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A new unified micromechanical approach to dynamics of micro-periodic composite solids is formmlated. The
proposed approach introduces the concept of internal variables in order to describe the effect of the microstrocture
size on the global body behaviour. It is shown that the evolution equation for internal variables can be obtained
without any specification of the matenial properties of the composite.

1. Introduction
It is known that the behaviour of the composite solids with periodic microstructure can be
examined on two levels. On the micro-level the interactions between constituents of a composite
are detailed while the global body response is investigated in the framework of macromechanics.
The passage from micro- to macromechanics is realized by so called micromechanical
approaches, [1], leading to various mathematical models of the composite solid on the macro-
level. The best known from them are those based on the concept of homogenecus equivalent
body where the micro-heterogeneous composite is modelled as made of a certain “homogenized”
material. The above models can be obtained from some special procedures, [1, 12], derived by
means of the asymptotic methods, [3, 5, 11], by the Fourier expansions, [23], or using so called
micro-local parameters, [15, 32]. However, following the concept of the homogenecus
equivalent body we neglect the effect of the microstructure size on the global body behaviour.
This effect plays an important role mainly in the vibration and wave propagation analysis. In
order to describe dynamic problems in the framework of macromechanics a number of
mathematical models, mainly based on the concept of the continuum with the extra local degrees
of freedom, or obtained by finding the higher-order terms of the asymptotic expansions, was
proposed, [2, 9, 14, 15, 22, 24]. Models of this kind have rather complicated analytical form and
applied to the investigation of boundary-value problems often lead to the large mumber of
boundary conditions which may be not well motivated from the physical viewpoint. Between the
models using the concept of the homogeneous equivalent body and those applying continua with
the extra local degrees of freedom are situated the models of the refined macrodynamics, [32].
The effect of the periodic microstructure size on the dynamic body behaviour in the framework
of refined macrodynamics is described by certain unknown fields, called macro-internal
variables (MIV). These variables, being governed by ordinary differential equations invelving
time derivatives, do not cnter boundary conditions. So far, the internal variables were mainty
used in formulations of the constitutive relations, [7]. Applications of this concept to the
micromechanical approach to dynamics of periodic composite solids were recendy investgated
in a series of papers [4, 6, 8, 10, 13, 16, 18-21, 26-30, 33-40}.

In the aforementioned papers the micromechanical approach 1o macromechanics. using
the macro-internal variables, was based on certain heunistic assumptions related o the
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specification of materials and expected motions of the body. The aim of this contribution is to
derive the governing equations for models with MIV without those assumptions. The main result
is that the evolution equations for MIV can be obtained without any specification of the material
properties of a composite solid. The investigations are related to composites with perfectly
bonded constituents and are carried out in the framework of the small displacement gradien
theory. Throughout the paper all capital Roman superscripts run over 1,..,N (summation
convention holds unless otherwise stated). Points of the physical space E are denoted by X, y orz
and their distance by ||x - y . The letter t stands for the time coordinate and te[tg,tg]. By | | we
define both the absolute value of a real number and the length of a vector. It is assumed that all
introduced functions satisfy the regularity conditions required in the subsequent analysis.

2. Analytical preliminaries

Let Q) be a region in the Euclidean 3-space E occupied by the composite solid in the refercnce
configuration. Setting V:=(-1,/2, 1;/2)x(-15/2, I5/2)x(-13/2, I3/2) we assume that the solid in this
configuration has the V-periodic heterogeneous structure (is V-periodic) and that the
microstructure length parameter defined by / : = \/1}? +l;,2 +132 is negligibly small as compared to

the smallest characteristic length dimension L of Q. We shall use the denotation V(x)=x+V ; if
V(x)cQ then V(x) will be called the cell or the volume element of (2. The set (: ={xeQ;
V(x)cQ} is said to be the macro-interior of Q. For an arbitrary integrable function f{(-), defined
almost everywhere on Q, we define the averaged value of f{(-) on V(x) by means of

1
(2.1) <f(zy>(x)= j f(z)dw(z), xeQy.
111213 V(x)
If f(-)is a V-periodic function then <f(z)>(x) is a constant which will be denoted by <f>. Now
we shall recall two auxiliary concepts which will be used in the subsequent analysis, [32].

Let ®(-) be a real valued function defined on (), which represents a certain scalar ficld.
Let us assume that the values of this field in the problem under consideration have to be

calculated and/or measured up to a certain tolerance determined by the tolerance parameter eg,
£@>0. It means that an arbitrary real number @y, satisfying condition

|d>(x)- <I>0|<8cp
can be also treated as describing with the sufficient accuracy the value of this field at the point x.

