N

N
N

HAL

open science

Synthesis of fixed-point programs: the case of matrix

multiplication
Mohamed Amine Najahi

» To cite this version:

Mohamed Amine Najahi. Synthesis of fixed-point programs:
EJCIM: Ecole Jeunes Chercheurs en Informatique Mathématique, Apr 2013, Perpignan, France. 13th
Ecole Jeunes Chercheurs en Informatique Mathématique (EJCIM 2013) Perpignan, April 12th, 2013,

2013. lirmm-01277362

HAL Id: lirmm-01277362
https://hal-lirmm.ccsd.cnrs.fr /lirmm-01277362
Submitted on 22 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

the case of matrix multiplication.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01277362
https://hal.archives-ouvertes.fr

13! Ecole Jeunes Chercheurs en Informatique Mathématique (EJCIM 2013)
Perpignan, April 121, 2013

Synthesis of fixed-point programs:
the case of matrix multiplication

Amine Najahi
Advisers: M. Martel and G. Revy

Equipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

NS
How easy it is to program a product of matrices?

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

NS
How easy it is to program a product of matrices?

Well, in floating-point, it is very easy !!

#define N 80
int
main ()
{
int i,3,k;
float A[N][N]={...};
float B[N][N]={...};
float C[N][N]={0,...,0};
for (i = 0; i < N ; i++4)
for (j = 0; j <N ; j++)
for (k = 0; k < N ; k++) /* dot product of row i and column j */
Cli][j1+=A[i1[kI*B[k]I[3];
return 0;
}

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

How easy it is to program a product of matrices?

Well, in floating-point, it is very easy !!

#define N 80
int

main ()

{

int i,3,k;
float A[N]
float B[N]
float C[N
for (i

/* dot product of row i and column j */

But, what if the target does not have a floating-point unit?

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

.E —_—

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems

.E —_—

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

Software implementing
floating—point arithmetic

Embedded systems

i —

m Highly used in audio and video applications
» demanding on floating-point computations

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

R ——
Motivation

m Embedded systems are ubiquitous

> microprocessors and/or DSPs dedicated to one or a few specific tasks
> satisfy constraints: area, energy consumption, conception cost

m Some embedded systems do not have any FPU (floating-point unit)

Applications

FP computations

Embedded systems Conversmn 5
. leed—pomt

m Float to Fix conversion is tackled by the ANR project DEFIS
> LIP6, IRISA, CEA, LIRMM, THALES and INPIXAL

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

.
Outline of the talk

1. Background of fixed-point arithmetic

1.1 Basics of fixed-point arithmetic

1.2 Numerical and combinatorial issues in fixed-point programs
1.3 CGPE

2. Matrix multiplication in fixed-point
2.1 An accurate algorithm

2.2 A compact algorithm

2.3 Closest pair algorithm

3. Conclusion

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic

Outline of the talk

1. Background of fixed-point arithmetic

1.1 Basics of fixed-point arithmetic

1.2 Numerical and combinatorial issues in fixed-point programs
1.3 CGPE

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic Basics of fixed-point arithmetic

Principles of fixed-point arithmetic
m Main idea of fixed-point arithmetic:
> interpret bit words as integers coupled with a scale factor: zin

| 27421 =130

z
7 o1
| 1 | 0 | 0 | 0 l 0 | 0 | 1 | 0 | Value in fixed-point ‘ 130 _ 2020 _531 595125

Integer part Fractional part

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic Basics of fixed-point arithmetic

Principles of fixed-point arithmetic
m Main idea of fixed-point arithmetic:
> interpret bit words as integers coupled with a scale factor: zin

z | 27 +2' =130
Yoyl
| 1 | 0 | 0 | 0 l 0 | 0 | 1 | 0 | Value in foed-point | 130 = 27421 ~ 5329 g 125

Integer part Fractional part

AThe scale factor (or fixed-point format) is implicit, only the programmer is aware of it

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic Basics of fixed-point arithmetic

