment in the interdendritic
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liquid during solidification. While macrosegregation results from the local microsegregation and the
relative movement of liquid and, possibly, solid phases.  Macrosegregation that occurs in alloy
castings or ingots ranges in scale from several millimeters to centimeters or even meters. Positive
(negative) segregation refers to the composition above (below) the nominal composition. The non-
uniform distribution of chemical composition can significantly affect the mechanical properties of
castings, and therefore its numerical modeling is important from the industrial point of view.

The classical map of segregation in a steel ingot is shown in Figure 1-2.  Negative segregation
known as the sedimentary equiaxed cone appears in the bottom of ingot. Fragments of dendrites
with poor solute content, which have been solidified in the early stage, settle down to the bottom,
resulting in the negative segregation cone. Positive segregation (hot-top segregation) appears near
the centerline, and particularly at the top of the ingot. The positive segregation arises from the
thermal and solutal convection and shrinkage-driven interdendritic fluid flow during the final stages
of solidification.  The so-called A-segregation appearing in the columnar zone is also called freckles
or segregated channels. These regions are highly enriched in solutes. When the velocity of the
solidification front is lower than that of solutal convection in the same direction, the channels occur
(Mehrabian HW�DO.[1970]).  The V-segregation in the center arises from the equiaxed grains settling,
the deformation of connected solid skeleton and the solidification shrinkage.

Figure 1-2 Schematic of the macrosegregation pattern in a steel ingot, Flemings [1974]

������ /LTXLG�PRYHPHQW��DQG�VROLG�GHIRUPDWLRQ
In ingot casting, strong turbulent fluid flow occurs during mould filling, and it vanishes after a

short period. During the cooling and solidification of the ingot, fluid flow is principally driven by
the density gradient in the liquid. This density gradient arises, first of all, from temperature gradient
in the liquid, leading to thermal convection. As a consequence of solidification, solutes are rejected
into the interdendritic liquid, and a non-uniform concentration is set up in the liquid. These
gradients of solutes also contribute to the density gradient, leading to the solutal convection. The
thermo-solutal convection is important in the solidification of ingots. The convection is responsible
for the formation of macrosegregation. Furthermore, it influences the temperature distribution, the
advancement of solidification front, the local solidification rate and therefore the structure.

V-segregation

Cone of negative
segregation

Hot-top
segregation

A-segregation

Bands
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There are other (additional) causes of liquid movement.  The solidification shrinkage and the
contraction of the liquid and solid can induce the feeding flow, which influences the formation of
porosity, shrinkage and macrosegregation. Forced fluid flow can also arise from the electromagnetic
or centrifugal forces.

The fluid flow can separate dendrites from solidifying dendrites; and bring these small
crystals (the nuclei) to the center of bulk liquid. The nuclei grow in the region where the melt is
undercooled. Later, when the grains have grown to a sufficient size, they settle down to the bottom,
resulting in the sedimentary equiaxed zone with negative macrosegregation (Flemings [1974]).

Once the liquid has been solidified, the deformation occurs as a result of thermal contraction,
boundary constraint (contact with the mold) and pressure exerted by the non-solidified liquid metal.
The contraction of solidifying shell and the expansion of mold cause a gap between mold and
casting, which affects the heat transfer and consequently the solidification processing. On the other
hand, the mechanical behavior of the solidifying metal depends upon the local temperature, the
grain structure and the deformation path.

As we can see from what precedes, solidification processing involves several complex
physical phenomena. The interactions between many aspects that occur during solidification can be
shown in Figure 1-3: main solidification phenomena occurring on microscopic scale are illustrated
as a core; surrounding around the core, macroscopic scale transport phenomena are presented. It
should be noted that these macro and microscopic phenomena are intimately coupled. For example,
the macroscopic convection flow affects the temperature and the solute distributions; consequently
it influences the grain growth (on microscopic scale). On the other hand, the grain growth changes
the temperature and the concentration in the interdendritic liquid, which affect the macroscopic
fluid flow. On the macroscopic scale, the fluid flow associated with transport of energy and solute
affects the deformation in the solid, and YLFH�YHUVD.

Figure 1-3 Interactions between macro and microscopic phenomena in the solidification of castings

Researchers have developed numerical models for several decades to reveal such phenomena.
Great progresses have been achieved: models coupling heat, mass, momentum and solute transfer
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have been developed to predict shrinkage defects and macrosegregation. Thermomechanical models
have been used to predict stresses and deformations in castings. In the following paragraph, the
related previous work at CEMEF laboratory will be presented, as it is the basis for my Ph.D. work.

1.3 Related previous work

'HYHORSLQJ�KLVWRU\�RI�5�62/
CEMEF laboratory, in collaboration with LSG2M laboratory of Ecole des Mines de Nancy,

has developed the 2-dimensional finite element code R2SOL for the two-dimensional numerical
simulation of solidification processes.  R2SOL has the following characteristics:

•  Resolution of Navier-Stokes equations.

•  Arbitrary Lagrangian-Eulerian (ALE) formulation.

•  Thermal resolution in enthalpy formulation for the liquid-solid phase change.

•  Resolution of the transport equations for the alloying elements.

•  Coupling resolution of momentum, energy and mass conservation equations by a spatial
averaging approach, in order to model the thermo-solutal convection and predict the
macro-segregation. The mechanical behavior of metal is Newtonian in the liquid zone,
and the Darcy term is added in the mushy zone. The solid phase is assumed to be rigid and
stationary.

The first two points were developed by Laurence Gaston [1997] in her Ph.D. work on the
simulation of mold filling, leading to the software R2. A velocity-pressure P2+/P1 formulation was
used in R2 to solve the Navier-Stokes equations, and mesh updating was carried out by an ALE
method to describe the free surface.  Combining some procedures in the finite volume code SOLID
developed at Ecole des Mines de Nancy, Laurence Gaston [1999], in her postdoctoral period,
implemented the last 3 points in R2 to simulate the solidification processes, leading to the new
software called R2SOL.

Following those developments, the P1+/P1 formulation, using linear triangles for 2-
dimensional plane problems, instead of the quadratic P2+/P1 formulation, was implemented in
R2SOL by Alban Heinrich [2003] in his Ph.D. work on the two-dimensional thermomechanical
simulation of the steel continuous casting.

At the beginning of my thesis, in September 2001, the P1+/P1 mechanical solver was limited
to Navier-Stokes equations.

The main objectives of my work to develop the new version of R2SOL were then defined as
follows: 1) calculation of  macrosegregation; 2) calculation of stresses and deformations in the solid
phase, coupling with the natural convection in liquid phase. The related previous work of CEMEF
laboratory and remained problems are presented in the following paragraphs.

&DOFXODWLRQ�RI�VHJUHJDWLRQ
Like in the previous work of Laurence Gaston, we also assume that the solid phase is fixed

and rigid (both in the mushy zone and in the solid zone). The movement of liquid is driven by the
thermal-solutal convection. As shown in Figure 1-4, the behavior of the liquid metal is Newtonian.
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Fluid flow in the mushy zone obeys the Darcy’s law. A set of averaged conservation equations is

used to describe the transport phenomena. The previous work provides a good basis for the new

development. However, additional developments are needed to solve the remained problems and

extend the computational capacity:

•  the convergence rate of the resolution of the energy equation is relatively low; the energy

solver needs to be improved.

•  in the numerical solution, thermal shock (temperature oscillation) often appears near the

boundary.  The problem remains to be solved.

•  assuming that solutes diffuse infinitely both in the solid and liquid phases, lever rule as a

microsegregation model is used to predict macrosegregation. Scheil model (solutes diffuse

infinitely in the liquid phase, but do not diffuse in the solid phase) is to be implemented in

the new version of R2SOL.

•  prediction of macrosegregation by the old version of R2SOL is limited to small pieces;

additional developments are needed to compute macrosegregation in large industrial

ingots.

•  treatment of Darcy’s and inertia terms in the momentum equation is not as good. In some

cases, the resolution of velocity field is incorrect. Computations of these terms need to be

improved.

•  implementation of mesh adaptation to improve the numerical results.

•  extending the Navier-Stokes solver from the plane case to the axisymmetric case.

Figure 1-4 Schematic of the material behavior in R2SOLfor macrosegregation modeling

&DOFXODWLRQ�RI�IOXLG�IORZ�DQG�VROLG�GHIRUPDWLRQ
For coupling resolution of deformation in the solid and convection in liquid, CEMEF

laboratory has developed a 3-dimensional FEM software called THERCAST® (Jaouen [1998]).

Considering continuum medium as illustrated in Figure 1-5, the different behaviors of the metal are

clearly distinguished by the critical temperature TC, being thermo-viscoplastic (THVP) above TC

and thermo-elastoviscoplastic (THEVP) under TC. The Lagrangian scheme is used to compute the

deformation in solid regions, the computational grid is allowed to move with the material: this is

essential to treat the air gap between mold and casting. An arbitrary Lagrangian-Eulerian scheme is

used to compute the thermal convection in liquid pool and mushy zone, taking into account the

liquid contraction and the solidification shrinkage. This prevents the mesh from degenerating and

allows tracking the free surface. The unilateral contact condition is applied to the boundary between
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mold and casting. The heat transfer coefficient is determined by the size of air gap between mould
and casting.

 The same strategy as mentioned above is adopted in my work for 2-dimensional problems.
Some subroutines in THERCAST® to treat THEVP and THVP models can be used in R2SOL.

However, we need to do the following work:

•  extension of the material behavior from Newtonian to elastic-viscoplastic.

•  adaptations to the different coordinate systems (from 3D to 2D), particularly for the

axisymmetric case.

Figure 1-5 Schematic of the material behavior for stress-strain analysis

It should be noted that the mushy metal is considered as a single continuum in the

computation of deformation. That is to say, the liquid and solid in the mushy zone move together

with the same velocity.  While in the macrosegregation model the mushy metal is considered as a

two-phase medium, in which we assume that the solid is fixed and rigid, while the movement of the

liquid is taken into account.

1.4  Objectives and outline

������ 2EMHFWLYHV
In the framework of the project OSC (Optimisation des Systèmes de Coulée), the main

objectives of my Ph.D. work are as follows:

•  Computation of macrosegregation;

•  Mesh adaptation;

•  Computation of stress and deformation in the solidified zones.

It has been presented that many phenomena can affect macrosegregation. We have limited our

study to macrosegregation associated with thermo-solutal convection, as it has been stated that

macrosegregation results essentially from microsegregation and the relative movement between

solid and liquid phases. Firstly, natural convection occurs on the macro scale, transporting heat and

solutes through the whole casting. Secondly, latent heat release and solute rejection occur at the

micro scale, in the interdendritic space. It is impossible to solve the conservation equations at the

microscopic scale due to the complex morphology of grains and the computational cost. An

averaging approach is adopted following the previous works of Beckermann and Viskanta [1988].

The basic idea of the approach is to average the microscopic equations over a representative

Solid fraction
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elementary volume. This element is defined such that its size is small enough to capture the global
transport of energy, mass, concentration and momentum, but large enough to smooth out the details
of microscopic phenomena as the interdendritic fluid flow, latent heat release and solute
redistribution. A set of averaged governing equations is established and applied to predict
macrosegregation.

Fluid flow in the mushy zone close to the liquidus and in the liquid just ahead of the liquidus
is important in the formation of macrosegregation. Deeper in the mushy zone, close to the solidus,
dendrites are very compact, so that the permeability is very low and the velocity is nearly equal to
zero. Dramatic change of permeability occurs in the mushy zone close to the liquidus, resulting in
great variation of velocity field. This may lead to a boundary layer of velocity near the solidification
front. Therefore, in order to accurately capture the macrosegregation, finer meshes should be
applied in the region near the liquidus. Similarly, it is necessary to use fine mesh to capture pencil-
like freckles. As suggested in the pioneer work of Kämpfer [2002] for instance, mesh adaptation

seems to be an efficient numerical tool in this field. The automatic determination of the objective

mesh size is not an easy task and no reliable error estimators have been evidenced so far for the

complicated coupled solidification problems. For simplicity, we have decided to pilot the remeshing

procedure in order to get fine layers of elements within the mushy zone and ahead of the liquidus.

The adaptive mesh is created by using a mesh generator “MTC” developed at CEMEF (Coupez

[1991]).

The similar strategy as THERCAST® is adopted to model the fluid flow and the deformation

in solid. As has been stated in the previous section, only thermal convection in the liquid pool is

considered and solutal convection is not taken into account. The present work has consisted in

implementing the THEVP and THVP models in the 2 dimensional code R2SOL, especially for the

axisymmetric problem. This part of work has been done in collaboration with another Ph.D.

student, Alban Heinrich.

To summarize, there are two models in the scope of present study. The first model is used to

predict macrosegregation during dendritic columnar solidification of casting alloys. We assume that

the solid phase is fixed and non-deformable (both in mushy zone and solid zone). The behavior of

liquid metal is Newtonian. The liquid movement in the mushy zone follows the Darcy’s law. Not

taking into account the solid deformation and solidification shrinkage, the computational domain is

fixed. Hence, a Eulerian formulation can be used, associated with a mesh refinement strategy.

The second model is used to simulate shrinkage pipe, air gap and solid deformation. Here, the

mushy metal is considered as a continuum, without any relative movement between the solid and

liquid phases. Unlike the first model, the configuration of casting changes as a result of

solidification shrinkage and deformation in solid. Therefore, ALE formulation is used. The art of

numerical simulation is different from that of first model. The different models and their

computational capacity are summarized in the Table 1- 1.
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 Table 1- 1 models considered in the present study

Mushy zone Liquid movement induced by Solid deformation Prediction

Model I Two phases Thermal solutal convection No Macrosegregation

Model II Single
continuum

Thermal convection

Solidification shrinkage

Yes Pipe shrinkage

Stresses and strains in solid
(including air gaps)

������ �2XWOLQH
The bibliographic review is presented in chapter 2. In this chapter, firstly, we review the

pioneering work on macrosegregation of Flemings in the 1960s. Then, the modern numerical
models on macrosegregation are presented. Finally, we present models coupling fluid flow and
deformation in solid, which focus on the prediction of shrinkage pipe.

Regarding the objectives of my work, the thesis is decomposed into two parts. The first part is
the computation of macrosegregation with mesh adaptation. The second part is the computation of
deformation in solid.

The first part consists of chapters 3-5. Chapter 3 is devoted to the numerical approach to
prediction of macrosegregation. The algorithm for the mesh adaptation is presented in chapter 4.

Numerical results of macrosegregation are presented and discussed in chapter 5. The
computation of a benchmark test has been carried out. The influence of mesh size and time step on
the numerical results has been investigated. Finally, macrosegregation in an industry ingot has been
predicted by R2SOL. The results obtained by R2SOL are compared with other numerical models.

Coupling resolution of fluid flow and deformation in solid is presented in chapter 6. The
behavior of metal is extended from Newtonian to elastoviscoplastic.  Special attention is given to
the computation of tangent rheological modules in the axisymmetric case. The validation of thermal
elastoviscoplastic model has been done by some simple tests. The computational results of a
benchmark test are shown, as well as an application to an industrial ingot.
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&KDSWHU���

%LEOLRJUDSKLF�UHYLHZ

5HYXH�ELEOLRJUDSKLTXH�±�5pVXPp�HQ�IUDQoDLV

Concernant la macroségrégation, les premières analyses dues à Flemings sont passées en

revue. Dans ces travaux, le phénomène est analysé analytiquement et expérimentalement. Un

premier modèle numérique est proposé, en prenant en compte l’écoulement liquide interdendritique

et le transport de soluté dans la zone pâteuse. Ceci permet une première compréhension de la

macroségrégation.

La revue est ensuite focalisée sur les modèles de prise de moyenne spatiale, qui sont comparés

aux modèles issus de la théorie des mélanges. Ces deux méthodes simples d’homogénéisation sont

en effet une manière de traiter le changement d’échelle existant entre micro et macroségrégation.

Les concepts de base de la prise de moyenne sont alors présentés. Le principe consiste à moyenner

les équations de conservation établies à l’échelle microscopique (masse, quantité de mouvement,

énergie, espèces chimiques) sur un volume élémentaire représentatif (v.e.r.) de la zone pâteuse

(liquide-solide).

Dans l’étude des phénomènes de macroségrégation, la representation de l’écoulement de

liquide dans la région proche de la surface isotherme à la température de liquidus s’avère capitale,

car on y trouve des gradients de vitesse importants, dûs aux variations importantes de la

perméabilité. Par conséquent, dans le but d’améliorer la précision des calculs, certains auteurs, tels

Kämpfer et Rappaz ont mis en œuvre des méthodes de raffinement dynamique des grilles de calcul

qui sont présentées.

Concernant l’aspect thermomécanique (distorsions et contraintes), différents modèles de

prédiction des retassures primaires sont analysés dans la section 2.2. On note en particulier que dans

la plupart des cas, le total des pertes de volume correspondant au retrait à la solidification et à la

dilatation thermique est affecté à la formation de la retassure primaire. A l’évidence, cette analyse

est pour le moins contestable, puisqu’elle néglige complètement le volume correspondant à la

formation des lames d’air entre pièce et moule. Dans la continuité des certains travaux menés

préalablement au laboratoire, l’objectif est donc de tenir compte de cette complexité au moyen

d’une analyse thermomécanique plus fine.
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&KDSWHU��

%LEOLRJUDSKLF�UHYLHZ

2.1 Macrosegregation models

Around 1967, M.C. Flemings and coworkers published a series of papers (Flemings HW� DO.
[1967, 1968A, and 1968B]). They examined analytically and experimentally macrosegregation,
which results from interdendritic fluid flow. Considering the fluid flow in the mushy zone, they
established the first model of macrosegregation called Local Solute Redistribution Equation,
leading to a comprehensive understanding of the formation of macrosegregation. Since then,
numerical models coupling fluid flow in the mushy and in the bulk liquid have been developed to
predict macrosegregation.

Following history of macrosegregation models, firstly, we present the basic theory and the
model of Flemings in section 2.1.1.  Secondly, we focus on the models coupling fluid flow in the
mushy zone and in the bulk liquid in sections 2.1.2. The present work on macrosegregation is based
on these models. In section 2.1.3, we review numerical models with mesh adaptation.

������ )OHPLQJV¶�PDFURVHJUHJDWLRQ�PRGHO
Before reviewing Flemings’  macrosegregation model, we briefly present the basic theory for

microsegregation that has been stated in the textbook "Solidification processing" of Flemings

[1974].

0LFURVHJUHJDWLRQ
Solute enrichment in the interdendritic liquid during solidification results in

microsegregation. As shown in Figure 2-1, redistribution of solute in the dendrite and in the

interdendritic liquid can be described by the two simple models: 1) instantaneous diffusion of solute

in the solid and liquid phases (lever rule); 2) non-diffusion in the solid and instantaneous diffusion

in the liquid (Scheil model).

Figure 2-1 Basic microsegregation models
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For a binary alloy with a partition coefficient N, solidified in a closed one-dimensional space,
the lever rule and Scheil models can be  expressed by the following equations (2-1) and (2-2)
respectively:
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where 0Z  is the initial mass concentration; OZ  is the mass concentration in the liquid phase; VI , OI
are the mass fractions of solid and liquid respectively.

In addition, if we assume that the solid density Vρ and the liquid density Oρ  are constant and
equal, that is:

constant=== ρρρ VO   (2-3)

this implies that the mass fraction is equal to the volume fraction. Thus, we will use the terms VROLG
IUDFWLRQ and OLTXLG�IUDFWLRQ, and, unless specified, we will not distinguish anymore between mass
and volume fractions.

/RFDO�VROXWH�UHGLVWULEXWLRQ�HTXDWLRQ
By performing mass and solute balances over a representative elementary volume

characteristic of the macroscopic scale shown in Figure 2-2, Flemings HW�DO. derived equation (2-4),
called “local solute redistribution equation” (LSRE). The solute enters and leaves the elementary

volume only because of the transport by the liquid flow, and diffusion is neglected at the

macroscopic scale.

Figure 2-2 Schematic of interdendritic liquid flow through a fixed dendritic solid network
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where 
V

OV

ρ
ρρβ −

=  is the solidification shrinkage; Y  is the intrinsic averaged liquid velocity;

7∇ is the temperature gradient; 7& is the rate of temperature change, W
77

∂
∂=& .

The LSRE model demonstrates how interdendritic liquid flow is responsible for
macrosegregation. The physical significance of equation (2-4) can be understood by the following
remarks:

1. When  there is no solidification shrinkage and no relative movement of the liquid, β  and Y
both vanish in equation (2-4), the equation reduces to the Scheil equation (2-2), implying no
macrosegregation.

2. Equation (2-4) reduces to the Scheil equation when the liquid velocity is just that required to
feed solidification shrinkage. For simplicity, considering steady unidirectional solidification,

the velocity of moving isotherm can be expressed as 7
7

∇
− &

. Applying the mass conservation

equation, we have  
β

β
−

=∇
17

7
&

Y
. Hence, equation (2-4) becomes the Scheil equation.

3. If the flow velocity in the direction of increasing temperature is so large that the term in the
square brackets in equation (2-4) becomes negative, local melting occurs, leading to the
formation of segregation channel. The details of discussion on flow instability can be found
in the literature (Mehrabian HW�DO. [1970]).

Mehrabian HW� DO. [1970] proposed that the interdendritic fluid flow driven by solidification
contraction could be calculated by Darcy’s law. Taking into account the gravity force on fluid, the

equation for calculating Y  is given by:

)(
K JY O

O

SI ρ
µ

−∇−=   (2-5)

where, µ  is the viscosity; K is the permeability;  S∇  is the pressure gradient; J  is the gravity

vector.

Mehrabian HW� DO. [1970] applied the LSRE equation (2-4) and Darcy’s equation (2-5) to

horizontal, unidirectional, steady-state solidification ingots with aluminum-copper alloys.

Numerical results showed that the parameter 7
7

&

∇⋅Y
 has a marked effect on segregation.

Furthermore,  "A" and "V" segregations in commercial ingots were interpreted by the LSRE model.

Kou HW�DO. [1978] applied the LSRE model to predict the macrosegregation in rotated ingots

with Sn-Pb alloys.  The centrifugal  force was considered as an additional term in equation (2-5).

The macrosegregation predicted by the calculation agreed well to the experimental results.

In the previous works of Mehrabian and Kou, the temperature field in the mushy zone was

either assumed or measured to serve as an input to the analysis of fluid flow. Fujii HW�DO. [1979]

extended the LSRE model to macrosegregation in multicomponent low-alloy steel. For the first

time, the momentum (Darcy’s) equation and energy equation were coupled and solved

simultaneously.
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������ &RXSOLQJ�IOXLG�IORZ�LQ�WKH�PXVK\�DQG�EXON�OLTXLG�]RQHV

�������� 7KH�ILUVW��PXOWL�GRPDLQ�PRGHO
The first macrosegregation model coupling the flow in the mushy zone and in the bulk liquid

was reported by Ridder HW� DO. [1981]. The steady axi-symmetric solidification problem was
considered, such a case being encountered in different casting processes, e.g. vacuum arc refining,
electroslag remelting and continuous casting. The computational domain was decomposed in two
regions: the mushy zone and the pure liquid zone. The interdendritic fluid flow driven by
solidification shrinkage was calculated by solving Darcy’s and LSRE equations. Temperature-

induced natural convection in the bulk liquid was calculated by solving the stream function. An

iterative procedure involving the resolution of the two sets of equations was performed as follows:

1) calculating the pressure, velocity and fraction of liquid in the mushy zone;

2) calculating the natural convection in the bulk liquid;

3) repeating procedures 1) and 2) to get consistent solutions in the mushy zone and in the

bulk liquid zone. Coupling computation in the two domains was performed by applying

the boundary condition to the liquidus isotherm. The pressure at the liquidus isotherm

obtained in the step 2) was used as a boundary condition to compute the fluid flow in the

mushy zone. While the velocity at the liquidus isotherm obtained in the step 1) was used

as a boundary condition to compute the natural convection in the bulk liquid. When the

pressure at the liquidus isotherm had stabilized, the concentration distribution in the

mushy zone was obtained finally.

The model of Ridder was validated by solidification tests with Sn-Pb alloys. The temperature

profiles, the sizes and shapes of mushy zone were controlled and measured in the experiments.

Experimental data were used for initial values and boundary conditions in the numerical resolution.

Good agreement between experiment and simulation was obtained.

5HPDUNV
Two distinct equations, discretized by a differential method, were used to compute the

velocities in the mushy and bulk liquid zones. The interface between the mushy zone and the bulk

liquid zone was determined by the liquidus isotherm. In the case of steady solidification, the

liquidus isotherm is fixed, and it does not evolve with time. So that it is not necessary to track the

interface in the numerical resolution; and a fixed and conforming mesh can be used. The

conforming mesh means that the nodes at the boundary of two regions coincide.

In Ridder’s work, the concentration in the bulk liquid was assumed to be homogeneous, and

solutal convection was neglected.

The multi-domain model of Ridder is not suitable for the non-steady case, for which the

liquidus isotherm moves during the solidification. It is indeed difficult to track the phase interface

and generate a conforming mesh dynamically.

�������� &RQWLQXXP�PRGHOV�EDVHG�RQ�PL[HG�WKHRU\
In order to overcome the difficulty of the multi-domain approach, single-domain continuum

or volume-averaged models have been proposed by several researchers. These models consist of a

single set of equations, which can be applied to the solid, mushy and liquid regions. Therefore, the
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equations can be solved on a single and fixed grid. The phase interfaces are implicitly defined by
the enthalpy and the solute concentration fields.

The first single-domain continuum models were developed in the eighties (Bennon and
Incropera [1987A], Voller and Prakash [1987], Voller HW�DO. [1989]). Such models were developed
from volume averaging techniques based on classical mixture theory. In these models, the mushy
zone was viewed as a solid-liquid mixture with macroscopic properties, and individual phase
conservation equations were summed to form a set of mixture conservation equations.

Bennon and Incropera [1987B] applied their continuum models to the solidification of a
binary NH4-H2O alloy. “A” segregations, for the first time, were predicted by a numerical approach.

Single domain models were demonstrated to be efficient tools for simulating solidification

processes.

However, there were some misunderstandings in the development and application of the early

continuum models. For instant, in the case of dendritic solidification, the net interaction between

liquid and solid phases was postulated to exist, and the net force was computed by the Darcy’s law.

The net interaction as internal force in the system was not clearly understood. Voller HW�DO. [1989]

identified the mushy fluid models, and indicated that the net force existed in the case of columnar

dendritic solidification, while the force vanished for the flow of amorphous materials (e.g. waxes,

the equiaxed zone).

Later, Prescott HW� DO. [1991] clarified the mixture continuum models. They introduced

Newton’s third law, and reconsidered the interaction between liquid and solid phases. Assuming

that the solid phase was non-deformable and fixed, Prescott HW�DO. demonstrated that the momentum

equation based on the mixture theory was equivalent to the equation that was deduced from the

averaging approach. Although the equivalent equation has been obtained by the mixture continuum

and volume-averaged models, the continuum model has a shortcoming of weak linkage between

micro and macro phenomena.

�������� 9ROXPH�DYHUDJHG�PRGHOV
Beckermann and Viskanta [1988] proposed a volume-averaged model, to predict the double-

diffusive convection during dendritic solidification of a binary alloy. The macroscopic conservation

equations were rigorously derived from microscopic (exact) equations. The derivation procedure

was presented more systematically by Ganesan and Poirier [1990]. More recently, Bousquet-Melou

HW�DO� [2002] proposed a non-homogeneous dendritic solidification model, in which all the terms

arising from the averaging process (micro- and macro-contributions to momentum transport due to

phase change and geometry) were estimated and compared on the basis of the characteristic length

scale associated with the dendritic structure.

As volume averaged models deal clearly with the relationship between microscopic and

macroscopic parameters, a volume averaged approach to predict macrosegregation has been

adopted in the present work. For completeness we briefly remind the basic conceptions of the

averaging technique, and then give an example, the mass conservation, to show the derivation

procedure to average the conservation equation. The general volume averaging technique can be

found in the literature (Gray [1975], Hassanizadeh and Gray [1979], Gray [1983]).

Consider a representative elementary volume 9∆ as shown in Figure 2-3, we have the

following definitions and theorems.
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Figure 2-3  Volume used to average the conservation equation

'HILQLWLRQ 2.1.1 3KDVH� LQGLFDWRU� IXQFWLRQ αχ . The phase indicator function αχ is a function of
space [ and time W, being equal to 1 in phase α  and zero elsewhere:





Ω∉
Ω∈

= α

α

αχ [
[W[

 if0

 if1
),( (2-6)

'HILQLWLRQ 2.1.2 9ROXPH�IUDFWLRQ�RI�SKDVH α . It is defined as:

∫∆ ∆
∆=

∆
=

9 9
9GYW[9J α

αα χ ),(
1

(2-7)

where α9∆ is the portion of 9∆ that is occupied by the α  phase. In addition, for the two phases
α and β system, we have:

1=+ βα JJ (2-8)

'HILQLWLRQ 2.1.3 9ROXPH�DYHUDJHG� TXDQWLW\ αψ . The volume-averaged quantity of a variable
ψ (scalar, vector or tensor) in phase α  is defined as:

∫∆∆
=

9
GYW[W[9 ),(),(

1
αα χψψ (2-9)

If ψ  is the velocity of the interdendritic liquid, its volume average is also called superficial
velocity.

'HILQLWLRQ 2.1.4 ,QWULQVLF� YROXPH�DYHUDJHG� TXDQWLW\ α
αψ . With respect to the phase α  it is

defined as:
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α
α

α
α
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∆
∆=

∆
= ∫∆

(2-10)

The relation between the average value and the intrinsic average value of ψ is as follows:

α
α

αα ψψ J=
(2-11)

7KHRUHP 2.1.1 7HPSRUDO� GHULYDWLYH� RI ψ . The relationship between the average of the time
derivative and the time derivative of the average is given by:
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    G$9WW QZ (2-12)

where α$ is the interfacial area between the phaseα  with other phases, Q is the outward unit normal
of the infinitesimal element of area G$ , and Z is the velocity of the microscopic interface.

7KHRUHP 2.1.2 6SDWLDO� GHULYDWLYH� RI ψ . The relationship between the average of the spatial
derivative and the spatial derivative of the average is given by:

∫ Ω∂∆
+∇=∇

βα
βα

ααα ψψψ
/

/1
    G$9 Q (2-13)

Now let us deduce the macroscopic mass conservation equation for the solidification system
by using the definitions and the theorems. Consider the following microscopic mass conservation
equation (2-14) for the liquid phase:

                       ( ) 0    =⋅∇+
∂

∂
OO

O

W Yρρ
 (2-14)

where OY is the microscopic velocity of the liquid. Multiplying by 9O ∆/χ and integrate over
9∆ yields:

0)(
11 =⋅∇

∆
+

∂
∂

∆ ∫∫ ∆∆ 9 OOO9 O
O GY9GYW9 χρχρ Y (2-15)

Applying Theorem 2.1.1 to the first term in equation (2-15) and Theorem 2.1.2 to the second
term, leads to:

  OOO
O

W Γ=⋅∇+
∂

∂
      Yρ

ρ
(2-16)

with  ∫ ⋅−
∆

−=Γ
O$

VOVO
OOO G$9

// )(
1

  QZYρ (2-17)

Similarly, we can deduce the macroscopic mass conservation equation for the solid phase, and
obtain:

VVV
V

W Γ=⋅∇+
∂

∂
     Yρ

ρ
(2-18)

with  ∫ ⋅−
∆

−=Γ
V$

OVOV
VVV G$9

// )(
1 QZYρ (2-19)

In the equations (2-16)-(2-19), the terms NΓ  (N�= O, V, solid and liquid respectively) represent
the interfacial transfer associated with phase change (solidification or melting). Note that in the case
of a two-phase solidification system, we have VOOV // Ω=∂Ω∂ , VOOV // ZZ = , VOOV // QQ −=  and mass gained
by the solid equals to the mass lost by the liquid, consequently, OV Γ−=Γ . Adding equations (2-16)
and (2-18), we get:
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[ ] [ ] 0     =+⋅∇+
∂
+∂

VVOO
VO

W YY ρρ
ρρ

(2-20)

We define the average density ρ  and the average momentum Yρ for the liquid and solid
mixture as follows:

                                VO ρρρ +=   (2-21)

                                VVOO YYY ρρρ +=    (2-22)

Then, equation (2-20) can be written as:

                                0     =∇⋅+
∂

∂ Yρ
ρ
W (2-23)

In the case of stationary solid phase, and if the densities of the solid and liquid are equal and
constant. Equation (2-20) can be written as:

0  =⋅∇ OY (2-24)

In the same way one can deduce the macroscopic conservation equations of momentum,
energy and solute, these equations will be presented in the next chapters.

Continuum or volume averaged models provide useful tools to simulate the macroscopic
transport phenomena during solidification. These models have been applied to prediction of
macrosegregation in steel ingots (Vannier [1995], Gu and Beckermann [1999]); however, the
numerical predictions show only quantitative agreement with experimental results. In particular, the
fact that equiaxed solidification and grain transport has been neglected explains that such models
fail in the prediction of negative macrosegregation in the bottom of large ingot.

Recently, considerable progresses have been made to account for nucleation, grain growth,
the movement of both liquid and solid phases and coupling microsegregation. Combeau HW�DO�[1998]
and Beckermann [2000] have summarized these models.

������ 0RGHOLQJ�RI�VROLGLILFDWLRQ�ZLWK�PHVK�DGDSWDWLRQ
As it has been discussed, macrosegregation arises from micro and macroscopic solidification

and transport phenomena. Using the volume averaged model, one can predict fluid flow and
associated transport phenomena at the scale of a casting system. However, computation on a coarse
mesh yields low accurate prediction. For example, generally the mesh size used for ingots is of the
order of centimeter. It is then impossible to capture the fluid flow in the segregated channels. The
width of A-segregated channels can be at a scale of about one millimeter (Combeau HW�DO. [1998]).
In order to increase the computational accuracy, the mesh adaptation is needed.
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Based on the averaged model, Kämpfer [2002] has proposed an adaptive domain

decomposition method to predict macrosegregation. The overall computational domain is

discretized using a coarse mesh, on which the energy conservation equation is solved. According to

the temperature and solid fraction obtained, the mushy, solid and liquid zones are determined. The

critical zone for macrosegregation is the narrow region near the liquidus, where the velocity of

liquid and the concentration gradient are quite different from zero, as shown in Figure 2-4 (a) and

(b). The critical zone is discretized using a much finer mesh as shown in Figure 2-4 (c). Then, the

fluid flow and solute transport equations are solved on the different meshes. An iterative procedure

is performed to couple the resolutions on the two meshes and match the boundary condition, as

shown in Figure 2-4 (c) and (d).

Figure 2-4 The critical regions during columnar solidification processes with respect to buoyancy driven flow
and the associated solute profile in the liquid, from Kämpfer [2002]. (a) distinguished zones of solid, mushy

and liquid; (b) profiles of liquid concentration and velocity of liquid; (c) a coarse mesh in the domain of bulk

liquid OΩ , and a much finer mesh in the critical region PΩ ; (d) iterative procedures

In Kämpfer [2002] work, the energy equation is solved only on the coarse mesh. The reason is

that the thermal diffusion is sufficiently large and the temperature field is quite smooth, so that the

resolution on the coarse mesh can be considered to be a good approximation. The energy and solute

equations are solved by the streamline upwinding Petrov-Galerkin (SUPG) approach, while the

momentum equation is solved by the Galerkin least squares (GLS) approach.

The refinement of the mesh is achieved by subdividing the coarse parent element (the level of

mesh refining is controlled by the user) as shown in Figure 2-4 (c). This results in non-conforming

meshes in the two regions. A special mortar method is used to match the boundary conditions at the

interface between the two regions. This method assures the continuity of the field and its normal

derivative through the iterative procedure.
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The efficiency of this domain decomposition method has been validated. Figure 2-5  shows
the velocity field and the map of macrosegregation, predicting the formation of freckles. We can see
that a freckle is captured on the finer mesh.

Figure 2-5 Prediction of freckles in unidirectional solidification with mesh adaptation,  Kämpfer [2002]

Mencinger [2004] has proposed another mesh adaptation method for the melting process of
pure metal with the natural convection. The single-domain model is used which does not require the
tracking of the solidification front. In order to enhance the precision, an adaptive structured grid is
adopted. The grid density is controlled by a user-defined function. For instance, the function can
depend on the normal of the gradient of enthalpy or the step-function with the ‘step’ at the mold

walls. Fine grids near the solidification front and the boundary of cavity are obtained by solving the

user-defined function with partial differential equations (Laplace operator). However, the method

appears to be limited to structured mesh. The melting process is modeled by solving enthalpy and

momentum equations on the structured adaptive mesh. Figure 2- 6 shows an example of the

adaptive mesh.

