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Abstract

Spectral analysis represents a key component in signal
processing. The on-chip implementation of classical spec-
tral estimation techniques is generally not considered as a
viable BIST solution because of the huge amount of required
additional circuitry (multipliers, complex operators). This
paper describes a new method for spectral parameter es-
timation allowing the extraction of the first harmonic with
only very simple operators. This method is based on Fourier
series expansion and a piecewise algorithm. The results
are validated using simulations and experiments, and the
method showed relevant results to an embedded solution.

1. Introduction

With the advances on analogue-digital ICs, faster and
more complex test equipment is required to meet ever more
severe test specifications. An attractive alternative to sim-
plify the test equipment is to move some or all the tester
functions onto the chip itself. The use of Built In Self Test
(BIST) for high volume production of mixed signal ICs is
desirable to reduce the cost per chip during production test-
ing by the manufacturers.

Spectral analysis represents a key component in signal pro-
cessing. The power spectrum contains a large set of in-
formation that can be used, in electronic devices charac-
terisation. For instance, spectral measurements like SNR,
THD allow test engineers to sort out analogue or mixed-
signal integrated circuits in production test. In recent papers
[1, 2], spectral analysis has been used to estimate the whole
set of ADC (Analogue-to-Digital Converter) performances.
Moreover, as in the case of ADC testing, power estimation
of the first harmonics is generally sufficient.

In this context, our objective is to develop a technique for
harmonic estimation requiring minimal hardware resources
in order to propose a viable BIST implementation.

Actually, spectral analysis has led to many different power
spectrum estimation methods, which could be divided in
two parts: parametric and non-parametric [3, 4, 5].
Parametric methods consist in modelling the data by a small
set of parameters. The autoregressive (AR) model is the
most commonly used model. Finding the parameters leads
to complex algorithm [13], which usually required ma-
trix inversion and/or single value decomposition algorithms.
Those methods give very accurate results in terms of fre-
quency estimation but are very time consuming and due to
their complex processing, could not be used for an embed-
ded process. In this class of parametric techniques, some
embedded solutions were proposed to estimate directly the
signal harmonics. In [6], authors propose a digital filter
bank tuned on the frequency of the harmonics to be eval-
vated. This technique could be implanted with minimum
silicon area overhead if only the first main (1 to 5) harmon-
ics are considered. But the harmonic estimation accuracy
is too sensitive to variation of the input signal frequency.
It is possible to add some adaptive circuitries to make this
technique more robust [7], but this solution involves a lot of
hardware resources unsuitable for BIST context. Another
solution to evaluate harmonics consists in using a simple
3 — A modulator [8, 9]. This technique is really attractive
but it is only usable on an analog signal and not on the dig-
ital output of ADC.

Non-parametric methods are based on Fourier analysis,
which is usually implemented by means of Fast Fourier
Transform (FFT) algorithm [12]. The FFT algorithm gives
an accurate estimation of the spectrum, but the huge amount
of multipliers required for an embedded process is not vi-
able in a BIST context. For instance a Radix-4 FFT algo-
rithm applied to an acquisition length of 4096 real samples,
need more than 50, 000 products and 120, 000 adds [14].
In this paper, we propose a new power estimation algorithm
of the first harmonics that respects the previously enounced
constraints. The method is based on discrete Fourier series
expansion model, and use piecewise signal decomposition



and a very simple processing. The paper is organized as fol-
lows. Section 2 presents the technique we propose. Section
3 gives simulation results and comparisons with the most
common algorithm: FFT. Finally, section 4 concludes this

paper.
2. Method for harmonic estimation
2.1. Discrete Fourier series expansion
The method is based on the description of the anal-

ysed signal by a discrete Fourier series expansion. Any T-
periodic signal s(t) could be expressed as a Fourier series:

s(t) = % + Z ay, cos(kwt) + by sin(kwt)) (1)
k=1

with w = 2% and ay, , by are the Fourier series coeffi-
cients defined by:
ar = 7 fo .cos (kwt) dt @
by = T—.fo ). sin (kwt)dt

In the context of digital processing, discrete signal has to
be considered. When digitising a signal, coherent sampling
is needed to eliminate the used of a time windowing by
guaranteeing that the sample set contains a complete peri-
odic waveform representation [15]. Coherent sampling de-
fines a relationship between the sampling frequency F (or
the sampling period T5), the number of samples Ns, the test
signal frequency F} (or the corresponding period 7") and the
number of test signal periods sampled M. The coherency
formula is given by:

