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Abstract

The use of multiple transmit and multiple receive antennas in mobile
communications offers a high potential to improve the bit rate and the link
quality.  This can be achieved by using a higher multiplezing rate and by
exploiting the diversity contained in the channel, under the constraint of ac-
ceptable complexity. The channel knowledge availability has an important
impact on the system design. In fact, the Channel State Information (CSI)
at the transmitter (Tx) has an impact on the coding, whereas the quality of
the channel knowledge at the receiver (Rz) side has an impact mainly on the
detection and the channel estimation.

The first part of this thesis considers the case of absence of CSI at the Tz
and perfect at the Rx. We propose the Space-Time Spreading (STS), which is
a space-time coding scheme based on linear precoding that use a MIMO convo-
lutive prefilter. STS achieves full multiplexing rate and is optimized to exploit
mazximum diversity and coding gains and to save the ergodic capacity. STS
allows to use various receiver structures of low complexity. The Stripping
MIMO Decision Feedback Equalizer (DFE), is a non-iterative receiver that
detects the streams successively. The performances of the Stripping are eval-
uated in term of diversity versus multiplexing tradeoff. Another non-iterative
receiver is the Conventional DFE applied to the MIMO case. It detects jointly
symbols for different streams but proceed successively in time. The third pro-
posed receiver is an iterative one. It takes advantage of the presence of the
binary channel code, and iterates between the linear equalizer and the binary
channel decoder. Simulations are provided to evaluate its performance.

In the second part we consider channels with partial CSI at the Tx and
perfect CSI at RX. The partial knowledge in these cases can come from the
decomposition of the channel in slow varying and fast varying parameters. It
can also be the result of the reciprocity of the downlink and uplink physical
channels. For those cases we provide suitable channel models and study the

iii



iv Abstract

ergodic capacity.

In the last part, the case of absence of CSI at both Tz and Rx is considered.
The capacities of two channel models, block fading and time selective, are
studied. Due to the absence of CSI at Rz in this case the channel needs
to be estimated in practical systems. We propose semi-blind estimators that
combine training and blind information. Identifiability conditions are derived
and simulations are presented to evaluate performances.



Résumé

L utilisation d’antennes multiple a la transmission et réception dans les
communications mobiles, offre d’importantes perspectives pour accroitre le
débit et améliorer la qualité du lien. Cela peut étre effectué en utilisant un
plus important multiplexage spatial et en exploitant la diversité contenue dans
le canal, tout en gardant une complexité acceptable. L’état de connaissance
sur le canal a un impact important sur la conception de la chaine de trans-
mission. En effet, Uinformation sur l’état du canal (CSI) au transmetteur
(Txz) a un impact sur le codage alors que la qualité du CSI au récepteur (Rx)
a principalement un impact sur la détection et [’estimation du canal.

Dans la premiére partie de cette theése nous avons considéré le cas d’absence
de CSI au Tz et un parfait CSI au Rx. On propose la dispersion spatio-
temporelle (STS), qui est un schéma de codage spatio-temporel basé sur le
précodage linéaire en utilisant un filtre multi-entrée multi-sortie (MIMO).
Le STS effectue un multiplezage de flux maximal, qui est optimisé pour ex-
ploiter une diversité mazximale, atteindre un bon gain codage et conserver
la capacité ergodique. Un autre avantage du STS est qu’il permet d’utiliser
une variété de récepteurs de complexité réduite. Le Stripping MIMO avec
égalisation a retour de décision, est un récepteur non-itératif qui détecte les
flux d’une maniere successive. Les performances du Stripping sont données
en terme du compromis entre diversité et multiplexage. Un autre récepteur
non-itératif est I’égaliseur a retour de décision appliqué au cas MIMO. 11 per-
met la détection des symboles des différents flux d’une maniére conjointe mais
successivement dans le temps. Le troisieme récepteur proposé est itératif.
1l profite de la présence d’un codage canal binaire et itere entre l’égaliseur
linéaire et le décodeur canal binaire. Des simulations sont présentées pour
évaluer les performances.

Dans la seconde partie on considére des canaux avec un CSI partiel au Tz
et parfait au Rz. La connaissance partiale dans ces cas peut étre le résultat de
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la décomposition du canal en parametres lents et rapides. Elle peut aussi étre
le résultat d’une réciprocité du canal physique entre la liaison montante et
descendante. A ces différents cas on présente des modéles de canaux adaptés
et on étudie la capacité ergodique.

Dans la derniére partie on traite du cas d’absence de CSI aux Tx et Rx.
La capacité de deuxr modéles de canauz, évanescent par bloc et sélectif en
temps, est étudiées. A cause de l'absence de CSI au Rz le canal doit étre
estimé dans les systemes utilisés en pratique. On propose des estimateurs
semi-aveugle qui combinent ['information de la séquence d’apprentissage et
celle de la partie aveugle. Les conditions d’identifiabilité sont obtenues et des
simulations sont proposées pour évaluer les performances.
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Chapter 1

Introduction

In this chapter we introduce the principle of multiple transmit antennas and
multiple receive antennas used in wireless communication, which can be seen
more generally as Multiple Input Multiple Output (MIMO) system. We first
define the general channel model, and specify the capacity for the different
cases of channel knowledge. We present some basics on the design of space-
time codes in the case of absence of channel knowledge at the transmitter
(Tz). We introduce then some notions on the diversity vs. multiplexing of
Zheng & Tse and conclude this chapter by an overview of the different parts
of this report.
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Since the introduction, independently, of spatial multiplexing by A. Paulraj
in a Stanford University patent and by Foschini [1] at Bell Labs in 1994, the
use of multiple transmit and multiple receive antennas has become the fo-
cus of a lot of works. The reason behind this big interest of the scientific
community is related to the ability of MIMO systems to offer a new spatial
dimension, other than the time and frequency dimensions, that increases the
ergodic (average) capacity of the channel by a multiplying factor equal to
the minimum between the number of transmit vs. receive antennas (Ny, vs.
N,.) [2], and allows to lower the outage probability by the contribution of
Ny, N,., diversity components corresponding to all the channel coefficients.
Unlike SISO flat channel, MIMO flat channel (with absence of channel state
information at the transmitter) suffers from interference between different
transmit antennas. The recent attempts to exploit this high potential for
wireless communication have to make a compromise in order to handle an
increase in rate and take advantage of the available diversity to combat fading
and destructive interference whithin acceptable complexity limits.

This chapter is an introduction to the general framework. We present
the general MIMO linear model in wireless communication, and detail the
underlying models for specific situations. The capacities of such as channels
are also introduced. We present the classical multi-antenna receive diversity
and the space-time coding for MIMO systems. The diversity and multiplex-
ing as defined by Zheng & Tse are also introduced. Finally we provide an
overview of this thesis.

1.1 General MIMO Channel Model

Consider linear digital modulation over a linear channel with additive Gaus-
sian noise. The number of antennas is N, at the transmitter side and N,,
at the receiver as represented in fig. 1.1. We assume a linear time invariant
model for the effect of the channel on the transmitted signals. The received
signal at Rx antenna 7 can be written in baseband as

Niz oo

yit) = > > aa(Dhi(t —1T,) + vi(t), (1.1)

n=11l=—o00

where the z,,() are the transmitted symbols from the antenna source n, T}, is
the common symbol period, h;,(t) is the (overall) channel impulse response
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Figure 1.1: MIMO channel model.
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from transmitter n to receiver antenna i. Assuming the {x,(l)} and {v;(¢)}
to be jointly (wide-sense) stationary, the processes {y;(¢)} are jointly (wide-
sense) cyclostationary with period 7,. If {y;(¢)} is sampled with period T,
the sampled process is (wide-sense) stationary. Sampling in this way leads to
an equivalent discrete-time representation. We assume the MIMO channel to
be causal and finite impulse response (FIR). In particular, after sampling we
assume the impulse response to be of length L. The discrete-time Rx signal
can be represented in vector form as

Niw L1
Ve = Z h, (D)x,(k—1) + vy
o (1.2)
= Hixp 1 + vy,

l

0

where H; is N, X Ny with (Hy)y, = hip(l) for i = 1,2,..., Ny, n =
1,2,...,Nt$ and

y1(k) v1 (k) hin (1)
Vi = ygfk) V) = vak) h, (1) = hg’j(l) . (1.3)
yn,., (k) UN,, (k) hnyan (1)

The noise is assumed to follow a white Gaussian distribution, v ~ EN(0, 021y, ),
the transmitted signal is characterized by its power spectral density function

(psdf) Sxx(z) with gz § ©tr Sxx(2) = Nizo}, j = /1, and the signal-to-
2
noise ratio is SNR = Ntz% = Nyp. The notation tr(.) denotes the trace

function. .
Let ¢ denote the time shift operator: (¢7'x), = x;_1, and H(q) = Z H,q .
The received signal is then -

yi = H(g)xx + v, (1.4)
and the psdf of the received signal is

Syy(z) = H(2)Sxx(2)H'(z) + 0?1, (1.5)
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where H(z) is z-transform of the channel impulse response.

We could also obtain multiple channels in the discrete time domain by over-
sampling the continuous-time received signals w.r.t. the symbol rate (in the
case of the presence of excess bandwidth), the antennas could also be gener-
alized sensors (polarization, 4 EM components [3, 4, 5]), and in the case of
passband transmission of real symbol constellations we can also double the
number of channels by taking the in-phase and in-quadrature components of
the received signal.

We assume here the channel to be constant for the duration of one frame (or
block), however the channel can vary from block to block, this is the reason
why this model is called block fading channel model, which is the most com-
mon channel model used in papers dealing with wireless MIMO systems.
Two classes of channels are to be distinguished, flat channels (L = 1) and fre-
quency selective channels (L > 1). The case L > 1 is also called Inter-Symbol
Interference (ISI) channel. In most of the papers on MIMO the channel is
assumed to be flat, the impulse response being simply then H = H,,.

In the different parts of this thesis report we will deal with different config-
uration of the Channel State Information (CSI): presence at Rx vs. Tx and
absence vs. perfect or partial.

In the absence of CSI at Tx we still assume the knowledge of the average
power of the channel Etr{H”H} (by normalization = N,,.N;,) [2], in order
to be able to construct a statistical model. This model is chosen to be a
maximum entropy model to reflect the absence of CSI, it leads to Gaussian
i.i.d. components and corresponds hence to the Rayleigh flat fading MIMO
channel model.

1.1.1  Rayleigh Flat Fading MIMO Channel Model

This model has i.i.d. centered Gaussian components (H),,x ~ CN(0,1) for
1<m<N,,and 1 <k < N,,.
We denote p = min(N,,, Ny;) and ¢ = max(N,,, N,). Let USU” = H" H

be the eigenvector decomposition of HY H, where S = diag{si,...,s,}
where the eigenvalues are organized in increasing order (s; < s < ... <'s,),
and U = [uy,...,upy] : N X p contains the eigenvectors.

In [2], Telatar has shown that U is uniformly distributed over the Grassmann
manifold and that the eigenvalues follow a Wishart distribution with a joint
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pdf

P
P(S1,. .0, 8p) :K;;Hs?_pH(si—sj)Qe_zisi, (1.6)
i=1

1<j

where K, is a normalizing constant.

1.1.2  Separable Spatial Channel Model (Partial CSI
at Tx)

In the case of partial CSI at the Tx, the MIMO channel is often modeled as
a spatially separable channel model. In this model the channel is given by

H=x/"Wwx)”, (1.7)

where W is a N,, X N;; random matrix of i.i.d. complex circular Gaussian
elements with mean 0 and variance 1.

The matrix X is the receive array covariance matrix and 3, is the transmit
array covariance matrix: E{H"H} = tr{2,1%,, E{HH"} = tr{Z,}%;.
For 3, =1y,,,3s = Iy, we recover the Rayleigh flat fading MIMO channel
model. In fact, the separable channel model is constructed as a generalization
of the Rayleigh MIMO channel model used in case of no CSI at the Tx to
the case when the second order statistics of the channel are present at the
Tx.

1.1.3 Frequency Selective Rayleigh Fading MIMO Chan-
nel Model

We construct this model as a generalization of the Rayleigh MIMO channel
model to the case of frequency selectivity, it incorporates the power delay
profile knowledge for finite delay spread L. For this model H;, [ =0,...,L—
1 are independent, and each H; has i.i.d Gaussian component (H;),; ~
CN(0,07) for 1 <m < N,, and 1 <k < Ny,. 07, 0 <1 <L —1, reflect the
power delay profile of the channel and are assumed to be non-zero.
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1.2 Capacity of MIMO Channel

1.2.1 Flat Channel with Perfect CSI

For a flat channel with perfect CSI at the Tx and the Rx, the capacity is the
maximum achievable rate under the power constraint, and is achieved by a
frequency flat and zero-mean input

1
C(H)= max Indet(Iy,, + — HSxx H"), (1.8)
tr{Sxx}<p 0y

where P is the power constraint limit, Sxx(z) = Sxx is now simply the
covariance and the solution is obtained by waterfilling on the eigenvalues of
H"H (spatial waterfilling) [2]. The capacity is given in nats/second/Hz.

In the case of a MIMO frequency selective channel the solution is a water-
filling over the two dimensions space and frequency, the solution in this case
is not trivial.

1.2.2 Ergodic Capacity (Imperfect CSI at Tx )

In the case of imperfect CSI (no or partial CSI) at the Tx and perfect CSI at
Rx the channel has apriori distribution. The instantaneous capacity is now
a stochastic quantity, a common measure is the average or ergodic capacity

1 d 1
C = max Eg=— ¢ — Indet(Iy,, + — H(z) Sxx(2) HI(2)),
5= § Ltr{Sxx}<P 2mg z T
(1.9)
where the expectation Egg is here w.r.t. the channel, and

1 fdz
2mj z

9(.).

The ergodic capacity is hence the average of the instantaneous capacity, it
takes its full sense if we are able to encode the information to transmit
over several channel realizations (independent blocks). Finally it becomes
achievable if the transmitted codewords experience an infinite number of
channel realizations.

In the case of Rayleigh flat fading MIMO channel model, Telatar has shown in
2] that the ergodic capacity is achieved by a white input (Sxx(z) = ¢2Iy,,,

or =)

1 .
9(z) = [, g(e’*™1)df is the integral over the unit circle for a function
2

C = EggIndet(Iy,, + pHH"). (1.10)
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In fact in this case the channel distribution is invariant by any permutation
of the Tx antennas, they play symmetrical roles and hence there is no prefer-
able direction of transmission, yielding to a spatially white input.

High SNR :Asymptotically for high SNR it is shown in [2] that

C' = O (min(Ny, N,;) In p), or equivalently that the MIMO channel performs
asymptotically as well as an equivalent number of parallel AWGN channels
equal to the rank of H. These asymptotic performances of the ergodic capac-
ity are the same as the one of the capacity for a MIMO channel with perfect
CST at Tx.

The ergodic capacity formula can be generalized to the frequency selective
case, the following theorem gives the desired result.

Theorem 1: For a channel with a frequency selective Rayleigh fading model
(section 1.1.3) the ergodic capacity is

= EH—j[—lndet Iy,, +pH(2)H(2)), (1.11)

where p = L

Nie O
Proof : By applying the result of the flat channel case to each frequency, we

conclude that for each frequency the psdf is spatially white, hence Sxx(z) =
sxx(2)In,,, with 3 1 @sxx(z) < NL;E. On the other hand, for every z; on

the unit circle HlZ'1 , [ =0,...,L —1 have the same joint distribution as
H),, 1=0,...,L—1, and by consequence H(zz;) as H(z), then

B Indet(Iy,, + SX;J”H( 2)H'(2)
= EH In det(INm SX;( (ZZl) (ZZl)) VZl Wlth|Zl| =1 (112)
§ 2 Byy Indet(Ly,, + (Z)H(zzl)H*(zzl)) ,

- 27rg
and the ergodic capacity
257 § % Egg Indet(Ly,, + 252 H(2)H (2)

v

= 271’] f dzzﬁj f dﬁ E ln det(INM: + SX;'((Z) ( )HT(Z’Zl))

)
H

= 55 § 24 dzEHIndet(INm SX;“H( 2)H (2)) (1.13)
H

27rg o 27rg

§ 2 By indet(Ly,, + 5 § % S8 H (2 H (2,))

27rg O'

[ dz? EgpIndet(Iy,, + pH(ZQ)Ht(ZQ)) ,

| /\

27rg

| /\

271']
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in the second equality we operate a variable change zz; — 25, whereas in the
third inequality we exploit the concavity of the Indet function over the set
of positive definite matrices. The final inequality shows that

Egﬁjf%ln det(Iy,, + pH(2)H'(2)) is an upper bound on the capacity,
however this bound is achieved for Sxx(z) = 021y, . O

1.2.3 Outage Capacity (Imperfect CSI at Tx)

For a channel with imperfect CSI at the Tx, and in the case where the encoder
sees a limited number of channel realizations (for instance we consider the
case of one channel realization) the ergodic capacity makes no sense, the
outage capacity is then more appropriate. In fact, for a given SNR and rate
R, it expresses the probability that the transmitted rate is larger then the
instantaneous capacity (transmission failure)

Pout(R) = P(C(H) < R)
= P(5 § ZIndet(Iy,, + pH(2) Sxx(2) H'(2)) < R),

2mj

(1.14)

where Sxx(z) is normalized here to have (% ¢ LtrSxx(2) = Ni).
For a given level a (0 < o < 1) of the outage, the outage capacity is defined
as

Cout(a) = (Pout)i1 (a) 3 (115)

the choice of Sxx(z) is the one that maximizes C,,, papers like [6, 7, 8] stud-
ied this problem. They show that for separable spatial flat channel model
with well conditionned X5, and for low outage (small «) the transmitter op-
timal input color tends to be white Sxx(z) = 02ly,,.

An other important result for flat channel is shown in [9], where for asymp-
totically high SNR, Rayleigh flat fading channel and for any constant and
finite rate R we have

Pou(R) = O (p~ Ny (1.16)

The exponent of the SNR N,,.N,, is called the diversity gain and is related to
the diversity gain that arise in the space-time code design (section 1.4). The
diversity gain corresponds to the asymptotic slope of the error probability (or
outage probability), and is equal to the total number of independent diversity
sources.



10 Chapter 1 Introduction

1.2.4 Asymptotic Behavior in Block Transmission

Let us assume that we transmit over a block of length 7', the received signal
can then be written as

Y=Ar(HX+V, (1.17)
where Y = [y?,yT ..., y%_L_l]T, X =[x xI, ... xT)T and
V=l vl . . vE ) Ar(H) isa N, (T+L—1) x N, T block toeplitz
matrix with first block column [H{ , HI ... H] |]".
[ H, 0 0 7
H, H,
. H, . 0
ArH)=|4H,, : . H, |- (1.18)
0 H,, : H
0 0 H

The instantaneous capacity (per input symbol) of the block transmission for
white input is

Cr(H) = %m det(Iy,, 7 + pAr(H) (Ar(H))¥). (1.19)

The following lemma gives an important result on the limit of Cp(H) for
large T'.

Lemma 1: The limit of the capacity Cr(H) is

lim Cr(H) =C(H) = % j[ d—;ln det(I+ pH(2)H'(2)). (1.20)

T—+00

Proof: This is a generalization of the SISO case shown in [10, 11], the proof
is similar.

Corollary 1: Cr(H) converges in distribution to C'(H).

Proof: The limit in eq.(1.20) implies that Cr(H) converges almost surely
to C(H), and hence Cr(H) converges in distribution to C'(H).
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The principal consequence of Corollary 1 is that asymptotically for large
block length T >> L, C'r(H) have the same distribution as the one of C'(H),
then all the stated results for the continuous capacity C(H) apply asymp-
totically to Cr(H).

1.3 Conventional Multi-Antenna Receive Di-
versity

The classical Multi-antenna diversity technique is well-known to improve the
quality of the wireless link [12, 13, 14, 15]. The channel in these cases is
SIMO (N, = 1), for flat channel the received signal is written

Yi = hz + vy, (1.21)
where
hy
ha
h = _ , (1.22)
hn,.

and the transmitted signal xj is a scalar now.
By applying a Maximum Ratio Combining (MRC) receiver

hH
= ||hl|lzg + v,
H
where [|h|| = /2% b2 and v, = HhTHvk follows a zero-mean Gaussian

distribution with variance o2.

The result is a SISO fading channel with instantaneous capacity C'(p||/h||?) =
In(1 + p||h|[?), achieved for Gaussian white input.

The instantaneous capacity C(p||h|[?) is an increasing and not bounded func-
tion of the effective SNR: p||h||?. Then for a given R > 0 there exists a > 0
that verifies « = C~!(R) and such that

Pout(R) = P(C(pl[b]]*) < R) = P(|[h]]* < %)- (1.24)
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The quality of the wireless link is related to the effective SNR. (p||h|[?) dis-
tribution, P(||h|* < ©) is a measure of this quality, and the above equalities
show the tight relation between the outage capacity and this measure.

|h||? has a Chi-square pdf with 2V,, degrees of freedom, we can then evalu-
ate P, (R, p) analytically. However, we can also apply the Chernoff bound
to derive an upper bound, this method is simpler and applies for the case
where the components of h are still Gaussian but not i.i.d.

2 (6
P(HhH < ;) = El{thH?fa}<0’ (1'25)

/\(PHhW—Q), for any A > 0, then

and I{Hh\\?<%} is upper bounded by e~
P(|[h/? < 2) < miny,g Be AeRIT
= min)\>0 (I)A()\) (126)
= minyoe* [e M f(h)dh

where f(H) is the pdf of h, A = p||h||? —a and &5 (\) = Ee *4 is the char-
acteristic function of A. The second inequality corresponds to the Chernoff
upper bound.

The channel components are assumed to be Gaussian with covariance Cp,, =
UDU” and rank r(= number of diversity sources). D is an r x r positive
definite diagonal matrix containing the eigenvalues and U is N,, X r unitary
matrix of the eigenvectors (U”U =1,). The integral is

1 " " H _ipTH 1 D_1 -1
/e/\ﬂh UU hefh UD U hdh: det()\p r+ ) , (127)

det(7D) det(D)

where we use equality ||h|[> = h" UU"h. By taking A = 1 the upper bound
is finally

< e

= det( pD+I,) (1.28)
= 0(p").

This shows that the MRC exploits all the available sources of diversity in a
SIMO channel.

P(|[h]}* < )

1.4 Space-Time Coding for MIMO System

The MIMO channel capacity as we have seen in section 1.2, shows a high
bandwidth potential and offers big diversity advantage to improve the wire-
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less link. The main problem is how to deal with the inter-antennas inter-
ference, the first response was given in [1]. The proposed scheme, called
V-BLAST, transmits independent streams on the different antennas and use
Successive Interference Cancellation (SIC) at the receiver side. Even if this
scheme allows to achieve a high data rate, it is far from exploiting all the di-
versity advantage of the MIMO channel. In [16] Tarokh et al proposed to use
new codes, called later Space-Time Codes (STC), that combine the channel
code with the multiple transmit antenna aspect, and they also introduced a
new design criteria for there construction.

Space-Time Code Design Criteria
The STC design applies for non-adaptive scheme, non-adaptive in the SNR,
the rate is then constant and the number of codewords is finite.
We consider the transmission of the coded symbols for a duration of 7" symbol
periods over a flat MIMO channel. The space-time code can be then rep-
resented in Ny, x T matrix form: C = é[xl, Xy, ..., Xr]. The accumulated
received signal is

Y=0,HC+V, (1.29)
where Y = [y,,¥9, ..., yp] and V = [vy, vy, ..., vy] are N, x T matrices.

We consider a Rayleigh flat fading i.i.d. MIMO channel, and a Maximum

Likelihood (ML) receiver. The channel is unknown at the Tx (no CSI at Tx)
and perfectly known at the Rx (perfect CSI at Rx). For a transmitted C,
the union bound gives us an upper bound on the error probability

P(error/C)< Y P(C—C), (1.30)
C'efe—{Cy
where P(C — C') is the Pairwise Error Probability (PEP) or the probability
of deciding erroneously C' for transmitted C. € is the code book.
The STC design tries to minimize the error probability by minimizing the

PEP.
The ML decision rule is given by

~

C =argmin||Y — 0,HC]||r, (1.31)
Cee

where ||M|[2 = tr {M”M} is the Frobenius norm of M. Then the condi-
tional PEP of C and C' is given by

P(C— C'/H) =P <0), (1.32)
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where § is the decision metric difference

0 = |IY =0, HC|I% = |[Y — o, HCJ[},
= |lo.H(C = C') + V][5 — |[V][3 (1.33)
= o:||H(C - C)||% — 20, Rtr{V'H(C - C')}.

Let d = |[H(C — C")||% and a = 20,Rtr{VIH(C — C')} ~ N(0,20202%d). R
denotes the real part and & will denote the imaginary part. By applying the
Chernoff bound we get

P(C — C'/H) < min E(e */H). (1.34)

5>0

2, 2
E(e=*/H) is the characteristic function of § and equals e~ (5=5°0)054  the

minimum of which is achieved for s = —. The Chernoff upper bound is

20
then

[SEN

d
4

P(C— C'/H) < e ’i. (1.35)
The PEP is the average of P(C — C'/H) over the channel distribution. Let
UAU be the eigenvector decomposition of the hermitian of C — C’, then

d = tr{H(C-C')(C-C)"H"}
= tr{HUAUH"} (1.36)
tr{H'AH'"}

where H' = HU has the same distribution as H. We can write then
P(C—C') = EPC—C/H)
< Eexp (-6 Al\h’ml2>

= zj\jf [I,.2: E eXJg (=X |hw]?)
= z]\jgf (T+2x) 7.

(1.37)

Which constitutes the desired Chernoff bound on the PEP.

The eigenvalues A\;, [ = 1,..., Ny, are sorted in decreasing order. Let r be
the number of the non-zero values (= rank of C — C'). Less-tight upper
bound is then given by

P(C— )< (g)_”m (H Al) o . (1.38)

=1
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Figure 1.2: PEP vs. SNR

For high SNR this bound becomes tight

P(C = C') ~ (g)_T'N” <H )\l> o . (1.39)

Diversity Gain : The total diversity order is the exponent of the SNR and
is given by r.N,,. Over the all codebook the diversity is given by 7,,in.Nys,
where r,,;, is the minimum rank of A over all the possible code words differ-
ences in C. 7,in. N, is called the diversity gain.

Coding Gain : Moreover the PEP is a decreasing function of the product
[T, A\, this last one should be made as large as possible for the error events
with rank 7,,;,. min HZTZ{” A; is called the coding gain. For r,,,;, = Ny, A is
full rank and [} A, = det [(C — C')(C — C)"].

In a plot that represents the PEP as function of the SNR in a logarithmic
scale, the curve becomes asymptotically a line with a negative slope that
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corresponds to the diversity gain, where the coding gain corresponds to the
position of the line (see fig. 1.2).

1.5 Diversity and Multiplexing as Defined by
Zheng & Tse

In [9] Zheng and Tse give a new definition of the diversity and spatial mul-
tiplexing that considers adaptive SNR schemes. In fact, a scheme C(p) is a
family of codes of block length T'(one for each SNR level), that supports a
bit rate R(p).

This scheme is to achieve spatial multiplezing r and diversity gain d if the
data rate verifies

lim T _ (1.40)
25 Tn(p)
and the average error probability verifies
lim L) _ (1.41)
p5% Tn(p)

For block length 7" — +oc the error probability becomes the outage capacity.
For each r, d*(r) is defined to be the supremum of the diversity advantage

achieved over schemes. The maximal diversity gain is defined by d? . = d*(0)
and the maximal spatial multiplexing gain is 7% . = sup{r : d*(r) > 0}.

We will use the special symbol = to denote the exponential equality, i.e., we
write f(p) = p® to denote

In f(p)
m
p=o0 In(p)
Zheng & Tse considered a Rayleigh flat MIMO channel model, and using
results on the distribution of the eigenvalues (section 1.1.1) they showed the
following results.

=b. (1.42)

Optimal Tradeoff Curve : Assume 7" > N,, + Ny, — 1. The optimal
tradeoff curve d*(r) is given by the piecewise-linear function connecting the
points (k,d*(k)), k =0,1,...,p, where

d*(k) = (p—k)(qg— k). (1.43)
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Figure 1.3: Diversity vs. multiplexing optimal tradeoff

Recall that p = min{N,,, Ny}, ¢ = max{N,,, Ny, }. In particular d} . =

max
.
Ny Ny and 73 = min(Nyy, Niy).

1.6 Thesis Overview and Outline

This thesis is composed of three parts. The first one deals with absence of
channel state information at the transmitter (and perfect CSI at the receiver),
the second with partial CSI at the Tx (perfect CSI at the Rx) and the last
one considers the absence of CSI at both Tx and Rx. A brief overview of
the general framework of this thesis and of each part is given in this section.
An abstract and an introduction is provided at the beginning of each chapter.

The CSI availability is a fundamental link between the several chapters of this
thesis. For each CSI configuration however, specific problems are treated. In
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some cases, practical solutions are proposed and analyzed; in other cases,
theoretical performances and fundamental limits are investigated. Our work
deals with different “hot” topics in MIMO: Space-Time Coding (STC) and
decoding, MIMO channel modeling, capacity studies and MIMO channel es-
timation. Other works that were done during the thesis period include the
use of multiple antennas in the UMTS standard [17, 18, 19, 20], the channel
in these cases is either SIMO or MISO (with Ny, = 2). Being out of the focus
of this thesis, these works are not reported here.

1.6.1 Part One: Absence of CSI at Tx (and Perfect
CSI at Rx)

This case is the most popular in the literature and has been the first one to be
considered e.g. [1, 16, 21, 2]. The Tx has no knowledge of the channel, which
is modeled as Rayleigh fading MIMO channel, either flat (subsection 1.1.1)
or frequency selective (subsection 1.1.3). At the Rx side, the channel is as-
sumed to be perfectly known; in practice this means that there is enough
training to provide a good channel estimate.

In chapter 2, we propose a new STC scheme that is based on linear precod-
ing using a MIMO prefilter to exploit diversity. The inputs of the prefilter
are called streams, and each symbol from any stream gets spread over space
(antennas) and time by the action of the prefilter. This scheme is conse-
quently named Space-Time Spreading (STS). STS is shown to preserve the
ergodic capacity and to achieve full rate and full diversity. The optimiza-
tion of the MIMO prefilter is done in order to maximize the Matched Filter
Bound (MFB) and the coding gain. This scheme was the first to show such
good properties'. In addition we show that this scheme can easily be gen-
eralized to the case of a frequency selective channel, preserving the above
properties, and being therefore is highly attractive. The optimal decoder
of the STS scheme is the ML decoder. However, this detector has a high
numerical complexity and offers no possibility for combination with binary
channel decoding. This problem is handled in chapter 3 and 4.

In chapter 3, we propose two low complexity non-iterative receiver strate-
gies. Non-ML receivers have in general an impact on the diversity and coding

ater other schemes were proposed in [22, 23]
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gains, and even on the channel coding setup. The Stripping MIMO Decision
Feedback Equalizer (DFE) is a Successive Interference Cancellation (SIC)
receiver for the different streams. In fact, the streams are processed suc-
cessively, each stream is equalized, decoded, and then its contribution gets
subtracted from the received signal before processing the next stream. The
Stripping DFE receiver is shown to be a very performant receiver for SNR
adaptive schemes, especially for the diversity vs. multiplexing tradeoff. In
fact, we generalize in this chapter the diversity vs. multiplexing tradeoff of
Zheng & Tse to the frequency selective channel with finite delay spread. We
show also that the Stripping DFE allows to reach an important portion of
this tradeoff. To achieve the optimal diversity vs. multiplexing tradeoff of the
Stripping DFE, the study suggests to use stream-dependent rates and hence
different constellation sizes. However, for the non-adaptive SNR case, the
streams experience different diversity and coding gains, and the binary chan-
nel coding is stream dependent and should compensate this non-symmetry.
Another receiver strategy is the Conventional MIMO DFE. In this case the
streams are decoded jointly and in a causal manner. The past detected sym-
bols contribution are subtracted using feedback. To avoid performance loss
due to error propagation, Per Survivor Processing (PSP) can be used. The
conventional MIMO DFE receiver achieves the same diversity and coding
gain for all streams.

In chapter 4, we propose an iterative turbo receiver strategy. This receiver
is a turbo detector as it iterates between a Parallel Interference Cancella-
tion (PIC) linear estimator of the streams (prefilter-channel cascade, seen as
an inner code), and a binary channel decoder (binary channel coder, seen
as an outer code). This technique has the same complexity as the turbo
receiver for the bit interleaved technique applied to MIMO systems or its
variant (Threading), and shows an important gain in performance over this
last technique. This receiver is also very adapted to exploit multi-block di-
versity if present and is very flexible, in particular for the case of less receive
antennas than transmit antennas (N, < Ny).
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1.6.2 Part Two: Partial CSI at Tx (and Perfect CSI
at Rx)

In this part the channel knowledge at the Tx side is based on feedback from
the Rx, or is due to reciprocity of the uplink and the downlink if both share
the same carrier frequency. However, this knowledge is often partial because
of the delay in the feedback and the limited (or absence of) calibration of
antennas. To study these cases, an adapted channel model will be formu-
lated in chapter 5. In the first case, we will use the pathwise channel model
accounting for the decomposition of the channel into a long term part (path
array responses, known from the feedback) and the unknown short term part
(complex path gains). In the second case, the limited reciprocity will be
reflected in the channel model by introducing a random scalar per antenna.
For each of these partial CSI channel models, we will analyze the MIMO
ergodic capacity, and show that our results present important consequences
for the Tx design.

1.6.3 Part Three: Absence of CSI at Rx (and none at
Tx)

In this case both Tx and Rx have no CSI. We will take the approach in which
the channel will be estimated at the Rx. To this end, we will assume that
some training/pilot symbols are present, but not necessarily enough to have
a high quality estimate.