5HPDUNV
Although the averaged single-domain model can simulate the macroscopic solidification

using a fixed mesh, the adaptive mesh is also needed to improve the numerical results. Following

Kämpfer’s work, we have proposed a method for computing macrosegregation with mesh

adaptation. Unlike Kämpfer’s work, an adapted single conforming mesh is generated, without

boundary between the fine and coarse regions. Resolutions for averaged conservation equations of

energy, solute and momentum are carried out on the whole domain and the iterative procedure to

couple fields in the mushy zone and bulk liquid zone is not needed. Concurrently, the use of

unstructured adapted meshes makes the method more general than the one developed by Mencinger.
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Figure 2- 6 An example of mesh adaptation, Mencinger [2004]: streamlines, temperature field and grid

2.2 Solid deformation and pipe formation

Pipe shrinkage results from the volume change of solidification, as well as contraction in the
liquid and solid phases. Risers are designed to compensate the volume contractions. Modeling of
pipe is important for ingots and large castings, because in these cases one should pay attention to
the size and shape of risers. In order to predict the pipe, we need to consider the fluid flow with free
surface. In addition, thermal contraction and dilation induce the deformations in the solidifying
casting and the mold, and consequently affect the heat exchange at the interface. Heat transfer with
fluid flow and thermal mechanics are actually coupled. Numerical simulation of such a complicated
problem is characterized by the arts to treat the free surface of liquid and deformation in solid.

Hereunder, we review models of pipe formation. Firstly, the general methods to treat free
surface in the fluid mechanical models are presented. Secondly, an approach to the coupled
resolution of fluid flow and deformation in solid is introduced.

������ )OXLG�PHFKDQLFDO�PRGHOV
 Roch HW�DO. [1991] proposed a simple method to compute the free surface in the solidification

of an ingot. As shown in Figure 2-7, the feeding is considered as perfect: at each time increment,
the incremental shrinkage volume is assigned to the pipe formation and the liquid feeding cannot be
interrupted by an excessive pressure drop arising from a too low permeability of the mushy zone.
The volume change ∆V at each time step can be calculated as follows:

GW7W7GWJ9
W

W
V

WU∫ +∆=∆
2

1

)))((3( && αε (2-25)

where WUε∆ is the ratio of volume variation due to solidification, VJ&  the change rate of solid volume
fraction, ))(( W7α  the coefficient of the linear thermal expansion depended on the temperature,7&  the
temperature rate.

Then, the descent level of liquid is determined by equation (2-26).
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6
9K ∆=∆ (2-26)

Figure 2-7  Schematic of the pipe

This approach is easy to carry out and effective. But if there are two or more risers in the
casting system, how to assign the incremental shrinkage volume ∆V to the different risers? This
would need specific additional rules to be calculated. Another problem is that the sum of local
volume contraction is entirely assigned to pipe growth, which is not true. Solid contraction
occurring in the solidified zone contributes to the air gap between the casting and mold, but not to
the pipe.

Chiang and Tsai [1992A,1992B] firstly used the continuum mixture model to simulate
shrinkage-induced fluid flow and natural convection in alloy solidification. A rectangular cavity
with a riser located on the top is considered. The cavity is cooled at the bottom surface, while all of
the other surfaces are adiabatic. The solidification process is modeled on a fix and regular grid. The
free surface at the top of riser is assumed to be flat due to thermal condition, and the movement is
one-dimensional. In fact, this model is not able to predict the shape of pipe shrinkage because of
special treatment of free surface.

 Kim and Ro [1993] reported an approach to model the solidification of pure metal ingots.
The general conservation equations of heat, mass and momentum are solved. The coordinate
transformation ( ),,( W[[ ξη=  and ),,( W\\ ξη= ) is used to handle the moving domains of liquid and
solid. The downward velocity of the free surface is determined from the mass conservation over the
liquid phase. However, the method can not be used for alloy ingots.

Based on the classical mixture theory, Barkhudarov HW� DO.[1993] used a single set of
conservation equations to model the fluid flow during solidification. The VOF algorithm is used to
treat the free surface problem. In VOF algorithm, a function ) is equal to zero in the void regions
and to unity in the regions occupied by the fluid. The governing equation for the VOF is:

0    )(     =⋅∇+
∂
∂= 9)W
)

GW
G) r

(2-27)
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in order to take into account solidification shrinkage,  a source term VO6  is added into the equation
(2-27), and the equation is expressed as:

VO69)W
) −=⋅∇+

∂
∂

  )(  
r

(2-28)
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where 90 is the total cell volume open to the fluid, ∆0VO is the liquid mass solidified in the cell over
time ∆t, ρV and ρO are the densities of the liquid and solid phases respectively.

The solidification process of an aluminum sand casting has been modeled. Figure 2-8 shows
the shrinkage cavity forming at the top of casting. We can see the fluid flow induced by the
shrinkage and the pipe formation.

Figure 2-8 Results of the shrinkage formation.The dashed line constitutes the solidification front and short
straight-lines represent the feeding velocities, Barkhudarov HW�DO� [1993]

Ehlen HW�DO. [2000] adopted a similar approach to treat the free surface as Barkhudarov�HW�DO�
[1993]. A set of averaged conservation equations is used to predict the pipe formation and
macrosegregation. A cylinder Al7wt%Si ingot (H=107mm, R=40mm) has been cast in the cast iron
chill mold to validate the model. Figure 2-9(a) and (b) show the distribution of computed
temperature and solid fraction after 30 s and 80s respectively. The free surface has been fully
developed at 80s, the calculated shape is in good agreement with the experimental result as shown
in Figure 2-9(c).

Considering the shrinkage induced fluid flow, Ehlen HW�DO. [2000] has predicted the inverse
segregation. In the condition of dendritic growth, a high solute concentration exists in the
interdendritic liquid. This liquid is drawn toward the dendrite stalks on the cooling face by
solidification shrinkage, leading to high solute concentration at the outer region of the casting. This
is known as inverse segregation, which is opposite to normal solute concentration distribution: low
concentration at the outer region and high concentration at the center.

W  = 74.99 s.

W =350.0 s. W = 400.0 s.

���W =225.0 s.
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                     (a) time =30 s         (b)  time = 80 s             (c) experiment

Figure 2-9 Results of the shrinkage cavity formation, Ehlen HW�DO. [2000]

 Naterer [1997] proposed a control-volume based finite-element method to simulate the
solidification shrinkage. The continuum mixture model is used. The governing equations are
discretized linear quadrilateral elements. The free surface is handled by the adapted mesh through
coordinate transformation, avoiding the classical problem of numerical diffusion in VOF algorithm.

������ $�WKHUPDO�PHFKDQLFDO�PRGHO
For predicting the pipe formation, the models based on fluid flow as mentioned above do not

consider the air gap associated with the solid deformation. Bellet HW�DO� [2004] have developed a
thermal mechanical model to predict pipe formation, coupling fluid flow and deformation in solid.
The main idea has been presented in section 1.4, and the model has been implemented in the code
THERCAST®. By comparing with other methods, this approach has the advantage of taking into

account the deformation of the whole casting.

The unilateral contact condition is applied to the boundary between mold and casting. The

contact is treated by the penalty method. This allows calculating the gap between mold and casting.

The ALE scheme is used to compute the fluid flow in liquid pool and mushy zone, this allows

tracking the free surface.

The thermal mechanical model has been applied to simulate solidification process of a large

part. The part is characteristic by its size (2.5×7.0×1.0 m), weight (125 tons) and chemical

composition (close to pure iron). Using symmetry conditions, only half of the casting has been

calculated. The average mesh size of the part is approximately 0.10 m. The pipe shapes computed at

2 h, 28 h and 55 h are shown in Figure 2- 10  as well as the distribution of liquid fraction. The final

shapes between calculation and measurement show a reasonable agreement.

Temperature Solid fraction Temperature Solid fraction
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time = 2 h                                    time = 28 h                                 time = 55 h

Figure 2- 10 Evolution of pipe shrinkage, with liquid fraction distribution

To summarise, the thermal mechanical approach to the prediction of pipe formation is very
encouraging:

•  modelling of the fluid flow driven by difference of density and solidification shrinkage in
liquid and mushy zones, and the deformation of solidifying  part simultaneously;

•  the influence of the part deformation on the pipe formation has been taken into account.

•  Proper  tracking of the free surface.

It is one of our tasks to implement such model in R2SOL.

0.00.0 0.0

1.0 0.9 0.35
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&KDSWHU���

0RGHOLQJ�RI�PDFURVHJUHJDWLRQ

0RGpOLVDWLRQ�GH�OD�PDFURVpJUpJDWLRQ�±�5pVXPp�HQ�IUDQoDLV

Ce chapitre constitue une des contributions principales et est consacré à la présentation du

modèle développé. Les hypothèses adoptées ainsi que les principales équations sont tout d’abord

exposées. Les différentes stratégies de résolution sont ensuite discutées : couplage faible ou fort lors

de la résolution incrémentale des différentes équations, résolution en système fermé ou ouvert de la

conservation des solutés, ce dernier point étant en continuité par rapport aux travaux de Vannier et

Combeau dans le logiciel de volumes finis SOLID.

Dans le cadre de l’approche fortement couplée en système ouvert, le modèle de

microségrégation considéré est la règle des leviers, en système ouvert, et la formation d’un

eutectique est prise en compte. Des itérations sont alors effectuées à chaque incrément de temps, de

manière à résoudre de manière consistante les différentes équations de conservation et à satisfaire le

modèle de microségrégation.

En approche non couplée, la solidification est considérée localement en système fermé, c’est-

à-dire que la relation entre fraction de liquide et température est fixée en fonction de la

concentration locale en début de solidification. Dans ce cadre, le modèle de Scheil peut également

être utilisé, en plus des leviers. Les détails des modèles numériques et les stratégies de résolution

sont présentées en section 3.1 et 3.2. La résolution des équations des modèles de microségrégation

est exposée en section 3.4.

Pour la résolution du problème thermique, les méthodes SUPG et d’« upwind » nodal ont été

implantées dans le logiciel R2SOL. Par ailleurs, cette résolution a été rendue plus robuste d’une part

par la programmation d’une méthode de recherche linéaire, facilitant la convergence de la méthode

de Newton-Raphson, et d’autre part par l’utilisation de la méthode dite « cond-split » préalablement

développée au Cemef. Le solveur thermique est présenté à la section 3.3. La resolution du transport

de soluté utilise la même formulation SUPG et est détaillée en section 3.5.

En ce qui concerne la résolution du problème de mécanique des fluides (section 3.6), le

solveur pré-existant utilisant des éléments P1+/P1 a été étendu aux écoulements axisymétriques, ce

qui a nécessité des développements particuliers pour les termes d’inertie et de perméabilité. Une

formulation P1/P1 stabilisée par moindres carrés a également été utilisée et est présentée.

La section 3.7 est consacrée aux différents tests ayant servi à la validation de ces différentes

formulations.
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&KDSWHU��

0RGHOLQJ�RI�PDFURVHJUHJDWLRQ
The present chapter is dedicated to the modeling of macrosegregation in columnar dendritic

solidification. Firstly, in section 3.1 we present the hypotheses and averaged conservation equations
for energy, solute, mass and momentum. The resolution strategy and computational organization in
the two-dimensional finite element code R2SOL are introduced in section 3.2.

Then, we focus on the resolution of energy, solute and momentum equations in sections 3.3 to
3.6. Followed, the validation tests will be presented in section 3.7.

For clarity, we omit the averaging notation ⋅  that has been used in section 2.1.2.3. For
example, we note simply 9 for the average velocity in liquid instead of OY .

3.1 Governing equations

������ +\SRWKHVHV
The analysis of fluid flow, temperature and solute distribution for the solidification system is

based on the following hypotheses:

•  The liquid flow is laminar, Newtonian, with a constant viscosity µ , and the solid phase is fixed
and non deformable. The mixture is saturated, L�H., 1=+ OV JJ , with VJ  denoting the volumic
solid fraction and OJ  the liquid one.

•  The analysis is restricted to a binary alloy.

•  The mushy region is modeled as an isotropic porous medium whose permeability Κ  is defined
by the Carman-Kozeny formula as follows:

180/)1( 232
2

−−=Κ OO JJλ (3-1)

      where 2λ  is the secondary dendrite arm spacing.

•  The solid and liquid densities are equal and constant, 0ρρρ == VO , except in the buoyancy term
of the momentum equation where density depends on the temperature 7 and the solute mass
concentration in liquid OZ  according to the following linear approximation:

))(  )(  1( 0 UHIOZUHI7 ZZ77 −−−−= ββρρ (3-2)

 where: 
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   is the  solutal expansion coefficient;
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UHI7  and UHIZ  are the reference temperature and reference mass concentration respectively, at

which the liquid density takes its value 0ρ .

•  Thermodynamic equilibrium exists at the liquid-solid interface, L.H., at the interface we have:

                                                   OV 777     * == (3-3)

                                            and  **   OV NZZ = (3-4)

where V7  and O7  are the temperatures for the solid and liquid, respectively. VZ  and OZ  are the
mass concentrations for the solid and liquid respectively. The superscript * indicates the
interface value.

Moreover, within an elementary representative volume, we assume that the temperature is
homogeneous, L.H., OV 777      == ,  because the thermal diffusion is sufficiently large.

•  Furthermore, in order to simplify the treatment of the phase diagram of the binary alloy system,
the liquidus and solidus are approximated by straight lines. For example,  Figure 3-1 shows the
equilibrium phase diagram for the Pb-Sn system. In the mushy state for the hypo-eutectic part of
the diagram (that is a weight percentage of Sn less than 61.9%), we have the following
relations:

                                                       *    OI PZ77 += (3-5)

                                                       constant    
*

*

== NZ
Z

O

V (3-6)

where I7  is the melt temperature of pure Pb; N partition coefficient (<1); P liquidus slope (<0);

Above 61.9% Sn, similar relations can be written with I7  melt temperature of pure tin and Z
the weight percentage of lead.

 Figure 3-1 The equilibrium phase diagram for the Pb-Sn alloy
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������ &RQVHUYDWLRQ�HTXDWLRQV
•  0DVV�FRQVHUYDWLRQ

Assuming that the solid and liquid densities are equal and constant, the mass conservation
equation gives:

0  =⋅∇ 9
(3-7)

where 9 is the average liquid velocity (the solid is fixed). For the details of derivation procedure
one can refer to section 2.1.2.3.

•  0RPHQWXP�FRQVHUYDWLRQ
Following the work of Ganesan and Poirier [1990], with the hypotheses stated in section

3.1.1, one can deduce the averaged momentum conservation equation for the liquid phase as
follows:

9J9999
OOO

O

JJSJJW Κ
−+∇−∇⋅∇=×⋅∇+

∂
∂ µρµρρ      )(  )(   0

0 (3-8)

where S is the intrinsic pressure in liquid and J the gravity vector.

The permeability K tends towards infinity in the pure liquid region, and then equation (3-8)  is
reduced to the Navier-Stokes equation. In the region where the liquid fraction is lower, the
permeability tends to zero and the last term in equation becomes dominant, while inertia and
rheological terms vanish, yielding the Darcy’s relation (2-5).

•  6ROXWH�FRQVHUYDWLRQ
Redistribution of solute at the macroscopic scale is governed by the equation:

( ) 0     =∇⋅∇−⋅∇+
∂
∂

OO ZZW
Z ε9 (3-9)

where ε  is a diffusion coefficient: OO J'=ε , where O'  denotes the diffusion coefficient in the liquid

phase. Usually the diffusion term is negligible, and one can take an arbitrarily small value ε  for the

numerical stability.

•  (QHUJ\�FRQVHUYDWLRQ
The energy equation can be written in an enthalpy form as follows:

( ) 0     0 =∇⋅∇−




 ⋅∇+

∂
∂ 7+W
+

O λρ 9 (3-10)

where λ  is the average thermal conductivity; +  is the volume averaged specific enthalpy; O+ is

the volume averaged specific enthalpy in the liquid phase.

Assuming that the specific heat for the solid is equal to the one for the liquid, being SF , and

denoting /  the latent heat of fusion per unit of mass, we have the following relations:

The volume averaged specific enthalpy of the solid V+ :
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                                           ∫=
7

7 SV GF+  

 0

τ (3-11)

The volume averaged enthalpy of the liquid O+ :

                                            /GF+ 7

7 SO   
 

 0

+=∫ τ (3-12)

The volume averaged enthalpy + for the mushy metal:

                                            /JGF+J�+J+ O

7

7 SVOOO      )  1(    
 

 0

+=+= ∫ τ (3-13)

In the case of a given constant specific heat SF  and taking the reference temperature 0 0 =7 ,

the definitions of the volume averaged enthalpies of the solid, liquid and mushy metal can be
rewritten as follows:

                                            solid for the                      7F+ SV = (3-14)

liquid for the                /7F+ SO += (3-15)

           metalmushy  for the                /J7F+ OS += (3-16)

With these assumption, the energy equation can be rewritten as:

( ) 0     0 =∇⋅∇−




 ⋅∇+

∂
∂ 77FW
+

S λρ 9 (3-17)

3.2 Resolution strategy

������ &RXSOLQJ�WKH�HTXDWLRQV
Before detailing the resolution for the conservation equations of energy, solute, and

momentum, we briefly present the resolution strategy. This strategy is the same as that used in the
finite volume code SOLID (Vannier [1995]).

There are two unknown variables in the energy equation (3-17). The average enthalpy +  is
chosen as the primary unknown. In order to eliminate the temperature 7 , 7 is considered as a
function of +,  and is computed by the approximation of the first order of Taylor’s expansion:

)()(   *** +++
777 −

∂
∂+= (3-18)

In the liquid and solid states, we have 
SF+

7 1
  =

∂
∂

. In the mushy state, +
7

∂
∂

 is determined by the local

thermal equilibrium for the mushy metal accounting for the latent heat release. Since the latent heat

release depends on the microsegregation models, heat release during solidification makes the energy

equation highly non-linear. Therefore, a Newton-Raphson method is used to solve for the primary

unknown+ . When a converged solution for+ is obtained, the temperature 7 and the liquid

fraction OJ can be deduced from the relations (3-5), (3-13) and the local microsegregation model, for

instance the lever rule model. This will be explained in section 3.4.
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In the solute transport equation (3-9), there are also two unknown variables, the average mass
concentrationZ , and average mass concentration in liquid OZ . To solve the solute transport
equation one can choose either Z  or OZ  as the primary unknown. The relationship betweenZ  and

OZ  is also depending on the microsegregation model.

The mixed velocity-pressure P1+/P1 formulation is used to solve the weak form of the
momentum equation (3-8) together with a weak form of the mass conservation equation (3-7). In
the momentum equation, the temperature 7 and average solute mass concentration in liquid OZ
appear in the buoyancy term. The permeability K appearing in the Darcy term is a function of the
liquid fraction OJ . 7 , OZ  and OJ  rely on the resolution of heat and solute equations. On the other
hand, the liquid movement affects the heat and solute transport. Thus, the resolution of  momentum,
energy and solute equations are coupled.

The general organization of the computational resolution is illustrated in Figure 3-2. In each
time step, energy, solute and momentum equations are solved in this order. Two approaches, named
QR�FRXSOLQJ and �IXOO�FRXSOLQJ, have been implemented in R2SOL.

Figure 3-2 Resolution strategies to predict macrosegregation

In the QR�FRXSOLQJ approach, we locally fix the solidification path in the resolution of energy
equation. L.H., the liquidus temperature and solidus temperature are locally fixed according to: 1) the
initial nominal concentration; 2) the local solute concentration just before solidification, which
allows to take into account the solute enrichment in the liquid pool. The details will be presented in
section 3.3. In the QR�FRXSOLQJ approach, within each time step we solve the equations of energy,
solute and momentum, without any iteration to get consistent fields of temperature, solute
concentration and velocity. Actually, as the solidification path is locally fixed in the mushy zone,

���5HVROXWLRQ�RI�HQHUJ\�HTXDWLRQ
 Calculate +,  using

���5HVROXWLRQ�RI�VROXWH�HTXDWLRQ
 In the full-coupling approach we solve for Z,
 are computed in the microsegregation model.

 In the no-coupling approach we solve for Z
O 
,

 is computed in the microsegregation model.

�����������5HVROXWLRQ�RI�PRPHQWXP�HTXDWLRQ
  Calculate 9��S

  Local micro-segregation model
    (lever rule or Scheil model)

  we deduce�7(+), �7��+,��JO,�ZO

  and�Z

QR�FRXSOLQJ

IXOO�FRXSOLQJ

IXOO�FRXSOLQJ�approach  reduced to RQH�LWHUDWLRQ

7(+) and �7��+

Z

 ZO and�J
O
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the resolution of solute transport equation is not coupled with the resolution of energy equation. The
solidification in the mushy zone is treated as a closed system. After solving the energy equation we
get the new fields of liquid fraction OJ and temperature 7 . Those new values are used in the
resolution of the solute equation.

In the full-FRXSOLQJ approach, the solidification of a binary alloy in the whole casting is
considered using an open approach. After resolution of energy and solute equations, we have a
consistent set of variables: the enthalpy+ , the temperature7 , the liquid fraction OJ , and the
average concentrationZ , which satisfy the local thermal equilibrium with the lever rule. Iterations
can be performed within each time increment to give converged consistent resolutions that satisfy
the three governing equations. This type of resolution is called IXOO\�FRXSOHG�UHVROXWLRQ. Since the
computational cost of the IXOO\� FRXSOHG� UHVROXWLRQ may be expensive, one can solve the three
governing equations with only one iteration in each time step (IXOO�FRXSOLQJ, reduced to RQH
LWHUDWLRQ)�
������ 7KH�ILQLWH�HOHPHQW�VROYHU

In convection dominated problems, it is well known that spurious oscillations may appear in
the finite element resolution of the advection-diffusion equations, when they are discretized by the
standard Galerkin method (Rappaz�HW�DO. [2002]). In order to overcome this numerical difficulty, an
explicit nodal upwind method has been used so far to treat advection terms in R2SOL (Gaston
[1999]). This method consists of computing the upstream trajectory of the material particles.
Following the previous work, the nodal upwind method has been used in the present work, and
some improvements in the solvers for the energy and momentum equations will be detailed in the
sections 3.3 and 3.6 respectively.

Alternately, the Streamline-Upwind/Petrov-Galerkin (SUPG) method introduced by Hughes
and Brooks [1979] can be considered as a successful stabilization technique to prevent oscillations
in the convection dominated problems. The first step to develop the streamline upwind methods has
been achieved by introducing some artificial diffusion in the streamline direction, using a modified
test function for the advection term only. The modified test function gives more weight to the
upwind nodes. This leads to the so-called SU (streamline upwind) method. Then, the stabilized test
functions have been applied to all terms of the weak form, not only the advection term. This leads
to the consistent formulation of the finite element method, named SUPG. Thereby, the SUPG
method is often used for the advection-diffusion problems. A good review of the SUPG
stabilization approaches can be found in Fries HW�DO. [2004].

In the resolution of momentum equations, besides the advection problem, instability arises
from the selection of interpolation functions for velocity and pressure (Rappaz� HW� DO. [2002]).
Historically, these problems have been solved using the P1+/P1 formulation in R2SOL, which will
be presented  in section 3.6.

For the incompressible Navier-Stokes equations, the SUPG and PSPG (Pressure-
Stabilizing/Petrov-Galerkin) stabilized methods have been proposed by Tezduyar HW� DO. ([1992],
Tezduyar and Osawa [2000]. Comparing the treatment of incompressibility constraint in  the mixed
P1+/P1 formulation, PSPG scheme is an alternative stabilized method. The stabilization is
guaranteed by the additional term which consists of a perturbation 1⋅∇9 τ  multiplied with the
residual of the momentum equation,τ being the stabilization parameter, and 1 being the
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interpolation function for the pressure. It should be mentioned that in the PSPG formulation one can
use an equal-order interpolation function for the velocity and pressure fields.

More recently as a first attempt, we have implemented the SUPG formulation for the energy
equation and, in collaboration with Victor Fachinotti and Michel Bellet, the SUPG-PSPG
formulation for the momentum equations. The new development has been used to simulate the
formation of macrosegregation. The new method will be presented after the old one.

3.3 Resolution of the energy equation

The thermal analysis of the solidification process of a casting is performed using the energy
conservation equation (3-10) with the following boundary and initial conditions:

                                      LPS77     =                                       on   TΩ∂ (3-19)

                                      LPS7 φλ    =⋅∇− Q                             on   qΩ∂ (3-20)

                                      )(   H[W77K7 −=⋅∇− Qλ                   on   cΩ∂ (3-21)

                                       init    77 =                                     at   0   =W (3-22)

Where: TΩ∂ is the boundary of the domain Ω occupied by the casting on which the temperature LPS7
is imposed;

            qΩ∂ is the boundary on which the outward heat flux LPSφ  is imposed;

            c Ω∂ is the boundary on which the heat exchange is defined by the heat exchange coefficient

K  with the external temperature H[W7 ;

            LQLW7  is the initial temperature.

A nodal upwind and a SUPG method are used. Firstly, we present the nodal upwind method
following Gaston’s work [1999]. Then, the new solver based on the SUPG method is detailed.

Further, we present improvements resulting from our personal contribution regarding convergence

and treatment of thermal shocks.

������ 5HVROXWLRQ�ZLWK�WKH�QRGDO�XSZLQG�PHWKRG

�������� 7LPH�GLVFUHWL]DWLRQ
The enthalpy of the liquid phase, is a function of time and space. Its derivative, following the

liquid particles at the average velocity 9, can be expressed as:

9⋅∇+
∂

∂
=><

O
OO +W

+
GW
+G

      (3-23)

Then, the energy equation (3-10) can be rewritten as:
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( ) 0    0 =∇⋅∇−





∂

∂
−+

∂
∂ >< 7W

+
GW
+G

W
+ OO λρ (3-24)

Let WW
O+ ∆−  be the liquid enthalpy at point [, but at the previous time step; WW

O+ ∆−~
 the liquid

enthalpy at time WW ∆−  of the particle which, at time W, is at the same position [. The total and partial
derivatives of the liquid enthalpy are approximated by the following implicit finite difference
expressions:

)
~

(
1

  WW
O

W
O

O ++WGW
+G ∆−>< −

∆
≈ (3-25)

)(
1

  WW
O

W
O

O ++WW
+ ∆−−

∆
≈

∂
∂

(3-26)

For simplicity, the superscript 0 is used instead of WW ∆−  for any quantity, and the superscript
W  is omitted for the quantity at time W . Substituting equations (3-25) and (3-26) into equation (3-
24), one can write the energy equation in semi-discretized form:

( ) 0    
~

  
000

0 =∇⋅∇−





∆
−

+
∆
− 7W

++
W
++ OO λρ (3-27)

5HPDUN
The particle value of a scalar quantity at time WW ∆− is computed by an upwind transport

approach that will be discussed in the section 6.2.4.

�������� 6SDWLDO�GLVFUHWL]DWLRQ
The computational domain is decomposed into triangle elements. The P1 linear interpolation

functions 1  are used. The standard Galerkin method is applied to equation (3-27), leading to:

                     [ ]{ } [ ]{ } [ ]{ } [ ] { } { } 0      
~

             ) ,( 000 =−−+= )++�+�7+7+5 OO00.0 (3-28)

with:

                      Ω
∆

= ∫ Ω
G11W MLLM  

0    ][
ρ

(3-29)

                      [ ] ∫∫ Ω∂Ω
Γ+Ω∇⋅∇=

F

G1K1G11 MLMLLM  
      λ.

(3-30)

                     { } ∫∫ Ω∂Ω∂
Γ+Γ−=

FT

G1K7G1) LH[WLLPSL      φ
(3-31)

The enthalpy +  is chosen as the primary unknown; the temperature 7  is treated as the first
order Taylor’s expansion (3-18). The discretized equation (3-28) then becomes:

                  [ ] [ ] { } [ ] { } [ ] { } { } [ ] { } { })+++7++ OO   
~

     ][            ][   00***0* +−+






∂
∂−−=







∂
∂+ 0+

7.0+
7.0

(3-32)
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Where *7 and *+  are intermediate temperature and averaged enthalpy respectively in the Newton-

Raphson iterations. 
*






∂
∂
+
7 is a diagonal matrix computed by the intermediate value of *+ .

In the old version of R2SOL, the diagonal terms in 
*






∂
∂
+
7  are  averaged using the values of

three nodes in the triangle element. The enthalpy +  is obtained directly by solving equation (3-32)
through an iterative procedure.

Now, we have re-written the equation (3-32) in the standard form of Newton-Raphson,
denoting Q the iteration number:

                 { } ) ,( -  ][ )()()( QQQ 7++ 5+
5 =

∂
∂ δ (3-33)

                [ ] [ ] { } [ ] { } [ ] { } [ ] { } { }

) ,( -                                          

  
~

              ][   

)()(

00)()(0)(

QQ

OO
QQQ

7+5

)++7+++

=

+−+−−=






∂
∂+ 0.0+
7.0 δ

(3-34)

This time, the variation in enthalpy +δ is calculated in each iteration,  and then the enthalpy and the
temperature are updated as follows:

                  +++ QQ δη     )()1( +=+  with   10 ≤<η (3-35)

                   )(  )1()1( ++ = QQ +77 (3-36)

where η  is a coefficient determined by a linear search method (Saleeb HW DO. [1998]), which will be
presented in section 3.3.3.

5HPDUNV�

•  The energy equation is highly non-linear due to the solidification. Although the
convergence rate of Newton-Raphson method is quadratic, the resolution becomes
difficult when the trial solution is far from the solution. The linear search method is then
used to control the increment of enthalpy and to improve convergence.

•  The matrix ][ +
7

∂
∂

 is diagonal.  The values of the diagonal terms are not identical due to

the solidification. Thus, the stiffness matrix in equation (3-33) is non-symmetric. In the

previous version of R2SOL, the average value of +
7

∂
∂

 in each triangle element was used

to generate a symmetric stiffness matrix, ,+
7 H

+
7








∂
∂=




∂
∂ . But this strategy may lead to

non-convergence. In this work, we preferred to form the non-symmetric stiffness matrix.
The PETSC (Portable Extensible Toolkit for Scientific Computation) solver, instead of
the old linear equation solver in R2SOL, has also been implemented to solve the non-
symmetric equation (3-33). The details of PETSC solver can be found in the web site
(PETSC [2003]).
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•   As we know, the value of +
7

∂
∂

 is zero when eutectic transformation occurs. In the old

version of R2SOL and in SOLID, +
7

∂
∂

 takes a small value, e.g. 
SF+

7
10

1=
∂
∂

, during the

eutectic transformation. Now we prefer to take the true value, 0=
∂
∂
+
7

, in the case of

eutectic transformation, the convergence resolution is achieved easily.

������ 5HVROXWLRQ�ZLWK�WKH�683*�PHWKRG
In the context of the finite element method, the general weak form of the energy equation (3-

17) can be expressed as follows:

         ( ) 0  d        0 =Ω





 ∇⋅∇−





 ⋅∇+

∂
∂∀ ∫Ω 77FW
+

S λρϕϕ 9 (3-37)

where ϕ  is the test function.

In the classical Galerkin method (Szabó and Babuška [1991], Rappaz�HW�DO. [2002]), the test

function is selected identical to the interpolation function of the solution approximation, L.H., 1= ϕ .

For the convection-dominated problem, the Galerkin method suffers from spurious oscillations and

may not be used in practice. Therefore, the SUPG test function is used,� L.H., 111 ⋅∇+== 9 ~
 τϕ ,

whereτ is the stabilization parameter and will be detailed soon in the following text. The weak form

of energy equation can be then expressed by:

         ( ) 0  d    
~

    0 =Ω





 ∇⋅∇−





 ⋅∇+

∂
∂∀ ∫Ω 77FW
+11 S λρ 9 (3-38)

Equation (3-38) can be expanded as follows:

  0 )(   )(  
~

   
~

   
   0 0 =∇⋅∇∇⋅−Ω∇⋅∇−Ω⋅∇+Ω

∂
∂∀ ∫∫∫∫ ΩΩΩΩ

G71G71G7F1GW
+11 S λτλρρ 99

(3-39)

Applying the Green’s theorem to the third term in equation (3-39) and using the boundary

conditions (3-20) and (3-21), one obtains:

          

[ ] 0 )(  -  )(         
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~

   

   

  0 0
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H[WLPS

S

λτφ

λρρ

9

9
(3-40)

Re-arranging the terms in equation (3-40), yields:
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=Ω
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G17G7F1GW

+11

S
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S
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λρρτ

φ

λρρ

99

9

(3-41)
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Following Tezduyar and Osawa [2000], the last integration in equation (3-41) presents the
stabilization term which consists of a perturbation 1⋅∇9 τ multiplied by the residual of energy
equation. Later, this stabilized strategy will be used again in the SUPG-PSPG formulation for the
momentum equations. In the case of linear elements, the stabilized diffusion term vanishes, leading
to:

          

            

0         

 )(         

         

 00

  

  0 0

=Ω



 ⋅∇+

∂
∂⋅∇+

Γ−+Γ+

Ω⋅∇∇+Ω⋅∇+Ω
∂
∂∀

∫

∫∫
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Ω∂Ω∂

ΩΩΩ

G7FW
+1

G77K1G1
G17G7F1GW

+11

S

H[WLPS

S

FT

99

9

ρρτ

φ

λρρ

(3-42)

In order to discretize equation (3-42), now we apply the implicit scheme to the time derivative
term. Integrating each term over the computational domain, we then have:

                 [ ]{ } [ ]{ } [ ]{ } [ ]{ } { } 0                ) ,( 0
supsupsup =−++= )+�77+7+5 JJJ 0.$0 (3-43)

with:

                      Ω∇⋅+
∆

= ∫Ω
G111W MLLLMJ  

0
sup )(   ][ 9τρ

                      ∫Ω
Ω⋅∇∇⋅+= G111F MLLSLMJ 99$ )(   ][ 0sup τρ

                      [ ] ∫∫ Ω∂Ω
Γ+Ω∇⋅∇=

F

G1K1G11 MLMLLM  
      λ.

                     { } ∫∫ Ω∂Ω∂
Γ+Γ−=

FT

G1K7G1) LH[WLLPSL      φ

{ }0+ is the vector of nodal enthalpies at previous time step. The stabilized SUPG test
function  is defined by (Hughes and Brooks [1979], Zienkiewicz and Taylor [1989]):

                      
N

LN
LLL [

19K11
∂
∂







+==     
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~
  

e
9

θϕ (3-44)

where
H

N9






9  denotes the unit velocity vector, estimated at the center of the element. θ  is an

upwind parameter, which can be optimized as a function of the mesh Peclet number K3H
(Zienkiewicz and Taylor [1989] ):

                                  
K

K

3H
3H 2

    
2

coth −=θ (3-45)

The mesh Peclet number is defined as: 
α
K3HK
  ⋅

=
9

. K is the characteristic length of a triangle

element H in the direction of velocity vector, being approximated by (Tezduyar HW�DO. [1992]):

                                   1
3

1

)(  2 −

=
∑ ⋅∇=
D

D1K 99 (3-46)
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where D1 is the interpolation function associated with node D�and 9  is the norm of the average

velocity vector. ) /( 0 SFρλα = , being the thermal diffusivity.

Like in the nodal upwind resolution in section 3.3.1, the enthalpy +  is chosen as the primary
unknown, the temperature 7  is treated using its first order Taylor’s expansion. Newton-Raphson

method is used to solve the non-linear equation. Then the iterative resolution scheme can be written

as follows:

          
[ ] [ ] [ ]( ) { }

[ ] { } [ ] [ ]( ){ } { })7�++

7+5+
Q

J
Q

J

QQQ
JJ

                                                                              

) ,( -     ][    
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)()()(
supsup

++−−=

=






∂
∂++

.$0
+
7.$0 δ

          and +++ QQ δη     )()1( +=+    with   10 ≤<η

(3-47)

As can be seen by comparing equation (3-34) with (3-47), to implement the SUPG

formulation in R2SOL, we have just created a new module to compute the stiffness matrix and the

residual at the element level. The organization of the code for solving the non-linear energy

equation remains the same. For this reason, in the following text we focus on the nodal upwind

method to discuss our improvement for the energy solver.

������ ,PSURYHPHQW�RI�FRQYHUJHQFH
•  3UHVHQWDWLRQ�RI�SUREOHPV

Because of the high non-linearity of the energy equation, the Newton-Raphson method may

not converge if the starting point is far from the desired resolution even when using a non-

symmetric consistent matrix, as mentioned above. In order to secure the convergence, we have

rewritten the Newton-Raphson resolution with a line search scheme. The concept of the line search

is to minimize the total potential energy, that is the work done by the unbalanced residual force due

to the solution increment (Crisfield [1982]).

•  �$�OLQH�VHDUFK�VFKHPH
Newton-Raphson scheme for solving the energy equation has been given by equations from

(3-33) to (3-36). With the line search scheme, the enthalpy + is updated by +++ QQ δη     )()1( +=+ .

