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Abstract

Phylogenetic networks represent the evolution of organisms that have undergone reticulate events,
such as recombination, hybrid speciation or lateral gene transfer. An important way to interpret a
phylogenetic network is in terms of the trees it displays, which represent all the possible histories of the
characters carried by the organisms in the network. Interestingly, however, different networks may display
exactly the same set of trees, an observation that poses a problem for network reconstruction: from the
perspective of many inference methods such networks are indistinguishable. This is true for all methods
that evaluate a phylogenetic network solely on the basis of how well the displayed trees fit the available
data, including all methods based on input data consisting of clades, triples, quartets, or trees with any
number of taxa, and also sequence-based approaches such as popular formulations of maximum parsimony
and maximum likelihood for networks. This identifiability problem is partially solved by accounting
for branch lengths, although this merely reduces the frequency of the problem. Here we propose that
network inference methods should only attempt to reconstruct what they can uniquely identify. To this
end, we introduce a novel definition of what constitutes a uniquely reconstructible network. For any
given set of indistinguishable networks, we define a canonical network that, under mild assumptions, is
unique and thus representative of the entire set. Given data that underwent reticulate evolution, only
the canonical form of the underlying phylogenetic network can be uniquely reconstructed. While on the
methodological side this will imply a drastic reduction of the solution space in network inference, for the
study of reticulate evolution this is a fundamental limitation that will require an important change of
perspective when interpreting phylogenetic networks.

Author Summary

We consider here an elementary question for the inference of phylogenetic networks: what networks can
be reconstructed. Indeed, whereas in theory it is always possible to reconstruct a phylogenetic tree, given
sufficient data for this task, the same does not hold for phylogenetic networks: most notably, the relative
order of consecutive reticulate events cannot be determined by standard network inference methods. This
problem has been described before, but no solutions to deal with it have been put forward. Here we
propose limiting the space of reconstructible phylogenetic networks to what we call “canonical networks”.
We formally prove that each network has a (usually unique) canonical form – where a number of nodes
and branches are merged – representing all that can be uniquely reconstructed about the original network.
Once a canonical network N̂ is inferred, it must be kept in mind that – even with perfect and unlimited
data – the true phylogenetic network is just one of the potentially many networks having N̂ as canonical
form. This is an important difference to what biologists are used to for phylogenetic trees, where in
principle it is always possible to resolve uncertainties, given enough data.
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Fig 1. Indistinguishable network topologies. The network topologies N1 and N2 are indistinguishable to
most current approaches for network reconstruction, as they display the same tree topologies T1, T2 and T3.

Introduction

Explicit [1] or evolutionary [2,3] phylogenetic networks are used to represent the evolution of organisms
or genes that may inherit genetic material from more than one source. This may be caused by events such
as hybrid speciation (e.g. in plants and animals [4, 5]), horizontal gene transfer (e.g. in bacteria [6, 7]),
viral reassortment [8], or recombination (e.g. in viruses [9, 10] or in the genomes of sexually reproducing
species [11–13]). They are called “explicit” to distinguish them from “implicit” [14], “abstract” [1] or
“data-display” [3] phylogenetic networks, which are used to display collections of alternative evolutionary
hypotheses supported by conflicting signals in the data. In explicit networks, multiple-inheritance events
are represented as reticulations, that is, nodes where two or more lineages converge to give rise to a new
lineage, whose genetic material is a combination of that of its direct ancestors.

Explicit networks can be interpreted in terms of classic, tree-like evolution: if we focus on a single,
indivisible and thus non-recombining inherited character (for example a single site in a DNA sequence),
its history is still best described by a tree. This observation gives rise to the notion of trees displayed by a
network, which are all the possible single-character histories implied by a phylogenetic network. (See, e.g.,
Fig. 1, where T1, T2 and T3 are the trees displayed by networks N1 and N2. Formal definitions are in the
Results section.)

Several works in the last few years have focused on the methodology for phylogenetic network inference,
and data-display networks in particular have begun to make a real impact on the everyday practice
of biologists (e.g., [15–17]). There remains, however, a strong demand for automatic reconstruction of
networks that not only display conflicting signals in the data, but also seek to explain these signals with
explicit inferences of past reticulation events (see, e.g., [18–20]). This is evidenced, for example, by the
abundance of manually reconstructed networks in the literature [8,21–27]. As a result of this demand, the
inference of explicit networks is now a rapidly growing field of research [1].

Some paradigms in the proposed methodology are beginning to emerge. Not surprisingly, the notion of
trees displayed by a phylogenetic network plays a central role: the general idea is to evaluate the fit of a
network N with the data indirectly – on the basis of how well the trees displayed by N explain the data. In
the following, we describe how this applies to the two main approaches for explicit network reconstruction:
consistency-based approaches (see [28] for a survey) – seeking a network consistent with a number of prior
evolutionary inferences (typically trees or groupings of taxa) – and sequence-based approaches, such as
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standard formulations of maximum parsimony and maximum likelihood for networks [2, 29–33].
Although evaluating a network via the trees it displays is evolutionarily meaningful, it has a problematic

consequence: from the perspective of these reconstruction methods, all networks displaying the same set
of trees are “indistinguishable”, as the function that these methods seek to optimize will always assign
the same score to all networks displaying the same set of trees, regardless of the input data. In other
words, the central parameter of phylogenetic network inference, the network itself, is in some cases not
identifiable.

An Identifiability Problem

As an example, consider again networks N1 and N2 in Fig. 1, which display the same trees T (N) =
{T1, T2, T3}. (In the following, T (N) denotes the set of trees displayed by N .) By displaying the same
trees, these networks display the same clades, the same triples, the same quartets (triples and quartets are
rooted subtrees with 3 leaves and unrooted subtrees with 4 leaves, respectively) and in general the same
subtrees with an arbitrary number of leaves. Therefore, any method that reconstructs a network based
on its consistency with collections of such data will not be able to distinguish between networks N1 and
N2. This includes all the methods whose data consists of clusters of taxa (e.g., [34]), triples (e.g., [35]),
quartets (e.g., [36]), or any trees (e.g., [37]).

The same holds for many, sequence-based, maximum parsimony and maximum likelihood approaches
proposed in recent papers. For maximum parsimony, a practical approach [2,29–31] is to consider that
the input is partitioned in a number of alignments A1, A2, . . . , Am, each from a different non-recombining
genomic region (possibly consisting of just one site each), and then take, for each of these alignments, the
best parsimony score Ps(T |Ai) among all those of the trees displayed by a network N . The parsimony
score of N is then the sum of all the parsimony scores thus obtained. Formally, we have

Ps(N |A1, A2, . . . , Am) =

m∑
i=1

min
T∈T (N)

Ps(T |Ai).

It is clear that if two networks display the same set of trees (as in Fig. 1), then their parsimony score
with respect to any input alignments will be the same — because they take the minimum value over the
same set T (N) — and thus they are indistinguishable to any method based on the maximum parsimony
principle above.

As for maximum likelihood (ML), Nakhleh and collaborators [2, 32,33,38] have proposed an elegant
framework whereby a phylogenetic network N is not only described by a network topology, but also edge
lengths and inheritance probabilities associated to the reticulations of N . As a result, any tree T displayed
by N has edge lengths — allowing the calculation of its likelihood Pr(A|T ) with respect to any alignment
A — and an associated probability of being observed Pr(T |N). The likelihood function with respect to a
set of alignments A1, A2, . . . , Am, each from a different non-recombining genomic region, is then given by:

Pr(A1, A2, . . . , Am|N) =

m∏
i=1

Pr(Ai|N) =

m∏
i=1

∑
T∈T (N)

Pr(Ai|T )Pr(T |N).

Note that an important difference with the consistency-based and parsimony methods described above is
that any tree T displayed by a network has now edge lengths and an associated probability Pr(T |N).

Unfortunately, this ML framework is also subject to identifiability problems. For example, it does not
allow us to distinguish between networks with topologies N1 and N2 in Fig. 1: for every assignment of
edge lengths and inheritance probabilities to N1, there exist corresponding assignments to N2 that make
the resulting networks indistinguishable, that is, displaying the same trees, with the same edge lengths
and the same probabilities of being observed (see the last section in the Supporting Information, S1 Text).
As a result, the likelihoods of these two networks will be identical, regardless of the data, and no method
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Fig 2. Edge lengths are informative to distinguish among different network topologies. The only
network topology, among N1, N2 and N3 that can display simultaneously T1 and T2 with the indicated edge
lengths is N2: see for example the edge lengths assignment in the bottom right corner.

based on this definition of likelihood will be able to favour one of them over the other. We refer to S1
Text for a more detailed discussion about networks with inheritance probabilities and likelihood-based
reconstruction.

In general, we believe that these identifiability problems affect all network inference methods which
seek consistency with unordered collections of sequence alignments or pre-inferred attributes such as
clusters, triples, quartets or trees.

The Importance of Edge Lengths

In this paper, as in the ML framework above, we adopt networks and trees with edge lengths as the
primary objects of our study. The primary motivation for this is that this choice makes our results directly
relevant to the statistical approaches for network inference, all of which need edge lengths to measure the
fit of a phylogeny with the available data. In addition to ML, these approaches include distance-based
and Bayesian methods [39], which are also promising for future work.

However, there is another motivation for our choice: accounting for edge lengths solves some of the
identifiability problems outlined above, as in some cases it allows to distinguish between networks with
different topologies, which would be otherwise impossible to tell apart. For example, consider the three
network topologies in Fig. 2 (top), where taxon o is an outgroup used to identify the root of the phylogeny
for a, b and c. These networks show three very different evolutionary histories: in N1 taxon b is the only
one issued of a reticulation event — in other words the genome of b is recombinant — whereas in N2

and N3, it is a and c, respectively, that are recombinant. However, N1, N2 and N3 display the same tree
topologies — those of T1 and T2 — and thus would be indistinguishable to any approach that does not
model edge lengths.

If instead edge lengths are accounted for (e.g. in a ML context) and the data supports T1 and T2 with
the edge lengths in Fig. 2, then the only network fitting the data is N2, with the edge lengths indicated
at the bottom right. It is easy to check that N2 now displays T1 and T2 with the shown edge lengths,
whereas no edge length assignment to N1 or N3 can make these networks display T1 and T2.

We note that, throughout this paper, as in classical likelihood approaches, edge lengths measure



5

a

d

c

N1

b

T1

a

d

c

N2

b

T2 T3

a b c

d

a b

d

a b c

d

c

Fig 3. Indistinguishable networks. Two networks with edge lengths N1, N2 displaying the same set of trees
T (N1) = T (N2) = {T1, T2, T3}. For any choice of edge lengths λ1, λ2, . . . , λ12 for N1, we define a family of edge
length assignments for N2, parameterized by x, y (with −y < x < min{λ6, λ5 + λ8}, 0 < y < λ7).

evolutionary divergence, for example in terms of expected number of substitutions per site. No molecular
clock is assumed, meaning that we do not expect edge lengths to be proportional to time.

Remaining Identifiability Problems, and a Proposed Solution

Unfortunately, accounting for edge lengths only solves some of the identifiability problems for phyloge-
netic networks. Consider networks N1 and N2 in Fig. 3: for any set of edge lengths for N1, there exist
an infinity of edge length assignments for N2 that make these two networks display exactly the same
set of trees with the same edge lengths. In the following, we say that networks such as N1 and N2 are
indistinguishable.

In fact it is not difficult to construct other examples of indistinguishable networks: each time a
network has a reticulation v giving birth to only one edge (i.e. with outdegree 1), then we can reduce
by ∆λ the length of this edge and correspondingly increase by ∆λ the lengths of the edges ending in v,
without altering the set of trees displayed by the network. Note that this operation, which we refer to as
“unzipping” reticulation v, can result in v coinciding with a speciation node or a leaf when ∆λ is taken to
equal the length of the edge going out of v. For example in Fig. 3, one may fully unzip the two reticulation
nodes in N1, thus obtaining the network N ′ of Fig. 4. As expected, N1 and N ′ display the same set of
trees ({T1, T2, T3}) and are thus indistinguishable. What is most interesting in this example is that, if we
fully unzip the two reticulations in N2 (the other network in Fig. 3, also displaying {T1, T2, T3}), then
we eventually end up obtaining N ′ again. As we shall see in the following, this is not a coincidence: the
unzipping transformations described above lead to what we call the canonical form of a network; under
mild assumptions, two networks are indistinguishable if and only if they have the same canonical form
(e.g. N1, N2 in Fig. 3 have the same canonical form N ′; formal definitions and statements in the Results
section).

Here, we propose to deal with the identifiability issues for phylogenetic networks in the following
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Fig 4. Canonical form of N1 and N2 in Fig. 3.

way: since no data will ever enable any of the standard inference methods described above to prefer a
network over all of its indistinguishable equivalents, we propose that these methods should only attempt to
reconstruct what they can uniquely identify, that is, networks in canonical form. This is a radical shift, not
only for the developers of phylogenetic inference methods, who will see a drastic reduction of the solution
space of their algorithms, but also for evolutionary biologists, who should abandon their hopes of seeing a
network such as N1 or N2 in Fig. 3 being reconstructed by these inference methods.

Previous Work and Comparison

Limiting the scope of network reconstruction to topologically-constrained classes of networks has been a
recurring theme and an important goal in the literature on phylogenetic networks. Examples of such classes
include galled trees [40, 41], galled networks [42], level-k networks [43], tree-child networks [44], tree-sibling
networks [45], networks with visible reticulations [1]. Although the ultimate goal should be to establish
what can be inferred from biological data, most of the proposed definitions are computationally-motivated:
in general the rationale behind these classes is the possibility of devising an efficient algorithm to solve
some formalization of the reconstruction problem. None of these definitions claims to have biological
significance.

Our goals are more basic: starting from the observation that not all phylogenetic networks are
identifiable, since many of them are mutually indistinguishable with most inference approaches, we aim
to define a class of networks that is (existence goal) large enough that every phylogenetic network has
an equivalent (i.e. indistinguishable) network within this class and (distinguishability goal) small enough
that no two networks within this class are indistinguishable. From our standpoint, the computationally-
motivated definitions above are at the same time too broad and too restrictive. Too broad, because they
determine a set of networks that includes many pairs of indistinguishable networks: for example the three
indistinguishable networks in Fig. 2 are all galled trees — and thus belong to every single one of the
classes mentioned above (which are all generalizations of galled trees). Too restrictive, because these
classes of networks do not include simple networks that it should be possible to reconstruct from real data.
For example, Fig. 5a shows a network N with edge lengths that is not tree-sibling, nor has the visible
property, and thus is not galled, nor tree-child (for definitions, see [1]), but which in practice should be
reconstructible: apart from the lengths of three edges (x, y, z), N is uniquely determined by the trees that
it displays (a consequence of the formal results that we will show in the following), meaning that, given
large amounts of data strongly supporting each of these (seven) trees with their correct edge lengths, any
method for network inference properly accounting for edge lengths (e.g. based on ML) should be able to
reconstruct N , or its canonical form N ′.