In chapter 6, will be considered two popular fading channel models. The
first one is the block-fading model and the second is the time selective model.
We will show that the average Mutual Information (MI) over a transmission
burst can be decomposed into symbol position dependent contributions. The
MI component at a certain symbol position optimally combines semi-blind
information at that symbol position (exploiting perfect causal input recovery
up to that position combined with blind information from the rest (future)
of the burst). We will also analyze the asymptotic regime for which we will
be able to formulate optimal channel estimates, and to evaluate the capacity
loss with respect to the case of perfect CSI at the Rx. Asymptotically, the
decrease in MI involves Fisher information matrices corresponding to certain
channel estimation problems.
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The mutual information decomposition suggests to combine the training
and blind parts to estimate the channel. Chapter 7 proposes semi-blind
approaches which exploit the information from the two parts. These tech-
niques have a complexity not (immensely) much higher than that of training
based techniques. For the flat channel case, the presented technique achieves
the Cramer-Rao Bound. In the frequency selective channel case, we will use
a quadratic semi-blind criterion that combines a training based least-squares
criterion with a blind criterion based on linear prediction.
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Chapter 2

Linear Convolutive Space-Time
Precoding

The use of multiple transmit and receive antennas allows to transmit multiple
signal streams in parallel and hence to increase capacity. In this chapter we
introduce a simple convolutive linear precoding scheme that we call Space-
Time Spreading (STS). This scheme spreads the transmitted symbols in time
and space, involving spatial spreading and delay diversity. Such linear pre-
coding allows to attain full diversity without loss in ergodic capacity. We
show that the generalization of STS to the frequency selective MIMO channel
achieve full diversity, and investigate the complexity of the ML detector.

25
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2.1 Introduction

The use of MIMO systems offers a new spatial dimension, and increases the
ergodic capacity of the channel by a multiplicative factor equals to the rank
of the channel (subsection 1.2.2). Tt lowers the outage probability by the con-
tribution of Ny,.N,, diversity components corresponding to all the channel
coefficients in flat channel case. However, the MIMO channel (with imper-
fect CSI at Tx) suffers from interference between different transmit antennas.
The recent attempts that try to exploit this high potential for wireless com-
munication have to make a compromise in order to handle an increase in rate.
They need to take advantage of the available diversity to combat fading and
destructive interference while keeping an acceptable complexity. Trellis code
introduced by Tarokh et al [16] takes a SISO-like solution using a binary
channel coding designed to map directly on transmit antennas and adapted
to the use of the ML decoder (Viterbi decoder). The binary channel code in
this technique has to be very powerful to be able to exploit multi antenna
diversity, time diversity and to handle high bit rate leading to a fundamental
limit on performance under the constraint of complexity. New approaches
then appeared aiming to exploit diversity of the channel by linear transfor-
mation of symbols. In this category space-time block codes from Orthogonal
Design [21] transform the MIMO channel in one SISO coefficient that cap-
tures all the diversity and by then use the binary channel codes designed
for Gaussian channel. This technique, even if it succeeds to exploit all the
available diversity, is far from achieving the potential multiplexing rate.
More recent schemes [22, 23, 24] based on constellation rotating, succeeds
to exploit all the diversity without a loss of rate but need to perform a ML
decoding leading to an exponential (in Ny, and the constellation size) com-
plexity that limits its use. The present chapter presents the STS technique
that we have introduced first in [25], this scheme is based on Linear Precod-
ing with a MIMO paraunitary filter, and allows to exploit all the available
diversity. As we will see in chapter 3 this scheme can be combined with
conventional and non-conventional low complexity receivers. In chapter 4 we
show how STS can be combined with the binary Channel Code (CC) to use
a turbo detector and to exploit the multi-block diversity if present. These
properties allow to avoid the ML detector complexity and make the scheme
very attractive.

Approaches proposed so far deal with flat channel, however this is far to be
the case in existing mobile systems. In fact, multipaths that arise in mobile
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environments leads to frequency selective channel with finite delay spread.
The STS approach applies as well for frequency selective channel as for flat
channel. It leads to full diversity [26], and is then the first technique that it
is shown to exploit full diversity in the frequency selective case (within Time
Division Multiple Access context).

In most of this chapter we assume the channel to be flat, however the stated
results are valid for selective channels as well unless denoted.

We begin this chapter by presenting the linear prefiltering approach. We
then introduce the design criteria: capacity, matched filter bound and pair-
wise error probability, in order to specify our STS scheme. We study the
influence of the circular convolution and the frequency selectivity of the
channel. We end the chapter by a discussion on the ML detector for the
STS scheme.

Results presented in this chapter were published in [25, 26, 27, 28].

2.2 Linear Prefiltering Approach

~ MIMO channel
Vi |
channel | N, /L N, demapper
coding ‘5 T 7@ H » + = R(z) = & channel
& mapping |/ b 2 aki 777777777777777 -/ Yi (T) decoder
|
TX RX

Figure 2.1: General ST coding setup.

A general Space-Time (ST) coding setup is sketched in fig. 2.1. The
incoming stream of bits gets transformed to Ny symbol streams through a
combination of binary channel coding, interleaving, symbol mapping and de-
multiplexing. The result is a vector stream of symbols b, containing N,
symbols per symbol period. The Ny streams then get mapped linearly to
the N, transmit antennas and this part of the transmission is called linear
ST precoding. The output is a vector stream of symbols a; containing N,
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symbols per symbol period. The linear precoding is spatiotemporal since a
linear function of by may appear in multiple components (space) and multiple
time instances (time) of aj. The vector sequence ay gets transmitted over a
MIMO channel H with N,, receive antennas, leading to the symbol rate vec-
tor received signal y, after sampling. The linear precoding can be considered
to be an inner code, while the binary channel coding etc. can be considered
to be an outer code. As the number of streams is a factor in the overall
code-rate, we shall call the case Ny, = N, the full rate case, while Ny = 1 cor-
responds to the single rate case. Instead of multiple antennas, more general
multiple channels can be considered by oversampling, by using polarization
diversity or other EM component variations, by working in beam-space, or
by considering in-phase and in-quadrature (or equivalently real and complex)
components. In the case of oversampling, some excess bandwidth should be
introduced at the transmitter, possibly involving spreading which would then
be part of the linear precoding.

As we shall see below, channel capacity can be attained by a full rate sys-
tem without precoding (T(z) = I). In that case, the binary channel coding
has to be fairly intense since it has to spread the information contained in
each transmitted bit over space (across Tx antennas) and time, as pictured
on the left part in fig. 2.2 and [29]. The goal of introducing the linear pre-
coding is to simplify (possibly going as far as eliminating) the binary channel
coding part [16]. In the case of linear dispersion codes [30],[31], transmission
is not continuous but packet-wise (block-wise). In that case, a packet of T
vector symbols ay (hence a Ny, x T matrix) gets constructed as a linear com-
bination of fixed matrices in which the combination coefficients are symbols
bi. A particular case is the Alamouti code [32] which is a full diversity single
rate code corresponding to block length T'= N;, =2, Ny = 1.

The STS scheme focuses on continuous transmission, large blocks (7" >>
1), in which linear precoding corresponds to MIMO prefiltering. This linear
convolutive precoding can be considered as a special case of linear disper-
sion codes (making abstraction of the packet boundaries) in which the fixed
matrices are time-shifted versions of the impulse responses of the columns
of T(z) (see fig. 2.1). Whereas in the absence of linear precoding, the last
operation of the encoding part is spatial demultiplexing (Serial-to-Parallel
(S/P) conversion) (see left part of fig. 2.2), this S/P conversion is the first
operation in the case of linear precoding (see the right part of fig. 2.2). After
the S/P conversion, we have a mixture of binary channel coding, interleav-
ing and symbol mapping, separately per stream. The existing V-BLAST
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Figure 2.2: Two channel coding, interleaving, symbol mapping and demulti-
plexing alternatives.

systems are special cases of this approach. V-BLAST is a full rate sys-
tem with T(z) = I, which leads to quite limited diversity. The delay
transmit diversity used in the UMTS standard is a single rate system with
T(z) = [1 27", ..., 2= M==D])T which leads to full diversity. We would like
to introduce a prefiltering matrix T(z) without taking a hit in terms of ca-
pacity, while achieving full diversity. The MIMO prefiltering will allow us to
capture all diversity (spatial, and frequential for channels with delay spread)
and will provide some coding gain. The optional binary channel coding per
stream then serves to provide additional coding gain and possibly (with in-
terleaving) to capture the temporal diversity (Doppler spread) if there is any.
Finally, though time-invariant filtering may evoke continuous transmission,
the prefiltering approach is also immediately applicable to block transmission
by replacing convolution by circulant convolution.

2.3 Capacity

Consider the MIMO flat AWGN channel
yk:Hak—i-vk:HT(q)bk—i-vk, (2.1)

where the noise power spectral density matrix is Spp(2) = 021Iy,,, ¢~ by =
bi_1. The ergodic capacity with absence of CSI at the Tx and perfect CSI
at the Rx is given by

C(Saa) = Eugs§ % Indet(l + 5 HSqa(z) HY)
= Engs § ©Indet(] + 5> HT(2) Spp(2) T'(2) HY)  (2.2)
= Engs § ©lndet(I + pHT(2) T'(2) H),

2
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where we assume that the channel coding and interleaving per stream leads
2

to spatially and temporally white symbols: Spp(2) = 0} Ly,,, and p = Z—% =
SNL;‘“. The channel is modeled as Rayleigh flat fading, see subsection 1.1.1.
As we have shown in section 1.2 for such a channel model, the optimization
of the capacity subject to the Tx power constraint
57§ Ltr(Saa(z)) < Nigo? leads to the requirement of a white (and Gaus-
sian) vector transmission signal Sqq(z) = o7 I. Combined with the white-
ness of the vector stream by resulting from the channel encoding, this leads
to the requirement for the prefilter to be paraunitary: T(z)T'(z) = T in
order to avoid capacity loss.

Motivated by the consideration of diversity also (see below), we propose

to use the following paraunitary prefilter

T(z) = D(2)Q

D(z) = diag{l, z7},.. .,z’(fol)}, Q'Q =1, Q,] = J%’ (2.3)

where Q is a (constant) unitary matrix with equal magnitude elements (ex-
ample of those include: Walsh Hadamard and the Discrete Fourier Transform
matrices). Note that for a channel with delay spread, the prefilter can be
immediately adapted by replacing the elementary delay 2! by z=F for a
channel of length (delay spread) L. For the flat propagation channel H com-
bined with the prefilter T(2) in (2.3), symbol stream n (b, ) passes through
the equivalent SIMO channel

Nt:l:

S 00H,Q,,, (2.4)

i=1

which now has memory due to the delay diversity introduced by D(z). It is
important that the different columns H.; of the channel matrix get spread
out in time to get full diversity; otherwise the streams just pass through
a linear combination of the columns, as in V-BLAST, which offers limited
diversity. The delay diversity only becomes effective by the introduction
of the mixing/rotation matrix Q, which has equal magnitude elements for
uniform diversity spreading. The prefilter introduced in [33] is essentially
the same as the one in eq.(2.3). However, the symbol stream by, in [33] is a
sub-sampled stream, sub-sampled by a factor N;,. As a result, the system
is single rate. The advantage in that case though is that no interference
between the rotated streams occurs, which simplifies detection.
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2.4 Matched Filter Bound and Diversity

The Matched Filter Bound (MFB) is the maximum attainable SNR for
symbol-wise detection, when the interference from all other symbols has been
removed. Hence the multi-stream MFB equals the MFB for a given stream.
For V-BLAST (T(z) =I), the MFB for stream n is

MFB, :pHH;,an, (2.5)

hence, diversity is limited to N,,. For the proposed T(z) = D(z) Q on the
other hand, stream n has MFB
1
=p— |H|]] 2.6
- [HIE (26)

hence this T(z) provides the same full diversity N;, N, for all streams. Larger
diversity order leads to larger outage capacity.

MFB,

2.5 Pairwise Error Probability P,

This section studies the pairwise error probability of the STS scheme. The
study will allow us to complete the specification of the precoding matrix
T(2) and derive some interesting optimality results. We will also study the
influence of the introduction of the circular convolution and the effect of
frequency selective channels on the error probability.

The received signal is

yk:HT(q) bk—l—vk:HD(q)Qbk—l—vk:HD(q) ck—i—vk, (27)

where ¢, = Qby, = [e1(k), e2(k), ..., en,, (k)]". We consider now the trans-
mission of the coded symbols over a duration of T symbol periods. The
accumulated received signal is then

Y=0HC+V, (2.8)

where Y and V are N,, x T matrices and C is Ny, x T'. The structure of C
is detailed below

1 . . .
c——| Y
L 0
0 0 CNm(]-) CNtI(T—Nm‘i‘]_)

(2.9)
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During the duration of the packet only T'— N;, + 1 symbols vector are trans-

mitted. This results into the loss of a fraction % of the continuous trans-

mission capacity (section 2.3). However we assume the packet length large
enough for this loss to be negligible.

Over a Rayleigh flat fading i.i.d. MIMO channel, the probability of decid-
ing erroneously C' for transmitted C is upper bounded by (see section 1.4)

P(C N C/) < ﬁ(l + g)\i)me < (f[ )\i)fer(B)*Nmr’ (2‘10)

. : 4
i=1 i=1

where r and \; are rank and eigenvalues of (C — C')(C — )",
Let i be the time index of the first error, and introduce
ex = [e1(k). ea(k). ..., exuu (W) = L(cx — €}), then

0 ... 0 e(d) ... ... .o
C—C'=|: - . (2.11)
0 oo voe ol 0 e, ()

We denote C — C' = [Ey, Ey, E3], where E; is the Ny, x (i — 1) zeros matrix
that contains the first (i — 1) columns of C — C'. E, is a Ny, X N;, matrix

c-C=| - , (2.12)

and E; contains the remaining columns.

Under the condition N
ta

[Tenti) #0 (2.13)
n=1
the rank r = Ny, and

|JREPY det[(C — C')(C — C)"]
det(E,EY + E3EL)
det(E,EL)

N 12
1.5 len ()]

(2.14)

v
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We can then find a new and less tight upper bound on the pairwise error
probability

N,
te p —Nyz Ntz

P(C—C) < ([]leatd) () . (2.15)

This upper bound is the same as the one in eq.(2.10) iff the i*" error is the
only error in the block.

Under the condition in eq.(2.13) the full diversity N,, Ny, is guaranteed, and
Nt:c

. C. . N2
the coding gain is: gzl;lé%g len(i)]”.
The condition of eq.(2.13) is well known in the design of lattice constellations
(see [34, 35]), a field based on the theory of numbers.

2.5.1 Choice of Q

Case N, = 2F
For N,, = 2%, k € Z*, a solution that satisfies our criteria of unitary matrix
and equal magnitude components of Q, is the Vandermonde matrix

16 ... oMt
R T B S
Q=—"p—1 : : (2.16)
tx . . .
1 Oy, ... Oy, =7t

where the f; are the roots of 0M= —j = 0, j = v/—1. Q° can be also factorized
to a product of the Ny-point Inverse Discrete Fourier Transform matrix by
a diagonal matrix

Q® = IDFTy,, diag{1,6,,6%,...,0V="'}, (2.17)

This choice of the Q matrix for N;, = 2* verifies the condition of eq.(2.13),
and as we will show in the next subsection allows to achieve the maximum
possible coding gain under the constraint of the SPS scheme.

Fig. 2.5.1 shows the STS of one stream, where fig. 2.5.1 shows the STS of all
the streams.
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Figure 2.3: STS of one stream
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Figure 2.4: STS of all streams
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Case N,, # 2F
In [22] a solution of the same form of eq.(2.17) has been proposed, with
f, = e/>™F. P is an integer chosen to verifies ¢(P) = 2mN,,, where ¢(P) is
the Euler number and m is a positive integer. p is selected from [1, P/Ny,)
such that ged(P/Ny(n — 1)+ p, P) =1, ¥n.
This solution verifies the condition in eq.(2.13). In order to maximize the
coding gain, P need to be selected so that m is as small as possible.

2.5.2 Optimality for QAM Constellations in the Case
Ntx — 2k

For Ny, = 2k(k € Z%), Q° leads to the satisfaction of (2.13) (see [34]). Tt guar-
antees for any N;, x 1 vector x from a constellation X with x € (Z[4])"=/0)
(Z[j] = {a + jb|a,b € Z}) and z = Q*x, that (N, V=2 [\ 2,) € Z]5]/0,
and hence

Ntz 1 Ntz
2
22> . 2.18
n|:|1 | < Nﬂ) (2.18)

For finite QAM constellations with (2M)? points, any symbol can be written
as: b,(1) =d{(2l —1)+j(2p—1)} whered e R™*, I,pe {-M +1,—-M +
2,...,M} and o} = w.

Forn =1,..., Nig, 5-(ba(d) =0, (7)) = 22(I'+jp'), I',p) € {=2M +1, —2M +
2,...,2M —1}. The first error e; = Uist(bi —b}) verifies S2e; € (Z[j])"*/0).
The lower bound of (2.18), which is valid in fact for any Vandermonde matrix
Q of the form in (2.16) built with roots of a polynomial of order Ny, with
coefficients in Z[j] and satisfying a certain number of conditions [34] (hence
Q° is a special case of this family), becomes

Nig 2 Nig Nig 2 Nix
. D 4d 1 4d
gﬁi%nH i) 2 (ag Niv Nyo? (2.19)

In what follows, we derive an upper bound for the coding gain for any matrix
Q with normalized columns. The minimal product of errors [, le,(i)]” is
upper bounded by a particular error instance corresponding to a single error
in the b’s, when lb (b; — b)) = i—j'wno, where w,, is the vector with one in the

a,
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nit coefficient and zeros elsewhere, hence

) Nt N 4d2 Ntz Ntz 5
mln H |6n(z)‘ S ? H |Qn,no‘ . (220)
n b

n=1

Now, given that ZN“” ‘Qn,no|2 = 1, then by applying Jensen’s inequality, we

n=1
get
Ntz: 1 Ntz
2
< | = _ 2.21
e = (x,) (221)
Hence,
Ntz N N N
4d2 tz 1 te 4d2 tz
. 12
< [ = = 2.22
g;;%glm(m _<U§> <Nm> <Nma§> (2:22)

is an upper bound for the coding gain for any matrix Q with normalized
columns. Now, the intersection of the sets of matrices that lead to the lower
bound (2.19) and the upper bound (2.22) includes the unitary matrix Q°
given in (2.16), which hence achieves the upper bound on the coding gain:

Ntz: , 4d2 Ntz: 6 Ntz:
g;%glen(l) = (m) - <m> |

Remark 1: Jensen’s inequality (2.21) becomes an equality iff all the coeffi-
cients Q,, ., n = 1,..., Nj, have the same module 1/y/N,. This holds for
any ng = 1,..., N;;. Hence we conclude that a necessary condition on any
unitary matrix Q to maximize the coding gain is to have equal magnitude
coefficients. This is equivalent to our condition to achieve the same maxi-
mum MFB for all streams (full diversity).

Remark 2: In the case when N,, # 2%, the coding gain is closely related
to the size of the used QAM constellation, and is in general lower then the
upper bound given above.

Remark 3: For QPSK constellation (M = 1): 02 = 2d? and the coding is

Nt:c 2 Ntm
. N2 _
i [ e = ()
Remark 4: To achieve the diversity regime, which corresponds to the SNR

region where the error probability decays exponentially with an exponent
equals to the full diversity, the following condition needs to be satisfied:

1
2(4M2—-1)N, N :
1 2 Wee g (—L_ )™= this follows from the error
min; A\; 3 codinggain ’

p>>4
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[ e() e(2) ... er(T—1)  e(T)
ea(T) es(T = 1)
C-C'=
ene (T =Ny +2)... ey (T) en, (1) ... ... eng(T— Ny +1)

probability upper bound in (2.10).

In what follow we assume Q = Q°.

2.5.3 Circular Convolution

The size of the block is T symbol periods. Even if T" > N, the insertion
of a guard interval leads to a non-zero % fraction loss in the original
rate. A way to avoid this is to use circular convolution (or wrapping). The
inconvenience of this though is that the codeword difference matrix C — C'
is no longer triangular matrice; the study of the coding gain hence gets more
involved. For m > i, e(i) # 0 and e(m) # 0 are two successive errors if they
verify one of the following two conditions

eVkel,...m—i—1,e(i+k)=0
eorVkel,....T—m+i—1,e((m+k)modT) =0

The codeword difference matrix is

Let F, = {(i,m)|m > i, e(i) and e(m) are 2 successive errors} be the field
of successive errors.

If there exists (ig,mg) € F, with mg — iy > Ny, then in the same way as
has been argued in the previous section we can bound the error probability
by the single error probability of e(iy) (equivalently of e(my)); this yields the
same result for diversity and coding gain as stated before. Now, for the event
when there are no successive errors separated by more than N;, — 1, there
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are at least NtTfl nonzero errors e(i). From (2.10) a bound for the error
probability of this event is given by

P(C = C) <T[i-, (1 +5A)7 N”<(1+"ZZ L AT

= (1+45IIC = CH) N = 1+ 430 lle@)]3) (2.23)
< (1+ZNMT_1 oin [le Ol

=1+ 45 - 14M62 7).
The probability of such an error event is less than the upper bound given in

(2.15), and hence this bound remains valid when

SNR < $NZ(4M? — 1)TNti—1. This interval contains the SNR range of
interest for most applications.

2.5.4 Frequency Selective Channel Case

The multipaths channel now has a finite delay spread of L symbol periods:

H(z) = .77 H;z~". We assume the channel to follow the frequency selective
Rayleigh fadmg MIMO model of subsection 1.1.3. We propose as precoding
filter T(z) = D(2") Q. The received signal is then

Y=0,H7(C)+V, (2.24)

where H = [Hg,Hy,...,H;_;] and 7(C) is a block Toeplitz matrix with C
as the first block row, where C is

01(1) Cl(T—NmL-F 1) le(Ntz—l)L
S R '
Ob . CNm—l(T —Nth-f‘l) 01><L
O1x(New—1)L N (1) e N T =Nia L+1)
(2.25)
and
[ C ONyux(L—1) |
ONtIXI C ONth(L—Q)
T(C)=| : . (2.26)
ONth(L—Q) C ONtle
i ON,x(2-1) c
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Let S = diag{ooIn,,....,00_1In,, }, then H S™" hasi.i.d. normalized Gaus-
sian elements. The upper bound for the pairwise error probability given
in (2.15) is still valid, where  and \; are now the rank and eigenvalues of
S[7(C) — 7(C)][r(C) — r(C))"s".

Let us define the permutation matrix P of size Ny L x NyL such that:
Pup = wuypy where uy is the N, L x 1 vector with 1 in the k'™ position
and zeros elsewhere, p(k) = ((k — 1) mod Ny) L+ (k div Ny ) + 1. Permuting
the rows of 7(C) — 7(C') gives

E,
Orxr E,

P(r(C) — 7(C)) = | Owxer  Es || (2.27)

L OLX(NtI—l)L ENtz ]

where

Ek: ..- ..- .‘.. ... ... ) (2.28)
O1x(z—1) er(1) ex(2)
As stated for the flat channel case, the pairwise error probability P(C — C')
is upper bounded by

I—1 *Nr:cNt:c Nta: *Nr:cL

. p —Npz Ntz L
(H az) (Henm?) (%) . (229)
k=0 n=1

where 7 is the time index of the first error. From the exponent of p we
can conclude that the proposed scheme exploits the full diversity (degree
Nyw Ny L).

The Q matrix proposed in the previous section is still optimal for N, = 2*,
Ntz

as it maximizes the coding gain min H len ()| ~ N™N (N = Ny: size of
€e(i)#0

Q). An alternative approach to handle the frequency selective channel case
uses OFDM and involves a Q of size N = Ny, . L. The increase in size of Q
leads to a substantial decrease in coding gain though.

For the case when we use circular convolution with a block of size T', the
same analysis holds as for the case of a flat channel. The upper bound of the
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error probability is now valid for SNR < :LN7 (4M? —1) T Ve , where we
have assumed a flat power delay profile for the channel:

2 _ 1 . _
of=1,1=0,...,L—1.

2.6 ML Reception

In principle, we can perform Maximum Likelihood reception since the delay
diversity transforms the flat channel into a channel with finite memory and
increases this memory for frequency selective channel. One can then assume
a Viterbi decoder to achieve the ML performances, its number of states being
then the product of the constellation sizes of the N, streams to the power
Ni L — 1. Hence, if all the streams have the same constellation size |A|, the
number of states would be [A[Ve(Ni2l=1) " which will be much too large in
typical applications. Suboptimal ML reception can be performed in the form
of sphere decoding [36]. The complexity of this can still be too large though
and therefore suboptimal receiver structures will be considered in the next
sections.

Moreover, the use of the ML, decoder doesn’t allow to take advantage of the
presence of the binary channel code in typical application.

For these reasons, less complex receivers are to be considered in the next
sections. These receivers are of two types, iterative and non-iterative, they
takes advantage of the presence of the binary CC and have some incidence
on the transmitter coding setup.

In [37] it is shown that there exist good lattice codes that achieve the optimal
diversity vs. multiplexing tradeoff (section 1.5), under the assumption of the
use of a sphere decoder. Our STS cheme can be seen as a structured lattice
code. Hence a way to show that the STS with ML decoder achieves the
optimal diversity vs. multiplexing tradeoff is then to show that STS verifies
the conditions of a good lattice code [37].

2.7 Conclusion

In this chapter we have presented our STS scheme based on linear convo-
lutive precoding. We motivated our choice and we have presented the nice
properties exhibited by this scheme such as the preservation of the ergodic
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capacity, the full diversity and the maximum coding gain. The STS is also
easily generalized to the case of frequency selective channels and saves these
nice properties.

On the other hand we haven’t been able to study the diversity vs. multiplex-
ing tradeoff achieved by STS, when using a ML decoder. A way to do it, is to
see this scheme as a structured lattice code and to use elements introduced
in [37].
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Chapter 3

Non-Iterative Rx: Design
Alternatives

In this chapter we propose two types of receiver structure for the Space-Time
Spreading (STS) scheme proposed in chapter 2. The first receiver is the
Stripping MIMO DFE also called Successive Interference Cancellation. It
is a generalization of the V-BLAST Receiver to the STS scheme. For this
Rz structure we propose a suitable binary channel coding and investigate the
diversity vs. multiplexing tradeoff achieved by the STS scheme. We compare
these performances with the optimal tradeoff obtained in the case of frequency
selective MIMO channel. Another choice for the receiver is the Conventional
MIMO DFE, generalization of the SISO DFE Rx to the MIMO case. In this
case we study the impact on the coding and diversity gains and investigate
the consequences on the binary channel code.

43
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3.1 Introduction

In the previous chapter we have seen that the optimal ML detector for the
STS scheme leads to high numerical complexity. In order to reduce the Rx
complexity, this chapter proposes two new non-iterative receivers for STS.
The first one is the Stripping MIMO DFE Rx. It uses a successive detection
and cancellation of streams, hence it is a SIC Rx. In each stream the decoder
proceeds in a causal manner, detecting and canceling the symbols sequen-
tially. The combination of the Tx and Rx, coding and decoding, decomposes
virtually the MIMO channel into N parallel SISO frequency selective chan-
nels (N, is the number of used streams). These virtual channels are not
equivalent in the sense that they experience different diversity and coding
gains. The decomposition of the MIMO channel in several SISO channels
allows to use binary channel coding and decoding techniques developed for
the SISO case. Another advantage of Stripping is the possibility to achieve
high multiplexing rates when adapting each stream encoding to the SNR.
Conventional coding and diversity gain criteria are not adapted to the Strip-
ping Rx evaluation. In fact, the performance in the case of a non-adaptive
constant rate is dominated by the SISO virtual channel that experiences the
lowest diversity. However, Stripping is very suitable for SNR adaptive rates.
Performances in this case can be studied using the diversity vs. multiplex-
ing tradeoff criterion introduced by Zheng & Tse in [9]. The generalization
of this criterion to the frequency selective case is provided in this chapter,
and a comparison of the diversity vs. multiplexing tradeoff achieved by the
Stripping MIMO DFE and other popular schemes is given.
The second proposed Rx is the Conventional MIMO DFE. The encoded sym-
bol vectors by are now detected sequentially and the streams are hence pro-
cessed jointly. For the detection of b, different choices are possible, one of
them is the weighted minimum distance detector. For this choice, the dif-
ferent streams experience the same diversity and coding gains. However,
in the case of large block length the error propagation can deteriorate the
performance. To combat error propagation, the Rx can take advantage of
the presence of a binary channel code. Per-Survivor-Processing (PSP) is a
convenient way to combine the Conventional MIMO DFE Processing and the
decoder of a convolutive binary channel code if present.

This chapter begins by presenting the Stripping MIMO DFE applied to
the STS scheme. We then investigate the influence of this Rx processing
on the streams capacities. These results allow us to generalize the diversity
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vs. multiplexing tradeoff of Zheng & Tse to the frequency selective channel
case. We also investigate the tradeoff curve achieved by the Stripping MIMO
DFE Rx. In the second part of this chapter we introduce the Conventional
MIMO DFE for our scheme, and study the diversity gain achieved by this
Rx technique. We finally provide a comparison between the Conventional
and the Stripping and present some open problems.

Part of the results presented in this chapter were published in [25, 38, 39].
However, the results on diversity vs. multiplexing tradeoff are recent and not
yet published.

3.2 Stripping MIMO DFE (Successive Inter-
ference Cancellation) Receiver

This section introduces the Stripping MIMO DFE Rx for our STS scheme.
We detail the MMSE ZF and the MMSE design for this Rx. The matrix
spectral factorization, the comparison with the V-BLAST and the practical
implementation are also discussed.

y, w—Gi(z) —— Fli(z) + decodef
- DFE SIMO
fm(z)

Gi(2) Gi.(2) Stream cancellation

<+\__

— F 7 (2) + decod\,rJ
L Too(2)

(—}ID_G‘\(Z) Gy .(2)

Figure 3.1: Stripping MIMO DFE receiver.

This approach is the extension of the V-BLAST receiver to the spatiotem-
poral case. In fact, we use a SIC that nulls the interference from the remain-
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ing interfering streams, detects and decodes the present stream, cancels its
contribution in the received signal and proceeds to the next stream. This al-
lows to incorporate binary channel decoding before cancellation, which leads
to the stripping approach of Verdu & Miiller or Varanasi & Guess [40, 41, 42].
In fact, the streams need to be encoded independently, to be able to decode
them successively.

Let G(z) = H(z) T(z) = H(z)D(z) Q be the cascade transfer function
of channel and linear precoding. Q is a Ny X N, matrix containing N,
(Nsy < Ny;) first columns of the matrix defined in eq. (2.16). The matched
filter Rx is

7, = G'(¢) y, = G'(q) G(q) b, + G'(q) v = R*"(q) b, + G'(q) v, (3.1)

where R”7T(2) = G(2) G(2), and the psdf of G'(q) vy is 02 R?T(2). The
Stripping DFE Rx is then of the form

by = — L(g) bi+ F(q) =z, (3.2)
—~— ~—
feedback feedforward
where
[ L1 (2) 0 0 0 i
L21 (Z) LQQ(Z) 0 0
: - LNs_lst_l(Z) 0
_LNsl('Z) LNS2(’Z) e LNS’NS,I(Z) LNst ('Z) .
_ (3.3)
The feedback L(z) = L(z) — I is strictly “causal” [43]. This means that L(z)
is lower triangular, with diagonal elements, L;;(2),7 = 1,..., Ny, causal,

monic' and minimum phase? [44]. The lower triangular elements L;;(z), i >
J, are arbitrary (non causal) transfer functions. W.r.t. a classical causal
MIMO spectral factor, the degrees of freedom of the strictly causal upper
triangular elements have been transferred to the anticausal part of the lower
triangular elements.

By L we refer in general to a lower diagonal matrix.

'A monic SISO filter has first coefficient equal to 1
2A rational f(z) is said to be minimum phase if all of its poles and zeros are inside the
unit circle



3.2 Stripping MIMO DFE (Successive Interference Cancellation) Receiverd7

The main difference between the Stripping MIMO DFE and the classical
MIMO DFE is the priority between the streams causality and the time causal-
ity. In fact, in the Stripping we use first the causality between streams in the
processing order then the time causality for the processing inside the stream.
In the classical MIMO DFE, the processing order is first done on the basis
of the time causality, then on the basis of the streams causality.

Two design critera for feedforward and feedback filters are possible: MMSE
ZF and MMSE.

3.2.1 Stripping MMSE ZF DFE Rx Design

In the Zero-Forcing (ZF) design we cancel all the interference. To han-
dle the ZF design the overall channel has to be invertible or equivalently
G(z) must be full column rank. This constrains the number of streams to
Ny, < min{Ny, N,,}. In order to satisfy this condition we choose N, =
min{ Ny, N,,}. Consider the Upper Diagonal Lower (UDL) triangular ma-
trix spectral factorization of R”% (2)

R*"(2) = G'(2)G(2) = L(2) S L(z), (3.4)

where L(z) = Z L; 2% with diag(Lo) = I (monic), ¥ > 0 is diagonal and
k
constant, and L(z) is structured as in (3.3).

This factorization is the analog of the UDL factorization applied to H"H in
the case of V-BLAST [45]. Then F(z) = ©7' L7(2), L(2) = L(z) - I.
The total feedforward filter is a scaled Whitened Matched Filter (WMF)

F(2)Gl(z) =272 2L 1(2)Gl(2) = £77 U(z), (3.5)

where U(z) is a paraunitary, lossless WMF.
The forward filter output

F(q) z, = L(g) by + F(¢)G'(¢) vi = L(q) bs + e, (3.6)

where See(z) = 02X !, Assuming perfect feedback to be correct, the
actual symbol estimate is

by = —L(q)bs + F(q)z, = (L(g) — L(q)) by + e, = by + ey . (3.7)
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At the equalizer output n: SNR,, = pX,,.

We can detect the by elementwise by backsubstitution (feedback) and symbol-
by-symbol detection.

Using coding arguments similar to the one used for the SISO case in [46, 47],
the capacity of the n'* processed stream is then

CTZl\JMSEZFDFE — ln(l 4 SNRQ/[MSEZF) . (38)

3.2.2 Stripping MMSE DFE Rx Design

The MMSE design makes a compromise between interference cancellation
and noise enhancement. For this design the number of stream is fixed to
Ny = Ny,.

