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Abstract Side-channel attacks are a serious threat for
physical implementations of public-key cryptosystems
and notably for the RSA. Side-channel leakages can be

explored from unprotected cryptodevices and several
power or electromagnetic traces are collected in order
to construct (vertical) differential side-channel attacks.

On exponentiations, the so-called horizontal correlation
attacks originally proposed by Walter in 2001 and im-
proved by Clavier et al in 2010 demonstrated to be

efficient even in the presence of strong countermeasures
like the exponent and message blinding. In particular, a
single trace is sufficient to recover the secret if the mo-

dular exponentiation features long-integer multiplica-
tions. In this paper, we consider the application of ver-
tical and horizontal correlation attacks on RNS-based

approaches. The Montgomery multiplication, which is
widely adopted in the finite ring of an exponentiation,
has different construction details in the RNS domain.

Experiments are conducted on hardware (parallel) and
software (sequential) and leakage models for known and
masked inputs are constructed for the regular and SPA-

protected Montgomery ladder algorithm.

1 Introduction

Public-key cryptographic algorithms, like RSA [1] or
ECC [2,3], when running on hardware devices leak con-
fidential information through unavoidable side-channels

(time, power consumption, electromagnetic radiations,
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etc). Passive and non-invasive attacks are able of re-
covering secrets from crypto-devices by analyzing side-
channel leakages.

In the context of exponentiation-based public-key
algorithms, two categories of attacks have been widely

investigated in the recent years: differential power anal-
ysis, through different classes of distinguishers (difference-
of-means [7], CPA [8], templates [19], MIA [20], clus-

tering [21]) has been largely investigated and need to
process multiple traces in order to retrieve the secret.
The exponent blinding countermeasure [6], which ran-

domizes the bits of the exponent at each exponentia-
tion, is the main countermeasure. On the other hand,
single-trace analyses, based on a single execution of an

exponentiation, exploit the leakage by analyzing the
trace in a horizontal manner. Since the pioneer work of
Kocher [6], sophisticated horizontal attacks have been

proposed which exploits regularity of long-integer mul-
tiplications (LIM) [22–27], targeting the square-and-
multiply atomicity [10] or the square-and-multiply al-

ways [9]. Their basic principle relies on the identifica-
tion of a particular operand during modular multipli-
cations.

In this paper, we present a detailed analysis of both

vertical and horizontal correlation attacks on RNS-based
exponentiations, typically encountered in an RNS-RSA
implementation [14]. In this case, the leakage model

must be constructed according to the features of the
RNS modular exponentiation algorithm. The main goal
is to demonstrate the pros and cons of RNS-based coun-

termeasures in hardware and software against correla-
tion electromagnetic analysis.

The rest of the paper is organized as follows. In Sec-
tion 2.1, we give a brief overview of Residue Number
Systems (RNS) as well as implementation details about

the devices under test. Known-input and masked-input
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correlation attacks and their respective leakage models

are detailed in Sections 3 and 4. We present the re-
sults of our vertical and horizontal correlation attacks
in Section 5 and 7 respectively.

2 Preliminaries

2.1 Device Under Test

Experiments were conducted on hardware and software

RNS-based RSA implementations. The devices under
attack were a Spartan-3E xc3s1600 FPGA and an ARM
Cortex M3 32-bit microcontroller STM32F103ZET6. In

both cases, we implemented an RNS version of RSA
protected against simple analysis with the Montgomery
ladder [11] and randomized using the Leak Resistant

Arithmetic (LRA) approach [12]. Finally, the secret ex-
ponent d is protected using the usual exponent blinding
strategy: δ = d + rϕ(N), for a (small) random value

r [7]. The term N is the RSA modulus.
In a Residue Number System integers are repre-

sented according to a predefined base B = (b1, b2, ..., bk)

of pairwise prime integers, called moduli. Any integer
X is thus expressed by a k-tuple of positive integers
⟨X⟩B = (x1, x2, . . . , xk), where xi ≡ X mod bi, and

0 ≤ xi < bi, (i.e. xi is the remainder in the euclidean
division of X by bi, denoted |X|bi in the sequel). We
know from the Chinese Remainder Theorem, that this

representation is unique modulo the product of the ele-
ments of B. Arithmetic operations (±,×) are implicitly
performed B =

∏k
i=1 bi.

In order to perform computations modulo N (with
gcd(N,B) = 1), several RNS variants of Montgomery
multiplication have been proposed [13–17]. They are all

derivations of the original algorithm, where the Mont-
gomery constant is replaced by the constant B, and the
usual division by B, otherwise undefined, is computed

in an extra RNS basis, say A. The efficiency of an RNS
modular multiplication heavily depends on the two im-
plied base extensions between A and B.

In Algorithm 1, the operationMM(x, y,N,B,A) re-
turns the Montgomery product xyB−1 mod N in the
two RNS bases A and B.

Algorithm 1 is easily embedded into any exponen-
tiation algorithm. For this study, we considered the
Montgomery ladder that we reinforced with Bajard et

al Leak Resistant Arithmetic concept [12]. In the LRA,
the RNS moduli can be randomized before and/or dur-
ing the course of an exponentiation. This countermea-

sure acts as a message blinding technique because it
offers a high degree of randomization to the data. The
LRA adaptation of the Montgomery ladder is illustrated

in Algorithm 2.

