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A new unified micromechanical approach to dynamics of micro-pcriodic composite solids is fommlatod The 
approach inkoduces the concept of internal variables in order to describe the effect of the microsimcmm 

size on the global body behaviour. It is shown that the evolution equation for internal variables can be o G c d  
without any specification of the material properties of the composite. 

1. Introduction 
It is known that the behaviour of the composite solids with periodic microstructure can be 
examined on two levels. On the micro-level the interactions between constituents of a composite 
are detailed while the global body response is investigated in the fi-amework of momahanics .  
The passage from micro- to macromechanics is realized by so called micromechanical 
approaches, [I], leading to various mathematical models of the composite solid on the macro- 
level. The best known from them are those based on the concept of homogeneous qui tdent  
body where the micro-heterogeneous composite is modelled as made of a certain 'bomo_ernizd" 
material. The above models can be obtained from some special procedures, [l, 121. k t - e d  by 
means of the asymptotic methods, [3, 5, 111, by the Fourier expansions, [23]. or u ~ g  so called 
micro-local parameters, [15, 321. However, following the concept of the homo-mmm 
equivalent body we neglect the effect of the rnicrostructnre size on the global body behatiour. 
This effect plays an important role mainly in the vibration and wave propagation analysis. Lnm 
order to describe dynamic problems in the framework of macromechanics a n u r n k  of 
mathematical models, mainly based on the concept of the continuum \\ith the rs'tra l o d  &_gees 
of freedom, or obtained by finding the higher-order tcrms of the as>mptotic expansions. 
proposed, [2, 9, 14, 15, 22, 241 Models of this kind have mthcr carnplicated analytical form awl 
applied to the investigation of boundary-\.alule problems ofien lead to the large number of 
boundary conditions which may be not \\re11 motivatd from the physical viempwint. Bcnvrm &c 
models using the concept of the homogeneous cquivalmt bcdy and those applying continua \\ith 
the extra local degrees of freedom are situated the mrdels of the refined m a ~ d y n a m i c ~  [3-?]. 
The effect of the periodic microstructure size on the dynamic body behaviour in the fkme\\~rEr 
of refined macrodynamics is described by certain unknown fields, d d  mnacro-intend 
variables (MIV) .  These variables, being @vernd by ordinary dif'fercntial equations in\*hh$ng 
time derivatives, do not enter bou1ndaq conditions. So far, the intcmal \aiablc; \\ere 
used in formulations of the constituti\pe relations, [TI. Applicationb of this ct~nce'pt to the 
micromechanical approach to dynamics of periodic c-arnpositc >oliri_\ \\ere mend) im =*ad 
inaseries ofpapers [4, 6, 8, 10, 13, 16, 18-21. 26-30, 35-40]. 

In the aforemcntionod papers the mnicr~~mzrhsnicd appmac'h to macnm141ania. wing 
the macro-internal variables, was brtsd on certain hrt~ristic assumpkians dated to the 
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specification of materials and expected motions of the body. The aim of this contribution is to 
derive the governing equations for models with MIV without those assumptions. The main result 
is that the evolution equations for MN can be obtained without any specification of the material 
properties of a composite solid. The investigations are related to composites with perfectly 
bonded constituents and are carried out in the framework of the small displacement gradicnt 
theory.Throughout the paper all capital Roman superscripts run over 1, ..., N (summation 
convention holds unless otherwise stated). Points of the physical space E are denoted by x, y or z 

and their distance by Ilx - y 11. The letter t stands for the time coordinate and t€[to,tf3. By I I wc 
define both the absolute value of a real number and the length of a vector. It is assumed that all 
introduced functions satisfy the regularity conditions required in the subsequent analysis. 