Consider now the backward channel model based on LMMSE [45]

= Spy(0)Szz(d)z — by.
Bk is the LMMSE estimate of by based on z;, where
sz(z) = Sbb(z) GT(Z)G(Z) (3.10)
Szz(z) = GT(Z)G(Z) Spb(2) GT(Z)G(Z) + o2 GT(z)G(z) '
Hence the LMMSE MIMO estimator filter is
Shz(2) Szz(2) = R7(2), (3.11)
with R(2) = G'(2)G(2) + 07 Sy (2) = G'(2)G(2) + 1 L.

Now by = R7'(¢)z;, — by. The MMSE estimate satisfies the orthogonality
principle

Spb(2) = Spp(2) + Spp(2) = Spp(2) = Spp(2) — Spy(2)Szz(2)S 4p(2)
= o?R7(2).
(3.12)
Apply again matrix spectral factorization

R(z) = Li(2) S L(2), (3.13)
then by = L (¢) X 'L (q) zx — by. The forward filter output is now

F(q)z, =Y 'L7(q)z, = L(¢)br +L(¢)b, =L(¢) by +e,,  (3.14)
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where See(2) = 02 L(2)R7'(2)Li(2) = 02271
Assuming the feedback to be correct, the actual symbol estimate is then

Bk = —f(q)bk + F(q)zk = (L(q) — f(q)) bk + e, = bk + e . (315)

At the equalizer output n again: SNR,, = p¥,,.
In general the following property is verified [46]

ZMMSE > ZMMSEZF = SNRQ/[MSE > SNRTJ:/[MSEZF, (316)

and even SNRUMMSE — gNRMMSE _ 1~ GNRMMSEZE where UMMSE
refers to Unbiased MMSE.
The capacity of the n'* processed stream under the MMSE design is

CMMSEDFE _ |y GNRMMSE — Ip(1 + SNRUMMSE) (3.17)

3.2.3 Matrix Spectral Factorization Considerations

+o0
Conventionally: L(z) = ZLk 2 ¥ where Lg is unit diagonal and lower
k=0

triangular. Consider a generalization with relative delays via linear prediction
P(z) = L™'(2) applied to b: the conventional linear predictor P.(z) applied
to _

bk

~ bo k—d,

Z(q) by = (3.18)

bNta:,k—deq

leads to the generalized predictor: P(z) = Z '(2) P.(2) Z(z). We can ob-
tain the triangular spectral factor or predictor as the limiting case as delays
(0 <d <dy <...<dn,1,and dy —dy, d3 —dy, ..., dyn,, 1 — dn,, 2)
— +o00. Strictly lower triangular elements of P(z) are non-causal Wiener
filters to estimate a signal component in terms of the previous signal compo-
nents, the diagonal elements are SISO prediction error filters of the resulting
residual signals [43].

With triangular spectral factors and feedback filters: we detect one symbol
stream over all time and then pass to the next symbol stream. With a con-
ventional feedback filter: we process all symbols one after another at a given
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time instant, and then pass to the next time instant. The advantage of trian-
gular factors/feedback: the Rx can incorporate binary channel decoding in
detection before the use of symbols in feedback. It allows much more reliable
feedback and corresponds to the stripping approach of Verdu & Miiller or
Varanasi & Guess [40, 41, 42]. In practice, a finite relative delays between
streams (3.18) suffice.

3.2.4 Stripping DFE and V-BLAST

The Stripping DFE works as follows (see fig. 3.1):

1. A SIMO DFE applied to detect a stream, the design of the SIMO DFE
considers the remaining streams as colored noise, this can take advantage of
a binary channel code independent for each stream. Binary CCs suitable for
frequency selective channels and DFE Rx exist [48, 49].

2. The detected and decoded stream is substracted from the Rx signal and
passed on to the next stream.

For the first stream, all remaining streams are interference, whereas the last
stream gets detected in the single stream scenario. Hence, triangular MIMO
DFE is an extension of V-BLAST to the dynamic case. Here, the dynamics
(temporal dispersion) have been introduced by linear convolutive precoding
(introducing delay diversity) plus the channel dynamic if present (nonzero
delay spread). The advantages are:

e no ordering issue: the streams can be processed in any order,
e higher diversity order.

The ordering issue of the Stripping Rx has been treated in [38]. The second
point that considers diversity will be studied in section 3.4.2 dealing with the
diversity vs. multiplexing tradeoff.

3.2.5 Practical Implementation of SIC Receiver

Although the complexity of a suboptimal receiver like the Stripping DFE
can still be considered quite high, a practical approximation is possible as
follows. One should consider the Noise Predictive DFE form [50, 51]. In
this case, the forward filter is in fact the Linear MMSE (LMMSE) receiver.
The backward filter is then a MIMO noise prediction filter. We suggest to
use the triangular MIMO predictor structure for reasons already mentioned.
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The complexity of the MIMO predictor can be adjusted by adjusting the
prediction order. This gives performance in between that of the LMMSE
receiver and that of the DFE. The LMMSE receiver/forward filter can be
approximated by polynomial expansion.

3.3 SIC Receiver Processing and Capacity Is-
sues

In this section we study the influence of the proposed Stripping approach.
We derive the capacity and investigate the influence of SIC processing on
streams capacities for both designs: MMSE and MMSE ZF.

3.3.1 Stripping MMSE DFE Rx

We consider the Stripping receiver with MMSE DFE design of section 3.2.2.
This receiver performs a successive detection of the steams. We choose
{1,2,..., Ny} to be the order of detection of the streams.

At step n, the receiver has already detected and canceled steams {1,2,... , n—
1}. We denote V,, = [e,, €41, ..., €y, |, where e, is the Ny, x 1 vector with
1 at the n* position and all other entries are zeros.

In section 3.2.2 we have shown that the capacity of the n'* processed stream
denoted CMMSEDFE gatisfies

CMMSEDFE _ 1y GNRMMSE _ I > (3.19)

where ¥ is the diagonal part of the UDL spectral factorization of R(z) i.e.
L(z)'YL(2) = R(z). By identification we can show that ([VIR(2)V,] 1)1 =
1

SH FRDS) paaroeT where the diagonal coefficient L(z2),, is causal, monic and
1

minimum phase, hence it satisfies 5~ $ 2 In(L(2)nnL(2)!,) = 0 (see argu-
ments developed in appendix 3.A, and [44])%. The capacity of the n'® pro-

cessed stream is finally

1 d
CTJZMMSEDFE = In(pXun) = _?j ?Z ln([vng(z)Vn]_l)ll : (3.20)

3_1

o ¢ “1In(f(z)f(2)") = 0 for f(z) causal, monic and minimum phase
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Capacity decomposition :
For a given channel realization

CH) = % $ “indet(Iy,, + pGi(2)G(2))

#j 4 dz—z Indet(p R(2))

o § £ Indet(pL(2)ISL(2))

= Indet(p SMMSE) (321
Ntz:

_ MMSE DFE
= E C, ,

n=1

where in the third equality we replaced R(z) by its UDL matrix spectral fac-
torization, and in the fourth we exploit the fact that det(L(2)) = [ Lpn(2)
is causal, monic and minimum phase.

This shows that the total capacity is the sum of the capacities of N, streams
output, and hence Stripping with a MMSE DFE design preserves the capac-

1ty.

Bounds on the stream-wise capacities for the MMSE design:
The following lemma provides useful bounds on the capacities.
Lemma 1: The n'* processed stream capacity in the MMSE design is

bounded by

1
b < imsEPRE Lo ) <2

- (3.22)

n’

where

c

1 Niz—
1 — { ln(Ntz')’NtzL) + (Ntx o n) ln ((Ntz*T:‘}'l)TE)’NtIL) ’ 1 S n S Ntz o 1

n ln(vathzL) , N = N,
(3.23)
Ci:{(Ntx—n)ln<W>+lnL , 1 <n<Ny-—1
InL , = Ntz
(3.24)
($n, m = 1,..., N L) are the eigenvalues of H"H sorted in the increasing

Niz L—1 I 2
order where H = Ho.Hy,....Hi 1] Y, = Z < N, L —1 ) :
1=0 ‘
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Proof : see appendix 3.B.

3.3.2 Stripping MMSE ZF DFE Rx

As denoted in subsection 3.2.1 the number of streams for this case is N; =
min{ Ny, N,.}. Again the processing order of the streams is {1,2,..., Ny},
and denote V,, = [e,,€,41,...,en,] where e, is the N, x 1 vector with 1 at
the n'* position and all other entries are zeros.
Using the same arguments as for the case of MMSE DFE design we can show
that

m(sNRMMsEzey — - L[4z ogm par oy ey (3.95)

271] z

Recall that CMMSEZEDFE — 1n(1 4 SNRMMSEZE) “then by proceeding as in
the MMSE case we can bound the capacity of each steam.

Bounds on the stream-wise capacities for the MMSE ZF design:
The following lemma gives the desired results.

Lemma 2: The n'™ processed stream SNR in the MMSE ZF design is
bounded by

¢p < In(SNRYMEPZT) —In(ps, r-noin) < (3.26)

and the capacity is bounded by

In(1 + € psn,, - Nn) < CRTMSEZEDEE < In(1 4 e psy,, 1 n4n), (3.27)

where now
1 Ns—n
o = { M)+ (N =n)n (i) - 1sns -1
ln(Ntz'YNmL , =N,
(3.28)
o (N =y (2 1<n<N, -1
" In L ., n=N;

(3.29)
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Again, (s,, n =1,..., N, L) are the eigenvalues of H"”H sorted in increasing

order where H = [Hy,H;,...,Hy 4]

Proof :  To bound the SNR we proceed similarly as for the MMSE case
(see appendix 3.B) but we apply the all reasoning to In(SNRMMSEZE) (3 95)
rather then CMMSEDFE(3 90)). We then use the obtained bounds to express
the capacity (3.8). O

3.4 Diversity vs. Multiplexing Tradeoff

In this section we seek to study the diversity vs. multiplexing tradeoff (as
defined by Zheng & Tse). Their work was applied to the MIMO flat case, we
will generalize this notion to the frequency selective case and then we study
the tradeoff achieved by the Stripping DFE.

3.4.1 Optimal Tradeoff Curve for the Frequency Selec-
tive Channel

For the flat channel, it was shown in Theorem 2 of [9] that for T" > N,, +
Nz — 1 the optimal tradeoff curve of the error probability d*(r) (section 1.5)
corresponds to d,, (1), where the outage probability satisfies P, (r1Inp) =
_dout(r)
p :
The equality
d*(r) = dout(r) (3.30)

can be generalized to the frequency selective case by using the result derived
in subsection 1.2.4. In fact, we have shown that the instantaneous capacity of
a finite block length transmission, Cr(H), has asymptotically for large block
length T the same distribution as C'(H), which is the instantaneous capacity
in the continuous transmission. This can be used in the proof of Theorem 2
in [9] to generalize eq. (3.30) to the case of frequency selective channel with
T >> L.

In the sequel we study the outage capacity which will allow us to find the
optimal tradeoff curve d*(r) = dyu(r).

For simplicity we assume that H = [Hy, Hy, ..., Hy 1] follows a Rayleigh
flat fading MIMO distribution (subsection 1.1.1). This constrains the power
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delay profile to be flat 0 = 07y = ... = 01,1 = 1. The results derived below
apply also for general power delaz profile as long as 0, 20,1 =0,..., L —1
(bounded away from zero). HH" has m = min{N,,, Ny; L} nonzero eigen-
values py < ps < ... < py,m. These eigenvalues follow the Wishart dis-
tribution given in subsection 1.1.1, in which min{N,,, Ny} is replaced by
min{N,,, N, L} and max{N,,, Ny} by max{N,,, N;;L}. We observe that
tn = SNy L—main, for n=1,... m where (s,, n = 1,..., Ny L) are all the
eigenvalues of HH” (including zeros) that were introduced before.

We continue in the foot steps of [9] and use the following variable change
fin 2 p~@. At high SNR we have (14 pp,) = p{'=®)" where (z)* denotes
max{0, z} and the symbol = was introduced in section 1.5.

We denote p = min{N,,, Ny }, ¢ = max{N,,, Ny, }.
From the bounds given in eq. (3.22) and (3.27), we can show that

MMSEZF DFE CMMSEDFE
— n

e P=Niztn =e = pl=em-Natm)™ for (Nyy—p+1) <n < Ny.
(3.31)

If Nyy < Nigi p= Ny and sy, (p—1)4n = 0 for 1 <n < Nyy — N,y Then for

1 <n < Ny —p CMMSEDEE jg hounded by a constant (3.22)

=1 for 1<n< Ny —p. (3.32)

CMMSEDFE
e ’n

Theorem 1: For a channel with a frequency selective Rayleigh fading
model (subsection 1.1.3), let the data rate be R = rlnp (0 < r < p =
min{N,,, N;;}). Then the outage probability satisfies

Pout(rIn p) = p=t®) (3.33)
where d,(r) is given by the piecewise-linear function connecting the points
(kydout(k)), E=0,1,...,p, where

dout(k) = (Lqg — k) (p — k) . (3.34)

Recall that p = min(N,,, Ni,), ¢ = max(N,,, Ni;). In particular 4, =
L.Ny;.N,, and ¥, = min(N,,, Ni;).

max

Proof : see appendix 3.C.

As stated above, for T' >> L this theorem gives the optimal tradeoff of
the frequency selective MIMO fading channel: d*(r) = dou(r) (see fig. 3.2
for Ny, < N,p).
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: / (O,LNmNm)
= (1, (LN, = 1)(Ny, — 1))
SN
5’5 (Qa (LNm - 2)(Ntm - 2))
Z /)
: /
NG\ /(Nm, 0)

\J

Spatial Multiplexing Gain: r

Figure 3.2: Diversity vs. multiplexing optimal tradeoff for frequency selective
channel with N, < N,,.

3.4.2 Tradeoff Curve for the SIC Rx

We will first study the outage probability behavior of the SIC Rx applied to
our STS scheme. Then we show that the Stripping DFE Rx coupled with
a QAM constellation achieves this upper bound tradeoff curve for any block
length as long as T" >> N, L.

An outage event occurs if the capacity of one of the streams is less then
the allocated rate, when the previous streams were correctly decoded. The

outage probability of a SIC receiver that uses N, streams and for a data rate
R is then

Ns
P(;S;LI;C(R) = min ZP(CZ < Ri,Cl > Rl,CQ > RQ, .. .,01;1 > Rifl) ,
R:Zﬁ;le i=1

(3.35)



3.4 Diversity vs. Multiplexing Tradeoff 57

where C; is the capacity of the i*" stream.
As we have seen before, the capacity is achieved by the MMSE DFE receiver,
i.e. C; = CMMSEDEE The outage probability as formulated is the minimum

over all the different allocations R;, : =1,..., N,.

In the multiplexing case the total rate is R = rIn p and the different streams

rates are R; = r;lnp, r; > 0,7 = 1,..., N,. We then write P5IC(rlnp) =
—dSIC(r)

p out .

The following lemma is a preliminary result for the study of the outage:
Lemma 3: The outage probability characteristic for SIC: d5/C(r) is achieved
by transmitting only on Ny = p = min{N,,, N, } streams. And is equally
achieved by the MMSE DFE and the MMSE ZF DFE receivers.

Proof : We have shown in eq. (3.22) that for 1 < i < N;,—p, CMMSEDFE

is upper bounded by a constant. Hence lim P(CMMSEPFE <y 1n p) = 1 for
p—0C

r; > 0, and the outage probability is then achieved iff r; = 0 for 1 < i < Ny, —
p. This last condition is equivalent to the use of Ny = p = min{N,,, Ny, }.
On the other hand and as we have seen in eq. (3.31) for 1 < i < p:

CMMSEZFDFE ., (CMMSEDFE | (1,(1(

et =€ Ny —p+i — p )+

m—p+i)

(3.36)

where m = min{N,,, Ni,L}. The behavior of the MMSE DFE and the
MMSEZF DFE streams capacities is then the same for large SNR. As a con-
sequence, it is sufficient to study the outage probability of the MMSEZF
DFE Rx to find d5/C(r). O
Theorem 2: For a channel with a frequency selective Rayleigh fading
model (subsection 1.1.3), the outage probability of the SIC Rx for the STS
scheme satisfies

PSIC(rInp) = p~%ut () (3.37)

out

where d51€(r) is given by the piecewise-linear function connecting the points

(ks dout” (1)), k=10, p,

k 1

rt = k—(m—k)(n—k);(m_k+i)(n_k+i) L k=0,...,p—1
r, = p , k=p



58 Chapter 3 Non-Iterative Rx: Design Alternatives

and
Sty = (m—k)n—%k) ,k=0,...,p—1

out
dout (1) = 0 ,k=p
where m = min{N,,, N;; L}, n = max{N,,, N, L} and p = min{N,,, Ny, }.
For the corresponding optimal rate allocation, and for r € [r}, rp ], k =
0,...,p—1, only k + 1 streams are used.

The nonzero multiplexing rates are r;, p — k < i < p, and satisfy

(3.39)

(m; kY (n—k)1=rp_p)=(m—k+1)(n—k+1)(1—rp_pt1)=...=mn(l—r,)
._Z_kﬂ =T
- (3.40)

Proof :  see appendix 3.D.

The following theorem shows that the Stripping MMSE ZF DFE Rx, with
adapted encoding constellations achieves the outage tradeoff d5I¢(r).
Theorem 3:  For block length T, T >> N, L, the use of QAM con-
stellations with adapted rates by stream, allows the Stripping MMSE ZF
DFE Rx applied for the STS scheme to achieve a diversity vs. multiplexing

tradeoff equal to the outage tradeoff d7"¢ (r).

d* ST (r) = d5TC(r) (3.41)

out

Proof : see appendix 3.E.

Consequence of Theorem 3

e Theorem 3 gives a simple coding/decoding scheme (STS, QAM/ Strip-
ping MIMO DFE), and shows that it achieves a high performance
in term of the diversity vs. multiplexing tradeoff. In particular this
scheme achieves the maximum rate and the maximum diversity d ¢ =
d e = L.Nip. N,y and 7551¢ = p* = min(N,,, Ny ).

max max max

e Eq. (3.31) shows that the optimal diversity vs. multiplexing tradeoffs
achieved by the Stripping MMSE ZF DFE and MMSE DFE design are
the same.
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A

16 &

/ Optimal tradeoff

STS/Stripping
Orthogonal Design

V-BLAST

Diversity Gain: d(r)

\j

Spatial Multiplexing Gain: r

Figure 3.3: Diversity vs. multiplexing tradeoff of different schemes. N;, =
Ny, =4, L=1.

e To improve the performance of the scheme, and to limit the error
propagation, we can substitute the stream-wise decision feedback by
a Viterbi decoder. If a binary channel code is used, we can also couple
the stream-wise DFE equalizer with a PSP channel decoder.

e STS combined with the Stripping DFE Rx and SNR adaptive QAM
constellation outperforms the popular schemes of orthogonal design
and V-BLAST (see fig. 3.3, N;; = N,, = 4, L = 1). In fact, the
performances of these two schemes have been studied in [9] for the case
of flat channel. The orthogonal design achieves maximum diversity
but is limited to a multiplexing rate of 1 (the multiplexing rate that
can be achieved is even smaller then 1 for N, > 2). Whereas the
V-BLAST can achieve the maximum rate but has poor diversity. The
STS/Stripping achieves better diversity vs. multiplexing tradeoff for
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any rate or diversity. In particular it achieves the two extreme points

* *
of r} .. and d; .

3.5 Conventional MIMO DFE Receiver

The different streams in the Stripping receiver enjoy different diversity gains.
For fixed non-adaptive rates as it is the case in the conventional design of STC
(section 1.4) the performance is dominated by the stream that experiences
the lowest diversity. To avoid this situation we propose a new receiver that
treats the different streams equally. The considered Rx is the classical MIMO
decision feedback equalizer, in which the symbol vectors b, are processed
sequentially in time (see fig. 3.4).

Yy _@- 2 4@_@ by

Figure 3.4: Convetional MIMO DFE receiver

The DFE output is then

by = — B(g) bi+ F(g) 2, (3.42)
—~ —~
feedback feedforward
where the feedback filter B(z) = ZBiz’i is such that B(z) = I + B(z)
i>1
is causal, monic and minimum phase. We shall consider the MSE as filter
design criterion.

3.5.1 Conventional MMSE MIMO DFE Rx

As for the Stripping Rx (section. 3.2) the ZF and MMSE design hold. We
detail the MMSE design below.
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The linear MMSE estimate satisfies
bk = Bk — Ek = sz(q) Sgé(q) Zp — Bk . (343)

The development is the same as in section 3.2.2 but using the minimum and
maximum phase factorization of R(z) = G'(2)G(2) —l-% I (see [52]). Let B(z)
be the unique causal, monic minimum phase factor of R(z), then

R(z) = Bi(z) MB(2). (3.44)

where M is a constant positive definite hermitian matrix.
Then by, = B™'(¢) M™'B7(¢) z; — by.
By choosing F(¢) = M™'B7(q), we get

Flg)zw = M 'B(q)z
= B(q) by + B(q) b,
= B(E) by + e
= by +B(q) by +ey,

(3.45)

where See(2) = B(z)R '(2)B(2) = a2M .

B(z) = B(z) — I is tightly related to the MIMO prediction error filter
P(z) of the spectrum R(z), P'(2)R(2)P(z) = Constant Matrix. Indeed,
P(z) = B7'(2) obviously. The following Theorem gives B(z) in the case of
MIMO flat channel.

Theorem 4: For MIMO flat channel the feedback filter is
B(z) = T(2)' LY T(2), (3.46)

for which corresponds
M =Q"DQ, (3.47)

where L and D results from the LDU decomposition of HHH—i—%I =LDL".

Proof :

We need to show that

B(z) =TR)ILYT(z) = Q" D)LY D(2)Q

is minimum phase causal monic filter and satisfies B™'(2)R(2)B~'(2) = M.

L" is upper triangular, then due to the diagonal structure of D(z),
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D(2)! L” D(2) is monic causal filter. Q is unitary, hence B(z) in also causal
monic filter.

det B(z) = det L = 1, this shows that B(z) is a minimum phase causal
monic filter. To complete the proof of the theorem it is sufficient to verify
that B~"(2)R(2)B™'(2) = Q"DQ = M. O

Conventional Unbiased MMSE MIMO DFE Rx :
F(q) z;, — B(z) by is a biased estimate of by, since

F(q)z; — B(q) by = M 'B (q) G'(¢)G(q) — B(2)]by + M ' B (¢)G'(q)v;
I— M 'B ' (g)]by+M 'B(q)G'(g)vs
= (I— M )by + &,

(3.48)
where &, =M™ B™(¢)G'(¢)v, — LM~ (B™'(g) — T)by.
After some manipulations, the covariance of € is written
Cee = oy M H(I— M),
The feedforward UMMSE filter is
1 1
F'(¢) = I--M")"'M B (g)M - -1)""P'(q), (3.49)
p p
whereas the corresponding feedback filter is
1
B"(q)= (I~ -M )P '(¢) - T). (3.50)
p

The capacity of such a Tx system with UMMSE DFE Rx, assuming perfect
feedback and joint decoding of the components of by, is after some simple
manipulations

1 dz
=— ¢ —1 M). Dl
c %jjqu ndet(p M) (3.51)

In order to show that C' is equal to the capacity of the MIMO channel,
let us notice that for a minimum/maximum phase monic MIMO filter A(z)
(4o =1), 5= ¢ Llogdet(A(z)) = 0. This leads to

) 2mj

2mj

L ¢ ndet(] + pH'(2) H(2)).

2mj

C = 55§ %Indet(pB'(2) MB(2)) (3.52)

Hence this decoding strategy preserves the capacity.
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3.5.2 Conventional MMSE ZF MIMO DFE Rx

As we have done for the MMSE, the MMSE ZF design can be determined
similarly to section 3.2, where again for this design to hold we need to have
Ny, = min{ Ny, N, }.

We assume in below that N,, > Ny, then Ny = N,;,. Under the assumption
that detected symbols are correct (perfect feedback), we get

~ j—

3.53
= by + e, ( )

where See(z) = 02M™', B(z) = T(2)'L”" T(2), M = Q”"DQ, and L, D
result from the LDU decomposition of H'H = LD L.

For the detection of the symbol vector by different choices are possible.
For example a V-BLAST-like detector can be used, however such a process-
ing degrades performance. The optimal choices in this case is the weighted
minimum distance detector which has an acceptable complexity especially
for small number of transmit antennas and small constellation size. The
complexity can be further reduced by the use of sphere decoding.

Diversity Considerations:

Theorem 5: In the case of flat channel and N,, > Ny, the use of a weighted
minimum distance detector allows the MMSE ZF DFE Rx to achieve diver-
sity gain of Ny,.(N,, — %)

Proof : see appendix 3.F.

In the case of the MMSE MIMO DFE Rx we can not analyze the coding
gain as done in the proof of Theorem 5. In fact, for this Rx the noise e
contains a part of the interference. The interference is non-Gaussian, hence
e is non-Gaussian.

However, the MMSE MIMO DFE makes a compromise between interference
cancellation and noise enhancement, its performances are then better than
those of the MMSE ZF MIMO DFE. We conclude that the MMSE MIMO
DFE achieves at the least the same diversity gain as the MMSE ZF MIMO
DFE.
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3.5.3 Decoding Strategy

Previously in Theorem 5 we have shown that the MMSE ZF MIMO DFE
achieves a high diversity gain of Ny.(Ny; — %) However, the problem
of the DFE Rx is error propagation, it degrades the error probability or the
coding gain (this corresponds to a translation of the error probability curve
to the right). To reduce this effect, PSP can be used to robustify the receiver
by saving several survivors (possibilities) that are the more likely as has been
done in [53]. PSP typically uses a binary convolutional channel code, coupled
with a Viterbi decoder at the receiver. For decoding, only a reduced number
of survivors are saved, they are used as feedback in the equalizer and hence
increase the number of distances to be evaluated. The number of survivors
is chosen in a manner to keep the complexity acceptable.

Another possibility of binary coding is to allow inter-block coding, the decod-
ing progress is then done serially in one block but in parallel in the different
blocks, for symbols that have the same index k. For the approach to be
smoothly combined with the Conventional MIMO DFE Rx, it is desirable
that the symbol components of the vector symbol b, belong to the same
stream and that consecutive by belong to different streams. To this end,
a new type of stream assignment (layering) should be introduced. In this
case, the frame of data to be transmitted gets partitioned into consecutive
blocks. Each stream has one diagonal set of symbols in any given block, and
hence stream i is composed of diagonal 7 in every block (for a frequency-flat
channel). Hence, every block contains only one vector symbol (diagonal) by,
belonging to a particular stream. The non-iterative reception gets performed
by running the DFE in parallel over each block and decoding each consec-
utive stream sequentially, before using it in the feedback for the detection
of the next stream. This approach also allows to take advantage of time
diversity by distributing the blocks over different realization. This strategy
also ensures a high reliability of the feedback and hence reduces error prop-
agation.

In [53], simulations are done to evaluate the performance of PSP but for
a case where no linear precoding is used. This approach is a pure binary
channel code approach as diversity is exploited only by binary CC. The per-
formances obtained show that the DFE coupled with a PSP exploits all the
available diversity but with reduced coding gain when compared to an iter-
ative decoder. This degradation is due to the reduced number of survivors
and can hence be removed by increasing this number. These results still
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apply in our case but we have to point out that the linear precoding that
we use robustifies the coding part when being compared with the approach
proposed in [53]. Tt also exploits the diversity and allows to dedicate the
binary channel code to the exploitation of the multi-block diversity and to
improve the coding gain. The next chapter covers these advantages but for
Rx with an iterative decoder.

3.6 Stripping vs. Conventional MIMO DFE

The Stripping approach allows the use of conventional SISO decoders for the
detection/decoding of each stream, reducing the problem to the design of
encoders for equalized streams that experience a known diversity but that
are non-symmetrical in the sense that the earlier the stream is canceled, the
less diversity it experiences. The non-symmetry of the Stripping Rx con-
strains the Tx to adapt the binary channel coding and constellations to each
stream, in order to compensate the deficiency of the spatial diversity by the
time diversity and coding gains, introduced by the constellation and binary
channel code.

In the case of the conventional MIMO DFE, the binary channel code and the
constellation are unique, but the binary CC have to be correctly chosen to
allow inter-block coding and/or Per-Survivor-Processing.

On the other hand, the Stripping MIMO DFE Rx is very convenient for
high multiplexing rates. In this case the constellation size grows exponen-
tially with the SNR. The per stream SISO decoder maintains an acceptable
complexity in this case. However, this is not the case of the Conventional
MIMO DFE where the joint detection of the components of by, leads to high
complexity.

3.7 Diversity vs. Multiplexing Tradeoff of

the Conventional MIMO DFE an Open
Problem

In section 3.5.2, we have shown that the diversity gain achieved by the
Conventional MIMO DFE with a MMSE ZF design and for N,, > N, is
NtZE'(NTI - %) S Ntz-er-
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The diversity gain corresponds to the diversity achieved for a multiplexing
r = 0 in the curve of the diversity vs. multiplexing tradeoff.

A second point is the trivial (r = min{Ny,, N,,}, d = 0), since the STS
scheme achieves a full multiplexing rate.

However, the general problem of the diversity vs. multiplexing tradeoff
achieved by the Conventional MIMO DFE Rx for the STS scheme, in a
frequency selective channel environment is an open problem.

The Q matrix can be seen as the generator matrix of a lattice code, we
can then use elements introduced in [37] to handle the problem for the MMSE
ZF design and flat channel.

For the frequency selective channel, a preliminary problem have to be solved.
In fact, we need first to characterize M as has been done in the flat case.
Finally for the MMSE design, a compromise between noise enhancement
and interference cancellation is done, the noise is then no more Gaussian.
This fact have to be handled and we suspect that it could be the case using
techniques for lattice code analysis used in [37]. We also believe that the
Conventional MIMO DFE MMSE Rx for the STS scheme has the potential
to achieve the optimal diversity vs. multiplexing tradeoff.

3.8 Conclusion

In this chapter we presented two non-iterative Rx. The Stripping MIMO
DFE detects the streams successively, it allows to use the well studied SISO
binary CC techniques to improve the performances if needed. It achieves a
high diversity vs. multiplexing tradeoff, in particular the maximum diversity
and maximum rate. This Rx is particularly suitable for SNR adaptive rate
coding. However, for a fixed rate and symmetrical streams the Conventional
MIMO DFE is more adapted. It achieves a high diversity gain and can be
combined with Per-Survivor-Processing to limit the error propagation.

The use of PSP suggests the use of an iterative decoding scheme to improve
the performances, this is the topic of the next chapter.

The Conventional MIMO DFE performances in term of diversity vs. multi-
plexing tradeoff haven’t been evaluated in this chapter. They can be studied
by using elements relative to lattice codes introduced in [37].
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APPENDIX

The appendix starts by presenting a preliminary result on SIMO fre-
quency selective channel. Theorem 6 describes the behavior of the outage
capacity of such a channel. The proof of this theorem provides important
tools that will be used later in the generalization of the diversity vs. multi-
plexing tradeoff to the MIMO frequency selective channel.

3.A Outage Capacity Behavior of SIMO Fre-
quency Selective Channel

Theorem 6: The outage capacity of a N,, x 1 SIMO channel with L,
resolvable paths satisfies:

Py (rIn p) = p= (=) = prdoulr) (3.54)

where dy,(r) = Lg(1 —r) and R =rlnp (0 <r < 1) is the data rate.
Proof :

L-1
g(z) = Z g,z 'isa N,, x 1 frequency selective fading channel. g(z) contains

L resolvable source of diversity

g="U,s, (3.55)
8o
where g = : represents the vectorized channel impulse response. Uy,
8r—1
isa (LN,;)x Ly (Ls < L.N,,) constant full column rank matrix (see model in
section 6.5). s = [sy,...,sr,]” contains the resolvable diversity source gains

(path gains). s is assumed to follow a Gaussian distribution s ~ EN(0,1;,).
The instantaneous capacity of the channel is

Clg) = —— f P 101+ pgl ()g(2) = —— 74 Z108(),  (3.56)

ST o | 2

S(z) = 1+ pgl(2)g(z) is the normalized psdf of the received signal (nor-
malized w.r.t. to the noise power). Using the spectral factorization S(z) =
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0?A(z) AT(2), where A(2) is a the minimum phase causal monic factor

-1
z):1+ZAlz_l:H(1—plz_1) ml <1, for I=1,...,L—1.
= =1

(3.57)
For this factorization to exist S(z) should have no zeros on the unit circle,
which is the case here.
The instantaneous capacity is then

1
(Xg)zlna?+§;; EklnA()AWz) (3.58)
27” ¢ “1InA(z) Af(2) = 0, in fact if we derive C(g) w.r.t. 4 (1 <I<L-1)
we get
0C(g) 1 dz ., .
A : :
A sz —z (2) (3.59)

A(z) is causal minimum phase then its inverse is causal, and z7'A~!(z) is

; oc(g)
strictly causal and hence o = 0.

We conclude that C'(g) is constant w.r.t. A;, 1 <1< L —1, in particular for
A=01<I1<L—1

C(g) =1Ino?. (3.60)
The close form of o2 is
2 7 § £S(2) 1+p||g||2
o = L § d_ ( T ) 1 (361)
2 z Z ‘Al|2
1=0
From eq. (3.57) we notice that A; = Z (=1)'pi, iy - - - piy, the

1<y <iy<..<ij <L—1
norm |4,| is hence upper bounded as follows

1<i1 <in<..<ij<L—1

< > 1 (3.62)

1<i1 <io<... < <L—1

Ry
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We can then lower bound o2 by

1+ 2
o2 > ﬂ, (3.63)
VL
-1 2
[
where v, = Z( o1 ) . For data rate R = rlnp (0 < r < 1), the

1=0
outage capacity is upper bounded as follows

Pou(rinp) = P(C(g) <rlnp)
P(c* < p")

< PO’ <y —p7")
= E{lp—rgjz-ar+p-r<o}
1—r 2 —r

< minysg E{eiA(p |8IIF =+ )} (3.64)
— min ONCTRT I
- A0 et 120U U,
< il A=1
— det(I, +p1*TU5Ug), ( )

p—LS(l—r) ,

where in the fifth and the sixth inequalities we use the Chernoff upper bound
and in the last inequality we use the fact that U, is full column rank (the
L paths are resolvable).