To the best of our knowledge, only three classes of networks have claims of unique identifiability:
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Fig 5. Examples of networks that can be uniquely recovered from the data they generate. (a) A
network N , and its canonical form N ′, whose topologies are not galled trees, nor galled, tree-child, tree-sibling
or regular networks, nor networks with visible reticulations. N , however, is uniquely determined by the trees
it displays, with the exception of x, y and z, which can assume any value between 0 and 0.1. Because of the
impossibility to determine these values, the canonical form N ′ has the corresponding edges collapsed. As N ′ is a
network in canonical form satisfying the mild conditions of Corollary 2, N ′ is uniquely determined by the trees
it displays. Note that N provides the biological interpretation for N ′. (b) The network topology of N ′′ is such
that there exists no regular network displaying the same set of (two) tree topologies as N ′′. Thus, restricting the
scope of phylogenetic inference to regular networks would be very limiting. In our framework, N ′′ is a network in
canonical form and thus uniquely determined by the trees it displays.

reduced networks [46,47], regular networks [48] and binary galled trees with no gall containing exactly 4
nodes [49]. These approaches bear some resemblances to ours, but do not include edge lengths in the
definition of a network. Moreover, we argue that these classes of networks are still too narrow to be
biologically relevant. We briefly describe and comment these previous works below.

Moret et al. [46] defined notions of reconstructible, indistinguishable and reduced networks that
resemble concepts that we will introduce here. Although some of their results were flawed [47,50], some of
the arguments in this introduction are inspired by their paper. Particularly relevant to the current paper
is a reduction algorithm to transform a network into its reduced version. (However, the exact definition of
the reduced version is unclear: as one of the authors later pointed out [47], “the reduction procedure of
Moret et al. [46] is, in fact, inaccurate” and “in this paper we do not attempt to fix the procedure”.) The
concept of reduced version is analogous to that of canonical form here, as the authors claim that networks
displaying the same tree topologies have the same reduced version (up to isomorphism; Theorem 2 in [46]).
This is somehow a weaker analogue of one of our results (Corollary 1); weaker, because it does not claim
that, conversely, networks with the same reduced version display the same tree topologies. To have an
idea of the difference between our canonical form and the reduced version of Moret and colleagues, in Fig.
6 we compare the canonical form and the reduced version of the same network N1. (N1 and its reduced
version are taken from Fig. 15 of [46] to avoid possible issues with the reduction algorithm.) As one can
see, the canonical form retains more of the complexity of the original network.

Another reduction procedure on network topologies has been studied by Gambette and Huber [49],
who prove that if two network topologies reduce to the same topology, then they must display the same
tree topologies. Again, this is analogous to, but somehow weaker than our results, since it only provides a
sufficient condition for networks to be indistinguishable (which in their context means to display the same
tree topologies). This means that there can be irreducible networks that are indistinguishable (e.g. those
in Fig. 2) thus failing to achieve the distinguishability goal. Moreover, Gambette and Huber [49] show
that a particular class of network topologies (binary galled trees with no gall containing exactly 4 nodes)
are uniquely identified by the tree topologies they display. It is clear that this class is too small to achieve
the existence goal.

Finally, a regular network is a network topology N in which, among other requirements, no two distinct
nodes have the same set of descendant leaves (see [48] for a formal definition and characterizations). This
requirement implies, among other things, that N cannot contain any reticulation v with outdegree 1 (v
and its direct descendant would have the same descendant leaves), which in turn implies that regular
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Fig 6. Comparison between the reduced version and the canonical form of a network. N1 is the
network topology in Fig. 15a of [46], where edges leading to extinct taxa are shown in grey, and reticulation events
are represented by horizontal lines connecting the involved edges. N2 is a phylogenetic network on the same set of
taxa displaying the same evolutionary history, and showing edge lengths. R(N1) is the reduced version of N1 (Fig.
15b of [46]). N ′

2 is the canonical form of N2. Comparing R(N1) and N
′
2 reveals the difference in expressive power

between reduced versions and canonical forms. Collapsing the edge above c and d in R(N1) yields the regular
network displaying the same tree topologies as N1 and N2. Clearly, the reduced form R(N1) (and the regular
form) retain less of the complexity of the original network N1 than the canonical form N ′

2. For example in R(N1)
there remains no sign of the reticulate events ancestral to taxon e.
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networks are special cases of our canonical networks (the latter however also specify edge lengths). In fact
regular networks satisfy a property that is analogous to the one we prove here for canonical networks: a
regular network N is uniquely determined by the tree topologies that it displays [51], meaning that there
can be no other regular network N ′ displaying exactly the same set of tree topologies. Willson [51] shows
this constructively by providing an algorithm that, given the (exponentially large) set of tree topologies
displayed by a regular network R, reconstructs R itself. However, unlike for our canonical forms, for
a given network there may exist no regular network displaying the same set of trees (e.g. consider the
topology of N ′′ in Fig. 5b), thus failing to meet the existence goal. Regularity is in fact a very restrictive
constraint for a network. For example, none of the networks in Fig. 5 and Fig. 7 is regular, despite the
fact that their topologies are uniquely determined by the trees with edge lengths that they display (a
consequence of our results further below). Finally, going back to Fig. 6, collapsing the edge above taxa c
and d in R(N1) yields the regular network displaying the same tree topologies as N1 and N2. Again, this
shows that the canonical form retains more of the complexity of the original network than its regular
counterpart.

a b c

a b c b ca

Fig 7. Trees displayed by a network. A rooted network N ′
2, and the trees it displays (T ′

1 and T ′
2), obtained

by removing a segment of length 0.5 from the outgroup lineage of N2 in Fig. 2. In our formal setting, a network
such as N2 in Fig. 2 can either be represented as N ′

2 (by omitting the outgroup lineage, or part of it), or by rooting
it in its outgroup (not shown).
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Results

Our main result consists of formally proving that for every network N there exists a network N ′ in
canonical form, indistinguishable from N ; moreover, if we restrict ourselves to networks satisfying a mild
condition (the NELP property below), such canonical form N ′ is unique (see Theorem 1). In other words,
although in general a phylogenetic network N is not uniquely recoverable from the data it generates, there
always exists a canonical version N ′ of N that is indeed determined by the data. Informally, N ′ is all
that can be reconstructed about N .

In order to formally state this result, we here introduce a theoretical framework for explicit phylogenetic
networks with branch lengths. A directed acyclic graph (DAG) is a simple directed graph that is free
of directed cycles. A DAG is rooted if it contains precisely one node of indegree 0, called the root. All
nodes of outdegree 0 in a DAG are called leaves. A weighted rooted phylogenetic network N = (V,E, ϕ,Λ)
on X (in this paper also called a network for simplicity) consists of a rooted DAG (V,E) whose leaves
are bijectively labeled (via ϕ : X → V ) with the elements of X (called taxa). Moreover, each edge e ∈ E
is associated to a set of positive weights, called lengths, Λ(e) ⊂ R>0. Figs. 3, 4, 5 contain examples of
networks. A reticulation of a network N is a node v ∈ V with indegree greater than 1. A weighted
phylogenetic tree on X (a tree for simplicity) is a network on X with no reticulations and such that
each edge e has a unique length (|Λ(e)| = 1), which we denote by λ(e). Below, we discuss the biological
justification of various aspects of the definitions above.

Let v be a node with indegree 1 and outdegree 1 in a tree. Node v is said to be suppressible. Suppressing
v means removing the in-edge e = (u, v) and the out-edge f = (v, w) and then creating a new edge
g = (u,w) with length λ(g) = λ(e) + λ(f). Let N = (V,E, ϕ,Λ) be a network on X . A tree contained in
N is a tree T = (V ′, E′, ϕ′, λ) on the same taxon set X such that: (1) the roots of T and N coincide, (2)
the nodes and edges of T are also nodes and edges of N , that is V ′ ⊆ V and E′ ⊆ E, (3) taxon labels are
unchanged, that is ϕ′ = ϕ, and (4) the edge lengths of T are also edge lengths of N , that is, for every edge
e ∈ E′ , λ(e) ∈ Λ(e). A tree displayed by N is a tree T ′ that can be obtained (up to isomorphism) by
suppressing all suppressible nodes from a tree contained in N . The set of trees displayed by N is denoted
by T (N). In Fig. 7, T (N ′2) is the set of trees isomorphic to T ′1 and T ′2. Two networks N1 and N2 are
said to be indistinguishable if they display the same set of trees, that is T (N1) = T (N2). For example,
N1 and N2 in Fig. 3 are indistinguishable, as they display the same set of trees (T1, T2 and T3, up to
isomorphism).

Definition 1. Given a network N , a funnel is a node with indegree greater than 0 and outdegree 1. A
funnel-free network, or canonical network, is a network that does not contain funnels. A canonical form
of a network N is a network that is funnel-free and indistinguishable from N .

In Fig. 3, N1 and N2 each contain two funnels, and thus are not funnel-free. The network N ′ in Fig. 4
is a canonical form of N1 and N2 in Fig. 3, as N ′ is funnel-free and indistinguishable from N1 and N2.
Similarly, N ′2 in Fig. 6 is a canonical form of N2. Note that nodes with indegree 1 and outdegree 1 are
funnels. This implies that for trees the funnel-free condition coincides with the exclusion of suppressible
nodes, which is a standard requirement in the definition of phylogenetic trees. It is thus appropriate to
view the funnel-free condition as a natural extension of this requisite to networks.

Definition 2. A weighted path in a network N = (V,E, ϕ,Λ) is a pair (π, λ), where π is a directed path
in the graph (V,E) and λ is a function that associates each edge e in π with a length λ(e) ∈ Λ(e). The
length of a weighted path is the sum of the lengths assigned to its edges. A network satisfies the NELP
(no equally long paths) property if no pair of distinct weighted paths having the same endpoints have the
same length.

As we explain below, the NELP property is a mild condition to satisfy, unless edge lengths are taken
to represent time. The following result states that if we restrict ourselves to networks satisfying the NELP
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property, then every network has exactly one canonical form. An outline of its proof can be found in
the Methods section, including an algorithm showing how to reduce a network to canonical form. The
detailed proof is presented in S1 Text.

Theorem 1. (i) Every network N has a canonical form. Moreover, (ii) if N has the NELP property,
then there exists a unique canonical form of N among networks satisfying the NELP property (up to
isomorphism).

(The notion of isomorphism between networks is only used for mathematical rigor and is defined in S1
Text.) The following result provides a necessary and sufficient condition for two networks satisfying the
NELP property to be indistinguishable.

Corollary 1. Let N1 and N2 be networks with the NELP property and let N ′1 and N ′2 be their unique
canonical forms satisfying the NELP property. Then N1 and N2 are indistinguishable if and only if N ′1
and N ′2 are the same network (up to isomorphism).

The following result states that a canonical network with the NELP property is uniquely determined
by the trees it displays:

Corollary 2. Let N be a canonical network satisfying the NELP property. Then N is the unique (up to
isomorphism) canonical network satisfying the NELP property that displays (all and only) the trees in
T (N).

We now discuss the biological significance of a number of technical aspects of our framework.

Definition of Networks and Trees Displayed by a Network

All the phylogenies considered here — trees or networks — are rooted. This is because we assume that
the analysis uses an outgroup (possibly consisting of multiple taxa, and with no reticulations) for rooting.
For simplicity, outgroup lineages are not included in our phylogenies (an exception to this is in Fig. 2).
Note however that, because our phylogenies have edge lengths, and because omitting the outgroup is just
a convention, the omitted lineages must have the same lengths for a network and all the trees it displays.
For example, if we wish to omit the outgroup from N2 in Fig. 2 and from the trees that it displays, then
what we obtain are N ′2, T

′
1 and T ′2 in Fig. 7. This has a notable consequence: the trees displayed by a

rooted network with edge lengths may have a root with outdegree 1 (e.g. T ′1 in Fig. 7). For flexibility, we
also allow a network to have a root with outdegree 1.

Moreover, we allow multiple lengths for an edge in a network, but not in a tree. For example, in Fig.
6, network N ′2 has an edge with two lengths (λ7 + λ12 + λ14 and λ7 + λ11 + λ13 + λ14). The motivation
behind multiple lengths lies in the observation that, whereas each edge in a phylogenetic tree describing
the evolution of non-reticulating organisms trivially corresponds to a unique evolutionary path in the
underlying real evolutionary history, when reticulate events have occurred this is not necessarily true:
Fig. 8 and Fig. 9 show that some evolutionary scenarios can either be represented using multiedges
(multiple edges with the same endpoints) or edges with multiple lengths. Although these two options are
mathematically equivalent, graphically the second one leads to more compact representations, and this
is why we choose to allow multiple lengths rather than multiedges. For our purposes we only need to
consider the case where e has a finite set of lengths (Λ(e) = {λ1(e), . . . , λk(e)}).

Another unconventional aspect of our networks is the possibility of having nodes with in-degree and
out-degree both greater than one. (See, e.g., the last common ancestor of c and d in N ′2 in Fig. 6.)
Traditionally, the internal nodes in a phylogenetic network are constrained to belong to one of two different
categories: reticulate nodes, with more than one incoming edge and just one outgoing edge, and speciation
(or coalescence) nodes, with one incoming edge and multiple outgoing edges. Because reticulate and
speciation events are clearly distinct, it is reasonable to constrain internal nodes to only fall in the two
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a b c d e a b c d e

Fig 8. A non-reticulating evolutionary history (left) and a reticulating evolutionary history (right).
The black lineages are those leading to a sampled set of taxa X . The horizontal jagged lines represent reticulation
events. Whereas representing the scenario on the left with a phylogenetic tree on X is straightforward, for the one
on the right several options are possible. We show three alternative representations in Fig. 9.

d e

N1

a b c d e

N2

a b c d e

N3

a b c

Fig 9. Alternative network representations for the evolutionary scenario in Fig. 8 (right). In our
framework only N2 and N3 are networks.

categories above. In our framework, this requirement is dropped, and some networks, notably those in
canonical form, may have nodes that both represent reticulate and speciation events. In this case, it is
important to understand that these nodes represent a potentially complex (and unrecoverable) reticulate
scenario, followed by one or more speciation events. Compare, for example, network N and its canonical
form N ′ in Fig. 5, or N2 and N ′2 in Fig. 6. (In the latter, it is especially instructive to consider the
reticulate history above the direct ancestor of taxon e.)

The NELP Property

We use network N1 of Fig. 3 to illustrate the NELP property. In N1 there are three distinct weighted
paths having as endpoints the root of N1 and the direct ancestor of b. The lengths of these paths are
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a b a b

2 2 2 2

a b a b

...

a b

Fig 10. Different (non-isomorphic) but indistinguishable funnel-free networks. All edges are assumed
to have the (unique) length 1 unless otherwise displayed. These networks do not satisfy the NELP property,
showing that this is a necessary condition for the uniqueness of canonical forms (Theorem 1(ii)). The ellipsis at
the end represents the fact that an infinite number of such networks can be obtained by adding any number of
copies of the subgraph in grey in the last network.

`1 = λ1 +λ6, `2 = λ2 +λ3 +λ5 +λ8 and `3 = λ2 +λ10 +λ9 +λ8. Moreover, there is another pair of paths
having the same endpoints: those of lengths `4 = λ3 + λ5 and `5 = λ10 + λ9. Thus N1 has the NELP
property if and only if the three numbers `1, `2 and `3 are all different (note that this implies that also `4
and `5 are different). If edge lengths are taken to represent evolutionary change, rather than time, this is
a very mild requirement: when edge lengths are drawn at random from a continuous distribution, the
probability that two paths get exactly the same length is zero.

On the other hand, the NELP property does not hold for phylogenetic networks where edge lengths are
taken to represent time. For these networks, canonical forms may not be unique (see Fig. 10 for an example
of this). Even in this case, we believe that inference methods should only consider phylogenetic networks
in their canonical form, as this allows to reduce the solution space without any loss in “expressive power”:
since every network N has (at least one) canonical form that displays exactly the same set of trees — and
therefore has the same fit with the data as N — restricting the solution space to canonical forms always
leaves at least one optimal network within this space. The real weakness of using canonical forms in a
molecular clock context is that if a canonical form is not unique, then it cannot be considered representative
of all the networks indistinguishable from it. As an example of this, consider the indistinguishable networks
in Fig. 10: none of these is representative of all the others.

