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Natural Language Semantics in Biproduct

Dagger Categories

Anne Preller
∗

Abstract

Biproduct dagger categories serve as models for natural language. In

particular, the biproduct dagger category of finite dimensional vector

spaces over the field of real numbers accommodates both the extensional

models of predicate calculus and the intensional models of quantum logic.

The morphisms representing the extensional meanings of a grammatical

string are translated to morphisms representing the intensional meanings

such that truth is preserved. Pregroup grammars serve as the tool that

transforms a grammatical string into a morphism. The chosen linguis-

tic examples concern negation, relative noun phrases, comprehension and

quantifiers.

Keywords: Compositional semantics, biproduct bagger categories, compact closed categories,

quantum logic, pregroup grammars, compact bilinear logic, proof graphs, two-sorted logic

1 Introduction

Biproduct dagger categories have been studied extensively in quantum logic,
[Selinger, 2007], [Abramsky and Coecke, 2004], [Heunen and Jacobs, 2010].
They also constitute a natural candidate as a foundation of natural language
semantics, because they formalize count words (biproduct) and relative pro-
nouns (dagger), two logical abstractions present in natural language with a few
exceptions - both are absent in the Amazonian Pirahã, [Everett, 2005].

These two operations are powerful enough to comprehend the structure of a
compact closed category and with it the representation of morphisms by graphs
that represent information flow. Information flow along morphisms handles
among other things the grammatical notions of dependency and control. The
noun phrase birds who fly in 5.2 illustrates how the graphical representation of
meanings recuperates the dependency links. An example concerning control can
be found in 3.6 of [Preller and Prince, 2008].

The biproduct and dagger also make it possible to imbed predicate logic.
In particular, the logical content of words like and, or, not, all, no, who, some
can be captured by an explicit definition and the notions of truth and logical
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1 INTRODUCTION

consequence can be introduced. The property of the morphisms interpreting
some, however, does not restrict to a unique morphism. Each occurrence of the
word some in the text may by interpreted differently.

The biproduct and dagger also provide an abstract definition of the inner
product and therefore a geometrical representation of the linguistic notion of
similarity by the inner product (cosine) and of the logical notion of negation
by orthogonality. Thus, the geometrical operators on subspaces and projectors
proposed in [Rijsbergen, 2004] and [Widdows, 2004] can be generalised from
FdVectR, the finite dimensional vector spaces over the field of real numbers, to
biproduct dagger categories.

The semantic categories considered here are biproduct dagger categories
with a generating object. Typical semantic categories are the category FdVectR
and the category 2SF of finite sets and two-sorted functions. The latter are
models of two-sorted first order predicate logic, which according to [Benthem
and Doets, 1983] is equivalent to second order logic with general models.

The mathematical tool for recognising grammatical strings of words and
computing their meanings is that of pregroup grammars.

The syntactical analysis is carried out in the free quasi-pregroup C(B) gener-
ated by a partially ordered set B of basic types introduced in [Lambek, 1999]. It
is a compact bicategory, that is to say a compact closed category. The pregroup
dictionaries of [Lambek, 2008], which list pairs word : T consisting of a word and
a type, lack semantics. Therefore, the pregroup lexicons proposed here consist
of triples word : T :: word, where word is a formal expression in the language of
compact closed categories. These formal morphisms play a role similar to that
of lambda-terms in categorial grammars.

The meanings of grammatical strings are computed in the lexical category
C(B ∪ L), the free compact closed category generated by the partially ordered
set B and the set of basic morphisms L given by the pregroup lexicon. The in-
terpretation of the grammatical string is mediated by a functor from the lexical
category into an arbitrary biproduct dagger category with a generating object.
If the functor preserves the compact closed structure, it guarantees composi-
tionality, but it must satisfy supplementary conditions to become a model for
natural language.

The compositional semantics of [Clark et al., 2008] and [Kartsaklis et al.,
2013] for vector space models in FdVectR also use pregroup grammars and a
‘functorial method’. This claim has to be taken with a caveat. The suggested
functor is partial, it is not defined for strings containing logical words, relative,
determiners and so on. In fact, such a partial functor cannot be extended to
the logical words expressing negation and implication, neither for classical logic
nor for quantum logic, [Preller, 2013].

The categorical semantics in biproduct dagger categories proposed here is
more general. One can not only define vector space models in the abstract
setting of an arbitrary semantic category, but also functors that are defined on
all of the lexical category and that also simulate truth and logical consequence.
These are the ‘truth-theoretical’ models. For every truth-theoretical model there
is a ‘canonical’ vector space model and an isomorphism from the lattice of
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2 BASIC PROPERTIES

predicates in the former to the lattice of projectors introduced by quantum
logic in the latter. This is due to the fact that the projectors corresponding to
words have a common basis of eigenvectors.

The material of this article is organised as follows. Section 2 presents the
basic properties of biproduct dagger categories with an emphasis on the class
of projectors called ‘intrinsic’, because their matrix representation is the same
in any biproduct dagger category. They include the morphisms arising from
grammatical strings. Section 3 concentrates on biproduct dagger categories with
a generating object and their important property of ‘explicit definitions’. Section
4 establishes the equivalence between the quantum logic of intrinsic projectors
and the logic of predicates. The essential characteristic of a predicate is that it
assigns truth values both to individuals and sets of individuals. Section 5 starts
with a cut free axiomatisation of compact bilinear logic, [Lambek, 1993] and
[Buszkowski, 2002], and shows how pregroup grammars construct syntactical
analysis and semantical representation in the lexical categories based on the
proof graphs of [Preller and Lambek, 2007]. The section concludes with a few
linguistic examples linking relative noun phrases and comprehension as well as
quantifiers and negation.

2 Basic properties

This section recalls definitions and properties frequently intervening in quantum
logic, see for example [Abramsky and Coecke, 2004], [Heunen and Jacobs, 2010],
[Selinger, 2007]. Only the emphasis on ‘intrinsic’ morphisms is new.

2.1 Biproduct dagger categories

A dagger category is a category C together with a contravariant involution func-
tor dagger † : C → C that is the identity on objects. This means that the fol-
lowing equalities hold for any object V and morphisms f : V → W , g : W → U

V † = V

1†V = 1V
(g ◦ f)† = f† ◦ g† : U → V

f†† = f : V → W .

Call f† the adjoint of f .
In a dagger category any coproduct of V and W with canonical injections

q1 and q2 is also a product of V and W with canonical projections q
†
1 and q

†
2

and vice versa. Indeed, the dagger inverts the diagram expressing the universal
property. Hence coproducts are biproducts in a dagger category. Similarly,
an initial object 0 of a dagger category is also a terminal object. Indeed, if
0V : 0 → V is the unique morphism from 0 to V then 0†V : V → 0 is the unique

morphism from V to 0. Hence 0 is a zero object where 0VW = 0†W ◦0V : V → W

is the unique morphism that factors through 0 . The subscripts may be dropped,
context permitting.
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2.1 Biproduct dagger categories 2 BASIC PROPERTIES

Definition 1. A biproduct dagger category is a dagger category C equipped
with an initial object 0 and binary coproducts such that the canonical injections
q1 : V → V ⊕W and q2 : W → V ⊕W satisfy

q
†
i ◦ qi = 1, q†j ◦ qi = 0 for i, j = 1, 2, i 6= j . (1)

Note that V⊕0 ≃ V . Indeed, q1 : V → V⊕0 and q
†
1 : V⊕0 → V are inverse of

each other, because (q1◦q
†
1)◦q1 = q1 = 1V⊕ 0◦q1 and (q1◦q

†
1)◦q2 = 0 = 1V⊕ 0◦q2.

Therefore q1 ◦ q
†
1 = 1V⊕ 0.

Given gj : U → Vj , denote 〈g1, g2〉 : U → V1 ⊕ V2 the unique morphism
satisfying

q
†
j ◦ 〈g1, g2〉 = gj for j = 1, 2 .

Similarly, for hi : Wi → E denote [h1, h2] : W1 ⊕ W2 → E the morphism
determined by

[h1, h2] ◦ qi = hi for i = 1, 2 .

Finally, for fi : Vi → Wi, denote f1 ⊕ f2 : V1 ⊕ V2 → W1 ⊕ W2 the unique
morphism such that

q
†
i ◦ (f1 ⊕ f2) ◦ qi = fi and q

†
i ◦ (f1 ⊕ f2) ◦ qj = 0VjWi

, for i, j = 1, 2, i 6= j .

We have for any g : U ′ → U and h : E → E′

〈g1, g2〉 ◦ g = 〈g1 ◦ g, g2 ◦ g〉,
h ◦ [h1, h2] = [h ◦ h1, h ◦ h2]
(f1 ⊕ f2) ◦ 〈g1, g2〉 = 〈f1 ◦ g1, f2 ◦ g2〉
[h1, h2] ◦ (f1 ⊕ f2) = [h1 ◦ f1, h2 ◦ f2]

Any morphism f : V1 ⊕ V2 → W1 ⊕W2 is uniquely determined by the four
morphisms q

†
i ◦ f ◦ qj , for i, j = 1, 2 . These four morphisms may be displayed

in the form of a matrix

Mf =

(

q
†
1 ◦ f ◦ q1 q

†
1 ◦ f ◦ q2

q
†
2 ◦ f ◦ q1 q

†
2 ◦ f ◦ q2

)

.

