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NS
How easy it is to program a product of matrices?
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NS
How easy it is to program a product of matrices?

Well, in floating-point, it is very easy !!

#define N 80
int
main ()
{
int i,3,k;
float A[N][N]={...};
float B[N][N]={...};
float C[N][N]={0,...,0};
for (i = 0; i < N ; i++4)
for (j = 0; j <N ; j++)
for (k = 0; k < N ; k++) /* dot product of row i and column j */
Cli][j1+=A[i1[kI*B[k]I[3];
return 0;
}
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How easy it is to program a product of matrices?

Well, in floating-point, it is very easy !!

#define N 80
int

main ()

{

int i,3,k;
float A[N]
float B[N]
float C[N
for (i

/* dot product of row i and column j */

But, what if the target does not have a floating-point unit?
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R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

.E —_—

m Highly used in audio and video applications
» demanding on floating-point computations
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Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems

.E —_—

m Highly used in audio and video applications
» demanding on floating-point computations
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R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

Software implementing
floating—point arithmetic

Embedded systems

i —

m Highly used in audio and video applications
» demanding on floating-point computations
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R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems Conversmn 5
. leed—pomt

m Float to Fix conversion is tackled by the ANR project DEFIS
> LIP6, IRISA, CEA, LIRMM, THALES and INPIXAL
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Outline of the talk

1. Background of fixed-point arithmetic

1.1 Basics of fixed-point arithmetic

1.2 Numerical and combinatorial issues in fixed-point programs
1.3 CGPE

2. Matrix multiplication in fixed-point
2.1 An accurate algorithm

2.2 A compact algorithm

2.3 Closest pair algorithm

3. Conclusion
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Background of fixed-point arithmetic

Outline of the talk

1. Background of fixed-point arithmetic

1.1 Basics of fixed-point arithmetic

1.2 Numerical and combinatorial issues in fixed-point programs
1.3 CGPE
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Background of fixed-point arithmetic Basics of fixed-point arithmetic

Principles of fixed-point arithmetic
m Main idea of fixed-point arithmetic:
> interpret bit words as integers coupled with a scale factor: zin

| 27421 =130

z
7 o1
| 1 | 0 | 0 | 0 l 0 | 0 | 1 | 0 | Value in fixed-point ‘ 130 _ 2020 _531 595125

Integer part Fractional part
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Background of fixed-point arithmetic Basics of fixed-point arithmetic

Principles of fixed-point arithmetic
m Main idea of fixed-point arithmetic:
> interpret bit words as integers coupled with a scale factor: zin

z | 27 +2' =130
Yoyl
| 1 | 0 | 0 | 0 l 0 | 0 | 1 | 0 | Value in foed-point | 130 = 27421 ~ 5329 g 125

Integer part Fractional part

AThe scale factor (or fixed-point format) is implicit, only the programmer is aware of it
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Background of fixed-point arithmetic Basics of fixed-point arithmetic

Principles of fixed-point arithmetic
m Main idea of fixed-point arithmetic:
> interpret bit words as integers coupled with a scale factor: zin

z | 27 +2' =130
Yoyl
| 1 | 0 | 0 | 0 l 0 | 0 | 1 | 0 | Value in foed-point | 130 = 27421 ~ 5329 g 125

Integer part Fractional part

AThe scale factor (or fixed-point format) is implicit, only the programmer is aware of it

m Let us denote by Q, a fixed-point format with a integer bits and b fractional bits

[1]o]ofo]o]o]1]o] (1015625)

g

[1]o]o]o]ofo]1]0] Qg [1]ofo]ofofo]1]o] (203125)

[1]ofo]o]o]o]1]o] (0s078125)
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Background of fixed-point arithmetic Basics of fixed-point arithmetic

Basic fixed-point operators

= Addition
> The two variables have to be in the same fixed-point format
> The sum of two Qp variables yields a Qa1 variable

truncated
[1To[1]ofo]o1]0] 5.0625
+ [AJoJ1]1]o1]o[1] 2.828125
"o A [1Too] 1’ 7.890625 7.875
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Background of fixed-point arithmetic Basics of fixed-point arithmetic