Eq. (3.64) gives an upper bound on the outage probability.

We derive now a lower bound.

A lower bound on the capacity can be found by exploiting the concavity
of the log function

Clg) < In (% f{ %S@)) —In(1+plgl?) . (3.65)
Then
Poui(p) = P(C(g) <rlnp) > P(1+pllg|l* <p)

Pllgl? <o —1). (3.66)

Let UYU, = VDV”, V unitary and D = diag(d;,i = 1,..., L), be the
eigendecomposition of Ung. We denote t = [t,...,t1.]" = Vs, then
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Ls
HgHQ = Zdl‘tl|2 and the set {(pd1|t1|2 < %), C (des|th|2 < %)} is
=1

Ls
a subset of {pZdl|Sl|2 < p" = 1}. We can now write
I=1

Poalp) > TIE, P (ohlaf? < o)
=1
— sz51 fo‘i’L“’ e dx
AT
> [0 A 307
S e_glL—SLZTL_SQ
p—Ls(l—r).

By combining 3.64 and 3.67 we then show that
Pouy(rlnp) = p~he(mr) = prdoun) (3.68)

where dyy(r) = Lg(1 — 7). O
In the same way as what is done in appendix 3.E, we can show that the
DFE receiver of a SIMO channel can achieve the diversity vs. multiplexing
tradeoff defined by d, (7).
An important intermediate result we have derived during the proof, gives
us a useful bounds that we will use in the next appendices

In (1 +§L5|| ) < 2711_] % %ln(l + pgT(z)g(z)) <In (1 + pHgHQ) . (3.69)

Similarly, for any SIMO channel we can derive the following bounds

L §Lot(2)g(z 2z <
. ( § (e )) <o Cnig g < (o1 f Cain)

I, — 27y z 21j
(3.70)
L1 ] 2
where v;, = Z < 11 ) and L is the length of the impulse response. For

1=0
the lower bound to exist, we need to verify that g(z) have no zeros on the
unit circle.
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3.B Proof of Lemma 1

Recall that

1 dz
CMMSEDFE _ e ln([VHpR( YVl i1, (3.71)

where pR(2) = Iy,, + pQ"D'(2) H(2)H(2)D(2)Q and H(z ZH z

H(2)D(2)Q can be rewritten as HD(z) Q where H [HU,Hl, . .,HL,l},
D(z) = [D"(2),27'D"(2),..., 27 *"'D"(2)]" and

D(z) = diag (1,275, 2728, ... = WNe=DL),

Let H'H = USU" be the eigendecomposition of H"H where the diagonal

values of S = diag{si, S2,...,sn,, 1} are sorted in the increasing order.
V_VG denote U, = [uNm(Lfl)Jrna UN,, (L—1)4n415 -+ lleL]a
U, = [u,uy, ..., Uy, (1—1)4n-1), and rewrite

_ 1
VIR(2)V, = VIQD'(:)U (7

we distinguish two cases:

Iy, +pS)UTD(2)QV,,. (3.72)

To bound the capacity CMMSEDFE

Case 1: n < Ny,

The ordering of the diagonal values of S allows us to bound Iy,,; + pS
No(L—1)4n-1)s (£ 4 PSNw (1)) Iy —ng1) <
(%I .o+ pS) <

block-diag((7 + SN, (2-1)4n) Inw (L-1)1ns (T + PN (2=1)4n + 2) DNy —n) »
(3.73)
A

where block-diag(A,B) = [ 0 ](_3), ], and © > p(5n,,1, = SN (L—1)4n) = 0.
Then

block-diag(0n,, (£—1)+n-1) x (

_ _ —1
: Inenit + 5 VA QD! (:)Unyy U, D(2)QV,] <

L($4PSN;, (L—1)4n) T HPS N (L—1)4n)

VIpR(2)V,]” <
L VIQ"D'(2)U, UTD(2)QV,]

%+PSNtI(L71)+n

-1

(3.74)
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Using the matrix inversion lemma, we can show that for x — 400 we have

. xr = _ -1
lim [In,, i1 + VIQD'(2)U,,; U D(2)QV,] =
:z:—)-l—oo[ Nia=nt1 7097 Lpsn,, (n-1)4n Q (2)Unt1 Upn D(2)QVS
PJ_
V Q D Un+1’

(3.75)
where VfQHI_)T(z)UnH is (N — n + 1)(Ny, — n) matrix, PLA =1-Py
and P p is the orthogonal projection on A. We get finally

1 il ) < VH o
L(%-l_psNtz(L 1)+n PV Q DT n+1 - [Vn pR(z)Vn] -
_ -1
[V%HD*( JU.UD(:)QV,] .

(3.76)

L+PSNtI(L 1+n

Let us denote 3, = Hy and

dz
§ IH{PV Q DJr Un+1
o = —55 § L In{[VIQ"D'(x)U, UD(2)QV,]~'}11. We can now bound
the capacity by

Qﬂ']

1 1
ln(z + pst(L,l)Jrn) + oy, S CT]ZVIMSE prE S ln(z + pSNtI(L,1)+n) + In L + Bn ,
(3.77)
where «,, and (3, are independent of p and S.
The bounds can be further refined, in fact
NizL
P: = Py . : :

ViQ"D ') U,.. 11 ViQ"D':)u, (3.78)

i=Niz (L—1)+n-+1

On the other hand Iy, _p.y > el= =" (eM=""t)H where e > "*! is the
(Nyw — n + 1) x 1 vector with 1 at the " position and all other entries are
zeros. Then

Ntz L Niz—n+1\H Niz—n+1
{Pu ( VAPt

V Q DT Un+1}11 el Hz Nig(L—1)+n+1 € V Q DT el
Nigp L
- Hz tNm(L 1+n+1{ V Q DT }117
(3.79)
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hence

Nia L 1 dz

i=Nyp(L—1)4+n+1
Ni 1 dzl (1 {VfQHf)T(z)uiquI—)(z)QVn}u)
—_— —_ n J—

; = =

i=Ngp (L—1)+n+1 2m] “ f]D(z)QVanQHD (2)u;
B N” ]{dz uD(2)QV,VIQ"D'(2)u,
i=Nyp(L— 1+n+1 ( QVn+1Vn+1QHDT(Z)ui
(3.80)

Using intermediate results derived in appendix 3.A (eq. (3.70)), we can show
that

o= § L In{ufD(2)QV,VIQ"D'(x)u;} <
In{5% § £ulD(2)QV, VHQHD*( Ju;}
).

In{uff (Sacn Ty, Ju;) = In(Niegd

(3.81)

For H with Gaussian i.i.d. elements, u; follows a umform distribution over
the Grassmann manifold. The zeros of u//D(2)QV,;, VI, HDT(z)ui have
then a continuous distribution over the complex plane. The probability of a
zero to be on the unit circle is then 0 [54, 55]. This allows us to use the lower
bound of eq. (3.70),

27r] § & ln{uHD( )Qvn-l—lv 1QHDT( )lll} >
5§ LulDe QVWVSHQ D (3.82)

— Niz—

hence

(3.83)

B < (Niw —n)In (Ww(fvm —n+ 1))

Nm—n

NiwL—1 2
where yy,. 1, = Z < N, Il/ _q > , and N, L—1 is the degree of u/D(2)QV 1.
1=0 *

On the other hand we have that [VfQHf)T(z)Un Uf]f)(z)QVn]l—l1 —
-1
tz b T » tx ]
<(e7]1v )2Q"D'(2)U, Pfj "DQV,, UfD(z)Qeﬁ’ > . This result can be
derived using the QR decomposition of UYD(2)QV,J, where J is the

(Niz —n+1) X (N —n+1) matrix with ones on the anti-diagonal and zeros
elsewhere.
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We have now that
2 to ST B ta
a0 = a5 § 10 (€)1 QD ()U,Phapy oy, UFDEIQeY ).
Similarly to what have been done for Bn we can show that
a2 g £ () Q DI Unel el T IUID()Qe )
dz Nz n+1 1 Niz—n+1
+27r] § 111{ t + )HP QVlee t + }

Z tx T tx
= 271'] § d ln{( n )HQHD ( )uNtz(L 1)+nu%tz([/ 1 ( )QeN }
Nt

dz
£y m]{ In{Prp qer

i=n+1
1 Nep—
Z ln(Ntz’YNmL) + (Nta: N TL) In <m> .

(3.84)
Finally the capacity is bounded by

ln(Ntz'YthzL) - (Ntx - n) In <(sz*NntiI)TnymL> <
CMMSEDEE _n(1 + psn,, (-1)4n) < (Niz —n) In (—W”L]\(,th;nJrl)) +InL.
(3.85)

Case 2: n = Ny,

In this case

1 dz 1
C}z\\]{i\/lSEDFE ]{?ln(( Ntz)HQHDT( U (=

H 1~ Nig

(3.86)
due to the ordering of the diagonal (%INML + pS), we can bound it by

1 1
(z + psnr)entr(ener)’ < ZINML +pS < (f + psnr)In, . (3.87)

This allows to bound the capacity by
2 x D T e
7= § LIn((e))" QD' (2)uy,, ,ull, , D(2)Qej) < (3.88)
C]]Qr/ii\/ISEDFE _ IH(L + psn,,r) <InL.

Again using results derived in appendix 3.A, we end to the following bounds

1 1
In(———) < ONMSEPFE _In(— + psy,.r) <InL. (3.89)

|
Niz VN1, (L
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3.C Proof of Theorem 1

Case Ny, < Ny : In this case p = m = N,, and ¢ = N;;. From the capacity
Ntz

decomposition we have that C' = Z CMMSEDFE Bq. (3.31) and eq. (3.32)
i=1

lead then to

NT‘I

eC = piidi (1-ai)* ’ (3.90)

and the outage capacity is

P,+(R) = P(C<rlnp)

= P (%(1 —a)t < 7“) : (3.91)

=1

Using the Wishart distribution expression, and as has been done in [9], it is
possible to show that

NT:L'

Pout(R) = / [ o G triNe Moo, (3.92)
A =1

N"‘iﬂ

where A = {a : Z(l —a)T <1 > > ... > ay, ) NRYY and
i=1

a = (Oél, e OéNm).

By applying the Varadhan’s lemma [56] we obtain

In P, (r1
dowt(r) = — lim In Pow(r In p)
p—+00 Inp
1 NT'I
o : - 7i(2’i*1+LNtszrz)ai
= tLl-ir—noo ; ID/A]JG da (393)
Nr B
QEA <

=1

The solution of the last equation can be found in [9] and turns out to be the
piecewise-linear function connecting the points (k, dyy(k)), K = 0,1, ..., Npy,
where

dout (k) = (LNyy — k) (Nyy — k) . (3.94)
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Case N, > Ny : We observe that capacity satisfies

C = Efgs § %ndet(T + pH(2)H'(2))
= Epg; § ©lndet( + pH(2)H"(2)) (3.95)
= Eysy § Cndet(l + pH' (2)H"(2)).

In the second equality we replace T by H because the integral is done on the
unit circle. We conclude that the capacity is the same as for a new virtual
channel H(2). As a consequence the result of the first case, N,, < Ny,
holds also here after interchanging N,, and Ny,.

The two cases can be summarized by taking d,,.(k) = (Lg—k)(p—k) for
k=0,1,...,p. (]

3.D Proof of Theorem 2

Lemma 3 allows us to write

P
P21 (r1n p) = min ZP (C7T <rilnp, 7T >rilnp,....C/ > risyInp) =
» T:Zkzl Tk i=1
rznpin ZP (1= amepsd) "< 1, (1= Qmeps) "> 1r1e o, (1= Qi) 7> 1)
r= k=1 Tk i=1

(3.96)
By C#F we denote CMMSEZEDEE,
Let
A; = {a : (1 — am,p+i)+ < 1y, (1 — am,p+1)+ Dl ST (1 — Oém,p+i,1)+ >
Til1, 0 > Qg > ... > DRI where o = (ay, ..., ).
Each term of the sum can be written similarly as in appendix 3.C
P((1 = amppi) ™ <y (1= %mfp+1)+ > 1 (L= i)™ 2 1i0) =
fAi H p—(Qk—l—l—n—m)ak dov .
k=1
(3.97)

We denote n = max{N,,, Ny, L}.

Using Varadhan’s lemma we can show that if r; > Ogclgx ) . (this condition
- 717
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is always verified for the minimum outage as we will see in the optimization)

m

, ~inf Y (2k—1+4n—m)ay
—(@k=l+n-m)ay g, -~ et 3.98
k=1
- p~ (mopti)(n=pti)(i-ri)

Hence, under the condition r; > max r; we get
0

<k<i—1
P (CZZF < Tiln/)?ClZF Z r1 lnp; e 7C£q Z 7’1711Hp) = P (C,LZF < Tilnp)
= p(m=pt)(n—pti)(i-ri)
(3.99)

C7" is positive quantity, then for R; = 0
P(C/T <0,Cf" >rilnp,....,C7 > risilnp) =0=p ™. (3.100)

Now if we transmit on N, streams, r; =0 for 7 =1,...,p — Ny, then

P
Z P (CZZF < r;lnp, C’pZ,F]\,SJrl > TponN+11np, .. .,Cizj > i lnp) =
i=p—Ng+1

maXx

p—(m—p+i)(n—p+i)(1—ri) =p” MiNi—p— Ng+1,....p (M=p+i)(n—p+i)(1—-ri)
i=p—Ns+1,...,p

(3.101)
The number of streams is then also an argument of the optimization of the
outage

dS1°(r) = — lim In P}, (r In p)
out p—300 lnp
P
= max min min (m—p+i)(n—p+i)(1—r).

stl,...,p T:Zk:prstl prk i:p—N5+1

(3.102)
The coefficient (m — p +i)(n — p + i) that multiplies 1 — r; represents the
diversity of each stream i. We observe that the diversity is an increasing
function of 7. The optimal solution that maximizes d5/C(r) has to allocate
more rate to the stream that has the more diversity in order to maximize the
minimum of (m —p+i)(n —p+1i)(1 —r;). We can then conclude that the
optimal solution satisfies r; <7y < ... <7,
Let Py denotes the point where we start transmitting on k streams (p — k +

1,...,p). At this point r, ;1 = 07. For the optimal solution the value of
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dSIC(r) at this point is (m—p+p—k+1)(n—p+p—k+1) = (m—k+1)(n—k+1).
The optimization of this point constrains that

(m—k+1)(n—k+1)=(m—k+2)(n—k+2)(1 —rp_gy2)=...= mn(l—ry),
(3.103)
the multiplexing rate at this point is then
: 1
p=k—1—(m—k+1)(n—k+1 . (3.104
" (m=k+ Dl —k+1> o rry 1
We use a variable change k& — 1 — k. The optimal solution for d5/(r) turns

out to be the piecewise-linear function connecting the points (by, d51 (b)),
k=20,...,p, where

k

1
t _ _
rt = k—(m—k)(n—k)izzl(m_k_H,)(n_k_H,) L k=0,...,p—1
r, = p ,k=p
(3.105)
and SIC (..t

doui’ (ri) = 0 Jk=p

out

For the corresponding optimal rate allocation, and for r € [r, 71.,] (0 < k <
p—1), only k + 1 streams are used. With rates r;, p—k <i<p

(m—k)n—Fk)(1—rp_r)=(m—Fk+ %))(n —k+1)(1—rp_pp1)=...=mn(l—r1,)
‘_Z_kTZ' =T
- (3.107)
0]

3.E Proof of Theorem 3

We consider the Stripping MMSE ZF DFE Rx described in subsection 3.2.1.
After streams 1,...,7 — 1 have been detected and canceled, the symbols of
the actual processed " stream are detected sequentially. We denote by
P! the probability of erroneous detection of the i stream, and by P:(b%)
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the probability of making an error when detecting the k' symbol of the
actual stream (assuming the symbols 1,2, ..., k—1 were correctly detected).
Whenever there is an error on any of the detected symbols, the stream is
said to be in error. The error probability on stream ¢ is the union of the
probabilities of the events of making an error on the symbols k, where the
previous symbols were correctly detected and canceled. These events are
disjoint sets, we have then

T—LN¢z+1
Pl= Y P(E,E ... E,), (3.108)
k=1

where E! is the event of making an error on b%, and E} is its complement.
Obviously P! > P(E?), in the other hand, for each i

P(EL, Ei,...,E} )) P(EL|EL,...,EL P(EL,...,Ei )

- (3.109)

IA I

P(E,ZC|E{, e E,Zc_l) ,
hence
T—LNpp+1
Fi< Y P(EEL....E_,) (3.110)
k=1

For the ZF design and for perfect feedback, the noise experienced by the
sequence of symbols, that belong to the same stream, is an AWGN (see sub-
section 3.2.1). The condition EY, ..., Ej_, is equivalent to correct feedback,
then P(E{|E!, ... Ei_|) = P(E}), k = 2,3, T — LN;, + 1. Finally if we
denote P(E?) by P!(b%) we have

Pi(b}) < P! < (T — LN,, + 1)PX(b}) . (3.111)

We conclude that P! = P(bt).
Eq. (3.7) allows us to write the output of the linear filter

bo=b +el (3.112)

where €! is a centered white Gaussian noise of variance

0% = 02%; = of(SNRMMSEZEN=1 " pi comes from a QAM constellation of

et
. , . .. . 307
size p’i, (0 < r; < 1) with minimum distance d; such as d? = 52— (see

To2(phi-1)
section 2.5.2).
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For the processed stream 1, let b!’ be one of the nearest neighbors of b!, the
PEP is

Pl =0ty = P

Si\IRi\/[MSEZFp_rl <1)
SNR{V[MSEZF < prl)

(7-di < 1)

(

( <
(1+SNR{\4MSEZF Sprl)
(

(

(3.113)

I
T YU

In(1 4+ SNRYMSEZEY < 1) 1n p)

where in the first equation we used a result derived in equation (21) of [9].
For QAM constellation there is at most four nearest neighbors to bi, the
overall error event is upper bounded by the union of all the error events
corresponding to the nearest neighbors. We can then write

P! = (T — LNy, +1)P(bl — bl

- P(CIZF <rilnp), (3.114)

Similarly we can show that the overall error probability for a given rate
allocation satisfies

P, = zp:P;’
=1

p
= Y P(C/ <rilnp,CIT > rilnp,...,CIN > 1 Inp)
i=1
(3.115)
where the right hand side of the second equation is the same as the outage
probability for a given rate allocation. The optimization of P, w.r.t. the rate
allocation gives the same solution as the outage one

d=ST(r) = dSTC(r) . (3.116)

out

O

3.F Proof of Theorem 5

To prove Theorem 5 we have to study the error probability.
Similarly to what has been done in appendix 3.E we can show that the error
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probability verifies
P, < (T — Ny +1)P!, (3.117)

where P! is the probability to make an error on the first symbol. P! is upper
bounded by
P! < Y P(b — b)) (3.118)
b,#b)

where P(b; — b!) is the probability to transmit b; and to detect b.

For a fixed rate, the number of terms in the sum (3.118) is finite. As has been
done in section 1.4, the diversity gain is then given by the worst diversity
gain between the P(b; — b})’s

Consider a weighted minimum distance detector, P(b; — b)) is the prob-
ablhty that Hbl_blHi\/_[ > ||b1_b’1H%\/_[ Denote Ab = bl —bl, Hbl_blH%\/I_
by = bi|l}; = ~Ab"MADb + 2R{Ab"Me,}. v = 2R{Ab"Me,} has a

Gaussian distribution v ~ N(0, 202Ab” MAb)

P(b, — bi|H) = P(v> Ab”MAb|H)
QG( Ab MAb)

207
_ab"Mab
< e 10y (3.119)
2b"Q"DQasb
_ ST e
_aciDac
= e 403 ,
where Qg(.) is the Gaussian tail function, Ac = QADb, and the third in-
equality corresponds to the Chernoff bound.
We use the MMSE ZF DFE with N,, > N;,. D is identifiable from the QR
factorization of H = UR. In fact, U is a N,; X Ny, unitary matrix and R is
a N, x N,, upper triangular matrix, then LDL? = R”R and D, = |R;;|%.
Denote H; = [hy,...,h; ;] and h; = (Iy,, — PH_)h the projection of h; over

the orthogonal complement of H;. Then |R;;| = ||h;|| and

D; = ||hy|* = b, h;.

The dependence between h;, i = 1,..., N,,, comes only from the directions,
hence the norms ||h;||,i = 1,..., N, are independent.
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D;, i =1,..., N;; have then independent Chi-square distributions with
2(Npyy —i+1),i =1,..., Ny, degrees of freedom. The error probability is
then
_l1ac,”D;
o
P(b; — b)) = EggP(b, = bi[H) < T[YV3| fe % fi(D;)dD

—(Nya—i+1)

Uv

L\ —(Nea—it1)
Niz AC; |
S Hz:tl ( 2‘ ) )

407,

(3.120)
where f;(.), 7 = 1,..., Ny, are the pdf of the Chi-square distributions with
2(Nyy —i+1),i=1,..., Ny, degrees of freedom.

HNtac <1 + \Acl\ )

We have shown in subsection 2.5.2 that due to the choice of the precoding
matrix, Q, and for a uniform QAM constellations with (2A1)? points, the fol-

lowing property is verified for any possible Ac: ‘Aac" >0fori=1,..., Ng.
b
We get finally that
Ntz—l)

P(b; — b)) < ¢gp NerWra =75 (3.121)

407,
The SNR exponent Ny, (N, — N”C Niz=1) corresponds to the diversity gain. [

) (Npz—i+1)
where ¢, = minacxo [[[2] ( 5 .



Chapter 4

Iterative Rx

The STS scheme based on linear precoding was introduced in chapter 2. STS
allows to attain full diversity without loss in ergodic capacity. However STS
cannot provide high coding gain. Hence, practical transmission systems have
to resort to binary channel coding. Threading is an example of a MIMO
transmission system in which spatial diversity gets exploited via channel cod-
ing only. Practical symbol constellations however only allow the exploitation
of a limited diversity order by the binary channel coding. Hence powerful
yet simple MIMO Tz schemes can be obtained by combining the coding gain
and diversity exploitation of classical binary channel codes with linear pre-
coding to exploit the remaining diversity degrees. A typical design would
use channel coding to exploit temporal fading with linear precoding to exploit
space-frequency fading.

83
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4.1 Introduction

Recent schemes [22, 23, 24] based on constellation rotating, succeed to ex-
ploit all the diversity without rate loss but require ML decoding leading to
an exponential (in Ny, size of the block and constellation size) complexity
that limits its use. Constellation rotating doesn’t enhance the coding gain
and can even worsen it. For practical applications it has to be coupled with
a binary channel code, it leads then to the potential use of a turbo decoding
approach, which reduces the complexity. Unfortunately, the structures of
these schemes lead to the calculation of a different equalizers, one by sym-
bol, and make complex the use of turbo decoder. On the other hand, the
turbo decoding approach was proposed in [57] as a decoder for the Threading
scheme. Taking advantage of the presence of the binary channel code to ex-
ploit diversity, this scheme, even if it succeeds to achieve a good performance,
is limited by the binary channel code ability to exploit diversity.

We propose to combine binary channel coding and the linear precoding of
STS to use a turbo decoder with interference cancellation. The binary chan-
nel code can also be used to exploit the block diversity, this chapter proposes
a practical scheme to this end, analyses the performances and is supported
by numerical examples.

The results presented in this chapter are to be published in [58].

4.2 Combining Linear Precoding and Binary
Channel Coding

Linear precoding was introduced to exploit the transmit diversity, leading to
a maximum diversity gain. This gain corresponds to the slope of the error
probability vs. SNR curve (in logarithmic scale), but in order to achieve
this regime (fast declaying error probability P,) we need an SNR such that

p>>4 (W)N_’m = w (subsection 2.5.2). This SNR range is

out of scope for practical systems. For lower SNR values, it will be impor-
tant to improve the position of the P, curve by increasing the coding gain
via binary channel coding, see fig. 4.1. The use of a binary channel code in-
creases the minimum distance of the encoded sequence, the by a using a good

interleaver, the coding gain: Cy = min, v det ((C - C"(C - C')H> is
increased. The choice of the interleaver should maximize C,, however this
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chapter does not deal with this problem and use a random interleaver. In fact
the minimum of det ((C - C"(C — C')H) is achieved for errors with small

distance (or Frobenius norm), the matrix C — C' is hence sparse, and taking
into account that the determinant is maximized for orthogonal C — C' rows,
using the random interleaver ensures orthogonal or near orthogonal rows and
consequently optimal or near optimal performance.

For channel decoding, we consider an iterative decoder that combines a SISO
decoder with a MIMO linear filter and Interference Canceler (IC), pictured
in fig. 4.3. This decoder structure was first used for CDMA [59], and was
then proposed for the MIMO reception [60, 61, 57]. It is the analog to the
turbo detection when the mapping, Linear precoding and the channel (resp.
the binary channel coding) are seen as Inner coding (resp. Outer coding).
This decoder structure exhibits good performance for small size constella-
tions and exploits the diversity when a LMMSE front-end equalizer is used
[61]. In the sequel we give a short overview of iterative channel decoding
with interference cancellation.

4.2.1 Encoding

Fig. 4.1 shows the encoding operation. The binary channel encoder output
is followed by the interleaver, the output is then mapped into symbols be-
fore serial-to-parallel conversion. Fig. 4.2 clarifies how the S/P conversion
is done, the entries in the array indicating the index of the symbols at the
output of the mapper. The symbols vector by is then filtered by T(z).

If the iterative decoder would succeed canceling all the interference (genie
aided decoder), each symbol would be interfered only by noise. Performance
would then reach the matched filter bound, which corresponds to full di-
versity exploitation. The binary channel coder and interleaver are in this
case only used to lower the error probability (increase coding gain). Now,
by considering the overall channel and the binary channel code as the two
constituents of a serial turbo code, then a lower error probability can be ob-
tained by increasing the minimum distance. Therefore a good choice for the
interleaver for large frame sizes is to choose a random interleaver.
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hi(k) (k)
SPp | .
Lk channel coding interleaving mapping - T(2)
DEMUX
bk (k)

Figure 4.1: Encoder for space-time spreading.

time

5|9

6 |10
7 (11
8

Al WIN|P

12

b, b, by

Figure 4.2: Serial-to-parallel converted space-time block before precoding for
N, = 4.

D MMSE
IC —— De-interleavin SISO Decodet
A
EXT_2

Re-interleaving

Figure 4.3: Iterative decoder with interference cancellation.
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4.2.2 TIterative Decoding

In this section we propose an iterative decoding strategy for a general block
fading channel. We consider an iterative decoding scheme with IC, see fig. 4.3.
The first block of the scheme contains the IC operation followed by a MIMO
linear equalizer, and symbol-to-bit demapping and de-interleaving. The sec-
ond block of the decoder is the maximum-a-posteriori (MAP) soft-Input
soft-Output (sIsO, to distinguish from SISO) decoder of the binary channel
code (for instance, we use a convolutional code and the corresponding BCJR
SISO decoder [62]) followed by the interleaver and the bit-to-symbol mapper.
These two blocks exchange information in the form of Log-Likelihood Ratios
(LLRs) during iterations, the overall decoder can be seen as an application
of the belief propagation principle, also known as the sum-product algorithm
[59],[60]. We assume that the residual interference plus noise at the output of
the equalizer follows a Gaussian distribution. This is clearly an approxima-
tion, however it tends to be valid for large systems (large Ny, and/or delay
spread), see [59] for the case of CDMA.

Recall that the overall channel H(q) T(q) is denoted by G(q).

As linear equalizer we use the Ubiased MMSE (UMMSE) design, where

: RO (-
= § LGl (RO (2)” Gunl2) G (R() (4.1)

fi(2) =

is the equalizer filter for T(z), stream (input) number n of the MIMO
system at iteration i, RY(z) = o2l + N &Zn(lfl)G:,n(z)Gin(z) is the
spectrum of the noise plus residual interference and Erli(i) = E \l;gf)(k)P =

E b, (k) — I;S)(kﬂ? is the variance of the residual interference of stream n.
b (k) = E(b,(k)| EXTY) is the MMSE estimate of b, (k) based on the in-
formation contained in EXTgi). For the residual interference spectrum we
assume that the residual interference l;n(k) is temporally and spatially white
and decorrelated from the noise. This approximation is again valid for large
systems (and hence works better when linear precoding is used).

Finally, the equalizer output at iteration (i) for stream n at time & is

s =8)() (ye— Glapb, )+ (k). (4.2)

Due to the unbiasedness of £, 135571)(@ does not appear in sg)(k). Let’s

denote the bit-to-symbol mapping by p : FY — A, where Fy is the binary
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alphabet and P = log,(|A]|) is the number of coded (and interleaved) bits
per symbol: by (k) = pu(x) ..., 2k ). The extrinsic information of the p™
bit of the binary mapping of the k* symbol of stream n, evaluated at the

output of the IC at the (i)™ iteration is

Pt =11s",.G)

P(af, =005, G) ,
S, et - Pliilbai G exp(]_, L, BXT{ V(@] )
P(ss,)k‘bn,kyG) eXp(Zz}:lzl,;ép EXT? U("”ﬁ,k)) ,

(4.3)

EXTY(a2,) =

= log
anﬁkeﬂ.\zi’kzo

where the probability P(sg’)k\bn,k, G) is evaluated by assuming that

@fll)k = SS,)k — by is an AWGN.

After de-interleaving, the EXT; information sequence is used as a priori LLR
input to the MAP decoder of the binary channel code which is a convolu-
tional code in our case. Using the forward-backward BCJR algorithm, the
a posteriori LLR is computed and the extrinsic information is defined as
EXTY) = MAP(EXT!") — EXT!’. Experimentally we observed that the
number of iterations needed for the convergence of this algorithm is small,
typically 3 or 4 iterations.

Remarks:
e TFor a flat channel with N, = N, we can show by induction that:
&fn(z) = &f(z), n=1,... Ny, and that

. —1
() — _ Nulo _mt (o NHgH _ ( 27 NQ(Z*I)HHH> " This simnli-
n (%) tr(H"RH) n(z) R, R o, 140y is simpli

fies the equalization: the joint equalizer for all streams consists of a channel
equalizer followed by the matched filter of the precoder (= precoder inverse
since T(z) is paraunitary). Even if these results cannot be generalized to the
frequency selective channel case, experiments show that performance does
not degrade when using the suboptimal approach. This approach consists
in averaging the 6,1(2)% over streams and using a MIMO equalizer of the fre-
quency selective channel followed by the matched filter of the precoder.

e The stream equalizer can be designed using criteria other than UMMSE,
typically Zero-Forcing or channel Matched Filter. These two alternative de-
signs lead to performance loss. Especially the MF design leads to an error
floor and therefore doesn’t exploit diversity.
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4.2.3 Complexity Comparison with Threading

Whereas the proposed STS strategy differs from V-BLAST by the insertion
of the time-invariant precoder filter T(z), in Threading [57] T(z) is replaced
by a periodically time-varying cyclic shift matrix Z¥™°4™ where Z is the
elementary circulant shift matrix. When comparing STS to Threading, in
the encoding part, precoding with T(z) leads to an additional complexity
O(logy(Ny)) per symbol period. O(log, (Vi) results from the multiplica-
tion of by by Q which has a DFT-like structure (see section 2.5.1). This is
a negligible increase compared to the remaining operations such as binary
channel coding and pulse shaping. At the receiver side the additional com-
plexity comes from the inverse operation, namely the matched filter TT(z),
with same negligible complexity increase.

4.3 Multi-Block Time Diversity

In the usual SISO fading channel problem, time diversity of the channel (i.e.
the variation from block to block) is used to improve performance. We can
exploit block fading for the MIMO channel as well. Below, we discuss how
to exploit the diversity sources with STS.

We consider a block-fading environment with F'i.i.d. blocks.

Case of STS:

In the STS approach, space-frequency diversity is exploited in each block
by the linear precoding. The problem of additionally exploiting temporal
diversity (from block to block) is then reduced to the SISO channel fading
problem.

If we denote by dp the diversity exploited in this latter problem, the overall
diversity exploited by STS is then d°" = dp Ny, N, L.

In order to exploit temporal diversity, we need to first use a block interleaver
on the ensemble of fading blocks (see fig. 4.4), and then apply a random
interleaver within each block. Using a genie-aided reasoning, the temporal
diversity that can be achieved is limited by the fundamental Singleton Bound

(SB) [63]
r
dp <1+ |[Fy(1 - W)J < Fu, (4.4)
where 7 is the rate of the binary channel code, |.| denotes the flooring oper-
ation, and F,; (= F here) is the number of diversity branches. The diversity
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Figure 4.4: Block interleaver for F=2.

exploited by STS is hence bounded by
d°TS = dp Ny N,y L < (1 + | F(1— |%)J) Ny N, L. (4.5)

Table 4.1 gives the SB and the temporal diversity exploited by a set of channel

convolutional codes with r = % and for different symbol constellations and

different number F, of diversity branches.

| dr or d, [ BPSK | QPSK |
States | Generators || Fy=2 |4 [8[[2]4]38
Singleton Bound 2 31512147
4 (5,7) 2 |3|42]3]3
8 (15,17) 9 [3]4]2]3]4
16 (23,35) 2 |3]5]2]|3]4
32 (53,75) 2 |3]5]2]|3]4
64 | (133,171) 2 |3]5(2]3]5

Table 4.1: Block diversity for some popular rate 1/2 binary convolutional
codes mapped onto BPSK and QPSK (with Gray labeling). Code generators
are expressed in octal notation [12].