Algorithm 1: RNS Montgomery Multiplication
(MM) with Fast Approximation Base Exten-
sions [16,15]

Data: x, y ; 1 ≤ x, y < N , in A ∪ B, where
A = (a1, a2, ..., ak), B = (b1, b2, ..., bk),
A =

∏k
i=1 ai, B =

∏k
i=1 bi,

gcd(A,B) = gcd(B,N) = 1, B > 4N and
A > 2N

Result: w = xyB−1 mod N , in A ∪ B
1 Pre-Computations in A (i.e. modA): B−1,

−BNB−1, A−1
j = (A/aj)−1 for all j = 1, . . . , k, and

Bi,jNB−1 for all i, j = 1, . . . , k, where
Bi,j = B/bi mod aj

2 Pre-Computations in B (i.e. modB): −N−1B−1
i

for all i = 1, . . . , k, and Ai,j for all i, j = 1, . . . , k

3 s = |x× y|B∪A
4 #——— Base extension 1 ————

5 qbi
=

∣∣∣si(−N−1B−1
i )

∣∣∣
bi

, for i = 1, . . . , k

6 f =
⌊(∑k

i=1 qbi

)
/2ω

⌋
7 wai

=∣∣∣siB−1 +
∑k

j=1 qbj
(Bi,jNB−1)− fBNB−1

∣∣∣
ai

, for

i = 1, . . . , k
8 #——— Base extension 2 ————

9 qi =
∣∣∣wai

(A−1
i )

∣∣∣
ai

, for i = 1, . . . , k

10 f =
⌊(
2ω−1 +

∑k
i=1 qbi

)
/2w

⌋
11 wbi

=
∣∣∣∑k

j=1 qjAi,j − fA
∣∣∣
bi

, for i = 1, . . . , k

Algorithm 2: LRA-RNS Montgomery Powering

Ladder [12]

Data: x in A ∪ B, where A = (a1, a2, ..., ak),
B = (b1, b2, ..., bk), A =

∏k
i=1 ai, B =

∏k
i=1 bi,

gcd(A,B) = gcd(B,N) = 1 and
δ = (δℓ−1 . . . δ1δ0)2

Result: z = xδ mod N in A ∪ B
1 Pre-Computations: ⟨AB mod N⟩A∪B

2 Randomize(A,B)
3 A0 = MM(1, AB mod N,N,A,B), in A ∪ B
4 A1 = MM(x,AB mod N,N,A,B), in A ∪ B
5 for i = ℓ− 1 to 0 do
6 Aδi

= MM(Aδi
, Aδi

, N,B,A), in A ∪ B
7 Aδi

= MM(Aδi
, Aδi

, N,B,A), in A ∪ B
8 end
9 A0 = MM(A0, 1, N,B,A), in A ∪ B

2.2 Leakage models

In this section, we define the univariate leakage mod-
els based on the vertical and horizontal correlation at-
tacks for the RSA-RNS implementations. The leakage

modelling is based on the available information to an
adversary.

First, we assume that the adversary knows imple-

mentation details (i.e., RNSMontgomery algorithm and
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the two RNS bases A and B) and LRA countermeasure

is disabled in order to construct a leakage model based
on known inputs correlation attacks. We assume that
the targeted devices leak the Hamming Weight of in-

ternal registers. Therefore, an adversary is able of pre-
dicting the intermediate data in the course of the ex-
ponentiation by guessing the exponent bits. The leak-

age is assumed as having deterministic and independent
(Gaussian) noise parts. Further, he/she tries to corre-
late these predicted data with the deterministic part of

the leakage.

Second, inputs are randomized by adopting the LRA
as message blinding countermeasure. Therefore, a more
robust attack based on exploitable leakage of a masked

RNS Montgomery ladder (Algorithm 2) is constructed.
The proposed attack is based on [29][24][26] and shows
how a leakage model can be constructed for randomized

inputs if the adversary knows the modular exponentia-
tion algorithm.

The usage of the exponent blinding as an additional
countermeasure defines the attack setting as vertical

(multiple traces) or horizontal (single traces).

3 Known-Inputs Correlation Attacks

In this section, we detail the Known-input correlation
attacks on RNS-based RSA implementations. The term

known has the same meaning of unmasked. We keep the
term known to be aligned with the terms used in the
references [25,26].

Correlation electromagnetic analysis (CEMA) is the
electromagnetic version of CPA and aims at revealing
the secret key manipulated by a circuit by analyzing the
correlation between its EM emanations and predicted

values of an internal register according to the guesses
on the secret key.

In order to apply a CEMA, an attacker has to mea-

sure the variations of the EM field during the RSA
exponentiation using the appropriate equipment. Our
setup is composed by an EM station equipped with a

XYZ motorized table, a home-made EM probe with a
2mm coil, an 200MHz-BW amplifier, an oscilloscope, an
evaluation board and a computer to control the whole

setting.

The CEMA procedure also depends on the proper
choice for the selection function. It is related to the
targeted algorithm, its implementation details and the

randomly generated input data x.

3.1 Key guesses and selection function

The first assumption is that the adversary knows the

target exponentiation algorithm, in our case the Mont-
gomery ladder (Alg. 2). He generates 8-bit (or less)
guesses on the exponent, starting from the MSB. Then,

for each guess h ∈ {0, 1, . . . , 28 − 1}, he computes a
leakage model according to the variations of the elec-
tromagnetic field, sampled over a time period [1,J ] and

the predicted values of an internal register. Here, the
adopted model is based on the Hamming Weight of
the register value (we consider that the Hamming Dis-

tance Model cannot be applied because the reference
state R is unknown). It typically corresponds to the
computation of an intermediate value by the algorithm

according to the input data x and the sub-key guess
h. For any RSA, these intermediate values might be
the Montgomery multiplication results. However, for an

RNS implementation of RSA,the adversary must know
the moduli inside the sets of RNS bases A and B, as
well as construction details of the Montgomery multipli-

cation algorithm (e.g., the base extension method), in
order to predict intermediate results. The sets of moduli
{ak} and {bk} can be recovered by performing a long

and tedious CEMA on the forward conversion (radix to
RNS). In this case, the guesses h on the selection func-
tion are the values of the moduli itself, instead of the

8-bit portions of the exponent. The set of RNS moduli
is usually composed by pseudo-mersenne numbers of
the form 2ω − c where 0 < |c| < 2⌊ω/2⌋. Considering ω

as usually 32 bits, the amount of possible RNS moduli,
and consequently the number of guesses, is 216. Assum-
ing known these RNS bases and the construction de-

tails of the Montgomery algorithm, the adversary may
now compute the selection function value d(xi, h) for
each input message xi and for each 8-bit exponent guess

h. Because the RNS Montgomery multiplication results
are obtained in parallel, he has to choose one RNS chan-
nel from A or B to compute the selection function value

d(xi, h). Furthermore, assuming υ as being the width of
the targeted register D, the selection function follows
the linear model d(xi, h) = HW (D)− υ/2.