The value of η  being different from the standard value 1 used in the standard method.

For the line search method, a suitable value of the scalar η  must be found, such that the

“work” done )(ηV by the unbalanced residual vector 1+Q5  in the direction of +δ vanishes, that is to

say:

                             0    )  (  )( )( =⋅+= +++5V Q δηδη (3-48)

In the above equation, +δ results from equation (3-33). Of course, it is not realistic to find the

value of η  that satisfies the condition of equation (3-48), L.H., 0 )1( ≡+Q5  is achieved.  For practical

purpose, we try to find the value of η , such that the potential energy decreases:

                              WROV
V β
η

η ≤
= )0(

)(
 (3-49)

where WROβ  is the line search tolerance, typically 8.0  =WROβ  (Crisfield [1982]).
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We define two inner products, 0V  and 1V , representing the bounds for the searching iterations.

                             +5VV Q δη      )0  (  )(
0 ⋅=== (3-50)

                              +5VV Q δη      )1  (  )1(
1 ⋅=== +

(3-51)

Following the work of Saleeb HW�DO. [1998], the line search scheme is carried out to find the
value of η  between 0 and 1. Figure 3-3 and Figure 3-4 show four possibilities. But the case most

frequently encountered is that shown in Figure 3-3, that is the case of 0 10 <⋅ VV , indicating there

exists a suitable value of η , such that the condition of equation (3-48) can be met. In the figures ‘0’

denotes the point )0  (  0 == ηVV  and ‘1’ denotes the point )1  (  1 == ηVV , the two points ‘0’  and ‘1’

are corresponding to the bounds for line search. As shown in Figure 3-3, the point ‘2’ (denotes the

point 
0

2

V
V

 ) is found by using 2η , 2η  is computed by the interpolation using the values of the point

‘0’ and the point ‘1’. The successive values Lη are then estimated according to the “secant” method

that we have also used to solve some equations in our microsegregation models (see section 3.4.2).

Figure 3-3 Schematic for the interpolation

Figure 3-4 Schematic for the extrapolation
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Figure 3-4 shows the cases of extrapolation. Extrapolation could result in a very large value of
η ,  leading to an excessive number of iterations or divergence. In the present work, a relaxation
formulation is used to update the new value as follows:

                                +++ QQ δ 85.0    )()1( +=+
 (3-52)

•  &RQYHUJHQFH�FULWHULRQ�IRU�1HZWRQ�5DSKVRQ�LWHUDWLRQV
The criterion to terminate Newton-Raphson iterations is as follows:

                                   tolerance
)(

)()1(

   WKHUPDOQ

QQ

+
++ ε≤−+

(3-53)

In equation (3-53), the condition denotes that the relative variation of enthalpy for each node
is smaller than the prescribed tolerance value of WROHUDQFH

WKHUPDOε . For the solidification problem, the

tolerance value of WROHUDQFH
WKHUPDOε  is in the range of 56 10  10 −− − .

������ 7UHDWPHQW�RI��WKHUPDO�VKRFN

�������� 3UHVHQWDWLRQ
Thermal shock, L.H., the occurrence of steep thermal gradients near the boundaries, often

appears in the modeling of solidification of casting. It causes temperature time and space-
oscillations in the numerical resolution using the standard Galerkin finite element method with
linear interpolation function (Menaï [1995]). The temperature oscillations lead to wrong solutions

that do not satisfy the maximum principle (local extrema occur inside the domain). For the thermal

mechanical analysis, the problem can be serious in some cases, as the material behavior is

temperature and history dependent.

In practice, the following methods have been used to avoid spurious oscillations in heat

conduction analysis.

•  Adopt a sufficiently large time step, say WVW∆ , to satisfy the penetration depth

condition (Menaï [1995]):

                                  2   
4
1 [FW S

WV ∆=∆
λ

ρ (3-54)

Where ρ , SF and λ are the density, specific heat and thermal conductivity respectively.

[∆ is the mesh size in the first layer of elements near the boundary.

•  Lump the capacity matrix, the off-diagonal terms being summed on the diagonal. The

modified capacity  matrix is then:

                                       [ ] [ ]∑
=

=
3

1
 

N
LNLM

/
LM 00 δ

(3-55)

Where LMδ is the Kronecker delta,  1=LMδ if L = M, 0 =LMδ otherwise. It has been proved that

“lumped capacity” in FEM is equivalent to FVM in the 2-dimensional problems (Rappaz

HW�DO. [2002]).
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•  Apply the so-called “Taylor Galerkin Discontinuous” (TGD) method (Pichelin [1998]).

P0 elements are adopted, L.H., the temperature within an element is constant. In the early

work, we have used the explicit TGD approach to calculate the temperature at element

level, then the temperature at each node is computed by a smoothing technique. However,

the temperature field is not satisfying for the computation of macrosegregation (Liu

[2003]).

•  Based on the matrix theory (Ortega [1970]): an 0-matrix (a real, non-singular QQ×
matrix $�is�an 0�matrix if 01 ≥−$  and all its off-diagonal components are non-positive)

satisfies the positive transmissibility condition, which guarantees to obtain the

maximum/minimum of the solution only at the initial time or at the boundary. Putti and

Cordes [1998], using 2-dimensional Delaunay meshes, has demonstrated that the linear

Galerkin approach to the Laplace operator (the diffusion term) results in an 0-matrix (the

diffusion matrix). Further, by lumping the capacity matrix, the stiffness matrix (being the

sum of the diffusion and capacity matrix) for a transient heat conduction problem

becomes an 0-matrix.

•  At Cemef Fachinotti and Bellet[2004] proposed a so called “diffusion-split” method to

overcome the difficulty in modeling of solidification with THERCAST®. This method

has been implemented in R2SOL, and it is presented in the following text.

�������� �'LIIXVLRQ�VSOLW�PHWKRG
For simplicity, let us consider the heat equation without phase change, with boundary

conditions (3-20) and (3-21):

                    ( ) 0    0 =∇⋅∇− 7GW
G7F S λρ (3-56)

Applying the standard Galerkin method and the fully implicit scheme, the heat equation can

be discretized as follows:

                     [ ] { } { } [ ] { } { } 0       W
  

 
0

=−+ )7�7 .0 (3-57)

where [ ]0 , [ ]. and { }) are the heat capacity matrix, conductive matrix and thermal load vector

respectively, and they have been already defined in equations (3-29), (3-30) and (3-31).

{ }7 and { }07 are the temperature vectors at time W  and time WW ∆− respectively.

Recognizing that the thermal shock problems are associated with the stiffness matrix (Putti

and Cordes [1998]), Fachinotti and Bellet [2004] proposed a method based on the splitting of the

diffusion term, in order to improve the conductive matrix as follows:

                    [ ] { } { } [ ] { } { } { }6)�7�7
      W

  
 *

0

=+ .0 (3-58)

Where

                    { } [ ] [ ]( ){ }**      76 .. −= (3-59)

                   [ ] ∫∫ Ω∂Ω
Γ+Ω∇⋅∇=

F

G1K1G11 MLMLLM  

*
 

*        λ. (3-60)
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{ }6  as an explicit source term appears in equation (3-58). An augmented conductivity *λ  is defined
to satisfy the penetration depth condition for W∆ :

                          *











∆
∆

=

W
W WVλ

λ
λ                   

WW

WW

WV

WV

∆>∆

∆≤∆

if

if

(3-61)

The value of *λ  decreases linearly with time from the value given by equation (3-61) at 0  =W  to the
real conductivity value λ when WVWW ∆≥ . The time step WVW∆ can be determined by equation (3-54) at
the beginning of simulation.

Regarding the explicit source term { }6  that consists of a known temperature, 07 at time
WW ∆− can be used as an approximation, leading to:

                     { } [ ] [ ]( ){ }0*      76 .. −≈
(3-62)

It is interesting to note that during the early stages of the simulation, there is no sensible
variation of the temperature outside the regions submitted to thermal shocks, and hence the
approximation implied by equation (3-58) is local and temporary.

Also, it should be noted that a priori determination of the time step WVW∆ for a solidification

problem might be more complicated. In this case, an effective heat capacity HII
SFρ accounting for

the latent heat release, instead of SFρ , should be used in equation (3-54). In fact, for an element

undergoing phase change, HII
SFρ is considerably greater than SFρ , and it also varies greatly with

time. Hence, WVW∆ should be determined at each time step until the thermal shock effects completely

disappear. This makes it very difficult to estimate WVW∆ during the computation.

 Fortunately, the thermal shock has a relative short-term effect, it disappears since the thermal
diffusion has been developed in a few time steps. For a solidification problem, provided that the
initial temperature is not too close to the liquidus temperature (L.H., solidification does not occur
during the first time steps of computation), the thermal shock can be controlled before the
beginning of solidification. Hence, the determination of *λ  remains valid in this case.

In R2SOL, following the work of Victor Fachinotti, we rewrite equation (3-28) as:

               [ ]{ } [ ]{ } [ ]{ } [ ] { } { } [ ]{ }0000*         
~

              7)+++7+ DGGOO .00.0 ++−+=+  (3-63)

with

               [ ] ∫∫ Ω∂Ω
Γ+Ω∇⋅∇=

F

G1K1G11 MLMLLM  

**       λ.  (3-64)

               [ ] ∫Ω Ω∇⋅∇−= G11 MLLMDGG )  (   * λλ.  (3-65)

In equation (3-63), *.  is the modified diffusion matrix, in which the conductivity *λ  has been
augmented according to equations (3-54) and (3-61). The last right hand side term in equation (3-
63) accounts for the additional splitting source term. The resolution is performed in the usual
manner, by the Newton-Raphson method.
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The solidification processes of a 3.3 ton steel ingot with insulated top surface have been
simulated by R2SOL, using 1) the linear P1 elements (the standard Galerkin method with the
diffusion split method); 2) the P0 elements (the explicit TGD method). Pure heat conduction with
phase change, without fluid flow, is considered in the thermal analysis. The geometric and physical
data of the ingot and the mold can be found in Appendix A. The computational results are shown in
Figure 3-5. Figure 3-5 a) shows the temperature distribution in the ingot after 2 hours. The
temperature field obtained by the TGD method is shown on the left hand,  the result of the standard
Galerkin method is shown on the right hand. The temperature profiles obtained at 15 s, 10 min, 1
hour, 2 hours and 6 hours, along a horizontal section at the height of 900 mm from the bottom of
mold, are shown in Figure 3-5 b). The temperature fields obtained by the two methods are quite
close, being free from temperature fluctuations.

Figure 3-5 Comparison of the diffusion split method with the TGD method

To summarize the section 3.3, we would conclude that the energy equation is solved by an
enthalpy scheme. In the nodal upwind approach, the equation is discretized spatially by the standard
Galerkin method, and a fully implicit scheme is used for the temporal discretization. The
convection term in the energy equation is treated by a nodal upwind scheme.

The new solver based on the SUPG formulation have been implemented in  R2SOL.

The problem of thermal shock has been solved by the “diffusion-split” method.

Regarding the highly non-linear solidification problem, we have improved the Newton-

Raphson method with a line search scheme. The PETSC solver has been implemented to solve the

non-symmetric matrix equation. These improvements lead to a robust and efficient energy solver.

Diffusion split

   TGD

b) temperature profiles at different timesa) temperature in the ingot after 2 hours

      solidification

Diffusion split      TGD

90
0 

(m
m
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3.4 Resolution of microsegregation equations

In this section, we focus on the computation of thermal variables, such as the temperature
7 and the liquid fraction OJ  HWF., knowing the average enthalpy+ and the average concentrationZ .
Following the work of Isabelle Vannier [1995] and its implementation in the finite volume software
SOLID, two cases are considered hereunder. The first case is the solidification of a binary alloy
with eutectic transformation. The second case is the solidification of steel and more generally,
multicomponent alloys.

������ %LQDU\�DOOR\V�ZLWK�HXWHFWLF�WUDQVIRUPDWLRQ
The linearized phase diagram of a binary alloy is presented in Figure 3-6. For simplicity, it is

assumed that the solute diffuses perfectly both in the solid and liquid phases, and then the lever rule
applies. It is also assumed that the specific heat SF  is a constant. The evolution of the average

enthalpy as a function of temperature is shown in Figure 3-7.

Figure 3-6 Phase diagram for a binary eutectic alloy. I7 is the melting temperature of the pure material. For

an alloy with an average concentrationZ , solidification begins at temperature OLT7  and ends at the eutectic

temperature HXW7 . At  a given temperature 7 , we have the liquid phase with the concentration OZ  and the

solid phaseα with the concentration VZ . While at the eutectic temperature HXW7 , the liquid phase with the

concentration HXWZ  transforms into two solid phases α  and β , their concentrations being denoted by 1VZ
and 2VZ  respectively.

7eut

7I

Z%Zs2ZeutZs1

 L + β L + α
 α

  β

  α + β

Z

7V 7O7

Zs Zl

7OLT 7I���PZ
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Figure 3-7 Relationship between average enthalpy and temperature. OLT7  is the liquidus temperature,

associated with the enthalpy OLT+ . HXW7  is the eutectic temperature. The eutectic transformation occurs in a

range of enthalpies, it begins at VHXW+  ,  and ends at VRO+ . /  is the latent heat of fusion.

Now, we deduce the temperature, the liquid fraction and the concentration in the liquid phase,
using the average enthalpy and the average concentration. This is achieved by two steps. Firstly, we
determinate the important phase change points on the enthalpy-temperature curve as illustrated in
Figure 3-7, so that the state of a point can be determined, either in the solid, liquid or mushy state.
Then, we calculate the temperature7 , the concentration in liquid phase OZ , the liquid fraction OJ
and +

7
∂
∂

.

•  'HWHUPLQDWLRQ�RI�WKH�SKDVH�FKDQJH�SRLQWV�RQ�WKH�HQWKDOS\�WHPSHUDWXUH�FXUYH
The liquidus temperature OLT7  and associated enthalpy OLT+  can be  computed  by equations

(3-66) and (3-67), using the thermal equilibrium hypothesis (3-5) and the definition of the average
enthalpy (3-13).

                            PZ77 IOLT     += (3-66)

                            /7F+ OLTSOLT      += (3-67)

According to the average concentration, the solidus temperature VRO7  is computed using either
equation (3-68) or equation (3-69).  The corresponding enthalpy VRO+  is given by equation (3-70).

                            N
ZP77 IVRO      += ,      if 1VZZ< (3-68)

                            HXWVRO 77   = ,             if 1VZZ≥ (3-69)

                            VROSVRO 7F+   = (3-70)

Following the phase diagram, the liquid fraction O
VHXWJ , , at the eutectic point can be calculated

using equation (3-71). Equation (3-72) gives the enthalpy VHXW+ ,  below which the eutectic

transformation takes place.

+HXW�V

7eut 7OLT

 L

�+sol

+
+

+OLT

7
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1

1
 ,   

   
    

VHXW

VO
VHXW ZZ

ZZJ
−

−
= (3-71)

                             O
VHXWHXWSVHXW J/7F+  , ,       += (3-72)

•  &DOFXODWLRQ�RI��WKHUPDO�SDUDPHWHUV
Knowing the values of enthalpy OLT+ , VHXW+ ,  and VRO+ , we can identify 4 cases: 1) OLT++≥ , the

alloy is in the liquid state; 2) VRO++≤ , in the solid state; 3) OLTVHXW +++ <≤, , in the mushy state; and

4) VHXWVRO +++ ,<< , in the eutectic transformation. According to these different states, the thermal

parameters can be determined respectively.

1) OLT++≥ , the alloy is in the liquid state, we have:

                              1  =OJ (3-73)

                              ZZO   = (3-74)

                               OLT
S

OLT 7F
++7      +

−
= (3-75)

                               
SF+

7 1
    =

∂
∂

(3-76)

2) VRO++≤ , the alloy is in the solid state.  An additional test is done to identify if the alloy has

already been in the solid before, L.H. 0=∆− WW
OJ . If the alloy was in the mushy state at the previous

time step, we have two different cases according to the average concentration, 1VZZ<  or 1VZZ> .

For the case of 1   VZZ < , we have:

                                0  =OJ (3-77)

                                N
ZZO    = (3-78)

                                VRO
S

VRO 7F
++7       +

−
=

(3-79)

                                
SF+

7 1
    =

∂
∂

(3-80)

For the case of 1  VZZ≥ , we have:

                                0   =OJ (3-81)

                                HXWO ZZ     = (3-82)

                                VRO
S

VRO 7F
++7         +

−
=

(3-83)
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SF+

7 1
    =

∂
∂

(3-84)

In the case where the alloy was already in the solid state at the previous time step, 0=OJ ,

and OZ does not change any more, it takes its value at the previous time step. 7 and +
7

∂
∂

are given

by equations (3-83) and (3-84) respectively.

3) OLTVHXW +++ <≤,

In this case,  we need to solve the following three equations with three unknowns OJ , OZ and 7 .

                                /J7F+ OS          += (3-85)

                                 OOOO ZNJZJZ   )1(        −+= (3-86)

                                 OI ZP77          += (3-87)

Successive substitutions lead to a second order equation for OJ , which permits then to compute

OZ  using equation (3-86) and finally 7  using equation (3-87).

The derivation of equation (3-85) with respect to 7 , leads to:

                     

7
J/F+

7
O

S ∂
∂

+
=

∂
∂

 

1
    

(3-88)

Combining equations (3-86) and (3-87), we find the temperature7 as a function of the liquid

fraction OJ  and the average concentrationZ . Then  
OJ
7

∂
∂

 can be deduced as follows:

                    ( )2 )1(  

  )1(
      

 )1(  
    

OOOO JNN
PZN

J
Z

JNN
P

J
7

−+
−−

∂
∂

−+
=

∂
∂

(3-89)

with

                     
WW

OO

WW

O JJ
ZZ

J
Z

∆−

∆−

−
−=

∂
∂

    

    
     ,       if WW

OO JJ ∆−≠ (3-90)

                     0    =
∂
∂

OJ
Z

,   if WW
OO JJ ∆−= (3-91)

4) VHXWVRO +++ ,<< , eutectic transformation occurs at this node. We have:

                      /
7F+J HXWS

O

−
=    (3-92)

                      HXWO ZZ     =
(3-93)

                       HXW77     = (3-94)
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                      0    =
∂
∂
+
7

(3-95)

5HPDUN
Regarding the method presented in this section, we note that an open system has been

considered. The variation of average mass concentration affects the local solidification path, L.H., the
liquidus temperature OLT7 and the solidus temperature VRO7  are considered as functions of the local
average mass concentration. The lever rule is applied in the microsegregation model, the resolution
of solute and the energy equations are consistent with the local thermal equilibrium. In the IXOO�
FRXSOLQJ approaches (with or without iterations), we have used this microsegregation model.

������ 0XOWLFRPSRQHQW�DOOR\V
In the following text, we present the method developed by Isabelle Vannier [1995] that deals

with the liquid-solid phase change in steels. The treatment of phase change is extended to the multi-
component system.

•  7KHUPDO�HTXLOLEULXP�LQ�WKH�PXVK\�]RQH
Following the hypothesis of thermal equilibrium in the mushy zone, it is assumed that the

temperature is equal to the liquidus temperature, which is approximated as a linear function of the
liquid mass concentrations as follows:

                        L
O

Q

L

L
I ZP77 ∑

=

+=
1

        (3-96)

Where Q is the number of solute elements in the alloy; LP is the slope of liquidus for the element L;
L

OZ is the liquid mass concentration of the element L�
Let us denote )( S

L
O WZ the liquid mass concentration of element L when the liquid just begins to

solidify. The value of )( S
L
O WZ can be different from the initial nominal concentration LZ0 , if the

enrichment of the solute element L in liquid pool is taken into account. In the absence of
enrichment, L

S
L
O ZWZ 0)( = . Figure 3-8 shows the variation of concentration in the liquid pool.

Not taking the convection into account in the mushy state, after the beginning of
solidification, that is for a local closed system, the lever rule and the Scheil equation give L

OZ  as a
function of )( S

L
O WZ .

•  Lever rule for an element that diffuses perfectly both in the solid and liquid phases. This is
the particular case of carbon in steel. Let the superscript F denote carbon, we have:

                         
O

FF

S
F
OF

O JNN
WZZ

 )  1(    

)(
    

−+
= (3-97)

•  Scheil’s law for an element L that does not diffuse in the solid phase is expressed as:

                         
1    )(    −=

LN
OS

L
O

L
O JWZZ (3-98)

Substituting equations (3-97) and (3-98) into equation (3-96), then the temperature in the

mushy zone can be expressed as:
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                         ( ) 1  

,1

 )(     
 )  1 (  

)( 
        −

≠=
∑+

−+
+=

LN
OS

L
O

Q

FLL

L

O
FF

S
F
O

F

I JWZPJNN
WZP77 (3-99)

The equation defines the solidification path, L.H., )(  OJI7 = . Consequently, 
OJ
7

∂
∂

 can be

deduced as follows:

                         ( ) ( ) 2  

,1
2

 1) - ( )(     
 )  1 (  

)1  ( )( 
     −

≠=
∑+

−+

−
=

∂
∂ LN

O
L

S
L
O

Q

FLL

L

O
FF

F
S

F
O

F

O

JNWZP
JNN

NWZP
J
7

(3-100)

Using this expression in equation (3-88), one can deduce the value of +
7

∂
∂

for the thermal

analysis.

Figure 3-8  Schematic of the variation of concentration in the liquid pool (Isabelle Vannier [1995])

•  'HWHUPLQDWLRQ�RI�WKH�OLTXLGXV�WHPSHUDWXUH OLT7 �DQG�WKH�VROLGXV�WHPSHUDWXUH VRO7
In the liquid state, knowing L

O
L ZZ ≡ , liquidus temperature OLT7 is given by equation (3-96).

Note that because of the closed-system hypothesis (at the level of the REV), this liquidus
temperature does not change during solidification.

Regarding the end of solidification, Scheil’s law gives a very large value of L
OZ   when the

fraction of liquid OJ  tends to zero. It is then assumed that an artificial eutectic transformation

occurs when OVROO JJ ≤ . OVROJ  is a small value, typically 01.0=OVROJ . OVROJ  is applied in the equation

(3-98) to truncate the liquid concentration.

The solidus temperature (the artificial eutectic temperature) VRO7  is defined as a function of

)( S
L
O WZ , which is a correlation obtained from experimental results:

                               ) )( (  S
L
O

FRU
VROVRO WZ77 = (3-101)

 7I

 7

Z(%)

LiquidusSolidus

Initial state
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in the Liquid pool

No enrichment

ZL
O(WS)ZL

�

Closed approach after solidification begins
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For steels, the correlation can be found in the original literature (Howe [1988]) and in the
thesis of Isabelle Vannier [1995].

Corresponding to the temperature VRO7 , one can find the fraction of liquid OVROJ  at which the

artificial eutectic transformation begins to take place. OVROJ  is deduced from equation (3-99) by the

secant method, knowing VRO7  and )( S
L
O WZ  (Vannier [1995]).

•  'HWHUPLQDWLRQ�RI�WKH�WHPSHUDWXUH�7 �DQG�WKH�IUDFWLRQ�RI�OLTXLG� OJ
In order to compute the temperature 7  and the fraction of liquid OJ , firstly we compute the

phase change points on the enthalpy-temperature curve using equations (3-11) to (3-13).

                              )1   ,(   == OOLTOLT J7++ (3-102)

                               )   ,(   OVROOVROVRO JJ7++ == (3-103)

                               )0   ,(   == OVROILQ J7++ (3-104)

Knowing the average enthalpy+ and the phase change points OLT+ , VRO+  and ILQ+ , providing

that the specific heat SF is a constant, we can identify 4 cases to compute the temperature 7  and the

fraction of liquid OJ  as follows:

1) OLT++≥ , the alloy is in the liquid state;

                               1    l =J        and          
SF
/+7 −= (3-105)

2) ILQ++ ≤ , in the solid state;

                                0    l =J        and          
SF
+7 = (3-106)

3) VROILQ +++ ≤< ,  in the artificial eutectic transformation;

                                /
7F+J VROS - 

    l =        and       �77 VRO  = (3-107)

4) ILQVRO +++ << ,  in the mushy state, 7  and OJ are computed from the equation (3-108) and

the equation (3-99) by the secant method.

                                 0    - ) ,( =+J7+ O (3-108)

The computation of the parameter +
7

∂
∂

 is achieved according to the 4 cases. If the alloy is in

the liquid state or in the solid state, 
SF+

7 1
  =

∂
∂

. If it is in the artificial eutectic transformation,

0  =
∂
∂
+
7

. In the mushy state, +
7

∂
∂

 can be deduced from equations (3-88) and (3-100).
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5HPDUN
In this section, the treatment of solidification is extended to multicomponent systems. For

simplicity, the solidification is considered locally as a closed system. OLT7 and VRO7  are estimated
locally, as functions of the local liquid average mass concentration before solidification, )( S

L
O WZ .

That is to say the solidification path is fixed when the metal begins to solidify. Not accounting for
the variation of concentration in the mushy zone, the energy equation is consistent with the local
thermal equilibrium. We use this microsegregation model in the QR�FRXSOLQJ approach.

3.5 Resolution of the solute transport equation

As mentioned above, the solute transport equation writes, for each alloying element
considered:

                        ( ) 0     =∇⋅∇−⋅∇+
∂
∂

OO ZZW
Z ε9

It is supposed that there is no solute exchange at  the boundary of the computational domain
Ω∂ , that is:

                                 0     =⋅∇ QZ     on    Ω∂ (3-109)

where Q  is the outward normal on Ω∂ .

It is also assumed that the initial concentration field is homogeneous:

                                 0    ZZ =     at    0  =W (3-110)

where 0Z is the nominal concentration of the alloy.

The fully implicit Euler-backward scheme is used for the time discretization. The linear
triangle elements are used for the spatial discretization. Regarding the stabilization of the
convection-diffusion equation of solute transport, the Streamline Upwind Petrov-Galerkin (SUPG)
scheme is applied.

There are two unknowns in the solute transport equation (3-9): the average mass
concentration in liquid OZ  and the average mass concentrationZ . The relationships between OZ  and
Z  depend on the microsegregation model. The two unknowns can be chosen as the primary
variable alternately, leading to two possibilities to solve the equation.

The first possibility is to choose OZ . In R2SOL we have implemented the resolution for OZ ,
following the work of Isabelle Vannier [1995] in the finite volume code SOLID.

The second possibility is to choose Z . This is the case of the “split method” following the

work of Prakash and Voller [1989], which we have also implemented in R2SOL.

In the QR�FRXSOLQJ approach we solve for OZ  as the primary unknown. In the IXOO�FRXSOLQJ
approach we solve for Z  as the primary unknown. We present the two approaches in the following

text.
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������ $SSURDFK�����UHsROXWLRQ�IRU�WKH�DYHUDJH�PDVV�FRQFHQWUDWLRQ�LQ�OLTXLG� OZ
�������� /HYHU�UXOH

Lever rule states that the solutes in the solid and the liquid phases diffuse perfectly, according
the equation (2-1). Substituting the lever rule into the solute transport equation (3-9),  we have then:

                                0)(
]))1([(

=∇⋅∇−⋅∇+
∂

−+∂
OO

OOO ZZW
ZJNJ ε9 (3-111)

As mentioned above, we solve for OZ , not coupling with the equations of energy and

momentum. The velocity field obtained at previous time step WW ∆− , WW ∆−9 ,  is used hereby. For
clarity, this velocity is simply noted as 9 in this section. Since the solidification process is
considered locally as a closed system in the QR�FRXSOLQJ approach, the fraction of liquid OJ has been

computed in the resolution of the energy equation. The liquid fraction at time W , W
OJ  is then known

in equation (3-111). Only one unknown W
OZ  appears in the equation (3-111).

For stability, the SUPG test function Lϕ  instead of the standard interpolation function L1  is
used for the spatial discretization. Using the finite element method, one can discretize the equation
(3-111), leading to:
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(3-112)

In the above equations, 1 is the number of nodes; P9  is the P-th component of velocity

vector 9 , and it is computed by the linear interpolation T
PTP 919 = ; The superscript W and WW ∆−

denote the time increment limits. The subscripts L and M denote the nodes. The SUPG test function

Lϕ  has been given by equation (3-44). Regarding the stabilization parameter  τ , we note that it is

computed in the same way as that presented in section 3.3.2. However, this time, solute diffusion
coefficientε  in stead of the thermal diffusivity α is used to compute the mesh Peclet number.

The linear equation (3-113) permits the computation of the average concentration in liquid OZ
at each node:

                  ( ) L
W
MOLM %Z$ =                    (3-113)

where:      [ ] Ω
∂
∂

∂
∂

+Ω
∂
∂
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After the resolution of OZ , the average concentration Z  can be found by using the lever rule.

5HPDUN
As it has been mentioned in section 3.1.2, ε  is a diffusion coefficient. Usually the

contribution of diffusion to the macrosegregation can be negligible. For numerical reasons, an
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arbitrarily small value ε , in the order of 910− , that is the order of magnitude of the physical
diffusivity, can be  used. In the present work, the diffusion terms are neglected.

�������� 6FKHLO¶V�PRGHO
In the case of no diffusion in the solid phase and infinite diffusion in the liquid phase,  the

relation between OZ  and Z  can be expressed by the Scheil’s equation (2-2). Taking the time

derivative of each side of the equation (2-2), we have:
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)(

  (3-114)

Substituting this equation into equation (3-9), one obtains:

                               0)(      
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OO ZZW
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ZJ ε9 (3-115)

For simplicity, we neglect the diffusion term in what follows (since it can be handled in the

same way as we have presented for the lever rule). Using the same method as presented in last

section 3.5.1.1, the following discretized equation for the Scheil’s model can be obtained:
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After resolution for OZ , the local average mass concentration Z can be calculated by  equation

(3-117). The equation is deduced from equation (3-114),  using an explicit Euler time integration

scheme (Vannier [1995]).

                )()()()( WW
O
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O

W
O

WW
OO

W
OO

WWW JJZNZJZJZZ ∆−∆−∆− −−−=− (3-117)

It can be seen that the lever rule and the Scheil’s models are deeply involved in the solute

transport equation, when solving for OZ .

������ $SSURDFK�����UHVROXWLRQ�IRU�WKH�DYHUDJH�PDVV�FRQFHQWUDWLRQZ
In order to eliminate OZ  in the solute equation, following the work of Voller HW�DO. [1989] a

“split operator” technique is used. Using the Euler backward scheme, the solute transport equation

can be written as follows:

               ( ) ( ) ( )[ ]****
OO

WW
WWW

ZZZZZZW
ZZ −∇⋅∇−⋅−∇=∇⋅∇−⋅∇+

∆
− ∆−

εε 99 (3-118)

where: the superscript  * refers: 1) the latest iterative value in the case of the  IXOO�FRXSOLQJ
approach; 2) the value at the previous time instant WW ∆− in case of the IXOO�FRXSOLQJ approach

reduced to one iteration. The right hand side terms, that arise from the splitting of the advection and

diffusion terms, appear as source terms.

The above equation has the great advantage of being able to treat any microsegregation model

(lever rule, Scheil’s model, or models accounting for the back diffusion in the solid phase) by the
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same transport equation at the macro scale. Indeed the microsegregation model can be treated
individually in a different module, separately from the resolution for Z .

The SUPG scheme is used to discretize equation (3-118). In the present work, the diffusion
terms are neglected, leading to:
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In the above equations, Lϕ  is the SUPG test function, as defined by equation (3-44). The superscript

W and WW ∆−  denote the time increment limits. The subscript L and M denote the nodes. P9  is the P-th

component of velocity vector 9 . In the IXOO�FRXSOLQJ approach, 9  is the current iterative
estimation of the average liquid velocity. In the case of the IXOO�FRXSOLQJ resolution reduced to RQH
LWHUDWLRQ, 9  is the velocity at previous time step.

As the approach 2 is more flexible, in the later stage of our work, we have focused on it. Now,
only lever rule has been validated with the fully coupled resolution. We present the computational
results in chapter 5.

3.6 Resolution of momentum equation

This section is dedicated to the resolution of fluid mechanics in the solidification process. We
assume that the solid is fixed and non-deformable, the fluid flow is governed by the averaged
momentum equation as follows:

                9J9999
OOO

O

JJSJJW Κ
−+∇−∇⋅∇=×⋅∇+

∂
∂ µρµρρ      )(  )(   0

0

We also assume that the solid and liquid densities are equal and constant, except in the buoyancy
term in the above equation. The mass conservation equation then gives:

                   0  =⋅∇ 9
In R2SOL, a nodal upwind approach has been developed by Gaston [1999], the governing

equations are written alternatively as:
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The total derivative of velocity is treated by a Lagrangian-type upwind scheme, which will be
presented later. A velocity/pressure P1+/P1 formulation is used to solve the fluid mechanical
problem. The present work has consisted of the implementation of the axisymmetric formulation in
R2SOL and the improvement of  the computation of the Darcy and inertia terms.

The previous work and the new development to solve mechanical problems are presented in
section 3.6.1. Then, the implementation of axisymmetric formulation is introduced in section 3.6.2.
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More recently, in collaboration with Victor Fachinotti and Michel Bellet, the SUPG-PSPG
formulation has been implemented, which will be presented in section 3.6.3.

Finally, some validation test cases are presented in 3.7.

������ 5HVROXWLRQ�RI�IOXLG�PHFKDQLFV�ZLWK�WKH�QRGDO�XSZLQG�PHWKRG

�������� :HDN�IRUP
In order to solve the mechanical problem, the classical principle of virtual work is applied.

Multiplying the momentum equation by a virtual velocity *9 , { }Ω∂=⋅Ω∈∈ on   0     ,))(( , 21* QYYY9 + ,
and integrating over the domain Ω , after some calculations  we obtain:
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where )(9&  is the strain rate tensor associated with the averaged velocity field 9 ,
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 )(9& . 7�  is the local contact surface force on the boundary. The notation ‘:’

denotes the contracted product of tensors, ∑∑ ∂
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9 *
** )()( )()():( 99999 εεεεε &&&&& . The general

procedure to get the weak form of the momentum equation can be found elsewhere (Rappaz HW�DO.
[2002]).

The equation (3-121) should be solved under the constraint of incompressibility for the

liquid phase. In a mixed formulation, the pressure S appears as a Lagrange multiplier of the

incompressibility constraint, and then we write:

                 0** =⋅∇−∀ ∫
Ω

G9SS 9 (3-122)

�������� 7LPH�GLVFUHWL]DWLRQ
As it has been discussed before, here we assume that the computational domain is fixed,  and

the problem is solved by means of a Eulerian formulation on the fixed finite element mesh. The

equations to be solved for (9 , S )
t
, averaged liquid velocity and intrinsic liquid pressure fields at

time t, can be expressed in the following way:
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where WW ∆−9  denotes the velocity at the point [ of the space, but at previous time step, whereas
WW ∆−9~  denotes the velocity at time WW ∆−  of the particle which, at time W, is at the same position [. In

other words, the total and partial derivative of the velocity are expressed as:
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In sections 3.6.1 and 3.6.2, we will denote ~  the following acceleration vector:
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The particle velocity WW ∆−9~ is computed by a upwind transport approach that will be presented in the
section 6.2.4.

�������� �3���3��IRUPXODWLRQ
The finite element discretization spaces for the velocity and the pressure need to satisfy a

compatibility condition, known as “Ladyzhenskaya-Babuska-Brezzi (LBB) condition” (Rappaz HW
DO. [2002]). This is equivalent to the requirement of non-singularity of the matrix resulting from the

discretized Navier-Stokes equations. In particular, this condition implies that the number of degrees

of freedom of the velocity field should be higher than that of pressure field.

The so called P1+/P1 or “mini-element” formulation was adopted in the 3-dimensional code

of THERCAST® (Jaouen [1998]) and the 2-dimensional code FORGE2® (Perchat [2000]),

following the pioneering work of Arnold HW�DO. [1984] and Fortin and Fortin [1985]. The pressure is

discretized by polynomials of degree 1 (P1), while  the velocity is also discretized by polynomials

of degree 1 (P1), including additional degrees of freedom at the centre of the element (the bubble

formulation).

In FORGE2®, the resolution of the mechanical problem is based on the one-phase continuum

model, without the Darcy term. Clearly, some additional developments are needed in R2SOL due to

the Darcy term.

In R2SOL, the P1+/P1 formulation was initially developed by Alban Heinrich (Heinrich

[2003]), at the beginning of my work in September 2001. From then on , we have worked together

on the implementation of P1+/P1 formulation.