Basic fixed-point operators

= Addition
> The two variables have to be in the same fixed-point format
> The sum of two Qg , variables yields a Qz41,p variable

truncated
[1]o[1]oJoJo[1]0] 5.0625
+ [JoJ1[1]of1]0]1] 2.828125
"o A [1Too] 1’ 7.890625 7.875

= Multiplication
> No need for the two variables to have the same fixed-point format
> The product of a Q4 p variable by a Q; g variable yields a Qa4 ¢ b+ Variable

truncated
[1]o]1]oofo[1]0] 5.0625
x [o[1]o[1T1To 1]1] 1.421875
[oToTiTiT1]ofo 1] 0’0 1'0" 1 170’ 7.198242187 7.125
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Background of fixed-point arithmetic Numerical and combinatorial issues in fixed-point programs

First example: a size 3 dot product

m Let us consider the arithmetic expression: (ag x bg) + (a1 x by) + (a2 x b2)
and the following input fixed-point formats:

a by a by a2 by
\ Value [0.1,157] | [0,1.98] | [0.01,0.87] | [1.1,1.86] | [0,15.4] | [2,3.3]
| Fixed-point format Q7 Q7 Qg Q7 Q4 Qe
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Background of fixed-point arithmetic Numerical and combinatorial issues in fixed-point programs

First example: a size 3 dot product

m Let us consider the arithmetic expression: (ag x bg) + (a1 x by) + (a2 x b2)
and the following input fixed-point formats:

a b a by a2 by
\ Value [0.1,157] | [0,1.98] | [0.01,0.87] | [1.1,1.86] | [0,15.4] | [2,3.3]
| Fixed-point format Q7 Q7 Qs Q7 Q4 Qe

m Let us focus on 2 different schemes to compute the sum of products:

in full
precision

(co+(ct+c2))
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Background of fixed-point arithmetic Numerical and combinatorial issues in fixed-point programs

First example: a size 3 dot product

m Let us consider the arithmetic expression: (ag x bg) + (a1 x by) + (a2 x b2)
and the following input fixed-point formats:

a b a by a2 by
\ Value [0.1,157] | [0,1.98] | [0.01,0.87] | [1.1,1.86] | [0,15.4] | [2,3.3]
| Fixed-point format Q7 Q7 Qs Q7 Q4 Qe

m Let us focus on 2 different schemes to compute the sum of products:

with 16 bits
precision

(co+(ct+c2))
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Background of fixed-point arithmetic CGPE

The CGPE ! software tool

m Written by Revy and Mouilleron to aid in emulating floating-point in software

m A tool that generates fast and certified code

polynomial.xml
E Pt
3 . il o
m fast ~ that reduce the evaluation latency % TR
. . = | </polynomia>
on a given target, by using the target = Set of DAGs -
architecture features (as much as possible)
o architecture.xml
g ; <achitecture>
;.'l' @ S nstru?y\gg: msgngd
=) H - .
m certified ~~ for which we can bound the error % ' R
. . s : Filter n e e«
entailed by the evaluation within the given

target’s arithmetic Decorated DAGs

Code generator

back-end

[ C files ] [Accuracy ceniﬁcat.es]

1Code Generation for Polynomial Evaluation
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Outline of the talk

2. Matrix multiplication in fixed-point
2.1 An accurate algorithm

2.2 A compact algorithm

2.3 Closest pair algorithm
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Matrix multiplication in fixed-point

Defining the problem

m We are provided with
> a black box (CGPE) that synthesises code for dot-products in fixed-point arithmetic

/ C code
2 real

interval T~.| Accuracy
vectors certificate

> 2 matrices Aand Bin /(R™")

[-454,7.78] - [-0.789,0.967] [-64,45.78] -  [-0.287,0.7]
A= X . X and, B= . . X
[1251,24.14] - [-0.921,0.791] [125.1,245.14] - [-5.74,7.32]
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Matrix multiplication in fixed-point

Defining the problem

m We are provided with
> a black box (CGPE) that synthesises code for dot-products in fixed-point arithmetic

/ C code
2 real

interval .| Accuracy
vectors certificate

> 2 matrices Aand Bin /(R™")