3.2 Correlation coefficient

The correlation coefficient is computed with Pearson
linear correlation between a set of predicted values d(xi, h)

and a set of traces Ti = {ti,j}, where 1 ≤ i ≤ Nt denotes
the trace index and j the sample index. The correlation
coefficient ρ(h, j) for each guess h and each sample j is

computed as:
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ρ(h, j) =
cov (d(xi, h), ti,j)

σd(xi,h)σti,j

(1)

Since the guesses are made for 8-bit portions of the

exponent, the result ρ is a matrix with dimension 28 ×
J . The CEMA is expected to return an estimate ĥ of
the key by identifying the row of ρ that gives greater

correlation values for some samples j. It is noteworthy
that the interval [1,J ] can be reduced by computing
the correlation coefficient over the samples j presenting

the greatest variability with respect to different input
messages xi.

4 Masked-Inputs Correlation Attacks

In the presence of masking countermeasures (or mes-

sage blinding), intermediate variables are hardly pre-
dicted. Techniques used for known-input (unmasked)
correlation attacks are thus impractical. However, dis-

tinguishers can still exploit information leakage if the
masking procedure is executed only once before the ex-
ponentiation.

In the sequence of modular multiplications, the goal
of an adversary is to detect when two modular mul-
tiplications use the same operand (i.e., a register re-

ceives the same data at two different, non-consecutive
clock cycles). Attacks based on this strategy are called
collision-correlation attacks [29,24,26–28]. They work

differently for each modular exponentiation algorithm.
Next, we review collision-correlation attacks on SPA-
protected, atomic-square-and-multiply and square-and-

multiply-always. The Montgomery ladder is a regular,
SPA-protected algorithm, too. Vertical and horizontal
Collision-correlation attacks on the Montgomery lad-

der have been proposed in [32] and [33], respectively.
In this work, we provide practical collision-correlation
for this algorithm. In section 4.3 we present a leakage

model for masked input correlation attacks on the RNS
Montgomery ladder.

4.1 Masked-Inputs Correlation Attacks on
Square-and-Multiply Atomicity

Side-channel atomicity is SPA-resistant square-and-multiply
solution and was proposed in [10] in order to counter-
act simple side-channel attacks. It consists in removing

conditional branching from the left-to-right square-and-
multiply algorithm such that the same sequence of in-
structions are executed whether the exponent bit is a 0

or a 1. It is shown in Algorithm 3.

Algorithm 3: Side-Channel Atomicity - SPA-
Resistant Square-and-Multiply

Data: x̃, N , d = (dℓ−1...d1d0)2.

Result: xd mod N

1 A0 = 1
2 A1 = x̃
3 i = ℓ− 1

4 k = 0
5 while i ≥ 0 do
6 A0 = A0Ak mod N

7 k = k ⊕ di
8 i = i− ¬k
9 end

10 Return A0

The ROSETTA (Recovery Of the Secret Exponent
by Triangular Trace Analysis) attack was presented in [24].
It is efficient against message and exponent blinding

countermeasures and can be considered as an improve-
ment of the horizontal correlation [23] and Big Mac [22]
attacks. It is based on two different distinguishers: eu-

clidean distance and collision-correlation. They are con-
structed so that the result indicates if an operation is a
squaring or a multiplication. These distinguishers can

also detect if a modular operation performs the long-
integer multiplication with a specific input operand by
using templates.

Initially, the adversary segments a trace represent-
ing a long integer multiplication as illustrated in Fig. 1.

time

a
m

p
lit

u
d
e

...... ...

x Y1

...

T1,1 T1,2 T1,m T2,1 T2,2 T2,m Tm,1 Tm,2 Tm,m

...

x1y1 x1y2 x1ym x2y1 x2y2 x2ym xmy1 xmy2 xmym

x Y2 x Ym

Fig. 1: Long-Integer Multiplication Trace.

Then, he constructs a matrix representing the long
integer multiplication X×Y . The squaring matrix, cor-
responding to the long integer multiplication X ×X),

is shown in equation (2).

TX×X =


T1,1 · · · T1,m

T2,1 · · · T2,m

...
...

. . .
...

Tm,1 · · · Tm,m

 =


x1x1 x1x2 · · · x1xm

x2x1 x2x2 · · · x2xm

...
...

. . .
...

xmx1 xmx2 · · · xmxm


(2)
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Since the square matrix is symmetric, the adversary

may apply an Euclidean distance distinguisher, on both
the upper and lower part of the matrix.

TED =

√
2

m2 −m

∑
0≤i<j<m

(Ti,j − Tj,i)2 (3)

where m is the number of elementary multiplications or
sub-traces.

If the evaluated long integer multiplication is a squar-
ing, TED is expected to be close to zero. Otherwise, the

operation is likely to be a multiplication. The collision-
correlation distinguisher, which computes the Pearson
correlation coefficient between two sets of sub-traces,

can be used for the same purpose:

ρ(t) =
cov (Ti,j(t), Tj,i(t))

σTi,j(t)σTj,i(t)
(4)

Note that the two series of sub-traces Ti,j and Tj,i

can also be extracted from two different long integer
multiplications. Then, an adversary is able of identify-

ing if both modular multiplications are employing the
same input operand or not.

4.2 Masked-Inputs Correlation Attacks on
Square-and-Multiply Always

The square-and-multiply-always algorithm [9] was de-

signed to address the issue of regularity. As shown in
Algorithm 4, a dummy multiplication is computed after
the squaring when the exponent bit is zero.

Algorithm 4: Square-and-Multiply-Always

Data: x̃, N , d = (dℓ−1...d1d0)2.