Case of Threading:

In the case of Threading, no linear precoding is used to help the binary
channel code to exploit all the diversity sources. The number of diversity
branches is here F; = FN;,[60]. By applying the same reasoning as before,
the (source) diversity d, exploited by the binary channel code is bounded by

r

dy, <1 FN,,(1—
<14 |F Nyl A

)] < FN,, . (4.6)

The overall exploited diversity is then d”*" = d; N,, L. The overall diversity
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exploited by Threading is then

47 < <1 + [FN(1 - %)J) Ny L. (4.7)
Comparison:
From table 4.1 we can see that for r = % and using convolutional code the

effectively exploited diversity degree d,, in the Threading case, is far from
the available one (FN,).

For example, for N;, = N,, =4, F =2, L =1, (5,7) code and QPSK con-
stellation, the binary CC exploits all the diversity branches in the STS case
dp = 2, Fy = F = 2, and only d;, = 3 over F; = Ny F' = 8 branches for
the Threading case. The total exploited diversity by each technique are then
dSTS = 32 > d"™ = 12. The only way to exploit higher diversity in the
Threading case are then by lowering the rate and increasing the constella-
tion size. This leads to high decoding complexity and low performance in
comparison with the case of STS.

Remarks:

e Using the SB we can explain why the proposed STS achieves full diversity
for a single block MIMO channel. In fact, prefiltering the QAM constella-
tion increases the constellation size at the channel input from [A] to |A|Ve.
Therefore the SB becomes: 1 + | Ny (1 — W)J = 1+ [Ny — 20772
where n; = logy(Ny) > 1 as Ny > 2 and P = logy(]A|) > 1. These two
last conditions imply that n, — P.2™ < 0 and hence 0 < 2™~F-2" < 1,
Finally| Ny, —2~72" | = Ny, — 1 and the SB equals N;,. The bound on the
achievable diversity by STS is then N,,Ny,.

e Two other recent approaches are the Complex Field Coding approach
of Giannakis [22] and the Universal Coding approach of El Gamal [23, 24].
These approaches, similar to earlier work by Belfiore [31], correspond to lin-
ear dispersive block codes with block length equal to Ny,. As a result, each
transmitted symbol sees a different SINR and symbol-independent equaliza-
tion or residual interference variance in a turbo detection approach do not
apply. That’s why these authors consider other ML detection approxima-
tions in the form of sphere decoding.
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4.4 Performance Analysis

We compare the performance of STS and Threading via simulation. We use
for both a rate 1/2, (5,7) four states convolutional code, to take advantage
of the availability of computationally efficient sIsO decoders (BCJR). Perfor-
mance is evaluated in terms of frame error rate (FER) as a function of E}/Nj
(SNR = RE}/Ny, R = rNylog, |Al, p = SNR/N;). We run simulations for
an input frame of 512 information bits for N, = 2.4, and 1024 for Ny, = 8.
We fix the number of decoding iterations to 5. We use QPSK with Gray
labeling.

4.4.1 Comparison of Threading and STS

In fig. 4.5, for F' = 1,2,4 blocks, we see that STS (solid lines) succeeds in
exploiting more diversity than Threading (dash-dot) except for F' = 1 block.
E.q. for F' = 2, the asymptotic slope for ML decoding would be equal, for
Threading, to dsN,, = 3 x 2 =6 and for STS to dpN;; N, =3 x2x 2 =12.
In fig. 4.6, the slopes roughly double when delay spread L doubles. In fig. 4.7,
when the number of antennas double, STS and Threading differentiate even
for ' =1 block and the slopes again increase when the number of antennas
further double in fig. 4.8. The increase in the number of antennas (IV,,) also
leads to an array gain and hence a translation of the curves to the left.

Case of a channel with N,, < N,

In fig. 4.9, we consider the case 2 = N,, < Ny = 4. For STS, we vary
the number of streams N, by varying the number of inputs to T(z). With
N, = 2, STS achieves the same diversity in a 2 x 4 MIMO system with F' =1
as in a square 2 x 2 MIMO system with F' = 2: we observe equivalence
between N, /N,, and F.

We also consider the Space-Time Orthogonal Design (STOD) of Tarokh [21]
which leads to the leftmost curve, but at rate 0.75b/s/Hz. We see that at 2
b/s/Hz (the two middle curves), STS (solid) with N; = 2 ("half rate”:

Do — 1) and QPSK performs much better than Threading (dash-dot) with

New 2
N; =4 ("full rate”) and BPSK.
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4.4.2 Use of Walsh Hadamard (WH) matrix as Pre-
coding matrix

In fig. 4.10, we compare the performance of the STS scheme when using our
optimized precoding matrix (Q = @, solid lines), with the case where we use
the normalized Walsh Hadamard matrix as precoding matrix (Q = Qwun,
dash-dot lines). The normalization is done such that Qwyp = oMy,
where My, is the Walsh Hadamard matrix with entries equal to +1 and
QY Qwr = 1. The comparison is done for different number of antennas.
We observe then that the two precoding matrices yield the same performance.
Consequetly, when using a turbo detector we can replace the optimized pre-
coding matrix by the WH matrix. These results in a reduction of complexity
and a possible and simple adaptation of the CDMA systems to MIMO high
rate transmission.

4.5 Conclusion

The STS scheme proposed in chapter 2 can be seen as an Inner Code that
exploits the multiple antennas diversity and needs to be coupled to an Outer
Code to operate in the range of interest for practical systems. In this chapter
we have proposed to combine binary channel coding with our linear precod-
ing in order to enhance the performance and to use low complexity turbo
decoder. The presence of the binary CC also allows to exploit time diver-
sity (multi-block diversity). Simulations confirm the theoretical results and
clearly show the advantage of our technique over existing high rate MIMO
systems (Threading, STOD).
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Chapter 5

On MIMO Capacity with
Partial CSI at Tx

The mazimum achievable capacity for a MIMO channel corresponds to the
waterfilling solution provided that the transmitter has a perfect knowledge of
the channel. In practice, the available knowledge may only be partial due to
the time selectivity of the channel and delay of the feedback from the receiver.
Howewver, exploiting the partial knowledge leads to a significant improvement
when compared to the capacity without any channel knowledge. In this chap-
ter we analyze the MIMO capacity with partial knowledge of the channel
under practical frequency flat channel models.

99
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5.1 Introduction

Space-time coding techniques assume the MIMO channel to be Rayleigh flat
fading (subsection 1.1.1) with i.i.d. components. In practice this assumption
may not always be valid, since for physical reasons the channel components
may be correlated [64]. This correlation corresponds to partial knowledge
that can be fed back to the transmitter. When the partial channel state
information is present at the transmitter, it is advantageous to use it to opti-
mize the precoder at the transmission [65, 66]. This precoder will basically
be a cascade of space-time coder and a decorrelating beamformer.

In this chapter, we investigate the achievable capacity given the available
CSI at Tx. We assume that, in addition to the channel correlations, the
transmitter has more information about the channel: knowledge of slowly
varying channel parameters, or knowledge of the channel up to the amplitude
and phase shifts that arise when the roles of transmitter and receiver are
reversed. We demonstrate how the partial CSI leads to an improvement of
the communication capacity when compared to the capacity without CSI.
However, the additional improvement when compared to knowing only the
channel correlations is demonstrated to be small. We note that similar results
(for different channel models) have also been published in [65].

Results presented in this chapter were published in [67, 68, 69].

5.2 Channel Models and Assumptions

The channel is flat (L = 1), and the covariance matrix at the transmitter is
defined as ¥ = E{H”H}. We use normalization tr{3} = 1.

The ergodic capacity given in (1.9) is reformulated as

P
C = EgyIndet(I+ —HSH") = EggIndet(I+ pN,, HSHY), (5.1
JU

where p = # and Sxx = PS is a covariance matrix of the transmitted
Gaussian signals maximizing the above expression, under the power con-
straint tr{S} < 1.
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5.2.1 Pathwise Channel Model

The pathwise model [70] of the channel matrix in the case of frequency flat
fading is

Lp
H= Z clalblT, (52)
I=1
where L, is the number of multipaths and ¢, ¢« = 1,..., L, denotes the

complex multipath amplitudes. We assume that the amplitudes ¢; are i.i.d.
circular symmetrical complex Gaussian distributed with mean 0 and variance
1. The N,; x 1 vectors a; are the steering vectors of the receive antenna
array and the N;, x 1 vectors b; are the steering vectors of the transmitting
antenna array. Due to the i.i.d. assumption of the complex amplitudes, it
is assumed that the multipath variances are included in the vectors b;. We
also normalize ||a;||> = 1 Vi. Generally all ¢;, a; and b; are random variables.
The complex amplitudes ¢; model the fast fading channel parameters while
the steering vectors model the slowly fading channel parameters.
The channel matrix may also be given as

H = ACB, (5.3)

where A =ay,...,ar,], B=[by,...b;,]" and C = diag{ey,...,cg,}. If for
every channel usage the receiver knows the realization of the channel and the
slowly fading parameters remain constant over a sufficient time interval, the
slowly fading parameters may be obtained at the receiver [71], and fed back
to the transmitter. This information then corresponds to partial channel
state information at the transmitter.

We investigate the ergodic capacity of the channel given in (5.3) when A
and B are fixed.

5.2.2 Channel Models for Limited Reciprocity

Assume that the physical channel is reciprocal between uplink and downlink,
and the transmitter knows the uplink channel W”. This case can arise for
example in the time division duplex mode of the UMTS standard, where
both the uplink and the downlink share the same bandwidth. The overall
channel in downlink including the cabling and electronic devices for both
ends is therefore

H =D, WD,, (5.4)
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where D; and D, are diagonal matrices. These matrices reflect the amplitude
and phase shifts that arise when the roles of transmitter and receiver are
reversed in case of no or limited calibration. We use three different models
for the matrices D and D,

Model 1 Only phase shifts: Diagonal elements contain i.i.d. phases (D; =
diag{e/?1, ... e/*N=)} and Dy, = diag{e’l ... TN }, where ¢! are
i.i.d. and uniformly distributed on [0, 27])

Model 2 Case of complete absence of calibration: Diagonal elements of D,
and D, are i.i.d. zero mean complex circularly symmetrical Gaussian
with variance 1.

Model 3 Case of imperfect calibration: The diagonal matrices are given
by D; = /1 — €l + ¢ DN; and Dy = /1 — €21 + 6,DN,, where ¢;
are small and DN; and DN, are diagonal matrices with i.i.d. diagonal
elements that are zero mean complex circularly symmetrical Gaussian
with variance 1.

5.3 Results for Pathwise Channel Model

In the case of pathwise model, the ergodic capacity for a given transmit
covariance matrix PS is

C = EgIndet [I+ pN,, ACBSB”C7A"]. (5.5)

For arbitrary SNR (p), the optimal S can be given by direct numerical solu-
tion as described later in this chapter. In the following, we calculate approx-
imations for low and high SNR scenarios.

5.3.1 Low SNR

When p << 1, we may approximate (5.5) by

C =~ Etr{pN,ACBSB”"C"A"}
pN,, Etr {BSB"C"A"AC}
pN;,tr {BSB"diag{A" A} }
pN;,tr {SB"B} .

(5.6)
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Note that diag{ A" A} =T due to the normalization. Write BYB = UAU"
according to the eigenvector decomposition, and let S’ = U¥SU. Note that
tr{S'} = tr{S} = 1.

Now

tr {SB"B} = tr {S'A}. (5.7)

For any A, the matrix S’ maximizing (5.7) is given by
S’ = diag{0,...,0,1,0,...,0}, (5.8)

where the only nonzero diagonal element is in the position corresponding to
the largest diagonal element of A (if there is no unique maximum, we can
choose a position of any of the “maximum” elements).

We have thus shown that for p << 1, the optimal transmit covariance
matrix maximizing (5.5) is given by

S = uu”, (5.9)

where u is the eigenvector corresponding to the maximum eigenvalue of the
channel covariance matrix

¥ = BPB. (5.10)

The optimal covariance matrix thus depends only on the channel covariance
matrix at the transmitter.

We note that in this case, the capacity with no CSI (S =
by

1 . .
5 I) is given

Nt:c

Py N (5.11)
i—=1

where ); are the eigenvalues of the matrix given in (5.10). Hence the ratio
between the capacity with partial CSI and the capacity with no CSI is given
by

Ai
1< mlaX—{N} <N, (5.12)
Nt;: Zz:”{ Ai

As a conclusion, the gain obtained by using the partial CSI at Tx can be
very significant.
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5.3.2 High SNR

When p >> 1, giving a general solution is not possible, because the opti-
mal covariance matrix S depends on the dimensions N, , NV, and L,, more
specifically on the minimum dimension. We now derive the solution for two
different possibilities for the minimum dimension.

1. L, < min{N;,, N, },
C = Indet [I;, + pN,BSB”"C"A"AC]
~ Ec {Indet [pN,,BSB"C"A"AC]} (5.13)
= Indet [pN,;;,BSB”| + EgIndet [C"ATAC] .
Therefore the solution is given by

1
S = —Uuu”, (5.14)
Ly
where U is the matrix of the eigenvectors of 3 corresponding to the
nonzero eigenvalues.

2. Ny < min{N,,, L,}, using the same reasonning presented above, we

get that
C =~ Indet{S} + constant. (5.15)
Hence the solution is given by
1
S = I. 5.16
N (5.16)

In these cases, the difference between the capacity with CSI and the one

with no CSI is given by
Ntac

min{ Ny, L,}
Therefore, when p >> 1, the gain obtained by using partial CSI is impor-
tant especially for large number of transmit and receive antennas and small
number of multipaths.

When N,, is the minimum dimension, it is not possible to isolate S from
the random part of the channel, because the approximation used in the pre-
vious cases gives

C ~ Ec Indet [pN, ACBSB"C"A"] . (5.18)

Since N,, is the minimum dimension, this expression can not be further
decomposed.

min{ N, L,} In (5.17)
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5.3.3  Waterfilling Solution for the Channel Covari-
ance Matrix

Since Indet is a concave on the set of positive definite matrices, the ergodic
capacity for any transmit covariance matrix S may be upper bounded by

C Ec {Indet [I+ pN,,ACBSB”C"A"]}
Indet [I+ pN,,SB” Ec{C"A"AC}B] (5.19)

Indet [I+ pN,,SB”B] .

A

The optimal S maximizing this upper bound corresponds to the waterfilling
solution applied to pN;, X [2]. The waterfilling solution matches the solutions
given in equations (5.9),(5.14) and (5.16) for p << 1 and p >> 1.

5.3.4 Optimal Solution

As mentioned above, In det is concave on the set of positive definite matrices.
The set of positive semidefinite matrices with trace equal to 1 is a connex
set. Therefore, the optimum transmit covariance matrix can be calculated
by using numerical methods. In practice, the objective function has to be
formed by averaging over sufficient number of Monte Carlo realizations. Note
that the averaging preserves the concavity of the objective function. We
demonstrate the usage of numerical methods in section 5.5. The applied
method is based on projected gradient descent algorithm [72].

5.3.5  Solution for Separable Spatial Channel Model

The MIMO channel is often modeled as a separable spatial channel model
introduced in subsection 1.1.2. It can be shown that the pathwise channel
model converges in distribution to the separable spatial model with appro-
priate covariance matrices, as the number of multipaths tends to infinity [73].
The ergodic capacity for this channel model in case 3; = I has been con-
sidered e.g. in [74, 75, 66, 76, 7, 6]. It has been shown that for this case
the optimal transmit covariance matrix S has the same eigenvectors as 3.
The capacity achieving power allocation (the eigenvalues of optimal S) has
to be calculated using numerical methods ( e.g. gradient descend algorithm).
The method used in [66] to show that the eigenvectors of S correspond to
those of 35 is complex. Here we provide a simpler proof of that fact. Let
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¥, = UDU” be the eigenvector decomposition of ¥,. The ergodic capacity
for the covariance matrix S is then given by

1 H
Eyy IndetI + pN,,Z; WUD2U”SUD:U"W" s ], (5.20)

Since for any Ny, X Ny, unitary matrix U, the distribution of W is the same
as the distribution of WU. W has also the same distribution as W®, where
& = diag{e/?, /%2, ... eV} with ¢; i.i.d. and uniformly distributed on
[0,27) is a unitary matrix. The ergodic capacity can then be written as

1 1 1 H
E, Ey ln det [I + N, EIWeDS'D:eTWIS 2 } , (5.21)
where S’ = U”SU. Note that tr(S') = tr(S). Since Indet is concave,

1 1 1 H
E, Ey In det [I 4 PN, SIWeD:S'D: e TWIs }
1 1 1 H
< Ew Indet [I + pN,S?W E4{®D*S'D: 3 ) Ws? ] (5.22)
1 bid
= Ey Indet [I + pN, £?WDdiag{S WS ? ] .
The equality is achieved iff S’ is a diagonal matrix, and the result follows.

This result can even be generalized to any stochastic W with decorrelated
columns.

5.4 Results for Channel Models with Limited
Reciprocity

In the case of limited reciprocity, the ergodic capacity for the transmit co-
variance matrix PS is

C = Elndet [I + pN,,D;WD,SDW"D{] , (5.23)

where the expectation is calculated with respect to D; and Ds.

It is straightforward, using the technique described in subsection 5.3.5,
to show that in the case of Model 1 or Model 2 (only phases or Gaussian
zero mean diagonal entries), the optimal transmit covariance matrix has to
be diagonal: S = Dg.
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For the Model 1, the optimum solution may be derived by numerically
maximizing
C =Indet [I+ pN,WDsW"], (5.24)

which is a concave on Dg. We note that for given Dg, (5.24) is an upper
bound of the ergodic capacity for Model 2.

For Model 2, the optimal solution can be found by using numerical
methods described in subsection 5.3.4, with simpler optimization as it has to
be done only for a diagonal matrix.

For Model 3, optimization is performed as described in subsection 5.3.4.

In addition to the optimal solutions, sub-optimal solutions may be derived
by considering the upper bound on ergodic capacity as it has been done in
the case of pathwise model in subsection 5.3.3. For Models 1 and 2, this
leads to waterfilling on

M = pN,diag{ W' W}, (5.25)

for Ny < N,p.

When for N;, > N,, we have to take in account the rank of the channel, it
leads then to waterfilling on M where we force now the N;; — N,, minimum
diagonal values to zero.

For Model 3, this approach leads to waterfilling on

pNi (1 — € )W"W + €l diag{ W'W}). (5.26)

For Model 2, a tighter upper bound is given by (5.24). Therefore, a better
solution may be given by applying the optimal solution for Model 1. For
Model 3, waterfilling on pN,; W#W can also be used.

Min-Max Problem

In previous we assumed implicitly that the transmitter can see different real-
izations of Dy and D, (and therefore code on different realizations). Without
this assumption considering the ergodic capacity is meaningless. Below we
assume that the transmitter can see only one realization of the channel,
and depending on the way of encoding this leads to either a success or fail-
ure of the transmission. In a deterministic point of view (one realization,
non-statistic problem), the transmitter should encode in a way to ensure
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successful decoding at Rx. This corresponds to an infinite failure cost. The
problem can be solved in a deterministic way by maximizing the worst case
of the capacity over all possible values of Dy, Dy. The formulation of the
Min-Max Problem is then

max min Indet [I + meD1WDQSDfWHD{{] . (5.27)
S:tr{meS}gP D. D,
As 0 is a possible value for D, Dy in Models 2 and 3, it is therefore easy to
see that the minimum capacity is zero for all values of S, and the Min-Max
Problem formulation is not useful for Models 2 and 3. Below let’s focus on
the case of Model 1 (diagonals of phases).

We will derive Upper and Lower Bounds on (5.27) ( LB < (5.27) < UB),
and show that we obtain equality between the UB and LB (and hence with
(5.27) ), which leads to the optimality of the LB (equivalently UB) solution.
The UB is obtained by

(5.27) = max_ minlIndet [T+ pN, WD,SD)W"]
S:tr{meS}gP D2

< max_ Ep Indet [I+ pN,, WD,SDJ W]
S:tr{pn..Si<p ?

< max Indet [I + pN,, W diag {SYW"] = UB,
S:tr{pn.. diag {S}}<pP

(5.28)
the expectation Epy , is done over all the possible values of D, this give a
larger capacity than minpy Indet [I + pNtIWDQSDfWH] and hence shows
the first inequality. The second inequality follows from the concavity of In det.

The LB is obtained by doing the maximization in (5.27) over the subset of
diagonals (S = Dy)

(5.27) > max minIndet [I+ pN;, WD, DD W]
S:tr{pn,Dsi<r D, (5.29)
> max  Indet [I+ pN,,WDsW"] = LB. '

S:tr{meDs}gP

It is easy to see that the expressions of the upper and the lower bounds are
the same. We conclude then that LB = UB = (5.27), and that the solution
of (5.27) matches the solution of LB, hence it is diagonal and corresponds to
the same solution of the outage capacity optimization (5.24).
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Models 2 and 3 can be adapted to the Min-Max Problem by modifying
the distributions of Dy and D in order to avoid the zero capacity solution.
For example by choosing a truncated Gaussian distribution that takes into
account the most likely values or by choosing other bounded distributions.

5.5 Simulation Results

5.5.1 Pathwise Model

We first present results of a simulation study for pathwise model. In the
simulations, we used Uniform Linear Arrays (ULAs) with half wavelength
inter element spacing both at the transmitter and the receiver side. The
path variances were generated randomly from exponential distribution with
mean 1. At the receiver, the Directions of Arrival (DOA) were generated
from uniform distribution on the interval [—m, w]. At the transmitter side, the
directions of departure were generated from Gaussian distribution with mean
0° (array broadside) and standard deviation o = 5°. In all the simulations
the trace of the channel covariance matrix at the transmitter was normalized
to be equal to 1.
We compare seven different cases.

1. Instantaneous waterfilling: waterfilling solution for every realization of
the channel. This assume perfect CSI at Tx and gives hence an upper
bound for the ergodic capacity with any transmit covariance matrix.

2. Optimum: solution obtained by the numerical method described in
subsection 5.3.4.

3. Approximate waterfilling: waterfilling on the channel covariance matrix
(subsection 5.3.3).

4. Separable model: solution based on the separable spatial channel model.

5. Large SNR: large SNR approximation in (5.14) or (5.16) depending on
the dimensions.

6. Beamforming: optimal solution for low SNR in (5.9).

7. No channel knowledge: S = NL“DI.



110 Chapter 5 On MIMO Capacity with Partial CSI at Tx

In the first experiment, the number of paths is small (poor scattering

environment). We use Ny, = N,, = 4 and L, = 2. Figure 5.1 presents the
result averaged over 100 Monte-Carlo realizations for the angles, and for each
set. of angles, 1000 Monte-Carlo realizations for the path amplitudes. The
results show that the approximate waterfilling gives nearly optimal results,
especially for small values of p. It can also be seen that the difference between
the high SNR approximation and optimum solution decreases as p increases.
The capacity for the transmit covariance matrix which is optimized for sep-
arable channel model is very low.
In the second experiment the number of paths is changed to 10 (rich scat-
tering environment). In this case the capacity obtained with the solution
of the separable channel model is much better than in the previous experi-
ment. This is due to the fact that the pathwise channel model converges in
distribution to the separable spatial channel model as L, tends to infinity
[73].

5.5.2 Limited Reciprocity

We consider now the case of limited reciprocity, with N,, = Ny = 4 for
all simulations. The presented results are averaged over 100 realizations
for W, for which every element was generated independently from CN(0, 1)
distribution. For every realization of W, the capacities were averaged over
1000 Monte-Carlo realizations for D; and Ds. For Model 3, we use €2 = ¢3 =
0.1.

Simulation results are presented in fig. 5.3, 5.4 and 5.4. It can be seen
that for Model 1 and Model 2, approximated waterfilling gives near opti-
mal results. Therefore, as in the case of pathwise model, waterfilling on the
covariance matrix seen from the transmitter is almost sufficient. Similar con-
clusion can be done from the observation of the result for Model 3.

5.6 Conclusion

We studied the ergodic capacity of two models for partial channel knowledge:
the pathwise channel model with knowledge of the slow varying parameters
at the transmitter and the limited reciprocity channel model. The simula-
tion studies and the theoretical results show that waterfilling on the channel
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covariance matrix at the transmitter leads to almost optimal capacity. As a
conclusion we can state that the additional information obtained seems not
to be very significant. To achieve closely optimal capacity, only the covari-
ance matrix information is required at the transmitter.

The simulation results for the pathwise model also show that the use of
separable spatial channel model to optimize the transmit covariance ma-
trix results in loss of performance especially for small number of multipaths.
Beamforming used in the multipath environment gives close to optimum per-
formance for low and middle range SNRs.

We also introduced the Min-Max Problem for the limited reciprocity model,
the solution of this problem in case of phases ambiguities leads to the same
solution as the ergodic capacity maximization problem.

35 T
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Figure 5.1: Result for Ny = N,, =4, L, = 2.
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Figure 5.2: Result for Ny, = N,, = 4, L, = 10.
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Figure 5.3: Results for limited reciprocity, N,, = Ny, = 4, Model 1.
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Chapter 6

Mutual Information without
CSI at Rx

In this chapter, we analyze the Mutual Information (MI) between the input
and the output of a MIMO system in the absence of CSI at Rx and Tx. To
that end we consider two popular models. The first one is the block fading
model and the second one is the time selective channel. We assume that some
training/pilot symbols are inserted at the beginning of each burst. We show
that the average MI over a transmission burst can be decomposed into symbol
position dependent contributions. The MI component at a certain symbol po-
sition optimally combines semi-blind information up to that symbol position
(with perfect input recovery up to that position) with blind information from
the rest of the burst. We also analyze the asymptotic regime for which we can
formulate optimal channel estimates and evaluate the capacity loss with re-
spect to the known channel case. Asymptotically, the decrease in MI involves
Fisher information matrices corresponding to channel estimation problems.
Finally we suggest to exploit correlations in the channel model in order to
improve estimation performance and minimize capacity loss.

117



118 Chapter 6 Mutual Information without CSI at Rx

6.1 Introduction

In the previous parts of this thesis the channel was assumed to be perfectly
known at the receiver. This assumption is considered in general in order to
decorrelate the problem of the Tx and the Rx design from the channel esti-
mation consequences. In fact, for cases where the channel remains constant
over a large burst (we consider a transmission by burst), we can always use
enough training sequence to allow a good estimation quality of the channel,
with neglectible loss in capacity. However, in cases where the burst is of
limited length or for time selective channels were the channel varies over the
burst, the assumption of perfect CSI at the Rx is no more valid [77, 78, 79].
To stay in the conventional schemes used in practical system, we assume that
some training/pilot symbols are inserted in the beginning of each burst. Our
study focuses on the MI between the transmitted burst and the received sig-
nal. The capacity is the average of the MI over the burst, maximized w.r.t.
the input distribution. We assume that the Tx have no CSI and consider two
channel models, the block fading model and the time selective model (high
Doppler spead).

In the usual block fading model, the data gets transmitted over a number
of bursts such that the channel is constant over a burst but fading inde-
pendently between bursts. For such a channel model, the capacity has been
previously studied in [80, 81]. The capacity in these works is achieved by
optimizing the distribution of the all burst input, which has a length equals
to the coherence interval of the channel. A burst with such a distribution and
size may be difficult to code and decode. In our work we consider a practical
point view where blocks of a small size have independent distributions.

The second model that we consider is the time selective channel model (high
Doppler speed). The channel is assumed to be constant over small blocks,
of size the number of transmit antennas, and varies along the burst as a
Gaussian stationary process.

This chapter begins with a preliminary section where we present the gen-
eral flat fading channel model and derive a serial decomposition of the MI.
This decomposition suggests to use a semi-blind channel estimation. The
following section studies the asymptotic behavior of the capacity for block
fading channel and large burst length. We then show that the optimal chan-
nel estimator, in order to reduce the capacity loss, is the semi-blind MMSE
one. The time selective channel model is also studied and we derive bounds
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on the capacity. Finally a correlated MIMO channel model is introduced in
other to improve the performance by exploiting the channel structure.
Results presented in this chapter were published in [82, 83].

6.2 Mutual Information Decomposition

6.2.1 General Flat Fading Model

We consider transmission over flat fading MIMO channel for a particular
burst of T" symbol periods. The received signal at time index k is

ye = HVxp + vy 6.1)

The channel can be a block fading model, except that we shall refer to a
block as burst. In this case, the channel is constant over the burst

H® = H, Vk.

Another model, used in this chapter, is the time selective model when the
channel varies over the burst. Its instantaneous value is then dependent on
the index k.

We assume the use of a training sequence (TS) of length Npg pilot symbol
vectors. The length of the transmitted data, also called “blind” in the esti-
mation terminology, is then Ng so that Nyg + Ng =T.

We can decompose the burst signal into training and data parts X = [XTS, X7,
Y = [Y"™, Y5 and V = [V"®, V®]. Y and V are N,, x T matrices where
X is Nyp x T.

We assume also that the transmitter can code over different bursts, so that
the instantaneous capacity is replaced by the ergodic capacity in the block
fading model (see subsection 1.2.2).

In the following, we derive preliminary results on MI which are valid for the
two channel models.

6.2.2 MI Decomposition

As stated in [79], using the chain rule [84], the MI between the input and
the output of flat channel satisfies

[(YTS,YB;XB‘XTS) — I(YTS;XB‘XTS) +I(YB;XB|XTS,YTS)
— (YR XPXTE YY),
(6.2)
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where T(Y"%; X®|X"%) = 0 due to the independence between X* and (Y"*, X”¥).

Consider now a partition of X? in @ blocks X? = [X,..., Xg].
X;, 1 =1,..., are assumed to be independent from block to block; this
corresponds to the usual case of block-wise coding across bursts in STC
schemes. Furthermore, we assume that the V;’s are independent between
blocks. The block lengths T;,2 = 1,...,Q where ZZQ T; = Np, are identical
for STC schemes. More generally, we assume in the following that they can
be different, but bounded by a constant.

We define for & >0, XE = (X, Xigq, .., X and YV = [Y,, Yigr, ..., Y4
Then

TY P XPXT, YT = I(YF: X, X5 X7, YT

I(Y2: X, XS Y79 4+ 1(YY; X X5, Y79, X))

= I(Y9; X, |XT9 Y79 + 1(YS: X$|1XT9, YT5 X, Yy)
+I(Y; XX YT X)),

=0

(6.3)
where
I(Y; XE X", Y75 X)) = h(Y, X", Y"5, X)) — h(Y, X", Y"5, X, X9),
h(.) is the entropy measure.
Considering the fact that XQQ is independent of Y, conditioned on
(X%, YT9 X,), we have h(Y, X" Y79 X,,X9) = h(Y,XT%,Y"5 X))
and finally 7(Y,; X9|X7%, YT¥ X,) = 0.
Iterating the equation for i = 2,..., (), we get

I(YB;XB‘XTS,YTS) — ZQ ](YQ X |XTS YTS Xl 1 Yl 1)

_ ZI Z+1, XTS YTS X’L 1 Y’L 1)

J/

-~

=0
+ 2 (Y XXX YT YL YR )

_Y,
= ZZQ:l I(Y’H Xi‘XTsa Xil_l: ?2) )

(6.4)
where Y; contains all the received signal except Y;. In order to show that
I(Yﬁl; X; X7, YT X7 YY) = 0 for every i, we used the same argu-
ments as the one used for eq. (6.3).
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Eq. (6.4) shows clearly the way of processing to achieve the capacity: for
every block, we use the already detected blocks as a (Data-Aided (DA))
training sequence (in addition to the actual training), and use the not yet
detected blocks as blind information.

We can also reorganize the MI as follows

[(YB;XB‘XTS,YTS) — EQ:ZQ_I ](YZ-Q;XZ'|XTS,YTS,X11171,YZ‘171)

= ) (Y XX YT XL Y

i=1
N 7

R (6.5)
Q-1
+ Y I(YE XX YT X YY)

1

(.
Il

J

~~

12

The MI can then be seen as the sum of two parts,

I(YB, XB|XT5 YT9) = I1 4 I2 where:

11 is the rate that we can achieve by using only the already processed blocks
for side information (DA training).

12 is the additional amount of rate that can be achieved by exploiting the
blind information contained in the not yet detected blocks (future blocks).

Before we continue this chapter, we define the average MI as I,,,(T) =
LI(Y?; XP|X"9 Y"5). The capacity equals I,,,(T) optimized w.r.t. to the
input distribution (under the power constraint).

6.3 Asymptotic Behavior of the Capacity for
Block Fading Channel

For block fading model the channel is constant over the burst (H® =
H, Vk).

In the following, we want to show that the average MI goes to the coherent
MI I(y;x/H) for large T (large burst length) and fixed Npg. The blocks
lengths 7,7 = 1,...,(Q are bounded by a constant, then when T grows, ()
also grows. Hence, () is an increasing and unbounded function of T', we de-
note it by Q(T).
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1
The coherent ML is I(y;x|H) = 71i1rn T[(Y; X|H). An upper bound is given
—00
by

Tang(T) = #(h(X”) = h(X7IX"* YT Y"))
< LX) - nXP X" Y5 YR H))
1 B BB (6.6)
= 7(MX") = h(X"Y", H))
= LU(Y:X[H) - (Y75 XS |H)).
I1(Y"?; XT%|H) is a positive quantity, we conclude that
lim 1,,,(T) < I(y;x/H). (6.7)

T—oc

Written in term of the entropy the MI is
I(Y; X X795 XL Y,) = h(X) — (X XT, XYY, (6.8)
Let A = H(XT5, X', Y;) be an estimate of the channel based on

(XT9, X1 Y. " is hence a reduced statistic of (X7, X171 Y;). Since
reducing the conditioning increases the entropy, we have

T(Y: X X7 XN Yy > h(Xi)—h(Xi\IfI(XTS,Xﬁ‘l,?i,Yi),Yl-)
= h(Xy) - A(X| Y, HX™ X7 Y)))
I(Yi;Xz‘\ﬁ(l))-

(6.9)
If we choose H'' = H(X"5 X' Y,) to be the optimal estimate of the
channel (statistic of reduced dimension), it satisfies lim A" - u almost
71— 00
surely.
We have then
gy Ty (T) > 1imT%O%Z?:(1T>I(Yi;Xi\ﬁ(“)
= 1imT%O 1I(YB XB\H)
= I(y:x[H),

where in the third inequality we used the independence between blocks given
the true channel value.
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Combining (6.7) and (6.10) we conclude that

lim lI(YB;XB\XTS,YTS) = I(y;x|H). (6.11)
T—oo T

This means that, as T grows, adopting the detection method per block, and
the associated channel estimation allows to reach the capacity of the system
with perfect CSI at Rx.