2. Analytical preliminaries 
Let R be a region in the Euclidean 3-space E occupied by the composite solid in the refercncc 

configuration. Setting V:=(-11/2, 11/2)x(-1g2, 17/2)x(-1312, 1312) we assume that the solid in this 
- - 

configuration has the V-periodic heterogeneous structure (is V-periodic) and that thc 

microstructure length parameter defined by I : = dlil+l:+d is negligibly small as compared to 

the smallest characteristic length dimension L o  of R .  We shall use the denotation V(x)=x+V ; if 

V ( x ) d  then V(x) will be called the cell or the volume element of R. The set 4 :  = { X E ~  , 

V ( x ) d )  is said to be the macro-interior of R. For an arbitrary integrable function f(.), dcfincd 
almost everywhere on R, we define the averaged value of f(.) on V(x) by means of 

1 
(2.1) <f(z)>(x)=- If (z) dv(z) , X E ~ .  

Il12'3 "(x) 

If f(.) is a V-periodic function then <f(z)>(x) is a constant which will be denoted by <f>. NOW 
we shall recall two auxiliary concepts which will be used in the subsequent analysis, [32]. 

Let @(.) be a real valued function defined on R, which represents a certain scalar ficld. 
Let us assume that the values of this field in the problem under consideration havc to be 

calculated and/or measured up to a certain tolerance determined by the tolerance parameter EQ, 

EQ>O. It means that an arbitrary real number mo satisfying condition 

I @ ( x ) - @ ~ I < E Q  
can be also treated as describing with the sufficient accuracy the value of this field at the point x. 

The triple (a(-),&@,I) will be called the E-macrofunction (related to the region R) if the 
following condition holds 

P(X,Y)ER3[ I I x  - Y II< 1 J I @(x) - @(Y) I< ~ 0 1 .  
Roughly speaking, from both calculation and measurement viewpoint, every &-macrofunction 

restricted to an arbitrary cell V(x), ~ € 4 ,  can be treated as constant. 
In order to introduce the second auxiliary concept used in the subsequent analysis defme 

A 
by h (.), A=1,2, ..., the system of linear independent continuous V-periodic functions (and hcncc 
defined on E) having continuous first-order derivatives. Let the above functions satisfy 
conditions 

A AB 2 
<h > = O ,  <hAhB> = 8 1 , (VX)[ I hA(x) 1 I 1 ] 

and constitute a basis in the space of sdiciently regular functions defined on an arbitrary cell V(x) 
and having on V(x) the averaged values equal to zero. We also assume that for every hA(.) tl1el.e 



A 
elrist a V-periodic lattice AA of points in E such that h /w(,)=O for every x€AA. It means that 

A A 
(Vh )((3x) [h lw(,)=O]. Under the aforementioned conditions the system hA(.), A=1,2, ..., will be 
called the local oscillation basis. 

3. Foundations of kinematics 
Let u(.,t) stand for a displacement field defined on S2 for every instant t . Define on % the 
averaged displacement field by means of 

By the local displacement oscillations we shall mean the vector functions w,(.,t) defined 

independently on every V(x), x € 4 ,  such that 

where rx(-) satisfy condition 

<rx(z,t)>( y) = <U(z,t)>(x) - U(x,t), 
and will be specified at the end of this Section. It can be seen that 

< wx(z,t)>(x) = 0 , ~ € 4 ,  
and hence, under the known regularity conditions, every function wx(.,t) can be represented by 

A 
the Fourier series in the local oscillation basis h (.), A=1,2, ..., . Denoting the Fourier 
coefficients by 

(3.3) 
A 

d ( x , t )  : = < wx(z,t) h (z)>(x) xe%, 
we obtain 

(3.4) wx(y,t) = 2 d ( x , t )  hA(Y) > yeV(x), x e % .  
A = l  

The kinematics of the composites under consideration will be based on two assumptions. 
Truncation Assumption (TA) states that the Fourier series (3.4) can be approximated by 

the sum of the first N terms for some N 2 1, where N has to be specified in every problem under 
consideration. 