[-454,7.78] - [-0.789,0.967] [-64,45.78] -  [-0.287,0.7]
A= X . X and, B= . . X
[1251,24.14] - [-0.921,0.791] [125.1,245.14] - [-574,7.32]

m We are asked to
> Generate code that evaluates all the products C = MN in fixed-point arithmetic
* where Me Aand Ne B
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Tradeoffs to consider

m Remark: The suggested strategy should be efficient in terms of the tradeoffs
below for all matrices of size smaller than 80 x 80
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Tradeoffs to consider

m Remark: The suggested strategy should be efficient in terms of the tradeoffs
below for all matrices of size smaller than 80 x 80

1. Size of the generated code
> We are targeting embedded systems ~~ code size should be as tight as possible
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Tradeoffs to consider

m Remark: The suggested strategy should be efficient in terms of the tradeoffs
below for all matrices of size smaller than 80 x 80

1. Size of the generated code
> We are targeting embedded systems ~~ code size should be as tight as possible

2. Accuracy of the generated code

> Accuracy certificates should be produced that bound the absolute error
> The guaranteed absolute error should be as tight as possible
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Tradeoffs to consider

m Remark: The suggested strategy should be efficient in terms of the tradeoffs
below for all matrices of size smaller than 80 x 80

1. Size of the generated code
> We are targeting embedded systems ~~ code size should be as tight as possible

2. Accuracy of the generated code
> Accuracy certificates should be produced that bound the absolute error
> The guaranteed absolute error should be as tight as possible

3. Speed of generation
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An accurate algorithm

m Main idea: Generate a dot product code for each coefficient of the resulting matrix

AccurateProduct
Inputs:

Two square matrices A€ I(R"*"") and B e I(R"*")
Outputs:

C code to compute the product MN for all Me Aand Ne B
Steps:
1: for1<i<ndo
2: for1<j<ndo

3: cgpeGenDotProduct(A;, By);
4. end for
5: end for
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An accurate algorithm

m Main idea: Generate a dot product code for each coefficient of the resulting matrix

AccurateProduct
Inputs:
Two square matrices A€ I(R"*"") and B e I(R"*")
Outputs:
C code to compute the product MN for all Me Aand Ne B
Steps:
1: for1<i<ndo
2: for1<j<ndo

3: cgpeGenDotProduct(A;, By);
4. end for
5: end for

lllustration on the product of two 2 x 2 matrices

. C1,1 = cgpeGenDotProduct(A1,B1)  C1,2 = cgpeGenDotProduct(Ay, Bp)
Co,1 = cgpeGenDotProduct(Ap,B1)  Co» = cgpeGenDotProduct(Ay, Bp)
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Analysis of AccurateProduct

m For square matrices of size n, n? calls to the cgpeGenDotProduct are issued
> Each dot product uses more than 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2n3

— More than 1024000 instructions for 80 x 80 matrices
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Analysis of AccurateProduct

m For square matrices of size n, n? calls to the cgpeGenDotProduct are issued
> Each dot product uses more than 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2n3

— More than 1024000 instructions for 80 x 80 matrices

Advantages Drawbacks
/ Easy to generate code X Code size is proportional to
2n°

v Two nested loops and n? calls to the

routine cgpeGenDotProduct x Similar code sizes are

prohibitive in embedded

/" The reference in terms of numerical quality systems
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A compact algorithm

m Main idea: Generate a unique dot product code for all the computations

CompactProduct
Inputs:
Two square matrices A€ I(R"*"") and B e I(R"*")
Outputs:
C code to compute the product MN for all Me Aand Ne B
Steps:
1: compute v suchthat v=A{UAyU---UAp
2: compute w suchthat w=BjUBpoU---UBp
3: cgpeGenDotProduct(v,w);
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A compact algorithm

m Main idea: Generate a unique dot product code for all the computations

CompactProduct
Inputs:
Two square matrices A€ I(R"*"") and B e I(R"*")
Outputs:
C code to compute the product MN for all Me Aand Ne B
Steps:
1: compute v suchthat v=A{UAyU---UAp
2: compute w suchthat w=BjUBpoU---UBp
3: cgpeGenDotProduct(v,w);

lllustration on the product of two 2 x 2 matrices

o C1,1 = cgpeGenDotProduct(A1 U Az, B UBy)  Cy 2 = cgpeGenDotProduct(Ay U A, By U By)
Cs,1 = cgpeGenDotProduct(Ay U Az, B UBp)  Cp o = cgpeGenDotProduct(Ay U Ap, By U Bp)
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Analysis of CompactProduct

m For square matrices of size n, only one call to the cgpeGenDotProduct is issued
> The dot product uses around 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2n