Proposition 1. The following equalities hold in a biproduct dagger category

0†VW = 0WV

〈f1, f2〉
† = [f†

1 , f
†
2 ]

(f1 ⊕ f2)
† = f

†
1 ⊕ f

†
2 .

(2)

Any biproduct category C is enriched over abelian monoids, i.e. the binary
operation defined on each hom-set C(V,W ) by

f1 + f2 = [1W , 1W ] ◦ (f1 ⊕ f2) ◦ 〈1V , 1V 〉, for f1, f2 : V → W

is associative and commutative with unit 0VW .
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2.1 Biproduct dagger categories 2 BASIC PROPERTIES

Moreover, addition is bilinear

h ◦ (f1 + f2) ◦ g = h ◦ f1 ◦ g + h ◦ f2 ◦ g, for g : V ′ → V, h : W → W ′

and
(f1 + f2)

† = f
†
1 + f

†
2

q1 ◦ q
†
1 + q2 ◦ q

†
2 = 1V⊕W .

(3)

It follows that any biproduct category has amatrix calculus, i.e. the following
equalities hold

Mf+g = Mf +Mg and Mg◦f = MgMf , (4)

where the right-hand matrices are defined the usual way, entry by entry. For
example, if fkj are the entries of Mf and gik those of Mg the entry hij of MgMf

satisfies hi = gi1 ◦ f1j + gi2 ◦ f2j .
Define the n-ary biproduct with canonical injections qi n : Vi → V1⊕ . . .⊕Vn

by induction thus

V1 ⊕ . . .⊕ V0 := 0 V1 ⊕ . . .⊕ V1 := V1

V1 ⊕ . . .⊕ Vn := (V1 ⊕ . . .⊕ Vn−1)⊕ Vn for n ≥ 2 ,

q0 0 = 10 q1 1 = 1V1 qi 2 = qi : Vi → V1 ⊕ V2 for i = 1, 2
qi n = q1 ◦ qi (n−1), for i = 1, . . . , n− 1 and qnn = q2,

where q1 : (V1 ⊕ . . .⊕ Vn−1) → (V1 ⊕ . . .⊕ Vn−1)⊕ Vn,

q2 : Vn → (V1 ⊕ . . .⊕ Vn−1)⊕ Vn .

If context permits, write qi instead of qi n.
In the case where Vi = V for all i = 1, . . . , n, write n · V = V1 ⊕ . . . ⊕ Vn

1.
Adopt a similar convention for n · f , where f : V → W .

Equalities (1) - (3) generalise to n-ary biproducts. Together, they constitute
the generalised Dagger Biproduct Calculus. For example, the generalised version
of (1) is

q
†
i ◦ qi = 1Vi

, q
†
i ◦ qj = 0VjVi

, for i, j = 1, . . . , n, i 6= j .

Any morphism f : V1 ⊕ . . .⊕Vm → W1 ⊕ . . .⊕Wn is completely determined
by the nm morphisms q†i ◦ f ◦ qj , for j = 1, . . . ,m, i = 1, . . . , n . Hence, f = g

if and only if the following Matrix Equalities hold

q
†
i ◦ g ◦ qj = q

†
i ◦ f ◦ qj , for j = 1, . . . ,m, i = 1, . . . , n . (5)

The nm morphisms q†i ◦ f ◦ qj may be displayed in the form of an nm-matrix

Mf =





q
†
1 ◦ f ◦ q1 . . . q

†
1 ◦ f ◦ qm

q†n ◦ f ◦ q1 . . . q†n ◦ f ◦ qm



 .

The equalities (2) - (4) then generalise to arbitrary biproducts.

1The notation V
n is reserved for the n-ary tensor product introduced in Section 3.3.
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2.2 Examples of biproduct dagger categories 2 BASIC PROPERTIES

The most interesting case is when Vj = Wi = I for all indices j, i, where I

is any object non-isomorphic to 0. Then the entries of the matrix are endomor-
phisms of I, i.e. q

†
i ◦ f ◦ qj : I → I. If every object is isomorphic to a finite

coproduct of some distinguished object, say I, then the entries of a matrix refer
to the coproducts V = m · I and W = n · I.

2.2 Examples of biproduct dagger categories

The categories HI of linear maps and finite dimensional Hilbert spaces over the
fields I = R or I = C are biproduct dagger categories. Every object is a finite
biproduct of I, identified with a one-dimensional space. The adjoint of α ∈ I

is the conjugate of α. If I = R then α† = α. The matrix of the adjoint f† of a
linear map f in HI is the transpose of the conjugate matrix of f .

The category 2SF of two-sorted functions
Two-sorted first order logic has two sorts of variables, one for elements x, and
one for sets X. Besides an equality symbol for each sort, there is a binary
symbol ∈ requiring elements on the left and sets on the right, x ∈ X . There
are two sorts of quantifiers, ∀x, ∀X etc. Functional symbols accept both sorts
as arguments.

Models interpret every function symbol by a two-sorted function f : A → B

satisfying

f({x}) = f(x) for x ∈ A

f(∅) = ∅
f(X ∪ Y ) = f(X) ∪ f(Y ) for X,Y ⊆ A .

The category 2SF of two-sorted functions as morphisms and finite sets as
objects is a biproduct dagger category. Any two-sorted function is determined
by its values on elements, because all sets are finite. The adjoint f† : B → A of
f : A → B is given by

f†(b) = {a ∈ A : f(a) = b or b ∈ f(a)} .

The biproduct is the disjoint union of sets, with ∅ as the zero object. With
these definitions, any object of 2SF is isomorphic to a finite biproduct of any
arbitrarily fixed singleton set I. Note that it has exactly two endomorphisms,
namely the identity map and the zero map, which sends the unique element of
I to the empty set. Therefore, α† = α for all endomorphisms α : I → I.

The sum of f, g : A → B is the set-theoretical union (f+g)(x) = f(x)∪g(x) .
The right-hand side of the last equality involves an abuse of notation: if f(x) or
g(x) is an element, we should have used the corresponding singleton set. English
makes the same abuse. Compare ‘apples and pears’ with ‘the teacher and the
student ’.

The category RI of semimodules over [0, 1]
Recall that the linear order on the real numbers in [0, 1] induces a distributive

Logic, Categories, Semantics



2.3 Generalising geometrical notions 2 BASIC PROPERTIES

and implication-complemented lattice structure on [0, 1], namely

α ∨ β = max {α, β} α ∧ β = min {α, β}
α → β = max {γ ∈ I : α ∧ γ ≤ β}

¬α = α → 0 .

This lattice is not Boolean, because ¬¬α = 1 6= α for 0 < α < 1 .
The lattice operations define a semiring structure on I = [0, 1] with neutral

element 0 and unit 1 by

α+ β = α ∨ β α · β = α ∧ β .

The category RI of free semi-modules over the real interval I = [0, 1], gen-
erated by a finite set is a biproduct dagger category. The zero-object is the
semi-module reduced to a single element, {0}. The interval I = [0, 1] is a semi-
module, generated by the singleton set {1}. The endomorphisms of I identify
with the elements of I. The biproduct of two semi-modules is generated by
the disjoint union of the two semi-modules. Hence every object of RI is a fi-
nite biproduct of I. Every endomorphism/element of I is by definition, its own
adjoint

α = α† .

The adjoint f† : n · I → m · I of a linear map f : m · I → n · I is the linear map
defined by the transpose of the matrix of f .

2.3 Generalising geometrical notions

Several geometrical notions familiar from real or complex vector spaces can be
generalised to arbitrary dagger biproduct categories. The letter C denotes an
arbitrary biproduct dagger category in the following.

Definition 2. Morphisms f : U → W and g : V → W are said to be orthogonal
in W if f† ◦ g = 0 . A projector is an idempotent and self-adjoint morphism
p : V → V , i.e. p ◦ p = p and p† = p .

Orthogonality is a symmetric relation. Every morphism is orthogonal to 0 .
In general, a morphism can have several distinct orthogonal morphisms. Pro-
jectors, as we shall see later, determine a maximal morphism that is orthogonal
to them. This maximal orthogonal morphism is itself a projector, the negation
of the original projector.

The rest of this section is an argument that iterated biproducts of any object
V 6≃ 0 internalise propositions and finite subsets. Projectors will play the role of
propositions, the canonical injections qi : V → n ·V the role of individuals. Note
that the canonical injections qi and qj are distinct for i 6= j, because 1V 6= 0V V .
Subsets of individuals are internalised as sums of distinct canonical injections.