M.F, = N,.F, or M.T=N,T, 3)

where M and N are mutually prime to assure unique
sample points.
With these new conditions we can define the Unit Test Pe-
riod (UTP) [11], which represents the time required to
take all samples, and its associated frequency, Fi..s, the fre-
quency resolution:

M N 1 kK F

UTP=— = —, Fres = =
F, F>' UTP M N

A FFT operation on a set of coherent samples puts all rel-
evant information about the fundamental and harmonics of
the signal into frequency ranges of equal width. These fre-
quency ranges are called bins. The width of the bins is de-
termined by the frequency resolution Fres. Due to Nyquist,
the total number of frequency bins used for spectral analy-
sis is N's/2, and as their width is F}..s, we can state that the
maximum frequency in the spectral data is :

“4)

N;
FtMAX :Fres~7 (5)

So, for a discrete signal that respects the previous condi-
tions, the formula of the Fourier series becomes:

Ny
sn]~ 9@+ 3 (ar cos(kwn) + by sin(kwn)) (6)
k=1
€ [1..N;]
with
27 27
- UTP N, @

Generally the most part of the signal power is concen-
trated in the first harmonics. Consequently, we can estimate
the signal in considering the first K3 4x harmonics with
following expression:

Kyax

sn] ~ G+ kz_:l (ay cos(kwn) + by sin(kwn))
- n € [1..NJ]

®)

ay and by, are then evaluated using classical expressions

1 s k
ap = . s|n|.cos (2T—+n
o= sl (nwtn) )
ke {].,...,KJWA)(}
1 N : k
b = ¥ Ts.jgls [n] . sin (27T7NS'TS n) (10)
ke {17---7KMAX}

The computation of these expressions requires a large
number of multiplications. Our main goal is to estimate the
values of the parameters a; and by, with original technique
requiring minimal hardware resources.

2.2. Method principle

Our objective is to minimize the number of complex
computations required to estimate the coefficients aj and
bi.. The idea of our method consists in defining very sim-
ple computations to extract independently each coefficient
ay, from a composite signal. We consider that the average
value of the analysed signal is null (¢ = 0).

The first step consists in distinguishing between the cal-
culation of the coefficients aj;, and by in using additional
functions h and g defined as follows:



Knmax

t) &~ 2 Z (ag cos(kwt))  (11)

k=1

g(t) = s(t) +s(=

Kyax

h(t)=s(t)—s(—t)~2 Z (b sin(kwt))  (12)

k=1

Those functions are easy to compute considering the fact
that the function s is a periodic one. In discrete time it
comes by symmetry around N /2:

g[n]:s[?—n—kl]—ks[n] (13)

hin]=s {]\275 —-n+ 1} — s[n]withn € [1]\2[5} (14)

To illustrate our method, we focus on the a; estimation
method. The estimation of b, coefficients is based on a
very similar technique.

The fundamental idea of our method is to reorganize the
sample obtained from the signal in order to extract Fourier
coefficients with only cumulative sum on samples.

Before describing our method in the general case, let us
consider the simple example of the first three harmonic
determinations.

2.2.1. Tllustration for a third order model. In the case
where Kpsax is equal to 3, the signal g[n] is composed
of 3 cosines of amplitude ak with k£ € {1,2,3} as illus-
trated figure 1. Our goal is to separate each contribution
of the cosines in order to estimate their amplitudes ay. Let
us choose the frequency corresponding to the second wave,
i.e. the wave described by cos(2wt). In order to evaluate
the amplitude a5, our method consists in multiplying the
signal by the sign of cos(2wt). Figure 2 represents the re-
sultant signal and the influence on the sign of cos(2wt) on
the different cosine functions.