Principles of fixed-point arithmetic
m Main idea of fixed-point arithmetic:
> interpret bit words as integers coupled with a scale factor: zin

z | 27 +2' =130
Yoyl
| 1 | 0 | 0 | 0 l 0 | 0 | 1 | 0 | Value in foed-point | 130 = 27421 ~ 5329 g 125

Integer part Fractional part

AThe scale factor (or fixed-point format) is implicit, only the programmer is aware of it

m Let us denote by Q, a fixed-point format with a integer bits and b fractional bits

[1]o]ofo]o]o]1]o] (1015625)

g

[1]o]o]o]ofo]1]0] Qg [1]ofo]ofofo]1]o] (203125)

[1]ofo]o]o]o]1]o] (0s078125)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic Basics of fixed-point arithmetic

Basic fixed-point operators

= Addition
> The two variables have to be in the same fixed-point format
> The sum of two Qp variables yields a Qa1 variable

truncated
[1To[1]ofo]o1]0] 5.0625
+ [AJoJ1]1]o1]o[1] 2.828125
"o A [1Too] 1’ 7.890625 7.875

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic Basics of fixed-point arithmetic

Basic fixed-point operators

= Addition
> The two variables have to be in the same fixed-point format
> The sum of two Qg , variables yields a Qz41,p variable

truncated
[1]o[1]oJoJo[1]0] 5.0625
+ [JoJ1[1]of1]0]1] 2.828125
"o A [1Too] 1’ 7.890625 7.875

= Multiplication
> No need for the two variables to have the same fixed-point format
> The product of a Q4 p variable by a Q; g variable yields a Qa4 ¢ b+ Variable

truncated
[1]o]1]oofo[1]0] 5.0625
x [o[1]o[1T1To 1]1] 1.421875
[oToTiTiT1]ofo 1] 0’0 1'0" 1 170’ 7.198242187 7.125

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic Numerical and combinatorial issues in fixed-point programs

First example: a size 3 dot product

m Let us consider the arithmetic expression: (ag x bg) + (a1 x by) + (a2 x b2)
and the following input fixed-point formats:

a by a by a2 by
\ Value [0.1,157] | [0,1.98] | [0.01,0.87] | [1.1,1.86] | [0,15.4] | [2,3.3]
| Fixed-point format Q7 Q7 Qg Q7 Q4 Qe

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic Numerical and combinatorial issues in fixed-point programs

First example: a size 3 dot product

m Let us consider the arithmetic expression: (ag x bg) + (a1 x by) + (a2 x b2)
and the following input fixed-point formats:

a b a by a2 by
\ Value [0.1,157] | [0,1.98] | [0.01,0.87] | [1.1,1.86] | [0,15.4] | [2,3.3]
| Fixed-point format Q7 Q7 Qs Q7 Q4 Qe

m Let us focus on 2 different schemes to compute the sum of products:

in full
precision

(co+(ct+c2))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic Numerical and combinatorial issues in fixed-point programs

First example: a size 3 dot product

m Let us consider the arithmetic expression: (ag x bg) + (a1 x by) + (a2 x b2)
and the following input fixed-point formats:

a b a by a2 by
\ Value [0.1,157] | [0,1.98] | [0.01,0.87] | [1.1,1.86] | [0,15.4] | [2,3.3]
| Fixed-point format Q7 Q7 Qs Q7 Q4 Qe

m Let us focus on 2 different schemes to compute the sum of products:

with 16 bits
precision

(co+(ct+c2))

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Background of fixed-point arithmetic CGPE

The CGPE ! software tool

m Written by Revy and Mouilleron to aid in emulating floating-point in software

m A tool that generates fast and certified code

polynomial.xml
E Pt
3 . il o
m fast ~ that reduce the evaluation latency % TR
. . = | </polynomia>
on a given target, by using the target = Set of DAGs -
architecture features (as much as possible)
o architecture.xml
g ; <achitecture>
;.'l' @ S nstru?y\gg: msgngd
=) H - .
m certified ~~ for which we can bound the error % ' R
. . s : Filter n e e«
entailed by the evaluation within the given

target’s arithmetic Decorated DAGs

Code generator

back-end

[C files] [Accuracy ceniﬁcat.es]