The triple (®(-),eq,) will be called the smacrofunction (related to the region Q) if the
following condition holds

(VENe [x-yI</=10() - ) < z0).
Roughly speaking, from both calculation and measurement viewpoint, every e-macrofunction
restricted to an arbitrary cell V(x), xe€)y, can be treated as constant.
In order to introduce the second auxiliary concept used in the subsequent analysis define
by hA(-), A=1,2,..., the system of linear independent continuous V-periodic functions (and hence

defined on E) having continuous first-order derivatives. Let the above functions satisfy
conditions

a>=0, <a®wB=5"B12 (worlh*mlc]
and constitute a basis in the space of sufficiently regular functions defined on an arbitrary cell V(x)
and having on V(x) the averaged values equal to zero. We also assume that for every h?(-) there
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exist a V-periodic lattice A, of points in E such that hA/aV(x)=0 for every xeA,. It means that

(VhA)((Ex) [hA/av(x)=0]. Under the aforementioned conditions the system h"(-), A=1,2,..., will be
called the local oscillation basis.

3. Foundations of kinematics
Let u(-,t) stand for a displacement ficld defined on Q for every instant t . Define on € the
averaged displacement field by means of
(3.1) U(x,t) : = <u(z,t)>(x), xeQy .
By the local displacement oscillations we shall mean the vector functions wy(-t) defined
independently on every V(x), x€£)g, such that
(32) Wo(¥,0) = u(y.0) - Uy 1.0, yeve),
where ry(-) satisfy condition

<ry(z,0>(y) = <U(z,H>(x) - U(x,b),
and will be specified at the end of this Section. It can be seen that

<wg(Zt)>(x)=0, xeQ,
and hence, under the known regularity conditions, every function wy(-,t) can be represented by
the Fourier series in the local oscillation basis hA(-), A=1,2,..., . Denoting the Fourier
coefficients by

(3.3) WAkt = <wzt) b @) 172 xeQy,
we obtain
(3.4) Wy (.0 =A§_)1 w1y, yev(x),  xeQy.

The kinematics of the composites under consideration will be based on two assumptions.

Truncation Assumption (TA) states that the Fourier series (3.4) can be approximated by
the sum of the first N terms for some N > 1, where N has to be specified in every problem under
consideration.

From TA it follows that instead of (3.4) we assume
(3.5) w0 =Wxh'G), yevx),  xeQp,
where here and in the sequel the Roman superscripts run over 1,...,.N (summation convention
holds). The functions hA(-), A=1,2,....N are called the micro-shape functions.

Kinematic Macro-Regularity Assumption (KRA) restricts the class of motions in every
problem under consideration by assuming that fields U(-,t), WA(-,t), A=1,2,... N, together with
their derivatives, are regular e-macrofunctions.

It can be seen that the formulation of KRA takes into account TA by means of which the
number N of the micro-shape function is postulated in every problem under consideration.
Under KRA fields U(-,t), WA(-,t), A=1,2,...N , are said to be the macrodisplacements and the
macro-internal variables (MIV), respectively. The meaning of the term MIV will be explained
in Sec. 5. The e-macrofunctions U(-,t), (-,t) describe the kinematics of composites on the
macro-level (macro-kinematics) and will constitute the basic kinematic unknowns in the
framework of the proposed model. The results of this section are summarized by the following
lemma.
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Lemma. Under TA the displacements on the micro-level are related to the
macrodisplacements and the macro-internal variables by the formulae

A A
(3:6) u(y,t) =U(y,) +h (0W (y.1) -
The proof of the above lemma is based on the specification of fields ry(-,t) to the form
A
(3.7) @) =HOWE)-WiEoL  yev@,  A=L..N

Substituting the right-hand sides of (3.7) into (3.2) and using (3.5) we arrive at (3.6).

4. From micro- to macrodynamics

Let s(-,t) denote the Cauchy siress tensor field defined for every t on O\ where I' is a set of all
interfaces between the components of the composite. Let us define on € the following averaged
stress fields

@.1) S(x,1) : = < sZ)>(x) , H'(x1): = <s@t) Vb @>(x), xeQq.

In order to pass from micro- to macrodynamics two extra assumptions will be required.

Stress Macro-Regularity Assumption (SRA) restricts the class of stress fields in the
problem under consideration to that in which the fields S(-1), HA(-,t) together with their
derivatives are regular e-macrofunctions.