From this figure, we can remark that the av-
erage  values of  ajcos(wt)sign[cos(2wt)]  and
a3 cos(3wt)sign[cos(2wt)] seem equal to zero.  This
can be proved thanks to the following equation:

G2:f9

O
N

sign (cos(2wt))dt
Ts 3
| 23 (ay cos(kwt))sign (cos(2wt))dt
0 k=
= Y (2 ag fo ® cos(kwt)sign (cos(2wt))dt)
:1
= Cl10-|-26L2*+26L3O—Cl2é
(15)

g(n)

& al.cos(w.n)
C  aZ.cosZ2.w.n) |]
a3.cos(3.w.n)

1.5

] 500 1000 1500 2000

Figure 1. Three cosine signals and associ-
ated composite signal g[n]

For this specific example, the contribution of cos(wt)
and cos(3wt) in the computation of the parameter ao are
nulls. Consequently, if the signal is only made of 3 cosines,
multiplying this signal by the sign of cos(2wt) could allow
us to determine the value of the coefficient as correspond-
ing of the second harmonic amplitude with

N, T,

ag = %/g ) .sign (cos(2wt))dt (16)
0

that can be expressed by the following computation for
the discrete case:

n] + Zg (17)

Ns 3N

8 8
> gl =2 gln

0 Ns 3Ns

8
Based on the same principle, we can extract the ampli-

tude of the third harmonic component, multiplying the sig-
nal by the sign of cos(3wt) :

3Ns 511\;‘; %
Zg Z n+> gl =) gl

(18)

In the case of a; computation the result is not so trivial.

The third harmonic contribution cannot be removed and we
obtain the following expression for a;:



gin).sign{cos(Z.w.n))
¢ al.cos(w.n).sign{cos(2.w.n))
©  a2.cos{Z.w.n).sign{cos{2.w.n))
+  a3.cos(3.w.n).sign(cos@.w.n))
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Figure 2. Signals multiplied by the sign of
cos(2wt)

N,

4

s % 1
alzg Xojg[n]—;g[n] —gas (19

To conclude, we can extract first as and a3 then a; with
only three basic cumulative sums from the composite signal
g(t), if this signal is composed only of three harmonics. We
show in the next section that this technique can be applied
to a wideband signal.

2.2.2. General theory. We consider that the signal is lim-
ited to the K ;4 x first harmonics. Based on the technique
previously presented, to evaluate the ¢*” harmonics, we first
compute the G4 value with the following integral:

NgTs
2

G, = / g(t).sign(cos(qwt))dt (20)
0
Thanks to (11), (20) could be rewrote as follows:
NsTs

Kpmax
f (2 ];1 (akcos(kwt))> sign(cos(qwt))dt

0

Gq

Ng.Ts

Kyax 2

2 ag f cos(kwt).sign(cos(qwt))dt
k=1 0

@2n
Let Cy, be the contribution of the cosine cos(kwz) when
the parameter a, is looked for:

NsTs

qu:/ ’ cos(kwt).sign(cos(quwt))dt (22)
0

then

Knax

Gy =2 Y (axCqr) (23)
k=1

G, represents the sum of all cosines contribution when
the parameter a, is looked for. A matrix product is ob-

tained:
Gy

=2CA 24)

with :

ClKMAX
C’IKMAX

CKMAXk CKMAXKMAX

and

AKpax

It is obvious that the function sign(cos(qwt)) only takes
2 values (1 or —1), and that these values are constant on
the interval described by two consecutives zeros of the
function cos(qwt). Thus Cyy, is evaluated with a simple
sum taking into account the zeros of cos(qwt) in the range

[0, %], Let (2i),e(1. 4 be those zeros, and let us add

2
20 =0, zg41 = N SQ'TS , the extreme values of the interval,

(18) are then expressed by:

q . Zi+1
Co =Y _ (=1 / cos(kwt)dt (25)
i=0 Zi
It can be demonstrated that :
e if k = ¢ then
2
Coq = " (26)

e ifgisodd (¢ =2p+1)andif kisodd (k = 2t + 1)
and if % is an odd integer

Cor = (—1)1)”-%

few @7



e if giseven (¢ = 2p) and if k is even (k = 2t) and if%
is an odd integer (k/q = 2m + 1)

2
qu — (_1)p+t+m.£ (28)

e clse

Ca =0 (29)

As matrix C'is fully determinate by computation, and as
vector G is calculated from data in a very simple way, the
estimation of parameters ay, is straightforward. Matrix C
has to be inverted in order to perform the estimation. As
the terms Cyy, are null for all £ < ¢, matrix C' is an upper
triangular one. Its determinant is thus equal to the product
of the diagonals terms, in this case, it is (%)KMAX. C can
then be inverted using the Gauss-Jordan method. The final
solution is given by the following equations:

WGKMAX
AKpvax = ? (30)
fori e {1,...,Kyax — 1}
e jeven:
mgé(%,l
W . 2(_1)(7n+1)i+7n
ai = i E : @m+ Dw GmED
m=1
(€19)
e jodd:
MS% ( KlwiAX —1
L o 2(71)(m,+1)i—1
ai = i E : @m+ Do @GmtDi

(32)

Following the same methodology and using H, =

Ng.Ts
Jo % h(t).sign(sin(qwt))dt, the estimation of parame-
ters by, is given by the following equations:

ODRrax = % (33)
fori e {1,...,Kyax — 1}
oo e
bi= | Hi— mz::l mb(Qerl)i
(34)

We can notice that the estimation of by does not require
to distinguish the odd and even cases. This small example
demonstrates that with simple processing on the signal to be
analysed, it is possible to extract every set of coefficients ay,
et b, with only cumulative sums and a few multiplications.

3. Validation

The previous algorithm was implemented in a MATLAB
script and applied to a 12bits AD converter model. The in-
put signal was a full-scale coherent signal of frequency set
around 15MHz, and sampled at 80MHz. Figure 3 shows
the result of a FFT operation computed over a sample set of
4096 points.

OF———— o= - = —F-—-= T T =7 E
1 1

20 f-------- ST Tty e e |

f H 1 H H H H 1

0 0.4 1 1.5 2 245 3 35 4
Frequency < A0

Figure 3. Power spectrum of a12bits AD con-
verter

Figure 4 shows the comparison of the Ky;ax = 5
first harmonic estimation for FFT operations computed over
sample sets of 4096 points long, and our method, com-
puted over 4096 points. Our method seems to be relevant
for the estimation of the five harmonics, even for the low-
est ones. The comparison with the FFT operation computed
over 4096 points reveals reasonable errors for this real spec-
trum. Simulations made with an ideal spectrum, where only
the five first harmonic get out of the noise floor, give almost
perfect results (max mean error 0.5% and max standard de-
viation of 6% on the lasts harmonic). Table 1 shows statis-
tical measurements made over 200 runs for a real spectrum.

Mean and standard deviation operations are computed
over the error between the FFT algorithm and our method.
All statistical measurements were made on the real values,
not the dBc ones. Our estimation, based on a real spectrum
reveals some offset errors, which do not appear in the ideal
case. However, even if those errors seem to be important,
they represent only a maximum deviation of 3dB.

The number of multipliers used in this new method is
nearly null as they are only used for scaling operations. The
number of actual sums required to perform an estimation
of the 5 first harmonic over a 4096 points long sample set
is around 40,000. When comparing this to the 53,256
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Figure 4. Comparisons between FFT and our
method

Table 1. Comparisons and errors

Harm. H1 H2 H3 H4 H5
FFT 0 -77,32 | -101,13 | -85,95 | -89,06
Our method 0 -79,04 | -99,98 -83,70 | -91,10
E (%) -0,0020 17,97 -12,32 | -29,59 | 21,08
og (%) 0,00022 1,320 28,282 3,88 5,329

products and the 126,296 adds needed for a 4096 Radix-4
FFT operation.

It is clear that the silicon area required to implement the
harmonic estimation is directly linked with the number and
the nature of the needed operators. For The same accuracy
as the classical FFT test technique, because our method
needs very fewer operations and only real additions, we can
expect obtain a good result for the first implementation of
our method with a small silicon area compatible with BIST
constraints.

4. Conclusion

In this paper, a new power estimation algorithm of the
first harmonics that respects the constraints of an embedded
process has been exposed. The method, based on discrete
Fourier series expansion model, and piecewise signal
decomposition consists in a very simple signal processing.
First studies are encouraging to follow in this way. We are
currently working on the implementation of the algorithm
in a FPGA solution to quantify more precisely, the hard-
ware resource needed. Furthermore, the validation of the
algorithm was leaded with a single sinusoid in input, it will
be interesting to check the behavior of the algorithm for
a larger variety of signals (for instance, two-tone signals).

Next step will be to detail the BIST circuitry to perform the
operation.
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