A morphism f : V → W is unitary if f† ◦f = 1V . A unitary f is necessarily
monic and its adjoint is epic. In the case where f is an isomorphism, f is
unitary if and only if f ◦ f† = 1W if and only if f† = f−1 . For example, a
morphism of 2SF is unitary if and only if it maps different elements to non-
empty disjoint subsets.

Logic, Categories, Semantics
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Proposition 2. Let V be any object of C . Assume K = {i1, . . . , ik} and
M = {l1, . . . , lm} are disjoint subsets of {1, . . . , n} .

Then qK = [qi1 , . . . qik ] : k · V → n · V is unitary and orthogonal to qM =
[ql1 , . . . qlm ] : m · V → n · V .

The endomorphism pK = qK ◦ q†K : n · V → n · V is a projector and

pK + pM = pK∪M . (6)

Proof. First, recall that [qi1 , . . . qik ]
† = 〈q†i1 , . . . q

†
ik
〉 . Hence, the Matrix Equali-

ties (5) characterise pK as the unique morphism satisfying

q
†
i ◦ pK ◦ qj =

{

1V if i = j and j ∈ K

0V V else
, for i, j = 1, . . . , n . (7)

Next, use the Dagger Biproduct Calculus and the Matrix Equalities to show
that

〈q†i1 , . . . q
†
ik
〉 ◦ [qi1 , . . . qik ] =1

〈q†i1 , . . . q
†
ik
〉 ◦ [ql1 , . . . qlm ] = 0 .

(8)

This proves that qK is unitary and orthogonal to qM .
Finally, check that pK is self-adjoint, via the equality recalled initially, and

that it is idempotent, via the first equality of (8). Equality (6) follows from the
Matrix Equalities and bilinearity of addition.

Corollary 1. If V 6≃ 0, the map K 7→ pK is a one-to-one correspondence
between subsets K ⊆ {1, . . . , n} and the projectors pK .

Proof. Use the characterising equalities (7) and the fact that 1V 6= 0vv .

Corollary 2. If K ∩M = ∅ and K ∪M = {1. . . . , n} then

pK + pM = 1n·V = q1 ◦ q
†
1 + · · ·+ qn ◦ q†n .

Proof. The equality pK∪M = 1n·V is a special case of (8). Hence, pK + pM =
1n·V follows by (6).

Make V = I and think of the canonical injections qi : I → n · I = N as
‘individuals’. Then every pK assimilates to a ‘property of individuals’, namely
the property that is true for qi if pK ◦ qi = qi and false for qi if pK ◦ qi = 0.

Recall that a morphism g : U → V is a kernel of f : V → W if it satisfies
f ◦ g = 0 and is universal for this property. Universality means that for any
h : X → V with f ◦ h = 0 there is a unique h′ : X → U with h = g ◦ h′ .

Proposition 3. Let K = {i1, . . . , ik} be a subset of {1, . . . , n} = N . Then

qN\K is a unitary kernel of pK and q
†
K . Moreover, qK is the image of pK .
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Proof. The equality pK ◦ qN\K = 0 is a particular case of (8). To prove the
universality of qN\K , assume that g : U → n · V satisfies pK ◦ g = 0. Let

h := q
†
N\K ◦ g : U → (n− k) · V . Then

g = (pK + pN\K) ◦ g = pK ◦ g+ qN\K ◦ q†
N\K ◦ g = qN\K ◦ q†

N\K ◦ g = qN\K ◦ h .

This proves that ker(pK) = qN\K . The equality ker(q†K) = qN\K follows,

because q
†
K ◦ g = 0 implies pK ◦ g = 0 .

Finally, using the definition im(pK) := ker((ker(p†K))†) of [Heunen and
Jacobs, 2010], compute

im(pK) = ker((ker(pK))†) = ker(q†
N\K) = qK .

n · V n · V
pK //

q
†
K

!! !!C
CC

CC
C

== qK

==
{{{{

k · V

Note that v : W → n · V is invariant under composition with pK exactly
when v factorises through qK . Indeed, v = pK ◦ v implies v = qK ◦ (q†K ◦ v) .

Conversely, v = qK ◦ g implies v = qK ◦ (q†K ◦ qK) ◦ g = pK ◦ v .
Proposition 3 also implies that the orthogonal complement pK

⊥ := ker(pK)◦
(ker(pK))† of the projector pK satisfies

pK
⊥ = pN\K .

Proposition 4. The projectors pK , pL satisfy for any K,L ⊆ {1, . . . , n}

pK ◦ pL = pL ◦ pK = pK∩L .

The relation given by
pK ≤ pL ⇔ pK ◦ pL = pK (9)

is a partial order on the projectors pK inducing a Boolean Algebra structure
such that

pK ∧ pL = pK ◦ pL pK ∨ pL = pK∪L ¬pK = pN\K = pK
⊥

Under the assumption that V 6≃ 0, the map K 7→ pK is an isomorphism from
the Boolean algebra of subsets of N into the projectors of n · V . In particular,
¬pK is the largest projector orthogonal to pK , i.e. pL ≤ ¬pK if and only if pK ◦
pL = 0 .

Proof. Partition K ∪ L into the three disjoint subsets M = K ∩ L, M ′ =
K \ (K ∩ L), and M ′′ = L \ (K ∩ L) . By Proposition (2), pK = pM + pM ′ and
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3 SEMANTIC CATEGORIES

pL = pM + pM ′′ and the mixed terms pM ◦ pM ′′ , pM ′ ◦ pM , pM ′ ◦ pM ′′ are equal
to 0 . Therefore

pK ◦ pL = (pM + pM ′) ◦ (pM + pM ′′) = pM ◦ pM = pM .

Similarly, pL◦pK = pM . This proves the first assertion. The rest is now straight
forward.

Make V = I and think of the canonical injections qi : I → n · I = N as
individuals. Recall that pK is true for the individual qi if pK ◦ qi = qi and false
for qi if pK ◦ qi = 0. Then pK ◦ pL is true for qi if and only if both pK and pL
are true for qi.

Proposition 5. The partial order of the projectors pK is isomorphic to the
partial order of their canonical images im(pK) = qK .

More precisely, for arbitrary subsets K = {i1, . . . , ik} and M = {j1, . . . , jm}
of {1, . . . , n} the following equivalence holds

pK ≤ pM if and only if qK ≤ qM as subobjects .

Proof. Recall that pK ≤ pM is equivalent to K ⊆ M by (9). Assume that
qK ≤ qM as subobjects and let g : k · V → m ·M be the morphism such that
qK = qM ◦ g . Then qK = qM ◦ g implies qil = qK ◦ ql = qM ◦ g ◦ ql and therefore
il ∈ M , by Proposition 3, and this for l = 1, . . . , k . Hence, K ⊆ M . Conversely,
the inclusion K ⊆ M provides an obvious factorisation qK = qM ◦ g .

3 Semantic categories

This section mentions well known properties of biproduct dagger categories
with a chosen generating object. The most important consequence for natural
language semantics is the Property of Explicit Definitions, Proposition 8.

Definition 3. Let C be a biproduct dagger category. An object I of C is a
generating object if the following holds
- α ◦ β = β ◦ α for all α, β : I → I

- for every object V there is an integer n ≥ 0 and a unitary isomorphism
bV : n · I → V .

A semantic category is a biproduct dagger category that has a distinguished
generating object I 6≃ 0.

In the category 2SF of two-sorted functions, I is a distinguished singleton
set. In the category RI of semi-modules over the real interval [0, 1], the dis-
tinguished object is this interval, I = [0, 1] . For real Hilbert spaces, I = R, for
complex Hilbert spaces, I = C .
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3.1 Spaces, vectors, scalars

This subsections transfers the terminology familiar from Hilbert spaces to an
arbitrary semantic category. Hopefully, this will not confuse the reader.

A space is an object V of C together with a unitary isomorphism bV : n ·I →
V , called the base of the space. The integer n is the dimension of the space.
A vector of V is a morphism from I to V . A scalar is an endomorphism of I .
The scalars form a commutative semiring where multiplication is composition
and addition is defined by Proposition 1. A scalar β is positive, if it has the
form β = α† ◦ α . For example, 1I and 0I are positive. The positive scalars are
closed under multiplication and addition, e.g.[Selinger, 2007].

These notions have the usual meaning in Hilbert spaces. A space of 2SF is
a set B and an enumeration of its elements B = {b1, . . . , bn}, where bi = bV (qi),
for i = 1, . . . , n. The dimension is the cardinal of the set B. The vectors of B
are the subsets of B. There are two scalars in 2SF , namely the map 0I that
maps the unique element of I to the empty set and the map 1I that maps the
unique element to itself. Both are positive.

Scalar multiplication is defined for any scalar α : I → I and vector v : I → V

by
αv = v ◦ α .

Scalar multiplication is associative and commutes with addition

(αβ)v = α(βv) and α(v + w) = αv + αw .

For any morphism f : V → W and vector v : I → V , the value f(v) of f at v is

f(v) = f ◦ v .

All morphisms of C are linear, that is to say for f : V → W , v, w : I → V and
α, β : I → I

f(αv + βw) = αf(v) + βf(w) .