Result: xd mod N

1 A0 = 1
2 for i = ℓ− 1 to 0 do

3 A0 = A0A0 mod N
4 if di == 1 then
5 A0 = A0x mod N

6 else
7 D = A0x mod N
8 end

9 end

10 Return A0

The result D is always discarded. Hence, even if the

attacker is able of distinguish between squarings and

multiplications, this would not lead to the recovering

of the exponent.
An extension of collision-correlation attack [24] to

the square-and-multiply-always algorithm was presented

in [26], in which the adversary may identify if the in-
put operand of a multiplication is employed as the in-
put operand of the subsequent squaring, making pos-

sible to identify the occurrence of dummy multiplica-
tions. Since the attack solution is proposed for single
traces, it can be considered as an horizontal attack.

In [29], the authors presented a cross-correlation attack
which can defeat the combination of message blinding
(masked-inputs) and square-and-multiply-always coun-

termeasures.

4.3 Masked-Inputs Correlation Attacks on
Montgomery Ladder

The Montgomery powering ladder was initially proposed
for fast scalar multiplication on elliptic curves in [4]

and adapted to any exponentiation in abelian groups
in [11]. The Montgomery ladder is also very regular.
Moreover, it is more secure against fault attacks (safe-

error attacks) than the square-and-multiply-always. For
this reason, it is considered as an SPA-protected expo-
nentiation. The Montgomery ladder is shown in Algo-

rithm 5.

Algorithm 5: Montgomery ladder

Data: x, N , d = (dℓ−1...d1d0)2.

Result: xd mod N

1 A0 = 1
2 A1 = x

3 for i = ℓ− 1 to 0 do
4 if di == 1 then
5 A0 = A0A1 mod N

6 A1 = A1A1 mod N

7 else
8 A1 = A0A1 mod N
9 A0 = A0A0 mod N

10 end

11 end
12 Return A0

One can observe that both registers A0 and A1 are
updated at each iteration. Hence, the modular multipli-

cations receive different input operands at each itera-
tion. This is illustrated in Table 1 with the four modular
multiplications (M1 to M4) performed by two consec-

utive iterations of the algorithm. Attacks based on the
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identification of common input operands in two differ-

ent modular multiplications are thus impractical.

Table 1: Sequence of modular multiplication in the
Montgomery Ladder for consecutive exponent bits.

didi−1 = . . . 00 . . . didi−1 = . . . 01 . . .

M1: (x)i(x)i+1 = (x)2i+1 M1: (x)i(x)i+1 = (x)2i+1

M2: (x)i(x)i = (x)2i M2: (x)i(x)i = (x)2i

M3: (x)2i(x)2i+1 = (x)4i+1 M3: (x)2i(x)2i+1 = (x)4i+1

M4: (x)2i(x)2i = (x)4i M4: (x)2i+1(x)2i+1 = (x)4i+2

didi−1 = . . . 10 . . . didi−1 = . . . 11 . . .

M1: (x)i(x)i+1 = (x)2i+1 M1: (x)i(x)i+1 = (x)2i+1

M2: (x)i+1(x)i+1 = (x)2i+2 M2: (x)i+1(x)i+1 = (x)2i+2

M3: (x)2i+1(x)2i+2 = (x)4i+3 M3: (x)2i+1(x)2i+2 = (x)4i+3

M4: (x)2i+1(x)2i+1 = (x)4i+2 M4: (x)2i+2(x)2i+2 = (x)4i+4

A way out is to correlate the leakage associated with
the clock cycle when the result of M1 (resp. M2) is writ-
ten in the memory, together with the leakage associated

to the loading of the input operands of M4. Let L1w
(resp. L2w) be the leakage associated to the writing of
the result of M1 (resp. M2), and let L4l be the leak-

age associated to the loading of operands of M4 (See
Figure 2.).

M S M S

... ...

M1 M2 M3 M4

M MM MS SS S

...

l1 1 2 2 3 3 lM Sv+1 v+1M Sv v

...

d
1

d
2

d
3

d
v

d
v+1

d
l

L1
w

L2
w

L4
l

Fig. 2: Leakage model for the masked Montgomery lad-

der.

A distinguisher may be defined according to Table 1.
Simply observe that the correlation coefficient:

ρL2,L4 =
cov (L2w, L4l)

σL2wσL4l

is expected to be greater than:

ρL1,L4
=

cov (L1w, L4l)

σL1wσL4l

when two consecutive bits of the exponent are 0.

In the next sections, vertical and horizontal corre-
lation attacks on RNS-based exponentiation are pre-

sented.

5 Vertical Correlation Attacks on RNS-based

Exponentiations

5.1 Known inputs correlation attack on hardware

A typical RNS hardware implementation of RSA com-
putes all the instructions over parallel and independent
data-paths. Thus, intermediate results are available for

all the RNS moduli at the same clock cycle. In this sec-
tion, we will show how this may be an advantage for
the known-input CEMA compared to usual multiple-

precision implementations.

In order to set up an attack, the adversary first
chooses a channel of B. Then he constructs the leakage

model based on a selection function d(x, h) by only con-
sidering ω bits of the intermediate result (because the
moduli ω-bit integers). In the case of the device under

test described in section 2, there are 16 moduli of 32 bits
each. Thus the adversary must computes 16 correlation
coefficients, one per modulus, to obtain the estimate ĥ

for all the RNS channels of B. The presented attack
was performed with the acquisition of Nt = 500 traces.
Fig. 3 shows the results for the electromagnetic corre-

lation analysis for each of the 16 moduli. Note that,
for each modulus, the correlation coefficient from (1) is
computed by processing the same set of traces.

Observing Fig. 3, the correlation coefficient for the
correct (portion of) 8-bit guess is more evidently de-
tected for the channels b2 and b14. For the other chan-

nels, the low correlation coefficients may occur for dif-
ferent reasons: first, the probe position may be far from
the targeted register, decreasing the magnitude contri-

bution in the measured electromagnetic field during the
time interval the data inside this register is processed;
second, the number of measured electromagnetic traces

is insufficient to detect this magnitude contribution.
Third, a different leakage model may lead to different
results. Results of Fig. 3 were obtained with a stan-

dard leakage model, i.e., the Hamming weight of each
RNS channel of the Montgomery multiplication output
result. For a more precise evaluation of the efficiency

of the correlation electromagnetic analysis against the
hardware implementation, Fig. 4 shows the success rate
evolution for all RNS channels with respect to the num-

ber of traces. RNS channels b2 and b14 present a success
rate of 95% after the processing of 500 traces. The bet-
ter results obtained for b2 and b14 are related to the EM

probe positioning.