Discussion

Our results are both negative and positive. The bad news is that any method that scores the fit
between a network N and the available data — which may be sequences, distances, splits, trees (with or
without edge lengths) — based on the set of trees displayed by N must face an important theoretical
limitation: regardless of the amount of available data from the taxa under consideration, some parts of the
network representing their evolutionary history may be impossible to recover — most notably the relative
order of consecutive reticulate events (see, e.g., Fig. 3). The good news is that, when edge lengths are
taken into account, we can set precise limits to what is recoverable: the canonical form of a network N is
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a simplified version of N that excludes all the unrecoverable aspects of N . In a canonical form, reticulate
events are brought as forward in time as possible, causing the collapse of multiple consecutive nodes.
(Compare network N2 and its canonical form N ′2 in Fig. 6.) The importance of the canonical form N ′ of a
network N lies in the fact that, if we restrict our consideration to networks with the NELP property, N ′

is the unique canonical network consistent with perfect and unlimited data from the taxa in N .
There is an interesting analogy between soft polytomies in classical phylogenetics and collapsed nodes in

a canonical network. Both represent lack of knowledge about the order of evolutionary events: speciations
or more generally lineage splits in the first case, and reticulate events in the second. However, there is
also an important difference between them: whereas in principle polytomies can be resolved by collecting
further data from the taxa in the tree (for example, by extensive sequencing of their genomes [52]), the
standard network inference methods considered here cannot resolve collapsed nodes in a canonical network,
irrespective of the amount of data from the taxa under consideration. This difference is mitigated by the
observation that increased taxon sampling may indeed permit to resolve the collapsed nodes, when the
new lineages break adjacencies between reticulate nodes. However, such lineages may not always exist or
they may be difficult to sample.

The present work has several consequences that should be of interest both to the biologists concerned by
the use of methods for phylogenetic network inference, and to the researchers interested in the development
of these methods. We illustrate these consequences starting from a well-known problem of network
inference methods, that of multiple optima. It has been noted before that many of the inference methods
that have been recently proposed — especially those solely based on topological features — often return
multiple optimal networks: Huson and Scornavacca show a striking example of this (Fig. 2 in [53]), where
the problem of finding the simplest network displaying two given tree topologies admits at least 486
optimal solutions.

The existence of multiple optimal networks for a given data set is essentially due to two reasons:
insufficient data and non-identifiability. For the example of 486 optimal solutions, this large number may
be partly due to the fact that the goal was to achieve consistency with only two tree topologies. More
data may enable to discriminate among the 486 returned networks. Non-identifiability, which occurs
when none of the allowed data can discriminate between two or more networks, is a more serious problem
than insufficient data, as it cannot be solved by simply increasing the size of the input sample. Another
interesting example appears in a paper by Albrecht et al. [54], which we reproduce here in Fig. 11. Here,
there are only three optimal networks, essentially differing for which of the three clades {A.bicornis,
A.longissima, A.sharonensis}, {A.uniaristata, A.comosa} and {A.tauschii} is considered as a hybrid (in
this example reticulations represent hybridizations). This pattern is entirely analogous to that of the
three networks in Fig. 2 (with a, b and c replaced by the three clades above), meaning that these three
networks are indistinguishable to methods not accounting for edge lengths. Therefore, in this example,
the existence of multiple optimal solutions is entirely due to non-identifiability.

All this motivates three recommendations:

1. It is important to use data in a way that causes non-identifiability to be as limited as possible. For
example, as we have seen, accounting for edge lengths solves some cases of non-identifiability (e.g.,
in Fig. 2) although it does not eliminate this problem altogether (e.g., in Fig. 3).

2. Given an inferred network N̂ , it is important to know the set of networks that are theoretically
impossible to distinguish from N̂ : no matter the amount of data, they will all receive the same
support as N̂ . We may call this set the indistinguishable class of N̂ . The biologist using an inference
method must be aware that N̂ is not the only network supported by the data.

3. It would be highly useful to devise inference methods that instead of searching for (or directly
constructing) solutions in the space of all possible networks, only considers one element per indistin-
guishable class. This has the potential to significantly speed up the inference.
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Fig 11. Real-world example of indistinguishable network topologies. (Reproduced from [54], Fig. 4.)
Three network topologies that display the two tree topologies in Fig. 3 of [54]. Note that these three networks
are analogous to N1, N2 and N3 in Fig. 2 of the current paper: they each contain a reticulation cycle with
three outgoing edges leading to the same three clades: {A.bicornis, A.longissima, A.sharonensis}, {A.uniaristata,
A.comosa} and {A.tauschii} (in Fig. 2 instead of three clades we have three taxa a, b and c).

Correspondingly, we recommend that edge lengths should be accounted for in the analyses (point 1) and,
for each of the indistinguishable classes resulting from this choice, we identify a canonical network that,
for all practical purposes, can be considered to be unique. Most important to the end users, we propose
that a canonical network N̂ is what should be given as the result of the inference, with the caveat that N̂
is a way to represent a class of networks that are all equally supported (point 2). In a canonical form N̂ ,
the aspects that are not common to all networks in this class are collapsed, as described above. This will
help the evolutionary biologist to locate the uncertainties in the phylogeny, and possibly to choose further
taxa to resolve them. Finally, we propose that inference methods only attempt to search among — or
construct — phylogenetic networks in their canonical form (point 3).

We note that accounting for yet more characteristics of the data may reduce (or eliminate altogether)
the identifiability issues for phylogenetic networks. In the case of sequence-based methods, one may take
into account the natural order of sites within a sequence [11–13, 55, 56]. Similarly, for reconstruction
methods based on collections of subtrees, one could observe and use the relative position of the different
genomic regions supporting the input trees. However, these relative positions must be conserved across
the genomes being analyzed, a condition which may hold for recombining organisms (e.g. individuals
within a population or different viral strains), but which is not obvious when studying a group of taxa
that have undergone reticulate events (e.g., hybridization) at some point in a distant past.

The main conclusion of the present study is the following: unless one abandons any optimization
criterion that scores a network solely based on the trees it displays, the reconstruction should be carried
out in a reduced space of networks: that of the canonical forms defined here. The motivation for this lies in
the fact that canonical networks are guaranteed to be uniquely determined, if sufficient data are available.
Once a canonical form N̂ is inferred, it must be kept in mind that even assuming that the inference is free
of statistical error, the true phylogenetic network is just one of the many networks having N̂ as canonical
form. Compared to what biologists are used to for phylogenetic trees — where in principle it is always
possible to resolve uncertainties — it is clear that this requires an important change of perspective.
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Fig 12. The two rules at the basis of the canonical reduction algorithm.

Methods

The following three subsections describe the proofs of Theorem 1 part (i), of Theorem 1 part (ii), and
of their corollaries, respectively. In the case of Theorem 1 part (ii), only the gist of the proof is provided
here. The proof in full detail is deferred to S1 Text.

Reduction Algorithm

In order to prove that any network N has a canonical form, we describe an algorithm to transform N
into a canonical network indistinguishable from N . The algorithm simply consists of repeatedly applying
to N = (V,E, ϕ,Λ) one of the following two reduction rules, until neither can be executed (see Fig. 12):

Funnel suppression (R1) given a funnel v with k ≥ 1 in-edges (u1, v), (u2, v), . . . , (uk, v) and out-edge
(v, w), remove v and all these edges from N and introduce k new edges (u1, w), (u2, w), . . . , (uk, w).
For all i ∈ {1, 2, . . . , k} assign to (ui, w) the lengths Λ((ui, w)) := Λ((ui, v)) + Λ((v, w)), where the
sum of two sets of numbers A and B is defined as A+B = {a+ b : a ∈ A, b ∈ B}.

Multiedge merging (R2) given a collection of multi-edges (u,w) with multiplicity k and lengths

Λ′1,Λ
′
2, . . . ,Λ

′
k, replace these edges with a single edge with lengths

⋃k
i=1 Λ′i.

An example of the reduction of a network to its canonical form is shown in Fig. 13. Note that, even if
the algorithm may temporarily produce multi-edges, the network produced in the end obviously does not
have any multi-edge (otherwise we could still apply rule R2).

Proof of part (i) of Theorem 1. We must prove that any network N = (V,E, ϕ,Λ) has a canonical form.
For this, we apply the reduction algorithm described above, thus obtaining a sequence N0 = N,N1, . . . , Nm,
where each Ni+1 is obtained from Ni by applying either R1 or R2. Neither R1 nor R2 can be applied
to Nm. We prove that Nm is a canonical form of N . Although, strictly speaking, Ni may not be a
network (as it potentially contains multi-edges), the notion of trees displayed by Ni, and thus that of
indistinguishability, trivially extends to these multigraphs.

First, note that the algorithm terminates after a finite number of iterations (m). This is true
because at each iteration the size of E is reduced by at least one. Moreover, the resulting network Nm is
funnel-free, since no reduction of type R1 can be applied to it.
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Fig 13. Reduction of a network to its canonical form. Gray edges are those to which the next reduction
rule is applied. All edges are assumed to have the (unique) length 1 unless otherwise displayed.

What is left to prove is that Nm is indistinguishable from N = N0. To this end we prove that, at
each iteration, Ni and Ni+1 are indistinguishable, i.e. T (Ni) = T (Ni+1). In other words any tree T is
displayed by Ni if and only if T is displayed by Ni+1.

Let T be displayed by Ni. Then T can be obtained by suppressing all suppressible nodes from a
tree Ti contained in Ni. We consider three cases. (1) If none of the edges in Ti is involved in the reduction
transforming Ni into Ni+1, then clearly Ti is still contained in Ni+1 and thus T is still displayed by Ni+1.
(2) If Ti is involved in a R1 reduction, then it contains a funnel v and it contains one of the in-edges
of the funnel, say (uj , v), with length λj ∈ Λj = Λ((uj , v)), along with the out-edge (v, w), with length
λ0 ∈ Λ0 = Λ((v, w)). Now, let Ti+1 be the tree obtained from Ti by suppressing the suppressible node v
and thus creating a new edge (uj , w) with length λj + λ0. Because the R1 reduction creates a new edge
(uj , w) with length set Λj + Λ0, containing the value λj + λ0, then Ti+1 is contained in Ni+1. Moreover,
it easy to see that T can still be obtained by suppressing all suppressible nodes from Ti+1. Thus T is still
displayed by Ni+1. (3) If Ti is involved in a R2 reduction, then it contains one of the edges of a multi-edge
(u,w), with a length λ belonging to one of the length sets Λ′1,Λ

′
2, . . . ,Λ

′
k associated to the k copies of

(u,w). Thus we have that λ ∈
⋃k

i=1 Λ′i, which implies that Ti is still contained in Ni+1 and thus T is still
displayed by Ni+1. This concludes the proof of T (Ni) ⊆ T (Ni+1).

In order to prove that, conversely, T (Ni+1) ⊆ T (Ni), one can proceed in a similar way as above: if
T is displayed by Ni+1, then T can be obtained by suppressing all suppressible nodes from a tree Ti+1

contained in Ni. By considering three cases analogous to the ones above regarding the involvement of Ti+1

in the reduction transforming Ni into Ni+1, we can prove that in all these cases T is already displayed by
Ni. Thus Ni and Ni+1 are indistinguishable, which concludes our proof. �

We note informally that the order of application of the possible reductions in the algorithm above is
irrelevant to the end result. To see this, it suffices to show that if two different reductions are applicable
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to a network, then the result of applying them is the same irrespective of the order of application. As we
do not need this remark for the other results in this paper, we do not give a formal proof of it.

Lemma 1. Let N be a network and N ′ a canonical form of N obtained by applying the reduction algorithm.
If N satisfies the NELP property, then N ′ satisfies the NELP property.

Proof. We prove that for each basic step of the reduction algorithm — transforming Ni into Ni+1 via
a reduction rule R1/R2 — if Ni satisfies the NELP property, then Ni+1 also satisfies it. Suppose the
contrary; then, Ni+1 contains two distinct weighted paths ρ1, ρ2 with the same endpoints u and v and
same lengths. Because R1/R2 cannot create new nodes, u and v are also nodes in Ni. Moreover, it is easy
to see that each weighted path ρ in Ni from u to v gives rise to exactly one weighted path f(ρ) in Ni+1

from u to v, with exactly the same length as ρ. Now take two weighted paths in Ni, one in the preimage
f−1(ρ1) and the other in the preimage f−1(ρ2). These two weighted paths in Ni are distinct (as ρ1 6= ρ2),
have the same endpoints (u and v) and the same length. But then Ni violates the NELP property, leading
to a contradiction. We thus have that if Ni satisfies the NELP property, then Ni+1 also satisfies it. By
iterating the argument above for each step in the reduction algorithm, the lemma follows.

Uniqueness of the Canonical Form for Networks Satisfying the NELP

The proof of Theorem 1, part (ii), is rather technical. In this section, we introduce a number of
new concepts and state the main intermediate results that are necessary to obtain this result. We leave
their detailed proofs to S1 Text, together with the obvious definitions of basic concepts such as that of
isomorphic networks, sub-network and union of two networks.

Definition 3. (Root-leaf path, prefix, postfix, wishbone, crack.) Let N be a network on X and (π, λ) be
a weighted path in N from the root of N to a leaf labelled by x ∈ X . Now consider the sub-network
P = (V (π), E(π), ϕ|{x}, λ) on {x} consisting of all the nodes and edges in π and associated labels. Any
sub-network of N such as P is called a root-leaf path of N . Given a root-leaf path P and a node v
belonging to it, any weighted path formed by all the ancestors [descendants] of v in P is a prefix [suffix ]
of P . Note that a prefix [suffix] only consists of one node when v is the root [leaf] of P . A wishbone of N
is any sub-network of N formed by taking the union of two root-leaf paths that have in common only a
prefix. A crack of N is any sub-network of N formed by taking the union of two root-leaf paths that have
in common only a prefix and a suffix.

Fig. 14 illustrates the definitions above. Note that any root-leaf path P is both a wishbone and a
crack, as P is the result of the union of P with itself, and P has a common prefix and a common suffix
with P . Moreover, any sub-network R that can be obtained from a root-leaf path by attributing two
lengths to one of its edges e is a crack. Finally, note that wishbones and cracks are networks, and thus
the notion of isomorphism (Definition 5 in S1 Text) can be applied to them.

The proof of part (ii) in Theorem 1 depends on two important results (Propositions 1 and 2 below),
whose proofs can be found in S1 Text. The first states that a network with the NELP property is uniquely
determined by the wishbones and cracks it contains.

Proposition 1. Two networks N1 and N2 with the NELP property are isomorphic if and only if they
contain the same wishbones and cracks (up to isomorphism).

Proposition 1 is interesting on its own as it suggests an enumerative algorithm to verify whether two
networks with the NELP property are isomorphic. Unfortunately this algorithm would be impractical, as
the number of wishbones (or cracks) in a network is not polynomial in the size of the network. Also note
that we require N1 and N2 to satisfy the NELP property because there exist non-isomorphic networks
containing the same wishbones and cracks: for example the networks in the bottom line of Fig. 10. The
second result that we need is the following:
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Fig 14. Illustration of Definition 3. P (edges in black) is a root-leaf path of N and thus both a wishbone
and a crack of N . R and S (black) are cracks of N . Q (black) is a wishbone of N . All edges are assumed to have
the (unique) length 1 unless otherwise displayed.