As shown in Figure 3-9, for the sake of clarity we denote Z the average liquid velocity 9. The

velocity and the pressure are discretized by equations (3-126) and (3-127) respectively.
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                    ∑
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Q

Q
QK 31S (3-127)

where 1  is the standard linear interpolation function. E1 is the linear bubble function defined in

the three subtriangles, being equal to 1 at the center of the triangle and equal to 0 at the edges of the

triangle.
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Figure 3-9 Representation of the mini-element. The value of the "bubble" interpolation function E1  is 1 at
the triangle centre and 0 at its boundary. The central additional velocity degrees of freedom % permit a better
control of the incompressibility constraint. This element satisfies the LBB condition (Rappaz HW�DO. [2002]).

Since any virtual velocity field *Z can be decomposed as a sum ***     EYZ += , the equilibrium
and incompressibility equations can be written as follows:
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(3-128)

5HPDUN
The boundary integral disappears from the second equation. This is due to the properties of

the bubble interpolation function whose value is zero on the edge of any triangle.

Actually, the spatial integration over an element of the product of the gradient of a bubble
type function by a constant tensor is equal to zero. Then, it is interesting to decompose the term

)(Z&  in a sum of two terms, one which will depend only on the linear part of the velocity field Y,
and the other one which will depend linearly on E. It is possible to take advantage of bubble
properties to simplify the equations (Jaouen [1998], Perchat [2000] ), leading to:

for the pressure

for the velocity
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�������� 5HVROXWLRQ�E\�1HZWRQ�5DSKVRQ�PHWKRG
•  The matrix formulation

The Newton-Raphson method is used to solve equations (3-129). The residual vector R of
equations (3-129) can be expressed as the sum of  each integration term:

          0,,,,,, =+++++= LQHUOSHUPOJUDYOWOSUHOUKHROO 5555555
          0,,,,, =++++= LQHUESHUPEJUDYESUHEUKHREE 555555
          0,, =+= ESOSS 555

(3-130)

Equations (3-130) are solved by the Newton-Raphson method, and the linear system to be
solved at each time step can be written in the matrix form (3-131):
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It is possible to eliminate the internal bubble degrees of freedom %, allowing a solution for the
variables  9δ and 3δ only, at each Newton-Raphson iteration as follows.
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5HPDUN
The problem defined by equation (3-129) is linear. We have developed the code with the

Newton-Raphson mothod, as if the problem would be non-linear. In fact, only one iteration will be
sufficient for solving equation (3-129).

At the beginning of my work, SHUPE5 ,  and LQHUE5 ,  in equation (3-130) b) were omitted; in
equation (3-130) a), the contribution of “bubble” component to LQHUO5 , , L.H. %⋅LQHUOE+ , , was also
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omitted. Recognizing that the contribution of “bubble” component is important to the flow in the

mushy zone, now these terms are taken into account and they are expressed as follows:

The term SHUPE5 ,
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The term LQHUE5 ,
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 The term LQHUO5 ,
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•  Computation of E5
$V�PHQWLRQHG�DERYH��ZH�QHHG�WR�HOLPLQDWH�WKH�EXEEOH�GHJUHHV�RI�IUHHGRP� %, and solve only

IRU� WKH�YDULDEOHV� 3�DQG� 9�at each node.  Regarding equation (3-132), E5  should be eliminated.

According to equation (3-130), we write the residual of E5  as follows:

                %93% SHUPEE7SHUPOEJUDYEESUKHREEE ++5++5 ,,,, )( ++++= (3-136)

Substituting equation (3-136) into the left hand side of equation (3-132), then equation (3-

132) reduces to:

{ }
{ }

















+++−

+++−
=
















−−

−−

−

−

−−

−−

9

9
3
9

7OEJUDYEESEE7ESS

7OEJUDYEESEEOEO

ESEE7ES7OEEE7ES7OS

ESEEOEOS7OEEEOEOO

+53+++5

+53+++5
+++++++
++++++++

)()()(

)()(

    
 

 
  

)()()()()()(

)()()(

,1

,1

11

11

δ
δ

(3-137)

5HPDUN
The stiffness matrix for solving the mechanical problem is symmetric, the system can be

solved using the direct symmetric solver with the skyline storage technique (Rappaz HW�DO. [2002]),

or using the external PETSC solver (PETSC [2003]).

In absence of the Darcy term, and neglecting the contribution of “bubble” component to the

inertia term, then OE+  equals to zero,  leading to the  simplification equation (3-137):
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Equation (3-138) is used for the one-phase continuum model. But we have found that the
term OE+ is of importance when Darcy terms are present.

������ $[LV\PPHWULF�IRUPXODWLRQ
In many practical cases, the solidification of casting parts can be axially symmetric. If the

loads and constraints are also axially symmetric, then the problem can be formulated using the two
velocity components UY  and ]Y . The subscripts U and ] denote the radial and axial directions
respectively. Although only two velocity components UY  and ]Y  need to be considered in the
axisymmetric case, there are still some differences from the 2-dimensional plane case, which are
presented as follows.

�������� $GGLWLRQDO�WHUP� θθε&

Unlike the 2-dimensional plane case, the strain rate tensor for  an axisymmetric problem
takes the form:
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Comparing with the plane problem, it is then no longer possible to consider only the

components of the r and z axes, the additional term, U
YU=θθε& , must be considered.  The new

contributions to UKHRO5 ,  and UKHRE5 ,  appear in equation (3-129):

                  )()()()( ** EEYY &&&&    and   
(3-140)

and the additional term appears also in mass conservation equation:
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Y

]
Y

U
Y U]U +

∂
∂

+
∂
∂

=⋅∇ Y (3-141)

�������� &RPSXWDWLRQ�RI��LQWHJUDWLRQ�WHUPV
The surface differentiation is UGUG]G π2=Ω  instead of G[G\G =Ω  in Cartesian coordinates.

This modifies the integration rules. For instance the integration of a linear function � I  will need
three integration points in axisymmetric case instead of only one in the plane case. In order to
integrate each terms in equations (3-129), we have adopted a similar strategy as Etienne Perchat
[2000] used in the axisymmetric and the P1+/P1 version of FORGE2. In R2SOL, those three points
have been chosen either as the usual Gaussian points or the three mid-points of each edge of the
triangle.

As it has been mentioned above, the value of the “bubble” interpolation function E1  is 1 at

the triangle centre and 0 at its boundary, and it is defined separately on each of the three sub-
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triangles. So that the integration for the terms that comprises E1  has to be decomposed into the
sum of three integrations on the sub-triangles shown in Figure 3-10. In this case, the three mid-edge
integration points have been used. Three Gaussian integration points have been used when the term
does not comprise E1 .

Figure 3-10 Schematic of the integration points

In the following paragraph, for example the computation of the Darcy term is presented to
show the integration rule used in the axisymmetric case.

�������� &RPSXWDWLRQ�RI�WKH�'DUF\�WHUP
Let us compute the Darcy term resulting from the “bubble” contribution, the matrix OE+  and

EE+ , which is important in the computation of macrosegregation.

•  Term OE+
From equations (3-129) a) and (3-130) a), we find the residual, SHUPO5 , , arising from the Darcy

term as follows:

             ∫∫∫ ⋅+⋅=⋅+= UGUG].UGUG].UGUG].5 SHUPO πµπµπµ
2 2 2)( ***, YEYYYEY (3-142)

             ∫ ⋅= UGUG].5 SHUPOO πµ
2 *, YY ,           ∫ ⋅= UGUG].5 SHUPOE πµ

2  *, YE (3-143)

where the residual SHUPO5 , has been decomposed into two parts, SHUPOO5 ,  and SHUPOE5 , . SHUPOO5 ,  depends

on the linear velocity field Y, and SHUPOE5 ,  depends on the bubble contribution E.

Then, the Hessian matrix with respect to the bubble contribution E gives:

             UGUG]11.
5+ NO

E
Q

O

SHUPOE
QNSHUPOE

OQN πδµ
2

,
,
, ∫=

∂
∂

= % (3-144)

where Q, N and O are the degrees of freedom. δ is the Kronecker function.

SHUPOE
OQN+ ,

,  is integrated numerically in the three subtriangles of an element using the three mid-

edge integration points.

•  Term  
SHUPEE+ ,

Regarding the residual SHUPE5 ,  in equation (3-129) b) and (3-130) b), we have:

A

 C

   B

integration point

ST1

ST3 ST2

(r2,z2)(r1,z1)

(r3, z 3)

E(re, ze)
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               ∫∫∫ ⋅+⋅=⋅+= UGUG].UGUG].UGUG].5 SHUPE πµπµπµ
2 2 2 )( ***, EEEYEEY (3-145)

               ∫ ⋅= UGUG].5 SHUPEE πµ
2 *, EE ,      ∫ ⋅= UGUG].5 SHUPEO πµ

2 *, EY (3-146)

The Hessian matrix with respect to the bubble contribution E gives:

               UGUG]11.
5+ NO

EE

O

SHUPEE
NSHUPEE

ON πδµ
2

,
,

, ∫=
∂

∂
= % (3-147)

Again, SHUPEE+ ,  is integrated in the three subtriangles of an element using the three mid-edge
integration points.

������ 5HVROXWLRQ�RI�PRPHQWXP�HTXDWLRQ�ZLWK�WKH�683*�363*�IRUPXODWLRQ
Considering the momentum equation (3-8), let us assume that we have constructed the

suitably defined function spaces Y6 and S6 for the velocity and pressure respectively. The classical

weak formulation for the fluid flow can be stated as: find SY 66S   ) ,( ×∈9 , such that for all the

SY 66S   ) ,( ** ×∈9  the following holds:
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Regarding the standard weak form of equation (3-148), the velocity and pressure fields need
to be stabilized. The stabilization can be achieved using the SUPG-PSPG formulation.

�������� 7KH�683*�363*�IRUPXODWLRQ
Following the work of Tezduyar HW�DO. [1992], Tezduyar and Osawa [2000], the SUPG-PSPG

formulation writes:
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where, 683*τ  is the SUPG (Streamline-Upwind/Petrov-Galerkin) stabilization parameter;

           363*τ  is the PSPG (Pressure-Stabilizing/Petrov-Galerkin) stabilization parameter;

           /6,&τ  is the LSIC (least-squares on incompressibility constant) stabilization parameter;

            the brackets { } denote the residual of the momentum equation.

Comparing with the standard weak form (3-148), three terms have been added, corresponding
to the stabilizations of SUPG, PSPG and the incompressibility constraint respectively. The
stabilization parameters will be introduced later in this section.

For the SUPG-PSPG stabilized formulation, one can use the equal-order interpolation
function for the velocity and pressure. In the present work, linear triangle elements are used. The
second-order terms )( 2 9&µ in the the branket { } associated with the SUPG and PSPG stabilizations
vanish, just like the term 0  )( =∇⋅∇ 7λ  in the SUPG stabilized energy equation (3-41). Regarding
the temporal discretization, the Euler backward implicit scheme is used.

�������� 6WDELOL]DWLRQ�SDUDPHWHUV
Hereunder, we present the definitions of stabilization parameters, which are motivated by the

work of Shakib HW� DO. [1991], Tezduyar and Park [1986], Tezduyar and Osawa [2000]. The
characteristic length of a triangle element along the flow direction, K , has been given by equation
(3-46). To compute the stabilization parameters, we note that the known velocity WW ∆−9 at the
element center is used.

•  683*τ  and 363*τ
As we have presented in section 3.3.2, the SUPG stabilization parameter for the energy

transport equation is expressed by:

       
K

K683* 3H3HK 1
  )(coth             with

 2

 
  −== θθτ 9
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In practice, several versions of stabilization parameter are used instead of the “optimal” coth

function. The version of Shakib HW� DO. [1991] with 2/1
2

)
1

  (1   −+=
K3Hθ  may be the most frequently

used, that is:
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where α is the thermal diffusivity. For the momentum transport, the viscosity µ  can be used

instead of the diffusion coefficientα .

The two terms in the right-hand expression can be interpreted as the advection-dominated and

diffusion-dominated limits (Tezduyar and Osawa [2000]). Accounting for the transient-dominated

case, Tezduyar and Osawa [2000] supposed that:
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In the present work, equation (3-151) is used to compute the SUPG stabilization

parameter 683*τ . Following Tezduyar and Park [1986], the PSPG stabilization parameter 363*τ  is

defined in the same way as 683*τ , L.H., 683*363* ττ = .

•  /6,&τ

The LSIC stabilization parameter given by Tezduyar and Osawa [2000] is as follows:

                     ]K
/6,&   

2
  9=τ (3-152)

where,�] is a function of the element Reynolds number 
µ
ρ
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�������� ,PSOHPHQWDWLRQ�RI�WKH��683*�363*�IRUPXODWLRQ
Regarding the SUPG-PSPG formulation in equation (3-149), the system is non-linear. The

Newton-Raphson method is used. In the following text, firstly, we present the matrix formulation to

solve equation (3-149). It is possible to linearize the equation, so that one can simplify the

computation. Then, the linearized formulations are introduced. Finally, we present the differences

between the axisymmetric and plane versions.

•  7KH�PDWUL[�IRUPXODWLRQ
According to equation (3-149) a), the residual vector for the velocity component can be

expressed by the condensed form:
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In the above equation, the terms in the first line on the right hand side denote the contributions
associated with the transient, advection (inertia), rheology (diffusion), pressure, contact force on the
boundary, gravity and Darcy terms respectively. These contributions are computed using the
standard Galerkin test function. The terms in the second line denote the contributions of the SUPG
stabilization. Comparing with the first line, we note that the rheology (diffusion) term vanishes,
because this term related to the second order differential operator is identically zero for linear P1
elements. The term appearing in the third line presents the LSIC contribution.

According to equation (3-149) b), the residual vector for the pressure component can be
expressed by:

              SHUPS
363*

JUDYS
363*

SUHS
363*

DGYS
363*

WUDQVLHQWS
363*

LQFRPSSS 5555555 ,,,,,,  +++++= (3-155)

In equation (3-155), LQFRPSS5 , denotes the traditional term arising from the contribution of the
incompressibility constraint, the other terms express the contributions resulting from the PSPG
stabilization.

To solve the equation (3-149) with the Newton-Raphson method, it is possible to write the
following matrix formulation of the iterative corrections on nodal velocity and pressure to be
calculated:
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Since the non-zero diagonal term SS+  in equation (3-156) is important to avoid a singular
matrix, the term SS+  and the corresponding residual resulting from the contribution of PSPG
stabilization SUHS

363*5 ,  are expressed as:
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and
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where O and P�denote the index of nodes. 1 is the linear interpolation function.

For the equation (3-156), we note that the stiffness matrix is non-symmetric.

•  7KH�OLQHDUL]HG�IRUPXODWLRQ
As equation (3-149) is non-linear, in order to simplify the computation, we have linearized

the SUPG-PSPG formulation. The advection term WW 99 )(∇  has been linearized by computing
WWW ∆−∇ 99 )( .  While the SUPG term W

683* 99 )( *∇τ has been changed to WW
683*

∆−∇ 99 )( *τ . For
example, we present the linearized advection terms as follows.

The residual component, DGYO5 , , arising from the advection term 99)(∇  can be linearized by:

             Ω⋅∇= ∆−

Ω
∫ GJ5 WWW

O

DGYO *
2
0, )( 999ρ

(3-159)

The residual component, DGYO
683*5 , , arising from the SUPG stabilization can be written as:
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             Ω∇⋅∇=∫ ∆−∆− GJ5 WWW
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0*, τ (3-160)

For the component of the residual vector, DGYO
QN5 , , which is associated with the node Q and

expresses the degree of freedom for the velocity in the direction N, we can express equation (3-159)
in detail:
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where M and N�vary from 1 to 2 for 2-dimensional problems. M[ denotes the spatial coordinate in the M
direction. P, Q�and T denote the index of nodes, based on  these nodal velocities, the velocity fields
at time WW ∆−  and, W , WW ∆−9 and W9 , are interpolated.  1 is the linear interpolation function.

The component of residual vector, DGYO
QN683*5 ,
 , , writes:
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•  7KH�D[LV\PPHWULF�IRUPXODWLRQ
As it has been presented for the axisymmetric version of P1+/P1 formulation, following

points need to be considered:

1) the additional term θθε& , U
YU=θθε& , which appears in the rheology (diffusion ) term;

2) the surface differentiation is UGUG]G π2=Ω  instead of G[G\G =Ω  in Cartesian coordinates.

These two points have been taken into account, regarding the implementation of the SUPG-
PSPG  formulation.

In addition, we have checked the SUPG-PSPG stabilized terms, arising from the

perturbations of  99 ⋅∇ )*
( 683*τ and *

0

 
1 3363* ∇
ρ

τ : these terms are identical for the plane and

axisymmetric cases, except the surface differentiation (the point 2 as presented above).

It should be noted that there are few differences in the computation of  the LSIC contribution
O
/6,&5 , between the plane and axisymmetric cases. The difference arises from the computation of

99 ⋅∇⋅∇  * . For the plane case, the residual component, O
/6,&5 ,  can be expressed by:
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where  M and N�vary from 1 to 2 for plane problems. P and Q�denote the index of nodes, 1 being the
linear interpolation function.
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For the axisymmetric case, U
Y9[

1 UQ
N

N
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=⋅∇ 9 , leading to the difference to compute the term

of O
/6,&5 , then we have:
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where, δ is the Kronecker function.

3.7 Validations

Firstly, we test the nodal upwind P1+/P1 formulation. Two cases have been considered. In the
first case, a pure Navier-Stokes problem, without Darcy term, has been chosen to validate the code
for additional term θθε&  and inertia term. In the second case, flow through a porous medium with a
constant permeability  has been considered to validate the Darcy term.

Secondly, we test the new developement of SUPG-PSPG formulation.
Finally, the solidification of a carbon steel alloy in a square cavity  has been considered to

validate the macrosegregation model, here the nodal upwind P1+/P1 formulation is used.

������ $[LV\PPHWULF�IRUPXODWLRQ��LQ�WKH�FDVH�RI�1DYLHU�6WRNHV�IORZ
The test of the Navier-Stokes problem is inspired from the De Vahl-Davis [1983] benchmark,

which consists of a steady natural convection in a square cavity in plane strain conditions. Similarly
we have chosen a hollow axisymmetric cavity, shown in Figure 3-11.  The thermal boundary
condition is as follows: the top and bottom are adiabatic; the temperature on the side walls is fixed:
temperature on the inner wall is imposed to be 1.0°C, temperature on the outer wall is 0°C. As one

can imagine when the inner radius 5LQQHU tends to infinite, the computational result of such an

axisymmetric problem should tend to that of the plane. So we choose testing cases as shown in

Table 3-1. The computational result of case 1 is expected to be different from that of case 2, and

case 2 should be very close to case 3. We use PHOENICS, a finite volume difference code, to

recalculate case 1, the computational results obtained by PHOENICS and R2SOL (test 1) are

expected to coincide. The physical data are shown in Table 3-2. They have been chosen to obtain a

Rayleigh number equal to 10
4
 (relatively high advection flow). Contact at walls is supposed to be

sticky (no sliding velocity).

Figure 3-11  Schematic of the axisymmetric natural convection test
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Table 3-1 Testing cases for Navier-Stokes flow

Case 1 2   3   4

5LQQHU (m) 1.0 1000.0 plane 1.0

Solver R2SOL R2SOL        R2SOL   PHOENICS

Table 3- 2 Data used for the computation

       Physical  properties Initial and boundary temperatures

))(1()( 0 LQLW7 777 −−= βρρ

0ρ   = 1.0 kg. m–3

7LQLW�   = 0.5°C

µ  = 0.71 ×10
-2

 Pa.s 7LQQHU = 1.0°C

λ = 1.0 W. m
-1

. K
-1 7RXWHU = 0.0°C

SF  = 100.0 J. kg
-1

. K
-1

7β  = 7.1 ×10
-2    

K
-1

•  Comparison between axisymmetric and plane flow (R2SOL computation)

The computational results of test cases 1 to 3 are shown in Figure 3-12. On the first line, the

temperature field is shown. On the second one, velocity vectors and the third one, the vertical

component of velocity.

First, and as expected, the results of case 2 (axisymmetrical computation with a huge radius)

and case 3 (plane case) are identical. The only differences can be attributed to the convergence

criterion for the obtention of a steady-state regime.

Let us come to the comparison between plane and axisymmetric cases. Near the inner wall,

the temperature gradient is steeper in case 1 than in case 3 (or 2). This is due to axisymmetry: as the

flow is convergent from the outer wall to the inner one, it is accelerated. The velocity is then higher

near the inner wall than in the plane case (see line 3, test 1), seeing Figure 3-12,

)(215.0 1max −⋅= VP9]  in case 1, )(0.187 1max −⋅= VP9] in case 2(or 3) . The consequence is that the heat

transfer is less diffusive – more advective – in this region, and therefore the normal gradient is

higher. Conversely, the flow coming back to the outer wall at the top of the  cavity is divergent and

then decelerated, resulting in a lower velocity than in plane case in this region. The temperature

distribution is then smoother in case 1 than in case 2, because the heat transfer is more diffusive.

These expected effects can be clearly seen on the different figures.

Also it can be seen that the centre of the vortex in case 1 is slightly displaced upwards (in the

plane case, it is located at the centre of the cavity). This is due to inertia effects associated with the

non symmetrical velocity distribution.
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Figure 3-12   Comparisons of  temperature fields and velocity vectors,  test cases 1, 2 and 3 (R2SOL
computation)

•  Comparison between R2SOL and PHOENICS (axisymmetric case)

This comparison is achieved by means of test case 1 and test case 4. The comparison of the
results is given in Figure 3-13 in which the picture of the temperature field obtained with
PHOENICS is put over that of R2SOL properly. The contours of temperature obtained by R2SOL
coincide with those of  PHOENICS, as shown in Figure 3-13 (a). The velocity fields are compared
by the distribution of component vr shown in Figure 3-13 (b): the two pictures look alike each other.
The quantitative comparison of velocity component is given in Table 3-3. The values of maximum
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         Test case 1              Test case 2          Test case 3

Velocities
(m.s-1)

      vr       vz        vr        vz        vx       vy

    Max    0.169    0.215     0.155     0.187     0.154    0.187

    Min   -0.134   -0.153    -0.156    -0.187    -0.155   -0.186

T
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Vz
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and minimum velocity component obtained by R2SOL and PHOENICS are close to each other as
well as their position.

Figure 3-13   Comparison between R2SOL (test case 1) and PHOENICS (test case 4)

Table 3- 3  Velocities obtained by R2SOL and PHOENICS

Max.vz    Position

 (m /s)      (r,z)(m)

Min. vz   Position

  (m /s)   (r,z) (m)

Max.vr   Position

 (m /s)     (r,z) (m)

Min. vr    Position

  (m /s)    (r,z) (m)

R2SOL 0.215  (1.12,0.50) -0.153  (1.88,0.57) 0.169  (1.43,0.84) -0.134  (1.46,0.19)

PHOENICS 0.236  (1.11,0.52) -0.164  (1.89,0.57) 0.183  (1.42,0.86) -0.137  (1.45,0.20)

������ 9DOLGDWLRQ�RI��'DUF\�WHUP��D[LV\PPHWULF�FDVH��FRPSXWHG�E\�5�62/�DQG�3+2(1,&6�
The test  is similar to the test case 1 and test case 4 presented in section 3.7.1,  but this time,

we assume that the cavity is full of a porous medium, whose permeability K is uniform and
constant, 1/K=100.0 m-2.  The comparison of the results is given in Figure 3-14, the upper figures
are the results of PHOENICS, the lower are the ones of R2SOL.  The contours of temperature
obtained by R2SOL and PHOENICS  coincide with each other as shown in Figure 3-14 (a). The
velocity components vr  and vz are shown in Figure 3-14 (b) and Figure 3-14 (c). The quantitative

PHOENICS
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comparison of velocity component is given in Table 3-4.  The computational results of R2SOL and
PHOENICS are close to each other.

(a) Temperature                                    (b)  vz                                      (c)  vr

Figure 3-14  Comparison between R2SOL and PHOENICS,  1/K=100.0 m-2

       Table 3- 4   Velocities obtained by R2SOL and PHOENICS,  1/K=100.0 m-2

Max. vz   Position

 (m /s)      (r,z)(m)

Min.vz     Position

  (m /s)   (r,z) (m)

Max.vr   Position

(m /s)     (r,z) (m)

Min. vr    Position

  (m /s)    (r,z) (m)

R2SOL 0.136  (1.10,0.43) -0.093 (1.88,0.57) 0.099  (1.52,0.85) -0.089 (1.34,0.15)

PHOENICS 0.144  (1.10,0.45) -0.096 (1.90,0.60) 0.099  (1.47,0.87) -0.089 (1.34,0.15)

The contribution of “bubble” component to the Darcy term has been tested  by means of the

new version of R2SOL.  The computations taking into account or not the +OE�
 term have been

carried out, the other conditions being the same as mentioned above. The computational results

show that  the contribution is less than 0.5% and can be neglected in the particular case of using a

constant permeability. It should be noted that the permeability field in a solidifying casting is not

homogeneous, the +OE�
 term can not be neglected. In this case, it has been found that the

computation without accounting for the +OE�
 term, leads to a wrong solution.

������ 9DOLGDWLRQV�RI�WKH�683*�363*�IRUPXODWLRQ
�������� /LG�GULYHQ�FDYLW\�WHVW
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The evaluation of nodal-upwind P1+/P1 and SUPG-PSPG (P1) Navier-Stokes solvers has
been done with a classical benchmark test, the lid-driven cavity test (Ghia HW�DO. [1982]). Figure 3-
15 presents the numerical setup, which consists of non-slip boundaries (zero velocity) everywhere
except the top, on which a velocity is prescribed, shear forces driving the fluid flow within the
cavity. In our computation, a square 0.1 × 0.1 P2

 is considered. The mesh is shown in Figure 3-16:

fine elements are adopted near boundary (their size being 1.5 mm), coarse elements (size 3.0 mm)

are used in the middle region.

Figure 3-15  The numerical set up                         Figure 3-16 The mesh used in R2SOL

The computations with Re = 400 and Re = 1000 have been done by R2SOL, using the SUPG-

PSPG and the nodal upwind P1+/P1 formulations. The results have been compared with those of

Ghia HW�DO. [1982], which are obtained by a second-order accurate finite difference multigrid method

with a 129 ×129 grid. Typically, we compare the horizontal velocity component along the vertical

center line of the cavity and the vertical velocity component along the horizontal center line of the

cavity. Figure 3-17and Figure 3-18 present the results computed with Re = 400 and Re = 1000

respectively. Very good agreements with the reference resolutions have been achieved, using the

SUPG-PSPG solver. There are some differences between the results computed with the nodal

upwind P1+/P1 solver and the SUPG-PSPG solver. These differences grow with Re. According to

Figure 3-17 b) and Figure 3-18 b), a quantitative comparison of maximum and minimum values of

vertical velocity component Yy is given in Table 3-5. It seems that the P1+/P1 solver smoothes the

velocity fields, with increasing Re number.

Table 3-5 Comparison of maximum and minimum values of Yy,

Re = 400, Figure 3-17 b) Re = 1000, Figure 3-18 b)

Max.Yy   position  [ min.Yy   position [ max. Yy  position  [ min. Yy   position  [
P1+/P1 0.244         0.250 -0.383      0.850 0.285         0.222 -0.427         0.854

SUPG-PSPG 0.302         0.222 -0.450      0.871 0.376         0.159 -0.528         0.909

Error in Yy (%) 19.2   14.9  24.2   19.1

[

\

�Y[�= 0;  Y\�= 0

�Y[�= 0
�Y\�= 0

Y[�= Yimp;  Y\�= 0

�Y[�= 0
�Y\�= 0
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   a) Horizontal velocity component profiles along the vertical center line of the cavity

    b) Vertical velocity component profiles along the horizontal center line of the cavity

Figure 3-17 Comparisons with the reference resolutions of Ghia HW�DO. [1982], Re = 400

     a) Horizontal velocity component profiles along the vertical center line of the cavity

     b) Vertical velocity component profiles along the horizontal center line of the cavity

Figure 3-18 Comparisons with the reference resolutions of Ghia HW�DO. [1982], Re = 1000

For the two formulations, it would be interesting to complement these results with a study of
the influence of mesh size and time step. Also, in the case of the nodal upwind P1+/P1 formulation,
it would be very interesting to quantify separately the effects of the nodal upwind treatment for the
advection terms on one hand, and the effects of the mini-element bubble formulation on another
hand.

  a)

Ghia
Nodal upwind
SUPG-PSPG

Y[ Y\

\ [

Ghia
Nodal upwind
SUPG-PSPG

  b)

Ghia
Nodal upwind
SUPG-PSPG

Ghia
Nodal upwind
SUPG-PSPG

Y[ Y\

\ [
  a)   b)
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�������� )OXLG�IORZ�LQ�WKH�SRURXV�PHGLXP��D[LV\PPHWULF�FDVH��EXR\DQFH�IRUFH�GULYHQ�
The test is to validate the axisymmetric version of the SUPG-PSPG formulation. Again, the

case that has been presented in section 3.7.2 is considered. Here, we use the SUPG-PSPG solver to
simulate the fluid flow in the porous medium, and the SUPG thermal solver is chosen to analysis
the heat transfer. We also compare with the resolution of PHOENICS. In Figure 3-19, the upper
figures are computed by PHOENICS, while the lower ones are computed by R2SOL. Once again,
the results obtained by the new solver of R2SOL are quite close to those of PHOENICS.

   (a) Temperature                                    (b)  Yz                                      (c)��Yr

Figure 3-19  Comparison between R2SOL and PHOENICS,  using the SUPG-PSPG formulation,

                               1/K=100.0 m-2

������ $�VROLGLILFDWLRQ�WHVW�FDVH
The validation test case is the solidification of a binary Fe-0.2%C alloy in a square cavity as

shown in Figure 3-20 a). The objective of this test is to validate the computation of
macrosegregation with lever rule and Scheil models. The computation is performed by R2SOL and
SOLID using the non-coupling approach (locally closed system, no solute enrichment in liquid
pool, resolution for OZ ). The results are compared.

In the R2SOL computation, the cavity is discretized by a structured and symmetric mesh
covering the whole domain, as illustrated in Figure 3-20 b). The mesh used in SOLID is structured
with 50×50 nodes in the direction of x and y respectively. The data used in the computation are
given in Table 3-6.

The diffusion terms in the solute transport equation have been neglected in R2SOL and
SOLID. The results obtained by the lever rule are shown in Figure 3-21,  and the Scheil’s model in

Figure 3-22 respectively.
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Figure 3-20  Schematic of the cavity test and the mesh used in R2SOL computation

Table 3- 6  Data used in the computation

Thermal conductivity λ 30 W.m-1. K-1 Initial temperature 70 1523 °C

Specific heat FS 500 J.kg
-1

.K
-1

Initial carbon mass concentration 
0Z 0.2 %C

Latent heat / 3.09×10
5
 J.kg

-1
Reference volumetric mass 0ρ 7060 kg. m

-3

Melting temperature 7I 1538 °C Dynamic viscosity µ 4.2×10
-3

 Pa.s

Liquidus slope  P -80 K.(%C)
-1

Secondary dendrite arm spacing 2λ 1×10
-4

 m

Partition coefficient N 0.18 Heat transfer coefficient K 100 W.m
-2

.K
-1

Thermal expansion

coefficient 7β
8.853×10

-5
 K

-1
External temperature 7H[W 20 °C

Solutal expansion coefficient

Zβ
4.164×10

-2
 (%C)

-1
Diffusion coefficient in liquidε 1×10

-9
 m

2
.s

-1

Figure 3-21   The mass concentration distribution 0ZZ− (%) obtained with the lever rule at 10 min.
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Min.-0.013 Max. 0.023

Min.-0.015

a) R2SOL b) SOLID

a)  Schematics of the cavity test

b) the structured finite element mesh

     with 53 ×53 nodes (P1 triangle elements)
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Figure 3-22   The mass concentration distribution 0ZZ− (%) obtained with the Scheil’s model at 10 min.

Comparing the segregation maps in Figure 3-21 and Figure 3-22 and results after complete
solidification,  one can find that a good agreement is obtained: the distributions of segregation (the
shape and position of the contours) are very close, as well as the maximum and minimum values of
variation of concentration. Since the local solidification time, and the global solidification time
(about >15 min) are not as long, consequently the macrosegregation is not too serious. As expected,
positive segregation appears at the top, while negative segregation at the bottom. This is due to the
fact that the liquid enriched in carbon solute element in the mushy zone  moves upward, leading to
the top region enriched in carbon and the bottom region impoverished in carbon. The computational
result is symmetric with respect to the center line, which is what we have expected for this
symmetric solidification problem. It is interesting to note that  the results of the lever rule are close
to  those of the Scheil’s model.

To summarize this section, we would conclude that:

•  The axisymmetric version of the P1+/P1 and SUPG-PSPG formulations for the Navier-

Stokes problem has been implemented  in R2SOL.

•  The steady-state natural convection test in a cylindrical cavity at high Rayleigh has been

chosen to validate the code. The new developments have been successfully validated:

convergence towards the plane flow has been shown for very large radii and a successful

quantitative comparison has been done with PHOENICS.

•  The computation of Darcy term and inertia term in the mechanical solver have been

improved.

•  Macrosegregation in square cavity with a carbon binary steel alloy has been computed by

R2SOL and SOLID using the no-coupling approach. The two codes give very close

results.

Max. 0.024

Min. –0.016

Max. 0.025

Min. –0.017

a) R2SOL b) SOLID
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&KDSWHU���

0HVK�DGDSWDWLRQ

$GDSWDWLRQ�GH�PDLOODJH�±�5pVXPp�HQ�IUDQoDLV

Le raffinement du maillage au front de solidification, précédemment évoqué, exige donc un

remaillage dynamique du maillage d’éléments finis, de façon à accompagner l’avancée de la

solidification dans la pièce. En l’absence d’estimateurs d’erreur avérés dans le cas de tels calculs

fortement couplés, une approche pragmatique a été développée dans ce travail.

Pour raffiner le maillage au voisinage du liquidus dans la zone pâteuse, on utilise la norme du

vecteur gradient de fraction solide. La taille de maille visée est alors directement fonction de cette

norme. En aval du front dans le domaine purement liquide, c’est la distance à ce front qui est la

variable pilotant la taille de maille visée. A l’aide de fonctions et de paramètres correctement

choisis, on construit ainsi une méthode de remaillage dynamique isotrope, s’appuyant sur le module

de remaillage existant du Cemef (module MTC).

Il peut être intéressant toutefois de générer des maillages anisotropes, de manière à capter une

zone pâteuse étroite, ce qui est le cas notamment dans les premiers instants de la solidification, près

de l’interface pièce-moule. Dans ce but, ou utilise alors l’orientation du vecteur gradient de fraction

solide. La taille de maille visée est alors calculée selon cette direction, toujours en fonction de la

norme du vecteur, tandis qu’un facteur d’anisotropie est déterminé en fonction de l’orientation du

champ de vitesse. L’utilisation du remaillage anisotrope permet de diminuer considérablement le

nombre d’éléments, à taille de maille données dans la direction du gradient de fraction solide.

L’organisation du chapitre est la suivante : le calcul de la distance au liquidus est exposé à la

section 4.1. Les algorithmes de remaillage isotrope et anisotrope sont présentés aux sections 4.2 et

4.3 respectivement.
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&KDSWHU��

0HVK�DGDSWDWLRQ
As discussed in the general introduction, fluid flow in the mushy zone close to the liquidus

and in the liquid just ahead of the liquidus is most important to the formation of macrosegregation,
and fine meshes are needed in these regions. In the deeper mushy zone close to solidus, fluid flow is
very weak and the velocity is nearly equal to zero. Actually the solute concentration field in the
deeper mushy zone and in the solid zone nearly does not change, we can properly use a rather
coarse mesh. Because the solidification front moves during cooling, moving adaptive meshes are
needed. So far no reliable error estimators have been evidenced for such highly coupled
solidification problems. For this reason, we have decided to use a simple algorithm for the mesh
adaptation.

A simple idea for the mesh adaptation is to generate fine elements in the critical regions. In
the present study, the norm of the gradient of solid fraction is used as a parameter for piloting the
remeshing in the mushy zone. The objective mesh size in the mushy zone is considered as a
function of the solid fraction. For the mesh refinement in the liquid just ahead of the liquidus, we
track the solidification front and compute the distance from each node to the front. Then, the
objective mesh size ahead of  liquidus can be determined as a function of the distance. An algorithm
for isotropic remeshing has been proposed.

In the early solidification stage of ingots, extreme anisotropic cooling appears. Variations of
temperature and fraction of liquid etc. are very large in the direction perpendicular to the mold wall,
while variations are small in the other two directions. Therefore, anisotropic mesh adaptation seems
quite appropriate in computation of ingots. The method for isotropic remeshing has been extended
to the anisotropic case. Special attention is given regarding the solidification direction.

In this work, we have used the mesher “MTC”, which has been initially developed by Thierry

Coupez [1991] at CEMEF, and has been improved recently by Cyril Gruau [2004]. The algorithms

of automatic mesh generation will not be presented in this document.