Let us now consider a combination of the leakage
models from all the moduli in the same correlation co-

efficient calculation. More precisely, we evaluate:
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Fig. 3: Correlation electromagnetic analyses on the RNS hardware implementation of RSA for each of the 16 RNS
channels.

ρ(h, j) =

∑16
k=1 cov

(
d(x1:Nt , h)

(bk), t1:Nt,j

)∑16
k=1 σ

(
d(x1:Nt , h)

(bk)
)∑16

k=1 σ (t1:Nt,j)
, (5)

where the function d(x1:Nt , h)
(bk) is a vector of pre-

dicted intermediate Hamming Weight values according
to the input message x and key hypothesis h considering

the RNS moduli bk, for Nt executions of the algorithm.
The term t1:Nt,j is a vector in which each element is the
sample j over all Nt traces.

The covariances between all the sets of selection
function values d(xi, h)

(bk) and the set of traces Ti =
{ti,j} are summed up as well as the standard devia-

tions in the denominator. As a result, this formulation
returns the combination of leakages from all the RNS
channels of base B. It is interesting to note that the

number of measured traces remains unchanged. Fig. 5
shows the correlation coefficient obtained from equa-
tion (5) for 200 and 500 traces.

The correlation coefficient computation for the cor-
rect guess h and for the combined leakage models is
detectable by processing around 100 traces (80% of suc-

cess rate), as shown in Fig. 5(c). Note however that the

targeted implementation was unprotected. The RNS

bases were fixed during the successive executions of the
exponentiation algorithm. This proves, once again, the
importance of randomizing the RNS bases.

5.2 Known inputs correlation attack on software

The operations of a modular exponentiation are com-
puted sequentially. The intermediate results in the RNS
bases A and B are provided at different clock cycles. As

a consequence, the leakage model containing the set of
selection function values d(x, h)(bk), for an RNS chan-
nel, is associated to the set of traces Ti = {ti,j}, where
the time interval [1,J ] comprises the leakage of this
RNS channel only. It is not possible to combine the
leakage of all the RNS channels with the same set of

trace samples as proposed in the previous subsection.
Nonetheless, the correlation index in software is higher

than that of the hardware implementations when the

EM probe is located at a proper position (greater leak-
ages of information) over the integrated circuit. At the
time of greater linear correlation peak, the microcon-

troller is only executing the computations regarding
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Fig. 4: Success rate for the correlation electromagnetic analyses on the RNS hardware implementation of RSA for
each of the 16 RNS channels.
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Fig. 5: Correlation Electromagnetic Analyses on the RNS hardware implementation of RSA for all moduli. (a) 200
traces. (b) 500 traces. (c) Success Rate vs Number of Traces.

the targeted intermediate data. There is no magnitude
contribution from parallel algorithmic executions (al-

gorithmic noise) during this short time interval. Fig-
ure 6 shows the correlation index for CEMA on an un-
protected software implementation. Applying (1), the

obtained correlation index is equal to 0.82, i.e., much
higher than for the incorrect guesses. The success rate
of this attack is illustrated in Fig. 6(c). Only 30 traces

are necessary to achieve 80% of success.

5.3 Masked inputs correlation attack on hardware

We used the leak resistant arithmetic approach, which
acts as a message masking countermeasure. Intermedi-

ate results are thus hardly predicted by an adversary.
In this case, we considered the leakage model described
in Section 4.3 for a masked Montgomery ladder. Note

that in the RNS version of the Montgomery ladder (see
Algorithm 2), the outputs of operations M1-to-M4, are
the registers wai and wbi , containing the partial results

of the exponentiation in the RNS bases A and B.
Assuming the first ν bits of the exponent known,

the adversary aims at recovering the exponent bit dν+1.
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Fig. 6: Correlation Electromagnetic Analyses on the software implementation of RSA without countermeasures
(a) Correlation vs time, (b) Correlation vs Number of Traces, (c) Success Rate vs Number of Traces.

Figures 7 and 8 show the correlation coefficients ρL2,L4

and ρL1,L4 when dv = dv+1, and when dv ̸= dv+1 re-
spectively. The correlation coefficients are computed
considering the time intervals depicted by L1w, L2w
and L4l in Fig. 2.
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Fig. 7: Masked input correlation electromagnetic anal-

ysis on the hardware implementation of RSA (dv =
dv+1).
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Fig. 8: Masked input correlation electromagnetic anal-
ysis on the hardware implementation of RSA (dv ̸=
dv+1).

In Fig. 7, one can observe that the correlation coef-
ficient ρL2,L4 is greater than ρL1,L4 for some trace sam-
ples (between 400 and 1200). We observe the opposite

situation in Fig. 8. Hence, an adversary can compare
the obtained correlation results with Table 1 and de-
duce the exponent bits one by one. Besides the results

presented here for the Montgomery ladder, the leakage
model for this masked-input vertical correlation attack
can be easily extended to square-and-multiply-always

and atomic-square-and-multiply exponentiations.

6 Opimizing probe positioning

Electromagnetic side-channel attacks are heavily de-
pendent on the probe position over the surface of the

integrated circuit. In order to set the best localization,
we performed a scanning procedure by collecting a set
of EM traces from each (x, y) position and by comput-

ing the correlation coefficient for the correct key value
at each position. As will be seen in section 7, horizontal
correlation attacks have a limitation of available infor-

mation, which is related to the key size and implementa-
tion aspects of the targeted algorithm. Thus, horizontal
attacks results are performed by placing the EM probe

at a position providing the best correlation coefficient.
The components of the EM measurement setup is

described in Section 3. The EM scans were performed

over the surface of the chips, considering an area of
10mm× 10mm. The configured step was 0.33mm. Traces
were acquired with a sampling rate of 20GS/sec.