Proposition 2. Let N1 and N2 be two indistinguishable funnel-free networks, satisfying the NELP
property. Then they contain the same wishbones and cracks (up to isomorphism).

Proof of part (ii) of Theorem 1. Let N be a network with the NELP property and N ′ a canonical
form of N obtained by applying the reduction algorithm. By Lemma 1, N ′ satisfies the NELP property.
Now suppose that there exists another canonical form of N , called N ′′, satisfying the NELP property. By
transitivity, N ′ and N ′′ are indistinguishable. Because N ′ and N ′′ are indistinguishable, funnel-free and
with the NELP property, N ′ and N ′′ must contain the same wishbones and cracks (because of Proposition
2). But then, because of Proposition 1, N ′ and N ′′ are isomorphic. �

We note that some of our arguments in S1 Text lead us to conjecture that a funnel-free network
satisfying the NELP property cannot be indistinguishable from a funnel-free network violating the NELP
property. This claim would allow us to simplify the statement of Theorem 1: networks with the NELP
property would be guaranteed to have a unique canonical form (not just among networks with the NELP
property, but among all networks). Unfortunately, to this date, we were unable to prove this conjecture.
Nonetheless, note that the reduction algorithm returns, for any network with the NELP property, its
unique canonical form with the NELP property (by Lemma 1).

Corollaries

It remains to prove the two corollaries at the end of the Results section. The first one states that
two networks N1 and N2 satisfying the NELP property are indistinguishable if and only if their unique
canonical forms with the NELP property, N ′1 and N ′2 respectively, are isomorphic. By Lemma 1, N ′1 and
N ′2 can be obtained by applying the reduction algorithm to N1 and N2.

Proof of Corollary 1. The if part trivially follows from the transitivity of indistinguishability. As for
the only if part, note that (again by transitivity) N ′1 is indistinguishable from N2. As it is also funnel-free,
N ′1 is a canonical form of N2. Because N2 can only have one canonical form satisfying the NELP property
(by Theorem 1(ii)), N ′1 and N ′2 must be the same network (up to isomorphism). �

As for Corollary 2, we recall that it states that a canonical network N with the NELP property is
uniquely determined by the trees it displays.



20

Proof of Corollary 2. Let N and N ′ be indistinguishable canonical networks satisfying the NELP
property. Then, N and N ′ are both canonical forms of N satisfying the NELP. But then, by Theorem
1(ii), N and N ′ must be the same network (up to isomorphism). �
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Supporting Information Legends

S1 Text. Supporting Information: a mathematical theory of explicit phylogenetic net-
works with edge lengths. This document provides an introduction to the mathematical theory of
explicit phylogenetic networks with edge lengths, leading in particular to the proofs of Propositions 1 and
2, which are necessary for the proof of Theorem 1, part (ii). In the last section, we consider networks with
inheritance probabilities and their relevance for likelihood-based reconstruction.
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A mathematical theory of explicit phylogenetic networks with
edge lengths.

This document is structured in six sections, in which we develop a theory of phylogenetic networks
with edge lengths. The first section introduces the notion of isomorphism between such networks and
states some obvious propositions; the second section looks in more detail at the process whereby a network
displays a tree; the third shows characterizations for both the NELP and the funnel-free property; the
fourth and fifth sections derive the proofs of the two propositions that are necessary for the proof of
Theorem 1, part (ii). The last section shows an example relevant to likelihood frameworks modelling
inheritance probabilities, in addition to edge lengths. The notation and definitions introduced in the
Results section and in the Methods section within the paper will be used here. We recall in particular
that, throughout this paper, networks are rooted DAGs whose leaves are bijectively labeled by taxa and
whose edges have a finite set of strictly positive lengths.

Isomorphisms and sub-networks

Definition 4. Given a network N = (V,E, ϕ,Λ), a sub-network N ′ = (V ′, E′, ϕ′,Λ′) of N is any 4-tuple
such that: (a) N ′ is a network, (b) V ′ ⊆ V , (c) E′ ⊆ V ′2 ∩ E, (d) ϕ′ is the restriction of ϕ to the taxa
associated to the leaves of (V ′, E′) and, (e) for every edge e ∈ E′, Λ′(e) ⊆ Λ(e). The union N1 ∪N2 of two
sub-networks of N , N1 = (V1, E1, ϕ1,Λ1), N2 = (V2, E2, ϕ2,Λ2), having the same root, is the sub-network
N ′ = (V1 ∪ V2, E1 ∪ E2, ϕ

′,Λ′), where ϕ′ is the restriction of ϕ to the taxa associated to the leaves of
(V1 ∪ V2, E1 ∪E2) and for every edge e ∈ E1 ∪E2, Λ′(e) = Λ1(e) ∪ Λ2(e) (where we take the liberty to let
Λi(e) = ∅ whenever e /∈ Ei).

Note that we define the union for sub-networks of N sharing the same root, because this ensures
that such union is still a network. Although these requirements could be relaxed, the definition above is
sufficient for the purposes of the current paper.

Definition 5. Let N1 = (V1, E1, ϕ1,Λ1) and N2 = (V2, E2, ϕ2,Λ2) be two networks on X . N1 and N2

are isomorphic if there exists a bijection f : V1 → V2 (called an isomorphism) such that:
(i) for every x ∈ X , f(ϕ1(x)) = ϕ2(x);
(ii) for every pair of nodes (u, v) ∈ V 2

1 , (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2 and whenever both these
edges exist, Λ1((u, v)) = Λ2((f(u), f(v))).

The following four lemmas are trivially true, and for brevity we do not include their proofs here.

Lemma 2. Let N1 and N2 be isomorphic networks. Then every sub-network of N1 is isomorphic to some
sub-network of N2.

Definition 6. Let P be a root-leaf path of a network N . The depth of a node v in P is the length of the
weighted path in P from the root of P to v. We say that P is to x, if P is a network on the set {x}, that
is, if its only leaf is labelled by taxon x.

Lemma 3. A root-leaf path P1 is isomorphic to P2 if and only if (a) P2 is a root-leaf path to the same
taxon as P1, and (b) for every node vi in any of the two root-leaf paths, say Pi, there exist a node vj in
the other root-leaf path, Pj, such that the depth of vi in Pi is equal to the depth of vj in Pj.

Lemma 4. A wishbone W = P1 ∪ P2 is isomorphic to W ′ if and only if W ′ is a wishbone and can be
written as W ′ = P ′1 ∪ P ′2, so that (a) the longest common prefix of P1 and P2 has the same length as the
longest common prefix of P ′1 and P ′2, and (b) P ′1 and P ′2 are isomorphic to P1 and P2, respectively.

Lemma 5. A crack K = P1 ∪ P2 is isomorphic to K ′ if and only if K ′ is a crack and can be written as
K ′ = P ′1 ∪ P ′2, so that (a) the longest common prefix of P1 and P2 has the same length as the longest
common prefix of P ′1 and P ′2, (b) the longest common suffix of P1 and P2 has the same length as the
longest common suffix of P ′1 and P ′2, and (c) P ′1 and P ′2 are isomorphic to P1 and P2, respectively.
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Figure S1. Illustration of the definitions of switching of a network, tree contained in a network, tree
displayed by a network and embeddings. N is a network, S1, S2 and S3 are three of its switchings, T1 and
T2 are two trees contained in N , T is a tree displayed by N , and T1 and T2 are two embeddings of T in
N . Nodes are explicitly shown in S1, S2, S3, T1 and T2 for clarity. Unless otherwise shown, all edges are
assumed to have length 1.

Switchings, trees weakly displayed and embeddings

Definition 7. Let N = (V,E, ϕ,Λ) be a network. A switching S = (V,E′, ϕ, λ) of N is obtained from N
by doing the following:

(i) for each node v ∈ V , delete all incoming edges of v except one; let E′ be the resulting set of edges;
(ii) for each edge e ∈ E′, assign to e a single length λ(e) ∈ Λ(e).

Note that technically a switching is not a network, as action (i) above may create leaves in S that
are not labelled by any taxon. Biologically, a switching corresponds to the evolutionary tree describing
the history of a single (indivisible and thus non-recombining) character carried by the root of N ; some
lineages in this tree may never reach any leaf of N . Moreover, since each edge in this tree corresponds
to a unique path in the underlying real evolutionary history, it is clear why a switching only allows one
length per edge (see Fig. 8 in the main text). Note that the trees contained by a network (defined in the
Results section within the paper) can also be seen as the trees that can be obtained from a switching by
removing all nodes and edges that have no descendant labelled by a taxon.

Definition 8. Let N be a network. A tree weakly contained in N is a tree T that is a sub-network of
N and has the same root as N . A tree weakly displayed by N is any tree T can be obtained (up to
isomorphism) by suppressing all suppressible nodes from a tree T ′ weakly contained in N . Tree T ′ is
called an embedding of T in N . The set of trees weakly displayed by N is denoted by T̃ (N).

The difference with the definition of trees displayed by a network is that a network on X can only
display trees on X , whereas it can weakly display any tree on X ′, with ∅ ⊂ X ′ ⊆ X . Note that if a tree
T is displayed by a network N , then T is also weakly displayed by N . The definitions of switching of
a network, tree contained in a network, tree displayed by a network and embeddings are illustrated in
Fig. S1. We note that every switching of a network N gives rise to a unique tree contained in N and
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every tree contained in N gives rise to a unique tree displayed by N . However, the converses of these two
propositions are not true: several switchings of N can give rise the same tree contained in N , and several
trees contained in N can give rise to the same tree displayed by N . The latter means that T ∈ T (N) can
have several embeddings in N .

Lemma 6. Let T be a tree on X = {x1, x2, . . . , xn} with no suppressible nodes. Let P1, P2, . . . , Pn be the
root-leaf paths in T to x1, x2, . . . , xn, respectively. For all i, j ∈ {1, 2, . . . , n}, let λi be the length of Pi

and let λij be the length of the longest common prefix of Pi and Pj. Any embedding of T is the union
of n root-leaf paths P ′1, P

′
2, . . . , P

′
n to x1, x2, . . . , xn, such that for all i, j ∈ {1, 2, . . . , n}, P ′i has length λi,

P ′i ∪ P ′j is a wishbone and the length of the longest common prefix of P ′i and P ′j is λij.

Proof. Let Te be an embedding of T . By definition of embedding, suppressing all suppressible nodes in Te
gives rise to a tree T ′ isomorphic to T . Because suppressing nodes does not change the taxon set of a
tree, Te is a tree on the same taxa as T ′, and thus on the same taxa as T , that is X = {x1, x2, . . . , xn}.
Because Te is a tree on X , Te equals the union of its n root-leaf paths to x1, x2, . . . , xn — which we
call P ′1, P

′
2, . . . , P

′
n respectively — and each pair of these paths have nothing in common other than a

prefix, meaning that P ′i ∪ P ′j is a wishbone. Now let λ′i denote the length of P ′i and λ′ij denote the length
of the longest common prefix of P ′i and P ′j . It remains to prove that λ′i = λi and λ′ij = λij , for all
i, j ∈ {1, 2, . . . , n}.

Because suppressing nodes does not change the length of a root-leaf path nor the taxon labelling its
leaf, then the root-leaf path to xi in T ′, which is derived from P ′i , must have length λ′i. But because T
and T ′ are isomorphic, then they contain the same root-leaf paths, up to isomorphism (by Lemma 2 and
Lemma 3). The (unique) root-leaf paths to xi in T and T ′ are thus isomorphic and have therefore the
same length, that is, λi = λ′i.

Similarly, because suppressing nodes transforms a wishbone in another wishbone, without changing the
length of the longest prefix common to its two root-leaf paths, nor the taxa labelling their leaves, then the
root-leaf paths to xi and xj in T ′, which are derived from P ′i and P ′j , respectively, must form a wishbone
W ′, with a longest common prefix of length λ′ij . Because T and T ′ are isomorphic, then they contain the
same wishbones, up to isomorphism (by Lemma 2 and Lemma 4), meaning that W ′ and Pi ∪ Pj must be
isomorphic. By Lemma 4, the longest common prefix of Pi and Pj must then have length λij = λ′ij .

Lemma 7. Let T , T ′ denote trees and N , N ′ denote networks.
(a) If N and N ′ are isomorphic, then T̃ (N) = T̃ (N ′).
(b) If T ′ is obtained by suppressing all suppressible nodes from T , then T̃ (T ) = T̃ (T ′).
(c) If T ′ is an embedding of T , then T̃ (T ) = T̃ (T ′).
(d) If T is weakly contained in N , then T̃ (T ) ⊆ T̃ (N).
(e) If T is weakly displayed by N , then T̃ (T ) ⊆ T̃ (N).

Proof. (a) Let T be a tree weakly contained in N . Let f be an isomorphism between N and N ′. It is easy
to see that the restriction of f to the nodes of T defines an isomorphism between T and a tree T ′ that is
weakly contained in N ′, meaning that N and N ′ must weakly contain the same trees (up to isomorphism).
Therefore N and N ′ must weakly display the same trees. (b) Let T , and thus T ′, be trees on Y. Given
a nonempty subset X ⊆ Y, let TX be the (unique) tree on X weakly contained in T , and let T ′X be the
(unique) tree on X weakly contained in T ′. It is easy to see that T ′X can be obtained by suppressing
some suppressible nodes from TX . It follows that the tree obtained by suppressing all suppressible nodes
from T ′X is the same as that obtained by suppressing all suppressible nodes from TX . This means that a
tree on X is weakly displayed by T if and only if it is weakly displayed by T ′. Since this is true for any
nonempty X ⊆ Y , point (b) follows. (c) By definition, if T ′ is an embedding of T , then there exist a tree
Ti, isomorphic to T , that can be obtained by suppressing all suppressible nodes from T ′. But then, by
point (a), T̃ (T ) = T̃ (Ti) and, by point (b), T̃ (Ti) = T̃ (T ′). By transitivity, T̃ (T ) = T̃ (T ′). (d) If T is
weakly contained in N , then every tree weakly contained in T is also weakly contained in N . Therefore
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every tree weakly displayed by T is also weakly displayed by N . (e) If T is weakly displayed by N , then
by definition there exist an embedding T ′ of T in N . But then, by point (c), T̃ (T ) = T̃ (T ′), and, because
T ′ is weakly contained in N , T̃ (T ′) ⊆ T̃ (N) (by point(d)). By transitivity, T̃ (T ) ⊆ T̃ (N).

Lemma 8. For every tree Twc weakly contained in a network N , there exists a tree Tc contained in N
that weakly contains Twc.

Proof. Let N be a network on X and Twc be a tree on X ′ ⊆ X . Number the taxa in X \ X ′ so
that we have X \ X ′ = {x1, x2, . . . , x|X |−|X ′|}. For convenience of notation, let T0 = Twc. For every
i ∈ {1, 2, . . . , |X | − |X ′|}, we now show how to define Ti on X ′ ∪ {x1, . . . , xi} that weakly contains Ti−1
and is weakly contained in N . Let Pi be a root-leaf path in N composed by the edges traversed by the
following walk from the leaf labelled by xi to the root in N : from the leaf labelled by xi always take an
edge e of N in its inverse direction (from its head to its tail), with any of e’s associated lengths, until you
end up in a node v belonging to Ti−1; from then on, follow the (inverse) path from v to the root of Ti−1
(which coincides with that of N). By construction, Pi and Ti−1 share a common prefix and nothing else. If
we now define Ti as the union of Ti−1 and Pi, it is clear that Ti is a tree on X ′ ∪ {x1, . . . , xi} that weakly
contains Ti−1 and is weakly contained in N . Now consider the sequence of trees Twc = T0, T1, . . . , T|X |−|X ′|.
Each of these trees is weakly contained in N , and (because the relation of weak containment is transitive)
weakly containing all its predecessors. Because T|X |−|X ′| is a tree on X weakly contained in N , T|X |−|X ′|
is contained in N and weakly contains Twc, thus concluding the proof.