1Code Generation for Polynomial Evaluation

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Outline of the talk

2. Matrix multiplication in fixed-point
2.1 An accurate algorithm

2.2 A compact algorithm

2.3 Closest pair algorithm

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point

Defining the problem

m We are provided with
> a black box (CGPE) that synthesises code for dot-products in fixed-point arithmetic

/ C code
2 real

interval T~.| Accuracy
vectors certificate

> 2 matrices Aand Bin /(R™")

[-454,7.78] - [-0.789,0.967] [-64,45.78] - [-0.287,0.7]
A= X . X and, B= . . X
[1251,24.14] - [-0.921,0.791] [125.1,245.14] - [-5.74,7.32]

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point

Defining the problem

m We are provided with
> a black box (CGPE) that synthesises code for dot-products in fixed-point arithmetic

/ C code
2 real

interval .| Accuracy
vectors certificate

> 2 matrices Aand Bin /(R™")

[-454,7.78] - [-0.789,0.967] [-64,45.78] - [-0.287,0.7]
A= X . X and, B= . . X
[1251,24.14] - [-0.921,0.791] [125.1,245.14] - [-574,7.32]

m We are asked to
> Generate code that evaluates all the products C = MN in fixed-point arithmetic
* where Me Aand Ne B

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Tradeoffs to consider

m Remark: The suggested strategy should be efficient in terms of the tradeoffs
below for all matrices of size smaller than 80 x 80

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Tradeoffs to consider

m Remark: The suggested strategy should be efficient in terms of the tradeoffs
below for all matrices of size smaller than 80 x 80

1. Size of the generated code
> We are targeting embedded systems ~~ code size should be as tight as possible

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Tradeoffs to consider

m Remark: The suggested strategy should be efficient in terms of the tradeoffs
below for all matrices of size smaller than 80 x 80

1. Size of the generated code
> We are targeting embedded systems ~~ code size should be as tight as possible

2. Accuracy of the generated code

> Accuracy certificates should be produced that bound the absolute error
> The guaranteed absolute error should be as tight as possible

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Tradeoffs to consider

m Remark: The suggested strategy should be efficient in terms of the tradeoffs
below for all matrices of size smaller than 80 x 80

1. Size of the generated code
> We are targeting embedded systems ~~ code size should be as tight as possible

2. Accuracy of the generated code
> Accuracy certificates should be produced that bound the absolute error
> The guaranteed absolute error should be as tight as possible

3. Speed of generation

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

An accurate algorithm

m Main idea: Generate a dot product code for each coefficient of the resulting matrix

AccurateProduct
Inputs:

Two square matrices A€ I(R"*"") and B e I(R"*")
Outputs:

C code to compute the product MN for all Me Aand Ne B
Steps:
1: for1<i<ndo
2: for1<j<ndo

3: cgpeGenDotProduct(A;, By);
4. end for
5: end for

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

An accurate algorithm

m Main idea: Generate a dot product code for each coefficient of the resulting matrix

AccurateProduct
Inputs:
Two square matrices A€ I(R"*"") and B e I(R"*")
Outputs:
C code to compute the product MN for all Me Aand Ne B
Steps:
1: for1<i<ndo
2: for1<j<ndo

3: cgpeGenDotProduct(A;, By);
4. end for
5: end for

lllustration on the product of two 2 x 2 matrices

. C1,1 = cgpeGenDotProduct(A1,B1) C1,2 = cgpeGenDotProduct(Ay, Bp)
Co,1 = cgpeGenDotProduct(Ap,B1) Co» = cgpeGenDotProduct(Ay, Bp)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Analysis of AccurateProduct

m For square matrices of size n, n? calls to the cgpeGenDotProduct are issued
> Each dot product uses more than 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2n3

— More than 1024000 instructions for 80 x 80 matrices

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Analysis of AccurateProduct

m For square matrices of size n, n? calls to the cgpeGenDotProduct are issued
> Each dot product uses more than 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2n3