From TA it follows that instead of (3.4) we assume 

(3.5) wx(y,t) = @(x,t) hA(y) 7 Y EV(X), XE% 7 

where here and in the sequel the Roman superscripts run over I, ..., N (summation convention 
A 

holds). The functions h (.), A=1,2, ..., N are called the micro-shape functions. 
Kinematic Macro-Regularity Assumption (KRA) restricts the class of motions in every 

problem under consideration by assuming that fields U(.,t), d ( . , t ) ,  A=1,2, ..., N , together with 
their derivatives, are regular E-macrofunctions. 

It can be seen that the formulation of KRA takes into account TA by means of which the 
number N of the micro-shape function is postulated in every problem under consideration. 

Under KRA fields U(.,t), d ( . , t ) ,  A=1,2, ..., N , are said to be the macrodisplacements and the 
macro-internal variables (m), respectively. The meaning of the term MIV will be explained 

in Sec. 5. The E-macrofunctions U(.,t), d ( . , t )  describe the kinematics of composites on the 
macro-level (macro-kinematics) and will constitute the basic kinematic unknowns in the 
h e w o r k  of the proposed model. The results of this section are summarized by the following 
lemma. 
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Lemma. Under TA the displacements on the micro-level are related to 
macrodisplacements and the macro-internal variables by the formulae 

(3.6) u(y.t) = u e , t )  + hA(y)+(y,t) . 
The proof of the above lemma is based on the specification of fields r,(.,t) to the fonn 

(3.7) r,(y,t) = h A e ) [ ~ ( x , t )  - +(~,oI ,  YEV(X), A=I, ..., N. 
Substituting the right-hand sides of (3.7) into (3.2) and using (3.5) we arrive at (3.6). 

4. From micro- to macrodynamics 
Let s(.,t) denote the Cauchy stress tensor field defined for every t on Q\Z\T where Z\T is a set of all 

interfaces between the components of the composite. Let us define on the following averaged 
stress fields 

A 
(4.1) S(x,t) : = < s(z,t)>(x) , d ( x , t )  : = < s(z,t) .Vh (z)>(x) , X E ~ .  
In order to pass from micro- to macrodynamics two extra assumptions will be required. 

Stress Macro-Regularity Assumption (SRA) restricts the class of stress fields In the 

problem under consideration to that in which the fields S(.,t), d ( . , t )  together with thclr 

derivatives are regular E-macrofunctions. 
Under SRA the fields defined by (4.1) will be called the macrostresses and tlze mrclo- 

dynamic forces, respectively. The meaning of the second from these terms will be cxplaincd at 
the end of this section. 

Let p(.) stand for the mass density field (which is the V-periodic function defined almns~ 
everywhere on Q) and assume that the body force b is constant. Let us denote by n(y) thc u n ~ t  

normal outward to aV(x) at y. The starting point of the proposed tnicromechanical proccdu~c 
will be the weak form of equations of motion in micromechanics. Taking into account tlie 
symmetry of the stress tensor these equations can be assumed in the form of conditions 

(4 2) J s ( y , t ) : ~ ~ ( y ) d v  = ~ [ ~ ( Y , ~ ) . ~ ( Y ) I . G ( Y )  da + J p(y)[b - ii(y,t)l.G(y)dv 
V(xt V(x) 

which have to hold for every X E Q  and for an arbitrary test function ii(.). In order to pass fro111 
micro- to macrodynamics we have to specify the set of test functions in (4.2). Taking i~ l to  

account (3.6) we assume that 

(4.3) k(y) = + hA(y)wA(y), 

where @(a), W A (-) are arbitrary linear independent regular E-macrofunctions defined on fZ 
Now we shall formulate the fundamental assertion of the micromechanical approach to 

macrodynamics proposed in this contribution. For the sake of simplicity we shall also ass~unc 
A A 

that the micro-shape functions h (.) satisfy the extra conditions <ph > = 0, A=1, ..., N. 
Fundamental Assertion Under TA, KRA, SRA and in the framework of MAA the 

equations of motion (4.2) imply the following interrelation between the macrodisplacclncll~s 
U(.,t) and the macrostresses S(.,t): 