Proposition 3. Let N and N ′ be networks. Then they are indistinguishable if and only if they weakly
display the same trees.

Proof. The if part is trivial. Suppose N and N ′ weakly display the same trees. Then they must be
networks on the same taxon set X , otherwise the network on the larger set of taxa, say, N , would weakly
display trees with taxa that can never be present in trees weakly displayed by N ′. Because N and N ′

weakly display the same trees on all taxon subsets X ′ ⊆ X , then they also display the same trees on X ,
that is, they are indistinguishable.

As for the only if part, we prove that, assuming N and N ′ are indistinguishable, T̃ (N) = T̃ (N ′). We
just prove T̃ (N) ⊆ T̃ (N ′), as the proof of T̃ (N ′) ⊆ T̃ (N) is symmetric. Let T ∈ T̃ (N) be a tree weakly
displayed by N , and let Te be an embedding of T in N . Because Te is weakly contained in N , by Lemma
8 there exists a tree Tc contained in N that weakly contains Te. But then, by points (c) and (d) in Lemma
7,

T̃ (T ) = T̃ (Te) ⊆ T̃ (Tc). (1)

Now let Td be the tree obtained by suppressing all suppressible nodes in Tc. Because Tc is contained in
N , then Td is displayed by N and thus by N ′, given that N and N ′ are indistinguishable. Therefore, by
points (b) and (e) in Lemma 7,

T̃ (Tc) = T̃ (Td) ⊆ T̃ (N ′). (2)

By putting together relations (1) and (2), we have that T ∈ T̃ (T ) ⊆ T̃ (N ′). Because this holds for any
T ∈ T̃ (N), we conclude T̃ (N) ⊆ T̃ (N ′).

Corollary 3. Let N and N ′ be indistinguishable networks. Then, for every root-leaf path P in N , there
exists in N ′ an equally long root-leaf path to the same taxon as P .

Proof. Suppose there exists in N a root-leaf path to x of length λ. By suppressing all suppressible nodes
from this path, one obtains a tree T consisting of one edge of length λ, whose head is labelled by x.
Because N and N ′ are indistinguishable, they both weakly display T (by Proposition 3). But since any
embedding of T must consist of a single root-leaf path to x of length λ (by Lemma 6), such a root-leaf
path must exist in N ′.



5

Characterizing the funnel-free and the NELP properties

In this section we investigate what it means for a network to be canonical and to satisfy the NELP
property. We start by characterizing the topological constraint (absence of funnels) that defines canonical
networks.

Proposition 4. A network N is funnel-free if and only if, for any two distinct non-root nodes u and w
in N , there exist two node-disjoint directed paths from u and w to two distinct leaves in N .

Proof. First, note that if N is not funnel-free, then the stated property does not hold: it suffices to take a
funnel as u and its only direct descendant as w and then it is clear that any two paths from u and w
cannot be node-disjoint.

Second, we prove that in a funnel-free network, for any two distinct nodes u and w, neither of which
coincides with the root, there always exist two node-disjoint paths πux and πwy, from u to x and from w
to y respectively, where x and y are leaves of N . Let dN (v) denote the number of proper descendants
(that is, not including v) of a node v in a network N . We prove our claim by induction on dN (u) + dN (w).

First, suppose dN (u) + dN (w) = 0. In this case u and w are leaves and the thesis trivially holds.
Then, suppose dN (u) + dN (w) = n > 0. Assume, without loss of generality, that dN (w) ≥ dN (u).

Then dN (w) > 0, which means that w is an internal node. As a consequence, w must have at least
two children nodes, because otherwise w would be a funnel or a root with outdegree 1 (which we have
excluded). Of these children nodes, at least one must be different from u. Call this node w′. Because w′

is a descendant of w, then dN (w′) < dN (w) and so dN (u) + dN (w′) < n. By the inductive hypothesis, we
can then assume that the thesis holds for the pair of (different, non-root) nodes (u,w′). That is, there
exist in N two disjoint directed paths πux and πw′y, from u to x and from w′ to y respectively, such that
x and y are leaves of N . Now form a new path πwy by appending the edge (w,w′) at the beginning of
πw′y. Note that w cannot be part of πux because otherwise w would be a descendant of u and that would
contradict dN (w) ≥ dN (u). Because of this, and because πw′y and πux are disjoint, then also πwy and
πux are disjoint. The thesis then holds also in the inductive step and the theorem follows.

We now examine the NELP property. It turns out that this property is equivalent to requiring the
uniqueness of embeddings for all trees weakly displayed by the network. In order to prove this, we show
the following trivial result that will be useful throughout this document.

Lemma 9. A network N satisfies the NELP property if and only if, for every taxon x in N , all root-leaf
paths in N to x have different lengths.

Proof. For the if part, note that if N does not satisfy the NELP property, then there are two distinct
weighted paths (π1, λ1), (π2, λ2) with the same lengths and endpoints. In this case it is easy to extend
these paths to two distinct root-leaf paths P1 and P2 leading to the same taxon x and having the same
length. As for the only if part, the existence of two root-leaf paths in N of equal lengths to the same
taxon x clearly implies that N violates the NELP property.

Proposition 5. A network N satisfies the NELP property if and only if every tree weakly displayed by
N has a unique embedding in N .

Proof. For the only if part, let T be a tree on {x1, x2, . . . , xn}, weakly displayed by N , with λ1, λ2, . . . , λn
being the lengths of the root-leaf paths to x1, x2, . . . , xn in T . Suppose T1 and T2 are two embeddings
of T in N . Then T1 and T2 must each consists of the union of n root-leaf paths to x1, x2, . . . , xn of
lengths λ1, λ2, . . . , λn, respectively (Lemma 6). But because N satisfies the NELP property, then for any
i ∈ {1, 2, . . . , n} there can be only one path to xi of length λi (Lemma 9), meaning that T1 = T2.

As for the if part, suppose every tree displayed by a network N has a unique embedding in N , but
that N does not satisfy the NELP property. Then (by Lemma 9) there exist two distinct root-leaf paths
P1 and P2 to the same taxon (say, x) that have the same length λ. But then P1 and P2 are distinct



6

u1

u2

u3

u4

u0

u1

u2
u2

u3

u4

u1

u0

Figure S2. Two root-leaf paths P1 and Q1 intersecting in 5 nodes, their corresponding cracks
P1 ∪R1

1, P1 ∪R2
1, P1 ∪R3

1 and wishbone P1 ∪R5
1 (see the proof of Lemma 10).

embeddings in N of the tree consisting of a single edge whose head is labelled by x, thus contradicting
the uniqueness of embeddings.

Note that the network in Fig. S1, which has several embeddings for T (namely T1 and T2), violates
the NELP property: for example there are three different paths of length 5 from the root to the leaf
labelled by a. Also note that the uniqueness of embeddings for the trees in T (N) does not imply the
NELP property: consider for example the top-left network in Fig. 10 in the main text, where the two trees
displayed by this network have unique embeddings, but the network does not satisfy the NELP property.

Proving Proposition 1

Lemma 10. Let P1, Q1 be two root leaf paths in a network N1 and let P2 and Q2 be two root-leaf paths
respectively isomorphic to P1 and Q1, in another network N2. Suppose that N2 satisfies the NELP property
and that, for every wishbone or crack K1 contained in P1 ∪Q1 and containing P1, there exists in N2 a
wishbone or crack K2 isomorphic to K1. Then P2 and Q2 intersect each other at the same depths as P1

and Q1, that is:
P1 and Q1 have a node u in common that is at depth δ in P1 and depth δ′ in Q1 if and only if P2 and

Q2 have a node v in common that is at depth δ in P2 and depth δ′ in Q2.

Proof. In the following, we prove that if P1 and Q1 have in common the nodes u0, u1, . . . , uk and only
these nodes (where u0 is the root of N1), with respective depths δ0 = 0 < δ1 < . . . < δk in P1 and depths
δ′0 = 0 < δ′1 < . . . < δ′k in Q1, then in N2 there must be exactly k + 1 nodes in common between P2 and
Q2, and these nodes must be at depths δ0, δ1, . . . , δk in P2 and depths δ′0, δ

′
1, . . . , δ

′
k in Q2. This statement

is clearly equivalent to the statement that we wish to prove.
First, let v0, v1, . . . , vk be the nodes that have respective depths δ0, δ1, . . . , δk in P2. The existence

of these nodes is guaranteed by the fact that P2 is isomorphic to P1, and P1 has nodes u0, u1, . . . , uk at
exactly those depths (Lemma 3). Furthermore let ∆P be the length of P1 and P2, let ∆Q be the length of
Q1 and Q2, let xP be the taxon labelling the leaves of P1 and P2 and let xQ be the taxon labelling the
leaves of Q1 and Q2. Below, we prove the following two claims:

(C1) For every i ∈ {1, 2, . . . , k}, there exists in N2 a weighted path from vi−1 to vi of length δ′i − δ′i−1
that has no node in common with P2 other than vi−1 and vi.
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(C2) If vk is a leaf, then it is labelled by xQ; otherwise there exists in N2 a weighted path from vk to
the leaf labelled by xQ that has no node in common with P2 other than vk and whose length is equal to
∆Q − δ′k.

We start with the proof of C1. See Fig. S2 in order to follow the reasoning below. First consider
the trivial case where (ui−1, ui) is an edge in both P1 and Q1, and that it is assigned the same length
λ in both of them. In this case, it is clear that δi − δi−1 = δ′i − δ′i−1 = λ. Because P2 is isomorphic to
P1 and because ui−1 and ui are consecutive nodes in P1, the nodes at the same depths as ui−1 and ui
in P2, that is vi−1 and vi, must also be consecutive in P2 (by Lemma 3). That is, (vi−1, vi) is an edge
of P2. Its length in P2 must be equal to the difference between the depths of vi−1 and vi in P2, that is
δi − δi−1 = δ′i − δ′i−1. Edge (vi−1, vi) along with its length in P2 constitutes a weighted path from vi−1 to
vi of length δ′i− δ′i−1 that has no node in common with P2 other than vi−1 and vi, thus proving C1 in this
trivial case. In all other cases, define Ri

1 as the root-leaf path that shares with P1 its prefix down to ui−1
and its suffix from ui onwards, and shares with Q1 its portion between ui−1 and ui. By construction, Q1

has no node in common with P1 between ui−1 and ui, meaning that Ri
1 and P1 have in common only

a prefix and a suffix, and thus that P1 ∪ Ri
1 is a crack. Because P1 ∪ Ri

1 is a crack containing P1 and
contained in P1 ∪Q1, then there exists in N2 a crack isomorphic to P1 ∪Ri

1. Because isomorphic cracks
are the union of isomorphic root-leaf paths (Lemma 5) and because in N2 there can be no root-leaf path
isomorphic to P1 other than P2 (as N2 satisfies the NELP property), then the crack isomorphic to P1 ∪Ri

1

in N2 can be written as P2 ∪Ri
2, where Ri

2 is a root-leaf path isomorphic to Ri
1. Now note that P1 and

Ri
1 have lengths ∆P and ∆P − (δi − δi−1) + (δ′i − δ′i−1), respectively, and longest common prefix and

suffix of lengths δi−1 and ∆P − δi, respectively (as δi−1 and δi are the respective depths of ui−1 and ui in
P1). By Lemma 5, also P2 and Ri

2 and their longest common prefix and suffix must have these lengths.
This implies that Ri

2 separates from P2 at the node at depth δi−1 in P2 — which by construction is vi−1
— then follows a weighted path of length δ′i − δ

′

i−1 that has no node in common with P2 other than its
extremes, and finally joins up with P2 at the node at depth δi in P2 — which by construction is vi. The
portion of Ri

2 between vi−1 and vi has length δ′i − δ′i−1 and no node in common with P2 other than vi−1
and vi, thus proving claim C1.

As for C2, if vk is a leaf, since vk belongs to both P2 and Q2, then it is the leaf of both P2 and Q2,
and thus it must be labelled by xP = xQ. If instead vk is not a leaf, then it must have strict descendants
in P2. Then, because P1 and P2 are isomorphic, also uk (the node at the same depth in P1 as vk in P2)
must have strict descendants and is thus not a leaf. Define then Rk+1

1 as the root-leaf path that shares
with P1 its prefix down to uk, and shares with Q1 its suffix from uk to the leaf labelled by xQ (as uk is
not a leaf, this suffix contains at least one edge). By construction, Q1 has no node in common with P1

after separating from it in uk, meaning that Rk+1
1 and P1 have in common only a prefix, and thus that

P1 ∪Rk+1
1 is a wishbone. Because P1 ∪Rk+1

1 is a wishbone containing P1 and contained in P1 ∪Q1, then
there exists in N2 a wishbone isomorphic to P1 ∪Rk+1

1 . Because isomorphic wishbones are the union of
isomorphic root-leaf paths (Lemma 4) and because in N2 there can be no root-leaf path isomorphic to P1

other than P2 (as N2 satisfies the NELP property), then the crack isomorphic to P1 ∪Rk+1
1 in N2 can be

written as P2 ∪Rk+1
2 , where Rk+1

2 is a root-leaf path isomorphic to Rk+1
1 . Now note that P1 and Rk+1

1

have lengths ∆P and ∆Q − δ′k + δk, respectively, and longest common prefix of length δk. By Lemma
4, also P2 and Rk+1

2 and their longest common prefix must have these lengths. This implies that Rk+1
2

separates from P2 at the node at depth δk in P2 — which by construction is vk — and then follows a
weighted path of length ∆Q − δ′k, that has no node in common with P2 other than vk, and that ends up
in a leaf labelled by xQ (as Rk+1

2 is isomorphic to Rk+1
1 ). Thus C2 is also proved.

As a consequence of C1 and C2, one can construct a root-leaf path R in N2 by concatenating all the
weighted paths whose existence has been proven in C1 and C2. Clearly, R is a root-leaf path to xQ and it
has a total length of ∆Q, as:{∑k

i=1(δ′i − δ′i−1) = δ′k = ∆Q if vk is a leaf,

∆Q − δ′k +
∑k

i=1(δ′i − δ′i−1) = ∆Q otherwise.
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Because in N2 there can be no root-leaf path to xQ of length ∆Q other than Q2 (as N2 satisfies the
NELP property), then R = Q2. Now note that C1 and C2 imply that the only nodes that R = Q2 has in
common with P2 are v0, v1, . . . , vk. Moreover, for every i ∈ {0, 1, . . . , k}, the depth of vi in P2 equals δi
(by definition), and the depth of vi in R = Q2 equals

∑i
j=1(δ′j − δ′j−1) = δ′i, which is what we set out to

prove.

Proposition 1. Two networks N1 and N2 with the NELP property are isomorphic if and only if they
contain the same wishbones and cracks (up to isomorphism).

Proof. The only if part is trivial: if N1 and N2 are isomorphic, than each wishbone or crack W contained
in one of the two networks must have an isomorphic sub-network W ′ in the other (by Lemma 2), and W ′

must be either be a wishbone or a crack (by Lemmas 4 and 5).
As for the if part, let us now suppose networks N1 = (V1, E1, ϕ1,Λ1) and N2 = (V2, E2, ϕ2,Λ2)

satisfy the NELP property and contain isomorphic wishbones and cracks. We prove that N1 and N2 are
isomorphic.