The first evaluation concerns the FPGA Spartan-
3E xc3s1600. The clock frequency of the circuit oper-
ates at a frequency of 50MHz. One thousand EM traces

were measured from each (x, y) position, 1 ≤ x, y ≤ 30,
and the linear correlation coefficient was computed ac-
cording to the combined formula (5). The results are

illustrated in Fig. 9.
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Fig. 9: Correlation coefficient for different (x, y) posi-
tions for the FPGA Spartan-3E xc3s1600.

For the STM32F103ZET6 microcontroller, 500 EM
traces were acquired for each (x, y) position. The clock

frequency was configured to operate at a 48MHz. Fig. 10
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shows the scanning results with respect to the linear

correlation coefficient obtained from (1).

1

5

10

15

20

25

30 30

25

20

15

10

5

1

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x y

r

STM32F103ZET6

x

y

Fig. 10: Correlation coefficient for different (x, y) posi-

tions for the STM32F103ZET6 microcontroller.

7 Horizontal correlation attacks on RNS-based
exponentiations

Data-dependent attacks, which require hundreds or thou-

sands exponentiation traces cannot be mounted in the
presence of the exponent randomization. Likewise, the
LRA countermeasure randomizes the intermediate re-

sults, and reduces the correlation between the predicted
Hamming Weight of a register and source of leakage
monitored. In those cases, an adversary must consider

an attack based on a single exponentiation. The col-
lected trace should then be analyzed in a horizontal
manner.

The first single-execution attack on exponentiations
was proposed by Walter in [22]. The so-called Big Mac
attack considers that long integer multiplications take a

large number of cycles and consequently a large number
of consecutive elementary multiplications, interleaved
with the modular reduction such as the multiple-precision

Montgomery multiplication algorithm [5]. This attack
detects if an observed operation is a squaring or a mul-
tiplication. The basic idea consists in the construction

of a template trace characterizing a specific operation
(multiplication or squaring) during the long-integer mul-
tiplication X × Y and considering that at least one of

the operands (X or Y ) will be recalled in the subsequent
modular operations. Then, the Euclidean distance be-
tween this template trace and each long integer multi-
plication gives a metric to conclude that such operation

is a squaring or a multiplication. The Big Mac attack
is a template-based analysis and it is efficient against
exponent and message blinding countermeasures.

Clavier et al proposed an horizontal correlation at-
tack in [23] based on known inputs for the exponenti-
ations. It also uses the differences between long-integer

squarings and real multiplications. The method pro-

posed in [23] correlates the selection function – for ex-

ample the Hamming Weight HW (x) of a known mes-
sage x – with carefully selected sampled points of a
single trace. It is assumed to be efficient even in the

presence of exponent blinding countermeasure because
the randomized exponent δ = d + r.ϕ(N) can be used
in the place of d for decryption and digital signature.

Proposed countermeasures consist in randomizing the
loops of the modular multiplication algorithm.

The ROSETTA [24], an improved Big Mac attack,

was already recalled in section 4.
In the next sections, we analyse the performance

of horizontal attacks on hardware coprocessors imple-

mented with parallel multipliers and we demonstrate
that horizontal correlation attacks are inefficient against
RNS implementations of RSA. We show that only a se-

quential implementation of RSA-RNS is vulnerable to
horizontal attack when no message blinding or hard-
ware countermeasure are considered.

7.1 Horizontal correlation attack on unprotected RNS
implementations of RSA

In this subsection, the Clavier et at ’s horizontal corre-
lation attack is applied on the RNS implementations

of RSA, and its performance and feasibility on paral-
lel (FPGA) and sequential (microcontroller) designs are
compared. The implementations are considered as un-

protected because the RNS bases are always fixed and
the adversary knows them (LRA is disabled).

In the multiple-precision arithmetic, each modular

multiplication can be characterized by a long-integer
multiplication X×Y . In the RNS context, the modular
multiplication involves complex operations as elemen-

tary modular reductions and base extensions. Thus, the
application of a horizontal correlation analysis requires
more knowledge about of implementation aspects of a

targeted cryptocore if compared to a multiple-precision-
based approach.

Because the efficiency of this attack is related to the

amount of elementary multiplications xiyj , the RNS al-
lows that such computations can be done in parallel
and it limits the quantity of available information to

the adversary. Therefore, if the application of horizon-
tal correlation attacks on multiple-precision hardware
coprocessors is already very difficult, on RNS-based ap-

proaches the scenario is even more critical.
Again, we consider that the adversary has a full

knowledge about the design and the only unknown value

is the exponent. Since he knows the instants of time at
which each specific operation is computed, he can as-
sociate each predicted results, according to his guesses,

to the samples of measured traces.
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Hardware - Trace Characterization: Let us con-

sider an EM trace acquired from a single-execution of
an exponentiation, running on an FPGA and executed
with the RNS Montgomery Ladder algorithm, as illus-

trated in Fig. 11. The multiplication X×Y is computed
in two RNS bases A and B. Because the elementary mo-
dular multiplications xAyA (resp. xByB) are computed

in parallel and over all the moduli, the adversary has no
sufficient information to construct a known-input hori-
zontal correlation attack, as demonstrated by practical

results.
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Fig. 11: Montgomery Ladder Exponentiation Trace.

According to the Fig. 11, the adversary can trun-
cate the elementary modular multiplications xAyA and
xByB of each RNS Montgomery multiplication. These

truncated windows are named sub-traces herein and de-
noted by TA

i (resp. TB
i ), which are the time interval

of the elementary modular multiplication xAyA (resp.

xByB) of the i-th RNSMontgomery multiplication. Thus,
a matrix T of sub-traces TA

i = {tAi,j} and a matrix H of
selection function results d(xByB, h) (resp. d(xAyA, h)),

computed according to the input message x and the
guesses h for these intermediate elementary results, are
constructed:

T =



TA
1

TB
1

TA
2

TB
2

.