— More than 1024000 instructions for 80 x 80 matrices

Advantages Drawbacks
/ Easy to generate code X Code size is proportional to
2n°

v Two nested loops and n? calls to the

routine cgpeGenDotProduct x Similar code sizes are

prohibitive in embedded

/" The reference in terms of numerical quality systems

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

A compact algorithm

m Main idea: Generate a unique dot product code for all the computations

CompactProduct
Inputs:
Two square matrices A€ I(R"*"") and B e I(R"*")
Outputs:
C code to compute the product MN for all Me Aand Ne B
Steps:
1: compute v suchthat v=A{UAyU---UAp
2: compute w suchthat w=BjUBpoU---UBp
3: cgpeGenDotProduct(v,w);

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

A compact algorithm

m Main idea: Generate a unique dot product code for all the computations

CompactProduct
Inputs:
Two square matrices A€ I(R"*"") and B e I(R"*")
Outputs:
C code to compute the product MN for all Me Aand Ne B
Steps:
1: compute v suchthat v=A{UAyU---UAp
2: compute w suchthat w=BjUBpoU---UBp
3: cgpeGenDotProduct(v,w);

lllustration on the product of two 2 x 2 matrices

o C1,1 = cgpeGenDotProduct(A1 U Az, B UBy) Cy 2 = cgpeGenDotProduct(Ay U A, By U By)
Cs,1 = cgpeGenDotProduct(Ay U Az, B UBp) Cp o = cgpeGenDotProduct(Ay U Ap, By U Bp)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Analysis of CompactProduct

m For square matrices of size n, only one call to the cgpeGenDotProduct is issued
> The dot product uses around 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2n

— Around 160 instructions for 80 x 80 matrices

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Analysis of CompactProduct

m For square matrices of size n, only one call to the cgpeGenDotProduct is issued
> The dot product uses around 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2n

— Around 160 instructions for 80 x 80 matrices

Advantages

v/ Easy to generate code Drawbacks
~ Compute the union of all vectors of A and
B and call the routine
cgpeGenDotProduct

X Numerical quality
deteriorates dramatically

/" The reference in terms of code size

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

A closest pair algorithm

m Main idea: Fuse together only rows or columns that are close to each other

The Hausdorff distance dy
dy : I(R™) x I(R™) — R
dH(A B) = max max{)a,-—b,-|,|5,-—5,-|}
1<isn = =

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

A closest pair algorithm

m Main idea: Fuse together only rows or columns that are close to each other

The Hausdorff distance dy
dy : I(R™) x I(R™) — R
dn(A,B) = 1r21;15xnmax{’ﬁ—ﬁ|,|a,-—b,-|}
Example

LetA= ([—4,7] [-1 1,102]) and B= ([—2,88] [—23,1]) be two vectors in /(R?), we have:

= dy(A B)=101 = U(AB)=([-4,88] [-23,102])
) & ar a3 by R
i dr(A1,By) o4 81)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

ClosestPairFusion

ClosestPairFusion
Inputs:
n vectors, v1,..., v, in I(R™)
a routine findClosestPair based on dy
a routine Union that applies the union operator
the number k of output vectors
Outputs:
k vectors in I(R™)
Steps:
1. B={v,...,Vp}
2: while size(%) > k do
3: (u1,up) = findClosestPair(98)
4. remove(uy,B)
5. remove(uz, B)
6
7:

add(Union(uy, u2), B)
end while

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

[llustration of the ClosestPairFusion

wq wo w3 Wa
vi ([-44] [-55] [-55] [-66] (-3,3] [-14,14] [-55] [-6,6]
v |[-22] [-1,1] [-33] [-99] [-1,1] [-11,11] [-3,3] [-9,9]
vs | [-7.7] [-44] [-1212] [-11,11] [-4,4] [-88] [-11,11] [-1,1]
vs \[-8,8] [-1,1] [-10,10] [-9,9] [-9.9] [-7,7] [-10,10] [-22]
[Con(vrv2) [du(vi.ve) | dh(viva) [dulvaivs) | dulveve) | d(varva) | [Tt wo) [G vs) [dhulw,wa) | hi(wows) | dulwoma) | (g wa) |
4 | 7 | 5 | 9 | 7 | 3 | | 11 | 7 | 8 | 9 | 8 | 10 |