Because N1 and N2 contain the same wishbones and cracks (up to isomorphism), and because a
root-leaf path (which is both a wishbone and a crack) can only be isomorphic to another root-leaf path
(Lemma 3), then N1 and N2 must contain the same root-leaf paths (up to isomorphism). Note that N1

and N2 must be networks on the same taxon set X , because otherwise any root-leaf path that leads to a
leaf corresponding to a taxon present in only one of the networks would have no isomorphic root-leaf path
in the other network. Then, define a relation ∼ between V1 and V2 as follows: for any v1 ∈ V1 and v2 ∈ V2
we write v1 ∼ v2 if there exist two isomorphic root-leaf paths P1 and P2, in N1 and N2, respectively, that
contain v1 and v2, respectively, such that v1 has the same depth in P1 as v2 in P2. Note that, because
N1 and N2 contain isomorphic root-leaf paths, for every v1 ∈ V1 there exists a v2 ∈ V2 such that v1 ∼ v2
(by Lemma 3). Moreover, we now prove that such v2 is unique. Suppose there exist v2 and v′2 such that
v1 ∼ v2 and v1 ∼ v′2. This would mean (see Fig. S3) that there exist two isomorphic root-leaf paths P1

and P2, in N1 and N2, respectively, that have v1 and v2 at the same depth δ and that there exist two
isomorphic root-leaf paths Q1 and Q2, in N1 and N2, respectively, that have v1 and v′2 at the same depth
δ′. Because N1 and N2 contain the same wishbones and cracks, in particular for every wishbone or crack
contained in P1 ∪Q1 and containing P1 there exists an isomorphic wishbone or crack in N2. Thus the
assumptions of Lemma 10 are verified, meaning that P2 and Q2 must intersect each other at the same
depths as P1 and Q1. As a result, because P1 and Q1 have a node v1 in common that is at depth δ in P1

and depth δ′ in Q1, then P2 and Q2 must have a node in common that is at depth δ in P2 and depth
δ′ in Q2. But v2 and v′2 are precisely the nodes in P2 and Q2 at depths δ and δ′, respectively, meaning
that we must have v2 = v′2. We thus conclude that there is a unique v2 ∈ V2 such that v1 ∼ v2. Similarly,
for every v2 ∈ V2 there exists a unique v1 ∈ V1 such that v1 ∼ v2. Thus, relation ∼ identifies a bijection
f : V1 → V2, defined by f(v1) = v2 ⇔ v1 ∼ v2.

We now prove that bijection f is an isomorphism between N1 and N2, by showing that it verifies the
two requirements in Definition 5. First, note that for every x ∈ X we can consider a root-leaf path P1

in N1 ending in ϕ1(x) and its isomorphic equivalent P2 in N2 ending in ϕ2(x). Because the two paths
are isomorphic, ϕ1(x) must lie at the same depth in P1 as ϕ2(x) in P2. Thus ϕ1(x) ∼ ϕ2(x), that is
f(ϕ1(x)) = ϕ2(x).

Second, we show that if e1 = (u, v) ∈ E1 is an edge of N1 having a length λ ∈ Λ1(e1) then (f(u), f(v))
is an edge of N2 having also length λ. Let P1 be any root-leaf path that passes via e1 and assigns length λ
to e1. Let δ and δ+λ be the depths of u and v, respectively, in P1. Because N1 and N2 contain isomorphic
root-leaf paths, N2 must contain a root-leaf path P2, isomorphic to P1. As a consequence of Lemma 3, P2

must have two nodes at depths δ and δ + λ — which by construction must be f(u) and f(v), respectively
— connected by an edge e2 = (f(u), f(v)) ∈ E2 having length λ in P2, that is, λ ∈ Λ2(e2). This allows to
conclude that Λ1((u, v)) ⊆ Λ2((f(u), f(v))). Similarly, we can prove that Λ2((f(u), f(v))) ⊆ Λ1((u, v)),
which allows us to conclude that f satisfies point (ii) in Definition 5. Bijection f is thus an isomorphism
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Figure S3. Illustration for the proof of Proposition 1.

between N1 and N2.

Proving Proposition 2

In order to prove that two indistinguishable funnel-free networks with the NELP property have
isomorphic wishbones and cracks, we need some more accessory results and notation.

Definition 9. Let P and Q be two root-leaf paths in a network N . We denote the length of the longest
common prefix of P and Q by µ(P,Q). We say that P and Q separate at node v, if P 6= Q, and v is
the last node in the longest common prefix of P and Q. Finally, P and Q separate openly at v if they
separate at v and the direct descendants of v in P and Q are distinct nodes.

Note that if the longest common prefix of P and Q consists of only one node, then µ(P,Q) = 0. In
general, if P and Q separate at v, then the depth of v in P and Q is precisely µ(P,Q). Moreover, note
that two distinct root-leaf paths P and Q do not separate openly at v when they contain the same edge
(v, v′), but with different lengths in P and Q.

Definition 10. Let P and Q denote root-leaf paths. An open crack is a crack P ∪Q where P and Q
separate openly. A closed crack is a crack P ∪Q where P and Q differ for the length of exactly one edge.

Note that all cracks are either open, closed or root-leaf paths. In Fig. 14 in the main text, S and R
are an open crack and a closed crack, respectively.

Lemma 11. (Three-prefix condition). Let P1, P2, P3 be root-leaf paths in a network N . Then the two
smallest of µ(P1, P2), µ(P1, P3), µ(P2, P3) are equal, or, equivalently, for {i, j, k} = {1, 2, 3}:

µ(Pi, Pj) ≥ min{µ(Pi, Pk), µ(Pj , Pk)}.

Proof. First note that the two smallest of three numbers x1, x2, x3 are equal if and only if xi ≥ min{xj , xk},
for {i, j, k} = {1, 2, 3}: without loss of generality suppose x1 ≤ x2 ≤ x3 and note that — while
x2 ≥ min{x1, x3} = x1 and x3 ≥ min{x1, x2} = x1 are trivially true — x1 ≥ min{x2, x3} holds if and only
if x1 = x2. In order to prove that the two smallest of µ(P1, P2), µ(P1, P3), µ(P2, P3) are equal, imagine
following P1, P2 and P3 from the root until at least one of them separates from the others: let v be a node
at depth δ in P1, P2, P3, where either only Pi separates from Pj and Pk, or all three P1, P2, P3 separate.
In both cases, δ = µ(Pi, Pj) = µ(Pi, Pk) ≤ µ(Pj , Pk), thus concluding the proof of this lemma.

Lemma 12. Let N and N ′ be two indistinguishable funnel-free networks, and let N ′ satisfy the NELP
property. Let P1 and P2 be root-leaf paths in N , whose union P1 ∪ P2 is a wishbone. Let P ′1 and P ′2
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be the root-leaf paths in N ′ to the same taxa as P1 and P2, and having the same lengths as P1 and P2,
respectively (whose existence and uniqueness are guaranteed by Corollary 3 and Lemma 9, respectively).
Then, P ′1 ∪ P ′2 is a wishbone of N ′, and

µ(P ′1, P
′
2) = µ(P1, P2).

Proof. Let x1 and x2 be the taxa labelling the leaves of P1 and P2 (and thus P ′1 and P ′2), respectively,
and let λ1 and λ2 be the lengths of P1 and P2 (and thus P ′1 and P ′2). Note that we may have x1 = x2,
and λ1 = λ2, if P1 = P2. Because N and N ′ are indistinguishable, they must both weakly display TW ,
the tree obtained by suppressing all suppressible nodes in the wishbone W = P1 ∪ P2 (by Proposition
3). TW must be the union of two root-leaf paths to x1 and x2, of lengths λ1 and λ2, respectively, and
having a longest common prefix of length µ(P1, P2) (because these properties are not lost by suppressing
suppressible nodes). Then, the embedding of TW in N ′ must be a wishbone W ′ consisting of the union of
two root-leaf paths to x1 and x2, of lengths λ1 and λ2, respectively, whose longest common prefix has
length µ(P1, P2) (by Lemma 6). Because P ′1 and P ′2 are the unique root-leaf paths in N ′ to x1 and x2,
and of lengths λ1 and λ2, respectively, this implies W ′ = P ′1 ∪ P ′2 and the lemma follows.

Note that the lemma that we just proved includes the trivial case where P1 = P2.

Lemma 13. Let N and N ′ be two indistinguishable funnel-free networks, and let N ′ satisfy the NELP
property. Let P and Q be distinct root-leaf paths in N , whose union P ∪Q is a crack. Let P ′ and Q′ be
the root-leaf paths in N ′ to the same taxa, and having the same lengths as P and Q, respectively (whose
existence and uniqueness are guaranteed by Corollary 3 and Lemma 9, respectively). Then

µ(P ′, Q′)

{
= µ(P,Q) if P ∪Q is an open crack,

≥ µ(P,Q) if P ∪Q is a closed crack.

Proof. The proof is by induction on the number of edges in the longest suffix common to P and Q.
Throughout this proof, for any root-leaf path X in N , let X ′ denote the root-leaf path in N ′ to the same
taxon and having the same length as X. Moreover, let u be the last node in the longest prefix common to
P and Q and let v be the first node in the longest suffix common to P and Q. Because P 6= Q, u must
be a strict ancestor of v. Moreover, let uP and uQ be the direct ancestors of v in P and Q, respectively.
Of these two nodes, at least one is not a strict ancestor of the other, otherwise N would contain a cycle.
Thus, without loss of generality, we assume throughout that uQ is not a strict ancestor of uP . Note that
if P ∪Q is an open crack, at least one between uP and uQ must be different from u. Because we require
that uQ is not a strict ancestor of uP , it follows that uQ 6= u, when P ∪Q is an open crack. Finally, in
the particular case where P ∪Q is a closed crack and u = uQ is the root of N , the statement trivially
holds, as µ(P,Q) = 0 ≤ µ(P ′, Q′). Thus, we assume throughout that uQ is not the root of N . Because it
cannot be a leaf or a funnel, either, we can assume that uQ has outdegree 2 or more.

Base case. (See Fig. S4, left, to follow the argument below.) Suppose that the longest suffix common
to P and Q contains no edge, or, equivalently, that it consists of just a leaf v. Because uQ has outdegree 2
or more, we can define a root-leaf path R in N that separates openly from Q at uQ: let R have a common
prefix with Q consisting of the portion of Q from the root down to uQ; then, let R take an edge (uQ, w)
with w 6= v (with any of this edge’s lengths in N) and finally let R take any weighted path from w that
does not end up in v (which is possible because N is funnel-free). Clearly,

µ(P,Q) = µ(P,R) ≤ µ(Q,R). (3)

Note that R and Q have no node in common below uQ — as otherwise R would contain v, which we
excluded by construction — meaning that Q ∪ R is a wishbone. Moreover, P ∪ R is also a wishbone:
assuming otherwise would mean that R has a node in common with P below u, either contradicting the
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Figure S4. Illustration of the base case (left) and the inductive step (other two drawings) in the proof of
Lemma 13. P is shown in black, the portion of Q not coinciding with P is shown in grey, and the portion
of R not coinciding with P is represented by the dashed line. Note that, although the drawing shows the
case of an open crack with u 6= uQ, the proof also considers the case where u = uQ, i.e. when P ∪Q is a
closed crack.

fact that P and Q have no nodes in common between u and v, or contradicting the requirement that uQ
is not a strict ancestor of uP , or contradicting the requirement that v does not belong to R. Because
Q ∪R and P ∪R are wishbones, then (by Lemma 12)

µ(Q′, R′) = µ(Q,R), µ(P ′, R′) = µ(P,R) (4)

Now consider two cases: either P ∪ Q is an open crack or it is closed. If it is open, then u 6= uQ
(see above) and thus we have µ(P,R) < µ(Q,R) in (3). Then, because of the equalities in (4), we
have µ(P ′, R′) < µ(Q′, R′). But then, because of the three-prefix condition (Lemma 11), we must have
µ(P ′, Q′) = µ(P ′, R′). Combine this with Equations (3) and (4), to show that µ(P ′, Q′) = µ(P,Q). If
instead P ∪ Q is a closed crack, then u = uQ and thus we have µ(P,R) = µ(Q,R). Then, because of
the equalities in (4), we have µ(P ′, R′) = µ(Q′, R′). In this case, the three-prefix condition (Lemma 11)
implies µ(P ′, Q′) ≥ µ(P ′, R′) = µ(Q′, R′) and thus µ(P ′, Q′) ≥ µ(P,Q).

Inductive step. (See the two drawings on the right in Fig. S4 to follow the argument below.) Now
suppose that the longest suffix common to P and Q contains k > 0 edges, and assume that the lemma’s
statements hold for every pair of root-leaf paths whose union is a crack and whose longest common suffix
contains fewer than k edges. Because uQ has outdegree 2 or more, we can define a root-leaf path R in N
that separates openly from Q at uQ: let R have a common prefix with Q consisting of the prefix of Q from
the root down to uQ; then, let R take an edge (uQ, w) with w 6= v (with any of this edge’s lengths in N)
and then let R continue taking edges always avoiding ending up in v (recall that N is funnel-free), until it
either arrives in a leaf or in a node t belonging to P ∪Q. Note that such t must be a strict descendant of
v in the suffix common to P and Q. (By construction t 6= v; moreover, if t belonged to Q and not to P ,
then t would lie between uQ and v in Q, which contradicts the assumption that uQ is a direct ancestor
of v in Q; finally, if t belonged to P and not to Q, then t would either coincide with uP or be a strict
ancestor of uP , implying that uQ is an ancestor of uP , which is not possible by construction.) Finally,
from t onwards, let R coincide with the suffix common to P and Q. Clearly, as in the proof of the base
case, the following holds:

µ(P,Q) = µ(P,R) ≤ µ(Q,R). (5)

If R arrives in a leaf without hitting a node in P ∪Q (i.e., without crossing neither P or Q), then Q ∪R
and P ∪R are wishbones. If instead R hits P ∪Q in t, then Q ∪R and P ∪R are open cracks: they are
cracks, because, by construction, t is the first node that R has in common with P and Q after separating
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Figure S5. Illustration of the inductive case in the proof of Lemma 14. P is shown in black, the portion
of Q not coinciding with P is shown in grey, and the portion of R not coinciding with P is represented by
the dashed line.

from them (at u and uQ, respectively), and because R has its suffix following t in common with P and Q;
they are open because the edge (uQ, w) in R does not belong to neither Q or P . Moreover, these open
cracks are such that the two root-leaf paths that compose them have a longest common suffix of fewer
than k edges, as t is a strict descendant of v. Irrespective of Q ∪R and P ∪R being wishbones or open
cracks, we then have (by Lemma 12 or by inductive hypothesis) that

µ(Q′, R′) = µ(Q,R), µ(P ′, R′) = µ(P,R). (6)

Now consider two cases: either P ∪ Q is an open crack or it is closed. If it is open, then u 6= uQ
(see above) and thus we have µ(P,R) < µ(Q,R) in (5). Then, because of the equalities in (6), we
have µ(P ′, R′) < µ(Q′, R′). But then, because of the three-prefix condition (Lemma 11), we must
have µ(P ′, Q′) = µ(P ′, R′). If we combine this with Equations (5) and (6), then we deduce that
µ(P ′, Q′) = µ(P,Q). If instead P ∪Q is a closed crack, then u = uQ and thus we have µ(P,R) = µ(Q,R).
Then, because of the equalities in (6), we have µ(P ′, R′) = µ(Q′, R′). In this case, the three-prefix
condition (Lemma 11) implies µ(P ′, Q′) ≥ µ(P ′, R′) = µ(Q′, R′) and thus µ(P ′, Q′) ≥ µ(P,Q).