The organization of this chapter is as follows: we present a method to track the liquidus

isotherm and compute the distance to it in section 4.1. The algorithms for isotropic and anisotropic

mesh adaptation are presented in section 4.2 and section 4.3 respectively.

4.1 Tracking liquidus isotherm

Since the fraction of liquid, OJ , at each node has been computed by solving the energy

equation with the microsegregation model, the liquidus isotherm can be determined by using OJ .

For numerical reason, the liquidus isotherm is considered as the isoline with the value 99.0=OJ .

The method to track the isoline is based on the following assumptions:

•  the fraction of liquid is linear in each triangle element;
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•  an isoline can be either opened or closed as shown in Figure 4-1. An opened isoline has a
starting point and an ending point on the boundary. A closed isoline is enclosed within the
domain.

Figure 4-1  Illustration of solidification fronts with several closed or opened isolines

������ 7UDFNLQJ�SURFHGXUH
The procedure to track the liquidus isotherm  is carried out as follows:

1) For simplicity, assuming that a given isoline never passes though the vertices of the
triangle elements, it comes into a triangle from one edge, and leaves it from another edge.
This simplification makes it easy to track the isoline from one element to its neighbor
element. In practice, if the isoline just passes through the vertex, for instance through the
node L, we change the value of the liquid fraction at the node L by adding an infinitesimal
value (10-6).

2) For each element (H), identify if the isoline passes through it, and initialize the indicator
istate(H):

         istate (H) = 0,  the isoline does not pass through the element H;
         istate (H) = 1,  the isoline  passes through the element H, as shown in Figure 4-2.

3) Search for the isoline that starts from the boundary. If there is an opened isoline, one can
find an element H , such that:

           istate(H) = 1,  and at least one edge of the element belongs to the boundary.

     Then, the coordinate of the starting point on the boundary can be determined by linear
interpolation.

4) Extend  the isoline from one element to its neighbor element. In step 3), we have found the
element H as shown in Figure 4-2, and a starting point A on the boundary edge L-M. One can
also find another point B on the edge L-N where the isoline leaves the element� H . After
connecting two points (that is to store the coordinates), change the value of the indicator,
let istate(H) = 0. The next element H’ that the isoline goes into can be determined by the

mesh topology and the indicator, istate(H’). All the points of the isoline can be found

Mold

7OLT

7VRO

Casting

7OLT7VRO
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consequently by a repeating procedure: connect a segment within an element; change the
value of indicator; extend to the neighbor element. The repeating operation will be
terminated  when the isoline comes to the boundary again.

5) Repeat 3) and 4), until all the opened isolines have been found.

6) Search for the closed isolines inside the computational domain. After the step 5), there are
only closed isolines left. One can find a closed isoline in the inner elements where istate(H)
= 1. The tracking procedure is similar to that presented in step 4), one can track an isoline
until it comes back to its starting point.

Figure 4-2  Schematic of an isoline. An opened isoline that starts from a point A on the boundary, and passes
through the elements in red

������ 'LVWDQFH�WR�OLTXLGXV�LVRWKHUP
Regarding the tracking procedure, we note that the solidification front is approximated by a

series of succesive segments as shown in Figure 4-3. These segments have not been oriented.
Therefore, the liquid can be found either on the left or the right side of the contour. In order to
compute the distance to the liquidus isotherm, for any node 3 in the liquid zone where JO>0.99 we
search for a point 4 on the isotherm that is the nearest point to the node 3. Then, this distance (from
point 3 to point 4) is considered as the distance to the liquidus isotherm. The computation of
distance from a point to a series of segments is a simple geometry problem. The distance can be
calculated as follows:

•  Computation of the perpendicular distance from the point 3 to the line passing the two points XL

and�XL��

In order to compute this distance, we then define following vectors:
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where 8seg is the vector from the point XL�to�the point XL��;�the vector 9seg is perpendicular to the
vector 8seg; U is the vector from the point 3 to the point Xi.

The perpendicular distance can be computed by projecting the vector U on the unit vector
9seg/|�9seg |, then we have:
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As shown in Figure 4-4, the location of the projecting point 2, with respect to the point XL can be
found by projecting the vector -U on the unit vector 8seg/|�8seg |, leading to:
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Figure 4-3 Distance from a point P to the solidification front. The solidification front is approximated by a
series of segments  (X� X�), (X��X�), … (XL�XL��), …, (XQ���XQ)

Figure 4-4  Schematic of the shortest distance from a point 3 to a segment XLXL��

Xi Xi+1

3

O

b)  0.0��  ���   a)  < 0.0

Xi Xi+12

3

Xi Xi+1 O

3

     c)  > 1

GL G GL��G G

X�

X�

XL

 4

XQ

3 XL��

gl < 0.99gl > 0.99

 QOLT



-89-

•  Choosing of the shortest distance from the point 3 to the Lth segment XiXi+1, 
VHJ
LG

As shown in Figure 4-4, the shortest distance from the point 3 to the Lth segment XLXL�� is
determined by:
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where LG and 1+LG are the distances from the point 3 to the points XL�and�XL���respectively; G is the
perpendicular distance from the point 3 to the line passing the points XL�and�XL���

Meanwhile, the point VHJ
LT on the Lth segment XLXL��, which is the closest�point to 3, is chosen

as follows:
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•  Determining the shortest distance from the point 3 to the liquidus isotherm

It is easy to find the distance to the liquidus isotherm, knowing the shortest distance from the
point 3 to the Lth segment XLXL��, 

VHJ
LG . We write:

                  )min(    )( VHJ
LOLT G3[ = (4-8)

And, the point 4 on the isotherm that is the nearest point to 3�is chosen from the set of VHJ
LT .

For the purpose of guiding anisotropic remeshing in the liquid zone, we also define a unit
vector for each node 3,� )(3OLTQ . The vector follows the direction of the gradient of liquid fraction at
the point 4 which is the nearest to the point 3. The vector )(3OLTQ is considered to be a good
approximation of the unit normal to liquidus isotherm. Its value is computed by the linear
interpolation, knowing the coordinates of the point 4�and the field of the gradient of liquid fraction.

Similarly, for guiding the derefinement in the solid-like zone where the solid fraction is great
than a critical value FU

VJ , we track the isoline of FU
VJ ,  and compute the following parameters:

        )(3[VRO , the shortest distance from each node 3 in the solid-like zone to the isotherm of FU
VJ ;

)(3VROQ , the unit vector for each node 3 in the solid-like zone, following the direction of the

gradient of solid fraction at the point 4 on the isotherm of FU
VJ .

4.2 Isotropic remeshing

������ 'HILQLWLRQV�RI�LVRWURSLF�PHVK�VL]H
'HILQLWLRQ�4.2.1 The mesh size for each element, 7K : let T  be a triangle element with three vertices
S1, S2 and S3 , as shown in Figure 4-5. Following the definition of mesh size in the mesher MTC,

7K  is the average length of its edges S1S2, S2 S3 and S3 S1:
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Figure 4-5  A triangle element with its vertices S1, S2 and S3

'HILQLWLRQ�4.2.2  The mesh size for each node, VK : let TN (with N�= 1, Q) be a triangle element
sharing the common node S, as shown in Figure 4-6. VK is the distance-weighted average of the
sizes of elements TN surrounding the node S, the weights being proportional to the inverse of square
distance.
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where, NO  is the distance from the node S to the center of triangle TN

Figure 4-6 The triangle elements around a node S

As the objective mesh size that is used in the mesh generator “MTC” is defined at each node,

we firstly evaluate the mesh size at each element using the definition 4.2.1, and then compute the

mesh size at each node using the definition 4.2.2.
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������ 'RPDLQ�GHFRPSRVLWLRQ
For the purpose of automatic remeshing, the computational domain is decomposed into three

zones: 1) the liquid zone; 2) the mushy zone close to the liquidus, called the mushy zone for short;
3) the mushy zone close to the solidus and the solid zone, called the solid-like zone. A critical
value, FU

VJ , is used to distinguish the mushy zone and the solid-like zone.

The criterion to decompose the computational domain can be based on:

1) the solid fraction;

2) temperature;

3) the permeability, which is determined by the Carman-Kozeny relation as a function of the
solid fraction;

4) the rate of variation of solute concentration in the case of a binary alloy, especially for the
solid-like zone.

Since the liquidus and solidus temperature change with the local average solute concentration,
a criterion based on the temperature would not be satisfying. For simplicity, in the present work we
choose the solid fraction as the criterion. A critical value FU

VJ prescribed by the user,
typically 6.0  to4.0  =FU

VJ , is used to distinguish the mushy zone and the solid-like zone. The liquidus
isotherm, 0.99  =OJ , is used to distinguish the mushy zone and the liquid zone.

������ &RPSXWDWLRQ�RI�WKH�QRGDO�REMHFWLYH�PHVK�VL]H
In order to control the mesh size at nodes, we define the following parameters:

     FXUUHQWK ,            current local mesh size at nodes;

     REMK ,                        objective mesh size at nodes;

     PXVK\Kmin_  and PXVK\Kmax_ , two fixed values to bound the size in the mushy zone;

     OLTKmin_  and  OLTKmax_ ,             for the nodes in the liquid zone ;

     VROKmin_  and  VROKmax_ , for the nodes in the solid-like zone;

     REMHFWLYH

V
J∆ ,                            the objective variation of solid fraction in the mushy zone;

      REMHFWLYH
Zε∆ ,                            the objective relative variation of average concentration.

REMHFWLYH

V
J∆  is used to guide remeshing in the mushy zone. Generally speaking, if 1.0 =∆ REMHFWLYH

V
J ,

we ask for about 10 elements in the mushy zone. REMHFWLYH
Zε∆  is used to guide remeshing in the solid-

like zone. As the field of solute concentration in the solid-like zone no longer changes, normally
one can derefine the mesh. But if necessary we may like to use a fine mesh to keep the information
of a segregated channel, where a great variation of solute concentration has formed. A priori
estimation should be given to decide the value of REMHFWLYH

Zε∆ .

Before computing the objective mesh size at nodes, we compute the gradient of solid
fraction, H

VJ∇ ; and the gradient of average concentration, HZ∇ , in each element. Then, smoothed
values of VJ∇  and Z∇ can be obtained at each node (like smoothing the mesh size at each node by
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equation (4-10) ). We identify  the state of each node: it is either in the liquid, in the mushy or in the
solid-like state. This can be achieved easily by testing the value of OJ at each node:

    if 99.0≥OJ , the node is in the liquid zone;

    else if FU
VO JJ −<  1  ,  the node is in the solid-like zone;

    else,  the node is considered  in the mushy zone.

Now let us compute the objective mesh size according to the state of each node as follows:

•  1RGDO�REMHFWLYH�PHVK�VL]H�LQ�WKH�PXVK\�]RQH
Two cases are considered:

1) the quantity FXUUHQWV KJ  ∇  is lower than or equal to the prescribed value REMHFWLYH
V
J∆ . In this

case, we do not change the mesh size, hence:

                   )  ,max(  min_
)1(

PXVK\FXUUHQWREM KKK =

                   and )  ,min(  max_
)1(

PXVK\REMREM KKK =  (4-11)

2) the quantity FXUUHQWV KJ  ∇  is greater than REMHFWLYH
V
J∆ . In this case, refinement is needed, the

objective mesh size is found as follows:

                  )  ,min(  max_
)1(

PXVK\
V

REMHFWLYH

REM KJ
JK V

∇
∆

=

                   and )  ,max(  min_
)1(

PXVK\REMREM KKK =

(4-12)

•  1RGDO�REMHFWLYH�PHVK�VL]H�LQ�WKH�OLTXLG��]RQH
The objective mesh size is computed as a function of the distance OLT[ to the liquidus

isotherm. We have selected the following Avrami-type function,

                    
























−−+=

3

0max__max_ 0.5exp ) (  
OLT

OLT
OLTIURQWOLTOLTREM [

[KKKK
 (4-13)

which is illustrated in Figure 4-7. 0
OLT[ is the prescribed distance, at which the objective mesh size

reaches the value max_OLTK . IURQWOLTK _  is the current mesh size on the liquidus isotherm (with 99.0=OJ ).

For each node in the liquid zone, as we have found the nearest point on the liquidus isotherm, i.e.,
we know the coordinates of point 4� (cf. section 4.1.2),  IURQWOLTK _  can be interpolated by a linear

function using the current mesh size.

5HPDUNV
1) Fine objective mesh size near the liquidus isotherm can be achieved by the Avrami-type

function, which is essential for modeling the macrosegregation. 2) The objective mesh size near the
liquidus isotherm changes slightly, this character can prevent from too frequent triggering of the
remeshing. 3) We desire to have fine elements ahead of the liquidus isotherm, so that the velocity
field can be predicted with high accuracy. In the present work, 0

OLT[ takes the value of  max_4 OLTK× .

At the beginning of computation, our domain usually is occupied by the liquid. In order to
generate a good mesh, the distance to the boundary is computed instead of the distance to the
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liquidus isotherm. The objective mesh size on the boundary is considered as OLTKmin_ , and the

Avrami-type function is used to define the objective mesh size near the boundary.

 Figure 4-7 The objective mesh size as computed by the selected Avrami-type function

•  1RGDO�REMHFWLYH�PHVK�VL]H�LQ�WKH�VROLG�OLNH�]RQH
For the solid-like zone, normally the mesh can be derefined according to the distance to the

isotherm of FU
VJ :
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Where VROK  is the current mesh size at the isotherm of FU
VJ ; VRO[  is the distance to the isotherm of

FU
VJ ; 0

VRO[ is the prescribed distance, for which the objective mesh size reaches the value max_VROK .

In order to keep the information regarding the segregated channels if necessary, we need to re-
compute the objective mesh size. Similarly to the computation of objective mesh size in the mushy
zone, two cases are considered:

1) the quantity Z
KZ REM ∇

 is lower than or equal to the prescribed value REMHFWLYH
Zε∆ , and REMK  has

been computed by equation (4-14). In this case, we accept the objective mesh size computed by
equation (4-14).

2) the quantity Z
KZ REM ∇

 is greater than REMHFWLYH
Zε∆ , then the objective mesh size is determined

by:

                   )   ,min( max_
)1(

VRO

REMHFWLYH
Z
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                    and     )  ,max( min_
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  (4-15)
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After the computation described above, finally we need to optimize the objective mesh size in

order to create a new mesh with good quality. The variation of objective mesh size should be then

controlled. Let N
REMK  be the objective mesh size at the N-th point in a triangle element, and let M

REMK  be

the value at another point of the element. The ratio M
REM

N
REM KK /  should be in the range of (0.5, 2.0), so

that the quality of mesh is guaranteed. An iterative procedure is performed to optimize the objective

mesh size, in which we always decrease the larger objective mesh size, until this limit ratio is

fulfilled for every node.

To summarize, the following procedures are performed for the adaptive remeshing:

•  track the isotherms of liquidus and FU
VJ , and compute the normal distance to the isotherms

for each node;

•  compute the objective mesh size at each node;

•  optimize the objective mesh size by an iterative smoothing procedure, so that the
maximum variation between two neighbor nodes is confined within the range of (0.5, 2.0);

•  make a decision about remeshing. In order to avoid too frequent remeshing steps, we
trigger the remeshing only when there is a certain number of nodes, typically 1%, for
which the ratio of the objective mesh size to the current mesh size is out of the range [0.5,
2.0];

•  create a new mesh by using the mesher “MTC”. Passing the objective mesh size to MTC, a

new mesh can be created.

•  Transport the variables that are needed in the further computation from the old mesh to the

new mesh by the direct interpolation method. It is obvious that the solidification variables

computed by direct interpolation will not satisfy the thermodynamic equilibrium due to the

strong non-linearity of the problem. So, in a first step, values of enthalpy and average

concentration are transported. Then, in a second step, the values of temperature, fraction of

liquid, liquid concentration, liquidus and solidus temperature are deduced with the aid of

the selected microsegregation model (in the present study, only lever rule is available to

use the mesh adaptation).

In R2SOL, the organization for the dynamic mesh adaptation is summarized in Figure 4-8.
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Figure 4-8  Organization for the dynamic mesh adaptation in R2SOL

4.3 Anisotropic remeshing

As it has been presented at the beginning of this chapter, in the solidification of ingots
anisotropic cooling appears. Consequently, the gradient of quantities (such as temperature, liquid
fraction, and velocity) is very large in one direction, and becomes small in the other directions. In
order to match this strongly directional situation, it is desirable to use anisotropic meshes. A good
anisotropic mesh that is adapted both in size and shape can improve the computational accuracy and
reduce the computational cost. In general, a metric tensor is used to describe the objective mesh size
and direction locally at each point in the computational domain. The present work is dedicated to
introduce a metric tensor for guiding dynamic remeshing. While the anisotropic mesh is generated
using the mesher “MTC”.

  Track the solidification front

  Compute gradients of JO and Z

  Compute the current mesh size at nodes

  Compute the objective mesh size at nodes

Resolution for the equations of energy, solute and
momentum

Remeshing ?

  Prepare the metric for remeshing
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As prior knowledge, the concept of metric tensor is briefly presented in section 4.3.1.
Regarding the anisotropic remeshing, a similar strategy to the isotropic remeshing has been used to
compute the objective mesh size. However, there are still some differences, and one should pay
attention to the mesh orientation. This will be presented in section 4.3.2.

������ 0HWULF�WHQVRU�DQG�DQLVRWURSLF�PHVK
•  0HWULF�WHQVRU

Hereunder, we present the classical definition of the metric tensor for 2-dimensional
anisotropic remeshing (Frey and George [1999]). A metric tensor is a positive symmetric definite
tensor and its matrix 0 can be factorized as follows:
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denotes the diagonal matrix formed by the eigenvalues of 0(x).
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sincos5 presents the corresponding eigenvectors. The metric tensor 0(x) defines a

curved space (like an ellipse) as shown in Figure 4-9, the major radius and the minor radius are
K1(x) and K2(x) respectively.

There are several possibilities to interpret the metric tensor. For instance, if the tensor 0 is a
diagonal matrix as follows:
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Then, it defines a homogeneous space as a circle in Figure 4-10. That is the case for the isotropic
mesh adaptation: the local objective mesh size, )([KREM , is only a function of the position, this
function specifies the edge length in all directions. 

 Figure 4-9 an ellipse                                                  Figure 4-10 a circle

For the anisotropic meshes, the local metric tensor specifies an ellipse as shown in Figure 4-9.
The objective mesh sizes in the two principal directions are the major radius K1(x) and the minor
radius K2(x) respectively. The mesh orientation is specified by the angle θ.

K
K1

θK2
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Mathematically speaking, let 10   )1(  )( [[ WWW +−=Γ be a parametric description for the segment

10[[ , in the space defined by the metric tensor 0(x), the distance between two points 0[ and 1[ is

then defined as:

                            GWWO 7  ) ( ))(() () ,(
1

0 010110 ∫ −Γ−= [[0[[[[  (4-18)

By linearly interpolating the metric )( )( )1(  ))(( 10 [0[00 WWW +−=Γ , the length of segment 10[[ is

approximated by (Frey and George [1999]):
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where 1 0,     ,   ) ( )() (
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0 0101 =−−= ∫ LGWO L
7

L [[[0[[ .

The distance in the equation (4-18) is the Euclidean distance when 0 is the identity matrix.

•  0HVK�VL]H
For an anisotropic mesh, using equation (4-19), the length of an edge (SLSM) in a triangle can

be defined as follows with respect to the metric tensor 0:
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where   
2

M
L
VV

M
− denotes the square of the distance from the point SL  to the point SM according to

the metric 0�
In the mesher “MTC”, the metric 0  is simply averaged to evaluate the edge length and the

mesh size for an element. The definitions of mesh size are described as follows (Cyril Gruau

[2004]):

The length of an edge:
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The metric for an element 7:
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The mesh size for an element 7:
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The mesher “MTC” creates automatically the new mesh by an iterative procedure, using a

field of metric tensor defined at each node on the old mesh. Our task is then to introduce the metric

tensor. In the following text we present an example of  anisotropic mesh, and show what parameters

are needed for guiding the remeshing.

•  $Q�H[DPSOH
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 An anisotropic mesh used in the computation of solidification is shown in Figure 4-11. It can
be seen that triangle elements in the mushy zone are elongated in the direction perpendicular to the
gradient of liquid fraction, such that a layer of fine elements is located in the mushy zone. Ahead of
mushy zone and toward to the bulk liquid zone, the anisotropic mesh becomes an isotropic mesh,
being the isotropic mesh in the bulk liquid. The same feature can be seen in the solid zone.

Figure 4-11  An example of anisotropic mesh

In order to create such meshes for the computation of macrosegregation, for each node we
define the following parameters:

•  the objective mesh size in the first principal direction 1REMK ;

•  the objective mesh size in the second principal direction 2REMK ;

•  the unit vector 







=

θ
θ

sin

cos
  1Q that specifies the first principal direction.

The computation of these parameters is presented in the following sections.

������ 'HWHUPLQDWLRQ�RI�SDUDPHWHUV�IRU�DQLVRWURSLF�UHPHVKLQJ

�������� 0HVK�RULHQWDWLRQ
•  In the mushy zone, the mesh (according to the first principal direction) is oriented in the

same direction as the gradient of solid fraction:
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Liquid zone Solid zoneMushy
zone
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•  In the liquid zone and near the liquidus (within the prescribed distance 0
OLT[ ), the mesh is

oriented in the same direction as the liquidus isotherm (cf. section 4.1.2):

                                OLTQQ   1=  (4-25)

where OLTQ is the unit norm of the liquidus isotherm at the point which is the nearest to the
considered node, see Figure 4-3.

For a node far from the liquidus isotherm, the mesh is isotropic, that is:

                        1cos =θ    and   0sin =θ  (4-26)

•  In the solid-like zone and near the isotherm of FU
VJ (within the prescribed distance 0

VRO[ ), the
mesh is oriented in the same direction of  the isotherm of FU

VJ
                                VROQQ   1=  (4-27)

where VROQ is the unit norm of the isotherm of FU
VJ at the point which is the nearest to the

considered node.

Otherwise the mesh is isotropic:

                                1cos =θ    and   0sin =θ  (4-28)

�������� 2EMHFWLYH�PHVK�VL]H
We adopt the same strategy as that for the isotropic mesh adaptation (described in section

4.2.3) to compute the objective mesh size in the first principal direction, 1REMK . The remained
problem is to determine the objective mesh size in the second principal direction, 2REMK .

In the solid-like zone, 2REMK , is obtained by multiplying 1REMK  with a given factor (typically,
factor = 5), we have:

                          ( )VROREMREM KIDFWRUKK max_12   ,  min ×=  (4-29)

In the mushy and liquid zones, three cases are considered as following:

In the first case as shown in Figure 4-12 a), the velocity vector is orthogonal with the first
principal direction which has been determined in section 4.3.2.1. That is the ideal case, one can
elongate an isotropic triangle element just following the fluid flow. 2REMK , is given by multiplying

1REMK  with a given factor:

                          ( )OLTREMREM KIDFWRUKK max_12   ,  min ×= ,    in the liquid zone  (4-30)

                           ( )PXVK\REMREM KIDFWRUKK max_12   ,  min ×= , in the mushy zone

In the second case as shown in Figure 4-12 b), 1.0cos ≤α , α  being the angle between vectors
of velocity and the first principal. 2REMK is determined as a function of the angle α :

                 




 −+= OLTREMREM KIDFWRUIDFWRUKK max_12   ), cos 

1.0

 1
  (min α ,  in the liquid zone  (4-31)
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                  




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1.0

 1
  (min α ,  in the mushy zone  (4-32)

In the last case as shown in Figure 4-12 c), 1.0cos >α ,  We prefer to use the isotropic mesh,
L.H., 12  REMREM KK = .

It is important to bound with OLTKmax_ in equation (4-31), in order to get good transient meshes
between fine meshes (in the mushy zone) and coarse meshes (in the bulk liquid zone).

Figure 4-12  Schematic for the computation of objective mesh size

5HPDUNV
It is very time consuming to track the isotherms and compute the distance to the isotherms, as

well as to generate a new mesh and transport the variables from the old mesh to the new mesh. To
prevent from doing too frequently the expensive operations, we compute the time interval W∆  that is
needed for the liquidus isotherm to travel through a mesh, as shown in Figure 4-13. During the time
interval W∆ , we do not perform the operations. In order to estimate the time interval W∆ , let us
consider the isotherm of 0.1=OJ :
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(4-33)

where 8 denotes the moving velocity of the liquidus isotherm. Knowing the gradient of liquid

fraction in the element H
OJ∇ , and the average solidification rate in the element,
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velocity of the liquidus isotherm can be deduced from 4-33. Then, the time interval W∆ is estimated
by the following equation:
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where, 7K is the mesh size of an element in the direction normal to the liquidus isotherm.

Figure 4-13 Schematic of the moving liquidus isotherm

Liquidus isotherm at
time W

Liquidus isotherm at
time WW ∆+

Moving front
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&KDSWHU���

1XPHULFDO�UHVXOWV�RI�PDFURVHJUHJDWLRQ

5pVXOWDWV�QXPpULTXHV�HQ�PDFURVpJUpJDWLRQ�±�5pVXPp�HQ�IUDQoDLV

Les modèles développés, intégrés dans le logiciel R2SOL, ont été appliqués à trois cas de

macroségrégation. Le premier est le test de Hebditch et Hunt, consistant en la solidification de petits

lingots parallélépipédiques d’alliages Sn-5%Pb et Pb-48%Sn. Ce test est intéressant car il a déjà fait

l’objet d’études comparatives dans la littérature (Ahmad et al.) et il implique des tendances

opposées en terme de convection thermo-solutale. Dans le cas du premier alliage, les convections

thermique et solutale se conjuguent, donnant lieu à une forte tendance à la formation de canaux

ségrégés. Dans le second cas, ces convections s’opposent, mais la macroségrégation est également

marquée. L’accord entre simulation et mesures expérimentales est de bonne qualité. Les influences

de la discrétisation spatiale et temporelle et des schémas de couplage sont alors discutées,

notamment par rapport à la capacité de prédiction des canaux ségrégés. En outre, l’efficacité de

l’adaptation de maillage est démontrée. Les résultats sont présentés dans les sections  5.1 à 5.3. On

montre que les canaux ségrégés peuvent être détectés à condition d’utiliser des maillages et des

discrétisations temporelles suffisamment fines et éventuellement un couplage fort entre les

différentes résolutions incrémentales.

Le second cas étudié est un cas de solidification dirigée d’un alliage Pb-%10Sn. Au cours de

la solidification dans un gradient de température positif, le liquide dans la zone pâteuse s’enrichit en

soluté, ce qui donne lieu à des instabilités. Lorsque la vitesse de propagation du front est plus faible

que la convection solutale dans la même direction, des canaux ségrégés se forment. La diffusion

solutale étant beaucoup plus faible que la diffusion thermique, le liquide ségrégé garde une

composition élevée en s’écoulant à travers la zone pâteuse vers des régions à température plus

élevée. Le liquide enrichi peut alors retarder la croissance dendritique ou provoquer une refusion

locale, créant ainsi des veines liquides verticales au travers de la zone pâteuse. Ces phénomènes

complexes très fortement couplés ont pu être mis en évidence par le logiciel R2SOL en utilisant la

formulation fortement couplée avec remaillage dynamique. Les résultats sont présentés à la section

5.4.

Finalement, du point de vue de l’application industrielle à l’échelle de lingots d’aciérie, la

macroségrégation dans un lingot d’alliage binaire fer-carbone a été modélisée avec le logiciel, en

utilisant le remaillage dynamique, ce qui a permis de mettre en évidence la formation de veines

ségrégées de type « A » (section 5.5).
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&KDSWHU��

1XPHULFDO�UHVXOWV�RI�PDFURVHJUHJDWLRQ
Macrosegregation resulting from the solidification of parallelepipedic ingot of Pb-48%Sn

alloy and Sn-5%Pb alloys has been examined by Hebditch and Hunt [1974]. This test has already
served as a benchmark to evaluate the computational codes (Ahmad HW DO. [1998], Desbiolles HW DO.
[2003]). We have also adopted this test to validate R2SOL. A confrontation with the experimental
results and numerical results obtained by the finite volume code SOLID has been done. We will
present these results in sections 5.1 to 5.3.

In section 5.4, the ability of R2SOL to model the freckling phenomena, thanks to adaptive
remeshing strategies, will be demonstrated

Finally, from the point of view of industrial applications, the macrosegregation in an
industrial steel ingot has been studied. The computational results will be shown in section 5.5.

5.1 Benchmark test of Hebditch and Hunt

Hebditch and Hunt [1974] solidified a Pb-48%Sn alloy and a Sn-5%Pb alloy in a
parallelepipedic cavity 0.06 m high, 0.1 m long and 0.013 m thick. The cavity was insulated on all
surfaces except the thinnest lateral surface. Heat was extracted from only one (the left) surface as
shown in Figure 5-1. After solidification, macrosegregations were measured by spectro-photometry.
The concentration values were considered to be accurate to % 2± of the concentration values.

Figure 5-1  Schematics of the HH test

This setup of experiment was nearly 2-dimensional. Assuming that the fluid flow in the
largest midplane section was not influenced by the two parallel walls of the cavity, the situation was
considered to be a 2-dimensional problem. The macrosegregation in the largest midplane was
simulated by Ahmad HW DO. [1998] using the finite element code CALCOSOFT developed at Ecole
Polytechnique Fédérale de Lausanne and the finite volume code SOLID developed at Ecole des

Mines de Nancy. The physical data and parameters used in the calculation are given in Table 5-1.

The boundary conditions for the thermal analysis are illustrated in Figure 5-1: A Fourier condition

is applied to the left wall, adiabatic conditions are imposed on the other three walls. The initial

temperature field is assumed to be uniform, being at LQLW7 . For solute transport analysis, there is no
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solute exchange through the boundaries, and the initial concentration field is supposed
homogeneous, 0    ZZ = . Zero initial velocity and a no slip boundary condition are applied for
mechanical analysis. The numerical results obtained by the two codes, CALCOSOFT and SOLID,
globally coincide with the experimental results. Ahmad HW�DO. [1998] proposed then that Hebditch
and Hunt test could be a classical benchmark test for macrosegregation computations.

It should be noted that the solidification times and thermal fields are not accurately reported
in the article of Hebditch and Hunt [1974], except the initial temperature (being very close to the
liquidus temperature). Some figures showing the advancement of the solidification front are
presented, which are obtained by quenching the ingots at different times. Based on the advancement
of the solidification front, cooling conditions (the heat exchange coefficient K and the external
temperature� H[W7  in Table 5-1) have been estimated by Ahmad HW DO. [1998].

In the work of Ahmad HW�DO. [1998], Carman-Kozeny relation (3-1) is used to compute the
permeability of the mushy zone. A constant value of 2λ  (in Table 5-1) is used to fit the
experimental segregation results.

Table 5- 1 Physical properties and computational parameters for the HH-test, Ahmad HW�DO. [1998]

Pb-48%Sn Sn-5%Pb
3KDVH�GLDJUDP�GDWD
Nominal mass fraction, 0Z wt.pct 48.0 5.0

Melting temperature, I7 of the pure substance °C 327.5 232.0

Eutectic temperature, HXW7 °C 183.0 183.0

Liquidus slope, P °C.(wt.pct)
-1

-2.334 -1.286

Partition coefficient, N 0.307 0.0656

Eutectic mass fraction, HXWZ wt.pct 61.9 38.1

7KHUPDO�GDWD
Thermal conductivity, λ W.m

-1
.K

 –1 50.0 55.0

Specific heat, SF J.kg-1.K –1 200.0 260.0

Latent heat, / J.kg-1 53550 61000
2WKHU�FKDUDFWHULVWLFV
Reference density, 0ρ kg.m-3 9000 7000

Reference temperature, UHI7 °C 232 226

Thermal expansion coefficient, 7β K
-1

1×10
-4

6×10
-5

Solutal expansion coefficient, Zβ (wt.pct)
-1

4.5×10
-3

-5.3×10
-3

Dynamic viscosity, µ Pa.s 1×10
-3

1×10
-3

Secondary dendrite arm spacing, 2λ m 40×10
-6

65×10
-6

Initial temperature, LQLW7 °C 216 226

Heat transfer coefficient, K W.m
-2

.K
 -1

400 300

External temperature, H[W7 o
C 25 25

&DOFXODWLRQ�SDUDPHWHUV
Time step s 0.1 0.05

Gravity, J m.s
-2

9.81 9.81

Diffusion coefficient in liquid,ε m
2
.s

-1
1×10

-9
1×10

-9
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In this test, horizontal gradients of temperature and solute concentration in the liquid are built
up at the early stage of solidification. These two gradients lead to a horizontal gradient of the liquid
density. Hence, thermal and solutal driven natural convection occurs in the cavity. It should be
noted that natural convection occurring in the Pb-48%Sn alloy and the Sn-5%Pb alloy are different
as shown in Figure 5-2. For the Sn-5%Pb alloy, the interdendritic liquid enriched in Pb becomes
heavier. Combining with the temperature effect, the fluid flow is counterclockwise. However, for
the Pb-48%Sn alloy, the interdendritic liquid being enriched in Sn, the effects of solute and
temperature on the liquid density are opposite, but solute-induced convection dominates in this
case, leading a clockwise fluid flow. At the beginning of solidification of the two alloys, it has been
IRXQG�WKDW�D�VROXWH�GLIIHUHQFH� Z along the characteristic length (0.1 m) is about 10%, the solute

Grashof number *UF ( 9
23

33

2

3

106.3
)9000/10(

1.0105.48.9g
  ×=×××=

∆
= −

−Z/* Z
UF

β
, for the Pb-48%Sn alloy) is

of the order of 109, this can cause a strong convection.

Figure 5-2 Schematics of thermo-solutal convection, Ahmad HW DO. [1998]

5.2 Results for the Sn-5%Pb alloy

������ 1XPHULFDO�VHWXS
Ahmad HW�DO. [1998] computed the solidification of the Sn-5%Pb alloy using CALCOSOFT

and SOLID. The governing equations used by Ahmad were exactly the same as those presented in
chapter 3. Lever rule was considered as the microsegregation model. A structured mesh with 60×60

elements and a constant time step VW  05.0  =∆ were used in the computation. )XOO� FRXSOLQJ
computations with iterations were performed. Macrosegregation maps at 400 V are shown in Figure

5-3. The computational result of SOLID, as shown in Figure 5-3 a), predicted the oscillation of

average concentration in the middle region of the ingot, indicating the tendency to form segregated

channels in this region. While CALCOSOFT predicted the oscillation only at the bottom of the

ingot as shown in Figure 5-3 b).

Figure 5-3 The relative variation of the average concentration, (Z-Z0)/Z0 at 400 s, from Ahmad HW�DO. [1998]

Thermal

Solutal

Thermal

Solutal

b) Pb-48%Sn alloya) Sn-5%Pb alloy

                a)  SOLID                                                b) CALCOSOFT
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Kämpfer [2002], using an improved version of CALCOSOFT with mesh refinement (see

section 2.1.3) repeated the computation. The segregation map was similar to the map shown in

Figure 5-3 b), the segregated channels being predicted along the bottom wall. Although a global

agreement to the prediction of macrosegregation was achieved by the two codes, CALCOSOFT and

SOLID, there are differences in the results.

Following the works of Ahmad HW� DO. [1998] and Kämpfer [2002], we have performed

numerical simulations of macrosegregation for this alloy with the codes R2SOL and SOLID, using

the same physical parameters as presented in Table 5-1. The goals of the numerical tests are the

followings:

•  To study the mesh size influence. In this test, non-structured triangle meshes are used, the

mesh sizes being given in Table 5-2. The time step is 0.05 V, taking the same value as the

one used by Ahmad HW�DO. [1998]. )XOO�FRXSOLQJ computations have been carried out, L.H.
in each time step iterations are performed to couple the velocity, temperature and

concentration fields. The maximum number of iterations is limited to 30. The criteria to

terminate the iterations are as follows:

                            4
1

100.1   −
+

×≤−
Q

QQ

7
77

 ,  for the resolution of energy equation

                    and  4
1

100.1   −
+

×≤−
Q

QQ

9
99

 ,   for the resolution of momentum equation

                    and  4
1

100.1   −
+

×≤−
Q

QQ

Z
ZZ

 ,   for the resolution of solute equation

      Q denoting the iteration number.

•  To study the time step influence. Besides the standard time step 0.05 V, a larger and a

smaller time steps, being 0.1� V and 0.025� V, are used. In this test, the IXOO� FRXSOLQJ
approach is applied, but only one iteration is performed at each time step. The fixed mesh

II is adopted (referring to Table 5-2).

•  To study the influence of coupling iterations within each time step. In this test, a fixed

mesh (Mesh II) is used, the time step being 0.05 V. Computations have been already done

in the first and the second tests. Here, we compare the results obtained with  iterations (the

maximum number of iterations is 30, the criteria to terminate iterations are 10
-4

 for

solving energy, solute and momentum equations respectively) and without iteration.