Assume that bV : m · I → V is the base of V . The vectors aj = bV ◦ qj : I →
V , j = 1, . . . ,m are basis vectors of V and A = {a1, . . . , am} is the chosen basis
of V . The basis vectors satisfy

a
†
i ◦ aj = δij , for i, j = 1, . . . ,m, (10)

where δii = 1I and δij = 0II for i 6= j .
There are exactly m distinct basis vectors, because otherwise we would have

1I = 0II , which contradicts I 6≃ 0 . The equalities (10) mean that the basis
vectors are unitary and pairwise orthogonal.

Proposition 6. Every vector of V can be written uniquely as a linear combi-
nation of the chosen basis vectors.

Proof. Let {a1, . . . , am} be the basis of V and v : I → V and

αi = q
†
i ◦ b

†
V ◦ v, for i = 1, . . . ,m .
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Recall that q1 ◦ q
†
1 + · · ·+ qm ◦ q†m = 1m·I , by (6). Hence

v = bV ◦ (q1 ◦ q
†
1 + · · ·+ qm ◦ q†m) ◦ b†V ◦ v

= bV ◦ q1 ◦ q
†
1 ◦ b

†
V ◦ v + · · ·+ bV ◦ qm ◦ q†m ◦ b†V ◦ v

= a1 ◦ α1 + · · ·+ am ◦ αm = α1a1 + · · ·+ αmam .

This proves the existence.
To see the unicity, assume v = a1◦β1+ · · ·+am◦βm . Multiplying both sides

of the equality on the left by q
†
i ◦bV , we get q

†
i ◦bV ◦v = βi, for i = 1, . . . ,m .

Corollary 3. Let K = {i1, . . . , ik} ⊆ {1, . . . , n}, v : I → k · I and j ∈
{1, . . . , n} . Then qK ◦ v = qj implies j ∈ K .

Proof. Recall that qK = [qi1 , . . . qik ] : k · I → n · I and therefore qK ◦ ql = qil
for l = 1, . . . , k . Assume v : I → k · I and qK ◦ v = qj . Write v =

∑k

l=1 αlql,

where αl : I → I. Then qj = qK ◦ (
∑k

l=1 αlql) =
∑k

l=1 αl(qK ◦ ql) =
∑k

l=1 αlqil .
Coordinates are unique, thus j = il and αl = 1 for some l ≤ k and αl′ = 0 for
l′ 6= l . Finally, qj = qil implies j = il, which terminates the proof.

Refer to the (unique) scalars αi, i = 1, . . . ,m, such that v = α1a1 + · · · +
αmam as the components of v . The notation V = VA expresses that A is the
basis of the space V . If the last element in a composition is a vector we may
switch to set-theoretical notation to highlight the analogy between categorical
and set-theoretical properties, e.g. p(v) = w instead of p ◦ v = w etc.

3.2 Matrix calculus

The matrix calculus familiar from Hilbert spaces generalises to arbitrary biprod-
uct dagger categories with a generating object.

Proposition 7. Every morphism is uniquely determined by its values on the
basis vectors.

Proof. Let A = {a1, . . . , am} , B = {b1, . . . , bn} and suppose that f, g : VA →
WB coincide on the basis vectors aj = bV ◦ qj for j = 1, . . . ,m. Then

q
†
i ◦ b

†
W ◦ f ◦ bV ◦ qj = q

†
i ◦ b

†
W ◦ g ◦ bV ◦ qj for i = 1, . . . , n, j = 1, . . . ,m .

Hence, b†W ◦ f ◦ bV = b
†
W ◦ g ◦ bV , which implies f = g.

Proposition 7 has a converse

Proposition 8 (Explicit Definitions). Given vectors w1, . . . , wm in WB,
there is a unique morphism f : VA → WB satisfying

f ◦ aj = wj , for j = 1, . . . ,m . (11)

Proof. The components of wj = φ1jb1 + · · · + φnjbn, for j = 1, . . . ,m, define a

unique morphism g : m · I → n · I such that q
†
i ◦ g ◦ qj = φij , for i = 1, . . . , n,

j = 1, . . . ,m . Then f = bW ◦ g ◦ b†V satisfies (11).
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Proposition 8 can be rephrased by saying that semantic categories admit
Explicit Definitions. The morphism f is explicitly defined by the values wj ∈
WB for the basis vectors aj ∈ VA in (11).

By Proposition 8, every morphism f : VA → WB determines and is deter-
mined by the scalars

φij = q
†
i ◦ b

†
W ◦ f ◦ bV ◦ qj , for j = 1, . . . ,m, i = 1, . . . , n .

The scalars φ†
ij then determine f† with respect to A and B . The corresponding

matrices are

Mf =







φ11 . . . φ1m

...
...

φn1 . . . φnm






Mf† =







φ
†
11 . . . φ

†
n1

...
...

φ
†
1m . . . φ†

nm






.

The Dirac notation can be introduced with its usual properties: Assign to
any vector v = α1b1 + · · ·+αnbn of V = VB a row matrix and a column matrix

〈v| = Mv† =
(

α
†
1 . . . α†

n

)

, |v〉 = Mv =







α1

...
αn






.

The inner product of v and w = β1b1 + · · ·+ βnbn : I → V is

〈v|w〉 : = Mv†Mw = α
†
1β1 + · · ·+ α†

nβn ,

and the outer product of any vector u = γ1a1 + · · ·+ γmam of U = UA and w

|w〉〈u| := MwMu† =







β1γ
†
1 . . . β1γ

†
m

...
...

βnγ
†
1 . . . βnγ

†
m






.

Otherwise said, 〈v|w〉 is the matrix of v† ◦ w and |w〉〈u| is the matrix of bV ◦

w ◦ u† ◦ b†U : U → V .
The outer product of a basis vector bi =

∑n

k=1 δkibk of VB and a basis vector
aj =

∑m

l=1 δjlal of UA is

|bi〉〈aj | = (δijkl) ,

where δ
ij
ij = 1 and δ

ij
kl = 0 for k 6= i or l 6= j, k = 1, . . . , n, l = 1, . . . ,m . Indeed,

δ
ij
kl = δkiδ

†
jl = δkiδjl . In particular, the outer product |bi〉〈bi| is the matrix of

the projector p{i}, for i = 1, . . . , n.
Definition 3 can now be reformulated for vectors in terms of the inner prod-

uct. Vectors are orthogonal if and only if their inner product equals 0. A vector
is unitary if the inner product of the vector with itself equals 1 .
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Examples of explicitly defined morphisms are the diagonal dV : V → V ⊗ V

and the symmetry σVW : V ⊗ W → W ⊗ V defined for the basis vectors
{a1, . . . , am} of V and {b1, . . . , bn} of W thus

dV (aj) = aj ⊗ aj
σVW (aj ⊗ bi) = bi ⊗ aj

, for j = 1, . . . ,m, i = 1, . . . , n .

Note that the morphism d
†
V : V ⊗ V → V satisfies

d
†
V (aj ⊗ ai) =

{

ai if i = j

0 if i 6= j .

Let K, L be subsets of the basis A of V , vK be the sum of basis vectors in K

and similarly for vL. Then

d
†
V ◦ (vK ⊗ vL) = vK∩L = vk ∧ vL . (12)

The morphisms d†V and dV play the role of multiplication and comultiplication
of the Frobenius algebra over the vector space V of FdVectR. This means that
the compositional semantics of [Kartsaklis et al., 2013] can be generalised to an
arbitrary semantic category.

3.3 Compact closed categories

Recall that a monoidal category consists of a category C, a bifunctor ⊗, a distin-
guished object I and natural isomorphisms αVWU : (V ⊗W )⊗U → V ⊗(W⊗U),
λV : V → I ⊗ V and ρV : V → V ⊗ I subject to the coherence conditions of
[Mac Lane, 1971]. It is a compact closed category if every object has a right
and a left adjoint. A compact closed category is symmetric if there is a natural
isomorphism σVW : V ⊗ W → W ⊗ V such that σ−1

VW = σWV subject to the
coherence conditions of [Mac Lane, 1971].

For notational convenience, the associativity isomorphisms αVWU and the
unit isomorphisms λV and ρV are replaced by identities, e.g. (V ⊗W ) ⊗ V =
V ⊗ (W ⊗ U), V = I ⊗ V and V ⊗ I .

The tensor product is definable in semantic categories. It plays the role of
a bookkeeping device and ‘internalises’ matrices as vectors of a tensor product
space.

Let bV : m · I → V and bW : n · I → W be spaces with chosen basis vectors
aj = bV ◦ qj , bi = bW ◦ qi, where qj : I → m · I, qi : I → n · I, j = 1, . . . ,m,
i = 1, . . . , n, are the canonical injections .

The tensor product of V and W and the dagger isomorphism bV⊗W : n · (m ·
I) → V ⊗W are

V ⊗W := n · V, bV⊗W := n · bV .