— Around 160 instructions for 80 x 80 matrices
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Analysis of CompactProduct

m For square matrices of size n, only one call to the cgpeGenDotProduct is issued
> The dot product uses around 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2n

— Around 160 instructions for 80 x 80 matrices

Advantages

v/ Easy to generate code Drawbacks
~ Compute the union of all vectors of A and
B and call the routine
cgpeGenDotProduct

X Numerical quality
deteriorates dramatically

/" The reference in terms of code size
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A closest pair algorithm

m Main idea: Fuse together only rows or columns that are close to each other

The Hausdorff distance dy
dy : I(R™) x I(R™) — R
dH(A B) = max max{)a,-—b,-|,|5,-—5,-|}
1<isn = =
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Matrix multiplication in fixed-point Closest pair algorithm

A closest pair algorithm

m Main idea: Fuse together only rows or columns that are close to each other

The Hausdorff distance dy
dy : I(R™) x I(R™) — R
dn(A,B) = 1r21;15xnmax{’ﬁ—ﬁ|,|a,-—b,-|}
Example

LetA= ([—4,7] [-1 1,102]) and B= ([—2,88] [—23,1]) be two vectors in /(R?), we have:

= dy(A B)=101 = U(AB)=([-4,88] [-23,102])
) & ar a3 by R
i dr(A1,By) o4 81)
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Matrix multiplication in fixed-point Closest pair algorithm

ClosestPairFusion

ClosestPairFusion
Inputs:
n vectors, v1,..., v, in I(R™)
a routine findClosestPair based on dy
a routine Union that applies the union operator
the number k of output vectors
Outputs:
k vectors in I(R™)
Steps:
1. B={v,...,Vp}
2: while size(%) > k do
3:  (u1,up) = findClosestPair(98)
4. remove(uy,B)
5. remove(uz, B)
6
7:

add(Union(uy, u2), B)
end while
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Matrix multiplication in fixed-point Closest pair algorithm

[llustration of the ClosestPairFusion

wq wo w3 Wa
vi ([-44] [-55] [-55] [-66] (-3,3] [-14,14] [-55] [-6,6]
v |[-22] [-1,1] [-33] [-99] [-1,1] [-11,11]  [-3,3] [-9,9]
vs | [-7.7] [-44] [-1212] [-11,11] [-4,4] [-88] [-11,11] [-1,1]
vs \[-8,8] [-1,1] [-10,10] [-9,9] [-9.9] [-7,7] [-10,10] [-22]
[Con(vrv2) [ du(vi.ve) | dh(viva) [ dulvaivs) | dulveve) | d(varva) | [Tt wo) [ G vs) [ dhulw,wa) | hi(wows) | dulwoma) | (g wa) |
4 | 7 | 5 | 9 | 7 | 3 | | 11 | 7 | 8 | 9 | 8 | 10 |

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)
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Matrix multiplication in fixed-point Closest pair algorithm

[llustration of the ClosestPairFusion

vi ([-4,4] [-55] [-55] [-66]
vo | [-22] [-1.1] [-3,3]  [-99]
vs | [-7.7] [-44] [-1212] [-11,11]
vi \[-8,8] [-1,1] [-10,10] [-9,9]

[Cau(viv2) | du(vrve) | du(viva) | du(varvs) | dulvove) | du(vsva) |

< v [ s [ s 7 T 5 |
" [-4,4] [-55 [-55] [-6,6]
vo -22] [-11] [-3,3] [-9,9]

vsUv \[-8,8] [-4,4] [-12,12] [-11,11]

dh(vi,v2) ‘ dr(vi,v3Uva) ‘ dH(va,v3Uva) ‘
i 7 | 9

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)

wq wo w3 Wy
[-3,3] [-14,14] [-5,5] [-6,6]
[-1,1] [-11,11]  [-8,3] [-9,9]
[-4,4] [-88] [-11,11] [-1,1]
[-9,9] [-7.7] [-10,10] [-2,2]