•  To compare the results obtained by the IXOO� FRXSOLQJ approach and the QR�FRXSOLQJ
approach. The solidification of the Sn-5%Pb alloy has been re-computed with the no-

coupling approach, using the fixed Mesh II and the time step VW  05.0  =∆ .

•  To compare the results obtained by different solvers. Besides the traditional P1+/P1

formulation for solving the momentum equation, the so-called “P1/P1 SUPG-PSPG”

formulation has been recently implemented in R2SOL. In addition, for the energy

equation we have also implemented the “SUPG” method, which can be used instead of the

nodal upwind method. We will compare the results obtained by the new solver, using the
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fixed Mesh II and the time step VW  05.0  =∆ with the IXOO�FRXSOLQJ approach reduced to RQH
LWHUDWLRQ.

Table 5-2  Mesh size used in the computations

Mesh I Mesh II Adaptive mesh

Mesh size 2.5 PP 1.3 PP
minimum 0.5 PP in the critical region,
1.3 PP in the solid-like and bulk liquid
zones

Mesh I and Mesh II are the fixed meshes, whereas in the third case, the mesh is dynamically adapted. The

mesh size of Mesh II is close to the mesh size used by Ahmad HW DO. [1998] (1.6 PP in the x-direction and 1

PP in the y-direction). For the adaptive mesh, the objective variation of solid fraction in each element is 0.02:

we expect about 50 elements in the mushy zone. In fact, it is not necessary to apply fine elements covering

all the mushy zone. We use fine elements in the critical region, i.e. in the mushy zone where 15.0 << OJ . The

minimum mesh size is limited to 0.5 PP, to avoid extreme fine elements in the case of very large gradients of

liquid fraction. In the zone with lower liquid fraction ( 5.0 <OJ ) and in the liquid zone, the mesh size is 1.3 PP,

being the original mesh size. In the solid-like zone, in order to keep the information on segregated channels,

the objective relative variation of average concentration in each element is 1%.

In a first step, we present the results obtained in the different numerical tests (sections 5.2.2 to
5.2.7) hereunder. In a second step, we will discuss them in section 5.2.8.

������ 6WXG\�RI�WKH�PHVK�VL]H�LQIOXHQFH
The test of the mesh size influence has been performed on the Sn-5%Pb alloy, using the IXOO

FRXSOLQJ approach. For the  IXOO�FRXSOLQJ resolutions, the convergence has been achieved generally
within 10 iterations, using the iterative criteria of 10-4 for coupling the energy, solute and
momentum equations.

Figure 5-4 shows the results computed using the different meshes. The first column in Figure
5-4 presents the meshes. The second column shows the distribution of liquid fraction obtained at
time W = 100 V. The third column shows the relative variation of average mass concentration,

00 /)( ZZZ− , at time W = 400 V.
The first row shows the results calculated using a coarse mesh (Mesh I), the mesh size being

2.5 PP. The second row shows the results calculated using the standard mesh (Mesh II), the mesh
size being equivalent to that used by Ahmad HW� DO. [1998]. The computational results using an
adaptive mesh, are shown on the third row. The fourth row shows the results computed by SOLID
using a structured mesh with 60×60 elements, being progressively refined near the bottom wall. The

last row shows the results computed by CALCOSOFT using a structured 60×60 quadrangle element

mesh, with bilinear functions for all the fields except the pressure field, the pressure being assumed

constant within each element (L.H., Q1-P0 element for the velocity-pressure fields).

Comparing the figures a), b) and c) in Figure 5-4 (showing the results obtained with R2SOL

using different meshes), one find that the position and shape of the isoline 5.0=OJ  are very close.

But some differences appear for the isolines 9.0=OJ  and 99.0=OJ : these isolines in the middle

region become zigzagged with the mesh refinement. Seeing the segregation maps in the third

column, a segregated channel near the bottom appears in the results of R2SOL. This has been

already predicted by CALCOSOFT and SOLID. Besides, it is interesting to note that the tendency
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to form segregated channels in the middle region of the ingot has been captured by R2SOL, in
particular using the adaptive mesh. This has been predicted by SOLID, but not by CALCOSOFT.

Figure 5-4  The IXOO\�FRXSOHG resolutions for the Sn-5%Pb alloy, showing the mesh influence

������ 6WXG\�RI�WKH�WLPH�VWHS�LQIOXHQFH
In Figure 5-5 a), b) and c) we show the results computed with R2SOL using different time

steps, W∆ being 0.025 V, 0.05 V and 0.1 V� respectively. The first column in Figure 5-5 shows the
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distribution of liquid fraction calculated at time W = 100 V.  The second column shows the relative
variation of the average mass concentration, 00 /)( ZZZ− , at time W = 400 V.

Figure 5-5 )XOO\� FRXSOHG resolutions limited to one iteration for the Sn-5%Pb alloy,
showing the time step influence

Comparing the liquid fraction distribution at time W = 100 V, the isolines of liquid fraction
become more instable in Figure 5-5 a) than in Figure 5-5 c); For segregation maps in the middle
region at time W = 400, we note also that the variations of concentration in Figure 5-5 a) are greater
than in Figure 5-5 c). It seems that the instabilities in the middle region can be captured properly
using smaller time steps, comparing Figure 5-5 a), b) and c). The use of a larger time step, as shown
in Figure 5-5 c), may smooth the liquid fraction and the average concentration fields.

������ 6WXG\�RI�WKH�LQIOXHQFH�RI�FRXSOLQJ�LWHUDWLRQV�ZLWKLQ�HDFK�WLPH�VWHS
In order to test the sensitivity to iterative coupling,  let us compare the  IXOO\�FRXSOHG and the

IXOO\� FRXSOHG� UHGXFHG� WR� RQH� LWHUDWLRQ resolutions in Figure 5-6.  The contours of 99.0  =OJ  and
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9.0  =OJ  shown in Figure 5-6 b) are smoother than those in Figure 5-6 a). This can be also seen in
the segregation maps in Figure 5-6. It appears that the resolution is somewhat sensitive to the
coupling iterations within each time step.

Figure 5-6 Comparison between IXOO\� FRXSOHG and IXOO\� FRXSOHG,� OLPLWHG� WR� RQH� LWHUDWLRQ resolutions,
results calculated on Mesh II

������ 1R�FRXSOLQJ�UHVROXWLRQV
The macrosegregation in the Sn-5%Pb alloy has been predicted by the QR�FRXSOLQJ approach.

In this computation, the enrichment of solute in the liquid pool is neglected. The map of liquid
fraction at 100 V and the segregation pattern at 400 V are presented in Figure 5-7 a) and b)
respectively. Comparing with the results obtained by the IXOO�FRXSOLQJ approach, it can be noticed
that no segregated channels have been predicted by the QR�FRXSOLQJ computation (cf. Figure 5-4 b)).
However, the concentration pattern concerning the macrosegregation is very similar to that
predicted by the fully coupled approach.
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Figure 5-7 Numerical results obtained by the no-coupling approach using Mesh II, ¨W = 0.05 V

������ &RPSDULVRQ�EHWZHHQ�3���3��DQG�683*�363*�IRUPXODWLRQV
In order to test the influence of different finite element schemes, we have used the P1/P1

SUPG-PSPG method to solve the momentum equation, and the SUPG method to solve the energy
and solute equations. These methods are different from those used in the previous computations.
Now the advection terms in momentum and energy equations are computed by the SUPG
formulation, instead of the nodal upwind transport. For the momentum equation, the stabilization is
achieved by the SUPG-PSPG method, instead of the P1+/P1 bubble formulation (cf. sections 3.6
and 3.7 for details). For the solute transport equation we use the same solver as the previous
computations, being based on the SUPG method. The computation has been done on the fixed
Mesh II with the IXOO� FRXSOLQJ approach reduced to RQH� LWHUDWLRQ. Figure 5-8 shows the map of
liquid fraction at 100 V and the segregation pattern at 400 V. Comparing with Figure 5-6 b) obtained
with the P1+/P1 nodal upwind solver, we note that the results obtained by those two finite element
methods are very close.

Figure 5-8 Results obtained by the P1/P1 SUPG-PSPG solver, using the full coupling approach reduced to
one iteration with the fixed Mesh II and  ¨W = 0.05 V
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������ &RQIURQWDWLRQ�ZLWK�H[SHULPHQWV
The concentration profiles in different sections after complete solidification are shown in

Figure 5-9. In the R2SOL and SOLID computations, the IXOO�FRXSOLQJ approaches have been used,
and the same criteria to terminate iterations within each time step have been applied. Measurements
and numerical predictions are in rather good agreement.

Figure 5-9 Profiles of the deviation to the nominal concentration ( 0ZZ− (%) ) after solidification.
Measurements and computational results obtained by R2SOL and SOLID using the full coupling approach
with time step 0.05 V. These profiles correspond to various heights of the cavity: a) 5 PP, b) 25 PP, c) 35
PP and d) 55 PP. Sharp tips on the curves denote the occurrence of segregated channels.

������ 'LVFXVVLRQ�RQ�UHVXOWV�IRU�WKH�6Q���3E�DOOR\
•  2Q�WKH�QXPHULFDO�PRGHOV

As it has been presented, two approaches, full coupling and no-coupling, have been used to
predict the macrosegregation. In the no-coupling approach, locally the solidification path is fixed
and the solidification is treated locally as a closed system. While in the full coupling approach, the
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solidification is treated as an open system. Observing the fact that segregated channels in the middle
region have been predicted by the full coupling approach, but they have not been predicted by the
no-coupling approach as shown in Figure 5-7, we note that an open system should be considered in
order to predict these segregated channels.

However, regarding the global macrosegregation map obtained by the no-coupling
computation, it is quite in agreement with that obtained by the full coupling computation. It appears
then that the no-coupling approach can be used when the simulation of segregated channels is not of
prime interest.

Regarding the different discretizations for the momentum equation in R2SOL, we have noted
very few differences between P1+/P1 and P1/P1 SUPG-PSPG formulations. However, there are
some differences between the results of R2SOL and CALCOSOFT, although these two codes are
using finite elements and the same microsegregation model. The tendency to form segregated
channels in the middle region has been captured by R2SOL, as with the finite volume code SOLID.
This does not appear in the prediction of CALCOSOFT.

Here, we would like to recollect the discussion on the FVM and FEM formulations in the
paper of Ahmad HW�DO. [1998]. The authors proposed several possibilities to explain the differences
observed in Figure 5-3:

½ The treatment of the non-slip boundary condition. In the FEM formulation, the velocities
are directly imposed and set to zero on the edges of the cavity. While in the FVM
formulation, this boundary condition is expressed by using the tangential stress
component. This leads to different velocities near the boundaries.

½ The computation of the Darcy’s term. In the FEM, the Darcy’s term is integrated

numerically at the Gauss points;  In the FVM, the scalar quantities are computed at the

center of each cell, while the velocities are computed on the faces of the cell. In order to

compute the Darcy’s term, the permeability at the face center is interpolated by an average

scheme. The computation of the Darcy’s term is different between the FEM and FVM

schemes, which may lead to fairly large discrepancies between the two calculated velocity

fields.

½ The algorithms in the FEM and FVM. The meshes and the associated discretization

schemes are different. The SIMPLEC algorithm is used in SOLID, therefore, staggered

grids are employed for the discretization of the momentum equation. That is not the case

in the FEM code. In addition, the upwind procedure in the FVM is not made along the

streamlines as that in the FEM, which could add some numerical diffusion.

Since the inclined segregated channels in the middle region have been detected by R2SOL

using FEM, it seems that these 3 points are definitely not the right explanation of the

SOLID/CALCOSOFT differences.

Regarding the fact that segregated channels in the middle region have not been captured by

CALCOSOFT with a structured mesh, we have also used a structured mesh (shown in Figure 5-10)

to repeat the computation; and found that the tendency to form channels actually becomes very

weak. These segregated channels are invisible in Figure 5-11 a),  but can be shown in Figure 5-11

b) after changing the scale of the legend. It seems then that non-structured meshes are more

sensitive to detect the freckles.
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Figure 5-10 The structured mesh with 60×60 grids,� used in R2SOL. In the vertical direction, the size

increases geometrically by a factor of 1.0128, the minimum value being 0.67 mm; in the horizontal direction,

the grids are uniform, the mesh size being 1.67 mm.

Figure 5-11 The segregation maps predicted by R2SOL. Using the full coupling approach with iterations,

structured fixed mesh,  ¨W� ������V

•  2Q�WLPH�VWHS��PHVK�VL]H��DQG�PHVK�UHILQHPHQW
Comparing the results obtained by the different meshes and time steps in Figure 5-4 and

Figure 5-5, we note that adequate fine mesh and small time step are necessary to capture segregated
channels.

In order to discuss the mesh size influence on the segregated channels, we present the liquid
fraction  and velocity fields in Figure 5-12 and Figure 5-13 on next page. The results are obtained
by the full coupling formulation using different meshes. Figure 5-12 shows the liquid fraction and
the superimposed velocity field at W = 100 V. The computation is performed using the coarse Mesh I.
A segregated channel has been formed at the bottom. Consequently, strong flow at the bottom can
be observed. Counterclockwise fluid flow occurs in the bulk liquid. Figure 5-13 presents the results
calculated using the adaptive mesh: fine elements are used in the mushy zone. Besides the freckle at
the bottom, several inclined freckles can be also observed. In the zoomed mushy region, one can
observe that fluid within the freckles moves toward the bulk liquid with relative high velocity.
Comparing Figure 5-12 and Figure 5-13, although the fluid flow in the bulk liquid is similar, the
flow in the zoomed region is quite different.

It has been pointed out by Mehrabian HW�DO. [1970] (referring to section 2.1.1), in the case of
interdendritic fluid flow moving along the direction of temperature gradient (from lower
temperature to higher temperature) and 1 / −<⋅∇ 77 &Y , that remelting does occur and channels grow,

�����

��

���
���
���

����
�����

 b)   negative segregation pattern
        Z��Z0  at W = 400 V        a)  (Z��Z0)/Z0  at W = 400 V
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leading to freckles opened to the bulk liquid. That is the case for the solidification of Sn-5%Pb
alloy, in which counterclockwise fluid flow promotes the formation of freckles. Computational tests
show that a fine mesh (and time step) is necessary to calculate the development of instabilities in
interdendritic fluid flow, and then to capture the formation of freckles; while a coarse mesh (or time
step) smoothes the velocity field, so that small perturbations cannot develop.

Figure 5-12  The liquid fraction and velocity fields at 100 V, computed by the fully coupled approach on the
coarse Mesh I, using  ¨W = 0.05 V

Figure 5-13 The liquid fraction and velocity fields at 100 V, computed by the fully coupled approach on the
adaptive mesh using ¨W = 0.05 V

Figure 5-14 shows the results computed using the new version of CALCOSOFT developed by
Kämpfer [2002], in which the momentum equations are solved by a Garlerkin least squares

                                        vmax. 1.95×10
-3

 m/s
The region in red represents the liquid zone, the blue one the
solid like zone, where the fluid flow becomes very weak. A
horizontal liquid channel can be seen at the bottom.

                                 vmax. 2.82×10
-3

 m/s

The region in red represents the liquid zone,  the blue one the
lower JO zone (JO <0.5), where the fluid flow becomes very
weak. Besides the horizontal liquid channel at the bottom,
several inclined freckles can be also observed.
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approach, including a mesh refinement technique (refer to section 2.1.3) . Kämpfer’s results for the

Sn-5%Pb alloy are similar to those of Ahmad HW DO. [1998] as shown in Figure 5-4 e).

Figure 5-14  CALCOSOFT results from Kämpfer [2002], showing segregation maps of 00 /)( ZZZ− at W =

400 V, using different structured meshes,  ¨W = 1 V� Small differences appear in the results using the 60×60

mesh and the 80×48 mesh. Results obtained in figure c) is comparable with those of the fixed mesh in figure

b). Inclined segregated channels have not been captured.

•  2Q�WKH�FRXSOLQJ�LWHUDWLRQV�ZLWKLQ�HDFK�WLPH�VWHS
We have found that the prediction of freckles is somewhat sensitive to computations with or

without coupling iterations within each time step: see Figure 5-6. Since the IXOO�FRXSOLQJ resolution
is costly, we would like to capture the freckles by using  RQH�LWHUDWLRQ. Using the adaptive mesh and
the time step VW  05.0  =∆ , the computation has been  performed by the full coupling approach with
only RQH�LWHUDWLRQ. The results are presented in  Figure 5-15. Figure 5-15 a) shows the map of liquid
fraction at W = 100 V, the zigzagged contour of 9.0  =OJ  indicates the instabilities of interdendritic
fluid flow. Figure 5-15 b) shows the map of (Z���Z0)/Z0 at W = 400 V, revealing freckles. Comparing
Figure 5-15 (one iteration resolution) and Figure 5-4 c) (iterative full coupling resolution), we note
that the freckles can be predicted by the RQH� LWHUDWLRQ� formulation when using the same adaptive
remeshing strategy. However, further investigation would be needed to quantify the differences
between the results

Figure 5-15  Results obtained with the full coupling approach with only one iteration, using the adaptive mesh

In order to compare the computational cost, computations using full coupling with iterations
and with only one iteration have been performed on a PC Pentium 4, 1.7 GHz processor and
1024MB RAM. Three meshes which have been presented before have been used, the time step
being 0.05 V . Table 5-3 shows the computational time for 1000 time steps. The computational times
of the one iteration resolution are about one half of  the full coupling resolution.

a)��JO at W = 100 V  b) (Z���Z�)/Z0  at W = 400 V

��� �������

���������
����

��

���
���
���

a)   60 ×60 b)   80 × 48 c) 40 ×24,  adapted with refine-

ment factor 2 in critical zone
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Table 5-3 Computational times

Mesh
CPU time (V) /1000 time steps
full coupling resolution

CPU time (V) /1000 time steps
one iteration resolution

Mesh I 2968 1476

Mesh II 12218 6423

Adaptive mesh 26408 15673

5.3 Results for the Pb-48%Sn alloy

������ 1XPHULFDO�VHWXS
A similar testing strategy has been applied to the Pb-48%Sn alloy:

•  To study the mesh size influence, for simplicity the meshes described in Table 5-2 are
used. In the computation with adaptive remeshing, the same parameters as those for Sn-
5%Pb alloy are used. The time step is equal to 0.1 V, being the same value as that in the
computation of Ahmad HW DO. [1998]. The IXOO� FRXSOLQJ computations have been carried
out. As converged resolutions have been achieved within 10 iterations for the Sn-5%Pb
alloy,  this time the maximum number of iterations is limited to 10. The criteria to
terminate the iterations are the same as defined for the Sn-5%Pb alloy, being 10-4 for
coupling the energy, solute and momentum equations.

•  To study the time step influence, three time steps, being 0.1� V, 0.05� V and 0.025� V, are
used. The fixed mesh II is adopted (referring to Table 5-2). We compare the results
obtained by the IXOO�FRXSOLQJ approach with one iteration.

•  To study the influence of coupling iterations within each time step, we compare the results
obtained with and without iterations, using the fixed Mesh II and the time step 0.1 V.

•  To compare the results obtained by the IXOO�FRXSOLQJ approach, the computation has been
done with the no-coupling approach, using the fixed Mesh II and the time step VW  1.0  =∆ .

������ 0HVK�VL]H�LQIOXHQFH
As it has been presented in section 5.1, the effects of solute and temperature on the liquid

density are now opposite, leading to possibly more complex flow, resulting in some difficulties in
the computation. In particular, at the beginning of solidification the convergence needs more than
10 iterations, but we skip out after 10 iterations. Figure 5-16 shows the results obtained with
different meshes.

We have also computed this case with SOLID, using the same parameters as described in
Table 5-1. A structured 50×40 element mesh is used. This time the mesh is progressively refined

near the top wall, because there exists the tendency to the formation of a liquid channel. The results

of CALCOSOFT from Ahmad HW DO. [1998] are also presented in Figure 5-16. Comparing the

different results, it can be observed that the predictions of R2SOL and SOLID are very close: the

shape of the contours of liquid fraction and concentration are similar, and their positions coincide.

At the top of cavity the tendency to form a segregated channel appears in the results of  R2SOL and
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SOLID. Comparing the segregation patterns obtained using a coarse mesh and a fine adaptive mesh
in Figure 5-16 a) and Figure 5-16 b), we notice that steep gradients occurring at the top can be
better captured by mesh refinement.

Figure 5-16 The IXOO\�FRXSOHG resolutions for the Pb-48%Sn alloy, showing the mesh influence.

a) Mesh I, 2.5 PP

b) Mesh II, 1.3 PP

c) Adaptive mesh at W = 50 V

d) 50×40 structured mesh used
     in SOLID computation

mesh JO at W = 50 V (Z���Z0)/Z0  at t = 400 V

e) 50×40 structured uniform mesh used in CALCOSOFT
computation, from Ahmad HW DO [1998]

0.8 0.990.9

0.7
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������ 7LPH�VWHS�LQIOXHQFH
The test for time step influence has been performed using different time steps (being 0.025 V,

0.05 V and 0.1 V) on the same Mesh II. The results obtained with the IXOO�FRXSOLQJ resolutions (with
only one iteration in each time step) are shown in Figure 5-17.

Figure 5-17�)XOO\�FRXSOHG�RQH�LWHUDWLRQ resolutions for the Pb-48%Sn alloy, showing the time step influence

Looking at Figure 5-17 a) and b), only small differences can be found in the results calculated
with time steps 0.025 V�and 0.05 V. In addition, these results computed with only one iteration are
very close to the full coupling results shown in Figure 5-16 b),  indicating that the time step, ¨W =
0.05 V, seems sufficiently small. Comparing Figure 5-17 a) and b) with c), there are some
differences, a stronger tendency to the formation of freckles appearing in Figure 5-17 a) and b) than
in Figure 5-17 c). Once again, we observe that smaller time steps favor the prediction of freckles.

������ ,QIOXHQFH�RI�FRXSOLQJ�LWHUDWLRQV�ZLWKLQ�HDFK�WLPH�VWHS
Let us compare the results obtained with and without iterations. The computational results

obtained with Mesh II and the time step ¨W = 0.1 V, are shown in Figure 5-18. As already noticed in
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the results of the Sn-5%Pb alloy, the prediction of freckles is somewhat sensitive to coupling
iterations within each time step. The tendency to form freckles at the top of the cavity appearing in
Figure 5-18 a) is stronger than that in Figure 5-18 b).

Figure 5-18 Comparison between IXOO\�FRXSOHG and RQH�LWHUDWLRQ resolutions

������ 1R�FRXSOLQJ�UHVROXWLRQV
We have also simulated the formation of macrosegregation in the Pb-48%Sn alloy, using the

no-coupling approach and without accounting for the enrichment of solute in the liquid pool. The
map of liquid fraction at 50 V and the segregation pattern at 400 V are presented in Figure 5-19.
Comparing with the results obtained by the IXOO�FRXSOLQJ approach in Figure 5-16 b), one observe
that the segregation patterns predicted by the no-coupling approach are not that far from those in
Figure 5-16 b); but great differences appear in the distribution of liquid fraction.

Figure 5-19 Results obtained by the no-coupling approach using the Mesh II, ¨W = 0.1 V
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15%

20%

JO at W = 50 V  (Z���Z0)/Z0  at W = 400 V

a) fully coupling  resolutions  (with iterations)

b) RQH�LWHUDWLRQ resolutions  (without iteration)
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������ &RQIURQWDWLRQ�ZLWK�H[SHULPHQWV
A quantitative comparison between numerical and experimental results is shown in Figure 5-

20, for which the concentration profiles in different sections after complete solidification are
plotted. In the R2SOL and SOLID computations, the full coupling approaches are used, and the
same computational parameters are applied. Measurements and numerical predictions are in rather
good agreement, except in the top section, where the variations are important (as well as the
measurement inaccuracy, particularly because of specimen deformation (Ahmad HW DO. [1998]).

Figure 5-20 Profiles of 0ZZ− (%) after solidification. Measurements and computational results obtained by
R2SOL and SOLID using the full coupling approach with time step 0.1 V. These profiles correspond to
various heights of the cavity: a) 5 PP, b) 25 PP, c) 35 PP and d) 55 PP.

������ &RQFOXGLQJ�UHPDUNV
The numerical models presented in chapter 3 have been applied to the computation of

macrosegregation in the Sn-5%Pb and Pb-48%Sn alloys. In the first alloy, the thermal and solutal
convections are in the same direction, leading to a strong tendency to the formation of freckles.
While in the second alloy, the effects of thermal and solutal gradients on the liquid density are
opposite, but the last one dominates the fluid flow, and this alloy also exhibits a strong tendency to
the formation of macrosegregation.

From the tests performed, we can conclude some points for the computation of
macrosegregation as follows:

Distance to the chill (m)
          a) 5 mm

Distance to the chill (m)
        d) 55 mm

Distance to the chill (m)
          c) 35 mm

Distance to the chill (m)
           b) 25 mm
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•  The IXOO�FRXSOLQJ and QR�FRXSOLQJ approaches have been validated by the benchmark test of
Hebditch and Hunt. Since the thermal and solutal effects on solidification have been taken
into account in the first approach (full coupling), it is able to predict the formation of
segregated channels and freckles. While the global solute transport in the solidification has
been treated by the second approach, leading to the prediction of the main spatial trends of
macrosegregation.

•  The computational tests for the two alloys show that the mesh size and time step influence
the results. The computation with a coarse mesh and a large time step can not capture the
localisations leading to segregated channels. Thus, in order to predict them, sufficient fine
meshes and small time steps should be applied.

•  Regarding the coupling itself, it appears that performing an iterative fully coupled resolution
is desirable for the prediction of segregated channels. However, we have noted that they can
be predicted by the one iteration resolution provided that an adaptive fine mesh and a
smaller time step are used.

5.4 Modelling of freckles

“Freckle” in upward directional solidification of Ni-base superalloy turbine blades is a general

cause of rejection. It has been reported that 40% of directional solidified blades are lost during

casting (Frueh HW�DO. [2002]), a blade that is rejected because of a casting defect, represents a loss of

49% when compared to overall production costs.

Motivated by industrial applications, researchers have investigated freckles for 30 years.

Experiments with nonmetallic transparent systems have clearly shown that freckles are a direct

consequence of upward liquid jets that emanate from the mushy zone (Copley HW�DO. [1970]). During

upward directional solidification with a positive temperature gradient, the liquid in the mushy zone

may become instable due to chemical segregation. The buoyancy-driven convection is responsible

for the formation of freckles. Since the solute diffusion is much lower than the thermal diffusion,

the segregated liquid retains its composition as it flows upward through the mush into regions of

higher temperature. There, the liquid enriched in solute elements can locally delay the growth of

dendrites or remelt the solid, so that channels form in the mushy zone. Experiments with Pb-Sn

alloys also show freckles formed by the same mechanism (Sarazin and Hellawell [1988]).

Considerable progress in numerical modeling of freckles has been achieved. Bennon and

Incropera [1987B] have predicted the segregated channels in NH4Cl-H2O system. Felicelli HW� DO.
[1991] have simulated the formation of freckles in Pb-10%Sn alloys, following the experiments of

Sarazin and Hellawell [1988]. Recently, several papers on the modeling of freckles (Felicelli HW�DO.
[1998], Frueh HW�DO. [2002], Guo and Beckermann [2003]) have been published. These studies show

that in order to predict freckles the mesh size should be sufficiently fine, being of the order of  0.1

mm.

Using a local refinement technique with non-confirming meshes, Kämpfer [2002] has

simulated the formation of freckles in Pb-10%Sn alloys. The computation is based on the

experimental study of Sarazin and Hellawell [1988] and the numerical modeling of Felicelli HW�DO.
[1991]. We have repeated the same computation. In this section, we present the numerical setup and

our results.
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������ 1XPHULFDO�VHWXS
•  Description of the problem

Felicelli HW� DO. [1991] have simulated freckles in upward directional solidification of Pb-
10%Sn alloy. In Felicelli’s computation, a 2-dimensional domain of 5 mm in width and 10 mm in

height is considered. The thermal conditions for the directional solidification are as follows: the

side walls are insulated, and a vertical gradient of temperature, *]7 =∂∂ / , is imposed at the top

boundary. At the bottom a time-dependant boundary condition, W777   0
&+= , is used, where 07  is a

reference temperature and 7& is the cooling rate. The thermal parameters 07 , 7& and* are selected

from the experiments of Sarazin and Hellawell [1988].

Following Felicelli HW�DO. [1991], Kämpfer has slightly changed the computation conditions to

simulate the formation of freckles:

1) At the bottom, heat is extracted with a heat exchange coefficient of 20 W.m
-2

.K
-1

 and an

external temperature of 25°C. The reason to change the boundary condition is that: in the finite

element code CALCOSOFT used by Kämpfer, the enthalpy is chosen as the primary unknown, and

it is impossible to associate a unique enthalpy with each temperature during solidification. As

shown in Figure 5-21, an approximate cooling rate of 015.0−=7& °C/s at the bottom boundary can

be obtained using the heat exchange data proposed by Kämpfer. This cooling rate is comparable

with that used by Felicelli, being 0167.0−=7& °C /s.

2) The mushy zone is modeled as an isotropic porous medium, its permeability is given by the

Carman-Kozeny relation (3-1). In Felicelli HW� DO. [1991], the mushy zone is considered as an

anisotropic medium.

Figure 5-21 Temperature evolution at the center of the bottom wall.

Since the macrosegregation model in the present work is very close to that of Kämpfer

[2002], we have adopted the same conditions. A computational domain of 30×50 mm
2
 is

considered, compared to 5 ×10 mm
2
 used by Felicelli. The initial temperature field is linear in the

vertical direction, 304°C at the bottom and 309°C at the top. During the upward solidification, a

heat flux of 100 W/m
2
 is imposed at the top surface, whereas heat is extracted at the bottom. We

note that the thermal gradient in Kämpfer’s work, being 0.1°C /mm, is smaller than that in Felicelli

HW�DO.�[1991], being 1°C /mm, which could increase the tendency to freckles.

7& = -0.015 °C/s
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For the fluid flow, no-slip boundary conditions are imposed at the bottom and the lateral
walls, while at the top an open cavity is simulated: the horizontal velocity component is imposed to
be zero, 0=[Y , no condition on the vertical velocity component is prescribed.

The physical properties of the Pb-10%Sn alloy and the computational parameters are given in
Table 5-4, which have been used by Kämpfer [2002].

Table 5-4 The physical properties and the computational parameters used for the freckles simulation

3KDVH�GLDJUDP�GDWD
Nominal mass fraction, 0Z wt.pct 10.0

Melting temperature, I7 of the pure substance °C 327.5

Eutectic temperature, HXW7 °C 183.0

Liquidus slope, P °C.(wt.pct)
-1

-2.334

Partition coefficient, N 0.307

Eutectic mass fraction, HXWZ wt.pct 61.9

7KHUPDO�GDWD
Thermal conductivity, λ W.m

-1
.K

 –1 18.2

Specific heat, SF J.kg-1.K –1 167.0

Initial temperature LQLW7  , linear °C 304 at the bottom
309 at the top

Latent heat, / J.kg
-1

26000

7KHUPDO�FRQGLWLRQ�DW�ERWWRP
Heat transfer coefficient, K W.m

-2
.K

 -1
20

External temperature, H[W7 o
C 25

7KHUPDO�FRQGLWLRQ�DW�WRS
Heat flux, T W.m

-2
100

2WKHU�FKDUDFWHULVWLFV
Reference density, 0ρ kg.m

-3
10100

Reference temperature, UHI7 °C 304

Thermal expansion coefficient, 7β K
-1

1.2×10
-4

Solutal expansion coefficient, Zβ (wt.pct)
-1

5.15×10
-3

Dynamic viscosity, µ Pa.s 2.4947×10
-3

Secondary dendrite arm spacing, 2λ m 40×10
-6

&DOFXODWLRQ�SDUDPHWHUV
Time step s 1.0

Gravity, J m.s
-2

9.81

Diffusion coefficient in liquid,ε m
2
.s

-1
3×10

-9
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•  Computational test cases

In Kämpfer’s [2002] work, firstly, as a reference computation, a structured mesh with 30×40

elements was used. As expected, this simulation was not able to predict correctly the formation of

freckles, as shown in Figure 5-22 (since we have not gotten the original paper from Kämpfer, the

photocopy of the picture is not clear).

Figure 5-22  Results obtained by CALCOSOFT using a 30×40 structured mesh, from Kämpfer [2002].

Fraction of solid from 0 to 0.3, and the velocity fields together with the maximum velocity for W = 60, 90, 120

and 140 V respectively. The last figure, for W = 140 s, shows the tendency to the formation of freckles at the

center and near the side walls.

Secondly, starting from time W = 60 V, the coarse structured mesh was refined by a factor of 2
in the critical mushy zone near the solidification front, the fine mesh sizes in the two directions
being  0.25 mm × 0.31 mm respectively. Figure 2-5 in section 2.1.3 shows the mesh at W = 125 V,
being structured but refined. With such a mesh refinement, freckles have been predicted as shown

in Figure 5-23.

Figure 5-23  Freckles simulated by CALCOSOFT using a local refinement technique with non conforming
meshes, from Kämpfer [2002]. Fraction of solid from 0 to 0.3, the velocity fields together with the maximum

velocity for W = 90, 120, 125 and 140 V respectively.

 max. velocity  2. × 10
-3  

(m/s)       3.7 × 10
-3         7.3 × 10

-3           5.1 × 10
-3

Fraction of solid

max. velocity 6.8 × 10
-3

 (m/s) 1.0 × 10
-2

1.4 × 10
-2

2.0 × 10
-2

Fraction of solid
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Compared to the work of Kämpfer, three meshes are considered in the present study, as

shown in Figure 5-24. The first mesh is a structured and symmetric mesh with 32×40 elements, this

mesh has a characteristic size comparable to the coarse mesh used by Kämpfer. The second mesh is

non-structured, its size being 1 mm and comparable to the first one. The last mesh is an adaptive

mesh: for the mushy zone close to the liquidus isotherm (where 0.195.0 << OJ ), fine and uniform

elements are used, their size being 0.25 mm. Near the boundaries fine elements are also used.

Wheras coarse elements are used in the bulk liquid, the size being 1 mm. Unlike Kämpfer’s

computation, in our computation the mesh adaptation (introduced in chapter 4) has been applied

since the beginning of computation.

Figure 5-24 Meshes used in the simulation of freckles

The IXOO� FRXSOLQJ computations have been carried out with three meshes. The maximum

number of iterations is limited to 30. The criteria to terminate the iterations are the same as in the

tests of Hebditch and Hunt (10
-4 

). Firstly, we simply reproduce the Kämpfer’s computation using

the structured coarse mesh. Then, the second computation is performed with the non-structured

coarse mesh, the influence of non-structured mesh is examined. Finally, the last computation with

the mesh adaptation is run, aiming at showing the ability to capture freckles.

������ 5HVXOWV
Figure 5-25 shows the results obtained with the coarse structured mesh (see Figure 5-24 a)).

Comparing with the results obtained by Kämpfer in Figure 5-22, the liquid fraction and the velocity

field are presented for t = 30, 60, 90, 120 and 140 V respectively. It is interesting to note that the

maximum velocities have different orders of magnitude, being from 10
-5

 to 10
-3

 (m/s) at different

times. The development of a  liquid jet at the center can be shown in the simulation with R2SOL.

That is not the case in the prediction of CALCOSOFT, as shown in Figure 5-22, where the

maximum velocity being of the same order at different times.

Liquid fraction

a) structured mesh b) non-structured mesh c) adaptive mesh
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Figure 5-25 Freckles simulated by R2SOL using the coarse structured mesh: fraction of liquid and the
velocity field at  t = 30, 60, 90, 120 and 140 V respectively

Figure 5-26 Freckles simulated by R2SOL using the coarse non-structured mesh

Figure 5-26 shows the results obtained with the coarse non-structured mesh (seeing Figure 5-
24 b)). Comparing with Figure 5-25, it can be seen that the solidification front predicted using the
non-structured mesh is more irregular. It seems that numerical perturbations resulting from the
coarse non-structured mesh induce the instabilities of liquid, leading to a strong tendency to the
formation of a freckle.