Let q′i : m · I → n · (m · I), i = 1, . . . , n, be the canonical injections. The tensor
product of aj and bi is the vector

aj ⊗ bi := bV⊗W ◦ q′i ◦ qj : I → V ⊗W .
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Under these definitions, the tensor product distributes over the dagger and
the biproduct

(f ⊗ g)† = f† ⊗ g† : W ⊗D → V ⊗ U

V ⊗ (W ⊕ U) ≃ (V ⊗W )⊕ (V ⊗ U) .

A compact closed category is a symmetric monoidal category C together with
a contra-variant functor ∗ and maps ηV : I → V ∗ ⊗ V and ǫV : V ⊗ V ∗ → I,
called unit and counit respectively, such that

(ǫV ⊗ 1V ) ◦ (1V ⊗ ηV ) = 1V
(ǫV ∗ ⊗ 1V ∗) ◦ (1V ∗ ⊗ ηV ∗) = 1V ∗ .

Proposition 9. Semantic categories are compact closed.

Proof. (Outline) Follow the construction of the dual space in [Abramsky and
Coecke, 2004] for the category of complex Hilbert spaces. First, introduce the
dual scalar multiplication for v : I → VA and α : I → I

α ∗ v := v ◦ α† = α†v .

This definition creates a dual version of Proposition 6: Every vector can be
written uniquely as the sum of dual scalar multiples of basis vectors. Indeed,
let βi = αi

† for j = 1, . . . ,m. Then

m
∑

i=1

αiai =

m
∑

i=1

αi
††ai =

m
∑

i=1

βi ∗ ai .

The dual space VA
∗ is the space VA where vectors are given as sums of dual

scalar multiples of basis vectors. In the case of 2SF , RI and real Hilbert spaces,
we have VA

∗ = VA, because α† = α for all α : I → I .

Given f : VA → WB , use the principle of Explicit Definitions to introduce
the morphisms f∗ : VA

∗ → WB
∗ and the dual f∗ : WB

∗ → VA
∗ such that

f∗(aj) =
∑n

i=1 φij ∗ bi =
∑n

i=1 φ
†
ijbi, for j = 1, . . . ,m

f∗(bi) =
∑m

j=1 φij
† ∗ aj =

∑m

j=1 φijaj , for i = 1, . . . , n .

Then
f∗ = f∗

† = f†
∗ : WB

∗ → VA
∗ .

Note that the dual coincides with the dagger in the categories 2SF , RI and
FdVectR, which are the most frequently considered categories in natural lan-
guage semantics.

The unit ηV : I → V ∗ ⊗ V and counit ǫV : V ⊗ V ∗ → I are the morphisms
defined explicitly thus

ηV (1I) =
∑n

i=1 ai ⊗ ai
ǫV (ai ⊗ aj) = δij , for i, j = 1, . . . , n ,

where δij = 1 if i = j and δij = 0 if i 6= j.
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4 The internal logic

An internal logic of a category consists of a class of morphisms, the propositions,
and a set of equalities expressing the truth of propositions.

The internal logic of semantic categories follows quantum logic in letting
projectors stand for propositions. Logical connectives are defined in such a
way that the projectors form an ortho-complemented lattice with the identity
as largest element. The approach to logic via predicates also is possible in
semantic categories. The equivalence between the notions will be the subject of
this section.

In both cases, the basis vectors of the domain play the role of individuals.
Basis vectors are generalised to ‘Boolean vectors’ to capture the plurals of nat-
ural language. A vector v = α1b1 + · · · + αnbn is said to be Boolean if αi = 0
or αi = 1, for all i = 1, . . . , n .

Every Boolean vector v : I → VB determines a unique subsetK = {i1, . . . , ik}
of N = {1, . . . , n} such that

v =
∑

i∈K

bi = vK .

The propositional connectives are lifted from subsets K ⊆ N to Boolean vectors
such that

vK ∧ vL = vK∩L, vK ∨ vL = vK∪L , etc.

hold. Hence, the map K 7→ vK is a Boolean isomorphism. The Boolean vectors

form a Boolean algebra with largest element
−→
1 =

∑n

i=1 bi = vN and smallest

element
−→
0 = v∅ = 0VB

.
Sometimes it is convenient to identify a subset A = {bi1 , . . . , bik} ⊆ B of

basis vectors with the corresponding Boolean vector A = bi1 + · · ·+ bik = vK .

4.1 The logic of intrinsic projectors

Projectors will stand for propositions in this subsection. The truth of a propo-
sition p is expressed by the equality p = 1V . A semantic category may have
projectors that do not intervene in natural language semantics. For example, if
all entries of a square matrix are equal to 1, it defines a projector in 2SF and in
RI, but not in a Hilbert space. We avoid the unwanted morphisms by limiting
interpretations to intrinsic morphisms.

Definition 4 (Intrinsic morphism). A morphism f : VA → WB is intrinsic
with respect to A and B if it sends every basis vector in A to a basis vector in

B or to the zero vector
−→
0 .

The identity 1V and the diagonal dV : V → V ⊗ V , which maps any basis
vector b of V to b ⊗ b, are intrinsic. Intrinsic morphisms are closed under
composition and tensor products. They are ubiquitous in natural language.
Determiners, relative pronouns and verbs, to mention but a few, are interpreted
by intrinsic morphisms.
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Observe the following properties, which are are straightforward except pos-
sibly (?), which is proved in [Preller, 2012].

Proposition 10. Let B = {b1, . . . , bn} be the basis of space VB in C . Then
- a projector p : VB → VB is intrinsic if and only if

p(bi) = bi or p(bi) =
−→
0 , for i = 1, . . . , n

- the entries of the matrix (πij)ij of an intrinsic projector p satisfy

πij = 1, if i = j and p(bi) = bi
πij = 0, else

, i, j = 1, . . . , n

- intrinsic projectors map Boolean vectors to Boolean vectors
- every intrinsic projector p has the form bV ◦ pK ◦ b†V , where

K = {i : p(bi) = bi, 1 ≤ i ≤ n}

- the morphism bV ◦ pK ◦ b
†
V is an intrinsic projector of VB for every K ⊆

{1, . . . , n} .

The unitary isomorphism bV lifts the lattice operators defined on the canon-
ical projectors pK of n · I to the intrinsic projectors of VB . Context permitting,
we write p = pK instead of p = bV ◦ pK ◦ b†V .

Proposition 11. Let PB the set of projectors of VB that are intrinsic w.r.t.
B. The map K 7→ pK is a negation preserving lattice isomorphism from the
Boolean algebra of subsets of N = {1, . . . , n} onto the lattice PB of intrinsic
projectors of VB .

Moreover, the following properties hold for any K,L ⊆ N

- ¬pK ∨ pL = 1VB
if and only if pK ◦ pL = pK

- pK ◦ pL = pK if and only if pL ◦ vK = vK
- pL ◦ vK = vL∩K . In particular, pL(

−→
1 ) = vL and pN ◦ vK = vK

- pL ◦ vK = vK if and only if pL(bi) = bi, for all i ∈ K

- intrinsic projectors are monotone increasing on Boolean vectors.

The restriction to PB makes the logic classical. If VB is a Hilbert space then
the elements of PB are exactly the projectors for which B is a common basis
of eigenvectors. The internal logic proposed here uses only the classical part of
quantum logic.

4.2 The two-sorted logic of predicates

Predicates and two-sorted logic are definable in an arbitrary semantic category.
Let S ≃ I ⊕ I be a fixed two-dimensional space with basis vectors ⊤ = bS ◦ q1
and ⊥ = bS ◦ q2 .

The two-sorted connectives introduced below are morphisms and as such
they are determined by their values on the basis vectors.
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The two-sorted negation notS : S → S is defined explicitly by

notS(⊤) = ⊥, notS(⊥) = ⊤ .

Recall that the full vector
−→
1 of S satisfies

−→
1 = ⊤+⊥ . Then

notS(
−→
1 ) =

−→
1 and notS(

−→
0 ) =

−→
0 .

More generally,
notS(α · ⊤+ β · ⊥) = β · ⊤+ α · ⊥ .

The two-sorted conjunction andS : S ⊗ S → S and two-sorted disjunction
orS : S ⊗ S → S are defined explicitly on the four basis vectors of S ⊗ S

andS(⊤⊗⊤) = ⊤, andS(⊥⊗⊤) = andS(⊤⊗⊥) = andS(⊥⊗⊥) = ⊥
orS(⊥⊗⊥) = ⊥, orS(⊥⊗⊤) = orS(⊤⊗⊥) = orS(⊤⊗⊤) = ⊤ .

Note that the two-sorted connectives are different form the set-theoretical con-
nectives introduced for Boolean vectors at the beginning of this section.

Proposition 12. The two-sorted connectives define a Boolean structure on the
vectors of S. In particular, for arbitrary vectors v : I → S and w : I → S the
following holds

notS ◦ notS ◦ v = v, notS ◦ andS ◦ (v ⊗ w) = orS ◦ (notS ◦ v ⊗ notS ◦ w) .