Remarkl: As T grows, the use of detected blocks only to estimate the chan-
nel allows to achieve asymptotically the MI I,,, of the system. But for finite
T, it is necessary to also use the blind information to reach it.

Remark2: The MI expression of eq. (6.4) does not make any difference
between training and past detected symbols. Then for a fixed T, and when
all the entries of X (training and data) are i.i.d., it is easy to see that the
average MI I,,, of the system is maximized when the number of the training
symbols Nrg is as small as possible (i.e. allows semi-blind identifiability of
the channel).

6.3.1 Channel Estimation for Block Fading Model

The ergodic capacity C of the system is the maximum of I,,,(7") over all
input distributions, under a given power constraint. We have

Q
1
Y I(YiX, a") <o < max —I(YE,XPH).
B

i=1 pX ),tT(RXB)SNBNtN%

(6.12)
For an AWGN with power ¢? and in the absence of CSI at Tx, the max
in the upper bound of the ergodic capacity is attained for a centered white

Gaussian input with covariance 021y, (subsection 1.2.2). Hence,

(4) T — Nrs

<C<L
)<0<—

Elndet(I + ;’HHH) (6.13)
g,
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The received signal is

ItI(l) X; + ﬁ(l) X +V; (6.14)
= I/_\I(Z>Xz'+vi+zia
where Z; = ﬁ(i) X;.
The MI satisfies
~ (i) -~ (i)
I(Y;, X[H") = h(Y \H ) = h(vix, 8 0 (6.15)

— Y, Y — w(v, +zax, 8.

Assume ﬁ(z) to satisfy the Pythagorean Theorem (PT), i.e. H is decorre-
lated with H. For a Gaussian X it was shown in [79] that a lower bound
for I(Yi,Xi\I/-\I(Z)) is given by Considering Z; as an independent and white
Gaussian noise, with covariance o7 I where

== (i) H
0l = 7y L —tr E(Z,Z) = 2tr E(I_}VMH = Nmaia%(i) and
) B """
O = Nyw N

A lower bound is

C > Y (Y X[H")
(1) ~ (i) H 1
Z TZ TElHdet([—FWM H ) (6 6)
— ()= (i) H _p == (i)
Let 0%, = tr E(},_I NH ) and H() - H —. Then because the channel
H rx Ntz 0'/\(1)

estimator satisfies the Pythagorean Theorem, we have
2 2 2

0 i+ 0o, =0z Now
a"” q"” m

o oz (oF— UQﬁ(z))
C>1yQ TElndet(IJrW ) (6.17)

:CLB-

The expectation is over the distribution of ﬁm, which remains close to that
of H. Then the given capacity lower bound Cp depends primarily on the
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Mean Square Error (MSE) of the channel estimator Y. Since Crp is a
decreasing function of the MSE, the optimum estimator is the Minimum
Mean Square Error(MMSE) estimator
2 10) 210) TS ~ri-1 N7
Hyyse = Hyusp(X 3 X1_:Yz‘)
= BHX", XY,

which is an unbiased estimator of H. The performance of any unbiased
estimator can be bounded by the Cramér-Rao lower bound as

(6.18)

R-w-o =ER"n"" > j 0 (6.19)
2"k

where h = [R(vec(H))” S(vec(H))"]” and vec(H) = [h{, ..., h}, ]” denotes
H written in a vector form. J is the Bayesian Fischer Information Matrix
(FIM) for the a posteriori distribution of H, and is in this case

g6 — _po (mpHX"X Y !
o oh oh
i i— T
— _Ei alnp(XTsaYTsaxl 1:Y1 1|H) (620)
oh oh ’
J(Dillt’r‘aining
T
dh oh oh oh ' '
Jlgz)rnd J]Ei‘)ior
We have a%(i) > Rij;\,: This is an absolute lower bound on the channel

estimation MSE. The MMSE estimator achieves this bound asymptotically
(NB — OO)

6.4 Capacity Behavior and Bounds for Time
Selective Channel

In the following we seek to study the behavior of the capacity for time selec-
tive channels. We first derive theoretical bounds on MI. Then we analyze the
capacity behavior for the differential encoding case, where the input blocks
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are constrained to be unitary, and generalize the analysis to the general un-
constrained input case.

The channel is assumed to be constant over a block of Ny, symbol periods.
Further variation of the channel during this block is included in the thermal
noise. If we fix T; = Ny, Vi, then Y; = [y; n, 4155 Y(is1) &, Jand
Xi = [XiNyy+1s- -+ X(i41) Nio |- The blocks X; are assumed to be i.i.d..

We denote by L(L = T/Ny,) the total number of blocks, and integrate the
pilot symbols with the already detected symbols. The i*" term of the MI is
then

1Y XX Y5) =109 (6.22)

I® can be written in term of the entropy as
I(Y; XX Y) = h(X5) — (XX Y). (6.23)
The entropy increases when the conditioning is reduced, hence
h(X;| X5, Ys) < (XX YS) < h(X XL Y. (6.24)
Upper and lower bounds of the MI can then be found as
(Y X X7 Y < 19 < 1(Y; XX, YY), (6.25)

The channel is assumed to be a stationary Gaussian process. The conditioned
joint probability of X, and Y, is then

p(Y:, XX Y = /H(i)p(Yi,XiH‘”)p(H"’X"fl,Yi‘l)- (6.26)
Let h® = vec(H®), hit = [hOT . p6-DTT p = B (ROpOT)
r = E (A= h®") and R® = E (hi='h1"). Then

YN0 = xi-Lpi=T L yist where YT, ViT! correspond to Y1, V! writ-

ten in vector form.

3

i—1
We denote by X'~ = [@ X 1@y, =X ' @1y,,.

k=1
Since A" and (Y'th’”(i_l) |X%~") are mutually Gaussian, then (h() |Y1Ntz(i—1), X
has a Gaussian distribution with mean

B = @01 (21 o ROX) Ty N (6o
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and covariance
EMR"") = ¢y — p@ i1 (o214 it RO 10100 (6.28)
The MI is then:

T(Y: X, X0, YY) = 1(Ys X hY) . (6.29)

This MI corresponds to a channel with an instantaneous value I/-\I(i) and an
additive noise \N/'Z = ﬁ(z) X;+V,, Y, = Itl(w X; + {71 '

The noise V; depends on X, and X!~ !(the statistics of a" are function of
Xih.

The same results can be stated for I(Y;; X1X;,Y;), where now X; (resp.
Y,) plays the role of X% *(resp. Y. 1).

6.4.1 Case of Differential Encoding

We study this case because it leads to channel estimate statistics that are
independent of the inputs. This allows us to derive close-form formulas for
the bounds on the capacity.

We consider a time selective fading channel with spatially i.i.d. Gaussian

elements, i.e. .
EHH® = (i — k)0i_mpn - (6.30)

The channel covariance is hence R = Rg” Iy, N,,, v = ri) ®1n,,n,, and

7, equals s(0)Iy, .y, = 0:ln.. N, with (Rg“)l,, = s(l — p) and (rgl))l = s(l)
1<lp<i-1).
For differential encoding schemes X;/1/N,02 is unitary, then (A |Y1N“”(171), X4
follows a Gaussian distribution with mean

B = ({(r®" (02Lies + Nuo?RO) ™)) @ Ly v, X107 (6.31)

S

and covariance ) H

where a%m = (5(0) = r{" (62/(Nypo?)Ti_y + RO 1p{).

Due to the unitary character of the input, the equivalent noise {/'l is inde-
pendent of the input X; and follows a centered white Gaussian distribution
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of covariance o} Iy, y,,, with o} = o7 + Ntzasz%m- 0%@) corresponds to
the estimation error of Hl(;) from the already transmitted and decoded signal
blocks. Due to the stationarity of the process X; and Y, a;l(i) is a decreasing

function of (i) and tends to a limit value lim;_, a%m = a%loo. The approx-

imation o2, ~ a%loo is valid for i >> L., where L.y, is the coherence

time of the channel. This approximation corresponds to the steady-state. It
is considered to be valid for all the data symbols if the TS is long enough:
NTS >> NtmLcoh-

a%loo is the infinite horizon mean square prediction error variance of H,

0_2 e i{iz ln(s(f)+ N;EOJ )df _ 0-’121 (6 33)
hOO N Nt:co-% , ‘

where S(f) =", s(k)e 7>/,
For i >> Lo, I(Y;; Xi\ﬂ(z)) is independent of the index 1.

Let Cy(p) be the ergodic capacity of a N,, x N;; AWGN and Rayleigh flat
block fading channel. The channel has i.i.d. elements of Gaussian distribu-
tion EN(0, 1), and the Rx has perfect CSI (and none at Tx). For Cy(p), the
input blocks of size N;, x Ny, are constrained to be unitary and follow the
same distribution as in the differential encoding case, and finally the additive

white Gaussian noise follows the distribution CN(0, N%p)
Then ’
1 ~(i
1Y X [8") = ey (7). (6.34)
tx
where
02(02—02 )
peff - Nty 0'3‘|‘Nt1:0'%0'2voo
o2 0o
Tk (6.35)
= p Gh2 )
1+Nt2zp 02
and p = 7%

Nigo®
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Hence, the lack of CSI at the receiver results in a loss of SNR of 10 log;, ;2

1+Nt21p 512
h
dB.
We can also see that this loss increases with the SNR (= N;,p) and with the

o2 oo

2
normalized channel estimation error f};i . For large SNR (p >> NE::OSQ) the

2
capacity gets saturated at G = @y <0207hN2 — N%), where a%loo,o is a%loo
7 00,0  tx tx

in the absence of noise.

The same development can be done for the upper bound. The steady-state
of the upper bound is considered to be valid under the both conditions
1 >> Loop and L — 1 >> Ly,

The upper and lower bounds of I are then

B O'E B ano,m
1 1 0_2 . 1 0_2

N Cu | p—"xz | < 1% < N Cu | p 5 , (6.36)

tx > h t 9 L

L Niwp h L4+ Ngp U}Zz,m
2 _ /2 df 1 a2 . . . .
where 02 = [f—1/2 ——] %> is the infinite horizon mean square
m S(f)‘i'm S

interpolation error variance of Hy,.
Under the constraint of unitary input distribution, the capacity equals the
average MI. For large T this average MI satisfies

I3, = Jim L (T)
1L

= i (i)
MR ING 27 (637

Niw (it sos

Hence it is bounded by
0’%2 02400
1— g% 1— IIU2 m

Cu | p—0 | <1z, < : . (638)
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The distance of the capacity w.r.t. the upper bound (resp. lower bound),
depends on how much significant is the information on the channel provided
by the blind part of the signal ( i.e., the non decoded signal at time (i):
YL ).

i+1

effective p

\ /

/ logy0(p)

Figure 6.1: Effective SNR for time selective channel

Fig 6.1 and 6.2 show the behavior of the effective SNR and the capacity
as functions of the input SNR. We can see that the lack of CSI at Rx results

in a proportional loss for medium SNR and a saturation for high SNR range.
N2 02 o0
This behavior is valid for relatively small 0121 (otherwise the medium

SNR part of fig. 6.2 disappears). '

6.4.2 General Case

We will now give upper and lower bounds on the achievable ergodic capacity.

The inputs X; are i.i.d. with unconstrained distribution. We assume the
(1)) H
h' )=

[5(0) T (1 ©Ty, ) X' (G212 ROX )00 (1, 1,
= C’ov%) ® Iy,,. This shows that the rows of ﬁ(z) are i.i.d. with covariance

Cov®.
O’Uh

same channel model as in the previous subsection, then E (ﬂ
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Perfect channel Knowledge at RX

capacity(bit /s/Hz)}

Time selective channel

Cma:t 1 )

.—-——-—"'/ >

10%10(,0)

Figure 6.2: Capacity behavior of time selective channel

We define 0%(1-) = N%rtr{Cov%i)}, as in subsection 6.3.1. A lower bound to

I(Y;; Xi\ﬂ(i)) is given by

. 2ot~ ;)
(i) (i) __
I(Y; X;h )ZNmElndet(Hm ) (6.39)
h" '

= O

In appendix 6.A, it is shown that an upper bound to I(Y; XX, Y;) =
(Y35 Xy ) is

0’% (0'2 *Ji(i) )

1(Y: X, [h,,) < Ny Elndet(7 + e HH )
v TN Om 00 (i)
XZ-HCOU%: Xi+0;2,f]nvm " (640)
—N,, Eln det( TN, ) =Chy,

—)
h .
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and in appendix 6.B, we show that
Xf{Cov@ Xi+a,%INtz XfCov@ X
0 < — Elndet( m ) < — Elndet(——yftm ).

03+Nt10302~(i) Nma%aw(i)

This additional term behaves like a measure of the deviation of the distribu-
tion of X; w.r.t. the unitary matrices manifold. In fact, for X; unitary this
quantity is zero. Another observation is that the white Gaussian noise case
is the worse one: it is then natural that the additional term in the upper
bound is positive.

Summarizing, we have shown that
cil <10 <l (6.41)

For large SNR (>>

7th§m2) the distribution of I/-\I(Z) (resp. IfI(Z)’m) is inde-
“h

pendent of the index 7 and C’ovg) = J%M,OINW

~(2)~(2) H
E(h( )h( ) ) = (0-}21 — U%M,O)INWNM
Q) ) NORNOR 2 2
(resp. Covp’ = 0tso Iy, E(hy, by, ) = (0] = ofwo Ingn,, ).

6.5 Correlated MIMO Channel Model

In order to improve channel estimation and reduce capacity loss, it is advan-
tageous to exploit the correlations in the channel, if present. So consider the
frequency-flat MIMO channel: H (N,, x Ny,), h = vec(H). The correlated

channel model we suggest, is

h=U,s, (6.42)

where the elements of s are taken to be i.i.d. Gaussian for a stochastic model,
and the correlations are captured by Uy,.

This model applies for channel models we have used in the previous chap-
ters:
Separable spatial correlation model
H=R"””WR/'?=U,=R""®R)” and s = vec(W).
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Path-wise channel model
H:Zszalbf = Uh:[b’{®a1, b;®a2,---].

i
The model h = U, s is straightforwardly extendible to the non-zero
delay-spread case.

6.6 Observations

To approach capacity, channel estimation should exploit prior information on
the channel plus data (decision) aided information and blind information. In
fact, the symbol-wise decomposition of MI involves, for each symbol position
in a burst, a channel estimate that is based on: prior channel distribution
information, training and detected inputs up to that symbol position, and
blind information in the remaining channel outputs.

The MI decomposition can be extended to channels with physical delay
spread, or artificial delay introduced by precoding (STS of Part I). In this
cases it suggests the use of conventional MIMO DFE Rx like the one proposed
in chapter 3. Such a Rx have to be coupled with symbol-wise semi-blind chan-
nel estimator.

Estimation methods that combine the training and blind information are
called semi-blind. In the next chapter we propose a new family of semi-blind
methods that model the undetected symbols as Gaussian, in which the blind
information is called Gaussian information.

For the block fading model, in order to have asymptotically (in burst

length) negligible capacity loss (w.r.t. to perfect CSI at Rx case), enough
training symbols are required to have identifiability of the parameters that
cannot be identified blindly. In general, blind information improves identifi-
ability and reduces training data requirements.
The recursive MI decomposition may suggest a practical approach for chan-
nel estimation. However, simpler practical approaches would pass through
the bursts iteratively. In the first iteration the semi-blind channel estima-
tion uses the undetected symbols as blind information, whereas in the next
iterations it is the soft decision on that data that are used as blind informa-
tion. This can be realized by coupling an iterative Rx like the one studied
in chapter 4 with a channel estimator.
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These results extend to the time selective channel model case. In the
steady-state, channel estimation should be based on the semi-infinite past
detected symbols, and semi-infinite future blind information.

The exploitation of prior channel information channel, for example chan-

nel correlations, reduces the (effective) number of degrees of freedom in the
channel: the training requirements is then reduced. Hence, channel with
i.i.d. entries, while optimal from an outage capacity point of view (highest
diversity gain), is the worst case from the channel estimation point of view.
Prior channel information (and Uy, in the channel model) gets estimated by
considering the data in multiple bursts jointly, assuming the parameters are
invariant across a large set of bursts.
Finally, the proposed channel model is useful for the introduction of partial
CST at the Tx (see chapter 5). Indeed, if the transmitter can know the chan-
nel correlations summarized in Uy, in h = U, s and only lacks knowledge of
the fast fading parameters s, the channel capacity is closer to that of perfect
CSI.

6.7 Conclusion

The study of the MI of a burst transmission over fading channels, with no
CSI at Rx and Tx, suggests sequential detection of symbols or blocks in the
case when STC scheme is used. At a given symbol (block), the channel is
re-estimated based on TS, past detected and future non-detected symbols.
The actual symbol is detected and included in the data aided part (TS plus
detected symbols) to be used in next the iterations for channel estimation.
For a block fading model, where the channel is constant over the burst du-
ration, this way of processing ensures that the MI attains the capacity with
perfect CSI at Rx for large burst lengths.

However, in the case of time selective model, where the channel is continu-
ously varying, the capacity saturates for high SNR. Bounds on the capacity
in this case are given in term of the prediction/smoothing estimation error
variance of the channel.

The estimation suggested by the MI decomposition combines the data aided
information and the blind information. Such semi-blind methods are pro-
posed in the next chapter.
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APPENDIX

6.A Appendix A

We would like to find an upper bound to

I(Y: X BY) = h(YiR) = h(Y,[X:, B, (6.43)

where Y,; = I/-\I(i) X, + \~/(m)

)

The entropy h(Y; |f17(n)) is maximized for white Gaussian X; and {/'Em), then

WY, BY) < NgElndetme <(Nmaga%(i) 402y, + o2H ﬁﬁfjH>

05(0121702;7(71) ) ) ‘
= Nt:r Eln det(INm + WHS}HSB H)
E m
+ N,y Niy ln(Ntxagai;(i) +02),
m
(6.44)
. =5 (i)
where ﬁ;? = 21_17’;
Th ()

The entropy h(Y.[X; 2 equals A(V" X, B) with V" = B X, + V,.

Since ( |X2, h, ) has a Gaussian distribution, we can write

(@)

WYX BY) = EY X+ ViX, )

g A4
= N,,Eln det(XlHC’ov%l)mXi + 021y, ), (6.45)
Finally we have
~(0) G R
=0HO ()
Xfc’ov@ X:jra;fINt (646)

—N,, Elndet( h.

;
02+ Nizo202

(@)

,m
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6.B Appendix B

In this appendix we seek to show that

X-HC i;) Xi+02]:Ntz XZ-HCOUIIQ Xz
0 < —Elndet(—y 2 T ) < —Elndet(Tﬁ’S).
We first notice that the function " ’
Cov "
Ntzaiai(i) o thN:%ﬁ +012;IN,51
2 2 _ " h . .
f(axaﬁ(i) ) = Ex Indet T NeotoT is a decreasing
o h .
one. "
- e XX —0) _ “hu .
e quantities XX; = == and Covsy” = — are normalized and
e hm 72
independent of 030%@-) . then ’
m
Bf(g%gi(i) )
h ,m _ Nt10'3
80301(2.) - QM . (Nigo20? @) +02)
h ,m h ,m ,m
75 2
— EX tr{[N;z02 0~(,) C’ov~ XX; + 0?1y, ]}
o (2) h ,m
h
Nt:c v
S 0.2 . (th;O'QO'Q @) _I_a-2>
h"” i h . "
_aij tr{[aﬁa%(,) C’ovﬁ mEXiXXi + 02y, ]t}
h' , m ’
Ntzav
S 2~ ; (Ntsz%ffi(l) +012))
h' h .
2 'u Ntz
E(‘) tI'{NtIa%a%(i),mCovgﬁ),mEXiXXi+agINm}

(6.47)
The second equality can be shown by writing the eigenvector decomposi-
tion of (]\Qgﬁa2 ;() C’ovf1 XX, + 021y,,) and exploiting the concavity of

g(x) = . The thlrd inequality also exploit the concavity of g(x) = —z~!

to show that —trM ™" is upper bounded by —Nj,(trM)~! for any hermitian
positive definite N, x Ny, matrix M .
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We have shown that f(o202,, ) is a decreasing function over [0, 00),
m
which allows us to write

£(o0) = Indet(Covl )+ By Indet(XX;) < f(aza%(i) ) < f(0)=0.

hm m
(6.48)
This shows that
XZHCOU@ X; +0lly, XZHCOUE) X
0 < —FElndet il < —Flndet(——="2—).
- n det( 02 + Nyo202 ) < n et Nyo202 )

(6.49)



138 Chapter 6 Mutual Information without CSI at Rx




Chapter 7

Semi-Blind Estimation for
MIMO Channels

As we have seen in the previous chapter, the mutual information analysis
suggests the use of semi-blind techniques for the channel estimation. In fact,
the high number of coefficients in the MIMO channel response (number of Tz
antennas times number of Rx antennas times delay spread) allows to achieve
high diversity and to improve the outage capacity. But, at the same time, it
represents a challenge for channel estimation as it imposes the use of a longer
training sequence (TS) leading to a rate loss. In this chapter, we augment
the TS artificially by including the blind part (unknown symbols) information
and the non pure training information. This allows to reduce the TS length
needed for channel estimation and hence to save rate. We use semi-blind
approaches that exploit both training and blind information. Though these
techniques present a larger complexity than that of training base techniques,
their complezity remains however very reasonable. For the flat channel case,
the technique we present achieves the Cramér-Rao Bound. In the frequency-
selective channel case, we use a quadratic semi-blind criterion that combines
a training-based least-squares criterion with a blind criterion based on linear
prediction.

139



140 Chapter 7 Semi-Blind Estimation for MIMO Channels

7.1 Introduction

The formidable capacity increase realizable with the multi-antenna systems
has been shown [2, 81] to be proportional to the minimum of the antenna
array dimensions for channel with i.i.d. fading entries. At least, this is the
case when the receiver has perfect CSI. This condition is fairly straightfor-
ward to approach in SISO systems by inserting pilot/training data in the
transmission, with acceptable capacity decrease [77]. For MIMO systems of
large dimensions, the training overhead for good channel estimation quality
becomes far from negligible, especially for higher Doppler speeds such as in
mobile communications. The effect of channel estimation errors on the MI
has been analyzed in [78, 79]. In order to reduce this degradation due to pure
TS estimation, semi-blind approach have to be used. In fact, in the previous
chapter, we have seen that semi-blind channel estimation is suggested by the
MI decomposition. Using such an approach coupled with a DFE processing
at the Rx, allows to achieve high performances and reduces the capacity loss.

Most of semi-blind techniques exploit the existence of signal and noise
subspaces when N,, > N;. In fact, the presence of these subspaces has led
to the development of a large number of blind channel estimation techniques
over the last decade[85, 86, 87, 88]. Some of these techniques are relatively
simple due to the modeling of the unknown input symbols as either determin-
istic unknowns of uncorrelated random variables, other are more complex and
exploit the finite alphabet nature. The uncorrelated case is also called the
Gaussian case because (only) second-order statistics are exploited. However,
most of these blind techniques are not robust in the sense that they often re-
quire a precise knowledge of the channel length(s). Moreover, if transmission
zeros can be handled, they are required to be minimum-phase. Furthermore,
the blind techniques leave channel ambiguities, which can range from a sim-
ple scalar ambiguity factor for SIMO channels or certain MIMO channels, to
instantaneous or even convolutive mixtures of the sources for other MIMO
channels. On the other hand, all current standardized communication sys-
tems employ some form of known inputs to allow channel estimation. The
channel estimation performance in those cases can always be improved by a
semi-blind approach which exploits both training and blind information. The
training information allows to resolve the blind ambiguities and robustifies
the channel estimates. The purpose of this chapter is to introduce semi-
blind techniques whose complexity is not immensely much higher than that
of training based techniques.
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In the case of SIMO channels, [85] introduces a simple semi-blind tech-
nique, whose blind criterion is based on the Subchannel Response Matching
(SRM) method. The SRM method is also known as the Cross-Relation (CR)
method. In the SRM approach, we use a simple parameterization of the
noise subspace that is linear in the channel parameters. A blind criterion is
then obtained by expressing orthogonality between this parameterized noise
subspace and the data. For use in a semi-blind approach, the data covari-
ance matric should be denoised. This leads to a simple quadratic semi-blind
criterion. However, a linear parameterization of the noise subspace in terms
of the channel parameters exists only in the SIMO case [89].

The present chapter is structured in two parts. The first one deals with

the flat channel case. It begins by an analysis of the ML estimator, the
Fischer information matrix and the asymptotic behavior of the Cramér-Rao
bound (CRB) for large blind part length. Inspired by the CRB analysis, we
propose the Gaussian Semi-Blind (GSB) approach and detail its characteris-
tic. In the end of this part we introduce the Deterministic Semi-Blind (DSB)
approach.
The second part of this chapter considers the frequency selective channel case.
To exploit the blind information in this case we use a parameterization of
the channel based on the MIMO linear predictor. We introduce some linear
prediction basis, in particular the estimation of the MIMO linear predictor.
We show then how to use this quantity to derive quadratic criteria for the
GSB and DSB approaches. Identifiability conditions of these methods are
also derived and an augmented TS part technique proposed. We end this
chapter by presenting some numerical examples.

Results presented in this chapter were published in [90, 91].

7.2 MIMO Flat Channel

In this case, the discrete time received signal is
Yi = ka + Vi, (7].)

where x;, ~ CN(0, 021y,,) and v ~ CN(0,02Iy,,). The received signal frame
contains two parts:

- Training Sequence of Nrg pilot symbol vectors. The training received
signal follows a non-zero mean Gaussian distribution:
yi¥/H ~ CN(Hx!®, 021y, ).
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- Blind part of N data symbol vectors. These follow a zero mean Gaus-
sian distribution: y, /H ~ €N(0,02Iy . + o2 HHY).

In the following, we assume the noise power o2 to be known by the receiver.
We analyze the ML estimator, the Fischer information matrix and the asymp-
totic behavior of CRB for large blind part length. We then propose the GSB
and DSB approaches.

7.2.1 Maximum Likelihood Channel Estimator

The ML channel estimator maximizes the log likelihood probability (LL) of
the total received signal

Hy; 2 arg max LL(H), (7.2)

with

LL(H) £ Inp(Y/H)
= cnst.
Nrs

—1
— o2 ) (v - Hx)T (y[¥ — Hx[")
N k=1

— > ¥y (oly,, +o2HH") 'y,

k=1 7.3
— Nglndet(c?Iy,, + 02 HHY) (7.3)
= cnst.

+ =o't f{(Y"S — HX"HH (YT — HX"9))

J/

-~

X LLrs(H)
+ —Nptr{R '(H)R} — NpIndet R(H),

LLs(H)

Np
where Y5 = [y .. .yI5 ], R= NLB ZYkYkH and

k=1
R(H) = 021y, + 02HH". The LLys(H) and LLp(H) terms are the log
likelihood of the blind and the training parts, respectively. cnst. denotes
constant scalar.
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7.2.2 Information Matrix Issues

Let the singular value decomposition (SVD) of the channel be:
H=UDQ=WQ (7.4)

where U(resp. Q) is a Nyp X min{ Ny, Ny} (resp. min{N,;, Nz} X Nyg)
unitary matrix, i.e UPU = I (resp. QQY = I). Let W = W(a) and
Q = Q(/) be two bijective real parameterizations: H = H(«, $). The blind
part contains no information on Q. The Fischer information matrix is then

JH) = By 4 (M)
— Jp(H) + Jps(H) (7.5)
= Ml JB(Oé) MlT + JTS(H) y
where
dal  oOwrda” " 0a
My =90 = OO (M@ @ Ty,) 00 (76)
h = [R(vec(H))" 3(vec(H))T]T, 7
w = [R(vec(W))" S(vec(W)) ", 7
and
RM)  —3(M)
mon = | 560w i

for any matrix M.
Ev(f) denotes the expectation of f w.r.t. Y. Jg(H) and .Jrg(H) are the
Fischer information matrices of the blind and the training parts. Jrs(H) can
be evaluated easily as

2
:

Jrs(H) = =M (XTSXTSH> ® Iy, . (7.10)

o

The MSE error of any unbiased channel estimate satisfies
E|H|? > Eygy CRB = trEggJ '(H), (7.11)

where CRB = tr (J~'(H)) is the Cramér-Rao Bound on the estimate of the
channel for a given channel realization. We use Egg to average over a possi-
ble statistical distribution of the channel.
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For the design of the TS, the following theorem gives a useful result:
Theorem 1 : For statistical channel H = WQ with Q uniformly distributed
over the Grassmann manifold, the minimum of Egy CRB is achieved by a

white training sequence: X X7 o 1.
Proof : see appendix 7.A.

-1

Asymptotic Behavior If <XTSXTSH> exists (persistently exciting
training sequence), and N >> p Nrg, then the Cramér-Rao Bound sat-
isfies

1
Ery CRB =tr E {J—l(H) P, } +O0(=), (7.12)
H H Ts JTS% (H)M, Npg

where O(NLB) denotes a quantity of the order of NLB The CRB is dominated
by the part of the channel resulting from the projection on the orthogonal

complement of J.& (H)M;. This corresponds to the channel part that cannot
be identified blindly, and hence gets identified only by the training.

Semi-Blind Method In view of the above results, we propose the follow-
ing method:
1- Estimate U and D from the Blind Part:
UD =W = argmax LLz(W)
\%\%

2- Estimate Q from the Training Sequence Part:
Q= argrn(sx LLrs(Q/W =W)

3- Formﬁ:WQ.

This method is further described in the following section.

7.2.3 (Gaussian Semi-Blind Approach

The approach just described above belongs to the Gaussian category because
the blind information it exploits involves symbol’s second-order statistics. It
is also semi-blind since blind and training based parts get combined.
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Blind Part Solution We write the eigenvector decompositions of the true
and the estimated covariance matrices of the signal as

R = U (02 pingn,,,} + 02DH)UY + 02U U

R 7.13
R =U,S. U7, (7.13)

where the subscript e denotes sample estimates, and U' provides an or-
thonormal basis for the orthogonal complement of U.
The blind LL part, up to a constant, is then

LLp(H) = —Nptr{R 'R} — NpIndet(c?I + 02D?). (7.14)
Theorem 2: The solution of the blind part is:
e U corresponds to the min{ N;;, N,,} dominant eigenvectors in U,
e D matches the min{ N;,, N,,} dominant eigenvalues of i ([Se — agleJJr)l/Q
e W=UD
where |.|; denotes the positive semi-definite part of its Hermitian argument.
Proof : see appendix 7.B.

Training Part Solution Given the W estimate, the TS LL part (up to
a constant) becomes

02 LLrs(Q/W=W) = —tr{(Y"5 —WQX")" (Y5 — wQX"*)}
= M {XTSYT"WQ) — (W' WQXTXT5'QH) .
(7.15)
Due to the quadratic constraint (QQ” = I), the solution is non trivial

in general. However, for optimal training X”* X7~ BT, pT9 > 0,
WHWQXTSXTSHQH = BTSWHW, and the TS LL part is then (up to a
constant)

LLrs(Q/W = W) =20, 2R tr{X"SY""WQ} . (7.16)

XTSH

Theorem 3 : For white training sequence, X'* o I, the solution for

the training part is R
Q=VSs", (7.17)
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where S and V denote the unitary factors of the SVD of

XSy W =g » v

Proof : The maximization of (7.16) corresponds to a subspace rotation prob-
lem that is solved in [90, 92].

7.2.4 Deterministic Semi-Blind Approach

In this subsection, we do not exploit the correlations of the inputs. We only
exploit the subspace. The use of this approach is restricted to the case when
a noise subspace of the spatial covariance matrix exists, i.e. N,, > Ny. The
blind information expresses then the orthogonality of the channel to the noise
subspace: UMTH = 0. Using a weighted least squares approach we combine
the blind and training parts in a quadratic criterion

min (af\\YTS ~HX"S|)2 + NB||IAJLHHHH%> . (7.18)

This can be seen as a special case of the approach detailed in subsection 7.3.2,
for flat channel.

7.3 MIMO Frequency Selective Channel

We generalize our channel model given in section 1.1 to the case where
the SIMO subchannels from the different sources (antennas) have different
lengths. The (vector) impulse response from source n has length N, and the
first non-zero vector impulse response sample occurs at discrete time zero.
Without loss of generality, we consider that L = N; > Ny > --- > Ny,.. Let
N = Zle N,,. The Rx signal can then be represented as

n

L1
Ye = > Hixii + Vi
Niw Nacl
Ye = Z Z hy, (D) 2y (k—1) + vi (7.19)
n=l 1=0
= Y H AN () 4 v,
n—1

= HYXN (k) + v,
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with H*™ = [h,(0) - - -h,(N,—1)],HY = [H"" ... H¥™w | and
T
XN (k) =[x, (k) - - -xn(k—Nn—l—l)] XN (k) = [Xl’NlT(k) - -XNmNNmT(k) .
(7.20)
In the case of frequency selective channel the TS and Blind parts interfere,
the training and blind LL parts are hence no longer separable. To continue to
express the LL separately, we assume the use of a cyclic prefix and neglect
the effect of the interference with the training signal when evaluating the
blind LL. This is correct asymptotically in the length of the blind part Ng
for Ng >> max(Nrg, L), and leads, up to a constant, to

Np—1

LLpH) = - Z (07In,, + o H(fi) HY (fy)) 'y (fr)

+ . Indet(o2Ty,, + o2 H(fy) HZ(f1))]
= - [tr(R™(fo)y (fe)y™ (f&)) + Indet R (fi)]

k:
Np—1

— — Z [tr(R™'(fo)R(fx)) + Indet R™'(f)],

(7.21)

where y(fx) and H(f;) are the DFT of the sequence y; and H; at the normal-
ized frequency f, = NLB, and R(fy) = y(f1)y" (fi) is a highly noisy estimate
The maximization of LLg(H) leads to covariance matching. The problem
is then how to do covariance matching of R(f;) with acceptable complexity.
First, in order to take advantage of the a priori knowledge of the finite chan-
nel length (only R(k), k = —L+1,—-L+2,...,L —2,L — 1 are nonzero,
where R(k) sequence is the inverse DET of R(f;)), covariance matching is
done in the time domain: this should allow to reduce the complexity.