Under SRA the fields defined by (4.1) will be called the macrostresses and the micio-
dynamic forces, respectively. The meaning of the second from these terms will be explained at
the end of this section.

Let p(-) stand for the mass density field (which is the V-periodic function defined almost
everywhere on Q) and assume that the body force b is constant. Let us denote by n(y) the unit
normal outward to dV(x) at y. The starting point of the proposed micromechanical procedurc
will be the weak form of equations of motion in micromechanics. Taking into account the
symmetry of the stress tensor these equations can be assumed in the form of conditions
2) Jsro:viiy)av="dis(y.0)-n())-6(y) da+ } p(y)ibiicy, 0] u(y)dv

V) N(x) V(x}
which have to hold for every xe€) and for an arbitrary test function W(-). In order to pass from
micro- to macrodynamics we have to specify the set of test functions in (4.2). Taking into
account (3.6) we assume that
“3) ) =T+ OW o),
where U(), wh (*) are arbitrary linear independent regular e-macrofunctions defined on £2.

Now we shall formulate the fundamental assertion of the micromechanical approach to
macrodynamics proposed in this contribution. For the sake of simplicity we shall also assume
that the micro-shape functions hA(-) satisfy the extra conditions <phA> =0, A=1,...,N.

Fundamental Assertion. Under TA, KRA, SRA and in the framework of MAA the
equations of motion (4.2) imply the following interrelation between the macrodisplacements
U(-,t) and the macrostresses S(-,t):

4.4 Div S(x,t) - <p>U (x,t) + <p>b=0,
as well as between the macro-internal parameters WA( ,t) and the micro-dynamic forces HA (-0
(4.5) <ph™ B> WBR,D) + B (x,0=0,  A=1,..N;

the above relations hold for every xe€)g and te(tg,ty).
The relations given by (4.4), (4.5) will be called the equations of motion and the dynamic
evolution equations, respectively. Since the modulae <phAh > are of an order o(/ ) then the
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above equations describe the effect of the microstructure size / on the body dynamic response.
For this reason equations (4.4), (4.5) are said to represent the refined macrodynamics of the
composites under consideration, [30]. Let us observe that both in the quasi-stationary processes
and for problems in which the above effect can be neglected we obtain HA(x,t)=0. That is why
the fields defined by the second from Eqs (4.1) were called the micro-dynamic forces. It has to
be emphasized that under aforementioned assumptions equations (4.4), (4.5) are related to a
composite solid with periodic microstructure made of arbitrary materials. Hence, the
aforementioned equations represent the averaged laws of motion in the framework of the
proposed refined macrodynamics. The proof of fundamental assertion can be found in [38].

5. MIV-model

In order to describe the dynamic response of the composite body in the framework of the MIV-
model we have to complete equations (4.4), (4.5) introducing the constitutive equations for
macrostresses S and micro-dynamic forces i Taking into account the definitions (4.1), the
second from the formulae (3.7) and applying MAA to the integrals in (4.1), this can be done for
arbitrary periodic composites the components of which are simple materials. To simplify the
subsequent considerations we shall restrict ourselves to the linear visco-elastic materials
governed by the constitutive equations of the form

6.1) s=C@):e+D@): ¢ ; e:=0.5[Vu+(Vu)],

where C(-), D(-) are V-periodic piecewise constant functions the values of which are the fourth
order tensors of elastic and viscous modulae, respectively, for the component materials. Define
the linearized macro-strain tensor by means of

2) E(x,1) : = 0.5[VU(x,1) + (VUX,D)) ] -

Substituting (5.1) into definitions (4.1) and using MAA we obtain

S(x,1) = <C> : E(x,t) + <C - Vh™™> - W(x,t) + <D> : E(x,0) + <D - Vh™> - WAX,1),

(5.3) B (x,0) =< Vh" - ©> : E(x,t) + <vh'™ € -vhP> - WP ) +

+<Vh® . D> Ex,t)+<Vh D - Vh>> - WB 1),
for every xeQ)y and te(ty,ly) . The above equations will be referred to as the macro-constitutive
equations for the linear visco-elastic composites.

Equations (4.4), (4.5) and (5.2), (5.3) represent the macro-internal variable mode! (MIV-
model) of micro-periodic composites made of perfectly bonded visco-elastic constituents. For
the linear elastic materials the above equations reduce to those of the refined macromechanics,
which were obtained independently in [30] by means of certain heuristic hypotheses. For every
micro-periodic composite solids (with constituents modelled as simple materials) the proposed
model is uniquely determined by the choice of the micro-shape functions h™'(+), A=1,....N.