[ ahi(wi.we) [ dulwi,wa) | dh(wiwa) | culneiwa) | dh(wewa) | culwa,wa) |
| 11 | 7 | 8 | 9 | 8 | 0 |

wyUws wa wy
[-5,5] [-14,14] [-6,6]
[-3,3] [-11,11] [-9,9]
[—11,11] [-8,8] [-1.1]
[-10,10] [-7,7] [-272]

[ du(wromg,we) [ du(w vwg,wa) | du(we.m) |
9 | 10 | 8 |

Synthesis of fixed-point programs: the case of matrix multiplication



Matrix multiplication in fixed-point Closest pair algorithm

[llustration of the ClosestPairFusion

w1 w2 w3 Wy
vi ([-44] [-55] [-55] [-6,6] [-3,3] [-14,14] [-55] [-6,6]
v |22 [-1.1] [-33] [-9.9] 4] [1,11] [-3.3] [-9.9]
vs | [-7,7] [-4,4] [-12,12] [-11,11] [-4,4] [-88] [-11,11] [-1,1]
vs \[-8,8] [-1,1] [-10,10] [-9,9] [-9,9] [-7,7] [-10,10] [-2,2]
[Con(vrv2) [ du(vi.ve) | dh(viva) [ dulvaivs) | dulveve) | d(varva) | [Tt wo) [ G vs) [ dhulw,wa) | hi(wows) | dulwoma) | (g wa) |
4| 7 | s [ s | 7 3 | | 11 | 7 | 8 | 9 | 8 | 0 |

wyUws w2 Wa
vi [-4.4] [-55] [-55] [-6,6] {:22} {jjlﬂ }:g,g}
va [-22] [-1,1] [-33] [-9,9] 1011 (88 [-1,1]
vauvs \[-8,8] [-4,4] [-12,12] [-11,11] [-10,10] [-7.7] [-22]
} dH(j,vg) } dH(va;aqu) } dH(VE';’SU"‘) } [ d(wiwg,we) | du(wiws,wa) | dhy(wowa) |
0 \ 10 [ ]

wiUws Wo U Wy

[-5,5] [-14,14]
viuv, ([-4,4] [-55] [-55] [—9,9]) [-3,3] [-11,11]
vsuv ([-8,8] [-4,4] [-12,12] [-11,11] [-11,11] [-8,8]

[-10,10] [-7,7]

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)
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Matrix multiplication in fixed-point Closest pair algorithm

Analysis of the closest pair algorithm

m For square matrices of size n, k x / calls to the cgpeGenDotProduct are issued
> Each dot product uses more than 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2nk/

— For 80 x 80 matrices, the table below gives the number of instructions

K ! 1 2 4 5 8 10 16 20 40 80
1 160 320 640 800 1280 1600 2560 3200 6400 12800
2 320 640 1280 1600 2560 3200 5120 6400 12800 25600
4 640 1280 2560 3200 5120 6400 10240 12800 25600 51200
5 800 1600 3200 4000 6400 8000 12800 16000 32000 64000
8 1280 2560 5120 6400 10240 12800 20480 25600 51200 102400
10 1600 3200 6400 8000 12800 16000 25600 32000 64000 128000
16 2560 5120 | 10240 | 12800 | 20480 25600 40960 51200 | 102400 | 204800
20 3200 6400 | 12800 | 16000 | 25600 32000 51200 64000 | 128000 | 256000
40 6400 | 12800 | 25600 | 32000 | 51200 64000 | 102400 | 128000 | 256000 | 512000
80 12800 | 25600 | 51200 | 64000 | 102400 | 128000 | 204800 | 256000 | 512000 | 1024000
Advantages Drawbacks
v/~ Code size can be controlled X Numerical quality deteriorates with
through the parameters k and / small values of k and /
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Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms

m These results were produced for interval matrices of size 80 x 80

> The center of each interval is randomly selected in [-1000, 1000]
> The diameter of the intervals is fixed to 100

