GRAANK: Exploiting Rank Correlations for Extracting Gradual Itemsets

Anne Laurent 1 Marie-Jeanne Lesot 2 Maria Rifqi 2
1 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
2 MALIRE - Machine Learning and Information Retrieval
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : Gradual dependencies of the form the more A, the more B offer valuable information that linguistically express relationships be- tween variations of the attributes. Several formalisations and automatic extraction algorithms have been proposed recently. In this paper, we first present an overview of these methods. We then propose an algorithm that combines the principles of several existing approaches and benefits from efficient computational properties to extract frequent gradual itemsets.
Document type :
Conference papers
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00408735
Contributor : Anne Laurent <>
Submitted on : Saturday, November 2, 2019 - 10:30:11 AM
Last modification on : Wednesday, November 13, 2019 - 1:44:06 PM
Long-term archiving on: Monday, February 3, 2020 - 1:22:19 PM

File

lirmm-00408735v1.pdf
Files produced by the author(s)

Identifiers

Citation

Anne Laurent, Marie-Jeanne Lesot, Maria Rifqi. GRAANK: Exploiting Rank Correlations for Extracting Gradual Itemsets. 8th International Conference on Flexible Query Answering Systems (FQAS), Oct 2009, Roskilde, Denmark. pp.382-393, ⟨10.1007/978-3-642-04957-6_33⟩. ⟨lirmm-00408735⟩

Share

Metrics

Record views

306

Files downloads

41