.

.

TA
ℓ

TB
ℓ


=



tA1,1 tA1,2 . . . tA1,J
tB1,1 tB1,2 . . . tB1,J
tA2,1 tA2,2 . . . tA2,J
tB2,1 tB2,2 . . . tB2,J
.
.
.

.

.

.
. . .

.

.

.

tAℓ,1 tAℓ,2 . . . tAℓ,J
tBℓ,1 tBℓ,2 . . . tBℓ,J


H =



d(xAyA, h)
d(xByB, h)
d(xAyA, h)
d(xByB, h)

.

.

.
d(xAyA, h)
d(xByB, h)


(6)

The question now is: how many sub-traces are nec-
essary to mount the attack? To demonstrate more pre-

cisely this analysis, the entire correct exponent is con-
sidered known. As in the classical correlation attack,
the adversary can associate each element or row of ma-

trixH to each element of the matrix T , in the case, each
sub-trace. Fig. 12(a) presents the correlation coefficient
calculation for different guesses for the MSB 8-bit expo-

nent values and considering 250 sub-traces. The success
rate is illustrated in 12(b) and for achieving approxi-
mately 80% of success rate, at least 165 sub-traces are

needed.
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Fig. 12: Horizontal correlation attack on RNS hardware
implementation of RSA. (a) Correlation coefficient for
the processing of 250 sub-traces. (b) Success rate.

These results lead to the following conclusions: each
RNS Montgomery multiplication provides 2 sub-traces.

Considering that the adversary wants to recover the
exponent byte-by-byte by attacking the Montgomery
ladder, he has 32 sub-traces for computing the cor-

relation coefficient for each one of all the 28 possible
guesses for the exponent bytes. As demonstrated here,
the single-execution exponentiation trace was collected

from the highest correlation position and with 32 sub-
traces the success rate is approximately 10%. Thus, the
Montgomery ladder implemented with parallel residue

number systems offers strong limitations for the hori-
zontal correlation analysis.

The attack set-up proposed in [26] would be seen

as a solution to deal with this limited number of sub-
traces. It takes advantage of partial and exposed infor-
mation about the RSA private key; the upper half part

of the exponent (private key) d is exposed (if public
key e is small and the ) as well as the upper half part
of randomized exponents when the exponent blinding

equation δ = d+ rϕ(N) is adopted as countermeasure.
This is done by approximating ϕ(N) by N in the well-
known RSA equation de ≡ 1 mod ϕ(N). There exists a

integer k ∈ Z such that:

ed = 1 + kϕ(N) (7)

The Euler’s totient function ϕ(N), of size ℓ, can be

represented by pq− q− p+1. Considering that the size
of primes p and q are roughly approximated by ℓ/2, be-
cause p, q ≈

√
N . Then, the upper half part of ϕ(N)

is equal to the upper half part of the modulus N . For
small public key values, such as 3, 17 or 216 + 1, this
condition allows us to deduce the half most significant

bits of d. Then, by running all the possible values for
r ∈ [0, 232 − 1], the adversary derives 232 different se-
quences of modular multiplications for the upper half

part of δ. In the Montgomery ladder case, if ℓ is the
exponent length, the adversary has an amount of 2ℓ
sub-traces. For the target implementation where the bit

length is 512 bits, 1024 sub-traces related to the upper
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half part of δ would be available to the adversary. Fi-

nally, the correlation coefficient is computed for each
one of all the 232 possible values of r; the result giving
the highest absolute value for the correlation coefficient

indicates the best candidate for the random number r.
However, this attack would be limited when the adver-
sary must recover the lower half part of d. According

to [26], the adversary should guess portions of ω bits
of the lower half part of d and verify the correspondent
value δ according to the estimated random numbers r

in the previous step. To limit the exhaustive search, ω
must be small (e.g. 8 bits). Therefore, the same prob-
lem related to the minimal number of sub-traces arises,

limiting the attack.

Software - Trace Characterization: A sequen-

tial (software) RNS implementation of RSA is more
vulnerable to (known inputs) horizontal correlation at-
tacks. The multiplication X × Y in the two RNS bases

A and B needs at least 2n elementary modular multi-
plications |xy|ak

and |xy|bk , for all k, which brings more
information (sub-traces) to the adversary. To deal with

this available information, the horizontal attack can be
constructed by making guesses on portions of the key,
thus obtaining all the possible intermediate results in

the sequence of modular multiplications according to
the guessed exponent and finally horizontally comput-
ing the Pearson correlation coefficient by considering

a single trace. The RSA-RNS software is implemented
with the Montgomery ladder, too. Therefore, consid-
ering portions of 8 bits for the exponent guesses, the

number of sub-traces representing |X × Y |A∪B will be
32k, which is sufficient for identifying the correct expo-
nent bit guess.
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Fig. 13: Sequential RNS Exponentiation Trace.

Let us consider that the first u most significant bits
of the randomized exponent, δℓ−1:ℓ−ν−1, are already
known. An adversary guesses all the possible 28 val-

ues for the next 8 bits, δℓ−ν−1:ℓ−ν−9, and store the se-
ries of Hamming Weight values of intermediate results
|X × Y |A∪B. Then, the matrix T and H are obtained

as follows:

T =



T
(1)

|xy|b1
T

(1)

|xy|b2
. . . T

(1)

|xy|bk
T

(1)

|xy|a1
T

(1)

|xy|a2
. . . T

(1)

|xy|ak

T
(2)

|xy|b1
T

(2)

|xy|b2
. . . T

(2)

|xy|bk
T

(2)

|xy|a1
T

(2)

|xy|a2
. . . T

(2)

|xy|ak

.

.

.
.
.
.

. . .
.
.
.