Proof. Show the property for basis vectors and use the fact that morphisms
commute with addition and scalar multiplication.

A morphism p : V → S is a predicate if it is intrinsic. It is a predicate on V

if it maps basis vectors of V to basis vectors of S, i.e.

p(x) = ⊤ or p(x) = ⊥, for every basis vector x of V .

By an n-ary predicate on E we mean a predicate on V = E ⊗ . . .⊗ E .
We may think of basis vectors as individuals of the universe of discourse (sort

‘one’) and of Boolean vectors as subsets of individuals (sort ‘two’). A predicate
accepts individuals and sets of individuals as arguments. For an individual there
are only two possible truth values, namely ⊤ and ⊥. For sets of individuals there
are at least two more.

Proposition 13. Denote m = 1 + · · · + 1 the m-fold sum of the unit 1 ∈ I.
Let p : VB → S be a predicate on VB and A = {bi1 , . . . , bik} ⊆ B a subset of k
distinct basis vectors. Then there are non-negative integers k1 ≤ k and k2 ≤ k

such that
p(
∑

x∈A

x) = k1 · ⊤+ k2 · ⊥ . (13)

Proof. The predicate p partitions A into two disjoint subsets A1 and A2 such
that p(x) = ⊤ for all x ∈ A1 and p(x) = ⊥ for all x ∈ A2. Let ki be the number
of elements in Ai.
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counting property

In Hilbert spaces, a predicate ‘counts’ the number of elements of a set for which
it is true and also the number of elements for which it is false. The integers k1
and k2 are unique and satisfy k1 + k2 = k.

fundamental property in 2SF
A two-sorted predicate informs us whether it is always true, always false or
partly true and partly false on a set A identified with the Boolean vector
∑

x∈A x .

p(A) =
−→
0 ⇔ p(x) =

−→
0 for all x ∈ A ⇔ A = ∅

p(A) = ⊤ ⇔ p(x) = ⊤ for all x ∈ A and A 6= ∅
p(A) = ⊥ ⇔ p(x) = ⊥ for all x ∈ A and A 6= ∅
p(A) = ⊤+⊥ ⇔ p(x) = ⊤ and p(y) = ⊥ for some x, y ∈ A .

(14)

Indeed, the k-fold sum of the unit of 1 ∈ I is equal to 1 whenever k > 0. Hence,
k · ⊤ = ⊤.

The counting property and the fundamental property give us a clue to defin-
ing truth in semantic catgories.
truth-values

Let p be a linear predicate on VA and X any vector of VA. We say that
- p(X) is true if there is α 6= 0 such that p(X) = α⊤
- p(X) is false if there is α 6= 0 such that p(X) = α⊥
- p(X) is mixed if p(X) = α⊤+ β⊥ for some α 6= 0, β 6= 0
- p(X) is mute if p(X) = 0.

Proposition 14. Predicates are closed under composition with the two-sorted
connectives.

More precisely, assume that p : VB → S and r : VB → S are predicates on
V = VB . Then the morphisms

notS ◦ p, andS ◦ (p⊗ r), orS ◦ (p⊗ r)

are again predicates on VB respectively on VB ⊗ VB and satisfy

notS ◦ notS ◦ p = p

notS ◦ andS ◦ (p⊗ r) = orS ◦ ((notS ◦ p)⊗ (notS ◦ r)) .
(15)

For any x ∈ B, A ⊆ B

p(x) = ⊥ ⇔ notS(p(x)) = ⊤
p(
∑

x∈A x) = k1 · ⊤+ k2 · ⊥ ⇔ notS(p(
∑

x∈A x)) = k2 · ⊤+ k1 · ⊥

Whereas notS(p(x)) = ⊤ is equivalent to p(x) 6= ⊤ for anyy basis vector x, this
no longer holds for arbitrary vectors. For the counter example, let a and b be
two distinct basis vectors such that p(a) = ⊤ and p(b) = ⊥.

The predicates andS ◦ (p ⊗ r) and orS ◦ (p ⊗ r) are predicates on V ⊗ V .
Composing them with the diagonal dV : V → V ⊗ V , we obtain the predicates
andS ◦ (p⊗ r) ◦ dV and orS ◦ (p⊗ r) ◦ dV on V such that the equalities (15) still
hold. Hence, the predicates on a given space form a Boolean algebra.
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4.3 Intrinsic projectors and predicates

Let C be an arbitrary semantic category and V = VB be any space of C with basis
B . For every intrinsic projector p : V → V , define a predicate I(p) : V → S by
the condition

I(p)(x) =

{

⊤ if p(x) = x

⊥ else
, for all x ∈ B .

Conversely, given a predicate p : V → S on V , define an intrinsic projector
J (p) : V → V by

J (p)(x) =

{

x if p(x) = ⊤
−→
0 else

, for all x ∈ B . (16)

Proposition 15. The maps I and J are inverse of each other and the following
holds for any intrinsic projectors p, r : V → V

I(¬p) = notS ◦ I(p)
I(p ∧ r) = andS ◦ (I(p)⊗ I(r)) ◦ dV
I(p ∨ r) = orS ◦ (I(p)⊗ I(r)) ◦ dV
I(p⊗ r) = andS ◦ (I(p)⊗ I(r)) .

(17)

Moreover, for any Boolean vector vL =
∑

i∈L bi and any intrinsic projector
p : V → V

p(vL) = vL ⇔ ∀i∈L(I(p)(bi) = ⊤

p(vL) =
−→
0 ⇔ ∀i∈L(I(p)(bi) = ⊥ .

(18)

In particular, if k is the number of basis vectors left invariant by p then

I(p)(
n
∑

i=1

bi) = k · ⊤+ (n− k) · ⊥ .

Proof. It is sufficient to verify (17) for basis vectors, an easy exercise. The
equalities (18) follow from (13).

The switch between predicates and intrinsic projectors is common in natural
language. Typically, an adjective in attributive position is interpreted as an
intrinsic projector big : VB → VB . The same adjective, when in predicative
position, is interpreted by a predicate big : VB → S such that

big(x) = x ⇔ big(x) = ⊤, for all x ∈ B .

The isomorphism (16) transforming a predicate into a projector is related to
the relative pronoun, see Section 5.3.

Logic, Categories, Semantics



5 COMPOSITIONAL SEMANTICS

5 Compositional semantics

5.1 The lexical category

The description of the lexical category given below is a notational variant of the
description in [Preller and Lambek, 2007].

Call lexical category any free compact bicategory C(D) with a single 0-cell2,
generated by some category D. Think of the objects of D as basic types and
of the morphisms of D as basic morphisms. For simplicity, the canonical asso-
ciativity and unit isomorphisms of the tensor product (1-cell composition) are
replaced by identities, for example A⊗ (B ⊗ C) = A⊗ B ⊗ C = (A⊗ B)⊗ C,
A⊗ I = A = I ⊗ A . The iterated tensor products are assimilated to strings of
objects. That explains why the symbol for the tensor product may be omitted
in lexical categories

Saying that C(D) is compact means that every 1-cell (object) Γ has a left
adjoint Γℓ and a right adjoint Γr. Then Γ is a right adjoint to its left adjoint
Γℓ, thus Γℓr ≃ Γ . Hence the objects (1-cells) of C(D) are the unit I, the objects
of D, their iterated right of left adjoints and the strings built from these. An
iterated adjoint A(z) is even if z = (2n)ℓ or z = (2n)r . It is odd if z = (2n+1)ℓ
or z = (2n + 1)r . By convention, A(0) = A . A similar convention applies to
the morphisms of D . Capital latin letters designate objects of D, capital greek
letters objects of C(D) .

The morphisms, i.e. the 2-cells, of C(D), are represented by graphs where
the vertices are labelled by iterated adjoints of objects of D and the oriented
links are labelled by morphisms of D.

The first four rules constitute a cut-free axiomatisation of Compact Bilinear
Logic. They imply the fifth, the Cut rule. In the presentation below, each rule
is followed by the corresponding morphism (on the left) and its proof-graph (on
the right). Graphs display the domain of the morphism above, the codomain
below. The links are directed, because they are morphisms of D. The basic type
at the tail of the link is the domain of the link and the basic type at the head its
codomain in D. In the case where the label is an identity, it is generally omitted.
A double line stands for the collection of links of some previously constructed
graph.