Lemma 14. Let N and N ′ be two indistinguishable funnel-free networks, and let N ′ satisfy the NELP
property. Let P and Q be any root-leaf paths in N , and let P ′ and Q′ be the root-leaf paths in N ′ to the
same taxa, and having the same lengths as P and Q, respectively (whose existence and uniqueness are
guaranteed by Corollary 3 and Lemma 9, respectively). Then, (i)

µ(P ′, Q′)

{
= µ(P,Q) if P = Q or if they separate openly,

≥ µ(P,Q) otherwise.

Moreover, (ii) if P and Q separate openly, then P ′ and Q′ also separate openly.

Proof. Once again, throughout this proof, for any root-leaf path X in N , we let X ′ denote the root-leaf
path in N ′ to the same taxon and having the same length as X. Let ∆(P,Q) denote the number of edges
in P ∪Q that are either present in only one of P and Q, or that are present in both, but with different
lengths. We prove part (i) by induction on ∆(P,Q).

Base case. If ∆(P,Q) = 0, then P = Q and P ′ = Q′, trivially implying that both µ(P,Q) and µ(P ′, Q′)
equal the length of these paths, and thus µ(P ′, Q′) = µ(P,Q).

Inductive step. If ∆(P,Q) > 0, then P and Q must separate at a node u. If they separate openly and
do not have any node in common after u, then they form a wishbone, meaning that µ(P ′, Q′) = µ(P,Q)
(by Lemma 12), thus verifying the statement. In all other cases, let v be the first node that P and Q have



13

in common after u. Define a new root-leaf path R that coincides with P and Q along all their common
prefix down to u, then coincides with Q along the weighted path in Q from u to v, and finally coincides
with P along all its suffix from v to the leaf in P (see Fig. S5). Clearly,

µ(P,Q) = µ(P,R) < µ(Q,R). (7)

Note that ∆(Q,R) = ∆(P,Q) − ∆(P,R). Because P 6= R, then ∆(P,R) > 0. Therefore, we have
∆(Q,R) < ∆(P,Q) and we can assume, by inductive hypothesis:

µ(Q′, R′) ≥ µ(Q,R). (8)

Because P and R are node-disjoint between u and v, and coincide everywhere else, clearly they form a
crack. This crack is open or closed, depending on whether P and Q separate openly or by taking the
same edge (u, v) with different lengths. Consider these two cases separately.

If P and Q separate openly, then P ∪R is an open crack and Lemma 13 implies that

µ(P ′, R′) = µ(P,R). (9)

Now combine Equations (7), (8), (9) to show that µ(P ′, R′) < µ(Q′, R′). But then, because of the
three-prefix condition (Lemma 11), we must have µ(P ′, Q′) = µ(P ′, R′), which together with Equations
(7) and (9) implies µ(P ′, Q′) = µ(P,Q), when P and Q separate openly.

If instead P and Q separate by taking the same edge (u, v) with different lengths, then P ∪ R is a
closed crack. Then, by Lemma 13,

µ(P ′, R′) ≥ µ(P,R). (10)

Now combine Equations (7), (8), (10) to show that µ(P,Q) ≤ µ(Q′, R′) and µ(P,Q) ≤ µ(P ′, R′). But
then, because of the three-prefix condition (Lemma 11), we must have

µ(P ′, Q′) ≥ min{µ(Q′, R′), µ(P ′, R′)} ≥ µ(P,Q),

which concludes our proof by induction of part (i).
As for part (ii), suppose that P and Q separate openly at a node u, at depth α in their common prefix,

by taking two distinct edges (u,wP ) and (u,wQ). Because N is funnel-free, because wP and wQ are
distinct, and because neither of them is the root of N , then there exist two node-disjoint directed paths
πP and πQ from wP and wQ, respectively, to two leaves of N (by Proposition 4). Let RP be any root-leaf
path that coincides with P along its prefix down to wP and then follows πP by taking its edges with
any of their lengths in N . Similarly, let RQ be any root-leaf path that coincides with Q along its prefix
down to wQ and then follows πQ by taking its edges with any of their lengths in N . Because RP and RQ

coincide with P and Q down to node u, and all their nodes that are strict descendants of u belong to (the
node-disjoint paths) πP and πQ, respectively, then RP ∪RQ is a wishbone in N , with µ(RP , RQ) = α. By
Lemma 12, also R′P ∪R′Q is a wishbone in N ′ and µ(R′P , R

′
Q) = α.

Moreover, because, by construction, µ(P,RP ) > α and µ(Q,RQ) > α, and because, by part (i) of the
present lemma, µ(P ′, R′P ) ≥ µ(P,RP ) and µ(Q′, R′Q) ≥ µ(Q,RQ), then we have

µ(P ′, R′P ) > α and µ(Q′, R′Q) > α.

These two relationships, together with the fact that R′P and R′Q separate openly at depth α, imply that P ′

and Q′ also separate openly at depth α: if we let u′ be the node at depth α in R′P and R′Q, the successors
of u′ in R′P and R′Q must be distinct, and belonging to P ′ and Q′, respectively, thus implying that P ′

and Q′ separate openly.

The lemmas above only require one of the two networks to verify the NELP property. In the rest of
this section, we concentrate on the case where both networks satisfy the NELP property, as this is among
the hypotheses of Proposition 2.
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Lemma 15. Let N and N ′ be two indistinguishable funnel-free networks satisfying the NELP property.
Let P and Q be any root-leaf paths in N , and let P ′ and Q′ be the root-leaf paths in N ′ to the same taxa,
and having the same lengths as P and Q, respectively (whose existence and uniqueness are guaranteed by
Corollary 3 and Lemma 9, respectively). Then, P ′ and Q′ separate openly if and only if P and Q separate
openly, and

µ(P ′, Q′) = µ(P,Q).

Proof. Apply Lemma 14 both to P and Q in N and to P ′ and Q′ in N ′, showing that µ(P ′, Q′) ≥ µ(P,Q)
and µ(P,Q) ≥ µ(P ′, Q′), respectively (and thus µ(P ′, Q′) = µ(P,Q)) and that if one pair of root-leaf
paths separates openly, also the other separates openly.

Lemma 16. Let N and N ′ be two indistinguishable funnel-free networks satisfying the NELP property.
Then N and N ′ have the same root-leaf paths (up to isomorphism). Moreover, for each root-leaf path P in
one of the two networks, the root-leaf path P ′ isomorphic to P in the other network is unique.

Proof. Let P be a root-leaf path in one of the two networks, say (without loss of generality), N , and
let P ′ be the unique root-leaf path in N ′ to the same taxon and having the same length as P (whose
existence and uniqueness are guaranteed by Corollary 3 and Lemma 9, respectively). For any node v in P ,
there exists a node v′ at the same depth in P ′: this is trivial when v is at depth 0; otherwise, if we let Q
be a root-leaf path that separates openly from P at v (which exists because N is funnel-free), then Q′ —
the root-leaf path in N ′ to the same taxon and having the same length as Q — must separate from P ′

at a node at the same depth µ(P ′, Q′) = µ(P,Q) as v (by Lemma 14). Symmetrically, for any node in
P ′ there exists a node at the same depth in P . Thus, because P and P ′ are root-leaf paths to the same
taxon and have nodes at the same depths, then P and P ′ are isomorphic (by Lemma 3). In conclusion,
for any root-leaf path P in one of the two networks, there exists a unique isomorphic root-leaf path P ′ in
the other, which is what we wanted to prove.

Lemma 17. Let N and N ′ be two indistinguishable funnel-free networks satisfying the NELP property.
Let P1 and P2 be root-leaf paths in N , whose union W = P1 ∪ P2 is a wishbone. Let P ′1 and P ′2 be the
unique root-leaf paths in N ′ isomorphic to P1 and P2, respectively (Lemma 16). Then W ′ = P ′1 ∪ P ′2 is a
wishbone in N ′ isomorphic to W .

Proof. By Lemma 12, W ′ = P ′1 ∪ P ′2 is a wishbone with µ(P ′1, P
′
2) = µ(P1, P2). Because W and W ′ are

wishbones, and equal to the union of pairs of isomorphic root-leaf paths, with longest common prefixes of
the same length, then W and W ′ are isomorphic (by Lemma 4).

Corollary 4. Let N and N ′ be two indistinguishable funnel-free networks satisfying the NELP property.
Then N and N ′ have the same wishbones (up to isomorphism).

Proof. Apply Lemma 17 to all wishbones in N and N ′.

Lemma 18. Let N and N ′ be two indistinguishable funnel-free networks with the NELP property. Then
they have the same cracks (up to isomorphism).

Proof. We prove that for any crack K = P1 ∪ P2 contained in one of the two networks, there exists a
crack K ′, isomorphic to K, in the other network. Without loss of generality, we assume here that K is a
crack in N , but all arguments hold symmetrically for the case where K is a crack in N ′.

We introduce some notation that is useful throughout the proof. For any root-leaf path X in N , let
X ′ denote the unique root-leaf path in N ′ that is isomorphic to X (Lemma 16). The thesis is trivial
when P1 = P2: in this case K is a root-leaf path, and K ′ is isomorphic to it. Thus we assume throughout
that P1 6= P2. Now let u be the last node in the longest prefix common to P1 and P2 and let v be the
first node in the longest suffix common to P1 and P2. Because P1 6= P2, u must be a strict ancestor of v.
Also, let α = µ(P1, P2) = µ(P ′1, P

′
2) (the equality is guaranteed by Lemma 15), meaning that P ′1 and P ′2
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separate at a node u′ that has the same depth α in P ′1 and P ′2 as u in P1 and P2. Moreover let β1 and β2
be the (strictly positive) lengths of the weighted paths from u to v within P1 and P2, respectively, and let
γ ≥ 0 be the length of the longest suffix common to P1 and P2. Because v has depth α+ β1 and α+ β2
in P1 and P2, respectively, there must exist in N ′ two nodes v′1 and v′2 at depths α+ β1 and α+ β2 in P ′1
and P ′2, respectively. Finally, note that because P1 and P2 have a common suffix, they are root-leaf paths
to the same taxon. Therefore also P ′1 and P ′2 are root-leaf paths to the same taxon, and thus end up in
the same leaf. Thus P ′1 and P ′2 must share at least one node after separating at u′. Let v′ be the first
node that P ′1 and P ′2 have in common after separating at u′ (thus a strict descendant of u′). All these
notations are shown in Fig. S6.

We now prove that v′ = v′1 = v′2 implies that K ′ = P ′1 ∪P ′2 is a crack isomorphic to K. First, note that
the suffixes of P ′1 and P ′2 following v′1 and v′2, respectively, are weighted paths of length γ (because P ′1 and
P ′2 have lengths α+ β1 + γ and α+ β2 + γ, respectively), ending up in the same leaf. Thus, when v′1 = v′2,
these two weighted paths have equal lengths and the same endpoints. Because N ′ has the NELP property,
these two weighted paths must then coincide, meaning that P ′1 and P ′2 have a common suffix of length
γ. Moreover, by the definition of v′, P ′1 and P ′2 have no node in common between u′ and v′. Therefore
v′ = v′1 = v′2 implies that K ′ = P ′1 ∪ P ′2 is a crack with a longest common suffix of length γ, which is the
same as the length of the longest common suffix of P1 and P2. Because of this, because P ′1 and P ′2 have a
longest common prefix with the same length as the longest common prefix of P1 and P2 (α), and finally
because P ′1 and P ′2 are isomorphic to P1 and P2, respectively, then K and K ′ are isomorphic (by Lemma
5).

Now consider the case where K is a closed crack: in this case, P1 and P2 only differ for the length
assigned to edge (u, v), which must be β1 in P1 and β2 in P2. Note that P ′1 and P ′2 cannot separate openly,
because otherwise also P1 and P2 would separate openly (by Lemma 15). Therefore, P ′1 and P ′2 must both
contain the edge (u′, v′), but assign different lengths to it. (We have called the head of this edge v′, as it
is clearly the first node that P ′1 and P ′2 have in common after separating at u′.) Because P ′1 is isomorphic
to P1, the length assigned to (u′, v′) in P ′1 must be β1: if this edge were assigned a length β′1 < β1 in P ′1
, then a node at depth α+ β′1 would exist in P ′1 and therefore in P1, but this contradicts the fact that
there is no node in P1 between u (at depth α) and v (at depth α+ β1); if instead (u′, v′) were assigned a
length β′1 > β1 in P ′1, then no node would exist at depth α+ β1 in P ′1, which contradicts the fact that v
has depth α + β1 in P1. Symmetrically, because P ′2 is isomorphic to P2, the length assigned to (u′, v′)
in P ′2 must be β2. Thus v′ has depth α+ β1 in P ′1 and α+ β2 in P ′2, meaning that v′ = v′1 = v′2. As we
showed above, this implies that K ′ = P ′1 ∪ P ′2 is a crack isomorphic to K, whenever K is a closed crack.

It remains to prove that for any open crack K = P1 ∪ P2 contained in one of the two networks, there
exists a crack K ′ in the other network that is isomorphic to K. We prove this by induction on the number
of edges in the longest suffix common to P1 and P2. In both the base case and the inductive step, we
let u1 and u2 be the direct ancestors of v in P1 and P2, respectively. Of these two nodes, at least one
is not an ancestor of the other, otherwise either N would contain a cycle or u1 = u2 (the latter would
imply that K is a closed crack). Thus, without loss of generality, we assume throughout that u2 is not an
ancestor of u1. Note that this implies that u2 6= u.

Base case. (See Fig. S7 to follow the argument below.) If the longest suffix common to P1 and P2

contains no edge, then v coincides with the leaf in P1 and P2, and γ = 0. Thus P ′1 and P ′2 have lengths
α+ β1 and α+ β2, respectively, meaning that v′1 and v′2 are their leaves. But P ′1 and P ′2 have the same
leaf, thus implying v′1 = v′2. It remains to prove that v′ = v′1 = v′2, or in other words that P ′1 and P ′2
have no node in common between u′ and v′1 = v′2. Because u2 has outdegree 2 or more, we can define a
root-leaf path R in N that separates openly from P2 at u2: let R have a common prefix with P2 consisting
of the portion of P2 from the root down to u2; then, let R take an edge (u2, w) with w 6= v (with any
of this edge’s lengths in N) and finally let R take any weighted path from w that does not end up in v
(which is possible because N is funnel-free). Note that R and P2 have no node in common below u2 — as
otherwise R would contain v, which we excluded by construction — meaning that P2 ∪R is a wishbone.
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Figure S6. Illustration of the notation for Lemma 18 and of the argument against claim C1 within it.
P1 and P ′1 are in black and the portions of P2 and P ′2 not overlapping with P1 and P ′1 are in grey. Note
that the position of v′2 along P ′2 is not shown as it may be either above or below v′.

Figure S7. Illustration of the base case of the proof of Lemma 18. P1 and P ′1 are in black and the
portions of P2 and P ′2 not overlapping with P1 and P ′1 are in grey. Finally, the portions of R and R′ not
overlapping with P1 and P ′1 are represented by the dashed lines.