T
(ℓ)

|xy|b1
T

(ℓ)

|xy|b2
. . . T

(ℓ)

|xy|bk
T

(ℓ)

|xy|a1
T

(ℓ)

|xy|a2
. . . T

(ℓ)

|xy|ak



H =



d(|xy|b1 , h)
(1) d(|xy|b2 , h)

(1) . . . d(|xy|bk , h)
(1)

d(|xy|a1 , h)
(1) d(|xy|a2 , h)

(1) . . . d(|xy|ak
, h)(1)

d(|xy|b1 , h)
(2) d(|xy|b2 , h)

(2) . . . d(|xy|bk , h)
(2)

d(|xy|a1
, h)(2) d(|xy|a2

, h)(2) . . . d(|xy|ak
, h)(2)

.

.

.

d(|xy|b1 , h)
(ℓ) d(|xy|b2 , h)

(ℓ) . . . d(|xy|bk , h)
(ℓ)

d(|xy|a1 , h
(ℓ)) d(|xy|a2 , h)

(ℓ) . . . d(|xy|ak
, h)(ℓ)



Then, the adversary computes the linear Pearson

correlation coefficient ρ(T,H). To demonstrate the ef-
ficiency of a horizontal correlation analysis in practice,
we acquired a single trace from the STM32F1 (ARM)

microcontroller implemented with the RSA-RNS algo-
rithm. Fig. 14(a) shows the correlation coefficient dur-
ing the interval of a sub-trace for all the 28 exponent

bit guesses. Fig. 14(b) shows the success rate related
to the number of sub-traces. Note that in both figures,
the correlation coefficient for the correct guess of the

exponent bits is the one presenting the highest index.
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Fig. 14: Horizontal correlation attack on RSA-RNS.

Considerations about HCA: the practical experiments
developed in this work revealed that in comparison with
classical CPA, horizontal correlation attacks are very

hard-working methods. Trace pre-processing is crucial
when performing this attack, because the selection and
truncation of the sub-traces should be done very care-
fully.

7.2 Horizontal correlation attacks vs LRA

LRA randomize internal variables in a RNS represen-

tation and due to the high amount of possible RNS
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moduli combinations, the number of guesses is unaf-

fordable. In this case, the attack proposed in [23] can
not be mounted, since the adversary should know (or
guess) the processed message x. The modular exponen-

tiation using the LRA countermeasure starts by trans-
forming the input message into the RNS Montgomery
domain (Alg. 2, line 4):

MM(x,AB mod N,N,A,B) = (x)(AB mod N)(A
−1

) = xB mod N

In this case, x is given in the two RNS bases A and

B and may be known if the two sets of RNS bases are
also known. The immunity against horizontal correla-
tion attacks is due to the constant Montgomery B that

is carried out in the result. This constant receives ran-
domized values for each modular exponentiation. By
doing so, the result xB is also randomized.

The improved methods [24] and [26] are indepen-
dent of the message blinding, because they correlate
trace segments of two long integer multiplications by

computing a collision-correlation coefficient between them,
or even a distinguisher based on the Euclidean distance.
In the following, we explain why ROSETTA analysis is

limited by adding the RNS Montgomery Ladder as an
algorithmic countermeasure in the first level of abstrac-
tion. The operand xB, represented in the Montgomery

domain and adopted as a reference to find the collision-
correlations, is not recalled as an input operand in the
subsequent modular multiplications.

As shown in Table 1, the sequence of modular mul-
tiplications always have different input operands, pro-
viding different results. As a consequence, the leakage
model described in 4.3 can be adapted to a horizontal

attack. By doing so, with a practical experiment us-
ing an RSA-512 hardware implementation, 61% of the
exponent was recovered in the application of the Eu-

clidean distance or Pearson’s linear correlation. There-
fore, horizontal correlation attacks [23–26] are very lim-
ited by the combination of LRA and RNS Montgomery

Ladder countermeasures on hardware devices. More-
over, RNS bases can be randomized during the expo-
nentiation by randomizing the the moduli choice before

each exponent bit processing. This solution was ad-
dressed in [12]. As a consequence, the exponentiation
become twice slower, because two extra Montgomery

multiplications must be computed each time new RNS
basis are selected.

On a software implemented with LRA and RNS

Montgomery ladder, the RNS bases permutations [30]
can be freely jointed as an additional countermeasure.
To mount the same attack, the adversary must again

correlate the leakage of M1 and M2 with the leakage on

M4. As seen in previous sections, our software imple-

mentation presented more leakage of information with
correlation-based attacks. Permuting the RNS bases means
a temporal displacement of computations, defeating this

attack. Before the processing of each exponent bit, the
position of the moduli inside each RNS base is randomly
permuted. In software implementations, this counter-

measure can be implemented without any additional
time overhead, i.e., the permutations relies in a different
indexation of arrays and variables. The Montgomery

constants A and B remain unchanged and new pre-
computations each time the RNS bases are permuted
are not necessary.

8 Conclusion

In this paper, we evaluated different classes of RSA
countermeasures against vertical and horizontal attacks.
The algorithmic and arithmetic countermeasures were

coupled together with RNS features. We proposed leak-
age models for known and masked input correlation
attacks. The vulnerabilities of a masked RNS imple-

mentation of the Montgomery ladder algorithm were
demonstrated through the application of vertical corre-
lation attacks.

Horizontal attacks were applied on RNS software
and hardware implementations of RSA. The parallel
feature of RNS offered resistance against known-input

horizontal attacks. Masked input horizontal attacks were
defeated by the combination of leak resistant arith-
metic, Montgomery ladder and exponent blinding coun-

termeasures. In this case, SPA-related leakages (con-
trol decisions, memory addresses) are still a remain-
ing source of leakage and must be defeated by adding

hardware countermeasures like RAM addressing ran-
domization or random delays [18]. In [31], the authors
demonstrate how to recover the leakage from address-

bits (SPA-leakages) in exponentiation by using cluster-
ing algorithms. An alternative solution to defeat hor-
izontal correlation analysis is to randomize the RNS

bases during the exponentiation, as proposed in [12].
The insertion of more RNS cells in a hardware design
or the implementation of dummy RNS channel com-

putations in a software design increase the noise and
misalignment in the measured traces, respectively. Re-
dundant modular arithmetic [34] also offers different re-

presentation to the numbers, increasing the robustness
side-channel attacks.
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