Axioms

⊢
1I =

I

I

2definitially equivalent to compact closed category
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z is even f :A→B∈D
A(z)⊢B(z) if z is odd f :A→B∈D

B(z)⊢A(z)

f (z) =

A(z)

B(z)

f

��
f (z) =

B(z)

A(z)

OO

f

Units g : I → Γ, f : A → B ∈ D

z is even
⊢ Γ A ⊢ B

⊢ A(z)r ⊗ Γ⊗B(z)

(1A(z)r ⊗ g ⊗ 1B(z)) ◦ ηf(z) =

A(z)r ⊗ Γ ⊗B(z)

f

""

I

z is odd
⊢ Γ A ⊢ B

⊢ B(z)r ⊗ Γ⊗A(z)

(1B(z)r ⊗ g ⊗ 1A(z)) ◦ ηf(z) =

B(z)r ⊗ Γ ⊗A(z)
||

f

I

Counits g : Γ → I, f : A → B ∈ D

z is even
Γ ⊢ A ⊢ B

A(z) ⊗ Γ⊗B(z)r ⊢ I

ǫf(z) ◦ (1A(z) ⊗ g ⊗ 1B(z)r ) =

A(z) ⊗ Γ ⊗B(z)r

f

<<

I

z is odd
Γ ⊢ A ⊢ B

B(z) ⊗ Γ⊗A(z)r ⊢ I

ǫf(z) ◦ (1B(z) ⊗ g ⊗ 1A(z)r ) =

B(z) ⊗ Γ ⊗A(z)rcc

f

I
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1-Cell Composition g : Γ → ∆, h : Θ → Λ

Γ ⊢ ∆ Θ ⊢ Λ

Γ⊗Θ ⊢ ∆⊗ Λ
g ⊗ h =

⊗Γ

∆

Θ

Λ⊗

Cut g : Γ → ∆, h : ∆ → Θ

Γ ⊢ ∆ ∆ ⊢ Θ

Γ ⊢ Θ
h ◦ g =

Γ

Θ

Any morphism of C(D) can be obtained from the morphisms of D without
Cut by the first four rules only, see [Preller and Lambek, 2007]. All paths in
graphs obtained without Cut have length one. We compute the cut-free graph
of g ◦ f by connecting the graph of g : Γ → ∆ to the graph of h : ∆ → Θ at
their joint interface Θ and replace any path with endpoints in Γ or ∆ by a link
with the same endpoints and direction, see the examples below.

Choosing z = 0, g = 1I , but f : A → B ∈ D arbitrary in the Unit and
Counit rules we obtain

ηf =

I

f

##
Ar ⊗ A

ǫf =

I

f

;;A ⊗ Ar

ηfℓ =

I

}} f

B ⊗ Aℓ

ǫfℓ =

I

ee
f

Bℓ ⊗ A

In the particular case where f = 1A(z) , the results are the unit ηA : I → Ar ⊗A

and the counit ǫA : A⊗ Ar → I for the right adjoint and, as A = Aℓr, the unit
ηAℓ and counit ǫAℓ for the left adjoint.

The following four examples of composition by ‘walking paths’ illustrate
how cut-elimination can be proved. The last of two of them are the axioms
concerning units and counits.

(f ⊗ 1Aℓ) ◦ ηAℓ =

I

f

��

OO
}}
A ⊗ Aℓ

B ⊗ Aℓ

=

I

}} f

B ⊗ Aℓ

= ηfℓ .

ǫBℓ ◦ (1Bℓ ⊗ f) =

I

OO
f

��
eeBℓ ⊗ B

Bℓ ⊗ A

=

I

ee
f

Bℓ ⊗ A

= ǫfℓ
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(ǫBℓ ⊗ 1Aℓ) ◦ (1Bℓ ⊗ ηfℓ) = Bℓ ⊗ B ⊗ Aℓ

Bℓ

Aℓ

??
�������

ee
~~

f

>>

~~
~~

~~
~

=

Aℓ

Bℓ

f

OO

= f ℓ

(ǫA ⊗ 1B) ◦ (1A ⊗ ηf ) = A⊗ Ar ⊗ B

A

B

��

�������
;;

f

""

����
��

��
�

=

B

A

��

f = f

Units of adjunction give rise to ‘nested’ graphs. The same holds for counits.
For example, let f : A → B, g : C → D be morphisms in D

(1Ar ⊗ ηgℓ ⊗ 1B) ◦ ηf = η(gℓ⊗f)

I

Ar ⊗ B>>

||
||

||

f ##

}} g ��?
??

??
??

Ar ⊗D ⊗ Cℓ ⊗ B

=

I

Ar ⊗D ⊗ Cℓ ⊗ B

f

##}} g

etc.

Assume f : A → B, g : B → C . Then

(ǫf ⊗ 1C) ◦ (1A ⊗ ηg) = (1C ⊗ ǫfℓ) ◦ (ηgℓ ⊗ 1A) = g ◦ f

A ⊗ Br ⊗ C

A

����
��

��
��

f

;;

g

""

C
����

��
��

= C ⊗ Bℓ ⊗ A

A

��9
99

99
99

9

��
g

aa

f

C
��=

==
==

=
=

A

B

g◦f

��

.

The benefit of orienting and labelling links becomes evident when computing
the meaning of strings of words where the graphs are given by the grammar in
Section 5.2.

5.2 Pregroup grammars

According to [Lambek, 1999], a pregroup grammar is determined by a partially
ordered set B and a dictionary. The elements of B stand for grammatical notions
and are called basic types, e.g. c2, n2 and s for ‘plural count noun’, ‘plural noun
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phrase’ and ‘sentence’. The dictionary is a finite list of pairs word : T where
the type T is an object of C(B).

Every functor from B into a semantic category C extends to a functor F :
C(B) → C that preserves right and left adjoints

F(T ℓ) = F(T )∗ = F(T r) F(f ℓ) = F(f)∗ = F(fr)

and every derivation of compact bilinear logic to a morphism of C .

A lexicon is a finite list of triples word : T :: word, where T a type and word

a meaning expression in the language of compact closed categories with two
distinguished objects E and S.

Thus, a pregroup lexicon is a pregroup dictionary, enriched by formal mean-
ing expressions in the language or compact closed categories. Dictionaries are
sufficient for recognising languages, but do not assign meanings. The added
meaning expressions are the compact bilinear version of the lambda-terms of
higher order logic, see [Moot and Retoré, 2011].

all : n2 c2
ℓ :: I

all
−−→ E ⊗ E∗

some : n2 c2
ℓ :: I

some
−−−→ E ⊗ E∗

birds: c2 :: I
bird
−−−→ E

fly : n2
r
s :: I

fly
−−→ E∗ ⊗ S

who : c2
r
c2 s

ℓ
n2 :: I

who
−−→ E∗ ⊗ E ⊗ S∗ ⊗ E

do : nr
s i

ℓ
d :: I

do
−→ E∗ ⊗ S ⊗ S∗ ⊗ E

not : dr
ii

ℓ
d :: I

not
−−→ E∗ ⊗ S ⊗ S∗ ⊗ E

The basic types corresponding to the mini-lexicon above are c2,n2,d, s, i,
partially ordered by the equalities and c2 < n2. The basic types d and i stand
for ‘dummy noun phrase’ and ‘infinitive’. A functor interpreting the basic types
c2,n2,d by the distinguished space E and the basic types i and s a by the
distinguished space S also maps the type T in the entry word : T :: word to the
codomain of word. Thus, the lexicon defines an obvious functor from B to the
semantic category C, which maps the inequality c2 < n2 to 1E .

The meaning morphisms in the lexicon above a formal expressions in the lan-
guage of compact closed categories, represented by their graphs. For example,
let E = VB

all = ηall∗ =
all

I

}}
E ⊗ E∗

all : E → E

some = ηsome∗ =
some

I

}}
E ⊗ E∗

some : E → E
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do = η(1E⊗do∗) =

I

E∗ ⊗ S ⊗ S∗ ⊗ E

do
""}}

do : S → S

not = η(1E⊗not∗) =

I

E∗ ⊗ S ⊗ S∗ ⊗ E

not
""}}

not : S → S

who =

I

#### ~~who
E∗ ⊗ E ⊗ S∗ ⊗ E

who : E ⊗ S → E

The algebraic expression corresponding to the graph above is

who = c ◦ p(1E ⊗ who) ◦ (dE ⊗ 1S)q : I → E∗ ⊗ E ⊗ S∗ ⊗ E

where the morphism c : E∗⊗S∗⊗E⊗E → E∗⊗E⊗S∗⊗E is the permutation
that first switches the last two factors of E∗ ⊗ S∗ ⊗ E ⊗ E and then the third
and the second factor.

The meaning of grammatical strings involves besides the meanings of the
words a syntactical analysis of the string.

A string of words word1 . . .wordn is grammatical if there are entries word1 :
T1 :: word1, . . . , wordn : Tn :: wordn, and a basic type b such that

T1 . . . Tn ⊢ b

is provable in compact bilinear logic.
Due to a theorem in [Lambek, 1999] the graph of the proof involves only un-

derlinks. Such a graph is called a reduction. It designates a uniquely determined
morphism of C(B).

Any functor F : C(B) → C maps the reduction to a morphism of the semantic
category C and thus assigns the following meaning to the grammatical string

m(word1 . . .wordn) = F(r) ◦ (word1 ⊗ . . .⊗ wordn) .