The freckles predicted by R2SOL using the adaptive mesh are shown in Figure 5-27. We
present the isolines of liquid fraction and the velocity field at W = 90, 120, 130 and 140 V
respectively. The instabilities near the solidification front appear at 120 V, leading to two freckles
formed at 140 V.  The segregated concentration fields together with the isolines of liquid fraction at W
= 130, 140 and 165 V are shown in Figure 5-28. Clearly, one can see the development of freckles in
these figures. For details, a zoom into the region where a freckle has been formed is presented in
Figure 5-29. The ability to capture the freckling phenomena is here clearly demonstrated.
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Figure 5-27 Freckles simulated by R2SOL using an adaptive mesh: liquid jets near the solidification front

Figure 5-28 Freckles simulated by R2SOL using an adaptive mesh: segregated channels, the positive
segregation regions presented in red, the negative segregation regions in blue.  A zoom for the region in the
red box, at W = 140 V, is presented in Figure 5-29

Figure 5-29 A zoom into a region where a freckle has been predicted by the adaptive mesh: on the left panel,
the velocity vectors indicate the upward liquid jet. The mesh for the prediction of a freckle is presented in the
right. As a background, the concentration field (deviation to the nominal concentration <w>-w0) is shown in
colours,  the solidification front is presented with the isolines of liquid fraction.

Comparing Figure 5-27 and Figure 5-23, we note that the maximum velocity calculated by
R2SOL, at W = 140 V being 3.8×10

-3
 (m/s),  is lower than that obtained by Kämpfer, being 2.0×10

-2
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(m/s); consequently, the intensity of segregation calculated by R2SOL is lower. At W = 140 V, the
maximum and minimum values of the average concentration obtained by R2SOL are 10.12% and
9.94% respectively,  compared to 11.05% and 9.83% calculated by CALCOSOFT.

������ 'LVFXVVLRQ
Observing the results calculated with the coarse structured and non-structured meshes, one

can find that the fluid flow in the mushy zone is not correctly predicted, although the tendency to
freckles has been revealed. Comparing Figure 5-25 with Figure 5-26, we note that the non-
structured coarse mesh introduces strong perturbations due to numerical reasons, leading to a strong
tendency to freckles.

The prediction of freckles can be improved with adaptive remeshing, seeing Figure 5-29. In
the present work, the mesh size near the solidification front is 0.25 mm, which may be not
sufficiently fine. According to recent studies (Frueh HW�DO. [2002], Guo and Beckermann [2003]), in
order to accurately simulate the formation of freckles, the mesh size in the horizontal direction
VKRXOG� EH� RI� WKH� RUGHU� RI� WKH� SULPDU\� GHQGULWH� VSDFLQJ� 1�� EHLQJ� DERXW� ���� P�� LQ� WKH� YHUWLFDO
direction, the size should be comparable to '/5��EHLQJ�DERXW���� P��ZKHUH�' is the diffusivity of
solute element and 5 is the moving velocity of solidification front. Beyond the present work, it
would be necessary to investigate more precisely the sensitivity of such results to time step, mesh
size and remeshing parameters

5.5 Application to a steel ingot

For simplicity, we considered the solidification of a binary carbon steel alloy in a cylindrical
ingot, which is similar to the octogonal 3.3 ton ingots produced by AUBERT & DUVAL. The
geometry of the solidification system is shown in Figure 5-30, the weight of the studied ingot is
3.31 tons.

The mesh sizes for the mold and refractory are 15 and 5 (mm) respectively, and anisotropic
adaptive meshes are used in the domain of ingot. The objective mesh size in the first principal
direction is defined as follows:

•  in the mushy zone, at the beginning of computation the minimum mesh size is 1 mm and it
can be increased to 3 mm at the end of computation for saving CPU time, the maximum mesh
size is 3 mm;

•  in the liquid zone, the mesh size is in the range 1 to10 mm;

•  in the solid zone, the mesh size is in the range 10 to 30 mm. A ratio factor of 5 is used to
determine the objective mesh size in the second principal direction.

 The detail of mesh adaptation can be referred to chapter 4.
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Figure 5-30 Schemetic of the geometry of ingot and mold (axisymmetric model)

We assume that the top surface of ingot is isolated. The heat transfer coefficients between
ingot and mold, ingot and refractory are constant, being 500 W.m-2.K-1. The heat transfer coefficient
of 100 W.m-2.K-1 

and the external temperature of 50 °C are used for heat exchange between mold

and air, refractory and air. The physical properties of ingot, mold and refractory and calculation

parameters are given in Table 5-5 and Table 5-6.
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Table 5-5 Physical properties and calculation parameters of the steel ingot

3KDVH�GLDJUDP�GDWD
Nominal mass fraction, 0Z wt.pct 0.38

Melting temperature, I7 °C 1538

Eutectic temperature, HXW7 °C 1338

Liquidus slope, P °C.wt.pct
-1

-80

Partition coefficient, N 0.18

Eutectic mass fraction, HXWZ wt.pct 2.5

7KHUPDO�GDWD
Thermal conductivity, λ W.m

-1
. K-1 35

Specific heat, SF J.kg
-1

. K-1 715

Latent heat, / J.kg
-1

0.309×10
6

2WKHU�FKDUDFWHULVWLFV
Reference volumetric mass, 0ρ Kg.m

-3
7060

Reference temperature, UHI7 °C 1522

Thermal expansion coefficient, 7β K-1
8.85×10

-5

Solutal expansion coefficient, Zβ wt.pct
-1

4.1643×10
-2

Dynamic viscosity, µ Pa.s 0.42×10
-2

Secondary dendrite arm spacing, 2λ m 1.0×10
-4

&DOFXODWLRQ�SDUDPHWHUV
Initial temperature °C 1525

Time step s 0.1

Heat transfer coefficient, K
between ingot/mold,  ingot/refractory

W.m
-2

. K-1 500

Gravity, J m.s
-2

9.81

Diffusion coefficient in liquid, O' m
2
.s

-1
1×10

-9

Table 5-6 Physical properties and calculation parameters of the mold and refractory

7KHUPDO�GDWD Mold Refractory

Thermal conductivity, λ W.m
-1

. K-1 30 0.7

Specific heat, SF J.kg
-1

. K-1 540 1050

Volumetric mass, 0ρ Kg.m
-3

7000 1300

&DOFXODWLRQ�SDUDPHWHUV
Initial temperature °C 250 250

Heat transfer coefficient, K
between mold/air, refractory/air

W.m
-2

. K-1 100 100

External temperature, H[W7 o
C 50 50

Initially, it is assumed that temperature fields in the ingot, mold and refractor are uniform, and
that there is a homogeneous concentration field in the ingot, the values being given in Table 5-5 and
Table 5-6. For fluid flow, zero initial velocity is applied, no-slip boundary conditions are imposed
where the liquid is in contact with the mold and refractory. At the top, the vertical velocity
component is imposed to be zero, no condition on the horizontal velocity component is prescribed.
The time step varies from 0.05 V at the beginning of computation to 0.2 V at the end. The IXOO
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FRXSOLQJ resolution reduced to one iteration has been done. The segregated concentration maps are
shown in Figures from Figure 5-31 to Figure 5-33.

Figure 5-31 The liquid fraction, velocity and segregated concentration (Z���Z0 )% fields at W = 3 PLQ. A zoom in
the bottom region is presented in b) and c). The velocity vectors are plotted in b), and the liquid fraction field
and the mesh are shown in c).

     a)

      b)

      c)
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Figure 5-32 The liquid fraction, velocity and segregated concentration (Z���Z0 )% fields at W = 1 KU. Segregated
concentration field (w - w0 )% and the isolines of liquid fraction are shown in a), a zoom to the top region is
presented in b) and c). The velocity vectors are plotted in b), showing the tendency to the “A-type”

segregated channels, and the liquid fraction field is shown in c) with the mesh. It is interesting to observe a

positive segregation zone at the bottom of the ingot and near the axis, this is caused by a freckle at the initial

stage.

     a)

      b)

      c)
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                   a)                                                                                            b)

Figure 5-33 The segregated concentration (Z���Z0 )% field after complete solidification��a) result of R2SOL at
W = 2 hr 50 min, the maximum and minimum deviations to the nominal concentration are 0.934 and –0.075

(%) respectively. b) result of SOLID, the maximum and minimum values are 0.146 and –0.026 (%)

respectively. The mesh used in SOLID consists of 3900 nodes, 39 nodes in the radial direction, and 100

nodes in the vertical direction.

We have re-computed the solidification of the test ingot with SOLID, using full coupling
approach with only one iteration; however, the mesh is fixed and not adapted. The final segregated
map after complete solidification is shown in Figure 5-33 b), compared with the result of R2SOL in
Figure 5-33 a). At the top of ingot, oscillation of concentration appears in Figure 5-33 b), indicating
the tendency to the formation of segregated channels.

A quantitative comparision of segregation intensity along the central axis is given by Figure
5- 34. It can be seen that the shapes of the two curves are similar, but the variation of concentration
predicted by R2SOL is greater than that of SOLID. Profiles of 0ZZ− (%) in three horizontal
sections, at ¼, ½ and ¾ heights of the ingot as shown in Figure 5-30, are presented in Figure 5- 35.

It can be seen that the segregation intensity along horizontal sections is not as severe as along the

(w-w0)%, SOLID

(w-w0)%, R2SOL
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axis. There are some differences between the predictions of R2SOL and SOLID. For the result of
SOLID, near the center line slightly positive segregation is observed, near the surface of ingot
negative segregation is observed, which is just opposite to the result of R2SOL.

Figure 5- 34 Evolution of deviation to the nominal concentration Z-Z0 (%) along the axis

Figure 5- 35 Profiles of 0ZZ− (%) after solidification
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5HPDUN
In the computation of R2SOL, the maximum number of nodes in the domain of ingot is

25816, and the maximum number of elements is 50890. The computation has taken about 3 weeks
on a PC.

At the beginning of solidification, the temperature-induced convection dominates the fluid
flow. The maximum downward velocity is observed at 33 s, being 83 mm/s, the reference Reynolds
number for such a fluid flow is given by:

                  4
2-

104.8
7060/100.42

0.60.083
  

/

 
  ×≅

×
×==

ρµ
/5H Y

and taking the superheat temperature as the temperature difference (17.4°C), the reference Rayleigh

number is given by:

                            8
2-

3-523
T

2

109.7
35100.42

7150.64.17108.859.87060
  

 

 g
  ×≅

××
××××××=

∆
=

λµ
βρ SF7/5D

indicating that turbulent flow might appear. However the computation has been done with the

laminar assumption.

Since the present macrosegregation model does not account for the solid movement and the

growth of equiaxed grains, the negative segregation zone at the bottom of ingot cannot be predicted

(cf. section 1.2.3). There are also some differences in the boundary and initial conditions between

the test case and the industrial production. Despite these approximations, this case could consist in a

valuable benchmark test to compare different simulation codes.

Regarding the difference between computations of R2SOL and SOLID, a further investigation

is needed to check the influence of mesh size.
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&KDSWHU���

7KHUPRPHFKDQLFDO�VWUHVV�VWUDLQ�PRGHOLQJ

0RGpOLVDWLRQ�WKHUPRPpFDQLTXH�±�5pVXPp�HQ�IUDQoDLV

A la suite des travaux de Jaouen et Bellet dans le code THERCAST au Cemef, un modèle

thermo-mécanique similaire a été implanté dans le logiciel R2SOL. Le matériau est alors considéré

comme newtonien au-dessus du liquidus, comme viscoplastique entre le liquidus et une température

critique TC, et comme élasto-viscoplastique en-dessous de TC. Le modèle est présenté à la section

6.1. Dans ce travail, nous avons notamment étendu la formulation, initialement en déformation

plane, au cas axisymétrique (section 6.2.3). Le modèle est complété par une formulation eulérienne-

lagrangienne (section 6.2.4). Les régions solides sont alors traitées en formulation lagrangienne, le

maillage suivant les déformations de la matière, de façon à bien représenter la formation des lames

d’air. Les régions liquides et pâteuses sont quant à elles traitées en approche eulérienne-

lagrangienne, ce qui permet de modéliser la convection thermique et l’abaissement de la surface

libre liquide, conséquence du retrait et ainsi de modéliser la formation des retassures primaires.

Quelques test de validation et tests comparatifs sont alors présentés (sections 6.3 et 6.4.1). La

section 6.4.2 illustre le défaut majeur des analyses de formation de retassure qui affectent en totalité

le changement de volume dû au retrait à la formation des retassures primaires (comme évoqué dans

la revue bibliographique du chapitre 2). Pour ce faire on compare deux calculs pour une même

simulation de refroidissement d’un lingot d’acier : un calcul réalisé en condition de contact

unilatéral, c’est-à-dire en autorisant le formation de lames d’air entre pièce et moule et l’autre en

condition de contact bilatéral, c’est-à-dire sans autoriser le décollement et donc la formation de

lame d’air. La simulation met clairement en évidence la profondeur largement surestimée de la

retassure primaire dans le second cas.
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&KDSWHU��

7KHUPRPHFKDQLFDO�VWUHVV�VWUDLQ�PRGHOLQJ
In this chapter, we focus on the simulation of thermo-mechanics during the solidification of

castings. A thermomechanical model has been implemented in the three dimensional finite element
code THERCAST® (Jaouen [1998]), for stress strain calculations during the solidification of

castings. The goal of the present work is to implement this model in the two-dimensional code

R2SOL, and to predict the shrinkage pipe, air gap, strains and stresses during the solidification of

ingots. For the purpose, we have implemented an elastic-viscoplastic constitutive behaviour, using

axisymmetrical coordinates system. We assume that the mold is rigid (non-deformable), the thermal

stresses and strains in the solid phase can be then modeled.

At the beginning of this chapter, we present the thermomechanical model in section 6.1. The

resolution of mechanics is introduced in section 6.2, in which we focus on the implementation of

thermo-elastic-viscoplastic (THEVP) model in R2SOL. Validation tests are shown in section 6.3,

followed by an application to industrial ingots in section 6.4.

6.1 Thermal mechanical model

������ 7KH�PHFKDQLFDO�HTXLOLEULXP
Consider a part solidified in a rigid mold, L.H., we consider only  the mechanical problem of

the solidifying part. We assume that the mold is initially full of the liquid alloy at rest and in contact

with the mold. During the solidification of the part, the mechanical equilibrium is governed by the

momentum equation:

                Jρρ +⋅∇=  (6-1)

where J is the gravity; is the acceleration vector. is the Cauchy stress tensor, the stress tensor is

generally decomposed into the spherical, S,, and deviatoric, V, components as follows:

                  V,+−= S  (6-2)

Let Ω be the domain occupied by the part, its boundary can be specified by the two

regions PΩ∂ and SΩ∂ . The region PΩ∂ is the part of boundary facing the mold, and SΩ∂ is the free

surface, which is not facing the mold. The mechanical boundary conditions are expressed as

follows:

•  Unilateral contact condition on the boundary PΩ∂ , that is:
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QQ
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whereQ is the local outward unit normal to the part; δ is the local airgap width, being positive when
the airgap exists effectively. The contact can be treated by a penalty method (Rappaz HW�DO. [2002]),
we then have:

                       QQYYQ7 ⋅−−== )( PROGSχ  (6-4)

         In the condition (6-4), Sχ  is the penalty coefficient; the bracket, , denotes the following
notation:

                     0 if 0 and          0 if <>=<≥>=< [[[[[  (6-5)

•  Bilateral contact condition

In contrast to the unilateral contact, the so-called “bilateral contact condition” can be

alternatively applied to the boundary PΩ∂ , which is the case when 0=δ , being always in contact

with the mold. The penalty formulation can be written as:

                       QQYYQ7 ))(( ⋅−−== PROGSχ
 (6-6)

The tangential friction effects between part and mold are neglected.

•  Free surface boundary SΩ∂

 The atmospheric pressure DWP3 (or a prescribed pressure) is applied, that is:

                       QQ7 DWP3−==   (6-7)

������ &RQVWLWXWLYH�HTXDWLRQV
In a foundry process, a part is usually cooled over a large range of temperature, and the

metallic material undergoes liquid-solid phase change. Thereby, the material behavior is quite

changing and temperature-dependant. Following Jaouen [1998]), a thermo-viscoplastic (THVP)

model is used to describe the behavior of the liquid and mushy states, and a small strains thermo-

elastic-viscoplastic (THEVP) model is used for the solid (seeing Figure 1-5).

The rate of deformation of the metal &  is decomposed into a viscoplastic part YS& , an elastic

part HO& and a thermal part WK& as follows:

                  WKHOYS &&&& ++=  (6-8)

One can decompose the deformation rate tensor into spherical and deviatoric parts. Since WK&

and YS&  are purely spherical and purely deviatoric tensors respectively, one writes:

                  




+=
+=

)()()(

                   
WKHO

HOYS

7U7U7U
HHH

&&&

&&&

 (6-9)

whereH& denotes the deviatoric deformation rate tensor.

•  9LVFRSODVWLF�GHIRUPDWLRQ
We assume that the viscoplastic behavior of metal obeys the law of Norton-Hoff, which

writes:
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                   Vλ&& =YS           with   
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1

3)(2

3 7P
VHT

HT 7.
σσ

σ
λ

−
=& (6-10)

where, K(7) is the viscoplastic consistency of the material, depending on the temperature 7. P(7)
the strain rate sensitivity coefficient. The brackets present the positive convention defined by
equation (6-5). Vσ  is the stress threshold, under which the behavior of the metal is elastic. The
equivalent stress of Von Mises HTσ  is defined by:

                VV  : 
2

3=HTσ (6-11)

The equivalent one-dimensional relation to (6-10) can then be obtained:

                  )(1)(
3)( 7P7P

VHT 7. εσσ &
+

+= (6-12)

where ε& is the equivalent viscoplastic strain rate, and is given by:

                 YSYS &&& :
3

2=ε (6-13)

In R2SOL, the following model for strain hardening is available Costes [2004]:

                    V
)(

1

3 )(2

3 7P

Q

VHT

HT

YS

7. ε
σσ

σ
−

=& (6-14)

•  (ODVWLF�GHIRUPDWLRQ
The elastic behavior can be described by Hooke’s law:

              ,' )(
)1)(21()1(

HOHOHOHO 7U((
&&&&

+−
+

+
==

(6-15)

where HO'  is the elasticity tensor of 4
th

 order, depending on the Young modulus, (, and the Poisson

coefficient, . The Hooke’s law can also be written in the following form:

              ' && 1)( −= HOHO
(6-16)

If the Young modulus and the Poisson coefficient vary as temperature changes, taking account

for the variation in physical properties, equation (6-16) then becomes:

             
''  

)(
)(

1
1

77
HO

HOHO

∂
∂+=

−
− &&& (6-17)

Equation (6-17) accounts for the influence of coupling effect in the thermal mechanical problems.

Consequently, the deviatoric strain rate HOH& and its associated spherical part )( HO7U &  are expressed as

follows:
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where µ is Lamé coefficient, also called shear modulus. χ is the bulk modulus.

From equation (6-18), one obtains the spherical and deviatoric components of the stress rate:
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•  7KHUPDO�GHIRUPDWLRQ
The thermal deformation is decomposed into two parts, the linear thermal expansion and

solidification shrinkage.

                ,, WU
V

WK J7 εα ∆+= &&&
3

1
(6-20)

where, 7& is the temperature rate, α the thermal linear expansion coefficient. VJ& is the rate of massic

fraction of solid, and WUε∆  the relative volume change from liquid to solid.

5HPDUN
As it has been presented in general introduction, segregation is neglected in the computation

of deformation. Therefore, the liquidus and solidus temperatures are fixed. In order to compute the

solidification shrinkage, we define two densities, /ρ and 6ρ , corresponding to the values at

liquidus and solidus temperature. During the solidification, the density of the liquid and solid

mixture is given by:

           OOVVOOVV JJJ ρρρρρρ +=+=  )- (   (6-21)

where VJ and OJ  are the mass fraction of solid and mass fraction of liquid respectively. Then the

deformation due to solidification shrinkage can be defined by:
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(6-22)

The resolution of constitutive equations in THERCAST® has been presented by Jaouen

[1998] and Aliaga [2000]. In order to introduce our adaptations to the two dimensional problems, as

an example, in the following text we present the resolution of THEVP system.

������ /RFDO�UHVROXWLRQ�RI�FRQVWLWXWLYH�HTXDWLRQV
The method that deals with the small strains THEVP constitutive equations in THERCAST®

is summarized as follows.

Substituting equations (6-9) and (6-10) into equation (6-18), we obtain:
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A general (θ -type) time integration scheme is applied to discretize equation (6-23), leading
to:
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where the subscription Q denotes the time increment, and W∆ is the time step. )( 11 ++ = QQ 7µµ ,
)( 11 ++ = QQ 7χχ . The parameter θ  takes its value in the range of  0 to 1, and 1=θ is the implicit

scheme. Following the previous work in THERCAST®, the implicit scheme is used in R2SOL.

Within each time step [ WWW ∆+  , ], knowing the initial state of stress and deformation at time

QW , QV , QS , QH& , and Qλ , we assume that the deformation rate is constant in each element, and

proposed that 1+QH& ( 1+QY ) is known, then, the resolution of equation (6-24) can be done.

The second equation in (6-24) is linear, once the value of 1+QY  is known, 1+QS can be computed

directly. Whereas, the first equation in (6-24) is nonlinear, where 1+Qλ& and 1+QV are the two unknowns.

In order to determine 1+Qλ& , the Von Mises criterion (6-11) is considered, we write:

            0) ,(
3

2
  : 11

2
11 =∆− ++++ QQHTQQ εεσVV   with  11  ++ ∆+=∆ QQQ W εεε &

(6-25)

Applying 1=θ  to the first equation in (6-24), and after some computations, then we have:
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where 
Q

Q
Q* µ

µ 1
1

+
+ = .

Inserting equation (6-26) into equation (6-25), one can obtain the following nonlinear scalar

equation, which has a single unknown 1+Qλ& :
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(6-27)

We introduce a scalar 0% :
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            )2):(2(
2

3
1111110 QQQQQQQQ *W*W% VHVH ++++++ +∆+∆= && µµ (6-28)

and considering the following relation:

               HTσλε &&
3

2= (6-29)

then, equation (6-27) can be written as:

             0 )(3 0111 =−+∆ +++ %W QHTQQ εσεµ &
(6-30)

5HPDUN
The scalar 0% defined in equation (6-28) is the Von Mises equivalent stress associated with the

pure elastic estimation. If 01 =+Qλ& , L.H., 0=YSH& and HH && =HO . Then, equation (6-26) reduces to the pure
elastic estimation of 1+QV .

In practice,  if 0)( %QHT >εσ , the deformation is purely elastic, the estimated value is the
resolution. If 0)( %QHT <εσ , the deformation is elastic viscoplastic. It has been demonstrated (Simo
and Taylor [1985], Bellet HW�DO. [1996]) that the nonlinear equation (6-30) has a unique resolution
for all the cases, 0>λ& . The detail for the resolution of 1+Qε&  can be found in the thesis of Aliaga
[2000]. When 1+Qε& is obtained, 1+Qλ& is then deduced from equation (6-29). Finally, 1+QV can be found
using equation (6-26).

The expression of the tangent modulus V &∂∂  which is necessary to express the tangent
matrix in the Newton-Raphson resolution (see next section) can be found in Appendix C.

6.2 Resolution of mechanics

������ :HDN�IRUP�DQG�WLPH�GLVFUHWL]DWLRQ
A velocity/pressure P1+/P1 formulation is used to solve the mechanical problem.

We start from the equilibrium equation (6-1):

               0     =−+∇−⋅∇ JV ρρS  (6-31)

where the deviatoric stress V  can be determined by either the elastic-viscoplastic constitutive
equation, ))( )),( (( YHYHVV &&&λHYS= , or the viscoplastic equation ))) ((dev( YVV &YS= .

The constraint of incompressibility of the viscoplastic deformation can be expressed by:

               
0   3  

)21(3
               

)()()(  )(

=∆−−−+⋅∇=

−−=

WU
V

WKHOYS

J7S(

7U7U7U7U
εα &&&

&&&&

Y  (6-32)

The weak form is applied to solve equations (6-31) and (6-32),  then we have:
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(6-33)

The first equation is the weak form of the momentum equation. The second expresses the
incompressibility of the plastic deformation. The brackets in equation (6-33) allow the choice
between THEVP and THVP according to the temperature TC as shown in Figure 1-5.

In equation (6-33), 7&  and VJ&  are provided by the thermal resolution. The time derivatives of
pressure and velocity are approximated by implicit Euler backward scheme:

                   )(
1 WWWW SSWS ∆−−
∆

=& (6-34)

                     )(
1 WWWW

W
∆−−

∆
= YY (6-35)

where WWS ∆− and WW ∆−Y denote the values associated with the particle at time WW ∆− , which can be
computed by an upwind transport approach that will be presented in section 6.2.4.

Given the configuration Ω  occupied by the part at time WW ∆− , the equations to be solved for
(Y, S)W, velocity and pressure fields at time W, can be expressed in the following way (for the sake of
clarity, we take the case of THEVP behaviour, in the sequel).
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������ 3���3��IRUPXODWLRQ
We have presented the mini-element P1+/P1 formulation for computing the Navier-Stokes

flow in section 3.6.1. Similarly, the weak form of equation (6-36) can be solved using the following
mini-element P1+/P1 formulation:
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(6-37)

where the velocity field Z is linear continuous, including additional degrees of freedom at the

center of element, %9EYZ E

Q

Q
Q 11         

3

1

+=+= ∑
=

; the pressure is linear continuous, given by a linear

interpolation function, ∑
=

=
3

1

  
Q

Q
Q31S .
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Following the previous works of CEMEF (Menaï [1995], Jaouen [1998], Aliaga [2000]), the

deviatoric stress tensor, ))( )),( (( ZHZHV &&&λ , can be decomposed into a non-linear part and a

complementary linear part, that is:
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(6-38)

The deviatoric stress tensor, )(YVY and )(EVE can be computed using equation (6-26), leading to:
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where EV in equation (6-40) can be considered as a correction of the deviatoric stress tensor.

Taking the advantage of bubble properties (seeing section 3.6.1), we can simplify equation (6-

37), leading to:
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(6-41)

Comparing with equation (3-129),  the terms )(:)(2 *YY &&µ  and )():(2 *EE &&µ have been

replaced respectively by )():( *YYV &Y  and )():( *EEV &E , which present the non-linear rheology

behaviour. Since equation (6-41) is non-linear, the Newton-Raphson method is used. As presented

in section 3.6.1, the system to be solved can be written in a matrix form:
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In equation (6-41) a), neglecting the contribution of “bubble” component in the inertia term,

and neglecting the inertia contribution in the “bubble” equation (6-41) b), as it has been presented in

section 3.6.1, equation (6-42) can be written as:
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In each Newton-Raphson iteration, it is possible to compute the correction of solution, 9δ and

3δ , and the velocity and pressure at each node 1+QY ( YYY δ+=+ QQ  1 ) and 1+QS  ( SSS QQ δ+=+1 ).

Consequently, the stress and deformation can be obtained by the local resolution of constitutive

equations.
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������ ,PSOHPHQWDWLRQ�RI�D[LV\PPHWULF�IRUPXODWLRQ
Compared with the incompressible Newtonian model for the liquid phase, the THEVP model

is more complicated. In this section we introduce the tangent modulus to treat the non-linear
rheology behaviour, and we show how the adaptation from 3D to 2D axisymmetry should be done.
We present the computation of UKHROO+  , , which shows some differences between the  axisymmetric
and plane cases.

Let us consider the rheology term in equation (6-41), which is expressed by:

                 ∫∫
ΩΩ

Ω∇=Ω= GG5 YYUKHRO **, ):(  )():( YYVYYV &
(6-44)

In the axisymmetric case, for the degrees of freedom QN (node Q, the Nth velocity component),

the residual vector UKHRO
QN5  , can be expressed by:
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where the indexes N and M vary from 1 to 2. 1 is the interpolation function. δ is the Kronecker
function.

The Hessian matrix with respect to the degrees of freedom PO (node P, the Oth velocity
component, and O varies from 1 to 2), UKHROO

POQN+  ,
, , is then given by:
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In order to compare with the plane strain case, the two terms in equation (6-46) are integrated
individually. The first integration gives:
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where the indexes J and K vary from 1 to 2. 
JK

NMV
ε&∂

∂
denotes the components of the tangent modulus.

The definition of the tangent modulus can be referred to the Appendix C. The first integration in
equation (6-47) provides the usual terms that need to be considered in the plane strain case, the

corresponding components are as follows: 
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integration presents the additional terms for the axisymmetric case, the associated components
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∂
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In addition, the second integration in equation (6-46) can be written as:
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equation (6-48) gives the additional terms associated with 
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33V
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Considering the deformation rate & is a constant within each element, in the context of P1+/P1
formulation, only one Gaussian integration point is used to compute the term UKHROO+  , .

Regarding the rheology term UKHREE+  , , the related code has been rewritten using the tangent
modulus. Since the rule for computing UKHREE+  , according to the constitutive equation is similar to
that of UKHROO+  , , we do not repeat it.

Since the “bubble” interpolation function is defined on the three subtriangles (seeing sections

3.6.1 and 3.6.2), again, UKHREE+  ,  is integrated over the three subtriangles of an element using the

three mid-edge integration points. We have written the code, carefully considering the additional

terms in the axisymmetric case. As it is a very technical task, we will not enter here into details.

������ $/(�IRUPXODWLRQ
The pipe formation in ingots is characterized by the fluid flow and free surface. To simulate

this complicated problem, a purely Eulerian scheme (fixed mesh) is not satisfying, since it cannot

provide enough precision for the evolution of the free surfaces. The classical Lagrangian scheme

(convected mesh) would lead to mesh degeneracy in the liquid pools. Therefore, a specific arbitrary

Lagrangian-Eulerian scheme (ALE) is used in the liquid and the mushy zones (called “liquid-like”

zones), where the material behavior is Newtonian or viscoplastic. The Lagrangian scheme is used in

the solid zone, a Lagrangian-type mesh updating permitting to describe the movement of the

solidified shell. This is essential to treat the airgap opening between the mold and the ingot.

The ALE method is between the Lagrangian method (Ymsh = Ymat) and the Eulerian one (Ymsh =

0). The basic principle of the ALE method is to separate clearly the mesh velocity field Ymsh from

the material velocity field Ymat. In this way it is possible to retain a good mesh quality even at large

material distortion. To simulate the mold filling process, the ALE formulation was initiated by

Gaston [1997] in R2SOL, and complemented by Bellet HW�DO. [2004]. So, we will not discuss here

the details of the ALE formulation, but only the main lines of the formulation.

1) computation of the mesh velocity field Ymsh;

2) accounting for the velocity difference YPDW - YPVK in energy and momentum equations;

3) determination of the areas of the computational domain that should be treated by the

Lagrangian and Lagrangian-Eulerian schemes.

•  &RPSXWDWLRQ�RI�PHVK�YHORFLW\
The computation of Ymsh consists in regularizing the position of nodes in order to minimize

the deformation of the mesh. Knowing the time step W∆ , the mesh velocity is defined by the relation:

                      PVK
WWW WY[[ ∆+=∆+

(6-49)

where WW ∆+[  are the new locations of nodes. These new positions are determined by an iterative

procedure, which aims at positioning each node at the center of gravity of the set of its neighbors.

This is done under the constraint of conservation of material flux through the domain surface:

                      QYQY .. PDWPVK = (6-50)

where Q is the outward unit normal. This constraint is enforced by a local penalty technique.

•  �7UHDWPHQW�RI�DGYHFWLRQ�WHUPV
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Knowing the mesh velocity, it is now necessary to transport the nodal fields, for instance the
temperature 7. For each node, this is done by:

                          WW
777 JWWW ∆

∂
∂

+=∆+ (6-51)

where the time derivative of 7 with respect to the grid, that is the rate of variation of the
temperature at a given node of the moving mesh, can be expressed as follows:

                          7GW
G7

W
7

PVKPDW
J ∇−−=
∂

∂
).( YY (6-52)

Once the heat transfer problem has been solved on the time increment, the total (material)
time derivative of the temperature is known at each node. After computation of YPDW and YPVK, the
updating of the temperature field can be obtained using equations (6-51) and (6-52), for which one
only requires the nodal temperature gradient. Using an upwind technique, this nodal gradient is
computed in the upstream element, according to the advection velocity YPDW - YPVK (see Figure 6-1).

In order to express the acceleration terms in the momentum equation, a transport of the
material velocity field is necessary. In equation (6-36), the velocity WW ∆−Y is the material velocity of
the particle at the previous time level WW

PDW
∆−Y . Hence, after configuration updating, this requires a pure

transport of the velocity field. This is achieved by a similar scheme as that presented by equations
(6-51) and (6-52), but in which the material derivative is taken equal to zero:

            WPVK
WW

PDW
WW

PDW
WW

PDW
WWW

PDW ∆−∇−=∆+ ))(()]([)()( Y[Y[Y[Y[Y (6-53)

Referring to Figure 6-1, it can be seen that equation (6-53) is nothing but a first order spatial
development of the material velocity field in the upstream element associated with the nodal
position W[ .
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Figure 6-1  Updating of the location of a finite element node and subsequent identification of the upwind
element. The materialization of the trajectory of two material particles A and B helps in the interpretation of
(6-53), from Bellet HW�DO. [2004]

•  /DJUDQJLDQ�DQG�(XOHULDQ�/DJUDQJLDQ�]RQHV
Regarding now the global treatment of viscoplastic and elastic viscoplastic models, the idea

consists in defining the solidified regions as Lagrangian (convected mesh) and the liquid or mushy
ones as Eulerian-Lagrangian. Therefore each node is affected to one of the two classes, according to
the following rule, as illustrated in Figure 6-2.

1) Each node belonging at least to one solid-like element (L�H�, whose constitutive equation
has been chosen elastic-viscoplastic) is treated as Lagrangian (mesh velocity equals material
velocity).

2) All other nodes, which then belong to liquid-like elements only, are treated as Eulerian-
Lagrangian (mesh velocity calculated independently of the material velocity).
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Figure 6-2 Lagrangian and Eulerian-Lagrangian nodes, as determined by their belonging to solid-like and
liquid-like finite elements, from Bellet�HW�DO. [2004]

6.3 Validations

������ 7KHUPRHODVWLF�WHVW
This test aims at the validation of the dilation term in equation (6-33). Let us consider a

cylinder which is constrained between two rigid tools as shown in Figure 6-3. A sliding contact is
applied at the top and the bottom surfaces. We assume that the cylinder is cooled down uniformly at
a constant cooling rate V&7 /5°−=& , and the behavior of the material is elastic, with Young modulus

)MPa( 1000=( , and Poisson coefficient 3.0= . The thermal expansion coefficient
)/1(10068.1 5 &°×= −α .

Figure 6-3 The mesh of the sample

z

r

sliding, bilateral contact. L.H.�Yz =0

sliding, bilateral contact. L.H.�Yz =0
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Figure 6-4 The radial velocity field

The strain is assumed to be homogeneous in the sample, such that:

                        00)( === ]UU YYUYY θ

The analytical resolution of such a problem is as follows:

                         0== UUσσθθ && , and 7(]]
&& ασ −=

                         U7YU
&α)1( +=

Asuming the height of the sample is 0.1 (m) and the radius is 0.1 (m), taking the time
step )(1 VW=∆ , the numerical simulation has been carried out. The velocity field is shown in Figure 6-
4. The Minimum velocity )/(10942.6 6 VPYU

−×−= is expected by analytical resolution at )(1.0  PU = .
The numerical result )/(10941.6 6 VPYU

−×−= coincide with the analytical one. The comparison of
stress ]]σ  verus time W  between the analytical result and the numerical one is shown in Figure 6-5.

Figure 6-5 Comparison between numerical and analytical solutions
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������ 8QLD[LDO�WHQVLRQ�WHVW
The uniaxial tension test is used to validate the implementation of the elastic viscoplastic

behavior. Consider a cylindrical sample shown in Figure 6- 6. Its initial length is 0O ( PPO  500 = ),
and its initial radius 0U ( PPU  50 = ). The work hardening obeys equation (6-14). The rheology
parameters are selected from Kozlowski HW�DO. [1992] and given in Table 6-1, the equivalent stress is
then defined by:

                      Q
HT

P
HTVHT . εεσσ &+=

Table 6-1 Rhoelogy parameters

.(MPa .sm) P Q σs (MPa) ν ((GPa)

252 0.2 0.25 20 0.3 25

Figure 6- 6  Schematic of  the uniaxial tension test

A constant velocity 0Y  is imposed at the top surface. The equivalent strain rate is then:

00 /OYHT =ε& . Numerical tests have been done under different equivalent strain rate. The numerical
results are shown in Figure 6-7. It can be seen  that the relationship between strain and stress is
linear when the stress is under the initial threshold Vσ . It is nonlinear when the stress exceeds the
initial threshold because the work hardening occurs. It can be seen also that the threshold is less
sensitive with increasing strain rate, that is the behavior can be modeled either elastic or elastic-
viscoplastic when the strain rate is very high. The numerical solution coincide with the analytical
solution.