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)

Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

[llustration of the ClosestPairFusion

vi ([-4,4] [-55] [-55] [-66]
vo | [-22] [-1.1] [-3,3] [-99]
vs | [-7.7] [-44] [-1212] [-11,11]
vi \[-8,8] [-1,1] [-10,10] [-9,9]

[Cau(viv2) | du(vrve) | du(viva) | du(varvs) | dulvove) | du(vsva) |

< v [s [s 7 T 5 |
" [-4,4] [-55 [-55] [-6,6]
vo -22] [-11] [-3,3] [-9,9]

vsUv \[-8,8] [-4,4] [-12,12] [-11,11]

dh(vi,v2) ‘ dr(vi,v3Uva) ‘ dH(va,v3Uva) ‘
i 7 | 9

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)

wq wo w3 Wy
[-3,3] [-14,14] [-5,5] [-6,6]
[-1,1] [-11,11] [-8,3] [-9,9]
[-4,4] [-88] [-11,11] [-1,1]
[-9,9] [-7.7] [-10,10] [-2,2]

[ahi(wi.we) [dulwi,wa) | dh(wiwa) | culneiwa) | dh(wewa) | culwa,wa) |
| 11 | 7 | 8 | 9 | 8 | 0 |

wyUws wa wy
[-5,5] [-14,14] [-6,6]
[-3,3] [-11,11] [-9,9]
[—11,11] [-8,8] [-1.1]
[-10,10] [-7,7] [-272]

[du(wromg,we) [du(w vwg,wa) | du(we.m) |
9 | 10 | 8 |

Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

[llustration of the ClosestPairFusion

w1 w2 w3 Wy
vi ([-44] [-55] [-55] [-6,6] [-3,3] [-14,14] [-55] [-6,6]
v |22 [-1.1] [-33] [-9.9] 4] [1,11] [-3.3] [-9.9]
vs | [-7,7] [-4,4] [-12,12] [-11,11] [-4,4] [-88] [-11,11] [-1,1]
vs \[-8,8] [-1,1] [-10,10] [-9,9] [-9,9] [-7,7] [-10,10] [-2,2]
[Con(vrv2) [du(vi.ve) | dh(viva) [dulvaivs) | dulveve) | d(varva) | [Tt wo) [G vs) [dhulw,wa) | hi(wows) | dulwoma) | (g wa) |
4| 7 | s [s | 7 3 | | 11 | 7 | 8 | 9 | 8 | 0 |

wyUws w2 Wa
vi [-4.4] [-55] [-55] [-6,6] {:22} {jjlﬂ }:g,g}
va [-22] [-1,1] [-33] [-9,9] 1011 (88 [-1,1]
vauvs \[-8,8] [-4,4] [-12,12] [-11,11] [-10,10] [-7.7] [-22]
} dH(j,vg) } dH(va;aqu) } dH(VE';’SU"‘) } [d(wiwg,we) | du(wiws,wa) | dhy(wowa) |
0 \ 10 []

wiUws Wo U Wy

[-5,5] [-14,14]
viuv, ([-4,4] [-55] [-55] [—9,9]) [-3,3] [-11,11]
vsuv ([-8,8] [-4,4] [-12,12] [-11,11] [-11,11] [-8,8]

[-10,10] [-7,7]

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)

Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

Analysis of the closest pair algorithm

m For square matrices of size n, k x / calls to the cgpeGenDotProduct are issued
> Each dot product uses more than 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2nk/