(4.4) Div S(x,t) - < p > ~  (x,t) + <p>b=O, 

as well as between the macro-internal parameters d ( . , t )  and the micro-dynamic forces d(.,t) 
(4.5) <ph%B> w (x,t) + d(x,t)=0, A= 1,. . . ,N; 

the above relations hold for every xe% and t~(fo,ff). 
The relations given by (4.4), (4.5) will be called the equations of  motion and the dynamic 

B 2 
evolution equations, respectively. Since the modulae <ph% > are of an order O(I ) then the 



above equations describe the effect of the microstructure size 1 on the body dynamic response. 
For this reason equations (4.4), (4.5) are said to represent the refined macrodynamics of the 
composites under consideration, [30]. Let us observe that both in the quasi-stationary processes 

and for problems in which the above effect can be neglected we obtain d(x, t )=0.  That is why 
the fields defined by the second fiom Eqs (4.1) were called the micro-dynamic forces. It has to 
be emphasized that under aforementioned assumptions equations (4.4), (4.5) are related to a 
composite solid with periodic microstructure made of arbitrary materials. Hence, the 
aforementioned equations represent the averaged laws of motion in the framework of the 
proposed refined macrodynarnics. The proof of fundamental assertion can be found in [38]. 

5. MIV-model 
In order to describe the dynamic response of the composite body in the framework of the M N -  
model we have to complete equations (4.4), (4.5) introducing the constitutive equations for 

macrostresses S and micro-dynamic forces d .  Taking into account the definitions (4.1), the 
second from the formulae (3.7) and applying MAA to the integrals in (4.1), this can be done for 
arbitrary periodic composites the components of which are simple materials. To simplify the 
subsequent considerations we shall restrict ourselves to the linear visco-elastic materials 
governed by the constitutive equations of the form 

T 
(5.1) s = C(z) : e + D(z) : e ; e : = 0.5[Vu + (Vu) ] , 
where C(.), D(.) are V-periodic piecewise constant functions the values of which are the fourth 
order tensors of elastic and viscous modulae, respectively, for the component materials. Define 
the linearized macro-strain tensor by means of 

(5.2) 
T 

E(x,t) : = O.S[VU(x,t) + (VU(x,t)) ] . 
Substituting (5.1) into definitions (4.1) and using MAA we obtain 

A 
S(x,t) = <C> : E(x,t) + <C . Vh > . d ( x , t )  + <D> : ~ ( x , t )  + <D - vhA> . wA(x,t) , 

(5.3) 
A A B B 

d ( x , t )  = < Vh . C> : E(x,t) + <Vh . C .Vh > . W (x,t) + 
+ <vhA . D> : E(x,t) + < vhA .D . vhB> . wB(x,t) , 

for every XE!& and te(h,tf) . The above equations will be referred to as the macro-constitutive 
equations for the linear visco-elastic composites. 

Equations (4.4), (4.5) and (5.2), (5.3) represent the macro-internal variable model (MIV- 
model) of micro-periodic composites made of perfectly bonded visco-elastic constituents. For 
the linear elastic materials the above equations reduce to those of the refined macromechrinics, 
which were obtained independently in [30] by means of certain heuristic hypotheses. For every 
micro-periodic composite solids (with constituents modelled as simple materials) the proposed 

A 
model is uniquely determined by the choice of the micro-shape functions h (.), A=1, ..., N. 

It has to be emphasized that for every class of motions specified by conditions (3.6) we 
obtain the pertinent MIV-model. In the analysis of special problems we have to take into account 
only these classes of motions which seem to be relevant fiom the viewpoint of the engineering 
applications of the theory. 