AccurateProduct CompactProduct
m Largest certified error: = 0.1254 m Largest certified error: = 0.5585
m Mean certified error: = 0.0865 m Mean certified error: = 0.5585
m Number of instructions: = 1024000 m Number of instructions: = 160
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Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms, cont'd
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Closest pair algorithm

Matrix multiplication in fixed-point
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Outline of the talk

3. Conclusion
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Conclusion

®m In this talk:

> We suggested 3 strategies to generate code for matrix product in fixed-point arithmetic
> The accurate algorithm performs well in terms of numerical quality but is prohibitive
> The compact algorithm generates concise codes but deteriorates the numerical quality

> The Closest Pair algorithm enables the tradeoffs between code size and numerical quality
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Conclusion

®m In this talk:

> We suggested 3 strategies to generate code for matrix product in fixed-point arithmetic
> The accurate algorithm performs well in terms of numerical quality but is prohibitive
> The compact algorithm generates concise codes but deteriorates the numerical quality

> The Closest Pair algorithm enables the tradeoffs between code size and numerical quality

m For the future, we will be working on:

> Suggesting similar algorithms for the discrete convolution in fixed-point arithmetic

> Investigating the synthesis of VHDL code for building blocks like matrix multiplication
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Conclusion
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Example of code generated by CGPE

// File automatically generated by CGPE (Code Generation for Polynomial Evaluation)

// Scheme : ((((a0+(S*(al+(T*a2))))+((S*(T*T))*(a3+(T*ad))))+((S*(T*T))*((T*T)*(a5+(T*a6)))))+(((S*(T*T))*((T*T)*(
T*T))) *((a7+(T*a8) )+ ((T*T)*(a9+(T*al0))))))

// Degree : [9,1]

uint32_t func_0(uint32_t T, uint32_t S)
{

uint32_t r0 = mul(T, 0x5a82685d); // 1.31
uint32_t rl = 0xb504£31f - r0; // 1.31
uint32_t mul (S, rl); /1 2.30
uint32_t 0x00000020 + r2; /1 2.30
uint32_t mul (T, T); /7 0.32
uint32_t mul (S, r4); // 1.31
uint32_t mul (T, 0x386fd5f4); // 1.31
uint32_t 0x43df72£7 - r6; // 1.31
uint32_t mul(r5, r7); /7 2.30
uint32_t r3 + r8; /1 2.30
uint32_t rl0 = mul(T, 0x28724100); // 1.31
uint32_t rll = 0x308b1798 - rl0Q; // 1.31
uint32_t rl2 = mul(r4, rll); // 1.31
uint32_t rl3 = mul(r5, ri2); /1 2.30
uint32_t rld4 = r9 + rl3; /1 2.30
uint32_t rl5 = mul(rd, rd); /7 0.32
uint32_t rl6 = mul(r5, rl5); // 1.31
uint32_t rl17 = mul(T, 0x106c5cd9); // 1.31
uint32_t rl8 = 0x1d7bf968 - rl7; // 1.31
uint32_t rl9 = mul(T, 0x00fa%aad); // 1.31
uint32_t r20 = 0x05dfffa4 - rl9; // 1.31
uint32_t r2l = mul(r4, r20); // 1.31
uint32_t r22 = rlg§ + r2l; // 1.31
uint32_t r23 = mul(rle, r22); /1 2.30
uint32_t r24 = rl4 + r23; // 2.30

return r2d;

/* Error bound computed using MPFI:
* [-101430164957300904987779234264749461384198787082116213489690022556337011401715b-283,

* 25586666393682615675400092400526394119988758102711854693922360480750444185767b-282]
* ~ [-2"(-27.191},2"{-28.1781}]
*/

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) esis of fixed-point program: case of matrix multiplicatiol



	DALI 2013
	Background of fixed-point arithmetic
	Basics of fixed-point arithmetic
	Numerical and combinatorial issues in fixed-point programs
	CGPE

	Matrix multiplication in fixed-point
	An accurate algorithm
	A compact algorithm
	Closest pair algorithm

	Conclusion