— For 80 x 80 matrices, the table below gives the number of instructions

K ! 1 2 4 5 8 10 16 20 40 80
1 160 320 640 800 1280 1600 2560 3200 6400 12800
2 320 640 1280 1600 2560 3200 5120 6400 12800 25600
4 640 1280 2560 3200 5120 6400 10240 12800 25600 51200
5 800 1600 3200 4000 6400 8000 12800 16000 32000 64000
8 1280 2560 5120 6400 10240 12800 20480 25600 51200 102400
10 1600 3200 6400 8000 12800 16000 25600 32000 64000 128000
16 2560 5120 | 10240 | 12800 | 20480 25600 40960 51200 | 102400 | 204800
20 3200 6400 | 12800 | 16000 | 25600 32000 51200 64000 | 128000 | 256000
40 6400 | 12800 | 25600 | 32000 | 51200 64000 | 102400 | 128000 | 256000 | 512000
80 12800 | 25600 | 51200 | 64000 | 102400 | 128000 | 204800 | 256000 | 512000 | 1024000
Advantages Drawbacks
v/~ Code size can be controlled X Numerical quality deteriorates with
through the parameters k and / small values of k and /

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

Analysis of the closest pair algorithm

m For square matrices of size n, k x / calls to the cgpeGenDotProduct are issued
> Each dot product uses more than 2n instructions (n multiplications + n additions)
— The generated code for the product is proportional in size to 2nk/

— For 80 x 80 matrices, the table below gives the number of instructions

P ! 1 2 4 5 8 10 16 20 40 80
1 160 320 640 800 1280 1600 2560 3200 6400 12800
2 320 640 1280 1600 2560 3200 5120 6400 12800 25600
4 640 1280 2560 3200 5120 6400 10240 12800 25600 51200
5 800 1600 3200 4000 6400 8000 12800 16000 32000 64000
8 1280 2560 5120 6400 10240 12800 20480 25600 51200 102400
10 1600 3200 6400 8000 12800 16000 | 25600 32000 64000 128000
16 2560 5120 | 10240 | 12800 | 20480 25600 40960 51200 | 102400 | 204800
20 3200 6400 | 12800 | 16000 | 25600 32000 51200 64000 | 128000 | 256000
40 6400 | 12800 | 25600 | 32000 | 51200 64000 | 102400 | 128000 | 256000 | 512000
80 12800 | 25600 | 51200 | 64000 | 102400 | 128000 | 204800 | 256000 | 512000 | 1024000
Advantages Drawbacks
v/~ Code size can be controlled X Numerical quality deteriorates with
through the parameters k and / small values of k and /

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms

m These results were produced for interval matrices of size 80 x 80

> The center of each interval is randomly selected in [-1000, 1000]
> The diameter of the intervals is fixed to 100

AccurateProduct CompactProduct
m Largest certified error: = 0.1254 m Largest certified error: = 0.5585
m Mean certified error: = 0.0865 m Mean certified error: = 0.5585
m Number of instructions: = 1024000 m Number of instructions: = 160

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms, cont'd

" e

3888883 .

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms, cont'd

88588
[—

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms, cont'd

88588

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms, cont'd

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Closest pair algorithm

Matrix multiplication in fixed-point

Let us compare these algorithms, cont'd

Synthesis of fixed-point programs: the case of matrix multiplication

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)

Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms, cont'd

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Matrix multiplication in fixed-point Closest pair algorithm

Let us compare these algorithms, cont'd

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Let us compare these algorithms, contd

Let us compare these algorithms, contd

Let us compare these algorithms, contd

Let us compare these algorithms, cont'd

0.6 — T T —f 1024000
-1 256000
- 464000 3§
5 2
2 - 40060 &
8 2
© k]
% 416000 &
S 410240 §
ke} (=
H 2
2 g
= -1 4000 £
= - 2560 2
= g
3
3 . <
Maximum certified error ——— T
0.15 | Mean certified error -~ .
* Code size --—-*--- . 640
o1 T
005 1 1 1 1 1 160
1 5 10 16 20 40 80

k (Number of fused rows and columns)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) i int programs: case of matrix multiplication

Outline of the talk

3. Conclusion

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) esis of fixed-point programs: the case of matrix multiplicatio

Conclusion

®m In this talk:

> We suggested 3 strategies to generate code for matrix product in fixed-point arithmetic
> The accurate algorithm performs well in terms of numerical quality but is prohibitive
> The compact algorithm generates concise codes but deteriorates the numerical quality

> The Closest Pair algorithm enables the tradeoffs between code size and numerical quality

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Conclusion

®m In this talk:

> We suggested 3 strategies to generate code for matrix product in fixed-point arithmetic
> The accurate algorithm performs well in terms of numerical quality but is prohibitive
> The compact algorithm generates concise codes but deteriorates the numerical quality

> The Closest Pair algorithm enables the tradeoffs between code size and numerical quality

m For the future, we will be working on:

> Suggesting similar algorithms for the discrete convolution in fixed-point arithmetic

> Investigating the synthesis of VHDL code for building blocks like matrix multiplication

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication

Conclusion

13! Ecole Jeunes Chercheurs en Informatique Mathématique (EJCIM 2013)
Perpignan, April 121, 2013

Synthesis of fixed-point programs:
the case of matrix multiplication

Amine Najahi
Advisers: M. Martel and G. Revy

Equipe-projet DALI, Univ. Perpignan Via Domitia
LIRMM, CNRS: UMR 5506 - Univ. Montpellier 2

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs: the case of matrix multiplication 26/26

Example of code generated by CGPE

// File automatically generated by CGPE (Code Generation for Polynomial Evaluation)

// Scheme : ((((a0+(S*(al+(T*a2))))+((S*(T*T))*(a3+(T*ad))))+((S*(T*T))*((T*T)*(a5+(T*a6)))))+(((S*(T*T))*((T*T)*(
T*T))) *((a7+(T*a8))+ ((T*T)*(a9+(T*al0))))))

// Degree : [9,1]

uint32_t func_0(uint32_t T, uint32_t S)
{

uint32_t r0 = mul(T, 0x5a82685d); // 1.31
uint32_t rl = 0xb504£31f - r0; // 1.31
uint32_t mul (S, rl); /1 2.30
uint32_t 0x00000020 + r2; /1 2.30
uint32_t mul (T, T); /7 0.32
uint32_t mul (S, r4); // 1.31
uint32_t mul (T, 0x386fd5f4); // 1.31
uint32_t 0x43df72£7 - r6; // 1.31
uint32_t mul(r5, r7); /7 2.30
uint32_t r3 + r8; /1 2.30
uint32_t rl0 = mul(T, 0x28724100); // 1.31
uint32_t rll = 0x308b1798 - rl0Q; // 1.31
uint32_t rl2 = mul(r4, rll); // 1.31
uint32_t rl3 = mul(r5, ri2); /1 2.30
uint32_t rld4 = r9 + rl3; /1 2.30
uint32_t rl5 = mul(rd, rd); /7 0.32
uint32_t rl6 = mul(r5, rl5); // 1.31
uint32_t rl17 = mul(T, 0x106c5cd9); // 1.31
uint32_t rl8 = 0x1d7bf968 - rl7; // 1.31
uint32_t rl9 = mul(T, 0x00fa%aad); // 1.31
uint32_t r20 = 0x05dfffa4 - rl9; // 1.31
uint32_t r2l = mul(r4, r20); // 1.31
uint32_t r22 = rlg§ + r2l; // 1.31
uint32_t r23 = mul(rle, r22); /1 2.30
uint32_t r24 = rl4 + r23; // 2.30

return r2d;

/* Error bound computed using MPFI:
* [-101430164957300904987779234264749461384198787082116213489690022556337011401715b-283,

* 25586666393682615675400092400526394119988758102711854693922360480750444185767b-282]
* ~ [-2"(-27.191},2"{-28.1781}]
*/

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) esis of fixed-point program: case of matrix multiplicatiol

	DALI 2013
	Background of fixed-point arithmetic
	Basics of fixed-point arithmetic
	Numerical and combinatorial issues in fixed-point programs
	CGPE

	Matrix multiplication in fixed-point
	An accurate algorithm
	A compact algorithm
	Closest pair algorithm

	Conclusion