In order to be able to do the covariance matching, we have to use an appro-
priate parameterization of the channel to characterize the channel from the
correlation sequence R(k).

=1+ Z P;z" is a predictor for the channel H(z) if P (2)H(z) =

H,. For N,, 2 Nm the channel predictor generically exists and is FIR for
N, > Ny,. This constitutes an appropriate parameterization of the channel

H(z) =P '(2)UDQ =P '(2)WQ. (7.22)
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For N,, > Ny and K > {%-‘ the predictor can be evaluated from

R(k), k =0,..., K — 1. This fixes the channel up to a unitary matrix Q:
H(z) = P, ()WQ (R(2) — 021 = P! () WWP ] (2)).

However, unlike in the flat channel case, there is no trivial method to estimate
Q by ML.

By reducing the exploitation of P(z) H(z) = H, or

P(¢)H, = Hy 6o to W7 Hy = 0 and P(¢) Hy = 0, k£ > 0, and combining
it with the training part in a weighted least squares approach, then the result
is a simple quadratic criterion.

In the following we will start by introducing some notions on MIMO linear
prediction, in particular how to estimate the predictor from the blind received
signal. We then present the GSB and DSB approaches and study there
identifiability conditions. In the end of this section we present the Augmented
TS approaches, that exploit the received signal containing the mixture of the
TS and the blind part.

7.3.1 MIMO Linear Prediction

The use of linear prediction quantities has first been proposed in [86] for a
SIMO context. However linear prediction is applicable equally well to both
the SIMO and MIMO cases as long as N,, > Ny [87]. Two favours can
be obtained, depending on whether the transmitted symbols are modeled as
deterministic unknowns or as uncorrelated random sequences (in the deter-
ministic case, for the purpose of linear prediction, some considerations are
more straightforward if the symbols are considered as stationary sequences
with unknown correlation).

Consider the problem of predicting y; from Y, (k —1) = [y[_,---yi_;,
for noiseless received signal (L, is the prediction depth). The prediction error
can be written as

1"

yk‘YLp(k—U = Y= §k‘YLp(k—1) = PLPYLPH(k) , (7.23)

with Py, = [Pr,0 Pr,1---Pr,1,] . Pr,0 = In,,. Minimizing the predic-
tion error variance leads to the following optimisation problem

min PLPRYYPII[,IP ==
Lp

a;Lp : (7.24)
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Hence

P, Ryy = 0. -0] . (7.25)

2
%,
Let L = |2,

L +1 corresponds to the minimum size for Ryy to be full column rank. This
is the generalization of the condition in [93] for SIMO case, we don’t provide
a demonstration but simulations confirm this choice for random frequency
selective channels with Gaussian i.i.d. components.

The rank profile of a;’LP behaves as a function of L, generically (for an
irreducible and column reduced MIMO channel) like

= Ny L
rank < y,Lp> - er_m S {Nt:l:+17 ) NT'I} L
= Ny L

Ry
||h e~

-1 (7.26)
L,

where m = L(N,z — Nyz) = N+ Ny € {0,1,..., N,y—1 — Ny, } represents the

degree of singularity of Ryv r.

For L, > L, yk|YLp(k—1) = Hyx; and 02 = = o?HyHJ = :2WW?. For

Y.Ly

such L,, let U; be the eigenvectors of a%w in order of decreasing eigen-
=P

value. Then Uy, = [U;---Uyp,,| has the same column space as Hy and

P(2) = U} 1. P(z) satisfies P(2)H(z) = 0 (P(2) represents a parame-
terization of the noise subspace). Note that P(z) changes if the symbols are
correlated (hence P(z) contains information about the symbol correlation)
whereas P(z) is insensitive to such correlation. To obtain the noise-free pre-
diction quantities, we need to denoise an estimated covariance matrix via
RYY = Ryy - 02 I (partial denoising) or

Riy = |Ryy — 02 I|; (full denoising). In the case of partial denoising, we
used a generalized version (to covariance windowing) of the MIMO Levinson
algorithm, which applies in the nonsingular indefinite case. Singular compo-
nents appear then as negative semi-definite. In the case of full denoising, we
determine the prediction quantities directly from the normal equations, with
a generalized inverse R = VD#VH where R = VDV is the eigenvector
decomposition of R and D¥ is the Moore-Penrose inverse of the singular diag-
onal matrix D. As in [94], the columns in V' corresponding to zeros in D are
taken to be all zero, except for a unit diagonal element. In both approaches,
the overestimation of L, leads to consistent estimate in SNR of P(z), whereas
for P(z) we only have consistency in amount Mg of (blind) data samples
y(k). The noiseless uncorrelated symbols case with finite amount of data is
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similar to a colored symbols case. Note that the partial and full denoising
approaches correspond to resp. the first and second subspace estimates in
[95]. Let h; = [h] (0)---h] (N;—1)]" = H*M"" where ¢ denotes transposition
of the block entries, and h = HY. Then a stretch of Rx signal Y can be
written as

Yy =Tu(h) X +Vy =Xh+Vyy, (7.27)

where Tys(h) = [Ta(H"M) - Ty (HY= e )] and Tp(H) denotes a block
toeplitz convolution matrix with M block rows and [H 0---0] as first block
row. X is a structured matrix containing the multi-source symbols. Let Nypg
denote the number of training sequence (TS) symbols per source, considered
equal for all sources for most of what follows.

7.3.2 Deterministic Semi-Blind Approach

In the semi-blind approaches, we shall seek a channel estimate h with possibly

overestimated channel lengths ]/\7 > N, and we shall assume that Nl remains

the largest N In the deterministic symbols setting, we shall work with P.

P(2) hy(z) = 0 can be written in the time domain as TL (P )h; = 0. Let
Ntz Z

B = @ T}C,i (ft). We can now formulate a semi-blind criterion as

~112 ]2
mjn{“YTs—f)CTshH +a HB hH } , (7.28)
h

where « is a weighting factor, and Yrg5: (Npg — Nl + 1) x 1 is the portion
of Rx signal containing only training symbols. A more optimal approach
introduces weighting involving the covariance matrix C of Bh due to the
estimation errors in P and leads to

~ 12 ~H—H —4 —
mgn{HYTS—xTShH + o?h B C*Bh } (7.29)
h

where a possible pseudo-inverse can be avoided by using an infinitisemal
amount of regularization. Inspired by an approximate expression for C given
n [87], we have taken o2 C" = My so that (7.29) reduces to (7.28) with
o= Mpg.

With overestimated channel lengths, deterministic blind identification

leads to an estimate H(z) = H(z) S(z) where S(2): Ny, x N, is also causal
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and polynomial, and the length(number of unknown coefficients of the poly-
nome) of S;,(z) can be shown to be (N; — N,, +1)* where (z)™ = max{z, 0}.
Note that this is a generalization of a result in [88] where N; = N;.

Identifiability conditions :

The channel is identifiable by the DSB approach iff (7.29) has a unique solu-
tion, or equivalently iff the Hessian J = XX Xrs + 02 B C" B is invertible.
The fact that the deterministic blind part identifies the channel up to the
S(z) factor is equivalent to that the null space of B'C"Bis generated by

&= [Z(]Vl—N1+1)+(h%)z’(ﬁQ—Nﬁ-lﬁ(h%) e Z(]VNtI—Nl—Fl)WL(h{Vtm)Z’(]\Afl_N2+1)+(hé)

z’(ﬁ2_N2+1)+ (hg) et Z’(]VNtI_NNm+1)+(h%Z)]’

where Z)/(g) is a block toeplitz convolution matrix with M columns and g
as first column, and

hf =0

(N Zkflj'\} )><1h’LTON (ﬁ _N; 0 Nig . ]T
re n=1 n re k 1)><1 (er Zn=k+1 Nn)Xl

J is the sum of two positive hermitian matrices X7¢X7s and o2 B "B,
Then J is invertible iff XX Xrg restricted on the null space of B c" B
is invertible. This last condition is equivalent to saying that EZXH Xrs€

is invertible or equivently X7s& is full column rank. We can show that
Xrs€ = [F1...Fy,] and F; = TNTS—N1+1(H1’Ni)xia where we assume that

Ntz
Zvl = max; ]/\71 and X; is a (Npg — ]/\\71 + N;) x (Z(Nn — N; +1)%) structured
n=1

matrix containing the multi-source symbols.

For X75& to be full column rank, each &; has to be full column rank. Then
Ntz

a necessary condition is (Z(Nn - N+ < rank(‘J’NTS_ﬁIH(Hi’Ni)). In

n=1

general w.p. 1 [93]
rank(Ty, g,y (HY)) = min (NM(NTS Ny +1), (Npg + N, — Nl)). The

second condition is on all matrix dimensions 1.e.

Nt
O (Na = N+ 1)) < Ny (Nps — Ny + 1),
These conditions are necessary but to be sufficient the training has to be
chosen so that X;, i = 1,..., N,, are full column rank. On the other hand,
the generalization of the result in the [93] to the MIMO case allows us to
state that rank(Ty__ 5 ,,(h)) is the minimum number of columns and rows
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w.p. 1. Combining these results with a correct choice of TS ensures that the
conditions are necessary and sufficient. As a result, the DSB approach has
the following identifiability requirements

Ntz
D)Vi Y (Ny = Ni+ 1) < min{N,o(Nps—Ni+1), Nps+N;— Ny }
o (7.30)
2) Y (No— Ni+1)" < Npy(Nps — Ny +1)..
i,n=1

7.3.3 (Gaussian Semi-Blind Approach

In the Gaussian case, the blind estimation ambiguity gets reduced to an
instantaneous unitary mixture of the sources (which gets even limited to
mixtures of subsets of sources with identical channel length N;). However,
there is no trivial method to exploit the unitary caracteristic of the mixture.
This leads us to reduce the exploitation of P(z) H(z) = Hy or

P(q) Hy, = Hy 60 to PgHy = 0 (& W7 Hy = 0) and P(q) H, = 0, k > 0.
We shall call this the reduced Gaussian case, in which all the decorrela-
tion is exploited except between symbols at the same time instant. This

N _
tx P 0 -

can be expressed by Bh = 0 where B = @ ‘J'—T[EPt) where ‘J']]A\;.(Pt) is
i=1 Ni '

‘J'}\;_(Pt) with the first block row removed. The problem of recovering h from
T—]Z\;(Pt) h; = 0 in the SIMO case, with an optimal weighting between the

nuller P(z) and the equalizer portions of P(z), has been addressed in [87].
It involves the covariance matrix of ‘J'T (P")h; and a simple approximation
is also given. This allows us to 1ntr0duce a semi-blind criterion of the form

mﬁn{HYTS — Xrsh|® + o2h" B C# Bh} . (7.31)
Ntz
We define C' = My* @(INM ® ((In,, +0, 05,) ® Iy, 1)), as done is [87].
i=1

Let Hy be the unique solution [87] of

P(:)H(z) = H,. (7.32)
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In the reduced Gaussian case, only the signal subspace of Hy i.e. U is
known. The equation in (7.32) is then reduced to PoHy = 0 and P(q) Hy, =
0, k >. These new conditions fix the channel estimate up to a constant

-~

Ny X Ny matrix: H(z) = H(2)S. On the other hand, the channel length
constraints impose that only elements of S;,, with ]/\72 — N,, > 0 can be non-
zero. The reduced Gaussian blind identification leads hence to an estimate
ﬁ(z) = H(2)S where N, X N;; S is a constant matrix with S;, = 0 for
I'(N; — N,) = 0. T is the step function:

0 ,k<0
F(k):{ 1 E>O0. (7.33)

Identifiability conditions :

Similary to the DSB approach, the channel is identifiable by the GSB ap-
proach iff (7.31) has a unique solution, or equivalently iff the Hessian J =
XH . Xrs + o2 BH C# B is invertible. The fact that the reduced Gaussian
blind part identifies the channel up to the S factor is equivalent to that the
null space of B¥ C# B is generated by & which is a

((Zf\f{ ]/\\fz> X (Zm T(N; — Nn)> matrix with columns

k T .
h; = [O(er )t ﬁn)ﬂhi ONm(ﬁk*Ni)XlO(Nm St ﬁn)xl]T for 1 < k,i < Nig

n=k+1
and I'(N), — N;) = 1. For the reasons cited in subsection 7.3.2, J is invertible
iff Xrg€ = [F)...Fn,] is full column rank, where F; = T (H )X,
Ntz

and X; is a (Nyg — Ny + ;) x (Z (N, — N;)) structured matrix containing

Nrs—Ni+1

n=1
the multi-source symbols.

Similary to subsection 7.3.2, we can show that the restricted GSB semi-
blind approach has the following identifiability requirements

Ntz
1) Vi Y T(N, — Ni) < min{Nyo(Nys—Ni+1), Nps+N;— Ny }
N (7.34)
in=1

For both semi-blind methods, if the amount of blind data becomes very large,
then the particular structure of the weighting matrix for the blind part be-
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comes unimportant. Moreover, the soft-constrained criterion approaches the
hard constrained criterion, in which the TS criterion ||Y7g — X7gh|* gets
minimized subject to the blind constraints Bh =0 or Bh = 0.

In practice, o2 should be overestimated to obtain a good denoising. If o2
gets that much overestimated that its subtraction cuts away a portion of the
signal subspace, then this would lead to a loss of the blindly identifiable (in
a deterministic setting) part of H(z). However, in a semi-blind approach,
identifiability is recovered if a blindly identifiable portion got ignored in this
way, which means that it would have resulted in a bad blind estimation qual-
ity. So even if the denoising is done in an overflow fashion and if the order
of P(2)/P(z) gets reduced w.r.t. its theoretical order, the resulting P(2)
still lies in the noise subspace and satisfies P(z) H(z) = 0/P(z) H(z) ~ h(0)
(though in that case this would not allow identification of the blindly identi-
fiable part of H(z)). So in this way, the badly blindly identifiable parameters
also get estimated through the TS.

7.3.4 Augmented Training-Sequence Part

So far, we have considered the classical TS approach, where Yrg denotes the
Rx samples in which only TS symbols appear. This is a suboptimal method
as it ignores the TS signal that interfers with the unknown symbols. A more
efficient method is the augmented TS approach. In this method Yrg collects
all Rx samples in which at least one TS symbol appears. In that case, we
can write Ypg — V = T(h)X = TgXg + TyXy in which Xg i collects the
known/unknown symbols and Ty the corresponding columns of T. The TS
part of the semi-blind criterion becomes

2
g
(Yrs — X h) (1 + U—gtrUirgf)*l(YTS — Xxh), (7.35)

v

where X h = TxXg.

Due to the parameter-dependent weighting, the semi-blind criteria now re-
quire at least one iteration.

As has been done previously for DSB and GSB approaches, the channel is
identifiable if Xk € is full column rank. For each approach (DSBA and GSBA)
€ is the same as the non augmented case. However Xx& = [F;...Fy,,] is
now composed of F; = ZNTSJrﬁer_(hi)xi, where ZNTSHVrNi(hi) is a block
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toeplitz convolution matrix with NT5+ZV/'1—NZ' columns and [hzTONm(ﬁrNi)xl]

as first column. The rank of 2y 5 n (h;) is Nrs + Ny — N; w.p. 1. The
condition on the rank of &F; is then

Ntz:
() (N, = Ni +1)") < Npg + Ny — N; for the DSBA (and
n=1

Nta:

ZF(Nn — N;) < Nps + N, — N; for GSBA). Under the conditions on the

n=1

rank F;, 1 = 1,..., Ny, the condition on the number of antennas N,, > Ny,
ensures that the condition on the all matrix (Xx€) dimension is fulfilled.
The Identifiability conditions for the augmented approaches are then

Ntz
Z(Nn - Ni + 1)+ S NT5+]/\71—N1', V1 (736)

n=1

for DSBA, and

Nt:l:
Y T(N, — N;) < Nps+N—N;, Vi (7.37)
n=1

for GSBA.

The augmented approach also allows us to handle the user-wise grouped
TS approach (Yrs contains TS symbols from only one user at a time) and
the distributed TS approach (Yrg contains only one TS symbol from any
user at a time).

7.4 Performance Analysis

In this section we present some numerical examples for the two channel cases,
flat and frequency selective.

7.4.1 Flat channel case

Figs. 7.1 to 7.6 consider the flat channel case with a blind part of length
Np = 400. The channel is 4 x 2 (N,;, x Ny,) for figs. 7.1 and 7.2, 4 x 4
for figs. 7.3 and 7.4, and 2 x 4 for figs. 7.5 and 7.6. We compare the classi-
cal TS approach with the GSB/DSB approaches, and with the Cramér-Rao
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Bound (CRB) in terms of normalized mean square estimation error (NMSE).
In figs. 7.1, 7.3 and 7.5 the performances are given for different TS lengths
with a fixed SNR p = 10dB. For figs. 7.2, 7.4 and 7.6 the performances
are given for different SNR with Nrg = 4. The results show that whenever
the condition Ng >> p Nrpg is fulfilled, the proposed GSB approach achieves
the CRB. The GSB performances show a linear behavior w.r.t. the SNR,
and outperform the TS approach by a gap corresponding approximately to
the relative reduction of the number of real parameters to be estimated; for

4x2: B =6dB,4x4: 2 =3dBand 2x4: &~ 1dB. The GSB
saturates for very high SNR due to the lack of consistency in the SNR of the
channel part estimated blindly. This does not appear in the case of the DSB
in which all information exploited is consistent in SNR. However, the DSB
is suboptimal when N,, > Ny (4 X 2) and its performance reduces to that

of the TS approach for N,, < Ny.

7.4.2 Frequency selective channel case

We consider the scenarios described in table 7.1.

scen. (Nl,NQ) (Nl,NQ) NTS MB
1 (3.1) (3.1) | 12 | 300
2 (3.1) (3,3) | 12 | 300
3 (3,1) (3,3) | 11 |300
4 (4,1) (4,1) | 11 |300
5 (3,1) (3,3) 5 | 300

Table 7.1: Channel lengths, estimated lengths, training and blind data
lengths for different scenarios where Ny, = 2.

For the first two scenarios we use partial denoising, whereas for the last
three we use full denoising. We compare the classical TS approach with
the DSB/GSB/DSBA/GSBA approaches and with an “exact” version (e.g.
DSBe) in which the blind quantities (P(z)) are determined from an exact
Ryy (Mp = oc). We see that the semi-blind approaches offer significant
improvements over TS, especially using the augmented TS part. The per-
formance of the deterministic approaches gets close to that of their exact
versions, but not for the Gaussian approaches, which should yield better
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performance. For the curves which stay flat in fig. 7.11, the identifiability
conditions are not satisfied.

7.5 Conclusion

In this chapter we have seen how the semi-blind approaches can improve the
channel estimation. In particular, the GSB achieves even the Cramér-Rao
bound on the performances in the flat channel case. However, the GSB sat-
urates for high SNR due to the fact that the estime of the signal subspace
structure is only consistent in the length of the blind data. The DSB ap-
proach does not suffer from this problem since the noise subspace estimate
is consistent in both the length of the blind data and the SNR. In the case
of frequency selective channels, the semi-blind approaches allow to reduce
the length of the training sequence needed for the idendifiability. This is
valid especially for GSB. In general this approach outperforms the DSB. In
the frequency selective case, the training part can be further augmented to
include the training received signal that interferes with the blind one. This
leads to more performant semi-blind approaches, and allows hence to reduce
further the length of the training sequence.
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APPENDIX

7.A Proof of Theorem 1

The proof is in two steps.

Let UTSDTSUTS" be the eigenvector decomposition of XTSXTS™  1n the
first step we show that EgyCRB is independent of U,

In fact,

EgCRB = Egt[(M(UT) @ 1y,,) (HD™ @ Ly,,) (MU™") &1y,,)7

+M1JB(OZ)M1T]_1
— EHtr[%DTS @Iy,

+(M(UT) @ Ly, ]My) Jp(a) (M(UTS") @ T, ]M)T]
(7.38)
where in the second equality we used the unitary character of UT®. M, is
given in (7.6), then

0al

ow

U™ is unitary, then QU”® has the same uniform distribution as Q.

On the other hand, %JB(Q)(%)T is independent of Q. We can conclude

that the EyyCRB is independent of U™ In particular for U™ =1, we get

MU @ Iy, ]M; = M((QUT)") @ 1y,,] (7.39)

9 —1
Egp CRB = Eyg tr <M1 Jp(e) M + 5D L, NM) : (7.40)
O-’U
In the second step we seek to show that EgyC'RB is minimized for DT x I.
We start by showing that Eyy CRB = (D7) is a convex function over the
connex set D% > 0.
Let D™ = diag (d7,...,d%?) and C be the Hessian of f(D)

_ 0f
-~ 0d; od,

By evaluating the Hessian we can show that for any real positive vector
X = [(L‘l-..thI]T 20

KT COx = > Egtr (J7?H)(XQLy,,)/ '(H)(X®Ly,)) >0. (7.42)

4
Oy
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where X = diag (z1,...,2y,,). The positive sign follows from the symmet-
rical positive definite character of J(H) = M; Jp(a) M{ + %DTS RIy,,-

The Hessians is positive, then Efy CRB = f(D"®) is convex over the con-
nex set DT > 0. By consequence Egy CRB has a global minimum under
a power constraint expressed on the trace of DT: trDT® < P.pstraini. The
Lagrangian of this optimization problem is expressed as

L(DTsa )‘) - f(DTS) + )\ (tr(DTS) - pconstraint)
oL

b= G Byt (J(H) L Ty,)) + A =0,

(7.43)

o5

where I; is the matrix whose i"* diagonal element is 1 and all other entries
are zeros.

The solution that minimizes EggC'RB have to verify

EHtI" (JiQ(H) (Il X IQNM)) == EHtI" (JiQ(H) (Il ® IQNM)) for any 1 7& k.
Using the same arguments as those used in the first step of this proof, we
can show that for D% & I and for any unitary matrix U

Ey/ *(H) = Eg[(M(U) @ Iy,,)J *(H)(M(U) @ Iy,,)"]. (7.44)

For i # k and by choosing the permutation matrix P;;, that permute between
1 and k, we get for U = Py

EHtI‘ (J_Q(H) (Iz ® I, er)) = EHtI‘ (J_Q(H) [(?zklz?Z];) ® I, Nm])
= Egtr (J72(H) (L ®Ly,,))
(7.45)
this show that D™ oc I minimizes EHCRB.

Hence, XT° XTS™ o T achieves the global minimum of Egy CRB. U

7.B Proof of Theorem 2

We will first derive the solution for the unitary factor and then for the diag-
onal factor.

We rewrite the parametric covariance matrix as: R = URSRUg where
Sg = diag(Sg1,---,Sr.N,,), in which the sg; are organized in the increasing
order. Similarly, we introduce S, = diag (s, ..., Sen,,)- By construction
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we note that

SR,Z':O-?) 3 1 SiSer_Ntz for er>Ntz

7.46
SRyi+t Nyo—min{New.Noa} = O +02d;*, 1 <i< min{Ny,, Ny } . (7.46)

Let O = [{'g U,. O is a Ny X Ny, unitary matrix. We denote
1 = (URRUR)y; = (08,07, i = 1,..., Nyp. Then, up to a constant,

LLp(H) = —Nptr{S;'0S,0"} — NplIndet(Sg)

s (7.47)
— _NB ZZ:TT (Mi/sR,i + ln(SR,i)) :

It can be shown [96] that (1;)1<i<n,, majorizes (Sc,;)i<i<n,,, i-€.

re rr k k
2521 Sei = Zz]\il f; and Zi:1 Sei < Zi:l ti 1<k <Ny
These properties allow us to use the following result [97]

Nya Nyo

Z Wi/ Sri > Z Sei/SRyi s (7.48)
i—1 i—1

or equivalently
—tr{0S,07S,;'} < —tr{S.S;'}. (7.49)

This  shows that LLg(H) is maximized for O = Iy,
i.e. Ur = U, or, equivalently, U corresponds to the min{N;,, N,,} dom-
inant eigenvectors in U,. R X X

Let us now evaluate the optimal D = diag(dy, ..., dmin{n,.,N,.})- LLp(H) is
separable in the d;, monotonically increasing for

0 <d; < \/LSR,HNTrmin{Nm,Nm} — 02| Jog, 1 < i < min{Ny, N, }, and
monotonically decreasing for

d; > \/LSR,iJerfmin{Nm,Nm} — 004 /02, 1 < i <min{Ny,, N, }. LLg(H) is
hence maximized for d; = \/LsR’HNm,min{NmNm} — o], Jos,

1 < i < min{Ny, N,,}, which are the dominant min{N,,, N,,} values of
o (18e = oIy 0" O
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General Conclusion

In this thesis, we have presented various case studies and solutions for
coding and signal processing challenges in MIMO systems. This work has
been structured in three parts, each one dealing with a particular situation
with respect to CSI.

In the first part, the CSI was considered to be absent at the Tx and
perfect at the Rx. We focused on the STC at the Tx and the detection
processing at the Rx:

e A new STC scheme named STS has been proposed in chapter 2. This
scheme uses a paraunitary precoding filter to ensure full diversity and
maximum coding gain. STS does not penalize the ergodic capacity
and applies in both cases of flat and frequency selective channels. This
scheme is the first to exhibit all these properties at once.

e At the Rx, in order to avoid the high complexity of the ML decoder,
we proposed three receiver strategies. Two of these strategies are non-
iterative and have been studied in chapter 3, whereas the third one is
iterative (chapter 4):

- The Stripping MIMO DFE is a non-iterative Rx that detects and
cancels the streams successively. The use of Stripping as a Rx for
the STS scheme allows one to decompose the channel into mul-
tiple virtual SISO channels with known diversity. This can be
exploited to use simple SISO coding techniques. We have the-
oretically shown that, for independent SNR-adaptive QAM con-
stellation on each stream, the STS combined with the Stripping
Rx outperforms the existing schemes in term of the diversity vs.
multiplexing tradeoff. In chapter 3 we have also introduced new
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techniques to study performances in frequency selective channel
environment. This allowed us, in particular, to generalize the di-
versity vs. multiplexing optimal tradeoff to the MIMO frequency
selective channel case.

- The second non-iterative Rx is the Conventional DFE applied to
the MIMO case. In contrast to the previous Rx, it is adapted to
the use of the same constellation and binary channel code for all
streams. We showed that it achieves a high diversity gain and can
be coupled with Per Survivor Processing in order to reduce error
propagation.

- The last proposed Rx technique is iterative. It performs turbo
detection by iterating between the linear equalizer and the binary
CC. Using the Singleton Bound,we have shown that STS allows
to dedicate the binary channel decoder to improve the coding gain
and to exploit the multi-block diversity. Simulation results con-
firm the advantage of the use of STS over a pure binary channel
code approach (Threading) especially for large N, in the presence
of multi-block diversity, and for N,, < Ny,.

The second part covered the case of partial CSI at Tx and perfect CSI at
Rx (chapter 5). The coding here was basically the cascade of STC schemes,
developed in the absence of CSI, and a decorrelator which colors the trans-
mitted signal. We have studied the input color that achieves the ergodic
capacity for two channel models, the pathwise and the limited reciprocity.
Numerical results showed that a near-optimal solution is obtained by wa-
terfilling on the channel covariance seen from the Tx. Consequently, this
covariance matrix was shown to capture almost all the information needed
at the Tx.

In the last part, the case of absence of CSI at both Rx and Tx has been
studied:

e In chapter 6, we have shown that the capacity of a block fading channel
model achieves asymptotically, in the burst length, the one obtained for
perfect CSI at the Rx. This is not the case anymore for time selective
channel models where the capacity is shown to saturate for high SNR.
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e The mutual information decomposition derived in chapter 6 for a block
fading model, suggests to use semi-blind estimators that combine train-
ing and blind information. In chapter 7 we proposed various semi-blind
approaches which improve the channel estimation quality. These tech-
niques have reasonable complexity and lead to gains in performance
w.r.t. pure training sequence approaches. In fact, the Gaussian semi-
blind approach even achieves the Cramér-Rao bound in the flat channel
case. The semi-blind approaches also improve the identifiability condi-
tions and allow to reduce the length of the training sequence.

This work has proposed different schemes and techniques, as well as the
analysis of different practical and theoretical situations. On the other hand,
our work opened new problems. We list hereafter some research axes arising
from this thesis :

e The STS proposed in chapter 2, can be seen as a structured lattice code.
From this point of view, elements for lattice code analysis introduced
in [37] can be used to study the diversity vs. multiplexing tradeoff
achieved by the STS coupled with a ML decoder.

e The Conventional MIMO DFE with a MMSE ZF design (subsection
3.5.2) for Ny, < N,, and flat channel, achieves the two points (r =
0,d = Nyp.(Npp — %)) and (r = Ny, d = 0) on the diversity vs.
multiplexing tradeoff curve. The general problem of the diversity vs.
multiplexing tradeoff achieved by the Conventional MIMO DFE Rx
with different design (MMSE ZF and MMSE), can be handled by con-
sidering the Q matrix (of the precoder filter) as the generator matrix
of a lattice code and using techniques from [37].

e The diversity vs. multiplexing optimal tradeoff analysis proposed so
far have focused on channels with i.i.d. components. However, the
situation may be very different in reality. Hence, correlated channel
models should be considered in order to handle this case.

e Design and simulations of the Conventional MIMO DFE for the STS
scheme coupled with a PSP have to be performed in order to compare
it with other existing techniques.

e The semi-blind approaches for the estimation of the channel at the
Rx can be improved by including partial CSI if available (correlated
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channel models in chapter 6). In fact, this will reduce the number of
parameters to estimate, and further improve the channel estimation
quality.

In the context of MIMO systems, this thesis has combined elements from
two fields: signal processing and information theory. The proposed results
and the opened perspectives show how the interaction between these two
fields can lead to the development of new techniques and solve open prob-
lems. Advanced techniques and results from the signal processing framework
can have an important impact on the code design. An illustration of this
fact is the MIMO convolutive prefilter. Other examples are the the Strip-
ping DFE and the Conventional DFE receivers in the MIMO context. On
the other hand, results from the signal processing domain have allowed us to
study the diversity vs. multiplexing tradeoff for the Stripping MIMO DFE;,
and to generalize the optimal tradeoff to frequency selective channels. The
techniques associated with these latter results can be of an important contri-
bution to the analysis and design of MIMO systems with frequency selective
channels.
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7.3 Introduction

Depuis l'introduction du multiplexage spatial, d’'une maniere indépendante,
par A. Paulraj et Foschini [1] en 1994, I'utilisation d’antennes multiples au
transmetteur (Tx) et au récepteur (Rx) est devenue le sujet d’innombrables
travaux. Cela est lié a la capacité des systemes a entrées multiples et a sorties
multiples (MIMO) d’offrir une nouvelle dimension spatiale, outre les dimen-
sions temporelle et fréquentielle, d’accroitre la capacité ergodique (moyenne)
du canal (par un facteur égal au rang du canal), et de diminuer la probabilité
de coupure par la contribution d’un nombre de composantes de la diversité
égal au nombre de coefficients dans le canal. D’autre part, a I'inverse des
canaux a entrée unique et a sortie unique (SISO), les canaux MIMO souf-
frent de l'interférence entre antennes. Les travaux récents pour exploiter
cet important potentiel ont a faire un compromis entre 'augmentation du
débit et I'exploitation de la diversité pour combattre ’évanescence du canal
et I'interférence, tout en gardant une complexité acceptable.

7.3.1 Modéles des Canaux MIMO

On considere une modulation numérique linéaire sur un canal linéaire avec
un bruit Gaussien additif. Le nombre d’antennes a la transmission est Ny,
et a la réception N,,. Le signal vectoriel (NV,, x 1) re¢u a l'instant k est

L—-1
Y = Z H;x;,_; + vy (750)
=0

ol X, : Ny X1 est le signal transmis, H; : N,z X Ny, 1 =0,..., L—1 sont les
coefficients matriciels de la réponse impulsionnelle du canal et v, : N, X 1
est le bruit.

En I'absence de connaissance parfaite du canal a la transmission, le canal
est modélisé d’'une maniere statistique. Différents modeles sont couramment
utilisés:

Modele MIMO Rayleigh évanesgant et plat (L = 1): Dans ce modele
les différentes composantes du canal ont des distributions i.i.d. centrées
Gaussiennes, (H),,x ~ CN(0,1) pour 1 <m < N, et 1 <k < Ny,

Modele MIMO spatialement séparable: Dans ce modele, le transmet-
teur dispose d’une connaissance partielle correspondant aux moments de sec-
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ond ordre. Le canal dans ce cas est modélisé par
H = x"wx}/? (7.51)

ou W: N,, X Ny, est une matrice aléatoire de composantes i.i.d. suivant
CN(0,1).

3, (resp. X,) est la covariance du canal vue du récepteur (resp. transmet-
teur).

Modéle MIMO Rayleigh évanesgant et sélectif en fréquence(L >
1): Ce modele est la généralisation du cas plat, ou les composantes de
la réponse impulsionnelle sont indépendantes et Gaussiennes. Chacun des
H), | = 0,...,L —1 a des composantes i.i.d. (H;),u. ~ CN(0,07) pour
1<m< Nyetl<k<Ng of>0,0<1<L-1,correspondent au profil
des puissances du canal.

7.3.2 Capacité du Canal

Dans le cas d’un canal plat avec connaissance parfaite du canal au Tx, la
capacité du canal sous la contrainte de puissance (inférieure a P) est

1

C(H)= max Indet(Iy,, + — HSxxH"), (7.52)
tr{Sxx}<p Ty

ol Sxx est la covariance du signal a la transmission. La solution de la max-

imisation correspond au waterfilling sur les valeurs propres de H'H (water-

filling spatial) [2].