Moreover, P1 ∪R is also a wishbone: assuming otherwise would mean that R has a node in common with
P1 below u, either contradicting the fact that P1 and P2 have no nodes in common between u and v, or
contradicting the requirement that u2 is not an ancestor of u1, or contradicting the requirement that v
does not belong to R. Now let W1 = P1 ∪R and W2 = P2 ∪R. Because these are wishbones, by Lemma
17, W ′1 = P ′1 ∪R′ and W ′2 = P ′2 ∪R′ are also wishbones isomorphic to W1 and W2, respectively. Moreover,
because the same holds for P1, P2 and R in N , the following holds:

µ(P ′1, P
′
2) = µ(P ′1, R

′) = α ≤ µ(P ′2, R
′),

meaning that P ′1 and R′ separate at the same node, u′, where P ′1 and P ′2 separate.
Now recall that v′ is the first node that P ′1 and P ′2 have in common after separating at u′. Note that

v′ cannot be in the prefix common to P ′2 and R′, because otherwise v′ would be a node common to P ′1
and R′, which (together with the fact that v′ is a strict descendant of u′) contradicts the fact that P ′1 and
R′ form a wishbone and separate at u′. Thus v′ must belong to the suffix of P ′2 after separation from R′,
or, in other words, v′ must have a depth in P ′2 strictly greater than µ(P ′2, R

′). Now note that the only
node in P2 at a depth strictly greater than µ(P2, R) is v, meaning (as P ′2 is isomorphic to P2) that there
can only be one node in P ′2 at a depth strictly greater than µ(P ′2, R

′) = µ(P2, R). This node is v′1 = v′2,
thus allowing to conclude that v′ = v′1 = v′2.

Inductive case. Now suppose that the longest suffix common to P1 and P2 contains k > 0 edges, and
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Figure S8. Illustration of the argument against claim C3 in the proof of Lemma 18. P1 and P ′1 are in
black and the portions of P2 and P ′2 not overlapping with P1 and P ′1 are in grey. Finally, the portions of R
and R′ not overlapping with P1 and P ′1 are represented by the dashed lines. In (a), P1 and R — and thus
P ′1 and R′ — form a wishbone, whereas in (b), P1 and R — and thus P ′1 and R′ — form an open crack.

assume that for every open crack with up to k − 1 edges in its longest common suffix in one of the two
networks, there exists an isomorphic crack in the other network. We show that each of the following
claims leads to contradiction: (C1) v′ is a strict descendant of v′1 along P ′1; (C2) v′ is a strict descendant
of v′2 along P ′2; (C3) v′ is a strict ancestor of v′2 along P ′2; (C4) v′ = v′2 and v′ is a strict ancestor of v′1
along P ′1.

First, let us deal with claim C1: suppose that v′ is a strict descendant of v′1 along P ′1 (see Fig. S6).
We show that for every wishbone or crack W ′ contained in P ′1 ∪ P ′2 and containing P ′1, there exists in N a
wishbone or crack W isomorphic to W ′. This is trivial when W ′ is a wishbone: because P ′1 and P ′2 are
root-leaf paths to the same taxon, the only wishbone W ′ contained in P ′1 ∪ P ′2 and containing P ′1 is P ′1
itself, for which W = P1. This is also trivial when W ′ is a closed crack, as we have already proved that N
and N ′ must have the same closed cracks (up to isomorphism). It remains the case where W ′ is an open
crack. In this case, W ′ can be obtained by combining P ′1 with a weighted path contained in P ′2 that has
no node or edge in common with P ′1, other than its endpoints w and z. Because the first such weighted
path in P ′2 is the one between w = u′ and z = v′, it follows that z must be a descendant of v′ and thus a
strict descendant of v′1 along P ′1. Now note that, because P ′1 is isomorphic to P1, and because the suffix of
P1 starting in v contains k edges, then the suffix of P ′1 starting in v′1 (the node at the same depth in P ′1
as v in P1) also contains exactly k edges. But then, because z is a strict descendant of v′1 along P ′1, then
the suffix of P ′1 starting in z contains strictly less than k edges. That is, the longest suffix common to the
two root-leaf paths composing the open crack W ′ contains strictly less than k edges. Then, by inductive
hypothesis, there must be a crack W in N that is isomorphic to W ′. We have thus proved that for every
wishbone or crack W ′ contained in P ′1 ∪ P ′2 and containing P ′1, there exists in N a wishbone or crack W
isomorphic to W ′. This, together with the fact that N satisfies the NELP property, allows us to apply
Lemma 10 and conclude that the unique root-leaf paths isomorphic to P ′1 and P ′2 in N , that is P1 and P2,
must intersect each other at the same depths as P ′1 and P ′2. But this leads to a contradiction, as the node
at depth α+ β1 in P1, that is v, belongs to both P1 and P2, whereas the node at the same depth in P ′1,
that is v′1 only belongs to P ′1. Similarly, one can prove that claim C2 leads to contradiction.

Now assume (claim C3) that v′ is a strict ancestor of v′2 along P ′2. Recall that u1 and u2 are the two
direct ancestors of v in P1 and P2, respectively, with u2 assumed to not be an ancestor of u1. Because
u2 has outdegree 2 or more, we can define a root-leaf path R in N that separates openly from P2 at u2:
let R have a common prefix with P2 consisting of the prefix of P2 from the root down to u2; then, let R
take an edge (u2, w) with w 6= v (with any of this edge’s lengths in N) and then let R continue taking
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edges always avoiding ending up in v (recall that N is funnel-free), until it either arrives in a leaf or in a
node t belonging to P1 ∪ P2. Note that, if such t exists, then it must be a strict descendant of v in the
suffix common to P1 and P2. (By construction t 6= v; moreover, if t belonged to P2 and not to P1, then t
would lie between u2 and v in P2, which contradicts the assumption that u2 is a direct ancestor of v in
P2; finally if t belonged to P1 and not to P2, then t would be an ancestor of u1, implying that u2 is an
ancestor of u1, which is not possible by construction.) Finally, from t onwards, let R coincide with the
suffix common to P1 and P2. (See Fig. S8 to follow the argument below.)

Now consider P1 ∪R. Because P1 ∪ P2 is a crack and u2 is strictly between u and v, R cannot have
any node in common with P1 between u and u2 (u2 included). Thus, if R arrives in a leaf without hitting
a node in P1 ∪ P2, then P1 ∪ R is a wishbone. Then, by Lemma 17, P ′1 ∪ R′ is a wishbone isomorphic
to P1 ∪ R (see Fig. S8(a)). If instead R hits P1 ∪ P2 in t, then P1 ∪ R is an open crack: it is a crack
because, by construction, t is the first node that R has in common with P1 after separating from it at u,
and because R has its suffix following t in common with P1; it is open, because u2 6= u implies that the
path from u to t in R is composed by more than one edge. Moreover the suffix of P1 and R following t
contains fewer than k edges, as t is a strict descendant of v. Thus, by inductive hypothesis, in N ′ there
exists a crack isomorphic to P1 ∪ R. Because isomorphic cracks are the union of isomorphic root-leaf
paths (Lemma 5) and because in N ′ there can be no root-leaf path isomorphic to P1 and R other than P ′1
and R′, respectively (as N ′ satisfies the NELP property, by Lemma 9), then this crack can be written as
P ′1 ∪R′ (see Fig. S8(b)). Thus, we have proved that P ′1 ∪R′ is either a wishbone or a crack isomorphic to
P1 ∪R. Moreover, because the same holds for P1, P2 and R in N , the following holds:

µ(P ′1, P
′
2) = µ(P ′1, R

′) = α ≤ µ(P ′2, R
′) = α+ β2 − ε,

where ε denotes the length of edge (u2, v) in P2. Thus P ′2 and R′ separate at a node that we denote by
u′2, which has depth α + β2 − ε in P ′2 (the same as u2 in P2). When P ′1 ∪ R′ is a crack, because it is
isomorphic to P1 ∪R, the first node in the suffix common to P ′1 and R′ must be at the same depths in
P ′1 and R′ as t in P1 and R. We call this node t′. Because the depth of t in R is strictly larger than
α+ β2 − ε, the same holds for the depth of t′ in R′, implying that t′ must be a strict descendant of u′2.

Now recall that v′ is the first node that P ′1 and P ′2 have in common after separating at u′. There are
two possibilities regarding its position in P ′2 relative to u′2. First consider the case where v′ is an ancestor
of u′2 along P ′2 (including v′ = u′2). In this case v′ is a strict descendant of u′ in the prefix common to P ′2
and R′, and at the same time v′ is a node in P ′1. But this contradicts both possible relations between P ′1
and R′: P ′1 and R′ forming a wishbone and separating at u′, and P ′1 and R′ forming a crack by separating
at u′ and joining in t′ (which, as we showed, must be a strict descendant of u′2, implying t′ 6= v′). The
other case to consider is that of v′ being a strict descendant of u′2 along P ′2, while being a strict ancestor of
v′2 along P ′2 (claim C3). That is, v′ is strictly between u′2 and v′2 in P ′2. But this is impossible, as together
with the fact that P2 and P ′2 are isomorphic, it would imply the existence of a node strictly between u2
and v in P2, which is excluded by construction. Since all these possibilities lead to a contradiction, we
conclude that C3 is also impossible.

Finally, let us deal with claim C4: suppose that v′ = v′2, and that v′ is a strict ancestor of v′1 along P ′1.
(See Fig. S9 to follow the argument below.) Recall that, because P ′1 and P ′2 are isomorphic to P1 and
P2, they have lengths α+ β1 + γ and α+ β2 + γ, respectively. Also recall that P ′1 and P ′2 separate at u′

(with depth α in P ′1 and P ′2) and that the respective depths of v′1 and v′ = v′2 in P ′1 and P ′2 are α + β1
and α+ β2. Now, let δ > 0 denote the length of the weighted path in P ′1 from v′ to v′1, implying that the
weighted path in P ′1 from u′ to v′ has length β1 − δ > 0 (strictly positive because by construction u′ 6= v′).
Now define in N ′ a new root-leaf path S′ that coincides with P ′1 and P ′2 along all their common prefix
down to u′ (of length α), then coincides with P ′1 along the weighted path in P ′1 from u′ to v′ (of length
β1 − δ), and finally coincides with P ′2 along all its suffix from v′ onwards (of length γ). As a result, S′

and P ′1 have a common prefix down to v′ and therefore µ(P ′1, S
′) ≥ α+ β1 − δ.

Let us now focus on the consequences on N of these definitions. Let S denote the unique root-leaf
path in N isomorphic to S′ (Lemma 16) and let s be the node at depth α+ β1 − δ in P1 (whose existence
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Figure S9. Illustration of the argument against claim C4 in the proof of Lemma 18. P1 and P ′1 are in
black and the portions of P2 and P ′2 not overlapping with P1 and P ′1 are in grey. Finally S and S′ are
represented by the dashed lines in red.

is guaranteed by the existence of node v′ at the same depth in P ′1). Because the same holds for P ′1, P ′2
and S′ in N ′, the following holds (Lemma 15):

µ(P1, P2) = µ(P2, S) = α < α+ β1 − δ ≤ µ(P1, S),

meaning that the prefix of P1 down to s is entirely in common with S (and therefore S and P2 separate
in u). But this implies that all the nodes that S has in common with P2 after separating from it at u
must be strict descendants of s, as otherwise P1 and P2 would have nodes in common between u and v,
which is excluded by construction.

Now note that, because P ′2 is isomorphic to P2, and because the suffix of P2 starting in v contains k
edges, then the suffix of P ′2 starting in v′ = v′2 (the node at the same depth in P ′2 as v in P2) also contains
exactly k edges. But this suffix coincides with that of S′ starting in v′ = v′2. Then, also the suffix of S
starting in s (the node at the same depth in S as v′ in S′) contains exactly k edges. This observation,
together with the fact that all the nodes that S has in common with P2 after separating from it must be
strict descendants of s, allows us to show that for every wishbone or crack W contained in P2 ∪ S and
containing S, there exists in N ′ a wishbone or crack W ′ isomorphic to W . This is trivial when W is a
wishbone: because P2 and S are root-leaf paths to the same taxon, the only wishbone W contained in
P2 ∪ S and containing S is S itself, for which W ′ = S′. This is also trivial when W is a closed crack, as
we have already proved that N and N ′ must have the same closed cracks (up to isomorphism). It remains
the case where W is an open crack. In this case, it can be written as W = S ∪Q, where Q is a root-leaf
path contained in P2 ∪ S, separating openly from S at some internal node in S. Because all the nodes
that S and P2 have in common after separating at u must be strict descendants of s, also the first node in
the longest suffix common to S and Q must be a strict descendant of s, meaning that this suffix must
contain strictly less than k edges. Then, by inductive hypothesis, there must be a crack W ′ in N ′ that is
isomorphic to W = S ∪Q. Because for every wishbone or crack W contained in P2 ∪ S and containing S,
there exists in N ′ a wishbone or crack W ′ isomorphic to W , then P ′2 and S′ must intersect each other at
the same depths as P2 and S (by Lemma 10). But this leads to a contradiction, as the node at depth
α+ β1 − δ in S′, that is v′ = v′2, belongs to both S′ and P ′2, whereas the node at the same depth in S,
that is s, only belongs to S.

We have thus proved that each of C1-C4 leads to a contradiction. The fact that neither C2 nor C3
can hold implies that v′ = v′2. This, together with the fact that neither C1 nor C4 can hold, implies
v′ = v′1. Thus, v′ = v′1 = v′2, which, as explained in the introduction of this proof, implies that P ′1 ∪ P ′2 is
a crack isomorphic to P1 ∪ P2, and thus the lemma follows.
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Proposition 2 follows from Corollary 4 and Lemma 18.

Networks with inheritance probabilities and likelihood-based reconstruction

As described in the main text, the ML framework we consider [2, 32, 33, 38] not only models edge
lengths, but also inheritance probabilities. The latter provide, for each reticulate edge in a network N ,
the probability that a random tree T displayed by N includes that edge (i.e., that inheritance follows
that edge). The inheritance probabilities determine, for each tree T ∈ T (N), an associated probability
Pr(T |N).

Unfortunately, including inheritance probabilities does not solve identifiability problems: in Fig. S10 we
show an example of two phylogenetic networks N1, N2 with edge lengths and inheritance probabilities that
cannot be distinguished on the basis of the trees they display and associated probabilities. By setting the
edge lengths as shown, and the inheritance probabilities so that p2 = 1− (1− p1)(1− q1) and q2 = p1/p2,
it is easy to check that Pr(T1|N1) = Pr(T1|N2), Pr(T2|N1) = Pr(T2|N2) and Pr(T3|N1) = Pr(T3|N2).
Thus, for every assignment of edge lengths and inheritance probabilities to N1, there exist corresponding
assignments to N2 that make the resulting networks display the same trees, with the same edge lengths
and the same probabilities of being observed. Because T (N1) = T (N2), and Pr(T |N1) = Pr(T |N2) for
any T displayed by these two networks, it is easy to see that

m∏
i=1

∑
T∈T (Nk)

Pr(Ai|T )Pr(T |Nk).

is the same for k = 1 or k = 2, that is, the likelihoods of N1 and N2 are identical regardless of the data. In
other words, no method based on this definition of likelihood will be able to discriminate between them.

The example above is not an exception: for any two distinct indistinguishable networks (i.e., with
T (N1) = T (N2)), it is possible to provide assignments of inheritance probabilities to their reticulations,
so that not only these networks display the same trees, but that also the probabilities associated to the
trees they display are identical.

Moreover, we can extend the notion of indistinguishability, as well as that of canonical form, to
networks with inheritance probabilities. Results entirely analogous to those we presented in this paper
will then hold. We will not prove any of this here, as it lies beyond the scope of the present study.
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Figure S10. An example showing that the ML framework considered in the main text is also subject to
identifiability problems: the two networks N1 and N2 (top) with edge lengths (gray) and inheritance
probabilities (black), display the same trees T1, T2, T3 (middle), with the same associated probabilities
(bottom), when p2 = 1− (1− p1)(1− q1) and q2 = p1/p2.