Substituting the right-hand sides of Eqs (5.3) into (4.4), (4.5) we obtain the system of 
three partial differential equations for the macrodisplacements U coupled with the system of 3N 

ordinary differential equations for the macro-internal variables d .  Hence, in formulations of 

the initial-boundary value problems, unknowns d ( . , t )  do not enter the boundary conditions. 
That is why they were called the macro-internal variables (MTV). It can be shown that for 
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homogeneous bodies and homogeneous initial conditions for MIV, we obtain the trivial solution 

d = 0 ,  A=l, ..., N, to every boundary value problem. Hence, the macro-internal variables play a 
crucial role in a description of the dynamic behaviour of solids with periodic microstructurc and 
that is why the models proposed were referred to as the macro-internal variable models. It has to 
be emphasized that solutions to special problems in the framework of MIV-models have the 

physical sense only if the fields U(.,t), d ( . , t )  as well as S(.,t), d ( . , t ) ,  for every instant t, arc 
the regular e-macrofunctions. This requirement can be verified only a posteriori. 

6. Conclusions 
Let us summarize the advantages and drawbacks of the MIV-models of composites in thc light 
of their possible applications to dynamics of composite solids. The main advantages can be listed 
as follows. 

1. The MIV-models describe the effect of the microstructure size on the dynamic 
behaviour of a composite body contrary to models based on the concepts of the homogeneous 
equivalent body. Hence, using these models we can investigate dispersion phenomena and 
determine higher wave propagation speeds and free vibration frequencies in composite materials. 
It can be observed that the MIV-models describe the length-scale effect on the composite body 
behaviour only in dynamic problems. 

2. The form of the governing equations of the MIV-models is relatively simple sincc all 
macro-internal variables as the extra unknowns are governed by the ordinary differential 

equations, involving only time derivatives of d .  Hence, the boundary conditions for the MIV- 
models have the form similar to that met in solid mechanics. It has to be noticed that in the 
micromorphic models of composites, based on the concept of the extra local degrees of frccdonl 
(like the Cosserat-type continua), we deal with the large number of boundary conditions which 
may be not well motivated fiom the physical or engineering viewpoint. The same situation also 
holds for the asymptotic models involving higher-order approximations; this problem will be 
analyzed in a separate paper. 

3. The governing equations of an arbitrary MIV-model have constant coefficients which 
can be easily determined by calculations the integrals over V and do not require any previous 
solution to the boundary value problem on the unit cell contrary to models obtained via thc 
asymptotic methods. 

4. The MIV-models have a wide scope of applications since they can be postulated in thc 
unified way for composites made of arbitrary simple materials. Moreover, the formal procedure 
presented in this contribution can be easily generalized to include the problem of finite 
deformations. 

5. In some special problems the MIV-models have an adaptive character similar to that of 
the FEM. It means that they can be formulated on different levels of accuracy either by applying 
different truncations of the Fourier series or by changing the form of micro-shape functions. 

Among the drawbacks of the MTV-models the following ones seem to be the tnost 
relevant: 

1. The analysis of the microdynamic effects is confined almost exclusively to the 
behaviour of a composite on a macro-level. The passage to microdynamics by using fonndae 
(3.6) may require a very large number N of the micro-shape functions, which makes the problclll 
very difficult to solve. 

2. The choice of the Fourier expansion of local oscillations and its truncation leading to 
the proper MIV-models for the problem under consideration is not specified by the ~roposcd 
approach. For some special problems (e.g. for laminated structures) the choice of the micro- 



shape functions can be based on the intuition of the researcher as a certain a priori postulated 
kinematic hypothesis not related to the aforementioned Fourier expansion. 

3. Every MIV-model is restricted only to the analysis of a special class of motions which 
from a qualitative viewpoint has to be postulated a priori by the choice of the micro-shape 
functions. Hence the above models can be applied mostly to problems in which we are interested 
in a dynamic body behaviour under motions which can be assumed a priori as relevant for the 
problem under consideration. 

Summarizing the above conclusions and taking into account the recently obtained results 
on this field (cf. the references mentioned in Introduction) one can suppose that the MIV-models 
of composite material structures deserve a certain attention both from the theoretical and 
engineering point of view. 
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