En 'absence de CSI parfait au Tx d’autres quantités sont définies:

Capacité ergodique: Elle mesure la capacité moyenne

C=  max  Eg—— j[ O L det(Ly, + - H(2) Sxx(2) HI(2))
5= § Ltr{Sxx}<P 2mj z 9y
(7.53)
ol Sxx(2) est la transformée en z de la séquence d’autocorrélation de x.
Pour un canal MIMO avec un modele Rayleigh évanescant et plat, Telatar
a montré [2| que la capacité ergodique est atteinte pour une entrée blanche

(Sxx(2) = o2ly,,, 02 = §-)

C = EggIndet(Iy,, + pHH"), (7.54)
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s _ P
ol p = Noo?
Ce résultat est aussi valable pour un modele de canal MIMO Rayleigh évanesgant

et, sélectif en fréquence

1 dz
= _— e — T
C = Eqg 27rj]{ . Indet(Iy,, + pH(2)H'(2)). (7.55)

Capacité de coupure: La capacité ergodique n’a de sens que dans le cas ou
le transmetteur peut coder sur une multitude de réalisations du canal. Dans
le cas o Tx ne peut voir qu’une réalisation du canal, et pour un SNR et un
débit R donné, on définit la probabilité de coupure qui exprime la probabilité
que le débit dépasse la capacité instantanée du canal

Pout(R) = P(C(H) < R)
P(5 § £ ndet(Iy,, + pH(z) Sxx(z) H'(2)) < R),

2mj

(7.56)

oll Sxx(2) est normalisée pour avoir (% $ d—zztrSXX(z) = Ny).
Pour un niveau de probabilité de coupure a (0 < o < 1) donné, la capacité
de coupure est définie comme

Cout(a) - (Pout)_l (a) . (757)

7.3.3 Codage Spatio-Temporel pour des Systemes MIMO

On considere une transmission des symboles codés sur une durée de T périodes
symbole. Le code espace-temps est représenté par une matrice Ny X T', de

forme: C = i[xl, Xg,...,Xr]. Le canal est MIMO plat, le signal re¢u accu-
mulé est

Y=0,HC+V, (7.58)
oY =[y,y9,.--,yr| et V.=[vi, vy, ..., vy] sont des matrices N, x T.

On considere un modele MIMO Rayleigh évanescant et un récepteur maxi-
mum de vraisemblance (ML). Tx n’as pas de CSI sur le canal et Rx a un CSI
parfait.

La probabilité de transmettre C et de décider C" a été bornée [16] par

PC— C) ~ (g) —rNya <H )\l) ~Nea | 50



7.3 Introduction 175

ouretles \;, [ =1,...,r sont respectivement le rang et les valeurs propres
de (C - C')(C - C)E,

Cela permet de définir deux criteres pour la conception des codes spatio-
temporels

Gain de diversité : Il est défini comme le rang minimal possible (7,,;,) sur
toutes les combinaisons possibles de (C — C').

Gain de codage : Il est défini comme le minimum possible de [];7{" \; sur
toutes les combinaisons de (C — C') ayant comme rang rp,.

7.3.4 Diversité et Multiplexage comme Définis par Zheng
& Tse

Dans [9], Zheng et Tse ont donné une nouvelle définition de la diversité et du
multiplexage qui considere un schéma adaptatif en SNR. En effet, un schéma
C(p) est une famille de codes de longueur de bloc T'(un pour chaque niveau
de SNR), qui supporte un débit R(p).

Ce schéma atteint un multiplexage spatial r et un gain de diversité d si le
débit de donnée vérifie

R
) _, (7.60)
P28 Tn(p)
et la probabilité d’erreur vérifie
P.(p) = p~", (7.61)
oll = est I'égalité exponentielle, on écrit f(p) = p® pour
1
nflo) (7.62)

pggc In(p)

Pour chaque r, d*(r) est définie comme le sup de l'avantage de diversité at-
teint sur tous les schémas possibles.

Zheng & Tse ont considéré un canal MIMO avec un modele Rayleigh évanescant
et plat, et ont montré le résultat suivant.

Courbe optimale du compromis : Ona 1l > N,,+ Ny, —1. La courbe op-
timale du compromis d*(r) est donnée par la fonction linéaire par morceaux,
qui joints les points(k, d*(k)), k =0,1,...,p, ou

d*(k) = (p—k)(q — k), (7.63)
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ot p = min{N,,, Ny} et ¢ = max{N,, Ny, }.
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Figure 7.12: Compromis diversité-multiplexage
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Partie I: Absence de CSI au Tx

Dans cette premiere partie du rapport le canal est inconnu a Tx et par-
faitement connu au Rx. On commence par introduire notre nouveau schéma
de codage spatio-temporel basé sur un précodage linéaire en utilisant un filtre
MIMO convolutif. Ce schéma est appelé étalement spatio-temporel et désigné
par STS. Par la suite on étudie différents récepteurs de complexité limitée
qui peuvent étre utilisés. Les récepteurs proposés sont de deux catégories:

itératifs et non-itératifs.

7.4 Précodage Spatio-Temporel Linéaire et Con-

volutif

Le schéma général de transmission du STS est décrit dans la figure 7.13.
Apres un codage correcteur d’erreur et la modulation d’amplitude en quadra-

Ty

canal MIMO
codage | N, | /L N, demodulation
.| cad - T 7@ H >+ = R(z) = & decodage
Ty |& modulation/ bk g ay, U Y cand
TX RX

ture (QAM) des symboles, le débit est démultiplexé.
vecteur by qui contient N, symboles par période. by passe par la suite dans
un filtre MIMO convolutif T(z), cette opération correspond au précodage
spatio-temporel, sa sortie est transmise sur les antennes de transmission au
nombre de N;,. Pour chaque composante ¢, le débit transmis pendant toute

Figure 7.13: Schéma Général de Transmission.

la trame b;;, k =1,...,T est appelé stream.

Le résultat est un
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Pour T(z) on a choisi une forme qui combine I’étalement spatial Q et la
diversité de délais D(z)
T(z) = D(2)Q
D(z) = diag{l, 27", ..., ¢~ FNu=1)1 (7.64)
Dans le choix de Q, on a respecté plusieurs criteres:

Capacité ergodique Afin de conserver cette quantité, Q doit étre unitaire
Q'Q=1.

Borne du filtre adapté Pour avoir une borne du filtre adapté (en ignorant
'interférence), qui soit la méme pour chacune des composantes des by,

on doit avoir |Qu| = 5=,i, k= 1...., Ny,

Gain de codage Pour avoir un gain de codage maximal, la solution pro-
posée est la suivante

1 6, ... @ =t
1 1 0, GQNtI_l
Q:\/N_ o : : (7.65)
tx . . .
1 Oy, ... Oy, Nt

ol les 6; sont les racines du polynome V= — j =0, j = /—1.
Ces bonnes propriétés de T(z) sont aussi bien valables pour un canal plat
que pour un canal sélectif en fréquence.

7.4.1 Récepteur ML

Un détecteur maximum de vraisemblance peut aussi bien étre implémenté en
utilisant ’algorithme de Viterbi. Cependant, celui-la est d’une tres grande
complexité due au nombre d’états qui est [A[Ve(Neel=1) "o |A] est la taille
de la constellation a l’entrée.

7.5 Rx Non-itératif: Alternatif de Concep-
tion

On présente deux possibilités de conceptions: la premiere est le Stripping
MIMO DFE qui fait une détection successive de streams, et la deuxieme est
le MIMO DFE Conventionnel qui fait une détection conjointe des streams
mais successivement dans le temps.
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7.5.1 Stripping MIMO DFE

La figure suivante montre un schéma bloc du Stripping MIMO DFE (fig.
7.14). ce récepteur commence par un filtre adapté a la cascade du précodeur

+ by

y, Gl(z) — ), ————F(7) + decodeur
h J DFE SIMO
L1.(2)

Annualtion de stream

— F7(2) + decode J
L fgvz(z)

GIF/_GT(z) Go.(2)

Figure 7.14: Stripping MIMO DFE.

et du canal G(z) = H(z) T(2) = H(z) D(2) Q. Pour la détection de chacune
des streams i on utilise un égaliseur a retour de décision (DFE), qui fait
une détection successive dans le temps des symboles de la méme stream 1,
bix, k=1,...,T. Tl commence par un filtre Feedback F*(2), et le retour de
décision se fait avec le filtre Feedforward L;;(z). Apres qu'une stream i soit
entierement détectée, sa contribution est soustraite au signal recu en utilisant
un retour de décision et en filtrant la stream avec le filtre G'(2) G;.(z). Par
la suite on passe a la détection du stream 7+ 1. La sortie du filtre adapté est

zi = GY(q) y, = G'(¢) G(q) b + G(q) wy,. (7.66)
Le Stripping MIMO DFE est de la forme

b, = — L(g) by+ F(q) 2z, (7.67)
—~— —~
feedback feedforward
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ol
i LH(Z) 0 e 0 0 i
L21 (Z) LQQ(Z) 0 0
I+L(2) =L(z) = : Lo (2) - :
5 - Ly, -1.n.-1(2) 0
_LNsl('Z) LNS2(’Z) e LNS’NS,I(Z) LNst ('Z) .
B (7.68)
Le feedback L(z) = L(z) — I est strictement causal. Cela veut dire que L(z)
est triangulaire inférieure, avec des éléments diagonaux, L;;(2),i = 1,..., Ny,

causal, monique avec phase minimale. Les éléments de la partie triangulaire
inférieure L;;(z), ¢ > j sont arbitraires (non causal).

Pour la conception du filtre du DFE, différent choix sont possibles, les plus
connus sont le MMSE ZF et le MMSE. Le MMSE ZF annule complétement
(force a zéro) l'interférence alors que le MMSE fait un compromis entre
I’annulation d’interférence et ’amplification du bruit.

On étudie les performances du Stripping MIMO DFE en fonction du
compromis diversité-multiplexage.

7.5.2 Compromis Diversité-Multiplexage du Stripping
MIMO DFE

On dénote par CMMSEDEE 15 capacité instantanée du stream détecté a
I’étape n du traitement successif du stripping avec une conception MMSE.
De la méme fagon est définie CMMSEZFDEE aye¢ une conception MMSE ZF.
On présente dans une premiere étape des résultats préliminaires qui vont étre
utilisées par la suite.

Décomposition de la capacité :

Ntz
C(H) =Y CHMMSEDIE, (7.69)
n=1
Bornes sur la capacité des streams :
Les deux lemmes suivants donnent les résultats désirés.
Lemme 1: La capacité du n®™® stream, dans une conception MMSE, est
bornée par
cp < CMMSEDEE _n(1 4 psy,, (1—1y4n) < €2 (7.70)

n’
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ou

1 Nz —
1 { ln(Ntz’)’NmL) + (Nta: - ’I’I,) In (m) s 1 S n S Nta: —1

¢, = !
(Ntz’YNtIL) ; N = Ny
(7.71)
Nigz—n+1
2 =] Na—n)ln (i) 1<n< N, -1
0 , = Nt:c
(7.72)
($n,m =1,..., Ny, L) sont les valeurs propres de H"H ordonnées dans un

NioL—1 2
~ [
ordre croissant, ou H = [Hy, Hy, ..., H;_{]. L= E .
[Ho, Hy L-1] YNl -~ <NmL—1>

Pour la conception MMSEZF le nombre de streams transmises (nombre de
colonnes de @) est fixés a Ny = min{N,,, N, }.

Lemma 2: La capacité du n®¢ stream, dans une conception MMSE
ZF, est bornée par

In(1 + € psn,, - Nn) < CRTMSEZEDEE < In(1 4 e psy,, 1 n,4n), (7.73)

ol maintenant

1 Ns—n
J { ln(NthmL) + (Ny—n)lIn (—(stnﬂ)m“) ,1<n<N, -1
1

! n(Ntz'YleL) , n=N;
(7.74)
Ci:{(Ns—n)ln<W> ,1<n<N, -1
0 , n = N
(7.75)
Encore, (s,, n = 1,..., Ny, L) sont les valeurs propres de H"H ordonnées
dans un ordre croissant, ot H = [Hg, Hy,...,Hy 4].

Avant de présenter les performances du Stripping MIMO DFE, on com-
mence par donner la généralisation du compromis diversité-multiplexing au
canaux sélectifs en fréquence pour des longueurs de bloc (trame) T >> N, L.
Théoréme 1: On a T >> N, L. La courbe optimale du compromis d*(r),
pour un canal sélectif en fréquence, est donnée par la fonction linéaire par
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morceaux, qui joints les points(k, d*(k)), k =0,1,...,p, ou
d*(k) = (p— k)(Lqg — k), (7.76)

ot p = min{N,,, Ny} et ¢ = max{N,,, Ny, }.

: - (0, LN,z Niz)
s (1, (LN; — (N, — 1)
PN\
E <2a <LNm - 2)<Ntw - 2))
A
'qi / (7", (LNME T)(Ntm - T))
) \‘@\\ /(NfT7O)

d
\/

Gain de Multiplexage: r

Figure 7.15: Compromis diversité-multiplexage d’un canal sélectif en
fréquence

En ce qui concerne le compromis atteint par le récepteur Stripping MIMO
DFE appliqué a notre schéma de transmission STS, il est donné par le
théoreéme suivant.

Théoreme 2: Pour un bloc de longueur 7', T" >> N, L, 'utilisation de
constellations QAM avec des débits adaptés par stream, permet au récepteur
Stripping MIMO DFE avec une conception MMSEZF d’atteindre un com-
promis de diversité-multiplexage donné par d*°7(r).

Ou d*“1%(r) est donnée par la fonction linéaire par morceaux, qui joint les
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points (bk,d*’SIc(bk)); k= 07 1: -+ Dy ol

k

1
r U IUD DY ooy rory gy e BRI
rno= p k=p
(7.77)
et
=Sty = (m—k)(n—k) ,k=0,...,p—1
d+S10(rt) = 0 L k=p (7.78)

ot m = min{N,,, N, L}, n = max{N,,, N, L} et p = min{N,,, Ny, }.

A

16 &

/ Compromis Optimal

STS/Stripping

©

Code Espace-Temps Orthogonal

V-BLAST

Gain de Diversité: d(r)

4 ¢ D SREHIIE -". ...... .......

Gain de Multiplexage: r

Figure 7.16: Compromis diversité-multiplexage de différentes techniques.
Ny = Ny =4, L =1.

Pour l'allocation optimale des débits qui atteint ces points, et pour r €
[, rhyq)s K =0,...,p—1, seules k + 1 streams sont utilisées.
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Les débits non-zéros sont r;, p — k < ¢ < p, avec

(m; EYn—k)(1—rpg)=(m—k+1)(n—k+1)(1—rpgr1)=...=mn(l—ry)
._Zk’l“i =T
; (7.79)

7.5.3 MIMO DFE Conventionnel

Le MIMO DFE Conventionnel fait une détection conjointe des streams mais
successivement dans le temps. Les vecteurs symboles by, sont détecté séquentiellement
dans le temps (fig. 7.17). La sortie du DFE est

+ by
y, w— G(z) j— 7 w—F7) —(‘l)—)decode .

Figure 7.17: MIMO DFE Conventionnel

by = — B(q) bi+ Flg) oz, (7.80)
—— —~—
feedback feedforward

ot le filtre feedback B(z) = Z B;z " est tel que B(z) = I +B(2) est causal,
i>1

monique et & phase minimal.

Ici aussi, différents criteres sont possibles pour la conception des filtres:
MMSE ZF, MMSE et MMSE non-biaisé.

Le théoreme suivant donne la performance, en termes de gain de diversité,
du MIMO DFE conventionnel avec une conception MMSE ZF.

Théoréeme 3: Pour un canal plat avec N,, > N;,, 'utilisation d’'un
détecteur utilisant un critere de distance minimale pondérée au moment de
la prise de décision, permet au MMSE ZF DFE Conventionnel d’atteindre

un gain de diversité égal & Ny,.(N,, — Ya2=1).
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Dans cette section on a présenté deux récepteurs non itératifs. Le Strip-
ping MIMO DFE, pour des streams ayant des débits et des codages différents,
permet d’atteindre un bon compromis de diversité-multiplexage. Par contre
pour un codage symétrique pour toutes les streams le MIMO DFE Conven-
tionnel est mieux adapté.

7.6 Récepteur Itératif

Dans cette partie on présente un décodeur itératif, qui utilise le principe
turbo, et itere entre I'égaliseur linéaire des symboles et le décodeur du codage
canal.

7.6.1 Codage

bk CLk

SP | .
Lt codage canal entrelaceur modulation - T(2)

DEMUX

by N,k

Figure 7.18: Structure de I'encodeur.

Fig. 7.18 montre la structure de I’encodeur. Le codage canal utilisé est
un code convolutif afin de pouvoir utiliser le décodeur maximum a posteriori
(MAP), implémenté avec I’algorithme BCJR de faible complexité. Le codage
canal est suivi par un entrelaceur des bits codés. L’opération suivante est celle
de la modulation en des symboles QAM. Par la suite on fait une conversion
de série en parallele, afin de former des vecteurs symboles qui passent dans
le filtre MIMO T(z) correspondant au schéma STS.

7.6.2 Deécodage Itératif

Fig. 7.19 montre la structure du décodeur itératif. Le premier bloc de ce
récepteur est I’égaliseur linéaire des symboles transmis. Cette égaliseur con-
tient une branche d’annulation d’interférences, ’estimée de l'interférence est
faite d’'une maniere douce en se basant sur I'information extrinseque obtenue
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MMSE
sIso EXT 1

L

» De—entrelaceu~| Decodeur MAP

A
Annualtion d' Interferences

EXT 2

Re—entrelaceur

Figure 7.19: Décodage itératif avec annulation d’interférences.

a la sortie du décodeur SISO. La conception de I'égaliseur est faite sur la
base d'un critere MMSE qui considere l'interférences résiduelle comme du
bruit en plus de celui dans le canal. A la sortie de I’égaliseur on applique
une conversion de parallele en série suivie de 'opération de démodulation
et de dé-entrelacement. Par la suite on utilise un décodeur MAP SISO du
codeur canal, qui est dans ce cas la le BCJR, afin d’extraire I'information
extrinseque qui sera réinjectée dans 1’égaliseur.

7.6.3 Analyse de Performance

On compare les performances du STS et du Threading (pour le Threading
() = I) par simulation. Pour les deux cas on utilise le code convolutif (5,7)
a quatre états et de débit 1/2. Les performances sont évaluées en termes
de probabilité d’erreur par trame (FER) en fonction du E,/N, (SNR =
REy/Ny, R = rNglog, |A|,p = SNR/Ny). Les simulations sont pour des
trames de 512 bits d’information. Le nombre d’itérations est fixé a 5. On
utilise la constellation QPSK.

On permet aussi que le codage puissent étre fait sur plusieurs réalisations
du canal F = 1,2,4. Ainsi le nombre de branches de diversité qui doivent
etre exploitées est Ny, . F.

Dans les figures 7.20, 7.21, on observe que lorsque le nombre de branches
de diversité augmente(Ny,.F'), le STS exploite mieux cette diversité que le
Threading.
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On peut donc conclure que I'utilisation du STS permet de mieux exploiter la
diversité, par contre une étude théorique de ce fait n’est pas possible a cause
de la difficulté d’analyse des techniques turbo.

2 bitls/Hz, Nix=2, Nrx=2, DS=2, BCC (G,,G,)=(5.7)

100 [: ¢ 3 & & —f— T T T T
10*1 L -
& 1072} :
w
10°F | — STS.1 block -
—+— STS,2 blocks
—*— STS,4 blocks
©- Threading,1 block
8- Threading,2 blocks
< Threading,4 blocks
Y
107 I I I I I I I & I I
-4 -2 0 2 4 6 8 10 12
Eb/No(dB)

Figure 7.20: STS/Threading pour (N, N,p)=(2,2), L=2, F=1,2,4.
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4 bit/s/Hz, Ntx=4, Nrx=4, DS=1, BCC (G,,G,)=(5.7)

FER

10

— STS,1 block
—— STS,2 blocks
107k —%— STS,4 blocks

© - Threading,1 block
8- Threading,2 blocks
< Threading,4 blocks

10 1 1 1 1 1 1 1 1 1
-4 -2 0 2 4 6 8 10 12

Eb/No(dB)

Figure 7.21: STS/Threading pour (N, N,,)=(4,4), L=1, F=1,2,4.
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Partie II: CSI Partiel au Tx

Le canal ici ne suit plus une distribution Rayleigh, mais le récepteur a
une information sur la structure du canal. On considere le cas plat. Le
codage ici est fondamentalement la cascade du codeur espace-temps et du
décorrélateur. Pour l'optimisation du décodeur on prend comme critere la
capacité ergodique.

7.7 Modeéles de Canal

On reformule la capacité ergodique du canal

P
C = EgIndet(I+ —HSH"”) = Egglndet(I+ pN,,HSH"),  (7.81)
UU

ou p = ﬁ et Sxx = PS est la matrice de covariance du signal transmis
oy,

Gaussien qui maximise I'expression ci-haut sous la contrainte de puissance

tr{S} < 1.

7.7.1 Modele a Chemins

Dans ce cas le canal s’écrit

Lp
H=> cab] = ACB (7.82)
I=1
oi A =lay,....,az], B=[by,...by,]|" sont connus.
Ly, est le nombre de chemins. C = diag{cy,...,cp,}, on ¢, i = 1,..., L,

sont les gains complexes des chemins, ils sont modélisés comme Gaussiens de
moyenne 0 et de variance 1.

7.7.2 Modele a Réciprocité Limitée

Dans ce cas la les canaux descendant (de Tx & Rx) et montant (de Rx a Tx)
sont les mémes a part d’un coefficient multiplicatif par antenne. Le canal
montant W’ est connu au Tx, par conséquent le canal descendant peut étre
modélisé par

H =D;WD,, (7.83)
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ot D et Dy sont des matrices diagonales. Ces matrice peuvent avoir plusieurs
modeles, le plus commun est que les éléments diagonaux soient de pures
phases, D; = diag{e/1, ..., ¢!V} et Dy = diag{ei®?, ..., ej‘b?Vtw}, ot les ¢
sont i.i.d. et uniformément distribuées sur [0, 27].

7.8 Résultats

7.8.1 Modele a Chemins

On dérive ci-dessous différentes solutions possibles.
Bas SNR : Ce cas correspond & p << 1. Soit ¥ = E(H”H) la matrice de
covariance du canal vue du Tx.
La solution a bas SNR est aussi appelée la solution beamforming, elle corre-
spond a

S = uu”, (7.84)

ou u est le vecteur propre correspondant a la valeur propre maximale de X.

Haut SNR : Ce cas correspond a p >> 1. La solution est maintenant
1

- H
= oL Nm}UU , (7.85)

ou U est la matrice des vecteurs propres correspondant aux valeurs propres
non-nulles de X.

Waterfilling sur la matrice de covariance du canal (approximé) :
Elle correspond au waterfilling sur 3.

Solution optimale : La fonction In det est une fonction convexe sur I’ensemble
connexe des matrices positives définies avec trace égale a 1. Par conséquent la
solution optimale peut éetre calculée par des méthodes numériques en prenant
comme fonction de cott la capacité ergodique en remplacant I'espérance par
une moyenne des réalisations Monte Carlo.

Solution pour modele séparable :

Pour cette solution on applique la méme méthode que celle utilisé pour la
solution optimale, mais ou les réalisations Monte Carlo prennent en compte
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le modele séparable de la section 7.3.1 qui correspond aux covariances du
canal a chemins.

7.8.2 Modele a Réciprocité Limitée

Pour ce modele les solutions optimale et waterfilling approximé sont aussi
applicable.

7.9 Résultats des Simulations

On compare les performances des différentes solutions, ainsi que celles rel-
atives a l’absence de connaissance au Tx S = NlmI, et au cas ou on a une
connaissance parfaite (borne supérieure des performances). Les résultats des
deux modeles, a chemins (fig. 7.22) et a réciprocité limitée (fig. 7.23), mon-
trent que la solution de waterfilling sur la covariance du canal vue du Tx
atteint des performances tres proches de ceux de la solution optimale.

35 T

* Waterfilling Instantane
- Optimale

—— Waterfilling sur Cov *

3r + Modele Separable

O Haut SNR * /©

Beamforming

— — Absence de CSI *

Capacity [nats]

0 5 10 15
p [dB]

Figure 7.22: Modele a chemins, Ny, = N,, =4, L, = 2.
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4
*  Waterfilling Instantane *
Optimale
35 —— Waterfilling sur Cov x /77
— — Absence de CSI .

Capacity [nats]

0 I I

0 5 10 15
p [dB]

Figure 7.23: Modele a réciprocité limitée, N,, = Ny, = 4.



7.10 Information Mutuelle en Absence de CSI au Rx 193

Partie III: Absence de CSI au Rx

7.10 Information Mutuelle en Absence de CSI
au Rx

Le modele de canal qu’on prend ici est plat et peut étre sélectif en temps (le
canal varie dans le temps)

v = HYx; + vy | (7.86)

La durée de la trame est T. On divise la trame en partie pilote (séquence
d’apprentissage) connue par Rx: X™5 de longueur Nrg, et en partie aveugle
X? qui contient I'information d’une longueur Nz (Npg + N = T).

Pour k > i on définit X¥ = [X;, Xip1, ..., Xul.

7.10.1 Décomposition de I'Information Mutuelle

L’information mutuelle entre le signal transmis et celui recu est
I(Y"S YB: XB X1 = 1(YP, XB|XT9 YT¥), (7.87)
L’expansion séquentielle de cette expression donne

Nrs
I(YP XPIXTS YT9) = 1Y XX, X YD), (7.88)
i=1
o Y; = [YT9, Y Y'¥] contient tout le signal recu & part Y.

De cette expression, on peut conclure qu'une maniere optimale de traite-
ment est d’'utiliser les symboles déja détectés comme pilote, et le signal future
qui correspond aux symboles non encore détectés comme information aveu-
gle pour l'estimation du canal. La combinaison de ces deux parties mene
a l'utilisation d’algorithmes semi-aveugles, qui combinent parties pilote et
aveugle pour l'estimation de canal.
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7.10.2 Comportement Asymptotique des Canaux Evanescants
par Bloc

Dans ce cas H¥ = H pour k£ = 1,...,T, l'information mutuelle moyenne
est définie comme

1
Ly (T) = fI(YB; XBIXTS ¥y, (7.89)

Pour de long bloc, on obtient la limite suivante

lim I,,,(T) = I(y;x/H), (7.90)
T—00
ou I(y;x|H) est I'information mutuelle moyenne avec connaissance parfaite
du canal au Rx.
Ainsi pour un canal évanescant par bloc, il n’y pas de perte de capacité
asymptotiquement dans la longueur de bloc.

7.11 Estimation Semi-Aveugle des Canaux MIMO

On vient de voir 'importance de I'estimation semi-aveugle du canal dans le
traitement au récepteur. Cela est d’autant plus vrai que pour des canaux
MIMO le nombre de parametres a estimer dans le canal est important. Une
approche, basée exclusivement sur I’estimation avec des pilotes, nécessite une
séquence d’apprentissage d’une longueur importante, ce qui limite I'efficacité
spectrale. L’exploitation de la partie semi-aveugle permet de diminuer la
longueur de cette séquence nécessaire a l'identification du canal et d’améliorer
par conséquent D'efficacité spectrale.

Le canal dans cette section est évanescant par bloc.

7.11.1 Canal MIMO plat

Le signal transmis est modélisé comme Gaussien x; ~ CN(0,02Iy,, ). On
Np
, . A 1 H
définit R = g E YiVi -
k=1
Le canal peut étre écrit en fonction de sa décomposition en valeurs singulieres

H=UDQ = WQ (7.91)
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ot U(resp. Q) est une matrice N,, X min{N,,, Ny} (resp. min{N,,, Ny, } X
N,,) unitaire, i.e UPU =1 (resp. QQ" =1).
W correspond a la partie identifiable en aveugle et Q a la partie identi-
fiable avec la séquence d’apprentissage seulement.
Les covariances, correcte et estimée, du signal peuvent étre réécrites
comme
R = U (02Lnin(n, .0y + 02D U 4 g2Ut U

A 7.92
R =1U,S.U". (7.92)

La variance du bruit o2 est supposée connue au récepteur.

Deux approches peuvent étre proposées, l'approche Gaussienne exploite la
blancheur du signal transmis, et l'approche déterministique qui n’exploite
que le sous-espace bruit.

Approche Semi-Aveugle Gaussienne (GSB)
Pour cette approche on propose un algorithme en deux étapes, la premiere
identifie W en aveugle seulement, et la deuxieme identifie Q avec la séquence

d’apprentissage. La séquence d’apprentissage est choisie tel que X XS

I
1. Identification de W:
o« U correspond aux min{ Ny, N,,} vecteurs propres les plus domi-
nants dans U,
e D correspond min{ Ny, N,,} valeurs propres les plus dominantes
dans - ([S. — 07Ty, |4)'"”
e W=UD
2. Identification de Q:
Q=Vs?, (7.93)
ou S et V sont les parties unitaires de la décomposition en valeurs

singulieres de XTSYTSIVW = s » V.

Approche Semi-Aveugle Déterministique (DSB)

Dans cette méthode on n’exploite plus les corrélations du signal a ’entrée
mais seulement le sous-espace bruit. Pour que ce dernier existe, on doit avoir
N, > N;,. L’information aveugle dans ce cas la exprime 'orthogonalité du
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canal par rapport au sous-espace bruit UM"H = 0. En utilisant une ap-
proche de minimum d’erreurs quadratiques pondérées on combines la partie
aveugle et celle de la séquence d’apprentissage dans un critere quadratique

min (O’U_QHYTS —HXTS|)% + NB||ﬂlHHH\\%> . (7.94)

De la méme maniere, des approches semi-aveugles Gaussienne et déterministique
peuvent étre proposées pour des canaux sélectifs en fréquence dans le cas
N,z > Ny, [90]. Dans ce types de canaux on utilise la prédiction linéaire afin
d’extraire I'information aveugle sur la corrélation du signal et le sous-espace
bruit.

7.11.2 Analyse de Performance

La figure 7.24 montre les performances des approches GSB et DSB en com-
paraison avec I’approche TS, basées seulement sur la séquence d’apprentissage,
et la borne de Cramer-Rao (CRB). Le canal est 4 x 2 et la longueur de
la partie aveugle est Ng = 400. Le SNR est fixé a 10dB et les perfor-
mances sont données en erreur quadratique moyenne (MSE) pour différentes
longueurs de la séquence d’apprentissage (pilote). On observe que l'utilisation
des méthodes semi-aveugles permet de diminuer la longueur de la séquence
d’apprentissage nécessaire a une qualité d’estimation donnée. D’autre part,
I’approche GSB donne des performances quasi-optimales qui sont proches de
la borne de Cramer-Rao.
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Ntx=2, Nrx=4, SNR=10 db, NB=400
T T

— s
_1al- * GsB |
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Longuer Pilot

Figure 7.24: MSE vs Npg: canal plat, Ny, = 2, N, = 4, Ng = 400, SNR=
10 dB.
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7.12 Conclusion

Dans cette these on a présenté plusieurs études et solutions pour le codage et
le traitement de signal dans les systemes MIMO. Ce travail est structuré en
trois parties, chacune traite d'un état particulier de connaissance de canal:

e Dans la premiere partie le CSI est absent au Tx et parfait au Rx. On
a commencé par proposer un schéma de codage espace-temps, le STS,
qui est basé sur un filtre de précodage MIMO.

Au récepteur, et pour éviter d’utiliser le décodeur ML qui a une grande
complexité, on a proposé trois stratégies de réception. Le Stripping
MIMO DFE est un récepteur non-itératif qui détecte et annule les
streams successivement. On a montré théoriquement qu’avec des con-
stellations QAM qui ont des tailles qui dépendent du SNR et du stream,
le STS combiné avec le détecteur Stripping MIMO DFE donne des per-
formances, en termes de compromis diversité-multiplexage, meilleures
que celles des schémas existants. Le second récepteur non-itératif est
le MIMO DFE Conventionnel. Par opposition au premier, il utilise
la méme constellation pour toute les streams. On montre qu’il at-
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Résumé en frangais

teint un bon gain de diversité. Le dernier récepteur a étre proposé est
itératif. Il utilise une détection turbo en itérant entre I’'égaliseur linéaire
et le décodeur correcteur d’erreur. Les simulations montrent I’avantage
d’utiliser le STS par rapport aux approches basées sur un pur codage
correcteur d’erreur (Threading), en particulier pour un nombre impor-
tant d’antennes de transmission Ny, ou en cas de codage sur plusieurs
blocs avec différentes réalisations du canal (diversité temporelle).

Dans la seconde partie, on a traité le cas de connaissance partielle sur
le canal au Tx et parfaite au Rx. Le codage dans ce cas la est fon-
damentalement la cascade du schéma STC, développé en ’absence de
CSI au Tx, et d'un décorrélateur qui colore le signal transmis. On
a étudié la couleur de I'entrée qui permet d’atteindre la capacité er-
godique pour deux modeles de canaux, le modele a chemins et le modele
a réciprocité limitée. Les résultats numériques montrent qu’une solu-
tion quasi-optimale peut étre obtenue par le waterfilling sur la matrice
de covariance du canal vue par le Tx.

Dans la derniére partie on a étudié le cas d’absence de CSI au Rx et
Tx. On a montré que la capacité d’un canal évanescant par bloc atteint
asymptotiquement, dans la longueur du bloc, celle obtenue avec con-
naissance parfaite du canal au Rx. D’autre part, la décomposition de
I'information mutuelle motive I'utilisation d’algorithmes semi-aveugles
pour l'estimation du canal. Le gain en performance par rapport a
une méthode basée exclusivement sur la séquence d’apprentissage peut
étre important, en particulier 'approche GSB atteint méme la borne
Cramer-Rao pour un canal plat. Les approches semi-aveugles améliorent
aussi 'identifiabilité et permettent de réduire la longueur de la séquence
d’apprentissage.
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