The string all birds fly has the following reduction to the sentence type

r0 =

all

n2 c2
ℓ

birds

c2

fly

n2
r
s==dd

s
��
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and therefore its meaning in C is the morphism

F(r0) ◦ (all⊗ bird⊗ fly) = ��
all

99dd

S
��

I

�� ��
bird

(E ⊗ E∗)⊗ (E)⊗ (E∗ ⊗ S)

fly

=

I

S

fly◦all◦bird

��

.

Note that that any functor on B to a compact closed category assigns a
meaning-morphism to grammatical strings via these definitions. An arbitrary
functor, however, does not guarantee that the resulting meaning reflects the
logical content of natural language.

Therefore we add postulates that make the morphisms reflect the logical
content of the words. We require that S is the two-dimensional space of ‘truth-
values’ with basis vectors ⊤,⊥ and that the basis vectors of E = VB stand
for ‘individuals’, ‘pairs of individuals’ and so on. The vectors noun : I → E

are Boolean, morphisms word : E → S are predicates on E, the morphisms
word : E → E are intrinsic projectors. Some words are completely determined
by their logical content, namely

do = 1S , not = notS .

Moreover, who : E ⊗ S → E is the explicitly defined morphism satisfying

who(b⊗⊤) = b

who(b⊗⊥) =
−→
0

, for b ∈ B .

Taking the postulates into account, the meaning of the sentence all birds fly is

m(all birds fly) = fly ◦ bird : I → S

The string birds who fly has a reduction to the plural noun phrase type,
namely

r1 =
==

��
n2

dd <<

birds who fly

( c2 ) (c2
r

c2 s
ℓ

n2) (n2
r

s)
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and therefore its meaning is

F(r1) ◦ (bird⊗ who⊗ fly)

=
88

##""

E
��

��
dd <<

""
fly

I

bird

}}||
||

||
||

||
||

who

(E ) ⊗ (E∗ ⊗ E ⊗ S∗ ⊗ E)⊗ (E∗ ⊗ S) =

I

E

bird��



��
��
�

��)
))
))

fly
��

E ⊗ E

��
E ⊗ S

��(
((
((

����
��
�

who

E
= who ◦ (1E ⊗ fly) ◦ dE ◦ bird = who ◦ 〈bird, fly ◦ bird〉 .

(19)

The right-hand graph above captures the dependency relation in birds who
fly. Indeed, who depends on birds and fly whereas fly depends on birds

birds who fly
}} �� ��

Th algorithm that computes the dependencies implements the following instruc-
tions
1) omit domains and codomains of the links and orient them in the opposite
direction
2) move the label of a link to the head of the reversed link
3) replace maximal paths by single links
4) write the labels on the same line

KK

��
��
�
SS

((
((
(

OOOO

SS

((
((
(

KK

��
��
�

who

fly

bird

 

birdYY

33
33

33
33

33

who

flyHH

��
��
��
��
�

oo

 
bird who fly
}} �� �� . (20)

Logic, Categories, Semantics



5.3 Internal logic in action 5 COMPOSITIONAL SEMANTICS

Finally, the last example computed using pregroup syntax and semantics

m(some birds do not fly) = r ◦ (some⊗ bird⊗ do⊗ not⊗ fly) =

��
some

::bb
##~~

do

S
��

dd ??
##||

I

wwpppppppppppppppppp

dd ??
  

bird

E ⊗ E∗ ⊗ E ⊗ E∗ ⊗ S ⊗ S∗ ⊗ E ⊗ E∗ ⊗ S ⊗ S∗ ⊗ E ⊗ E∗ ⊗ S

not
fly

= do ◦ not ◦ fly ◦ some ◦ bird = notS(fly(some(bird))) .

To sum up: All grammatical strings are interpreted by variable free expres-
sions formed by morphisms and vectors.

The computation of the expression involves a syntactical analysis of the
string via a pregroup grammar. There are cubic polynomial algorithms that
decide whether the string is grammatical and, if it is grammatical, construct
a reduction. The reduction includes a choice of type for each word. Forming
the tensor product of the corresponding meanings is proportional to the length
of the string. Walking the graph is linear in the number of links, which is
proportional to the number of words.

5.3 Internal logic in action

The meanings of the preceding examples can now be compared and translated
from predicate logic to quantum logic via the isomorphism J of Section 4.3.

We start with the the relative pronoun and show that it assimilates to an
operator that accepts a predicate and a Boolean vector as an input and returns
a Boolean vector.

Proposition 16. Let p be a predicate on E = VB and w be a Boolean vector.
Then

who ◦ (1E ⊗ p) ◦ dE ◦ w = J (p) ◦ w . (21)

Proof. Recall the explicit definition of the morphism who : E ⊗ S → E in
Subsection 5.2, namely

who ◦ (x⊗⊤) = x

who ◦ (x⊗⊥) =
−→
0

, for all x ∈ B .

Hence

who ◦ (1E ⊗ p) ◦ dE ◦ x = who ◦ (x⊗ p(x)) =

{

x if p(x) = ⊤
−→
0 else

, for all x ∈ B .

The explicit definition of J (p) implies the equality

who ◦ (1E ⊗ p) ◦ dE = J (p) ,
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because the subset K of basis vectors left invariant by J (p) is exactly the set
of basis vectors for which p takes value ⊤. The equality (21) follows.

One can reformulate the preceding proposition by saying that semantic cat-
egories satisfy comprehension. It suffices to identify a subset K of distinct basis
vectors with their sum vK . For example, the meaning vector of the noun phrase
birds who fly satisfies

who ◦ (1E ⊗ fly) ◦ dE ◦ bird =
∑

{x∈bird : fly(x)=⊤}

x .

Composition with the morphism d
†
V simulates comprehension, but not every log-

ical connective can be simulated by composition with a morphism in quantum
logic. For example, the negation notS is replaced by the orthogonal comple-
ment in quantum logic, by (17). The orthogonal complement of the projector
0EE : E → E is the identity 1E : E → E where as f ◦ 0EE = 0EE for any
endomorphism f : E → E.

Switching from predicate logic to quantum logic via the isomorphism J of
Section 4.3 the comprehension operator becomes the morphism d

†
V . Indeed, let

vK be the sum of all basis vectors left invariant by the projector J (p). Then
from Proposition 11 and equality (12) follows

J (p) ◦ w = vK ∧ w = d
†
V ◦ (vK ⊗ w) .

If predicates are replaced the corresponding projectors one can no longer distin-
guish between sentences and noun-phrases. For example, the sentence all birds
fly and the noun-phrase birds who fly have the same meaning

fly ◦ all ◦ bird = fly ◦ bird 7→ J (fly) ◦ bird = who ◦ (1E ⊗ fly) ◦ dE ◦ bird

By Proposition 15, is an isomorphism. Moreover, it preserves truth if C =
2SF or C = FdvectR

fly ◦ all ◦ bird is true ⇔ bird ≤ J (fly) ◦ bird
notS ◦ fly ◦ bird is true ⇔ bird ≤ J (fly)⊥ ◦ bird .

The situation for some is quite different. Note that

p(some(A)) = ⊤ ⇒ ∃X(X 6= ∅&X ⊆ A& fly(X)) ,

but the determiner some does more than guarantee existence in natural lan-
guage. It introduces a witness and only as a consequence it acts like an exis-
tential quantifier. The fact that some creates a witness is built into categorical
semantics. The discourse Some birds fly. They have wings is represented by the
three expressions fly(some(bird)), have(they, wing), they = some(bird) .

On the other hand, the interpretation of some may change from one occur-
rence to the next, for instance some birds fly and some birds do not fly. The
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solution to the latter problem is to index the occurrences of some. For example,
the meaning of the sentence above is

andS ◦ ((fly ◦ some1 ◦ bird)⊗ (notS ◦ fly ◦ some2 ◦ bird)) .

The interpretation of some bird as a generalised quantifier by [Barwise and
Cooper, 2002] takes into account the change of meaning when occurring in
different senteces, but it does not construct the set to which the noun phrase
refers.

The preceding suggests the canonical vector space model V associated to F .
For any vector v, projector pK and predicate p let

V(v) = v V(pK) = vK V(p) = V(J (p))

Then the map V ◦ F extends to a partial functor from the lexical category to
the Frobenius structure over VB . For example,

V(fly ◦ bird) = d
†
V ◦ (V(fly)⊗ V(bird)) .

6 Conclusion

If the generating object I includes the semiring of positive rational numbers the
‘counting property’ of the predicates makes it possible to replace the canonical
vector space model by a probabilistic vector space model where the basis vectors
stand for arbitrarily chosen ‘basic concepts’, see [Preller, 2013]. A promising
line of future investigations is the step from ‘counting’ predicates to measuring
predicates in Hilbert spaces to capture the notion of ‘truth in probability’ and
its relation to natural language.

Going in the opposite direction, predicates of 2SF and RI do not ‘count’
at all, because addition is idempotent. A language that only has a word for
‘one’ and a word for ‘more than one’ can only count ‘0, 1, >1’. The appropriate
generating object I of its semantic category is the linearly ordered set consisting
of the three elements.

The author would like to thank the referees for their constructive criticism

and comments suggesting research in promising new directions.
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