It has to be emphasized that for every class of motions specified by conditions (3.6) we
obtain the pertinent MIV-model. In the analysis of special problems we have to take into account
only these classes of motions which seem to be relevant from the viewpoint of the engineering
applications of the theory.

Substituting the right-hand sides of Eqs (5.3) into (4.4), (4.5) we obtain the system of
three partial differential equations for the macrodisplacements U coupled with the system of 3N
ordinary differential equations for the macro-internal variables WA Hence, in formulations of

the initial-boundary value problems, unknowns WA(-,t) do not enter the boundary conditions.
That is why they were called the macro-internal variables (MIV). It can be shown that for
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homogeneous bodies and homogeneous initial conditions for MIV, we obtain the trivial solution

=0, A=1,...,N, to every boundary value problem. Hence, the macro-internal variables play a
crucial role in a description of the dynamic behaviour of solids with periodic microstructure and
that is why the models proposed were referred to as the macro-internal variable models. It has 1o
be emphasized that solutions to special problems in the framework of MIV-models have the

physical sense only if the fields U(-t), W (t) as well as S(-,t), H' (-,t), for every instant 1, arc
the regular e-macrofunctions. This requirement can be verified only a posteriori.

6. Conclusions

Let us summarize the advantages and drawbacks of the MIV-models of composites in the light
of their possible applications to dynamics of composite solids. The main advantages can be listed
as follows.

1. The MIV-models describe the effect of the microstructure size on the dynamic
behaviour of a composite body contrary to models based on the concepts of the homogeneous
equivalent body. Hence, using these models we can investigate dispersion phenomena and
determine higher wave propagation speeds and free vibration frequencies in composite materials.
It can be observed that the MIV-models describe the length-scale effect on the composite body
behaviour only in dynamic problems.

2. The form of the governing equations of the MIV-models is relatively simple since all
macro-internal variables as the extra unknowns are governed by the ordinary differential
equations, involving only time derivatives of wh Hence, the boundary conditions for the MIV-
models have the form similar to that met in solid mechanics. It has to be noticed that in the
micromorphic models of composites, based on the concept of the extra local degrees of freedom
(like the Cosserat-type continua), we deal with the large number of boundary conditions which
may be not well motivated from the physical or engineering viewpoint. The same situation also
holds for the asymptotic models involving higher-order approximations; this problem will be
analyzed in a separate paper.

3. The governing equations of an arbitrary MIV-model have constant coefficients which
can be easily determined by calculations the integrals over V and do not require any previous
solution to the boundary value problem on the unit cell contrary to models obtained via the
asymptotic methods.

4. The MIV-models have a wide scope of applications since they can be postulated in the
unified way for composites made of arbitrary simple materials. Moreover, the formal procedure
presented in this contribution can be easily generalized to include the problem of finite
deformations.

5. In some special problems the MIV-models have an adaptive character similar to that of
the FEM. It means that they can be formulated on different levels of accuracy either by applying
different truncations of the Fourier series or by changing the form of micro-shape functions.

Among the drawbacks of the MIV-models the following ones seem to be the most
relevant:

1. The analysis of the microdynamic effects is confined almost exclusively to the
behaviour of a composite on a macro-level. The passage to microdynamics by using formulac
(3.6) may require a very large number N of the micro-shape functions, which makes the problem
very difficult to solve.

2. The choice of the Fourier expansion of local oscillations and its truncation leading to
the proper MIV-models for the problem under consideration is not specified by the proposed
approach. For some special problems (e.g. for laminated structures) the choice of the micro-
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shape functions can be based on the intuition of the researcher as a certain a priori postulated
kinematic hypothesis not related to the aforementioned Fourier expansion.

3. Every MIV-model is restricted only to the analysis of a special class of motions which
from a qualitative viewpoint has to be postulated a priori by the choice of the micro-shape
functions. Hence the above models can be applied mostly to problems in which we are interested
in a dynamic body behaviour under motions which can be assumed a priori as relevant for the
problem under consideration.

Summarizing the above conclusions and taking into account the recently obtained results
on this field (cf. the references mentioned in Introduction) one can suppose that the MIV-models
of composite material structures deserve a certain attention both from the theoretical and
engineering point of view.

This research work was supported by KBN Warsaw Poland under grant No. 7 T074 017 11
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