Y0

O 0
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Figure 6-7  Relationship  between strain and stress for different nominal strain rates 00 /OY

6.4 Applications

������ 6YHQVVRQ�VROLGLILFDWLRQ�WHVW
•  'HVFULSWLRQ�RI�WKH�SUREOHP

This test has been designed by Svensson to validate computational codes (Bellet HW� DO.
[1996]). The experimental set-up is shown in Figure 6-8. The mold was made from a low alloy
steel. The height of the mold was 100 mm. The outer and inner diameters of the mold were 250 mm
and 150 mm respectively. The core was a quartz tube filled with oil bound sand, its diameter was 24
mm. Insulating material was placed in the bottom and in the top of the set up. Al-7%Si-Mg alloy
was cast in the cavity. A series of thermocouples and displacement sensors (linear variable
differential transducers, LVDTs) were used to measure the temperature and the air gap width during
solidification. The heat transfer coefficient (HTC) at the interface between the part and mold was
deduced from the measured temperatures, as shown in Figure 6-9. The details of the test can be
referred to Bellet HW�DO. [1996] and Kron HW�DO. [2004].

The thermo-mechanical modeling of solidification of the part have been done with R2SOL,
compared to three codes: CASTS, MAGMA and PROCAST. For the details of computational
conditions and parameters, one can refer to Kron HW�DO. [2004]. Hereunder, we briefly introduce the
numerical computations.
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As a first step, pure heat transfer analyses of the solidification problem were done with a
constant HTC between the part and mold. The maximum value of measured HTC was used in the
computations. This academic study served as a comparison between the heat transfer solvers of the
different numerical codes.

Figure 6-8  Top and side view of experimental set-up, from Kron HW�DO. [2004]

Figure 6-9 The measured heat transfer coefficient HTC from Kron HW�DO. [2004], and the constant value used
for pure heat transfer calculation (h = 898 W.m-2.K-1)

In the second step, thermo-mechanical calculations were performed. The time-dependent
HTC as obtained from experiments was used for the heat transfer analysis (this time-dependent heat
transfer coefficient was assumed uniform on the whole interface). So, there was no effective
coupling from the mechanical calculation towards the heat transfer calculation. Only the coupling
from the thermal calculation towards the mechanical calculation was taken into account through the
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temperature dependence of constitutive parameters. For these computations, we compare
predictions of the air gap.

It should be noted that in R2SOL the mold, the core and the insulating materials are assumed
rigid, the same assumptions are adopted in the computation of CASTS. While MAGMA,
PROCAST and THERCAST permit computing the deformations in the mold. In MAGMA, since
the thermal and mechanical modules are separated, firstly the program makes thermal calculations
and then uses the calculated temperature field as in-data for the mechanical calculations. The
calculation of the air gap is done in two steps: firstly, the displacement of the casting is calculated,
and then the displacement of the mold is calculated. In the computation of PROCAST, the core and
the insulating material are considered rigid, the mold linear elastic, the part elastic-plastic.
PROCAST permits coupling the thermal and mechanical analyses simultaneously, as well as
THERCAST.

•  5HVXOWV�RI�WKH�SXUH�KHDW�WUDQVIHU�FRPSXWDWLRQV
As presented before, the first step computations have been carried out using the maximum

heat transfer coefficient. The cooling curve measured in the part at mid-height (z = 50 mm) and
near the outer surface (r = 69 mm) is shown in Figure 6-10. It is compared with the computational
results obtained by R2SOL and the other codes. It can be seen that the computational result of
R2SOL is close to the others. The computational cooling curves coincide with the experimental
result at the beginning of solidification. But they deviate from the experimental result in the later
stage. In fact, the heat transfer coefficient between the part and mold decreases when the gap grows.
This is not taken into accout in the computations, and leads logically to an underestimation of
temperature.

Figure 6-10 Comparison of cooling curves between measured and calculated, pure heat analyses

•  5HVXOWV�RI�WKH�WKHUPR�PHFKDQLFDO�FRPSXWDWLRQV
Besides the heat transfer computations, an elastic-plastic model (Ramberg-Osgood stress-

strain model) is applied (Kron HW�DO. [2004]) to compute the stresses and strains in the solidifying
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part. The core and the insulation are assumed rigid. In the computation of R2SOL, the mold is also
assumed rigid. But the deformations in the mold are computed with MAGMA and PROCAST.

Compared to Figure 6-10, the cooling curves are again shown in Figure 6-11. It can be seen
that the computational results are in good agreement with the experimental one. This is quite
normal since the computations have used the measured HTC directly.

Figure 6-11 Measured and calculated cooling curves, thermo-mechanical analyses, from Kron HW�DO. [2004]

Figure 6-12 Evolution of the displacement of the part and mold surfaces, from Kron HW�DO. [2004]

Regarding the mechanical computations, Figure 6-12 shows the evolution of the displacement
of the part and mold surfaces at the mid-height of the casting. The experimental curves show the
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mold expansion, which stabilises at 400 s. The part surface follows this expansion at the beginning
of cooling, up to 100 s, which is the air gap formation time. The mold expansion has been correctly
predicted by MAGMA and PROCAST, using the thermo-elastic model. Comparing the curves of
displacement of the part, a huge disparity can be observed in the numerical results. This disparity
has been explained by Kron HW�DO. [2004], the main causes may be found in the constitutive equation
and the corresponding parameters. It should be noted that the given constitutive law cannot be used
directly in different codes, except for MAGMA. For instance, in R2SOL the elastic viscoplastic
behavior is described by equations presented in section 6.1.2. In order to use the Ramberg-Osgood
model, a fitting has been done to approach as best as possible the stress-strain curves. This might be
a source of differences between the different computations.

������ 6ROLGLILFDWLRQ�RI�LQGXVWULDO�LQJRWV
In this section, we present the results obtained by coupled thermo-mechanical simulations.

The first case is an octogonal 3.3 ton steel ingot produced by AUBERT & DUVAL. The ingot is
considered axisymmetric, the geometry is shown in Figure 6-13. The computational system consists
of the ingot and four subdomains of mold. The ingot has a height of 1.83 m, and the maximum
radius is 0.331 m. It is discretized with 7236 triangle elements, the mesh size varies from 2.5 to 25
mm. Coupled thermomechanical simulations have been performed with R2SOL. In the
computation, the mold is considered rigid. A unilateral contact condition is applied to the boundary
of the ingot and mold, the deformation in the solidified ingot is computed with the method as
presented before. For heat transfer analysis, a constant heat transfer coefficient at the interface
between the ingot and mold is used before the formation of an airgap. When an airgap with a
thickness δ  locally appears, heat exchange between the ingot and mold mainly arises from heat
conduction and radiation through the airgap. Therefore, an equivalent local heat transfer coefficent
K can be computed by:
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where DLUλ  denotes the thermal conductivity of air, 17  and 27  the surface temperatures of the ingot
and mold respectively, 1ε  and 2ε  their emissivities and %σ  the constant of Stefan-Boltzmann.

In addition, in order to consider the natural convection (due to the density gradient caused by
the temperature gradient) in the bulk liquid, we have used an augmented viscosity of the liquid (  =
1 Pa. s).

Regarding the natural convection flow in the liquid pool, we have not been able to use the
nominal viscosity of liquid steel (say 10-3 Pa.s) which has resulted in loss of convergence for the
resolution of our non-linear problem. In our opinion, the following cause can be invoked. The use
of low viscosity results in great variations of the rheological contributions that are assembled
around nodes belonging to the mushy zone. This leads to very badly conditioned sets of linear
equations at each Newton-Raphson iteration, causing non-convergence. This would need further
investigation. This limitation might also be overcome by using finer meshes in the mushy zone.
From this point of view the tools we have developed to control automatic remeshing (cf. chapter 4)
could be very profitable, but this has not been tested in the frame of our Ph.D. work.
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               a) 1 min                                   b) 1 h 15 min                                    c) 5 h

Figure 6-13 Illustration of the solidification of a 3,3 ton steel ingot. a) the liquid zone in blue, the solid zone in
red, and the velocity vector at 1 min (the maximum velocity, 37.8 mm/s); b) the mesh superimposed on the
liquid and solid zone at 1 h 15 min,  maximum velocity 1 mm/s; c) distribution of the cumulated plastic
deformation and  the Von Mises equivalent stress (Pa) at 5 h, end of the solidification at 3 h 25 min.

                                     
   a) unilateral contact                                                            b) bilateral contact

end of solidification: W = 3 h 25 min                           end of solidification: W = 2 h 25 min

Figure 6-14 Comparison of results calculated with unilateral and bilateral contact for a 3.3 ton steel ingot. a)
the heat transfer coefficient at the interface between the ingot and mold depends on the airgap width, which
is computed with a unilateral contact condition; b) the heat transfer coefficient is a constant, without airgap, a
bilateral contact condition is applied.
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Using an augmented viscosity can also avoid treating turbulent flow that can appear during
the solidification. In the current computation, the maximum velocity of fluid flow is 5.5×10-2 m/s (

observed at 30 s), the associated Reynolds ( 230
7060/0.1
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/

 
  ≅×==

ρµ
/5H Y

) number is about 230.
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The solidification process of the ingot  is illustrated in Figure 6-13. Solidification phenomena,

such as the natural convection in the liquid due to temperature gradient, the deformation in the solid

due to thermal contraction and the solidification shrinkage, can be observed simultaneously in the

figures. One can clearly see the fall of liquid level at the top of ingot, which results from the

solidification shrinkage and the thermal contraction in the solid and liquid phases. One also

observes the air gap at the interface between ingot and mold. It is about 4.0 mm around the body of

the ingot, and a maximum value of 25 mm is observed on the shoulder of ingot.

It should be noted that the air gap takes a considerable volume, this volume is about 1.33×10
-2

m
3 

( 004.06.133.02 ×××π ), which may influence the prediction of the shrinkage pipe. Assumed that

this volume is compensated by the liquid in the hot riser, then the descent level of liquid can be 73

mm ( )24.0/(1033.1 22 π−× ).

Following this consideration, we found interesting to compare simulations accounting for or

not the airgap. We have performed a second calculation in which it is supposed that no airgap is

formed during the solidification: this more restrictive calculation has been done with a condition of

bilateral contact and a constant heat transfer coefficient at the interface between ingot and mold

( 0    KK =  in equation (6-55) ). The comparison is shown in Figure 6-14. As expected, in this second

calculation, the pipe is deeper, as can be seen in Figure 6-14 b). The depth of the defect is

augmented by 121 mm in the center and 66 mm in the periphery, which is consistent with our

previous calculation. Let us notice, additionally, that the final mass of the ingot in these two

calculations is the same, the mass loss in the calculations being very low (about 0.3 %): it is then

clear that the difference can be attributed to numerical errors.

We can also note that the solidification time is shorter in this second computation (2 h 25 min

instead of 3 h 25 min). This is consistent with the choice of a constant heat transfer coefficient K0

(corresponding to a no-gap situation in the first calculation). It can be seen that the contact

condition affects not only the cooling of the ingot, but also the shape of the shrinkage pipe.

A similar comparison as mentioned above is done with a larger steel ingot (height 5 m,

maximum radius 1.40 m, 164 tons) produced by Industeel Creusot. In a first step, a unilateral

contact condition is applied to the mechanical simulation, and the heat transfer coefficient between

the ingot and mold (considering the formation of air gap) is defined by equations (6-54) and (6-55).

In a second step, a bilateral contact condition is applied, and a time-dependent heat transfer

coefficient (HTC) is used. This time-dependent HTC is obtained from the first computation as

follows. At mid-height of the ingot and at different times, knowing the gap size and the surface

temperatures, it is possible to deduce a HTC by applying equations (6-54) and (6-55). In the second

calculation this time-dependent HTC is applied to the whole interface between mould and ingot.
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This is to ensure that the temperature history in the ingot is approximately the same whatever the
contact option chosen (either unilateral or bilateral).

The solidification process of the ingot simulated with a unilateral contact condition is
illustrated in Figure 6- 15. The evolutions of surface temperatures of the ingot and the mold at the
mid-height of the ingot are shown in Figure 6- 16, as well as the growth of the local air gap. Figure
6-17 shows the formation of air gap at the bottom of the ingot. It can be seen that a 17 mm air gap is
formed during solidification.

   a)                        b)                       c)                          d)                       e)

Figure 6- 15 The solidification process of a 165 ton steel ingot. a) the liquid fraction field and velocity vectors
at 10 min, the maximum velocity, 47.47 mm/s; b) at 1 h,  maximum velocity 10.92 mm/s; c) at 10 h,
maximum velocity 0.22 mm/s; d) at 20 h; e) at 20 h 50 min, end of solidification.

Figure 6- 16  Evolutions of surface temperatures and the air gap: a) at the beginning; b) during the
solidification.
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a) time = 1 h                                b) time = 10 h                              c) time = 20 h

Figure 6-17 Formation of the air gap at the bottom of the ingot

As expected the solidification time of the second case is 20 h 10 min, compared to the first
case, 20 h 50 min. However, regarding the shrinkage pipe and stresses, the results calculated with a
bilateral contact condition are very impressive as shown in Figure 6-18 and Figure 6-19. Blocking
the movement of the periphery of ingot with a bilateral contact condition, dramatically causes a
deep shrinkage pipe that reaches the mid-height of the ingot, and very large stresses at the bottom
and the corners. For the simulation with a bilateral contact, one can imagine that the volume of the
shrinkage pipe increases in order to compensate the volume of the air gap. A downward and
outward feeding flow can be observed in the mushy zone in  Figure 6-18 b), which leads to the
formation of shrinkage pipe. Considering the air gap at the bottom of the ingot in Figure 6-17, the
maximum width being 13.7 mm, this contraction is constrained in the computation with a bilateral
contact condition, leading to larger stresses and strains as shown in Figure 6-19.

Temperature

width of air gap
� � �����PP

� � ������PP � � ������PP
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                            a)                                              b)                                                   c)

Figure 6-18 The solidification process of a 165 ton steel ingot simulated with a bilateral contact condition. a)
the liquid fraction field and velocity vectors at 10 min, the maximum velocity, 0.27 mm/s; b) at 15 h,
maximum velocity 0.14 mm/s, a zoom to the flow in the mushy zone is presented; c) at 20 h 10 min, the end
of solidification.

a) unilateral contact, end of solidification: 20 h 50 min b) bilateral contact, end of solidification: 20 h 10 min

Figure 6-19 Comparison of results calculated with the unilateral and bilateral contact for a 165 ton steel ingot.
The distribution of equivalent plastic deformation is shown on the left part,  and the equivalent stress on the
right part.
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We have checked the mass conservation for the thermal mechanical simulations, comparing
with the initial mass,  the maximum difference is less than 0.68%.

Regarding the prediction of the formation of shrinkage pipe in large ingots, we note that the
volume of air gap must be taken into account. However, in many references of the literature (refer
to the bibliographic review in section 2.2 ), only fluid mechanical models are used without
considering the deformation in solid zones. These models can not predict the formation of air gap,
therefore the contribution of air gap to the shrinkage pipe is neglected.

6.5 Conclusion

A thermo-elastic-viscoplastic (THEVP) model and a thermo-viscoplastic (THVP) model have
been implemented in R2SOL. The alloy in the liquid or mushy states is modeled using the THVP
law, depending on the temperature, the model can be either Newtonian for the pure liquid, or
viscoplastic for the mushy state. Fluid flow induced by the temperature gradient and solidification
shrinkage can be simulated. Below a critical temperature, the alloy is considered by the THEVP
constitutive law, which allows to compute stresses and strains in the solid.

Our personal contribution to the new version of R2SOL has consisted in extending the
material behavior from Newtonian to elastic viscoplastic. In collaboration with Alban Heinrich, the
P1+/P1 formulations for thermo-mechanical problems have been implemented. In this work,
adaptation from 3D to 2D axisymmetric formulation was a delicate issue, which needed a careful
consideration of the additional terms. A thermo-dilation and an uniaxial tension test have been done
to validate the new code.

Numerical simulations of solidification of Svensson test and industrial steel ingots
demonstrate the new computational capacity of R2SOL, being able to predict the shrinkage pipe, air
gap, strains and stresses. These academic computations show important effects of air gap during the
solidification of ingots. Beyond our numerical contribution, complementary work is needed to
evaluate in a more quantitative manner the capacity of the models developed.
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&KDSWHU���

&RQFOXVLRQ�DQG�SHUVSHFWLYHV
The present work aimed at developing numerical models in the two dimensional finite

element code R2SOL, in order to compute: 1) macrosegregation associated with the thermo-solutal
convection in the liquid and mushy zones; and 2) stresses and strains in the solid phases during
solidification of castings. The thermal mechanical models are summarized as follows.

½ Modeling of macrosegregation

Macrosegregation in columnar dendritic solidification has been simulated following the
works of Isabelle Vannier [1995] in SOLID and Laurence Gaston [1999] in R2SOL. We assume
that the solid phase is fixed and rigid, therefore, only fluid mechanics is considered. The liquid flow
is laminar, Newtonian, with a constant viscosity. The mushy zone is considered as an isotropic
porous medium whose permeability is defined by Carman-Kozeny relation. In order to calculate the
drag force exerted on the interdendritic liquid, Darcy’s law is applied. The Boussinesq

approximation is adopted in the momentum equation for the liquid phase. The averaged

conservation equations of energy, solute and momentum are used for modeling of the macroscopic

transport phenomena. Regarding microsegregation, the lever rule and Scheil models are considered

in the present work.

Following the work of Isabelle Vannier [1995] in finite volumes, on the coupling resolutions

for the macroscopic conservation equations and microscopic solidification models, we have

implemented the following two approaches in the context of finite elements:

•  )XOO�FRXSOLQJ approach to a binary alloy with eutectic transformation. In this approach,

the solidification in the whole casting is considered as an open system, the lever rule is

used for modeling microsegregation. Iterations are performed within each time step until

convergence resolutions that satisfy the macroscopic conservation equations for energy,

solute and momentum, as well as the local thermodynamic equilibrium with the lever rule.

One can also solve the governing equations with only one iteration within each time step

(full coupling reduced to one iteration).

•  1RQ�FRXSOLQJ approach for multi-component alloys. This time, the solidification is

considered locally as a closed system in the mushy zone, L.H., the solidification path is

fixed when the metal begins to solidify. The liquidus and solidus temperatures are

estimated locally as a function of the local liquid average concentration just before

solidification. The lever rule and Scheil models are used for modeling microsegregation.

From the point of view of numerical analysis, a nodal upwind P1+/P1 and a SUPG-PSPG

methods are used for the discretization of Navier-Stokes equations. A nodal upwind P1 and the

SUPG method are used for the energy equation. The SUPG method is also applied to the solute

transport equation. Since solidification shrinkage is not taken into account, the computational

domain is fixed. Therefore, the Eulerian scheme can be used. Our personal contribution to the new

version of R2SOL can be summarized as follows:
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•  Regarding the highly non-linear solidification problem, we have improved the energy
solver with a line search scheme. The PETSC solver has been used to solve the non-
symmetric matrix equation, leading to a robust and efficient energy solver.

•  Regarding fluid mechanics, the computation of Darcy and inertia terms in the P1+/P1
formulation has been improved, and the axisymmetric formulation has been implemented
in R2SOL. Following Tezduyar [2000], the SUPG-PSPG approach has also been
implemented in the axiymmetric version of R2SOL.

•  In order to improve the computational accuracy, algorithms for isotropic and anisotropic
mesh adaptations have been proposed. In the present study, the norm of the gradient of
solid fraction is used as a parameter for piloting the mesh refinement in the mushy zone.
The objective mesh size ahead of the liquidus isotherm is defined as a function of the
distance to the liquidus isotherm. The adaptive mesh is then created using the mesher
“MTC”.

The IXOO�FRXSOLQJ and QR�FRXSOLQJ approaches have been validated by the benchmark test of

Hebditch and Hunt. It has been demonstrated that the prediction of segregated channels needs a  IXOO
FRXSOLQJ computation, for which the thermal and solutal coupling effects on the solidification have

been taken into account. While the main spatial trends of macrosegregation can be predicted by the

QR�FRXSOLQJ approach.

The mesh size and time step influence studies on the test of Hebditch and Hunt show that

sufficient fine meshes, small time steps and possibly coupling iterations within each time step

should be used in order to predict the segregated channels. This has also been demonstrated in the

prediction of freckles during upward directional solidification. Macrosegregation in an industrial

dimensional steel ingot has been simulated with mesh adaptation, fine meshes being applied in the

critical region near the liquidus isotherm, and coarse meshes being used in the bulk liquid and in the

solid. ‘A-type’ segregation is captured with the mesh refinement, the efficiency of mesh adaptation

is  illustrated.

3HUVSHFWLYHV
From the point of view of physical models, the following points that affect macrosegregation

would be considered in the future work, in order to improve the prediction of macrosegregation in

industrial ingots:

•  Equiaxed solidification. In the present work the solid is assumed stationary, the columnar

dendritic solidification is modeled. This leads to failure in the prediction of the negative

macrosegregation zone at the bottom of an ingot (also called the sedimentary equiaxed

cone). Equiaxed crystals solidified in the early stage with poor solute content settle down

to the bottom, resulting in this negative segregation cone. In order to simulate the

equiaxed dendritic solidification, one needs to model the nucleation, the movement and

the growth (or remelting) of grains. This could be a challenging issue (Boubeker Rabia

[2004] ).

•  Solidification shrinkage. It is well known that shrinkage is a driving force for the

interdendritic liquid movement. However, in the current model, densities of the liquid and
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the solid are equal and constant, except in the buoyancy term. We will come back to this
point at the end of the conclusion when dealing with coupling with solid deformation.

•  Microstructure. Microstructure affects microsegregation and permeability of the mushy
zone. Consequently it affects macrosegregation. In the current computations, a constant
VHFRQGDU\� DUP� VSDFLQJ�� 2, is used in the Carman-Kozeny relation. This could be
LPSURYHG�E\�D�YDULDEOH� 2, which can be as a function of, a first approximation, the local
solidification time. Besides the lever rule and Scheil models, a back-diffusion model
would be developed, considering the diffusion of solute elements in the solid and
peritectic transformation for multicomponent steels (Thuinet et al. [2003]).

From the point of view of numerical computation, the following points remain to be
investigated:

•  Optimisation of remeshing algorithms. For the current version of R2SOL, it takes more
CPU time to compute the distance to the liquidus isotherm, because the comparison test to
find the shortest distance (cf. section 4.1.2) is very time consuming. This needs to be
improved. Moreover, a direct linear interpolation is used to transport the concentration
field from the old mesh to the new one. Then, information of segregated channels can be
lost when derefining the mesh, which can be observed in results of an industrial ingot as
presented in section 5.5. This may result in loss of accuracy. Besides the method that is
defined by equation (4-15), we need an additional development to keep the memory of the
local concentration near a segregated channel, avoiding use of fine meshes.

•  Deeper confrontation of the nodal upwind P1+/P1 and SUPG-PSPG stabilization.
Regarding the lid-driven cavity test in section 3.7.3, it appears that the nodal upwind
P1+/P1 solver gives a smooth velocity field. It would be necessary to quantify separately
the effects of the nodal upwind treatment for the advection terms and the bubble-type
P1+/P1 formulation.

½ Modeling of solid deformation

The goal of this part of work is to predict the shrinkage pipe, air gap, strains and stresses
during the solidification of ingots. A single continuum medium is considered in the thermo-
mechanical analysis. Unlike modeling of macrosegregation, we assume that in the mushy zone the
solid and the liquid move together with the same velocity. For simplicity, the liquidus and solidus
temperatures of an alloy are fixed according to its nominal concentration. During solidification the
different behaviors of the alloy are clearly distinguished by a critical temperature. Following the
work of Jaouen [1998] in THERCAST, a thermo-viscoplastic (THVP) model is used for the liquid
and the mushy metal, in particular, the liquid can be Newtonian. A thermo-elastic-viscoplastic
(THEVP) model is used for the solid.

Fluid flow induced by the temperature gradient and solidification shrinkage is simulated using
an ALE scheme. A pure Eulerian scheme is not satisfying to model the evolution of free surface due
to solidification shrinkage and the air gap formation. While a Lagrangian scheme can not be used to
simulate the strong natural convection in the liquid pool, since the Lagrangian-type mesh updating
could lead to mesh degeneracy. The Lagrangian scheme is used in the solid zone, where the
Lagrangian-type mesh updating can track the movement of the solidified shell. This is essential to
the prediction of air gap opening between ingot and mold.
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In collaboration with Alban Heinrich, our contribution to the new version of R2SOL has
consisted in extending the material behavior from Newtonian to elastic viscoplastic, using the
P1+/P1 formulation. In this work, adaptation from 3D to 2D axisymmetric formulation is a delicate
issue. The new code has been validated by a thermo-dilation and an uniaxial tension tests.

Now it is possible to calculate simultaneously fluid flow in the liquid pool and deformation in
the solid, coupling with thermal analysis. The coupling from the thermal calculation towards the
mechanical calculation is taken account through the temperature dependence of constitutive
parameters; on the other hand, the mechanical calculation provides the size of local air gap, which
changes the heat transfer coefficient at the interface between ingot and mold and consequently
affects thermal analysis. Academic computations of Svensson test clearly show the importance of
thermal mechanical coupling. An application to industrial steel ingots demonstrates predictions of
the shrinkage pipe, air gap, strains and stresses.

3HUVSHFWLYHV
In order to increase the accuracy, adaptive remeshing could be used for computing the

deformation in the mushy zone in the future. Great variations of rheological properties appear
during the liquid-solid phase change, this may need sufficient fine meshes in the mushy zone. We
have proposed algorithms for piloting automatic remeshing in the computation of macro-
segregation, which could be also used in the stresses and strains computation.

Finally, regarding the two models as mentioned above, it would be very interesting to merge
the two computations. We expect that fluid flow induced by thermo-solutal convection and
solidification shrinkage could be computed in the ALE frame instead of the Eulerian frame, so that
macrosegregation and deformation in solid could be simultaneously predicted. The main difficulty
remains in the treatment of mushy zone.
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•  3K\VLFDO�GDWD�DQG�FDOFXODWLRQ�SDUDPHWHUV

Table A-1 Physical properties and calculation parameters of the steel ingot (a carbon binary alloy)

3KDVH�GLDJUDP�GDWD
Nominal mass fraction, 0Z wt.pct 0.38

Melting temperature, I7 °C 1538

Liquidus slope, P °C.wt.pct
-1

-80

Partition coefficient, N 0.18

7KHUPDO�GDWD
Thermal conductivity, λ W.m

-1
. K-1 35

Specific heat, SF J.kg
-1

. K-1 672

Latent heat, / J.kg
-1

0.309×10
6

Density, 0ρ Kg.m
-3

7060

&DOFXODWLRQ�SDUDPHWHUV
Initial temperature °C 1550

Time step s 0.1

Heat transfer coefficient, K
between ingot/mold,  ingot/refractory

W.m
-2

. K-1 1000

Table A-2 Physical properties and calculation parameters of the mold and refractory

7KHUPDO�GDWD Mold 1 and Mold 2 Mold 3 Refractory

Thermal conductivity, λ W.m
-1

. K-1 30 2 0.45

Specific heat, SF J.kg
-1

. K-1 540 1100 868

Density, 0ρ Kg.m
-3

7000 2135 1600

&DOFXODWLRQ�SDUDPHWHUV
Initial temperature °C 250 250 250

Heat transfer coefficient, K
between mold/air, refractory/air

W.m
-2

. K-1 50 40 40

External temperature, H[W7 o
C 50 50 50
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$SSHQGL[�%��2UJDQL]DWLRQ�IRU�0DFURVHJUHJDWLRQ�FRPSXWDWLRQ

Remeshing by MTC

Transport after remeshing

Transport for partial derivatives:

Transport for total derivatives:

hent, wmoy + some values at time t

Advance to next time step

t = t + ∆t

Module 6:   Resolutions of fliud mechanics: Vit*  at time t + ∆t

Coupling resolution for energy, solute and momentum

No
Yes

Momentum, enery and solute

Converged ?

Yes

No

Yes

Energy Converged ?

Micro segregation model

dtsurdh*,  tem*,  gl*, gs1*,gs2*,  tliqp*,  tsolp*,  wliq*

hent*,  wmoy*  +  some values at time t

Resolution of energy equation:  hent* at time t+∆t

Knowing temperature and enthalpy at time t

hent_liq for the total derivatives

hent_dp, hent_liq_dp for the partial derivatives

tem0 for the evaluation of thermo-properties

 NR iterations for energy

Remeshing ?

Transport

Transport for partial derivatives, by direct interpolation:

  vit_dp,  hent_dp,  hent_liq_dp,  gl_dp, gs1_dp, gs2_dp

  tem_dp,  wmoy_dp, wliq_dp

Transport for total derivatives, by nodal upwind:

  vit,   hent,  hent_liq,   tem

 Computation of objective mesh size

No

 Micro segregation model

 dtsurdh,  tem,  gl, gs1,gs2,  tliqp,  tsolp,  wliq

Resolution of solute equation

Knowing vit*, vmay
wmoy_dp  for the partial derivative

+ intermediate values: gl*, wmoy*, wliq*

    Resolution of solute equation:  wmoy* at time t+∆t

wmoy*,  hent*  +   some values at time t

 Micro segregation model

dtsurdh*,  tem*,  gl*, gs1*,gs2*,  tliqp*,  tsolp*,  wliq*

Solute Converged ?

No

    Yes
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$SSHQGL[�&��7DQJHQW�PRGXOXV
•  7DQJHQW�PRGXOXV�IRU�WKH�7+(93�PRGHO

Because the THEVP model is nonlinear, the global resolution of the mechanical problem
should be done by an iterative procedure. The Newton-Raphson method is applied. In order to
compute the Hessian matrix +  for the Newton-Raphson iteration, the so-called “tangent modulus”

is introduced in R2SOL. Therefore, the code is more general regarding the constitutive equations

selected.

The tangent modulus is defined by:
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For the THEVP model, the tangent modulus of fourth order may be expressed by (Jaouen

[1998]):
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The operator ⊗  denotes the tensor product. For a second order of tensorT , )( TT ⊗ is a fourth

order tensor with its component NOLMLMNO TTTT =⊗ )( .

For the elastic deformation, 1=α and 0=γ .

The detail of computation of tangent modulus can be found in the paper of Simo and Taylor

[1985].

•  $GDSWDWLRQV�IRU�WKH�WZR�GLPHQVLRQDO�DQDO\VLV
For clarity, let us consider the incompressible liquid phase and a purely elastic solid phase

with constant physical properties. Their behaviors present the two limit cases of our model, for

which the tangent modulus then becomes simpler. Hereunder taking these two cases as examples,
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we show the adaptation to the different coordinates (from 3D to 2D), particularly for axisymmetric
problems.

For simplicity, we use the Voigt notation, mapping the indices for the components of stress,
strain and tangent modulus into convenient matrix form, as shown in Table C-1.

                              Matrix indexTensor
index

1 2 3 4 5 6

   ab 11 22 33 12

21

23

32

31

13

Table C-1 Transformation of indices from tensor to matrix

With the Voigt notation one writes the deviatoric stress and the total deformation rate as
follows:

                

{ }
{ }132312332211

654321

 , ,  , , ,  

 , , , , ,

VVVVVV
VVVVVVV

=
= 7

 (C-3)

and

                

{ }
{ }132312332211

654321

 , , , , ,  

 , , , , ,

&&&&&&

&&&&&&&

=
= 7

 (C-4)

Firstly, let us consider the incompressible ( 0)( =&7U ) Newtonian fluid model, the constitutive
equation writes V &µ2= , where µ is the dynamic viscosity. In three dimensions, using the Voigt
notation we then have:
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Therefore, the tangent modulus for the incompressible Newtonian fluid can be expressed by:
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In equation (C-6) , all the off-diagonal terms are zero. In plane strain, 03 =Lε& , L.H.,
0332313 === εεε &&& , hence, for the plane strain problem with incompressible Newtonian behavior, only

three components ( µ2
11

11
11 =

∂
∂

=
V
&

& , µ2
22

22
22 =

∂
∂

=
V
&

&  and µ=
∂
∂

=
12

12
44

V
&
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However, for the axisymmetric case, since 033 ≠= θθεε && , an additional term µ2
33

33
33 =

∂
∂

=
V
&

&  should be

taken into account.

Secondly, we consider the purely elastic model, the deviatoric stress can be expressed by:

                      )( 2'V &&& GHYGHY µ==  (C-7)

where µ is the Lame coefficient, and GHY' is defined by:
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This time, the tangent modulus may be expressed by:
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In contrast to the Newtonian liquid model, some non-zero components appear in the off-

diagonal terms, seeing equation (6-36). In the plane strain case, the terms, 
11

11
11

V
&∂

∂
=& , 

22

22
22

V
&∂

∂
=& ,

22

11
2112  

V
&∂

∂
==&&  and 

12

12
44

V
&∂

∂
=& should be considered.

For the axisymmetric problems, besides the terms appearing in the plane case, the additional

terms,
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During the local resolution of constitutive equations, the tangent modulus G
Q& 1+  of the THEVP

model are computed using equation (6-30). The components in the tensor G
Q& 1+ that need to be

considered are similar as what we have discussed for the elastic model.
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Ce travail est consacré à la modélisation des macroségrégations et des distorsions se produisant lors

de la solidification de pièces métalliques. Un modèle bidimensionnel d’éléments finis est développé pour

l’analyse des écoulements de convection thermo-solutale à l’origine des macroségrégations. Dans ce

modèle, l’ensemble des équations, moyennées spatialement, de conservation de l’énergie, de la quantité de

mouvement, de la masse et des espèces chimiques est résolu en prenant pour modèle de microségrégation la

règle des leviers. Plusieurs formulations permettent une résolution avec couplage faible ou fort des

différentes résolutions ainsi qu’une approche en système ouvert ou fermé. Dans le but d’augmenter la

précision des résultats, un algorithme de remaillage dynamique est également proposé, de façon à enrichir le

maillage au voisinage du front de solidification. L’orientation et la norme du gradient de fraction liquide

guident le remaillage dans la zone pâteuse, tandis que la distance à l’isotherme liquidus est utilisée dans le

liquide.

L’approche numérique est validée grâce à un benchmark de macroségrégation tiré de la littérature et

portant sur des alliages Pb-Sn. Les influences de la discrétisation spatiale et temporelle et des schémas de

couplage sont discutées, notamment par rapport à la capacité de prédiction des canaux ségrégés. En outre,

l’efficacité de l’adaptation de maillage est illustrée dans un cas de solidification dirigée, donnant lieu à

l’apparition de « freckles », ainsi que pour la prédiction de bandes ségrégées de type A dans un gros lingot

d’acier.

La dernière partie du document présente une modélisation thermo-mécanique visant à calculer le

développement, pendant le procédé, des contraintes et distorsions dans les zones solidifiées, ainsi que le

retrait et les mouvements de thermo-convection affectant les régions liquides. Le comportement de l’alliage

est alors considéré comme newtonien à l’état liquide, comme celui d’un milieu continu viscoplastique à

l’état pâteux, et comme élasto-visco-plastique à l’état solide. Cette simulation thermo-mécanique est utilisée

pour calculer la formation des lames d’air, la génération des déformations, des contraintes et la formation

des retassures primaires.

0RWV�FOHIV: solidification, modélisation, macroségrégation, éléments finis, 2D, adaptation de maillage,

thermomécanique, mécanique des fluides.
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This work is dedicated to the modeling of macrosegregation and deformation during solidification of

castings. A two-dimensional finite element model to simulate macrosegregation due to thermal-solutal

convection in the case of columnar dendritic solidification is presented. A set of volume-averaged

conservation equations of energy, solute, momentum and mass is solved in conjunction with the use of the

lever rule as a microsegregation model. Several formulations have been implemented, permitting a

resolution with either weak or strong coupling, closed or open system. In order to improve the prediction

accuracy, an algorithm for dynamic remeshing is proposed. The basic idea is to generate fine elements near

the liquidus isotherm. The norm of the gradient of solid fraction is used for piloting the remeshing in the

mushy zone; while the objective mesh size in the liquid is considered as a function of the distance to the

liquidus isotherm.

The numerical approach has been validated with a benchmark test of macrosegregation in Pb-Sn

alloys taken from the literature. The influences of mesh size, time step and coupling scheme have been

investigated. Sufficient fine meshes, small time step and possibly coupling iterations should be applied in

order to predict segregated channels. Moreover, the efficiency of mesh adaptation is demonstrated by

predictions of freckles in a case of unidirectional solidification, and of ‘A-type’ segregation bands in a large

industrial carbon steel ingot.

In the last part of this work, regarding fluid flow in the liquid induced by solidification
shrinkage and thermo-convection and deformation in the solid, a thermal mechanical model has
been implemented with a Eulerian-Lagrangian formulation. The alloy in the liquid state is
Newtonian, and in the mushy state it is modeled by a viscoplastic continuum. Below a critical
temperature the alloy is considered by a thermal elastic viscoplastic model. The thermo-mechanical
simulation is used to predict the shrinkage pipe, air gap, strains and stresses.

.H\ZRUGV: solidification, modeling, macrosegregation, 2D finite elements, mesh adaptation,

thermomechanics, fluid mechanics


